[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024176400A1 - Satellite observation assistance system, satellite observation assistance method, and recording medium - Google Patents

Satellite observation assistance system, satellite observation assistance method, and recording medium Download PDF

Info

Publication number
WO2024176400A1
WO2024176400A1 PCT/JP2023/006522 JP2023006522W WO2024176400A1 WO 2024176400 A1 WO2024176400 A1 WO 2024176400A1 JP 2023006522 W JP2023006522 W JP 2023006522W WO 2024176400 A1 WO2024176400 A1 WO 2024176400A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
satellite
news
recommended
information representing
Prior art date
Application number
PCT/JP2023/006522
Other languages
French (fr)
Japanese (ja)
Inventor
龍之介 比護
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2023/006522 priority Critical patent/WO2024176400A1/en
Publication of WO2024176400A1 publication Critical patent/WO2024176400A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • This disclosure relates to a satellite observation support system, etc.
  • Patent Document 1 describes how, when an address is included in a news article, the address is used to capture satellite images.
  • Patent Document 2 also describes a technology that creates a formulated objective function using the indicators and weights used when creating a satellite observation plan, and calculates an optimal solution that maximizes or minimizes the objective function.
  • One example of the objective of this disclosure is to provide a satellite observation support system that can facilitate the determination of imaging locations.
  • the satellite observation support system includes a detection means for detecting new news, a specification means for specifying a recommended imaging location to be imaged using a satellite based on the detected news using a learning model trained based on past news and imaging-related information including information representing the imaging location when the past news was imaged using a satellite, and an output control means for outputting information representing the recommended imaging location that has been specified.
  • a satellite observation support method detects new news, and uses a learning model trained based on past news and imaging-related information including information representing the imaging location when the past news was captured using a satellite to identify recommended imaging locations to be captured using the satellite based on the detected news, and outputs information representing the identified recommended imaging locations.
  • a program causes a computer to execute a process of detecting new news, using a learning model trained based on past news and information relating to imaging, including information representing the imaging location when the past news was captured using a satellite, identifying a recommended imaging location to be imaged using the satellite based on the detected news, and outputting information representing the identified recommended imaging location.
  • Each program may be stored on a non-transitory computer-readable recording medium.
  • This disclosure makes it easier to determine the imaging location.
  • FIG. 1 is a block diagram showing a configuration example of a satellite observation support system according to a first embodiment
  • 4 is a flowchart showing an operation example of the satellite observation support system according to the first embodiment.
  • FIG. 2 is an explanatory diagram showing an example of a connection between the satellite observation support system and other devices.
  • FIG. 11 is a block diagram showing a configuration example of a satellite observation support system according to a second embodiment.
  • FIG. 11 is an explanatory diagram showing an example of a screen of a terminal device.
  • 13 is a flowchart showing an operation example of the satellite observation support system according to the second embodiment.
  • FIG. 2 is an explanatory diagram illustrating an example of a hardware configuration of a computer.
  • Satellite operations for observing the Earth involve repeated planning, observation, data reception, image processing, and analysis.
  • the imaging location to be observed is considered.
  • an observation plan for observing the imaging location is drawn up.
  • the satellite images the imaging location based on the observation plan.
  • the data reception stage satellite images from the satellite are received on the ground.
  • the satellite images are processed.
  • the analysis stage the imaging location is analyzed based on the satellite images.
  • the satellite observation support system recommends imaging locations.
  • Fig. 1 is a block diagram showing an example of a configuration of the satellite observation support system according to the embodiment 1.
  • the satellite observation support system 10 includes a detection unit 101, an identification unit 102, and an output control unit 103.
  • the detection unit 101 detects new news. Specifically, for example, the detection unit 101 detects new news from multiple news posted on the Internet, such as SNS (Social Networking Service) and the web. For example, the detection unit 101 may detect news including a sudden keyword. On the other hand, for example, the detection unit 101 may not detect news including a continuous keyword.
  • a continuous keyword is a keyword that appears in a time series with a predetermined frequency or more in a first period. The first period is a long-term period. For example, a keyword that appears every day for more than two months is estimated to be a continuous keyword.
  • a sudden keyword is a keyword that appears in a time series with a frequency less than a predetermined frequency in a first period and appears a predetermined number or more in a second period that is shorter than the first period.
  • the second period is a short-term period. For example, a keyword that appears several tens of times within a few days or hours, even though it has not appeared in the past, is estimated to be a sudden keyword. If the second period is shorter than the first period, the second period and the first period may be determined appropriately depending on the news topic, etc.
  • the identification unit 102 uses the learning model to identify a recommended imaging location for imaging using a satellite based on the detected news.
  • the learning model is a model that can output an imaging location when news is input.
  • the learning model is, for example, a model that has been learned based on information about imaging that includes past news and information indicating the imaging location when the past news was imaged using a satellite.
  • the identification unit 102 inputs the detected news into the learning model and acquires a recommended imaging location from the learning model, thereby identifying the recommended imaging location.
  • the output control unit 103 outputs information representing the identified recommended imaging location.
  • the information representing the recommended imaging location is not limited to, for example, the country name or place name of the recommended imaging location, or the latitude and longitude of the recommended imaging location.
  • the output control unit 103 causes an output device to output the information representing the recommended imaging location.
  • the type of output device is not limited to, for example, a display device, an audio output device, a terminal device, a lighting device, or a combination of these.
  • the output control unit 103 may output the detected news in association with the information representing the recommended imaging location.
  • the output control unit 103 recommends the recommended imaging location by outputting information representing the identified recommended imaging location.
  • (flowchart) 2 is a flowchart showing an example of an operation of the satellite observation support system 10 according to the first embodiment.
  • the detection unit 101 detects new news from news on the Internet, such as SNS and the web (step S101).
  • the identification unit 102 uses a learning model to identify recommended image capture locations based on the news (step S102).
  • the output control unit 103 outputs information indicating the recommended image capture locations (step S103), and the satellite observation support system 10 ends the process.
  • the news is highly likely to include information indicating the disaster location.
  • Disasters can spread from the disaster location to other locations.
  • the other locations include locations where the tsunami may reach other than the location where it originated.
  • the other locations include locations where third-country institutions related to the parties to the war are located other than the countries involved in the war. For example, if the location indicated by the address information included in the news is simply used as the imaging location, there is a risk that images of the imaging location that will be needed later will not be obtained.
  • past news and imaging locations distributed for past news are likely to include not only disaster locations but also locations that may spread from the disaster location.
  • the satellite observation support system 10 identifies recommended imaging locations for new news using a learning model trained based on information related to imaging, including information indicating the imaging locations when the past news was captured using a satellite.
  • the satellite observation support system 10 outputs information indicating the identified recommended imaging locations.
  • recommended imaging locations are obtained using past performance. For example, by checking the recommended imaging locations for the news, a person in charge can easily determine imaging locations that may be required for the news. In this way, it is possible to facilitate the determination of imaging locations. It is possible to improve the efficiency of the work required for satellite observation.
  • FIG. 3 is an explanatory diagram showing an example of a connection between the satellite observation support system and other devices.
  • the satellite observation support system 20 is connected to a terminal device 21 via a communication network NT.
  • the terminal device 21 is a device that can be operated by a person in charge of planning satellite operations related to Earth observation.
  • the type of the terminal device 21 is not particularly limited, and may be a PC (Personal Computer), a smartphone, a tablet device, or the like.
  • An application program that transmits information to the satellite observation support system 20 and receives and displays information from the satellite observation support system 20 may be installed in the terminal device 21.
  • the satellite observation support system 20 can also access news posted on the Internet via the communications network NT.
  • FIG. 4 is a block diagram showing an example configuration of a satellite observation support system 20 according to the second embodiment.
  • the satellite observation support system 20 has, for example, a detection unit 201, an identification unit 202, an output control unit 203, an image capture time derivation unit 204, an acquisition unit 205, and a learning unit 206.
  • the satellite observation support system 20 is obtained by adding the image capture time derivation unit 204, the acquisition unit 205, and the learning unit 206 to the satellite observation support system 10 according to the first embodiment.
  • the detection unit 201 may have the function of the detection unit 101 according to the first embodiment as a basic function.
  • the identification unit 202 may have the function of the identification unit 102 according to the first embodiment as a basic function.
  • the output control unit 203 may have the function of the output control unit 103 according to the first embodiment as a basic function.
  • the acquisition unit 205 acquires information about past news and images captured by satellites for past news.
  • the acquisition unit 205 may acquire information about images via a communication network, or may acquire information about images from a database.
  • the information regarding imaging includes information indicating the imaging location when imaging was performed using a satellite in past news.
  • the information indicating the imaging location may be the place name, latitude, and longitude of the imaging location, etc.
  • the information on imaging may include information indicating the type of captured image when past news was captured using a satellite.
  • the type of captured image may be a visible light image captured by a visible light sensor, an image captured by a SAR (Synthetic Aperture Radar), or a combination of these. Since the captured image is used in different ways depending on the application, it is highly likely that the type of captured image will be determined according to the application. For example, SAR can capture images through clouds, so observations can be made regardless of weather. For example, SAR can observe topographical changes due to volcanic or seismic activity, deforestation monitoring, flooded areas and ship movements, etc.
  • visible light sensors observe the distribution of plants, the color of the sea, the state of the earth's surface in urban areas, etc.
  • an image captured using a visible light sensor is an easy-to-see image
  • an image captured using a SAR is a black and white image.
  • the information regarding imaging may include information indicating at least one of the number of images taken and the imaging period when images of past news items were taken using a satellite.
  • the number of images taken is a specific number such as 1 time, 2 times, or 10 times.
  • the imaging period is a period such as one week, one month, or six months.
  • regular observation is desirable. To give a more detailed example, if the news is about a river flooding, there is a high possibility that regular observations will be made along the river.
  • the information regarding imaging may include information indicating the imaging range when imaging past news items using a satellite.
  • the information indicating the imaging range may be information that indicates the imaging range in multiple stages, such as wide area, small area, etc. For example, when news items are about the weather, there is a high possibility that imaging will be performed over a wide area.
  • imaging information includes information indicating the priority of observations from imaging locations for past news.
  • various candidate observation locations are identified.
  • observations may overlap due to the satellite's position, etc., so in reality, observations may be narrowed down from multiple candidate observation locations to locations with high priority.
  • the priorities are the same, a person in charge will check the candidate observation locations and select one.
  • the priority is likely to be highest in the order of war, natural disasters, and general weather. Also, for example, two different natural disasters may have different priorities.
  • the learning unit 206 learns to predict the imaging location based on past news and information about imaging of the past news. Also, for example, the learning unit 206 learns to predict at least one of the type of captured image, the number of times captured, or the imaging period, the imaging range, and the priority, in addition to the imaging location, based on past news and information about imaging of the past news.
  • the objective variables of the learning model 2001 are the imaging location, and at least one of the type of captured image, the number of times captured, or the imaging period, the imaging range, and the priority.
  • the explanatory variables of the learning model 2001 are the news information. Note that the news information is not particularly limited to information contained in the news that indicates the location, time, people's names, the extent of the disaster, etc.
  • the detection unit 201 detects new news.
  • the detection method by the detection unit 201 is as explained in the first embodiment.
  • the detection unit 201 only needs to detect new news in real time.
  • the identification unit 202 identifies recommended imaging locations based on the detected news using the learning model 2001.
  • the identification unit 202 inputs the detected news into the learning model 2001 and acquires recommended imaging locations from the learning model 2001, thereby identifying recommended imaging locations for the detected news.
  • the identification unit 202 may use the learning model 2001 to identify a recommended type of image to be captured at a recommended imaging location based on the detected news.
  • the identification unit 202 inputs the detected news into the learning model 2001 and acquires the recommended type from the learning model 2001 to identify the recommended type.
  • the identification unit 202 may use the learning model 2001 to identify an imaging range to be imaged at a recommended imaging location based on the detected news.
  • the identification unit 202 inputs the detected news into the learning model 2001 and acquires the recommended imaging range from the learning model 2001 to identify the recommended imaging range.
  • the identification unit 202 may use the learning model 2001 to identify at least one of the recommended number of times imaging is to be performed at the recommended imaging location and the recommended imaging period based on the detected news.
  • the identification unit 202 inputs the detected news into the learning model 2001, and acquires at least one of the recommended number of times imaging is performed and the recommended imaging period from the learning model 2001, thereby identifying at least one of the recommended number of times imaging is performed and the recommended imaging period.
  • the identification unit 202 may identify the priority of observation at the recommended imaging location based on the detected news using the learning model 2001.
  • the identification unit 202 inputs the detected news into the learning model 2001 and acquires the priority from the learning model 2001, thereby identifying the priority of observation at the recommended imaging location.
  • the imaging time derivation unit 204 derives a recommended imaging time for imaging the identified recommended imaging point using a satellite based on the identified recommended imaging point and the performance and position of the satellite.
  • the position of the satellite is the current position of the satellite.
  • the performance of the satellite is information on the device mounted on the satellite.
  • the performance of the satellite may be the type of sensor mounted on the satellite, the resolution and capabilities of the sensor, etc.
  • the information on the performance of the satellite and the information on the position of the satellite may be acquired via a communication network or the like.
  • the imaging time derivation unit 204 derives the time at which the satellite passes the recommended imaging point based on the performance and position of the satellite, and identifies the estimated time as the recommended imaging time.
  • the recommended imaging date and time may be derived without being limited to the recommended imaging time.
  • the output control unit 203 outputs information representing the recommended imaging location, information representing the recommended type, information representing at least one of the recommended number of imaging sessions and the recommended imaging period, information representing the recommended imaging range, information representing the priority, and information representing the recommended imaging time. This allows the output control unit 203 to recommend the recommended imaging location, the recommended type, at least one of the recommended number of imaging sessions and the recommended imaging period, the recommended imaging range, the priority, and the recommended imaging time.
  • the output control unit 203 causes the terminal device 21 to display each piece of information.
  • FIG. 5 is an explanatory diagram showing an example screen of the terminal device 21.
  • the output control unit 203 causes the terminal device 21 of the person in charge to display the detected news, information indicating the recommended imaging location, information indicating the recommended type, information indicating at least one of the recommended number of imaging attempts and the recommended imaging period, information indicating the recommended imaging range, information indicating the priority, and information indicating the recommended imaging time.
  • the output control unit 203 may cause the recommended imaging locations to be identifiable on a map.
  • the screen of the terminal device 21 includes a link that allows access to the detected news. For example, when the person in charge clicks on a link, the news at the linked destination may be superimposed on the screen of the terminal device 21.
  • the screen of the terminal device 21 displays "xxx” as the recommended imaging location, "wide area” as the recommended imaging range, “continuous” as the recommended number of imaging attempts, "visible light” as the recommended type of image to be captured, “high” as the priority, and "18:20” as the recommended imaging time.
  • a map of the world is displayed on the screen of the terminal device 21.
  • an arrow is attached to the map on the screen of the terminal device 21. The arrow indicates a recommended imaging location.
  • the detection unit 201 detects new news from news on the Internet, such as SNS and the Web (step S201).
  • the identification unit 202 uses the learning model 2001 to identify a recommended imaging location, a recommended type, at least one of a recommended number of imaging attempts and a recommended imaging period, a recommended imaging range, and a priority based on the new news (step S202).
  • the imaging time derivation unit 204 derives a recommended imaging time at which the recommended imaging location can be imaged based on the recommended imaging location, the satellite's performance, and the satellite's current position (step S203).
  • the output control unit 203 then recommends new news, a recommended imaging location, a recommended type, at least one of a recommended number of imaging attempts and a recommended imaging period, a recommended imaging range, a priority, and a recommended imaging time (step S204), and the satellite observation support system 20 ends the process.
  • the information regarding imaging includes information indicating the type of image captured by a satellite for past news.
  • the satellite observation support system 20 uses the learning model 2001 to identify the recommended type of image to be captured by a satellite for the detected news based on the detected news, and recommends the recommended imaging location and the recommended type. This allows the person in charge to easily determine the imaging location to be captured for new news and the type of image to be captured when capturing the imaging location. This makes it possible to improve the efficiency of the work required for satellite observation.
  • the information regarding imaging includes information indicating the imaging range when imaging past news items using a satellite.
  • the satellite observation support system 20 uses the learning model 2001 to identify the recommended imaging range for imaging using a satellite for the detected news items based on the detected news items, and recommends the recommended imaging location and the recommended imaging range. This allows the person in charge to easily determine the imaging location to be imaged for new news items and the imaging range of the imaging location. This makes it possible to improve the efficiency of the work required for satellite observation.
  • the imaging-related information includes information indicating at least one of the number of imaging times and the imaging period when imaging past news items using a satellite.
  • the satellite observation support system 20 uses the learning model 2001 to identify at least one of the recommended number of imaging times and the recommended imaging period for the detected news items using a satellite, based on the detected news items.
  • the satellite observation support system 20 recommends a recommended imaging location and at least one of the identified recommended number of imaging times and recommended imaging period. This allows the person in charge to easily determine the imaging location for imaging new news items, the recommended number of imaging times, the recommended imaging period, etc. This makes it possible to improve the efficiency of the work required for satellite observation.
  • the imaging-related information includes information indicating the priority of satellite observation for past news.
  • the satellite observation support system 20 identifies the priority of observation using recommended imaging locations and recommends recommended imaging locations and priorities. This allows the person in charge to easily determine the priority of whether to image the recommended imaging locations for new news. This makes it possible to improve the efficiency of the work required for satellite observation.
  • the satellite observation support system 20 also derives a recommended imaging time for imaging the recommended imaging point identified using a satellite based on the identified recommended imaging point and the satellite's performance and position, and recommends the recommended imaging point and recommended imaging time. This allows the person in charge to easily determine the imaging time for imaging the recommended imaging point for new news. This makes it possible to improve the efficiency of the work required for satellite observation.
  • the satellite observation support system 20 detects news that includes sudden keywords.
  • the satellite observation support system 20 does not detect news that includes continuous keywords. This makes it possible to recommend observation points for news that is likely to be in high demand.
  • each embodiment may be modified. Also, each embodiment may be used in appropriate combination. Also, in each embodiment, the satellite observation support systems 10 and 20 may be configured to include each functional unit and part of the information.
  • each embodiment is not limited to the above-mentioned examples, and various modifications are possible.
  • the configuration of the satellite observation support system 10, 20 in the embodiment is not particularly limited.
  • the satellite observation support system 10, 20 may be realized by a single device, such as a single server.
  • the single device may be called a satellite observation support device, an information processing device, or the like, and is not particularly limited.
  • the satellite observation support system 10, 20 in each embodiment may be realized by different devices depending on the function or data.
  • each functional unit may be configured by multiple servers and realized as the satellite observation support system 10, 20.
  • the satellite observation support system 10, 20 may be realized by a database server including each DB (Database) and a server having each functional unit.
  • each piece of information and each DB may include a portion of the above-mentioned information. Furthermore, each piece of information and each DB may include information other than the above-mentioned information. Each piece of information and each DB may be divided into multiple DBs or multiple pieces of information in more detail, or may be one DB.
  • the process of generating information to be displayed on the terminal device 21 may be performed by the output control units 103 and 203. This process may also be performed by the terminal device 21.
  • Fig. 7 is an explanatory diagram showing an example of a hardware configuration of a computer.
  • a part or all of each device can be realized by using any combination of a computer 80 and a program as shown in Fig. 7.
  • the computer 80 has, for example, a processor 801, a ROM (Read Only Memory) 802, a RAM (Random Access Memory) 803, and a storage device 804.
  • the computer 80 also has a communication interface 805 and an input/output interface 806.
  • Each component is connected to the other via, for example, a bus 807. Note that the number of each component is not particularly limited, and there may be one or more of each component.
  • the processor 801 controls the entire computer 80.
  • the processor 801 may be, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a GPU (Graphics Processing Unit), a MPU (Micro Processing Unit), an FPU (Floating point number Processing Unit), a PPU (Physics Processing Unit), a TPU (Tensor Processing Unit), a quantum processor, or a combination of these.
  • the computer 80 also has a ROM 802, a RAM 803, and a storage device 804 as storage units.
  • the storage device 804 include semiconductor memory such as flash memory, a hard disk drive (HDD), and a solid state drive (SSD).
  • the storage device 804 stores an OS (operating system) program, application programs, and programs related to each embodiment.
  • the ROM 802 stores application programs and programs related to each embodiment.
  • the RAM 803 is used as a work area for the processor 801.
  • the processor 801 also loads programs stored in the storage device 804, ROM 802, etc. The processor 801 then executes each process coded in the program. The processor 801 may also download various programs via the communications network NT. The processor 801 also functions as a part or all of the computer 80. The processor 801 may then execute the processes or instructions in the illustrated flowchart based on the program.
  • the communication interface 805 is connected to a communication network NT, such as a LAN (Local Area Network) or a WAN (Wide Area Network), via a wireless or wired communication line.
  • the communication network NT may be composed of multiple communication networks NT.
  • the computer 80 is connected to an external device or an external computer 80 via the communication network NT.
  • the communication interface 805 serves as an interface between the communication network NT and the inside of the computer 80.
  • the communication interface 805 also controls the input and output of data from the external device or the external computer 80.
  • the input/output interface 806 is connected to at least one of an input device, an output device, and an input/output device.
  • the connection method may be wireless or wired.
  • Examples of the input device include a keyboard, a mouse, and a microphone.
  • Examples of the output device include a display device, a lighting device, and an audio output device that outputs audio.
  • Examples of the input/output device include a touch panel display.
  • the input device, output device, and input/output device may be built into the computer 80 or may be external.
  • the hardware configuration of the computer 80 is an example.
  • the computer 80 may have some of the components shown in FIG. 7.
  • the computer 80 may have components other than those shown in FIG. 7.
  • the computer 80 may have a drive device or the like.
  • the processor 801 may read out programs and data stored in a recording medium attached to the drive device or the like to the RAM 803. Examples of non-transient tangible recording media include optical disks, flexible disks, magnetic optical disks, and USB (Universal Serial Bus) memories.
  • the computer 80 may have input devices such as a keyboard and a mouse.
  • the computer 80 may have an output device such as a display.
  • the computer 80 may also have an input device, an output device, and an input/output device.
  • the computer 80 may also have various sensors (not shown). The type of sensor is not particularly limited.
  • the computer 80 may also have an imaging device capable of capturing images and videos.
  • each device may be implemented by any combination of a different computer and program for each component.
  • multiple components of each device may be implemented by any combination of a single computer and program.
  • each device may be realized by circuits for a specific application. Further, some or all of the components of each device may be realized by general-purpose circuits including a processor such as an FPGA (Field Programmable Gate Array). Further, some or all of the components of each device may be realized by a combination of circuits for a specific application and general-purpose circuits. Further, these circuits may be a single integrated circuit. Alternatively, these circuits may be divided into multiple integrated circuits. The multiple integrated circuits may be configured by being connected via a bus or the like.
  • each device may be realized by multiple computers, circuits, etc.
  • the multiple computers, circuits, etc. may be centralized or distributed.
  • the satellite observation support method described in each embodiment is realized by being executed by the satellite observation support systems 10 and 20. Also, for example, the satellite observation support method is realized by having a computer such as a server or a terminal device execute a program prepared in advance.
  • the programs described in each embodiment are recorded on a computer-readable recording medium such as a HDD, SSD, flexible disk, optical disk, magneto-optical disk, or USB memory.
  • the programs are then read from the recording medium by a computer and executed.
  • the programs may also be distributed via a communications network NT.
  • each of the components of the satellite observation support systems 10 and 20 in each of the embodiments described above may have their functions realized by dedicated hardware, such as a computer.
  • each component may be realized by software.
  • each component may be realized by a combination of hardware and software.
  • a satellite observation support system as described in appendix 1. (Appendix 3)
  • the information regarding the image capture includes information indicating an image capture range when the past news was captured using the satellite,
  • the identification means identifies a recommended imaging range for imaging using the satellite based on the detected news by using the learning model;
  • the output control means outputs information representing the recommended imaging point and information representing the identified recommended imaging range. 3.
  • the information regarding the imaging includes information indicating at least one of the number of imaging times and an imaging period when the past news was imaged using the satellite,
  • the determination means determines at least one of a recommended number of times of imaging using the satellite and a recommended imaging period based on the detected news using the learning model,
  • the output control means outputs information representing the recommended imaging location and information representing at least one of the identified recommended number of times and the identified recommended imaging period. 4.
  • a satellite observation support system according to any one of claims 1 to 3.
  • the information regarding the image capture includes information indicating a priority when the image of the past news was captured using the satellite,
  • the specifying means specifies a priority of observation by the recommended imaging point, the output control means outputs information representing the recommended imaging points and information representing the priority. 5.
  • a satellite observation support system according to any one of claims 1 to 4.
  • an imaging time deriving means for deriving a recommended imaging time for imaging the recommended imaging point using the satellite based on the identified recommended imaging point, performance of the satellite, and a position of the satellite; the output control means outputs information representing the recommended imaging location and information representing the recommended imaging time.
  • the detection means detects news items including a sudden keyword from a plurality of news items posted on the Internet; 7.
  • the detection means does not detect news including a continuous keyword from the plurality of news. 8.
  • (Appendix 9) Discover new news, Identifying a recommended imaging location for imaging using a satellite based on the detected news using a learning model trained based on past news and imaging-related information including information representing an imaging location when the past news was imaged using a satellite; outputting information representing the identified recommended imaging location; Satellite observation support methods. (Appendix 10) On the computer, Discover new news, Identifying a recommended imaging location for imaging using a satellite based on the detected news using a learning model trained based on past news and imaging-related information including information representing an imaging location when the past news was imaged using a satellite; outputting information representing the identified recommended imaging location; A program that executes a process.
  • Satellite observation support system 21
  • Terminal device 80 Computer 101, 201 Detection unit 102, 202 Identification unit 103, 203 Output control unit 204 Imaging time derivation unit 205 Acquisition unit 206 Learning unit 801 Processor 802 ROM 803 RAM 804 Storage device 805 Communication interface 806 Input/output interface 807 Bus 2001 Learning model NT Communication network

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

This satellite observation assistance system comprises a detection unit, an identification unit, and an output control unit. The detection unit detects new news. The identification unit uses a learning model to identify, on the basis of the detected news, a recommended imaging site to be imaged using a satellite for the detected news. The learning model is a model that has been trained on the basis of information relating to imaging, including information representing past news and an imaging site imaged using a satellite for the past news. The output control unit outputs information representing the recommended imaging site.

Description

衛星観測支援システム、衛星観測支援方法、および記録媒体Satellite observation support system, satellite observation support method, and recording medium
 本開示は、衛星観測支援システムなどに関する。 This disclosure relates to a satellite observation support system, etc.
 観測用の衛星を用いて画像を撮像する技術が知られている。例えば、衛星を用いて画像を撮像する場合、観測したい地点が検討され、撮像計画が立案される。 Technology for capturing images using observation satellites is known. For example, when capturing images using a satellite, the locations to be observed are considered and an imaging plan is drawn up.
 例えば、特許文献1には、ニュース記事に住所が含まれる場合に、その住所を使って衛星画像の撮像を行うことが記載されている。 For example, Patent Document 1 describes how, when an address is included in a news article, the address is used to capture satellite images.
 また、特許文献2には、衛星観測計画を作成する際の指標と重みとを用いて定式化された目的関数を作成し、目的関数を最大化または最小化する最適解を算出する技術がある。 Patent Document 2 also describes a technology that creates a formulated objective function using the indicators and weights used when creating a satellite observation plan, and calculates an optimal solution that maximizes or minimizes the objective function.
特開2020-173604号公報JP 2020-173604 A 特開2022-172503号公報JP 2022-172503 A
 衛星を用いてどこを撮像するのかを決めることは難しい。 It's difficult to decide where to image using satellites.
 本開示の目的の一例は、撮像地点の決定の容易化を図ることができる衛星観測支援システムなどを提供することにある。 One example of the objective of this disclosure is to provide a satellite observation support system that can facilitate the determination of imaging locations.
 本開示の一態様における衛星観測支援システムは、新たなニュースを検出する検出手段と、過去のニュースと、前記過去のニュースについて衛星を用いて撮像されたときの撮像地点を表す情報を含む撮像に関する情報と、に基づき学習された学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いて撮像する推奨撮像地点を特定する特定手段と、特定された前記推奨撮像地点を表す情報を出力する出力制御手段を備える。 The satellite observation support system according to one aspect of the present disclosure includes a detection means for detecting new news, a specification means for specifying a recommended imaging location to be imaged using a satellite based on the detected news using a learning model trained based on past news and imaging-related information including information representing the imaging location when the past news was imaged using a satellite, and an output control means for outputting information representing the recommended imaging location that has been specified.
 本開示の一態様における衛星観測支援方法は、新たなニュースを検出し、過去のニュースと、前記過去のニュースについて衛星を用いて撮像されたときの撮像地点を表す情報を含む撮像に関する情報とに基づき学習された学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いて撮像する推奨撮像地点を特定し、特定された前記推奨撮像地点を表す情報を出力する。 In one aspect of the present disclosure, a satellite observation support method detects new news, and uses a learning model trained based on past news and imaging-related information including information representing the imaging location when the past news was captured using a satellite to identify recommended imaging locations to be captured using the satellite based on the detected news, and outputs information representing the identified recommended imaging locations.
 本開示の一態様におけるプログラムは、コンピュータに、新たなニュースを検出し、過去のニュースと、前記過去のニュースについて衛星を用いて撮像されたときの撮像地点を表す情報を含む撮像に関する情報とに基づき学習された学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いて撮像する推奨撮像地点を特定し、特定された前記推奨撮像地点を表す情報を出力する処理を実行させる。 A program according to one aspect of the present disclosure causes a computer to execute a process of detecting new news, using a learning model trained based on past news and information relating to imaging, including information representing the imaging location when the past news was captured using a satellite, identifying a recommended imaging location to be imaged using the satellite based on the detected news, and outputting information representing the identified recommended imaging location.
 各プログラムは、コンピュータが読み取り可能な非一時的な記録媒体に記憶されていてもよい。 Each program may be stored on a non-transitory computer-readable recording medium.
 本開示によれば、撮像地点の決定の容易化を図ることができる。 This disclosure makes it easier to determine the imaging location.
実施の形態1に係る衛星観測支援システムの一構成例を示すブロック図である。1 is a block diagram showing a configuration example of a satellite observation support system according to a first embodiment; 実施の形態1に係る衛星観測支援システムの一動作例を示すフローチャートである。4 is a flowchart showing an operation example of the satellite observation support system according to the first embodiment. 衛星観測支援システムと他の装置との接続例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of a connection between the satellite observation support system and other devices. 実施の形態2に係る衛星観測支援システムの一構成例を示すブロック図である。FIG. 11 is a block diagram showing a configuration example of a satellite observation support system according to a second embodiment. 端末装置の画面例を示す説明図である。FIG. 11 is an explanatory diagram showing an example of a screen of a terminal device. 実施の形態2に係る衛星観測支援システムの一動作例を示すフローチャートである。13 is a flowchart showing an operation example of the satellite observation support system according to the second embodiment. コンピュータのハードウェア構成例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of a hardware configuration of a computer.
 以下に図面を参照して、本開示に係る衛星観測支援システム、衛星観測支援方法、プログラム、およびプログラムを記録する非一時的な記録媒体の実施の形態を詳細に説明する。本実施の形態は、開示の技術を限定するものではない。 Below, with reference to the drawings, an embodiment of the satellite observation support system, satellite observation support method, program, and non-transitory recording medium for recording the program according to the present disclosure will be described in detail. The present embodiment does not limit the disclosed technology.
 ここで、衛星による地球観測を行う場合における運用の一例を簡単に説明する。地球の観測に係る衛星運用においては、計画、観測、データ受信、画像処理、分析を繰り返す。例えば、計画段階において、観測したい撮像地点が検討される。そして、計画段階において、撮像地点を観測するための観測計画が立案される。そして、観測段階において、衛星が、観測計画に基づいて撮像地点を撮像する。そして、データ受信段階において、地上側では、衛星からの衛星画像を受信する。画像処理段階において、衛星画像が画像処理される。分析段階において、衛星画像に基づいて撮像地点についての分析が行われる。各実施の形態では、衛星観測支援システムは、撮像地点を推奨する。 Here, we will briefly explain an example of operations when observing the Earth using a satellite. Satellite operations for observing the Earth involve repeated planning, observation, data reception, image processing, and analysis. For example, in the planning stage, the imaging location to be observed is considered. Then, in the planning stage, an observation plan for observing the imaging location is drawn up. Then, in the observation stage, the satellite images the imaging location based on the observation plan. Then, in the data reception stage, satellite images from the satellite are received on the ground. In the image processing stage, the satellite images are processed. In the analysis stage, the imaging location is analyzed based on the satellite images. In each embodiment, the satellite observation support system recommends imaging locations.
 (実施の形態1)
 まず、実施の形態1では、衛星観測支援システムの基本機能について説明する。図1は、実施の形態1に係る衛星観測支援システムの一構成例を示すブロック図である。衛星観測支援システム10は、検出部101と、特定部102と、出力制御部103を備える。
(Embodiment 1)
First, in the embodiment 1, a basic function of the satellite observation support system will be described. Fig. 1 is a block diagram showing an example of a configuration of the satellite observation support system according to the embodiment 1. The satellite observation support system 10 includes a detection unit 101, an identification unit 102, and an output control unit 103.
 検出部101は、新たなニュースを検出する。具体的に、例えば、検出部101は、SNS(Social Networking Service)、ウェブなどのインターネット上に投稿された複数のニュースから、新たなニュースを検出する。例えば、検出部101は、突発的なキーワードを含むニュースを検出してもよい。一方、例えば、検出部101は、継続的なキーワードを含むニュースを検出しなくてもよい。例えば、継続的なキーワードとは、第1期間において時系列で所定頻度以上出現するキーワードである。第1期間は、長期的な期間である。例えば、2か月以上毎日出現するようなキーワードは、継続的なキーワードと推定される。突発的なキーワードとは、第1期間において時系列で所定頻度未満出現するキーワードであり、第1期間よりも短い第2期間において所定数以上出現するキーワードである。第2期間は、短期的な期間である。例えば、過去に出現していないにもかかわらず、数日や数時間以内に数十回程度出現するようなキーワードは、突発的なキーワードと推定される。なお、第2期間が第1期間よりも短ければ、第2期間と第1期間は、ニュースのテーマなどに応じて適宜決定されればよい。 The detection unit 101 detects new news. Specifically, for example, the detection unit 101 detects new news from multiple news posted on the Internet, such as SNS (Social Networking Service) and the web. For example, the detection unit 101 may detect news including a sudden keyword. On the other hand, for example, the detection unit 101 may not detect news including a continuous keyword. For example, a continuous keyword is a keyword that appears in a time series with a predetermined frequency or more in a first period. The first period is a long-term period. For example, a keyword that appears every day for more than two months is estimated to be a continuous keyword. A sudden keyword is a keyword that appears in a time series with a frequency less than a predetermined frequency in a first period and appears a predetermined number or more in a second period that is shorter than the first period. The second period is a short-term period. For example, a keyword that appears several tens of times within a few days or hours, even though it has not appeared in the past, is estimated to be a sudden keyword. If the second period is shorter than the first period, the second period and the first period may be determined appropriately depending on the news topic, etc.
 特定部102は、学習モデルを用いて、検出されたニュースに基づいて、衛星を用いて撮像する推奨撮像地点を特定する。ここで、学習モデルは、ニュースが入力されると、撮像地点を出力可能なモデルである。学習モデルは、例えば、過去のニュースおよび過去のニュースについて衛星を用いて撮像されたときの撮像地点を表す情報を含む撮像に関する情報に基づき学習されたモデルである。具体的に、例えば、特定部102は、学習モデルに、検出されたニュースを入力し、学習モデルから推奨撮像地点を取得することにより、推奨撮像地点を特定する。 The identification unit 102 uses the learning model to identify a recommended imaging location for imaging using a satellite based on the detected news. Here, the learning model is a model that can output an imaging location when news is input. The learning model is, for example, a model that has been learned based on information about imaging that includes past news and information indicating the imaging location when the past news was imaged using a satellite. Specifically, for example, the identification unit 102 inputs the detected news into the learning model and acquires a recommended imaging location from the learning model, thereby identifying the recommended imaging location.
 出力制御部103は、特定された推奨撮像地点を表す情報を出力する。推奨撮像地点を表す情報は、例えば、推奨撮像地点の国名や地名、推奨撮像地点の緯度および経度など特に限定されない。出力方法として、例えば、出力制御部103は、推奨撮像地点を表す情報を出力装置に出力させる。例えば、出力装置の種類は、表示装置、音声出力装置、端末装置、点灯装置、またはこれらの組み合わせなど特に限定されない。また、出力制御部103は、検出されたニュースと、推奨撮像地点を表す情報とを関連付けて出力してもよい。例えば、出力制御部103は、特定された推奨撮像地点を表す情報を出力することにより、推奨撮像地点を推奨する。 The output control unit 103 outputs information representing the identified recommended imaging location. The information representing the recommended imaging location is not limited to, for example, the country name or place name of the recommended imaging location, or the latitude and longitude of the recommended imaging location. As an output method, for example, the output control unit 103 causes an output device to output the information representing the recommended imaging location. For example, the type of output device is not limited to, for example, a display device, an audio output device, a terminal device, a lighting device, or a combination of these. In addition, the output control unit 103 may output the detected news in association with the information representing the recommended imaging location. For example, the output control unit 103 recommends the recommended imaging location by outputting information representing the identified recommended imaging location.
 (フローチャート)
 図2は、実施の形態1に係る衛星観測支援システム10の一動作例を示すフローチャートである。検出部101は、SNSやウェブなどのインターネット上のニュースから、新たなニュースを検出する(ステップS101)。特定部102は、学習モデルを用いて、ニュースに基づいて、推奨撮像地点を特定する(ステップS102)。出力制御部103は、推奨撮像地点を表す情報を出力し(ステップS103)、衛星観測支援システム10は、処理を終了する。
(flowchart)
2 is a flowchart showing an example of an operation of the satellite observation support system 10 according to the first embodiment. The detection unit 101 detects new news from news on the Internet, such as SNS and the web (step S101). The identification unit 102 uses a learning model to identify recommended image capture locations based on the news (step S102). The output control unit 103 outputs information indicating the recommended image capture locations (step S103), and the satellite observation support system 10 ends the process.
 例えば、ニュースが、地震や津波などの自然現象の災害、戦争などの人的な災害に関する場合、ニュースには、災害地点を表す情報が含まれる可能性が高い。災害は、災害地点から他の地点に波及する可能性がある。災害地点から波及する可能性がある他の地点を撮像すべき場合がある。例えば、災害が津波である場合、他の地点としては、津波が派生した地点以外に津波が到達する可能性がある地点などがある。例えば、災害が戦争である場合、他の地点としては、戦争を行っている当事者である国以外に当事者である国に関連する第三国の機関がある地点などである。例えばニュースに含まれる住所情報が表す地点を単に撮像地点とする場合、後々から必要な撮像地点の撮像画像が得られない恐れがある。また、撮像地点を決定する担当者等が、各ニュースを読み、各ニュースから撮像地点を検討するのは手間がかかる。 For example, when news is about natural disasters such as earthquakes and tsunamis, or man-made disasters such as war, the news is highly likely to include information indicating the disaster location. Disasters can spread from the disaster location to other locations. There are cases where other locations that may spread from the disaster location should be imaged. For example, when the disaster is a tsunami, the other locations include locations where the tsunami may reach other than the location where it originated. For example, when the disaster is a war, the other locations include locations where third-country institutions related to the parties to the war are located other than the countries involved in the war. For example, if the location indicated by the address information included in the news is simply used as the imaging location, there is a risk that images of the imaging location that will be needed later will not be obtained. In addition, it is time-consuming for a person in charge of deciding imaging locations to read each news item and consider imaging locations from each news item.
 例えば、過去のニュースおよび過去のニュースについて配信された撮像地点では、災害地点だけでなく、災害地点から波及するような地点も含まれている可能性が高い。実施の形態1において、衛星観測支援システム10は、過去のニュースおよび過去のニュースについて衛星を用いて撮像されたときの撮像地点を表す情報を含む撮像に関する情報に基づき学習された学習モデルを用いて、新たなニュースについての推奨撮像地点を特定する。衛星観測支援システム10は、特定された推奨撮像地点を表す情報を出力する。これにより、過去の実績を用いて推奨撮像地点が得られる。例えば、担当者は、ニュースについての推奨撮像地点を確認することで、ニュースに求められ得る撮像地点を簡単に決定することができる。このように、撮像地点の決定の容易化を図ることができる。衛星観測に要する作業の効率化を図ることができる。 For example, past news and imaging locations distributed for past news are likely to include not only disaster locations but also locations that may spread from the disaster location. In embodiment 1, the satellite observation support system 10 identifies recommended imaging locations for new news using a learning model trained based on information related to imaging, including information indicating the imaging locations when the past news was captured using a satellite. The satellite observation support system 10 outputs information indicating the identified recommended imaging locations. In this way, recommended imaging locations are obtained using past performance. For example, by checking the recommended imaging locations for the news, a person in charge can easily determine imaging locations that may be required for the news. In this way, it is possible to facilitate the determination of imaging locations. It is possible to improve the efficiency of the work required for satellite observation.
 (実施の形態2)
 つぎに、実施の形態2について図面を参照して詳細に説明する。実施の形態2では、推奨撮像地点とともに、撮像地点以外に、撮像画像の種類、撮像回数または撮像期間、撮像範囲、および優先度の少なくともいずれかを推奨する例を説明する。以下、本実施の形態2の説明が不明確にならない範囲で、前述の説明と重複する内容については説明を省略する。
(Embodiment 2)
Next, the second embodiment will be described in detail with reference to the drawings. In the second embodiment, an example will be described in which, in addition to the recommended imaging location, at least one of the type of imaging image, the number of imaging times or imaging period, the imaging range, and the priority level is recommended. Below, the description of the contents that overlap with the above description will be omitted to the extent that the description of the second embodiment is not unclear.
 図3は、衛星観測支援システムと他の装置との接続例を示す説明図である。衛星観測支援システム20は、通信ネットワークNTを介して、端末装置21と接続される。例えば、端末装置21は、地球の観測に係る衛星運用の計画段階における担当者が操作可能な装置である。端末装置21の種類は、PC(Personal Computer)、スマートフォン、タブレット型の装置など特に限定されない。端末装置21には、衛星観測支援システム20へ情報を送信、および衛星観測支援システム20からの情報を受信や表示するようなアプリケーションプログラムがインストールされていてもよい。 FIG. 3 is an explanatory diagram showing an example of a connection between the satellite observation support system and other devices. The satellite observation support system 20 is connected to a terminal device 21 via a communication network NT. For example, the terminal device 21 is a device that can be operated by a person in charge of planning satellite operations related to Earth observation. The type of the terminal device 21 is not particularly limited, and may be a PC (Personal Computer), a smartphone, a tablet device, or the like. An application program that transmits information to the satellite observation support system 20 and receives and displays information from the satellite observation support system 20 may be installed in the terminal device 21.
 また、衛星観測支援システム20は、通信ネットワークNTを介して、インターネット上に投稿されたニュースにアクセス可能である。 The satellite observation support system 20 can also access news posted on the Internet via the communications network NT.
 図4は、実施の形態2に係る衛星観測支援システム20の一構成例を示すブロック図である。衛星観測支援システム20は、例えば、検出部201と、特定部202と、出力制御部203と、撮像時刻導出部204と、取得部205と、学習部206とを有する。衛星観測支援システム20は、実施の形態1に係る衛星観測支援システム10に対して、撮像時刻導出部204と、取得部205と、学習部206とが追加される。 FIG. 4 is a block diagram showing an example configuration of a satellite observation support system 20 according to the second embodiment. The satellite observation support system 20 has, for example, a detection unit 201, an identification unit 202, an output control unit 203, an image capture time derivation unit 204, an acquisition unit 205, and a learning unit 206. The satellite observation support system 20 is obtained by adding the image capture time derivation unit 204, the acquisition unit 205, and the learning unit 206 to the satellite observation support system 10 according to the first embodiment.
 検出部201は、実施の形態1に係る検出部101の機能を基本機能として有してもよい。特定部202は、実施の形態1に係る特定部102の機能を基本機能として有してもよい。出力制御部203は、実施の形態1に係る出力制御部103の機能を基本機能として有してもよい。 The detection unit 201 may have the function of the detection unit 101 according to the first embodiment as a basic function. The identification unit 202 may have the function of the identification unit 102 according to the first embodiment as a basic function. The output control unit 203 may have the function of the output control unit 103 according to the first embodiment as a basic function.
 <学習フェーズ>
 まず、学習フェーズについて説明する。
<Learning Phase>
First, the learning phase will be described.
 取得部205は、過去のニュースおよび過去のニュースに衛星を用いて撮像されたときの撮像に関する情報を取得する。取得方法として、例えば、取得部205は、通信ネットワークを介して撮像に関する情報を取得してもよいし、データベースから撮像に関する情報を取得してもよい。 The acquisition unit 205 acquires information about past news and images captured by satellites for past news. As an acquisition method, for example, the acquisition unit 205 may acquire information about images via a communication network, or may acquire information about images from a database.
 例えば、撮像に関する情報は、過去のニュースに衛星を用いて撮像されたときの撮像地点を表す情報を含む。前述のように撮像地点を表す情報は、撮像地点の地名、緯度経度などであってもよい。 For example, the information regarding imaging includes information indicating the imaging location when imaging was performed using a satellite in past news. As mentioned above, the information indicating the imaging location may be the place name, latitude, and longitude of the imaging location, etc.
 また、例えば、撮像に関する情報は、過去のニュースについて衛星を用いて撮像されたときの撮像画像の種類を表す情報を含んでもよい。例えば、撮像画像の種類は、可視光センサによる可視光画像、SAR(Synthetic Aperture Radar)による画像、これらの組み合わせが挙げられる。用途によって撮像画像の使い道が異なるため、撮像画像の種類が用途に応じて定まる可能性が高い。例えば、SARは、雲を透過して撮像を行うことができるため、天候に左右されずに観測を行うことができる。例えば、SARでは、火山や地震活動などによる地形変化、森林伐採監視、浸水域や船舶の動きなどの観測を行うことができる。例えば、可視光センサでは、植物の分布状況、海の色、市街地などの地表の状態などの観測が行われる。各画像の特徴として、可視光センサを用いた画像は、見易い画像であり、SARを用いた画像であれば、白黒の画像である。撮像画像の種類を表す情報の表現方法は特に限定されない。 In addition, for example, the information on imaging may include information indicating the type of captured image when past news was captured using a satellite. For example, the type of captured image may be a visible light image captured by a visible light sensor, an image captured by a SAR (Synthetic Aperture Radar), or a combination of these. Since the captured image is used in different ways depending on the application, it is highly likely that the type of captured image will be determined according to the application. For example, SAR can capture images through clouds, so observations can be made regardless of weather. For example, SAR can observe topographical changes due to volcanic or seismic activity, deforestation monitoring, flooded areas and ship movements, etc. For example, visible light sensors observe the distribution of plants, the color of the sea, the state of the earth's surface in urban areas, etc. As a characteristic of each image, an image captured using a visible light sensor is an easy-to-see image, and an image captured using a SAR is a black and white image. There is no particular limitation on the method of expressing the information indicating the type of captured image.
 例えば、撮像に関する情報は、過去のニュースについて衛星を用いて撮像されたときの撮像回数および撮像期間の少なくともいずれかを表す情報を含んでもよい。例えば、撮像回数は、1回、2回、10回などの具体的な回数である。例えば、撮像期間は、1週間、1か月、半年などの期間である。例えば、地形の変化など撮像地点の進行状況を撮像指定する場合には、定期的な観測が望まれる。より詳細な例を挙げると、河川の氾濫がニュースであれば、河川沿いに向かって定期的に観測される可能性が高い。 For example, the information regarding imaging may include information indicating at least one of the number of images taken and the imaging period when images of past news items were taken using a satellite. For example, the number of images taken is a specific number such as 1 time, 2 times, or 10 times. For example, the imaging period is a period such as one week, one month, or six months. For example, when specifying imaging of the progress of the imaging location, such as changes in the topography, regular observation is desirable. To give a more detailed example, if the news is about a river flooding, there is a high possibility that regular observations will be made along the river.
 また、例えば、撮像に関する情報は、過去のニュースについて衛星を用いて撮像されたときの撮像範囲を表す情報を含んでもよい。撮像範囲を表す情報は、広域、小域などのように、撮像範囲を複数段階で表す情報であってもよい。例えば、ニュースが天気に関する場合、広域での撮像される可能性が高い。 In addition, for example, the information regarding imaging may include information indicating the imaging range when imaging past news items using a satellite. The information indicating the imaging range may be information that indicates the imaging range in multiple stages, such as wide area, small area, etc. For example, when news items are about the weather, there is a high possibility that imaging will be performed over a wide area.
 また、例えば、撮像に関する情報は、過去のニュースについての撮像地点による観測の優先度を表す情報を含む。地球の観測に係る衛星運用の計画段階において、様々な観測地点の候補が洗い出される。観測計画を立案する際に、衛星の位置などによって観測が重なってしまうため、実際には、複数の観測地点の候補から、優先度が高い地点に絞って観測が行われる場合がある。例えば、同じ優先度であれば、担当者が、観測地点の候補を確認して選択するなどの作業を行う。例えば、優先度は、戦争、自然災害、一般的な気象などの順番に高くなる可能性が高い。また、例えば、2つの異なる自然災害であれば、優先度は異なる可能性がある。 In addition, for example, imaging information includes information indicating the priority of observations from imaging locations for past news. In the planning stage of satellite operations for Earth observation, various candidate observation locations are identified. When drawing up an observation plan, observations may overlap due to the satellite's position, etc., so in reality, observations may be narrowed down from multiple candidate observation locations to locations with high priority. For example, if the priorities are the same, a person in charge will check the candidate observation locations and select one. For example, the priority is likely to be highest in the order of war, natural disasters, and general weather. Also, for example, two different natural disasters may have different priorities.
 例えば、学習部206は、過去のニュースおよび過去のニュースについての撮像に関する情報に基づいて、撮像地点を予測するように学習する。また、例えば、学習部206は、過去のニュースおよび過去のニュースについての撮像に関する情報に基づいて、撮像地点以外に、撮像画像の種類、撮像回数および撮像期間のいずれか、撮像範囲、および優先度の少なくともいずれかを予測するように学習する。学習モデル2001の目的変数は、撮像地点と、撮像画像の種類、撮像回数および撮像期間のいずれか、撮像範囲、および優先度の少なくともいずれかである。学習モデル2001の説明変数はニュースの情報である。なお、ニュースの情報とは、ニュースに含まれる場所、時間、人の名前、災害の程度を表す情報など特に限定されない。 For example, the learning unit 206 learns to predict the imaging location based on past news and information about imaging of the past news. Also, for example, the learning unit 206 learns to predict at least one of the type of captured image, the number of times captured, or the imaging period, the imaging range, and the priority, in addition to the imaging location, based on past news and information about imaging of the past news. The objective variables of the learning model 2001 are the imaging location, and at least one of the type of captured image, the number of times captured, or the imaging period, the imaging range, and the priority. The explanatory variables of the learning model 2001 are the news information. Note that the news information is not particularly limited to information contained in the news that indicates the location, time, people's names, the extent of the disaster, etc.
 <推論フェーズ>
 つぎに、推論フェーズについて説明する。
<Inference Phase>
Next, the inference phase will be described.
 実施の形態1で説明した通り、検出部201は、新たなニュースを検出する。検出部201による検出方法は、実施の形態1で説明した通りである。検出部201は、リアルタイムに新たなニュースを検出すればよい。 As explained in the first embodiment, the detection unit 201 detects new news. The detection method by the detection unit 201 is as explained in the first embodiment. The detection unit 201 only needs to detect new news in real time.
 特定部202は、学習モデル2001を用いて、検出されたニュースに基づいて、推奨撮像地点を特定する。特定部202は、学習モデル2001に検出されたニュースを入力し、学習モデル2001から推奨撮像地点を取得することにより、検出されたニュースについての推奨撮像地点を特定する。 The identification unit 202 identifies recommended imaging locations based on the detected news using the learning model 2001. The identification unit 202 inputs the detected news into the learning model 2001 and acquires recommended imaging locations from the learning model 2001, thereby identifying recommended imaging locations for the detected news.
 さらに、例えば、特定部202は、学習モデル2001を用いて、検出されたニュースに基づいて、推奨撮像地点において撮像させる画像の推奨種類を特定してもよい。特定部202は、学習モデル2001に検出されたニュースを入力し、学習モデル2001から推奨種類を取得することにより、推奨種類を特定する。 Furthermore, for example, the identification unit 202 may use the learning model 2001 to identify a recommended type of image to be captured at a recommended imaging location based on the detected news. The identification unit 202 inputs the detected news into the learning model 2001 and acquires the recommended type from the learning model 2001 to identify the recommended type.
 さらに、例えば、特定部202は、学習モデル2001を用いて、検出されたニュースに基づいて、推奨撮像地点において撮像させる撮像範囲を特定してもよい。特定部202は、学習モデル2001に検出されたニュースを入力し、学習モデル2001から推奨撮像範囲を取得することにより、推奨撮像範囲を特定する。 Furthermore, for example, the identification unit 202 may use the learning model 2001 to identify an imaging range to be imaged at a recommended imaging location based on the detected news. The identification unit 202 inputs the detected news into the learning model 2001 and acquires the recommended imaging range from the learning model 2001 to identify the recommended imaging range.
 さらに、例えば、特定部202は、学習モデル2001を用いて、検出されたニュースに基づいて、推奨撮像地点において撮像させる推奨撮像回数および推奨撮像期間の少なくともいずれかを特定してもよい。特定部202は、学習モデル2001に検出されたニュースを入力し、学習モデル2001から推奨撮像回数および推奨撮像期間の少なくともいずれかを取得することにより、推奨撮像回数および推奨撮像期間の少なくともいずれかを特定する。 Furthermore, for example, the identification unit 202 may use the learning model 2001 to identify at least one of the recommended number of times imaging is to be performed at the recommended imaging location and the recommended imaging period based on the detected news. The identification unit 202 inputs the detected news into the learning model 2001, and acquires at least one of the recommended number of times imaging is performed and the recommended imaging period from the learning model 2001, thereby identifying at least one of the recommended number of times imaging is performed and the recommended imaging period.
 さらに、例えば、特定部202は、学習モデル2001を用いて、検出されたニュースに基づいて、推奨撮像地点における観測の優先度を特定してもよい。特定部202は、学習モデル2001に検出されたニュースを入力し、学習モデル2001から優先度を取得することにより、推奨撮像地点における観測の優先度を特定する。 Furthermore, for example, the identification unit 202 may identify the priority of observation at the recommended imaging location based on the detected news using the learning model 2001. The identification unit 202 inputs the detected news into the learning model 2001 and acquires the priority from the learning model 2001, thereby identifying the priority of observation at the recommended imaging location.
 撮像時刻導出部204は、特定された推奨撮像地点と、衛星の性能および衛星の位置と、に基づいて、衛星を用いて特定された推奨撮像地点を撮像させる推奨撮像時刻を導出する。衛星の位置は、衛星の現在の位置である。衛星の性能は、衛星に搭載された装置などの情報である。衛星の性能は、衛星に搭載されたセンサの種類、センサの分解度や能力などであってもよい。なお、衛星の性能の情報および衛星の位置の情報は、通信ネットワーク等を介して取得されればよい。例えば、撮像時刻導出部204は、衛星の性能および衛星の位置に基づいて、衛星が推奨撮像地点を通過する時刻を導出し、推定した時刻を推奨撮像時刻として特定する。なお、推奨撮像時刻に限らず、推奨撮像日時が導出されてもよい。 The imaging time derivation unit 204 derives a recommended imaging time for imaging the identified recommended imaging point using a satellite based on the identified recommended imaging point and the performance and position of the satellite. The position of the satellite is the current position of the satellite. The performance of the satellite is information on the device mounted on the satellite. The performance of the satellite may be the type of sensor mounted on the satellite, the resolution and capabilities of the sensor, etc. The information on the performance of the satellite and the information on the position of the satellite may be acquired via a communication network or the like. For example, the imaging time derivation unit 204 derives the time at which the satellite passes the recommended imaging point based on the performance and position of the satellite, and identifies the estimated time as the recommended imaging time. The recommended imaging date and time may be derived without being limited to the recommended imaging time.
 出力制御部203は、推奨撮像地点を表す情報と、推奨種類を表す情報と、推奨撮像回数および推奨撮像期間の少なくともいずれかを表す情報と、推奨撮像範囲を表す情報と、優先度を表す情報と、推奨撮像時刻を表す情報とを出力する。これにより、出力制御部203は、推奨撮像地点と、推奨種類と、推奨撮像回数および推奨撮像期間の少なくともいずれかと、推奨撮像範囲と、優先度と、推奨撮像時刻とを推奨することができる。ここで、出力制御部203が、端末装置21に、各情報を表示させる例を挙げて説明する。 The output control unit 203 outputs information representing the recommended imaging location, information representing the recommended type, information representing at least one of the recommended number of imaging sessions and the recommended imaging period, information representing the recommended imaging range, information representing the priority, and information representing the recommended imaging time. This allows the output control unit 203 to recommend the recommended imaging location, the recommended type, at least one of the recommended number of imaging sessions and the recommended imaging period, the recommended imaging range, the priority, and the recommended imaging time. Here, an example will be given in which the output control unit 203 causes the terminal device 21 to display each piece of information.
 図5は、端末装置21の画面例を示す説明図である。具体的に、例えば、出力制御部203は、担当者の端末装置21に、検出されたニュースと、推奨撮像地点を表す情報と、推奨種類を表す情報と、推奨撮像回数および推奨撮像期間の少なくともいずれかを表す情報と、推奨撮像範囲を表す情報と、優先度を表す情報と、推奨撮像時刻を表す情報と、を表示させる。例えば、出力制御部203は、マップ上に推奨撮像地点を識別可能に表示させてもよい。 FIG. 5 is an explanatory diagram showing an example screen of the terminal device 21. Specifically, for example, the output control unit 203 causes the terminal device 21 of the person in charge to display the detected news, information indicating the recommended imaging location, information indicating the recommended type, information indicating at least one of the recommended number of imaging attempts and the recommended imaging period, information indicating the recommended imaging range, information indicating the priority, and information indicating the recommended imaging time. For example, the output control unit 203 may cause the recommended imaging locations to be identifiable on a map.
 図5において、端末装置21の画面は、検出されたニュースにアクセス可能なリンクを含む。例えば、担当者が、リンクをクリックすると、端末装置21には、画面上にリンク先のニュースが重畳表示されてもよい。 In FIG. 5, the screen of the terminal device 21 includes a link that allows access to the detected news. For example, when the person in charge clicks on a link, the news at the linked destination may be superimposed on the screen of the terminal device 21.
 図5において、端末装置21の画面には、推奨撮像地点として「xxx」、推奨撮像範囲として「広域」、推奨撮像回数として「連続」、撮像画像の推奨種類として「可視光」、優先度「高」、および、推奨撮像時刻として「18:20」が表示されている。 In FIG. 5, the screen of the terminal device 21 displays "xxx" as the recommended imaging location, "wide area" as the recommended imaging range, "continuous" as the recommended number of imaging attempts, "visible light" as the recommended type of image to be captured, "high" as the priority, and "18:20" as the recommended imaging time.
 また、図5において、端末装置21の画面には、世界のマップが表示されている。図5において、端末装置21の画面において、マップに対して矢印が付されている。矢印は推奨撮像地点を表す。 In addition, in FIG. 5, a map of the world is displayed on the screen of the terminal device 21. In FIG. 5, an arrow is attached to the map on the screen of the terminal device 21. The arrow indicates a recommended imaging location.
 (フローチャート)
 図6は、実施の形態2に係る衛星観測支援システム20の一動作例を示すフローチャートである。検出部201は、SNSやウェブなどのインターネット上のニュースから、新たなニュースを検出する(ステップS201)。特定部202は、学習モデル2001を用いて、新たなニュースに基づいて、推奨撮像地点と、推奨種類と、推奨撮像回数および推奨撮像期間の少なくともいずれかと、推奨撮像範囲と、優先度とを特定する(ステップS202)。
(flowchart)
6 is a flowchart showing an example of an operation of the satellite observation support system 20 according to the second embodiment. The detection unit 201 detects new news from news on the Internet, such as SNS and the Web (step S201). The identification unit 202 uses the learning model 2001 to identify a recommended imaging location, a recommended type, at least one of a recommended number of imaging attempts and a recommended imaging period, a recommended imaging range, and a priority based on the new news (step S202).
 撮像時刻導出部204は、推奨撮像地点と、衛星の性能および衛星の現在の位置と、に基づいて、推奨撮像地点を撮像可能な推奨撮像時刻を導出する(ステップS203)。そして、出力制御部203は、新たなニュースと、推奨撮像地点と、推奨種類と、推奨撮像回数および推奨撮像期間の少なくともいずれかと、推奨撮像範囲と、優先度と、推奨撮像時刻とを推奨し(ステップS204)、衛星観測支援システム20は、処理を終了する。 The imaging time derivation unit 204 derives a recommended imaging time at which the recommended imaging location can be imaged based on the recommended imaging location, the satellite's performance, and the satellite's current position (step S203). The output control unit 203 then recommends new news, a recommended imaging location, a recommended type, at least one of a recommended number of imaging attempts and a recommended imaging period, a recommended imaging range, a priority, and a recommended imaging time (step S204), and the satellite observation support system 20 ends the process.
 以上、実施の形態2において、撮像に関する情報は、過去のニュースについて衛星を用いて撮像されたときの撮像画像の種類を表す情報を含む。衛星観測支援システム20は、学習モデル2001を用いて、検出されたニュースに基づいて、検出されたニュースについて衛星を用いて撮像させる撮像画像の推奨種類を特定し、推奨撮像地点および推奨種類を推奨する。これにより、担当者は、新たなニュースについて撮像すべき撮像地点と撮像地点を撮像する場合の画像の種類を簡単に決定することができる。したがって、衛星観測に要する作業の効率化を図ることができる。 As described above, in the second embodiment, the information regarding imaging includes information indicating the type of image captured by a satellite for past news. The satellite observation support system 20 uses the learning model 2001 to identify the recommended type of image to be captured by a satellite for the detected news based on the detected news, and recommends the recommended imaging location and the recommended type. This allows the person in charge to easily determine the imaging location to be captured for new news and the type of image to be captured when capturing the imaging location. This makes it possible to improve the efficiency of the work required for satellite observation.
 また、撮像に関する情報は、過去のニュースについて衛星を用いて撮像されたときの撮像範囲を表す情報を含む。衛星観測支援システム20は、学習モデル2001を用いて、検出されたニュースに基づいて、検出されたニュースについて衛星を用いる撮像の推奨撮像範囲を特定し、推奨撮像地点および推奨撮像範囲を推奨する。これにより、担当者は、新たなニュースについて撮像すべき撮像地点と撮像地点の撮像範囲を簡単に決定することができる。したがって、衛星観測に要する作業の効率化を図ることができる。 In addition, the information regarding imaging includes information indicating the imaging range when imaging past news items using a satellite. The satellite observation support system 20 uses the learning model 2001 to identify the recommended imaging range for imaging using a satellite for the detected news items based on the detected news items, and recommends the recommended imaging location and the recommended imaging range. This allows the person in charge to easily determine the imaging location to be imaged for new news items and the imaging range of the imaging location. This makes it possible to improve the efficiency of the work required for satellite observation.
 撮像に関する情報は、過去のニュースについて衛星を用いて撮像されたときの撮像回数および撮像期間の少なくともいずれかを表す情報を含む。衛星観測支援システム20は、学習モデル2001を用いて、検出されたニュースに基づいて、検出されたニュースについて衛星を用いる撮像の推奨回数および推奨撮像期間の少なくともいずれかを特定する。衛星観測支援システム20は、推奨撮像地点と、特定された推奨回数および推奨撮像期間の少なくともいずれかを推奨する。これにより、担当者は、新たなニュースについて撮像すべき撮像地点と、推奨回数および推奨撮像期間などを簡単に決定することができる。したがって、衛星観測に要する作業の効率化を図ることができる。 The imaging-related information includes information indicating at least one of the number of imaging times and the imaging period when imaging past news items using a satellite. The satellite observation support system 20 uses the learning model 2001 to identify at least one of the recommended number of imaging times and the recommended imaging period for the detected news items using a satellite, based on the detected news items. The satellite observation support system 20 recommends a recommended imaging location and at least one of the identified recommended number of imaging times and recommended imaging period. This allows the person in charge to easily determine the imaging location for imaging new news items, the recommended number of imaging times, the recommended imaging period, etc. This makes it possible to improve the efficiency of the work required for satellite observation.
 撮像に関する情報は、過去のニュースについて衛星を用いた観測の優先度を表す情報を含む。衛星観測支援システム20は、推奨撮像地点による観測の優先度を特定し、推奨撮像地点および優先度を推奨する。これにより、担当者は、新たなニュースについての推奨撮像地点を撮像すべきかの優先度を簡単に決定することができる。したがって、衛星観測に要する作業の効率化を図ることができる。 The imaging-related information includes information indicating the priority of satellite observation for past news. The satellite observation support system 20 identifies the priority of observation using recommended imaging locations and recommends recommended imaging locations and priorities. This allows the person in charge to easily determine the priority of whether to image the recommended imaging locations for new news. This makes it possible to improve the efficiency of the work required for satellite observation.
 また、衛星観測支援システム20は、特定された推奨撮像地点と、衛星の性能および衛星の位置と、に基づいて、衛星を用いて特定された推奨撮像地点を撮像させる推奨撮像時刻を導出し、推奨撮像地点および推奨撮像時刻を推奨する。これにより、担当者は、新たなニュースについての推奨撮像地点を撮像すべき撮像時刻を簡単に決定することができる。したがって、衛星観測に要する作業の効率化を図ることができる。 The satellite observation support system 20 also derives a recommended imaging time for imaging the recommended imaging point identified using a satellite based on the identified recommended imaging point and the satellite's performance and position, and recommends the recommended imaging point and recommended imaging time. This allows the person in charge to easily determine the imaging time for imaging the recommended imaging point for new news. This makes it possible to improve the efficiency of the work required for satellite observation.
 また、衛星観測支援システム20は、突発的なキーワードを含むニュースを検出する。衛星観測支援システム20は、継続的なキーワードを含むニュースを検出しない。これにより、より需要の高いであろうニュースについての観測地点を推奨することができる。 In addition, the satellite observation support system 20 detects news that includes sudden keywords. The satellite observation support system 20 does not detect news that includes continuous keywords. This makes it possible to recommend observation points for news that is likely to be in high demand.
 以上、各実施の形態の説明を終了する。各実施の形態は、変形されてもよい。また、各実施の形態は、適宜組み合わせて用いられてもよい。また、各実施の形態において、衛星観測支援システム10,20は、各機能部および情報の一部が含まれる構成であってもよい。 This concludes the description of each embodiment. Each embodiment may be modified. Also, each embodiment may be used in appropriate combination. Also, in each embodiment, the satellite observation support systems 10 and 20 may be configured to include each functional unit and part of the information.
 また、各実施の形態については、上述した例に限られず、種々変更可能である。また、実施の形態における衛星観測支援システム10,20の構成は特に限定されない。例えば、衛星観測支援システム10,20は、一台のサーバなど、一台の装置によって実現されてもよい。衛星観測支援システム10,20の各機能部が一台の装置によって実現される場合、例えば、一台の装置は、衛星観測支援装置、情報処理装置などと呼ばれてもよいし、特に限定されない。または、各実施の形態における衛星観測支援システム10,20は、機能またはデータ別に異なる装置によって実現されてもよい。例えば各機能部は、複数のサーバによって構成され、衛星観測支援システム10,20として実現されてもよい。例えば、衛星観測支援システム10,20は、各DB(DataBase)を含むデータベースサーバと、各機能部を有するサーバと、によって実現されてもよい。 Furthermore, each embodiment is not limited to the above-mentioned examples, and various modifications are possible. Furthermore, the configuration of the satellite observation support system 10, 20 in the embodiment is not particularly limited. For example, the satellite observation support system 10, 20 may be realized by a single device, such as a single server. When each functional unit of the satellite observation support system 10, 20 is realized by a single device, for example, the single device may be called a satellite observation support device, an information processing device, or the like, and is not particularly limited. Alternatively, the satellite observation support system 10, 20 in each embodiment may be realized by different devices depending on the function or data. For example, each functional unit may be configured by multiple servers and realized as the satellite observation support system 10, 20. For example, the satellite observation support system 10, 20 may be realized by a database server including each DB (Database) and a server having each functional unit.
 また、各実施の形態において、各情報や各DBは、前述の情報の一部を含んでもよい。また、各情報や各DBは、前述の情報以外の情報を含んでもよい。各情報や各DBが、より詳細に、複数のDBや複数の情報に分けられてもよいし、一つのDBになっていてもよい。 Furthermore, in each embodiment, each piece of information and each DB may include a portion of the above-mentioned information. Furthermore, each piece of information and each DB may include information other than the above-mentioned information. Each piece of information and each DB may be divided into multiple DBs or multiple pieces of information in more detail, or may be one DB.
 また、端末装置21に表示させる情報などを生成する処理は、出力制御部103,203によって行われてもよい。また、この処理は、端末装置21によって行われてもよい。 The process of generating information to be displayed on the terminal device 21 may be performed by the output control units 103 and 203. This process may also be performed by the terminal device 21.
 (コンピュータのハードウェア構成例)
 つぎに、各実施の形態において説明した衛星観測支援システム10,20、端末装置21などの各装置をコンピュータで実現した場合のハードウェア構成例について説明する。図7は、コンピュータのハードウェア構成例を示す説明図である。例えば、各装置の一部または全部は、図7に示すようなコンピュータ80とプログラムとの任意の組み合わせを用いて実現することも可能である。
(Example of computer hardware configuration)
Next, an example of a hardware configuration in which each device, such as the satellite observation support systems 10 and 20 and the terminal device 21 described in each embodiment, is realized by a computer will be described. Fig. 7 is an explanatory diagram showing an example of a hardware configuration of a computer. For example, a part or all of each device can be realized by using any combination of a computer 80 and a program as shown in Fig. 7.
 コンピュータ80は、例えば、プロセッサ801と、ROM(Read Only Memory)802と、RAM(Random Access Memory)803と、記憶装置804と、を有する。また、コンピュータ80は、通信インタフェース805と、入出力インタフェース806と、を有する。各構成部は、例えば、バス807を介してそれぞれ接続される。なお、各構成部の数は、特に限定されず、各構成部は1または複数である。 The computer 80 has, for example, a processor 801, a ROM (Read Only Memory) 802, a RAM (Random Access Memory) 803, and a storage device 804. The computer 80 also has a communication interface 805 and an input/output interface 806. Each component is connected to the other via, for example, a bus 807. Note that the number of each component is not particularly limited, and there may be one or more of each component.
 プロセッサ801は、コンピュータ80の全体を制御する。プロセッサ801としては、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)、МPU(Micro Processing Unit)、FPU(Floating point number Processing Unit)、PPU(Physics Processing Unit)、TPU(TensorProcessingUnit)、量子プロセッサ、または、これらの組み合わせなどを用いることができる。 The processor 801 controls the entire computer 80. The processor 801 may be, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a GPU (Graphics Processing Unit), a MPU (Micro Processing Unit), an FPU (Floating point number Processing Unit), a PPU (Physics Processing Unit), a TPU (Tensor Processing Unit), a quantum processor, or a combination of these.
 また、コンピュータ80は、記憶部として、ROM802、RAM803および記憶装置804などを有する。記憶装置804は、例えば、フラッシュメモリなどの半導体メモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)などが挙げられる。例えば、記憶装置804は、OS(Operating System)のプログラム、アプリケーションプログラム、各実施の形態に係るプログラムなどを記憶する。または、ROM802は、アプリケーションプログラム、各実施の形態に係るプログラムなどを記憶する。そして、RAM803は、プロセッサ801のワークエリアとして使用される。 The computer 80 also has a ROM 802, a RAM 803, and a storage device 804 as storage units. Examples of the storage device 804 include semiconductor memory such as flash memory, a hard disk drive (HDD), and a solid state drive (SSD). For example, the storage device 804 stores an OS (operating system) program, application programs, and programs related to each embodiment. Alternatively, the ROM 802 stores application programs and programs related to each embodiment. And the RAM 803 is used as a work area for the processor 801.
 また、プロセッサ801は、記憶装置804、ROM802などに記憶されたプログラムをロードする。そして、プロセッサ801は、プログラムにコーディングされている各処理を実行する。また、プロセッサ801は、通信ネットワークNTを介して各種プログラムをダウンロードしてもよい。また、プロセッサ801は、コンピュータ80の一部または全部として機能する。そして、プロセッサ801は、プログラムに基づいて図示したフローチャートにおける処理または命令を実行してもよい。 The processor 801 also loads programs stored in the storage device 804, ROM 802, etc. The processor 801 then executes each process coded in the program. The processor 801 may also download various programs via the communications network NT. The processor 801 also functions as a part or all of the computer 80. The processor 801 may then execute the processes or instructions in the illustrated flowchart based on the program.
 通信インタフェース805は、無線または有線の通信回線を通じて、LAN(Local Area Network)、WAN(Wide Area Network)などの通信ネットワークNTに接続される。なお、通信ネットワークNTは複数の通信ネットワークNTによって構成されてもよい。これにより、コンピュータ80は、通信ネットワークNTを介して外部の装置や外部のコンピュータ80に接続される。通信インタフェース805は、通信ネットワークNTとコンピュータ80の内部とのインタフェースを司る。そして、通信インタフェース805は、外部の装置や外部のコンピュータ80からのデータの入出力を制御する。 The communication interface 805 is connected to a communication network NT, such as a LAN (Local Area Network) or a WAN (Wide Area Network), via a wireless or wired communication line. The communication network NT may be composed of multiple communication networks NT. As a result, the computer 80 is connected to an external device or an external computer 80 via the communication network NT. The communication interface 805 serves as an interface between the communication network NT and the inside of the computer 80. The communication interface 805 also controls the input and output of data from the external device or the external computer 80.
 また、入出力インタフェース806は、入力装置、出力装置、および入出力装置の少なくともいずれかに接続される。接続方法は、無線であってもよいし、有線であってもよい。入力装置は、例えば、キーボード、マウス、マイクなどが挙げられる。出力装置は、例えば、表示装置、点灯装置、音声を出力する音声出力装置などが挙げられる。また、入出力装置は、タッチパネルディスプレイなどが挙げられる。なお、入力装置、出力装置、および入出力装置などは、コンピュータ80に内蔵されていてもよいし、外付けであってもよい。 The input/output interface 806 is connected to at least one of an input device, an output device, and an input/output device. The connection method may be wireless or wired. Examples of the input device include a keyboard, a mouse, and a microphone. Examples of the output device include a display device, a lighting device, and an audio output device that outputs audio. Examples of the input/output device include a touch panel display. The input device, output device, and input/output device may be built into the computer 80 or may be external.
 コンピュータ80のハードウェア構成は一例である。コンピュータ80は、図7に示す一部の構成要素を有していてもよい。コンピュータ80は、図7に示す以外の構成要素を有していてもよい。例えば、コンピュータ80は、ドライブ装置などを有してもよい。そして、プロセッサ801は、ドライブ装置などに装着された記録媒体に記憶されたプログラムやデータをRAM803に読み出してもよい。非一時的な有形な記録媒体としては、光ディスク、フレキシブルディスク、磁気光ディスク、USB(Universal Serial Bus)メモリなどが挙げられる。また、前述の通り、例えば、コンピュータ80は、キーボードやマウスなどの入力装置を有してもよい。コンピュータ80は、ディスプレイなどの出力装置を有していてもよい。また、コンピュータ80は、入力装置および出力装置と、入出力装置とをそれぞれ有してもよい。 The hardware configuration of the computer 80 is an example. The computer 80 may have some of the components shown in FIG. 7. The computer 80 may have components other than those shown in FIG. 7. For example, the computer 80 may have a drive device or the like. The processor 801 may read out programs and data stored in a recording medium attached to the drive device or the like to the RAM 803. Examples of non-transient tangible recording media include optical disks, flexible disks, magnetic optical disks, and USB (Universal Serial Bus) memories. As described above, for example, the computer 80 may have input devices such as a keyboard and a mouse. The computer 80 may have an output device such as a display. The computer 80 may also have an input device, an output device, and an input/output device.
 また、コンピュータ80は、図示しない各種センサを有してもよい。センサの種類は特に限定されない。また、コンピュータ80は、画像や映像を撮像可能な撮像装置を備えていてもよい。 The computer 80 may also have various sensors (not shown). The type of sensor is not particularly limited. The computer 80 may also have an imaging device capable of capturing images and videos.
 以上で、各装置のハードウェア構成の説明を終了する。また、各装置の実現方法には、様々な変形例がある。例えば、各装置は、構成要素ごとにそれぞれ異なるコンピュータとプログラムとの任意の組み合わせにより実現されてもよい。また、各装置が備える複数の構成要素が、一つのコンピュータとプログラムとの任意の組み合わせにより実現されてもよい。 This concludes the explanation of the hardware configuration of each device. There are also various variations in the method of implementing each device. For example, each device may be implemented by any combination of a different computer and program for each component. Furthermore, multiple components of each device may be implemented by any combination of a single computer and program.
 また、各装置の各構成要素の一部または全部は、特定用途向けの回路で実現されてもよい。また、各装置の各構成要素の一部または全部は、FPGA(Field Programmable Gate Array)のようなプロセッサなどを含む汎用の回路によって実現されてもよい。また、各装置の各構成要素の一部または全部は、特定用途向けの回路や汎用の回路などの組み合わせによって実現されてもよい。また、これらの回路は、単一の集積回路であってもよい。または、これらの回路は、複数の集積回路に分割されてもよい。そして、複数の集積回路は、バスなどを介して接続されることにより構成されてもよい。 Furthermore, some or all of the components of each device may be realized by circuits for a specific application. Further, some or all of the components of each device may be realized by general-purpose circuits including a processor such as an FPGA (Field Programmable Gate Array). Further, some or all of the components of each device may be realized by a combination of circuits for a specific application and general-purpose circuits. Further, these circuits may be a single integrated circuit. Alternatively, these circuits may be divided into multiple integrated circuits. The multiple integrated circuits may be configured by being connected via a bus or the like.
 また、各装置の各構成要素の一部または全部が複数のコンピュータや回路などにより実現される場合、複数のコンピュータや回路などは、集中配置されてもよいし、分散配置されてもよい。 In addition, if some or all of the components of each device are realized by multiple computers, circuits, etc., the multiple computers, circuits, etc. may be centralized or distributed.
 各実施の形態で説明した衛星観測支援方法は、衛星観測支援システム10,20が実行することにより実現される。また、例えば、衛星観測支援方法は、予め用意されたプログラムをサーバや端末装置などのコンピュータが実行することにより実現される。 The satellite observation support method described in each embodiment is realized by being executed by the satellite observation support systems 10 and 20. Also, for example, the satellite observation support method is realized by having a computer such as a server or a terminal device execute a program prepared in advance.
 各実施の形態で説明したプログラムは、HDD、SSD、フレキシブルディスク、光ディスク、磁気光ディスク、USBメモリなどのコンピュータで読み取り可能な記録媒体に記録される。そして、プログラムは、コンピュータによって記録媒体から読み出されることによって実行される。また、プログラムは、通信ネットワークNTを介して配布されてもよい。 The programs described in each embodiment are recorded on a computer-readable recording medium such as a HDD, SSD, flexible disk, optical disk, magneto-optical disk, or USB memory. The programs are then read from the recording medium by a computer and executed. The programs may also be distributed via a communications network NT.
 以上説明した、各実施の形態における衛星観測支援システム10,20の各構成要素は、コンピュータのように、その機能を専用のハードウェアで実現されてもよい。または、各構成要素は、ソフトウェアによって実現されてもよい。または、各構成要素は、ハードウェアおよびソフトウェアの組み合わせによって実現されてもよい。 Each of the components of the satellite observation support systems 10 and 20 in each of the embodiments described above may have their functions realized by dedicated hardware, such as a computer. Alternatively, each component may be realized by software. Alternatively, each component may be realized by a combination of hardware and software.
 以上、各実施の形態を参照して本開示を説明したが、本開示は上記実施の形態に限定されるものではない。各本開示の構成や詳細には、本開示のスコープ内で当業者が把握し得る様々な変更を適用した実施の形態を含み得る。本開示は、本明細書に記載された事項を必要に応じて適宜に組み合わせ、または置換した実施の形態を含み得る。例えば、特定の実施の形態を用いて説明された事項は、矛盾を生じない範囲において、他の実施の形態に対しても適用され得る。例えば、複数の動作をフローチャートの形式で順番に記載してあるが、その記載の順番は複数の動作を実行する順番を限定するものではない。このため、各実施の形態を実施するときには、その複数の動作の順番を内容的に支障しない範囲で変更することができる。 Although the present disclosure has been described above with reference to each embodiment, the present disclosure is not limited to the above-mentioned embodiment. The configuration and details of each of the present disclosures may include embodiments to which various modifications that a person skilled in the art may understand within the scope of the present disclosure are applied. The present disclosure may include embodiments in which the matters described in this specification are appropriately combined or substituted as necessary. For example, matters described using a specific embodiment may also be applied to other embodiments to the extent that no contradiction occurs. For example, although multiple operations are described in order in the form of a flowchart, the order of description does not limit the order in which the multiple operations are performed. Therefore, when implementing each embodiment, the order of the multiple operations may be changed to the extent that the content is not impaired.
 上記の実施の形態の一部または全部は、以下の付記のようにも記載されることができる。ただし、上記の実施の形態の一部または全部は、以下に限られない。 A part or all of the above-described embodiments can also be described as follows. However, a part or all of the above-described embodiments is not limited to the following.
 (付記1)
 新たなニュースを検出する検出手段と、
 過去のニュースと、前記過去のニュースについて衛星を用いて撮像されたときの撮像地点を表す情報を含む撮像に関する情報とに基づき学習された学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いて撮像する推奨撮像地点を特定する特定手段と、
 特定された前記推奨撮像地点を表す情報を出力する出力制御手段と、
 を備える衛星観測支援システム。
(付記2)
 前記撮像に関する情報は、前記過去のニュースについて前記衛星を用いて撮像されたときの撮像画像の種類を表す情報を含み、
 前記特定手段は、前記学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いて撮像する撮像画像の推奨種類を特定し、
 前記出力制御手段は、前記推奨撮像地点を表す情報および特定された前記推奨種類を表す情報を出力する、
 付記1に記載の衛星観測支援システム。
(付記3)
 前記撮像に関する情報は、前記過去のニュースについて前記衛星を用いて撮像されたときの撮像範囲を表す情報を含み、
 前記特定手段は、前記学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いる撮像の推奨撮像範囲を特定し、
 前記出力制御手段は、前記推奨撮像地点を表す情報、および、特定された前記推奨撮像範囲を表す情報を出力する、
 付記1または付記2に記載の衛星観測支援システム。
(付記4)
 前記撮像に関する情報は、前記過去のニュースについて前記衛星を用いて撮像されたときの撮像回数および撮像期間の少なくともいずれかを表す情報を含み、
 前記特定手段は、前記学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いる撮像の推奨回数および推奨撮像期間の少なくともいずれかを特定し、
 前記出力制御手段は、前記推奨撮像地点を表す情報と、特定された前記推奨回数および前記推奨撮像期間の少なくともいずれかを表す情報と、を出力する、
 付記1から付記3のいずれかに記載の衛星観測支援システム。
(付記5)
 前記撮像に関する情報は、前記過去のニュースについて前記衛星を用いて撮像されたときの優先度を表す情報を含み、
 前記特定手段は、前記推奨撮像地点による観測の優先度を特定し、
 前記出力制御手段は、前記推奨撮像地点を表す情報および前記優先度を表す情報を出力する、
 付記1から付記4のいずれかに記載の衛星観測支援システム。
(付記6)
 特定された前記推奨撮像地点と、前記衛星の性能および前記衛星の位置と、に基づいて、前記衛星を用いて前記推奨撮像地点を撮像する推奨撮像時刻を導出する撮像時刻導出手段を備え、
 前記出力制御手段は、前記推奨撮像地点を表す情報および前記推奨撮像時刻を表す情報を出力する、
 付記1から付記5のいずれかに記載の衛星観測支援システム。
(付記7)
 前記検出手段は、インターネット上に投稿された複数のニュースから、突発的なキーワードを含むニュースを検出する、
 付記1から付記6のいずれかに記載の衛星観測支援システム。
(付記8)
 前記検出手段は、前記複数のニュースから、継続的なキーワードを含むニュースを検出しない、
 付記7に記載の衛星観測支援システム。
(付記9)
 新たなニュースを検出し、
 過去のニュースと前記過去のニュースについて衛星を用いて撮像されたときの撮像地点を表す情報を含む撮像に関する情報とに基づき学習された学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いて撮像する推奨撮像地点を特定し、
 特定された前記推奨撮像地点を表す情報を出力する、
 衛星観測支援方法。
(付記10)
 コンピュータに、
 新たなニュースを検出し、
 過去のニュースと前記過去のニュースについて衛星を用いて撮像されたときの撮像地点を表す情報を含む撮像に関する情報とに基づき学習された学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いて撮像する推奨撮像地点を特定し、
 特定された前記推奨撮像地点を表す情報を出力する、
 処理を実行させるプログラム。
(付記11)
 コンピュータに、
 過去のニュースと、前記過去のニュースについて衛星を用いて撮像されたときの撮像地点を表す情報を含む撮像に関する情報とに基づき学習された学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いて撮像する推奨撮像地点を特定し、
 特定された前記推奨撮像地点を表す情報を出力する、
 処理を実行させるプログラムを記録する、前記コンピュータが読み取り可能な非一時的な記録媒体。
(Appendix 1)
A detection means for detecting new news;
a specifying means for specifying a recommended imaging location for imaging using a satellite based on the detected news, using a learning model that is trained based on past news and imaging-related information including information indicating an imaging location when the past news was imaged using a satellite;
an output control means for outputting information representing the identified recommended imaging location;
A satellite observation support system equipped with:
(Appendix 2)
The information regarding the image capture includes information indicating a type of captured image when the past news was captured by the satellite,
The specifying means specifies a recommended type of image to be captured by the satellite based on the detected news using the learning model; and
The output control means outputs information representing the recommended imaging location and information representing the identified recommended type.
2. A satellite observation support system as described in appendix 1.
(Appendix 3)
The information regarding the image capture includes information indicating an image capture range when the past news was captured using the satellite,
The identification means identifies a recommended imaging range for imaging using the satellite based on the detected news by using the learning model;
The output control means outputs information representing the recommended imaging point and information representing the identified recommended imaging range.
3. A satellite observation support system according to claim 1 or 2.
(Appendix 4)
The information regarding the imaging includes information indicating at least one of the number of imaging times and an imaging period when the past news was imaged using the satellite,
The determination means determines at least one of a recommended number of times of imaging using the satellite and a recommended imaging period based on the detected news using the learning model,
The output control means outputs information representing the recommended imaging location and information representing at least one of the identified recommended number of times and the identified recommended imaging period.
4. A satellite observation support system according to any one of claims 1 to 3.
(Appendix 5)
The information regarding the image capture includes information indicating a priority when the image of the past news was captured using the satellite,
The specifying means specifies a priority of observation by the recommended imaging point,
the output control means outputs information representing the recommended imaging points and information representing the priority.
5. A satellite observation support system according to any one of claims 1 to 4.
(Appendix 6)
an imaging time deriving means for deriving a recommended imaging time for imaging the recommended imaging point using the satellite based on the identified recommended imaging point, performance of the satellite, and a position of the satellite;
the output control means outputs information representing the recommended imaging location and information representing the recommended imaging time.
6. A satellite observation support system according to any one of claims 1 to 5.
(Appendix 7)
the detection means detects news items including a sudden keyword from a plurality of news items posted on the Internet;
7. A satellite observation support system according to any one of claims 1 to 6.
(Appendix 8)
The detection means does not detect news including a continuous keyword from the plurality of news.
8. A satellite observation support system as described in appendix 7.
(Appendix 9)
Discover new news,
Identifying a recommended imaging location for imaging using a satellite based on the detected news using a learning model trained based on past news and imaging-related information including information representing an imaging location when the past news was imaged using a satellite;
outputting information representing the identified recommended imaging location;
Satellite observation support methods.
(Appendix 10)
On the computer,
Discover new news,
Identifying a recommended imaging location for imaging using a satellite based on the detected news using a learning model trained based on past news and imaging-related information including information representing an imaging location when the past news was imaged using a satellite;
outputting information representing the identified recommended imaging location;
A program that executes a process.
(Appendix 11)
On the computer,
Identifying a recommended imaging location for imaging using a satellite based on the detected news using a learning model trained based on past news and imaging-related information including information representing an imaging location when the past news was imaged using a satellite;
outputting information representing the identified recommended imaging location;
A non-transitory recording medium readable by the computer, which records a program for executing a process.
10,20 衛星観測支援システム
21 端末装置
80 コンピュータ
101,201 検出部
102,202 特定部
103,203 出力制御部
204 撮像時刻導出部
205 取得部
206 学習部
801 プロセッサ
802 ROM
803 RAM
804 記憶装置
805 通信インタフェース
806 入出力インタフェース
807 バス
2001 学習モデル
NT 通信ネットワーク
10, 20 Satellite observation support system 21 Terminal device 80 Computer 101, 201 Detection unit 102, 202 Identification unit 103, 203 Output control unit 204 Imaging time derivation unit 205 Acquisition unit 206 Learning unit 801 Processor 802 ROM
803 RAM
804 Storage device 805 Communication interface 806 Input/output interface 807 Bus 2001 Learning model NT Communication network

Claims (10)

  1.  新たなニュースを検出する検出手段と、
     過去のニュースと、前記過去のニュースについて衛星を用いて撮像されたときの撮像地点を表す情報を含む撮像に関する情報とに基づき学習された学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いて撮像する推奨撮像地点を特定する特定手段と、
     特定された前記推奨撮像地点を表す情報を出力する出力制御手段と、
     を備える衛星観測支援システム。
    A detection means for detecting new news;
    a specifying means for specifying a recommended imaging location for imaging using a satellite based on the detected news, using a learning model trained based on past news and imaging-related information including information indicating an imaging location when the past news was imaged using a satellite;
    an output control means for outputting information representing the identified recommended imaging location;
    A satellite observation support system equipped with:
  2.  前記撮像に関する情報は、前記過去のニュースについて前記衛星を用いて撮像されたときの撮像画像の種類を表す情報を含み、
     前記特定手段は、前記学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いて撮像する撮像画像の推奨種類を特定し、
     前記出力制御手段は、前記推奨撮像地点を表す情報および特定された前記推奨種類を表す情報を出力する、
     請求項1に記載の衛星観測支援システム。
    The information regarding the image capture includes information indicating a type of captured image when the past news was captured by the satellite,
    The specifying means specifies a recommended type of image to be captured by the satellite based on the detected news using the learning model; and
    The output control means outputs information representing the recommended imaging location and information representing the identified recommended type.
    The satellite observation support system according to claim 1.
  3.  前記撮像に関する情報は、前記過去のニュースについて前記衛星を用いて撮像されたときの撮像範囲を表す情報を含み、
     前記特定手段は、前記学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いる撮像の推奨撮像範囲を特定し、
     前記出力制御手段は、前記推奨撮像地点を表す情報、および、特定された前記推奨撮像範囲を表す情報を出力する、
     請求項1または請求項2に記載の衛星観測支援システム。
    The information regarding the image capture includes information indicating an image capture range when the past news was captured using the satellite,
    The identification means identifies a recommended imaging range for imaging using the satellite based on the detected news by using the learning model;
    The output control means outputs information representing the recommended imaging point and information representing the identified recommended imaging range.
    3. A satellite observation support system according to claim 1 or 2.
  4.  前記撮像に関する情報は、前記過去のニュースについて前記衛星を用いて撮像されたときの撮像回数および撮像期間の少なくともいずれかを表す情報を含み、
     前記特定手段は、前記学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いる撮像の推奨回数および推奨撮像期間の少なくともいずれかを特定し、
     前記出力制御手段は、前記推奨撮像地点を表す情報と、特定された前記推奨回数および前記推奨撮像期間の少なくともいずれかを表す情報と、を出力する、
     請求項1から請求項3のいずれかに記載の衛星観測支援システム。
    The information regarding the imaging includes information indicating at least one of the number of imaging times and an imaging period when the past news was imaged using the satellite,
    The determination means determines at least one of a recommended number of times of imaging using the satellite and a recommended imaging period based on the detected news using the learning model,
    The output control means outputs information representing the recommended imaging location and information representing at least one of the identified recommended number of times and the identified recommended imaging period.
    4. A satellite observation support system according to claim 1.
  5.  前記撮像に関する情報は、前記過去のニュースについて前記衛星を用いて撮像されたときの優先度を表す情報を含み、
     前記特定手段は、前記推奨撮像地点による観測の優先度を特定し、
     前記出力制御手段は、前記推奨撮像地点を表す情報および前記優先度を表す情報を出力する、
     請求項1から請求項4のいずれかに記載の衛星観測支援システム。
    The information regarding the image capture includes information indicating a priority when the image of the past news was captured using the satellite,
    The specifying means specifies a priority of observation by the recommended imaging point,
    the output control means outputs information representing the recommended imaging points and information representing the priority.
    5. A satellite observation support system according to claim 1.
  6.  特定された前記推奨撮像地点と、前記衛星の性能および前記衛星の位置と、に基づいて、前記衛星を用いて前記推奨撮像地点を撮像する推奨撮像時刻を導出する撮像時刻導出手段を備え、
     前記出力制御手段は、前記推奨撮像地点を表す情報および前記推奨撮像時刻を表す情報を出力する、
     請求項1から請求項5のいずれかに記載の衛星観測支援システム。
    an imaging time deriving means for deriving a recommended imaging time for imaging the recommended imaging point using the satellite based on the identified recommended imaging point, performance of the satellite, and a position of the satellite;
    the output control means outputs information representing the recommended imaging location and information representing the recommended imaging time.
    6. A satellite observation support system according to claim 1.
  7.  前記検出手段は、インターネット上に投稿された複数のニュースから、突発的なキーワードを含むニュースを検出する、
     請求項1から請求項6のいずれかに記載の衛星観測支援システム。
    the detection means detects news items including a sudden keyword from a plurality of news items posted on the Internet;
    7. A satellite observation support system according to claim 1.
  8.  前記検出手段は、前記複数のニュースから、継続的なキーワードを含むニュースを検出しない、
     請求項7に記載の衛星観測支援システム。
    The detection means does not detect news including a continuous keyword from the plurality of news.
    The satellite observation support system according to claim 7.
  9.  新たなニュースを検出し、
     過去のニュースと、前記過去のニュースについて衛星を用いて撮像されたときの撮像地点を表す情報を含む撮像に関する情報とに基づき学習された学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いて撮像する推奨撮像地点を特定し、
     特定された前記推奨撮像地点を表す情報を出力する、
     衛星観測支援方法。
    Discover new news,
    Identifying a recommended imaging location for imaging using a satellite based on the detected news using a learning model trained based on past news and imaging-related information including information representing an imaging location when the past news was imaged using a satellite;
    outputting information representing the identified recommended imaging location;
    Satellite observation support methods.
  10.  コンピュータに、
     新たなニュースを検出し、
     過去のニュースと、前記過去のニュースについて衛星を用いて撮像されたときの撮像地点を表す情報を含む撮像に関する情報とに基づき学習された学習モデルを用いて、検出された前記ニュースに基づいて、前記衛星を用いて撮像する推奨撮像地点を特定し、
     特定された前記推奨撮像地点を表す情報を出力する、
     処理を実行させるプログラムを記録する、前記コンピュータが読み取り可能な非一時的な記録媒体。
    On the computer,
    Discover new news,
    Identifying a recommended imaging location for imaging using a satellite based on the detected news using a learning model trained based on past news and imaging-related information including information representing an imaging location when the past news was imaged using a satellite;
    outputting information representing the identified recommended imaging location;
    A non-transitory recording medium readable by the computer, which records a program for executing a process.
PCT/JP2023/006522 2023-02-22 2023-02-22 Satellite observation assistance system, satellite observation assistance method, and recording medium WO2024176400A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/006522 WO2024176400A1 (en) 2023-02-22 2023-02-22 Satellite observation assistance system, satellite observation assistance method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/006522 WO2024176400A1 (en) 2023-02-22 2023-02-22 Satellite observation assistance system, satellite observation assistance method, and recording medium

Publications (1)

Publication Number Publication Date
WO2024176400A1 true WO2024176400A1 (en) 2024-08-29

Family

ID=92500404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006522 WO2024176400A1 (en) 2023-02-22 2023-02-22 Satellite observation assistance system, satellite observation assistance method, and recording medium

Country Status (1)

Country Link
WO (1) WO2024176400A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109766815A (en) * 2019-01-03 2019-05-17 银河航天(北京)科技有限公司 A kind of pair of object event carries out pre-warning system and method
JP2020154835A (en) * 2019-03-20 2020-09-24 株式会社アクセルスペース Information processing device, information processing method, and program
JP2020173604A (en) * 2019-04-10 2020-10-22 株式会社日立製作所 Shooting planning device and method thereof
JP2020201560A (en) * 2019-06-06 2020-12-17 株式会社日立製作所 Information search device and information search method
KR102358472B1 (en) * 2021-08-27 2022-02-08 주식회사 에스아이에이 Method for scheduling of shooting satellite images based on deep learning
JP2022172503A (en) * 2021-05-06 2022-11-17 日本電気株式会社 Satellite observation planning system, satellite observation planning method and satellite observation planning program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109766815A (en) * 2019-01-03 2019-05-17 银河航天(北京)科技有限公司 A kind of pair of object event carries out pre-warning system and method
JP2020154835A (en) * 2019-03-20 2020-09-24 株式会社アクセルスペース Information processing device, information processing method, and program
JP2020173604A (en) * 2019-04-10 2020-10-22 株式会社日立製作所 Shooting planning device and method thereof
JP2020201560A (en) * 2019-06-06 2020-12-17 株式会社日立製作所 Information search device and information search method
JP2022172503A (en) * 2021-05-06 2022-11-17 日本電気株式会社 Satellite observation planning system, satellite observation planning method and satellite observation planning program
KR102358472B1 (en) * 2021-08-27 2022-02-08 주식회사 에스아이에이 Method for scheduling of shooting satellite images based on deep learning

Similar Documents

Publication Publication Date Title
US10909647B2 (en) Damage data propagation in predictor of structural damage
CA3115188C (en) Apparatus and method for providing application service using satellite image
Aulov et al. Human sensor networks for improved modeling of natural disasters
US10740684B1 (en) Method and system to predict the extent of structural damage
US10267950B2 (en) System, method and program product for providing populace centric weather forecasts
Albano et al. Geospatial methods and tools for natural risk management and communications
Young et al. Social sensing of flood impacts in India: A case study of Kerala 2018
Li et al. A Web GIS for sea ice information and an ice service archive
da Luz et al. The forestwatchers: a citizen cyberscience project for deforestation monitoring in the tropics
Lee et al. A new framework to assess relative ecosystem vulnerability to climate change
Sarica et al. Spatio-temporal dynamics in seismic exposure of Asian megacities: Past, present and future
Lozano et al. Data collection tools for post-disaster damage assessment of building and lifeline infrastructure systems
Cao et al. Posthurricane damage assessment using satellite imagery and geolocation features
Felbermayr et al. Shedding light on the spatial diffusion of disasters
Saralioglu et al. Crowdsourcing-based application to solve the problem of insufficient training data in deep learning-based classification of satellite images
WO2024176400A1 (en) Satellite observation assistance system, satellite observation assistance method, and recording medium
Puttinaovarat et al. Flood disaster identification and decision support system using crowdsource data based on convolutional neural network and 3S technology
Glasscoe et al. E-decider: using earth science data and modeling tools to develop decision support for earthquake disaster response
Puttinaovarat et al. Application programming interface for flood forecasting from geospatial big data and crowdsourcing data
Tiwari et al. Markov random field-based method for super-resolution mapping of forest encroachment from remotely sensed ASTER image
Zou et al. GeoAI for Disaster Response
Yang et al. Sewer pipe defects diagnosis assessment using multivariate analysis on CCTV video imagery
Verhulst et al. Where is Everyone? The Importance of Population Density Data: A Data Artefact Study of the Facebook Population Density Map
Willis et al. Remote assessment of locally important ecological features across landscapes: how representative of reality?
Kocaman et al. CitSci as a New Approach for Landslide Researches

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23924052

Country of ref document: EP

Kind code of ref document: A1