WO2024174630A1 - 阵列波导光栅 - Google Patents
阵列波导光栅 Download PDFInfo
- Publication number
- WO2024174630A1 WO2024174630A1 PCT/CN2023/133983 CN2023133983W WO2024174630A1 WO 2024174630 A1 WO2024174630 A1 WO 2024174630A1 CN 2023133983 W CN2023133983 W CN 2023133983W WO 2024174630 A1 WO2024174630 A1 WO 2024174630A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coupler
- refractive index
- waveguide
- output
- input coupler
- Prior art date
Links
- 230000008878 coupling Effects 0.000 claims abstract description 96
- 238000010168 coupling process Methods 0.000 claims abstract description 96
- 238000005859 coupling reaction Methods 0.000 claims abstract description 96
- 230000003287 optical effect Effects 0.000 claims abstract description 70
- 239000000463 material Substances 0.000 claims description 18
- 238000012544 monitoring process Methods 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- 230000007423 decrease Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 238000000206 photolithography Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000003780 insertion Methods 0.000 abstract description 41
- 230000037431 insertion Effects 0.000 abstract description 41
- 230000010287 polarization Effects 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
Definitions
- the present invention relates to the field of semiconductor technology, and in particular to an arrayed waveguide grating.
- Arrayed waveguide gratings are commonly used in optical multiplexers in wavelength division multiplexing systems. These devices can combine many wavelengths of light into a single optical fiber, thereby improving the propagation efficiency of optical fiber networks.
- Arrayed waveguide gratings include star couplers and waveguide arrays.
- the channel spacing of the star coupler refers to the interval between two adjacent channels of the star coupler
- the waveguide array is easily limited by the process (for example, it is affected by factors such as the roughness of the sidewalls of the waveguides of the waveguide array), resulting in a large phase error, which leads to a large insertion loss of the channel of the waveguide array, increased crosstalk, and spectrum drift.
- the present application provides an arrayed waveguide grating, comprising an input coupler, a waveguide array and an output coupler;
- the waveguide array is coupled between the input coupler and the output coupler, the waveguide array comprises a plurality of waveguides, the input coupler is used to distribute the received optical signal to the plurality of waveguides, the plurality of waveguides are used to guide the distributed optical signals, and the output coupler is used to couple the optical signals transmitted on the plurality of waveguides;
- the input coupler has a first refractive index
- the plurality of waveguides have a second refractive index
- the output coupler has a third refractive index
- both the first refractive index and the third refractive index are greater than the second refractive index
- the first refractive index and the third refractive index are both greater than 3, and the second refractive index is less than 2.5.
- the input coupler is manufactured using a high-precision photolithography process
- the output coupler is manufactured by adopting a high-precision photolithography process.
- the input coupler and the output coupler are both made of silicon.
- the waveguide comprises a temperature-insensitive material.
- the material of the waveguide includes silicon nitride or silicon oxynitride.
- the number of the waveguides is n
- the input coupler is used to distribute the received light into m optical signals and couple them to the n waveguides for transmission
- the output coupler is used to couple the optical signals transmitted on the n waveguides and output p optical signals
- n is greater than or equal to n.
- m is greater than n
- the input coupler includes n first coupling channels
- the output coupler includes n second coupling channels
- the waveguide is coupled between the first coupling channels and the second coupling channels in a one-to-one correspondence
- the input coupler further comprises a monitoring channel and/or a dumping channel, and the total number of the monitoring channels and the dumping channels is m-n.
- the waveguide includes two gradient sections respectively coupled to the corresponding first coupling channel and the corresponding second coupling channel; the first coupling channel includes a first portion coupled to the bottom side of the corresponding gradient section, and the second coupling channel includes a second portion coupled to the bottom side of the corresponding gradient section;
- the width of the gradient section coupled to the input coupler gradually increases, and the width of the gradient section coupled to the output coupler gradually decreases; the width of the first part gradually decreases, and the width of the second part gradually increases; or along the direction from the input coupler to the output coupler, the thickness of the gradient section coupled to the input coupler gradually increases, and the thickness of the gradient section coupled to the output coupler gradually decreases; the thickness of the first part gradually decreases, and the thickness of the second part gradually increases.
- the cross-sections of the plurality of waveguides are all configured as squares.
- the refractive index of the input coupler and the refractive index of the output coupler are relatively high, and both the input coupler and the output coupler can better bind the light field and reduce the crosstalk caused by the evanescent wave coupling, so that the input coupler and the output coupler can be designed to reduce their channel spacing, which helps to reduce the insertion loss without significantly increasing the evanescent wave crosstalk.
- the refractive index of the waveguide is relatively low, which can reduce the phase error caused by the roughness of the side wall of the waveguide, thereby reducing crosstalk and insertion loss and avoiding spectrum drift.
- the arrayed waveguide grating can solve the problem of high insertion loss of the star coupler and the problem of large phase error caused by the roughness of the side wall of the waveguide, and the insertion loss of the arrayed waveguide grating is relatively low.
- FIG1 is a schematic structural diagram of an arrayed waveguide grating according to a first embodiment of the present application
- FIG2 shows a side view of an arrayed waveguide grating according to a first embodiment of the present application
- FIG3 shows a schematic structural diagram of an arrayed waveguide grating according to a second embodiment of the present application
- FIG4 shows a schematic structural diagram of an arrayed waveguide grating according to a third embodiment of the present application.
- FIG5 is a schematic structural diagram of an arrayed waveguide grating according to a fourth embodiment of the present application.
- FIG6 is a schematic structural diagram of a cross section of a waveguide according to an embodiment of the present application.
- FIG. 7 shows a schematic structural diagram of an integrated chip according to an embodiment of the present application.
- array waveguide grating 110, input coupler; 111, first coupling channel; 1111, first part; 1112, third part; 112, monitoring channel; 113, input channel; 114, first coupling waveguide; 120, waveguide array; 121, waveguide; 1211, gradient section; 1212, straight line section; 130, output coupler; 131, second coupling channel; 1311, second part; 1312, fourth part; 132, output channel; 1321, first output channel; 1322, second output channel; 133, second coupling waveguide; S, first plane; 20, polarization rotation beam splitter; 30, photodetector.
- Embodiments of the invention are described herein with reference to cross-sectional views that are schematic representations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes shown due to, for example, manufacturing techniques and/or tolerances are contemplated. Therefore, embodiments of the invention should not be limited to the specific shapes of the regions shown herein, but rather include deviations in shapes due to, for example, manufacturing. Therefore, the regions shown in the figures are schematic in nature, and their shapes are not intended to show the actual shapes of the regions of the device and are not intended to limit the scope of the invention.
- the present application designs an arrayed waveguide grating.
- the star coupler uses a high refractive index material, which can better bind the light field and reduce the evanescent wave crosstalk, and allows the channel spacing to be reduced in design, which helps to reduce the insertion loss without significantly increasing the evanescent wave crosstalk;
- the waveguide array uses a low refractive index material, which can reduce the phase error caused by the roughness of the side wall of the waveguide; in this way, the problem of high insertion loss of the star coupler and the problem of large phase error caused by the roughness of the side wall of the waveguide of the waveguide array can be solved, and the insertion loss of the arrayed waveguide grating can be significantly reduced.
- 1 to 5 are schematic structural diagrams of arrayed waveguide gratings 10 according to different embodiments of the present application.
- an arrayed waveguide grating 10 provided in one embodiment of the present application includes an input coupler 110 , a waveguide array 120 , and an output coupler 130 .
- the waveguide array 120 is coupled between the input coupler 110 and the output coupler 130.
- the waveguide array 120 includes a plurality of waveguides 121.
- the input coupler 110 is used to distribute the received optical signal to the plurality of waveguides 121.
- the plurality of waveguides 121 are used to guide the distributed optical signals.
- the output coupler 130 is used to couple the optical signals transmitted on the plurality of waveguides 121. In other words, the input coupler 110 distributes the received optical signal to the plurality of waveguides 121, transmits the optical signal to the output coupler 130 via the plurality of waveguides 121, and then couples the optical signal to be output via the output coupler 130.
- the waveguide array 120 includes n waveguides 121, the input coupler 110 is a 1 ⁇ n star coupler, and the output coupler 130 is an n ⁇ p star coupler.
- the input coupler 110 may include 1 input channel 113 and n first coupling channels 111, and the output coupler 130 may include n second coupling channels 131 and p output channels 132.
- the channel spacing of the input coupler 110 refers to the spacing between two adjacent first coupling channels 111
- the channel spacing of the output coupler 130 refers to the spacing between two adjacent second coupling channels 131 .
- the waveguides 121 are coupled between the first coupling channels 111 and the second coupling channels 131 in a one-to-one correspondence, so that the optical signal received by one input channel 113 is distributed to n first coupling channels 111, and the optical signal distributed to each first coupling channel 111 is transmitted to the corresponding second coupling channel 131 via the corresponding waveguide 121, and finally output through p output channels 132, that is, the output coupler 130 can output p-channel optical signals. Therefore, the optical signal passes through the arrayed waveguide grating 10 from left to right, and the separation of p-channel wavelengths can be achieved, and the optical signal passes through the arrayed waveguide grating 10 from right to left, and the merging of p-channel wavelengths can be achieved.
- the input coupler 110 has a first refractive index
- the plurality of waveguides 121 have a second refractive index
- the output coupler 130 has a third refractive index, and both the first refractive index and the third refractive index are greater than the second refractive index.
- the refractive index of the input coupler 110 and the refractive index of the output coupler 130 are higher.
- the input coupler 110 can better bind the light field, so that light with smaller energy can penetrate between the two adjacent first coupling channels 111, and can also well reduce the crosstalk generated by the evanescent wave coupling formed by the two adjacent first coupling channels 111.
- the output coupler 130 can also better bind the light field and reduce the evanescent wave crosstalk of the output coupler 130.
- the input coupler 110 and the output coupler 130 are both allowed to reduce their channel spacing in design, which helps to reduce insertion loss without significantly increasing the evanescent wave crosstalk.
- the refractive index can be used to quantitatively describe the increase in the wave number (phase change per unit length) caused by the medium, the refractive index of the waveguide 121 is lower than that of the input coupler 110 and the output coupler 130, which is conducive to reducing the phase error caused by the roughness of the side wall of the waveguide 121, thereby reducing crosstalk and insertion loss and avoiding spectrum drift.
- the arrayed waveguide grating 10 can solve the problem of high insertion loss of the star coupler and the problem of large phase error caused by the roughness of the side wall of the waveguide 121, so that the insertion loss of the arrayed waveguide grating 10 is low.
- an arrayed waveguide grating 10 provided in one embodiment of the present application includes an input coupler 110 , a waveguide array 120 , and an output coupler 130 .
- the waveguide array 120 includes n waveguides 121, the input coupler 110 is a 1 ⁇ m star coupler, the input coupler 110 is an m ⁇ p star coupler, and the input coupler 110 may include 1 input channel 113, n first coupling channels 111, and m-n first auxiliary channels, and the output coupler 130 includes n second coupling channels 131, m-n second auxiliary channels, and p output channels 132.
- the first auxiliary channel may be a monitoring channel 112 and/or a dumping channel.
- the second auxiliary channel may also be a monitoring channel 112 and/or a dumping channel.
- the waveguide 121 is coupled between the first coupling channel 111 and the second coupling channel 131 in a one-to-one correspondence, so that the optical signal received by one input channel 113 is distributed to n first coupling channels 111 and m-n first auxiliary channels, and the optical signal distributed to each first coupling channel 111 is transmitted to the corresponding second coupling channel 131 via the corresponding waveguide 121, and finally output through p output channels 132, that is, the output coupler 130 can output p optical signals.
- the optical signal passes through the arrayed waveguide grating 10 from left to right, and the separation of p wavelengths can be achieved, and the optical signal passes through the arrayed waveguide grating 10 from right to left, and the merging of p wavelengths can be achieved.
- the optical signal distributed to the first auxiliary channel can be used for monitoring and detection (the first auxiliary channel is the monitoring channel 112), and the energy of the optical signal distributed to the first auxiliary channel can also be directly dissipated to play the role of auxiliary coupling (the first auxiliary channel is the dumping channel).
- the input coupler 110 has a first refractive index
- the waveguide 121 has a second refractive index
- the output coupler 130 has a third refractive index. Both the first refractive index and the third refractive index are greater than the second refractive index.
- the refractive index of the input coupler 110 and the refractive index of the output coupler 130 are higher.
- the input coupler 110 can better bind the light field, so that light with smaller energy can penetrate between the two adjacent first coupling channels 111, and can also well reduce the crosstalk generated by the evanescent wave coupling formed by the two adjacent first coupling channels 111.
- the output coupler 130 can also better bind the light field and reduce the evanescent wave crosstalk of the output coupler 130.
- the input coupler 110 and the output coupler 130 are both allowed to reduce their channel spacing in design, which helps to reduce insertion loss without significantly increasing the evanescent wave crosstalk.
- the refractive index can be used to quantitatively describe the increase in the wave number (phase change per unit length) caused by the medium, the refractive index of the waveguide 121 is lower than that of the input coupler 110 and the output coupler 130, which is conducive to reducing the phase error caused by the roughness of the side wall of the waveguide 121, thereby reducing crosstalk and insertion loss and avoiding spectrum drift.
- the arrayed waveguide grating 10 can solve the problem of high insertion loss of the star coupler and the problem of large phase error caused by the roughness of the side wall of the waveguide 121, so that the insertion loss of the arrayed waveguide grating 10 is low.
- an arrayed waveguide grating 10 provided in one embodiment of the present application includes an input coupler 110 , a waveguide array 120 , and an output coupler 130 .
- the waveguide array 120 includes n waveguides 121, the input coupler 110 is an a ⁇ n star coupler, the input coupler 110 is an n ⁇ p star coupler, the input coupler 110 may include a input channels 113 and n first coupling channels 111, and the output coupler 130 includes n second coupling channels 131 and p output channels 132.
- the waveguides 121 are coupled between the first coupling channels 111 and the second coupling channels 131 in a one-to-one correspondence, so that the optical signals received by the a input channels 113 are distributed to the n first coupling channels 111, and the optical signals distributed to each first coupling channel 111 are transmitted to the corresponding second coupling channels 131 via the corresponding waveguide 121, and finally output through the p output channels 132, that is, the output coupler 130 can output p optical signals.
- the optical signal can enter a path and exit p paths from the arrayed waveguide grating 10 from left to right, and the optical signal can enter p paths and exit a path from right to left through the arrayed waveguide grating 10.
- the input coupler 110 has a first refractive index
- the waveguide 121 has a second refractive index
- the output coupler 130 has a third refractive index. Both the first refractive index and the third refractive index are greater than the second refractive index.
- the refractive index of the input coupler 110 and the refractive index of the output coupler 130 are higher.
- the input coupler 110 can better bind the light field, so that light with smaller energy can penetrate between the two adjacent first coupling channels 111, and can also well reduce the crosstalk generated by the evanescent wave coupling formed by the two adjacent first coupling channels 111.
- the output coupler 130 can also better bind the light field and reduce the evanescent wave crosstalk of the output coupler 130.
- the input coupler 110 and the output coupler 130 are both allowed to reduce their channel spacing in design, which helps to reduce insertion loss without significantly increasing the evanescent wave crosstalk.
- the refractive index can be used to quantitatively describe the increase in the wave number (phase change per unit length) caused by the medium, the refractive index of the waveguide 121 is lower than that of the input coupler 110 and the output coupler 130, which is conducive to reducing the phase error caused by the roughness of the side wall of the waveguide 121, thereby reducing crosstalk and insertion loss and avoiding spectrum drift.
- the arrayed waveguide grating 10 can solve the problem of high insertion loss of the star coupler and the problem of large phase error caused by the roughness of the side wall of the waveguide 121, so that the insertion loss of the arrayed waveguide grating 10 is low.
- an arrayed waveguide grating 10 provided in one embodiment of the present application includes an input coupler 110 , a waveguide array 120 and an output coupler 130 .
- the waveguide array 120 includes n waveguides 121, the input coupler 110 is an a ⁇ m star coupler, the input coupler 110 is an m ⁇ p star coupler, and the input coupler 110 may include a input channels 113, n first coupling channels 111, and m-n first auxiliary channels, and the output coupler 130 includes n second coupling channels 131, m-n second auxiliary channels, and p output channels 132.
- the first auxiliary channel may be a monitoring channel 112 and/or a dumping channel.
- the second auxiliary channel may also be a monitoring channel 112 and/or a dumping channel.
- the waveguide 121 is coupled between the first coupling channel 111 and the second coupling channel 131 in a one-to-one correspondence, so that the optical signal received by the a input channel 113 is distributed to the n first coupling channels 111 and the m-n first auxiliary channels, and the optical signal distributed to each first coupling channel 111 is transmitted to the corresponding second coupling channel 131 via the corresponding waveguide 121, and finally output through the p output channels 132, that is, the output coupler 130 can output p optical signals. Therefore, the optical signal can enter a path and exit p paths from left to right through the arrayed waveguide grating 10, and the optical signal can enter p paths and exit a path from right to left through the arrayed waveguide grating 10.
- the optical signal distributed to the first auxiliary channel can be used for monitoring and detection (the first auxiliary channel is the monitoring channel 112), and the energy of the optical signal distributed to the first auxiliary channel can also be directly dissipated to play the role of auxiliary coupling (the first auxiliary channel is the dumping channel).
- the input coupler 110 has a first refractive index
- the waveguide 121 has a second refractive index
- the output coupler 130 has a third refractive index. Both the first refractive index and the third refractive index are greater than the second refractive index.
- the refractive index of the input coupler 110 and the refractive index of the output coupler 130 are higher.
- the input coupler 110 can better bind the light field, so that light with smaller energy can penetrate between the two adjacent first coupling channels 111, and can also well reduce the crosstalk generated by the evanescent wave coupling formed by the two adjacent first coupling channels 111.
- the output coupler 130 can also better bind the light field and reduce the evanescent wave crosstalk of the output coupler 130.
- the input coupler 110 and the output coupler 130 are both allowed to reduce their channel spacing in design, which helps to reduce insertion loss without significantly increasing the evanescent wave crosstalk.
- the refractive index can be used to quantitatively describe the increase in the wave number (phase change per unit length) caused by the medium, the refractive index of the waveguide 121 is lower than that of the input coupler 110 and the output coupler 130, which is conducive to reducing the phase error caused by the roughness of the side wall of the waveguide 121, thereby reducing crosstalk and insertion loss and avoiding spectrum drift.
- the arrayed waveguide grating 10 can solve the problem of high insertion loss of the star coupler and the problem of large phase error caused by the roughness of the side wall of the waveguide 121, so that the insertion loss of the arrayed waveguide grating 10 is low.
- the waveguide array 120 includes a group of waveguides 121 with equal length differences.
- the waveguide array 120 is equivalent to a concave grating. After being transmitted through the waveguide array 120, because the adjacent waveguides 121 maintain the same length difference, the output light of a certain wavelength of the adjacent waveguides 121 on the concave grating has the same phase difference. The phase difference is different for light of different wavelengths. Therefore, light of different wavelengths is diffracted and focused to different output channel waveguide positions during transmission through the waveguide array 120. After being output through the output channel waveguide, the wavelength allocation, i.e., demultiplexing function, is completed.
- the first refractive index and the third refractive index are both greater than 3, and the second refractive index is less than 2.5.
- the input coupler 110 and the output coupler 130 are both made of high refractive index materials, and the input coupler 110 and the output coupler 130 can better bind the light field, so that the input coupler 110 and the output coupler 130 can be designed to reduce the channel spacing, which helps to reduce the insertion loss without significantly increasing the evanescent wave crosstalk.
- the second refractive index is relatively low, which can significantly reduce the phase error caused by the roughness of the side wall of the waveguide 121, thereby significantly reducing the crosstalk and insertion loss, avoiding spectrum drift, and the insertion loss of the arrayed waveguide grating 10 is lower.
- the input coupler 110 is manufactured using a high-precision photolithography process, so as to improve the coupling efficiency of the input coupler 110 and reduce the insertion loss of the arrayed waveguide grating 10 .
- the output coupler 130 is manufactured using a high-precision photolithography process, so as to improve the coupling efficiency of the output coupler 130 and reduce the insertion loss of the arrayed waveguide grating 10 .
- both the input coupler 110 and the output coupler 130 are manufactured using a high-precision photolithography process.
- the input coupler 110 and the output coupler 130 can be prepared by a high-precision photolithography process. Combined with the high refractive index of the input coupler 110 and the high refractive index of the output coupler 130, the coupling efficiency of the input coupler 110 and the output coupler 130 can be improved, and the insertion loss of the arrayed waveguide grating 10 can be reduced.
- the input coupler 110 and the output coupler 130 are both high-precision partially etched star couplers. Compared with a fully etched star coupler, a partially etched star coupler has a smaller light leakage area, which is beneficial for reducing insertion loss.
- the input coupler 110 and the output coupler 130 are both made of silicon.
- Silicon has a high refractive index and supports high-precision photolithography and partial etching.
- the input coupler 110 and the output coupler 130 can be made into high-precision partially etched star couplers using high-precision photolithography, which can reduce the insertion loss of the input coupler 110 and the output coupler 130 and improve the coupling efficiency of the input coupler 110 and the output coupler 130.
- the waveguide 121 comprises a temperature-insensitive material.
- the refractive index of the waveguide 121 is relatively low, and the waveguide 121 is made of non-temperature-sensitive materials, which can better avoid the occurrence of spectrum temperature drift.
- the material of the waveguide 121 includes silicon nitride or silicon oxynitride.
- the waveguide 121 includes but is not limited to silicon nitride or silicon oxynitride. Silicon nitride and silicon oxynitride have low refractive indices and are non-temperature-sensitive materials, which are beneficial to reducing the insertion loss of the arrayed waveguide grating 10 and avoiding spectrum drift due to temperature.
- the number of waveguides 121 is n
- the input coupler 110 is used to distribute the received light into m optical signals and couple them to the n waveguides 121 for transmission
- the output coupler 130 is used to couple the optical signals transmitted on the n waveguides 121 and output p optical signals.
- m, n and p are all positive integers greater than 1, and m is greater than or equal to n.
- m is equal to n
- the m optical signals distributed by the input coupler 110 are transmitted one by one through the m waveguides 121 .
- the optical signals transmitted by the m waveguides 121 are coupled to the output coupler 130 , and finally the output coupler 130 outputs p optical signals.
- n is greater than n
- n optical signals among the m optical signals distributed by the input coupler 110 are transmitted one by one through the n waveguides 121
- the optical signals transmitted by the n waveguides 121 are coupled to the output coupler 130
- the output coupler 130 outputs p optical signals.
- the input coupler 110 includes n first coupling channels 111
- the output coupler 130 includes n second coupling channels 131
- the waveguide 121 is coupled one-to-one between the first coupling channels 111 and the second coupling channels 131.
- the input coupler 110 further includes a monitoring channel 112 and/or a dumping channel, and the total number of the monitoring channel 112 and the dumping channel is m-n.
- the monitoring channel 112 can be used to lead out the optical path to connect the coupling device for detection purposes.
- the pouring channel can also be used to directly dissipate the optical energy of the path to play a role in auxiliary coupling. It should be added that the optical signal leaked from the pouring channel is small, and the impact on the insertion loss of the arrayed waveguide grating 10 can be ignored.
- the cross-sections of the plurality of waveguides 121 are all configured as squares.
- a plane parallel to the thickness direction of the waveguide 121 and intersecting the waveguide 121 is defined as a first plane S, and a cross section of the waveguide 121 is parallel to the first plane S.
- FIG6 shows a cross-sectional view of the waveguide 121 at the first plane S (to be understood in conjunction with FIG1 ).
- the cross section of the waveguide 121 is configured as a square, and the cross section of the straight section 1212 may be configured as a square, or the cross section of the gradient section 1211 and the cross section of the straight section 1212 may both be configured as squares. No specific limitation is given here. Designing the cross section of the waveguide 121 as a square can reduce the polarization sensitivity of the arrayed waveguide grating 10, which is beneficial for the arrayed waveguide grating 10 to serve as the receiving end of the wavelength division multiplexer.
- the waveguide 121 includes two gradient segments 1211 respectively coupled to the input coupler 110 and the output coupler 130, and a straight segment 1212 connected between the two gradient segments 1211 (the straight segment here is just a name, and does not limit the waveguide here to be a straight line, and it can be a curved waveguide),
- the first coupling channel 111 includes a first portion 1111 coupled to the bottom side of the corresponding gradient segment 1211
- the second coupling channel 131 includes a second portion 1311 coupled to the bottom side of the corresponding gradient segment 1211
- the gradient segment 1111 coupled to the input coupler 110 along the longitudinal extension direction of the waveguide 121 points to the side away from the input coupler 110, and the gradient segment 1111 coupled to the input coupler 110 is connected to the output coupler 130.
- the width of the gradient section 1211 gradually increases, the width of the gradient section 1211 coupled to the output coupler 130 gradually decreases, the width of the first section 1111 gradually decreases, the width of the second section 1311 gradually increases, and the width of the straight section 1212 remains unchanged.
- the mode spot size of the input coupler 110 can be gradually matched with the mode spot of the waveguide 121, thereby increasing the mode field overlap between the input coupler 110 and the waveguide 121.
- the mode spot size of the waveguide 121 can be gradually matched with the mode spot of the output coupler 130, thereby increasing the mode field overlap between the waveguide 121 and the output coupler 130, thereby improving the coupling efficiency between the input coupler 110 and the output coupler 130.
- the thickness of the gradient section 1211 coupled to the input coupler 110 gradually increases, the thickness of the gradient section 1211 coupled to the output coupler 130 gradually decreases, the thickness of the first portion 1111 gradually decreases, the thickness of the second portion 1311 gradually increases, and the thickness of the straight section 1212 remains unchanged.
- the mode spot size of the input coupler 110 can be gradually matched with the mode spot of the waveguide 121, and the mode spot size of the waveguide 121 can be gradually matched with the mode spot of the output coupler 130, thereby improving the coupling efficiency of the input coupler 110 and the output coupler 130.
- the present application is not limited to this, and other methods may also be used to gradually match the mode spot size of the input coupler 110 with the mode spot of the waveguide 121 and to gradually match the mode spot size of the waveguide 121 with the mode spot of the output coupler 130, so as to improve the coupling efficiency of the input coupler 110 and the output coupler 130.
- the input coupler 110 further includes a first coupling waveguide 114 connected between the input channel 113 and the first coupling channel 111
- the first coupling channel 111 further includes a third portion 1112
- the third portion 1112 is connected between the first coupling waveguide 114 and the first portion 1111
- the first coupling waveguide 114 is used to distribute the optical signal received by the input channel 113 to a plurality of first coupling channels 111
- the optical signal distributed to the first coupling channel 111 is sequentially transmitted through the third portion 1112 and the first portion 1111 of the first coupling channel 111, and is gradually coupled to the corresponding gradient section 1211, and then transmitted to the output coupler 130 through the corresponding waveguide 121, and then coupled and outputted through the output coupler 130.
- the third portion 1112 and the first portion 1111 are made of the same material, and the first portion 1111 and the gradient section 1211 are made of different materials.
- the first portion 1111 may be designed to be gradually changed like the gradually changing section 1211 , but the direction of the gradually changing width is opposite to that of the gradually changing section 1211 .
- the output coupler 130 further includes a second coupling waveguide 133 connected between the second coupling channel 131 and the output channel 132
- the second coupling channel 131 further includes a fourth portion 1312
- the fourth portion 1312 is connected between the second portion 1311 and the second coupling waveguide 133
- the optical signal transmitted in the waveguide 121 can be transmitted sequentially via the second portion 1311 and the fourth portion 1312 of the corresponding second coupling channel 131
- the second coupling waveguide 133 is used to couple the optical signals transmitted in the plurality of second coupling channels 131, and distribute them to the plurality of output channels 132, so as to be output via the plurality of output channels 132.
- a more suitable arrangement style can be selected for different material platforms and the number and spacing of wavelength division channels, which is not specifically limited here.
- an integrated chip provided in an embodiment of the present application includes a polarization rotation beam splitter 20 , two arrayed waveguide gratings 10 as described above, and a photodetector 30 .
- the polarization rotation beam splitter 20 is used to split the input light into a first light signal and a second light signal.
- the two arrayed waveguide gratings 10 are used to receive the first light signal and the second light signal, respectively.
- the output coupler 130 of one arrayed waveguide grating 10 includes a first output channel 1321 for outputting the first light signal, and the output coupler 130 of the other arrayed waveguide grating 10 includes a second output channel 1322 for outputting the second light signal.
- the photodetector 30 is connected to the first output channel 1321 and the second output channel 1322, respectively.
- the output coupler 130 of one array waveguide grating 10 includes a plurality of first output channels 1321
- the output coupler 130 of the other array waveguide grating 10 includes a plurality of second output channels 1322.
- the photodetectors 30 correspond one-to-one to the first output channels 1321 and the second output channels 1322, respectively, and each photodetector 30 is connected to the corresponding first output channel 1321 and the corresponding second output channel 1322, respectively.
- the input light can be divided into a first optical signal and a second optical signal, and the first optical signal and the second optical signal can have the same polarization state (i.e., TE polarization).
- the first optical signal and the second optical signal are respectively transmitted to two ports of the photodetector 30 to be combined into an electrical signal.
- the input coupler 110 and the output coupler 130 are made of silicon, and the waveguide 121 is made of silicon oxynitride or silicon nitride. Since silicon has a high refractive index and a large difference between the TE mode and the TM mode of silicon, the integrated chip allows the conversion of polarization states in a smaller size.
- the first output channel 1321 and the second output channel 1322 can be better connected to the photodetector 30, which is conducive to realizing the function of dual-polarization receiving ends in a smaller size and solving the problem of temperature drift.
- the arrayed waveguide grating 10 uses two materials, which can well reflect the respective advantages of the two materials, and take into account the solution of the problem of high insertion loss of the star coupler and the problem of large phase error caused by the side wall roughness of the waveguide 121 of the waveguide array 120, so that the insertion loss of the arrayed waveguide grating 10 is lower.
- An optical communication system provided by an embodiment of the present application includes the above-mentioned integrated chip.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本申请涉及一种阵列波导光栅,阵列波导光栅包括输入耦合器、波导阵列和输出耦合器;波导阵列耦接于输入耦合器和输出耦合器之间,波导阵列包括多个波导,输入耦合器用于将接收的光信号分配至多个波导,波导用于引导分配的光信号,输出耦合器用于耦合多个波导上传输的光信号。其中,输入耦合器具有第一折射率,波导具有第二折射率,输出耦合器具有第三折射率,第一折射率和第三折射率均大于第二折射率。该阵列波导光栅可以兼顾解决星型耦合器的插入损耗较高的问题和因波导的侧壁粗糙度而造成的相位误差较大的问题,且该阵列波导光栅的插入损耗较低。
Description
本申请要求于2023年2月21日提交中国专利局、申请号为202310140368.7、发明名称为“阵列波导光栅”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及半导体技术领域,特别是涉及一种阵列波导光栅。
阵列波导光栅通常用于波分复用系统中的光复用器,这些设备能够把许多波长的光复合到单一的光纤中,从而提高光纤网络的传播效率。
阵列波导光栅包括星型耦合器和波导阵列,一方面,如果需要降低星型耦合器的插入损耗,通常需要减小星型耦合器的通道间距(星型耦合器的通道间距是指星型耦合器的相邻的两个通道之间的间隔),但这会明显提升相邻的两个通道所形成的倏逝波串扰。另一方面,波导阵列容易受限于工艺(比如被波导阵列的波导的侧壁粗糙度等因素影响),导致相位误差较大,从而导致波导阵列的通道的插入损耗较大,串扰提升,频谱漂移。
基于此,有必要针对星型耦合器的插入损耗较高的问题和因波导阵列的波导的侧壁粗糙度而造成的相位误差较大的问题,提供一种阵列波导光栅。
本申请提供了一种阵列波导光栅,包括输入耦合器、波导阵列和输出耦合器;
所述波导阵列耦接于所述输入耦合器和所述输出耦合器之间,所述波导阵列包括多个波导,所述输入耦合器用于将接收的光信号分配至所述多个波导,所述多个波导用于引导分配的光信号,所述输出耦合器用于耦合所述多个波导上传输的光信号;
其中,所述输入耦合器具有第一折射率,所述多个波导具有第二折射率,所述输出耦合器具有第三折射率,所述第一折射率和所述第三折射率均大于所述第二折射率。
在其中一个实施例中,所述第一折射率和所述第三折射率均大于3,所述第二折射率小于2.5。
在其中一个实施例中,所述输入耦合器采用高精度光刻工艺制作;和/或
所述输出耦合器采用高精度光刻工艺制作。
在其中一个实施例中,所述输入耦合器和所述输出耦合器的材质均包括硅。
在其中一个实施例中,所述波导包括非温敏性材料。
在其中一个实施例中,所述波导的材质包括氮化硅或氮氧化硅。
在其中一个实施例中,所述波导的数量为n,所述输入耦合器用于将接收的光分配为m路光信号,并耦合至n个所述波导上传输,所述输出耦合器用于耦合n个所述波导上传输的光信号,并输出p路光信号;
其中,m、n和p均为大于1的正整数,m大于或等于n。
在其中一个实施例中,m大于n,所述输入耦合器包括n个第一耦接通道,所述输出耦合器包括n个第二耦接通道,所述波导一一对应地耦接于所述第一耦接通道与所述第二耦接通道之间;
所述输入耦合器还包括监视通道和/或倾泻通道,所述监视通道和所述倾泻通道的总数为m-n个。
在其中一个实施例中,所述波导包括分别耦接于对应的所述第一耦接通道和对应的所述第二耦接通道的两个渐变段;所述第一耦接通道包括耦接于对应的所述渐变段底侧的第一部分,所述第二耦接通道包括耦接于对应的所述渐变段底侧的第二部分;
沿所述波导的纵长延伸方向指向远离所述输入耦合器的一侧,耦接于所述输入耦合器的所述渐变段的宽度逐渐变大,耦接于所述输出耦合器的所述渐变段的宽度逐渐变小;所述第一部分的宽度逐渐减小,所述第二部分的宽度逐渐增大;或沿所述输入耦合器指向所述输出耦合器的方向,耦接于所述输入耦合器的所述渐变段的厚度逐渐变大,耦接于所述输出耦合器的所述渐变段的厚度逐渐变小;所述第一部分的厚度逐渐减小,所述第二部分的厚度逐渐增大。
在其中一个实施例中,多个所述波导的横截面均被构造为正方形。
本申请中,一方面,输入耦合器的折射率和输出耦合器的折射率较高,输入耦合器和输出耦合器均能较好地束缚光场,降低倏逝波耦合产生的串扰,使得输入耦合器和输出耦合器允许在设计上缩小其通道间距,有助于在不明显提升倏逝波串扰的同时,降低插入损耗。另一方面,波导的折射率较低,可以降低因波导的侧壁粗糙度造成的相位误差,从而可降低串扰和插入损耗,避免频谱漂移。如此,该阵列波导光栅可以兼顾解决星型耦合器的插入损耗较高的问题和因波导的侧壁粗糙度而造成的相位误差较大的问题,且该阵列波导光栅的插入损耗较低。
图1示出了本申请第一实施例的阵列波导光栅的结构示意图;
图2示出了本申请第一实施例的阵列波导光栅的侧视图;
图3示出了本申请第二实施例的阵列波导光栅的结构示意图;
图4示出了本申请第三实施例的阵列波导光栅的结构示意图;
图5示出了本申请第四实施例的阵列波导光栅的结构示意图;
图6示出了本申请一实施例的波导的横截面的结构示意图;
图7示出了本申请一实施例的集成芯片的结构示意图。
图中:10、阵列波导光栅;110、输入耦合器;111、第一耦接通道;1111、第一部分;1112、第三部分;112、监视通道;113、输入通道;114、第一耦合导波;120、波导阵列;121、波导;1211、渐变段;1212、直线段;130、输出耦合器;131、第二耦接通道;1311、第二部分;1312、第四部分;132、输出通道;1321、第一输出通道;1322、第二输出通道;133、第二耦合导波;S、第一平面;20、偏振旋转分束器;30、光电探测器。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
这里参考作为本发明的理想实施例(和中间结构)的示意图的横截面图来描述发明的实施例。这样,可以预期由于例如制造技术和/或容差导致的从所示形状的变化。因此,本发明的实施例不应当局限于在此所示的区的特定形状,而是包括由于例如制造导致的形状偏差。因此,图中显示的区实质上是示意性的,它们的形状并不意图显示器件的区的实际形状且并不意图限定本发明的范围。
为了兼顾解决星型耦合器的插入损耗较高的问题和因波导阵列的波导的侧壁粗糙度而造成的相位误差较大的问题,本申请设计一种阵列波导光栅,一方面,星型耦合器选用高折射率材料,能更好地束缚光场,降低倏逝波串扰,且允许在设计上缩小通道间距,有助于在不明显提升倏逝波串扰的同时,降低插入损耗;另一方面,波导阵列选用低折射率材料,可以降低因波导的侧壁粗糙度造成的相位误差;如此,可以兼顾解决星型耦合器的插入损耗较高的问题和因波导阵列的波导的侧壁粗糙度而造成的相位误差较大的问题,并能显著降低阵列波导光栅的插入损耗。
图1-图5示出了本申请不同实施例的阵列波导光栅10的结构示意图。
在一些实施例中,请参阅图1及图2,本申请一实施例提供的一种阵列波导光栅10,包括输入耦合器110、波导阵列120和输出耦合器130。
波导阵列120耦接于输入耦合器110和输出耦合器130之间,波导阵列120包括多个波导121,输入耦合器110用于将接收的光信号分配至多个波导121,多个波导121用于引导分配的光信号,输出耦合器130用于耦合多个波导121上传输的光信号。也就是说,输入耦合器110将接收的光信号分配至多个波导121,经由多个波导121传输至输出耦合器130,再经由输出耦合器130耦合后输出。
在本实施例中,波导阵列120包括n个波导121,输入耦合器110为1×n星型耦合器,输出耦合器130为n×p星型耦合器,可以是,输入耦合器110包括1个输入通道113和n个第一耦接通道111,输出耦合器130包括n个第二耦接通道131和p个输出通道132。
输入耦合器110的通道间距是指相邻的两个第一耦接通道111之间的间距,输出耦合器130的通道间距是指相邻的两个第二耦接通道131之间的间距。
波导121一一对应地耦接于第一耦接通道111与第二耦接通道131之间,如此,1个输入通道113接收的光信号被分配至n个第一耦接通道111,分配至每一第一耦接通道111的光信号经由对应的波导121传输至对应的第二耦接通道131,最后通过p个输出通道132输出,即输出耦合器130可输出p路光信号。由此,光信号从左往右经由该阵列波导光栅10,可以实现p路波长的分离,光信号从右往左经由该阵列波导光栅10,可以实现p路波长的合并。
其中,输入耦合器110具有第一折射率,多个波导121具有第二折射率,输出耦合器130具有第三折射率,第一折射率和第三折射率均大于第二折射率。
可以理解的是,一方面,相较于阵列波导120,输入耦合器110的折射率和输出耦合器130的折射率较高,以输入耦合器110为例进行说明,输入耦合器110能较好地束缚光场,使得更小能量的光渗入相邻的两个第一耦接通道111之间,也能很好地降低相邻的两个第一耦接通道111所形成的倏逝波耦合产生的串扰,同样地,输出耦合器130也能较好地束缚光场,也可降低输出耦合器130的倏逝波串扰,如此,使得输入耦合器110和输出耦合器130均允许在设计上缩小其通道间距,有助于在不明显提升倏逝波串扰的同时,降低插入损耗。另一方面,由于折射率可以用于定量描述由介质引起的波数(单位长度的相位变化)的增加程度,相较于输入耦合器110和输出耦合器130,波导121的折射率较低,有利于降低因波导121的侧壁粗糙度造成的相位误差,从而可降低串扰和插入损耗,避免频谱漂移。如此,该阵列波导光栅10可以兼顾解决星型耦合器的插入损耗较高的问题和因波导121的侧壁粗糙度而造成的相位误差较大的问题,使得该阵列波导光栅10的插入损耗较低。
在另一些实施例中,请参阅图3,本申请一实施例提供的一种阵列波导光栅10,包括输入耦合器110、波导阵列120和输出耦合器130。
波导阵列120包括n个波导121,输入耦合器110为1×m星型耦合器,输入耦合器110为m×p星型耦合器,可以是,输入耦合器110包括1个输入通道113、n个第一耦接通道111和m-n个第一辅助通道,输出耦合器130包括n个第二耦接通道131、m-n个第二辅助通道和p个输出通道132。其中,第一辅助通道可以为监视通道112和/或倾泻通道。第二辅助通道也可以为监视通道112和/或倾泻通道。
波导121一一对应地耦接于第一耦接通道111与第二耦接通道131之间,如此,1个输入通道113接收的光信号被分配至n个第一耦接通道111和和m-n个第一辅助通道,分配至每一第一耦接通道111的光信号经由对应的波导121传输至对应的第二耦接通道131,最后通过p个输出通道132输出,即输出耦合器130可输出p路光信号。由此,光信号从左往右经由该阵列波导光栅10,可以实现p路波长的分离,光信号从右往左经由该阵列波导光栅10,可以实现p路波长的合并。分配至第一辅助通道的光信号可用于监视检测(第一辅助通道为监视通道112),也可以直接将分配至第一辅助通道的光信号的能量耗散掉,以起到辅助耦合的作用(第一辅助通道为倾泻通道)。
其中,输入耦合器110具有第一折射率,波导121具有第二折射率,输出耦合器130具有第三折射率,第一折射率和第三折射率均大于第二折射率。
可以理解的是,一方面,相较于阵列波导120,输入耦合器110的折射率和输出耦合器130的折射率较高,以输入耦合器110为例进行说明,输入耦合器110能较好地束缚光场,使得更小能量的光渗入相邻的两个第一耦接通道111之间,也能很好地降低相邻的两个第一耦接通道111所形成的倏逝波耦合产生的串扰,同样地,输出耦合器130也能较好地束缚光场,也可降低输出耦合器130的倏逝波串扰,如此,使得输入耦合器110和输出耦合器130均允许在设计上缩小其通道间距,有助于在不明显提升倏逝波串扰的同时,降低插入损耗。另一方面,由于折射率可以用于定量描述由介质引起的波数(单位长度的相位变化)的增加程度,相较于输入耦合器110和输出耦合器130,波导121的折射率较低,有利于降低因波导121的侧壁粗糙度造成的相位误差,从而可降低串扰和插入损耗,避免频谱漂移。如此,该阵列波导光栅10可以兼顾解决星型耦合器的插入损耗较高的问题和因波导121的侧壁粗糙度而造成的相位误差较大的问题,使得该阵列波导光栅10的插入损耗较低。
在一些实施例中,请参阅图4,本申请一实施例提供的一种阵列波导光栅10,包括输入耦合器110、波导阵列120和输出耦合器130。
波导阵列120包括n个波导121,输入耦合器110为a×n星型耦合器,输入耦合器110为n×p星型耦合器,可以是,输入耦合器110包括a个输入通道113和n个第一耦接通道111,输出耦合器130包括n个第二耦接通道131和p个输出通道132。
波导121一一对应地耦接于第一耦接通道111与第二耦接通道131之间,如此,a个输入通道113接收的光信号被分配至n个第一耦接通道111,分配至每一第一耦接通道111的光信号经由对应的波导121传输至对应的第二耦接通道131,最后通过p个输出通道132输出,即输出耦合器130可输出p路光信号。由此,光信号从左往右经由该阵列波导光栅10,可以实现a路进及p路出,光信号从右往左经由该阵列波导光栅10,可以实现p路进及a路出。
其中,输入耦合器110具有第一折射率,波导121具有第二折射率,输出耦合器130具有第三折射率,第一折射率和第三折射率均大于第二折射率。
可以理解的是,一方面,相较于阵列波导120,输入耦合器110的折射率和输出耦合器130的折射率较高,以输入耦合器110为例进行说明,输入耦合器110能较好地束缚光场,使得更小能量的光渗入相邻的两个第一耦接通道111之间,也能很好地降低相邻的两个第一耦接通道111所形成的倏逝波耦合产生的串扰,同样地,输出耦合器130也能较好地束缚光场,也可降低输出耦合器130的倏逝波串扰,如此,使得输入耦合器110和输出耦合器130均允许在设计上缩小其通道间距,有助于在不明显提升倏逝波串扰的同时,降低插入损耗。另一方面,由于折射率可以用于定量描述由介质引起的波数(单位长度的相位变化)的增加程度,相较于输入耦合器110和输出耦合器130,波导121的折射率较低,有利于降低因波导121的侧壁粗糙度造成的相位误差,从而可降低串扰和插入损耗,避免频谱漂移。如此,该阵列波导光栅10可以兼顾解决星型耦合器的插入损耗较高的问题和因波导121的侧壁粗糙度而造成的相位误差较大的问题,使得该阵列波导光栅10的插入损耗较低。
在还有一些实施例中,请参阅图5,本申请一实施例提供的一种阵列波导光栅10,包括输入耦合器110、波导阵列120和输出耦合器130。
波导阵列120包括n个波导121,输入耦合器110为a×m星型耦合器,输入耦合器110为m×p星型耦合器,可以是,输入耦合器110包括a个输入通道113、n个第一耦接通道111和m-n个第一辅助通道,输出耦合器130包括n个第二耦接通道131、m-n个第二辅助通道和p个输出通道132。其中,第一辅助通道可以为监视通道112和/或倾泻通道。第二辅助通道也可以为监视通道112和/或倾泻通道。
波导121一一对应地耦接于第一耦接通道111与第二耦接通道131之间,如此,a个输入通道113接收的光信号被分配至n个第一耦接通道111和m-n个第一辅助通道,分配至每一第一耦接通道111的光信号经由对应的波导121传输至对应的第二耦接通道131,最后通过p个输出通道132输出,即输出耦合器130可输出p路光信号。由此,光信号从左往右经由该阵列波导光栅10,可以实现a路进及p路出,光信号从右往左经由该阵列波导光栅10,可以实现p路进及a路出。分配至第一辅助通道的光信号可用于监视检测(第一辅助通道为监视通道112),也可以直接将分配至第一辅助通道的光信号的能量耗散掉,以起到辅助耦合的作用(第一辅助通道为倾泻通道)。
其中,输入耦合器110具有第一折射率,波导121具有第二折射率,输出耦合器130具有第三折射率,第一折射率和第三折射率均大于第二折射率。
可以理解的是,一方面,相较于阵列波导120,输入耦合器110的折射率和输出耦合器130的折射率较高,以输入耦合器110为例进行说明,输入耦合器110能较好地束缚光场,使得更小能量的光渗入相邻的两个第一耦接通道111之间,也能很好地降低相邻的两个第一耦接通道111所形成的倏逝波耦合产生的串扰,同样地,输出耦合器130也能较好地束缚光场,也可降低输出耦合器130的倏逝波串扰,如此,使得输入耦合器110和输出耦合器130均允许在设计上缩小其通道间距,有助于在不明显提升倏逝波串扰的同时,降低插入损耗。另一方面,由于折射率可以用于定量描述由介质引起的波数(单位长度的相位变化)的增加程度,相较于输入耦合器110和输出耦合器130,波导121的折射率较低,有利于降低因波导121的侧壁粗糙度造成的相位误差,从而可降低串扰和插入损耗,避免频谱漂移。如此,该阵列波导光栅10可以兼顾解决星型耦合器的插入损耗较高的问题和因波导121的侧壁粗糙度而造成的相位误差较大的问题,使得该阵列波导光栅10的插入损耗较低。在一些实施例中,波导阵列120包括一组具有相等长度差的波导121。
波导阵列120等效于一个凹面光栅,经波导阵列120传输后,因相邻的波导121保持有相同的长度差,因而在凹面光栅上相邻波导121的某一波长的输出光具有相同的相位差,对于不同波长的光此相位差不同,于是不同波长的光在经波导阵列120传输中发生衍射并聚焦到不同的输出信道波导位置,经输出信道波导输出后完成了波长分配即解复用功能。
在一些实施例中,第一折射率和第三折射率均大于3,第二折射率小于2.5。
可以理解,输入耦合器110和输出耦合器130均采用高折射率材料,输入耦合器110和输出耦合器130均能更好地束缚光场,使得输入耦合器110和输出耦合器130允许在设计上缩小其通道间距,有助于在不明显提升倏逝波串扰的同时,降低插入损耗。另外,第二折射率较低,可以显著降低因波导121的侧壁粗糙度造成的相位误差,从而可明显降低串扰和插入损耗,避免频谱漂移,该阵列波导光栅10的插入损耗更低。
在一些实施例中,输入耦合器110采用高精度光刻工艺制作。如此,能提升输入耦合器110的耦合效率,并降低阵列波导光栅10的插入损耗。
在另一些实施例中,输出耦合器130采用高精度光刻工艺制作。如此,能提升输出耦合器130的耦合效率,并降低阵列波导光栅10的插入损耗。
在又一些实施例中,输入耦合器110和输出耦合器130均采用高精度光刻工艺制作。
可以理解,能够采用高精度光刻工艺制备输入耦合器110和输出耦合器130,结合输入耦合器110的折射率和输出耦合器130的折射率较高,如此,能提升输入耦合器110和输出耦合器130的耦合效率,并降低阵列波导光栅10的插入损耗。
在一些实施例中,输入耦合器110和输出耦合器130均为高精度部分刻蚀的星型耦合器,相较于全刻蚀的星型耦合器,部分刻蚀的星型耦合器的漏光面积更小,有利于降低插入损耗。
在一些实施例中,输入耦合器110和输出耦合器130的材质均包括硅。
硅的折射率较高,且支持高精度光刻工艺和部分刻蚀,可采用高精度光刻工艺将输入耦合器110和输出耦合器130制作为高精度部分刻蚀的星型耦合器,可降低输入耦合器110和输出耦合器130的插入损耗,提高输入耦合器110和输出耦合器130的耦合效率。
在一些实施例中,波导121包括非温敏性材料。
波导121的折射率较低,且波导121选用非温敏性材料,能更好低避免出现频谱温飘。
在一些实施例中,波导121的材质包括氮化硅或氮氧化硅。
波导121包括但不限于选用氮化硅或氮氧化硅,氮化硅和氮氧化硅的折射率较低,且属于非温敏性材料,即属于非温度敏感材料,有利于降低阵列波导光栅10的插入损耗,避免频谱受温度影响而漂移。
在一些实施例中,波导121的数量为n,输入耦合器110用于将接收的光分配为m路光信号,并耦合至n个波导121上传输,输出耦合器130用于耦合n个波导121上传输的光信号,并输出p路光信号。其中,m、n和p均为大于1的正整数,m大于或等于n。
如图1和图4所示,m等于n,输入耦合器110分配的m路光信号一一对应地经由m个波导121传输,m个波导121传输的光信号耦合至输出耦合器130,最后输出耦合器130输出p路光信号。
如图3和图5所示,m大于n,输入耦合器110分配的m路光信号中的n路光信号一一对应地经由n个波导121传输,n个波导121传输的光信号耦合至输出耦合器130,最后输出耦合器130输出p路光信号。
在一些实施例中,如图3和图5所示,m大于n,输入耦合器110包括n个第一耦接通道111,输出耦合器130包括n个第二耦接通道131,波导121一一对应地耦接于第一耦接通道111与第二耦接通道131之间。输入耦合器110还包括监视通道112和/或倾泻通道,监视通道112和倾泻通道的总数为m-n个。
可以利用监视通道112将光路引出,以连接耦合器件,作为检测目的。也可以利用倾泻通道直接将该路光能量耗散掉,以起到辅助耦合的作用。需要补充的是,倾泻通道泄漏的光信号较少,对阵列波导光栅10的插入损耗的影响可忽略不计。
在一些实施例中,请参阅图6,多个波导121的横截面均被构造为正方形。
请参阅图1,定义平行于波导121的厚度方向且波导121相交的平面为第一平面S,波导121的横截面平行于第一平面S。图6给出了波导121在第一平面S处的剖视图(结合图1进行理解)。
波导121的横截面被构造为正方形,可以是直线段1212的横截面被构造为正方形,也可以是渐变段1211的横截面和直线段1212的横截面均构造为正方形。在此不作具体限制。将波导121的横截面设计为正方形,可降低阵列波导光栅10的偏振敏感性,有利于阵列波导光栅10作为波分复用器的收端。
在一些实施例中,波导121包括分别耦接于输入耦合器110和输出耦合器130的两个渐变段1211,以及连接于两个渐变段1211之间的直线段1212(此处直线段仅仅是一个名字,并不限定此处的波导为直线,其可以是弯曲波导),第一耦接通道111包括耦接于对应的渐变段1211底侧的第一部分1111,第二耦接通道131包括耦接于对应的渐变段1211底侧的第二部分1311,沿波导121的纵长延伸方向指向远离输入耦合器110的一侧,耦接于输入耦合器110的渐变段1211的宽度逐渐变大,耦接于输出耦合器130的渐变段1211的宽度逐渐变小,第一部分1111的宽度逐渐减小,第二部分1311的宽度逐渐增大,直线段1212的宽度保持不变,如此,可使输入耦合器110的模斑尺寸与波导121的模斑能够逐渐匹配,增大输入耦合器110和波导121的模场交叠度,同样也可使波导121的模斑尺寸与输出耦合器130的模斑能够逐渐匹配,增大波导121和输出耦合器130的模场交叠度,进而可提高输入耦合器110和输出耦合器130的耦合效率。
在另一些实施例中,沿波导121的纵长延伸方向指向远离输入耦合器110的一侧,耦接于输入耦合器110的渐变段1211的厚度逐渐变大,耦接于输出耦合器130的渐变段1211的厚度逐渐变小,第一部分1111的厚度逐渐减小,第二部分1311的厚度逐渐增大,直线段1212的厚度保持不变。
如此,可使输入耦合器110的模斑尺寸与波导121的模斑逐渐匹配,也可使波导121的模斑尺寸与输出耦合器130的模斑逐渐匹配,进而可提高输入耦合器110和输出耦合器130的耦合效率。
当然,本申请不限于此,也可以采用其他方式使于输入耦合器110的模斑尺寸与波导121的模斑逐渐匹配和使波导121的模斑尺寸与输出耦合器130的模斑逐渐匹配,以提高输入耦合器110和输出耦合器130的耦合效率。
在一些实施例中,输入耦合器110还包括连接于输入通道113和第一耦接通道111之间的第一耦合导波114,第一耦接通道111还包括第三部分1112,第三部分1112连接于第一耦合导波114和第一部分1111之间,第一耦合导波114用于将输入通道113接收的光信号分配至多个第一耦接通道111,分配至第一耦接通道111的光信号依次经由该第一耦接通道111的第三部分1112和第一部分1111传输,并逐渐耦合至对应的渐变段1211,然后经由对应的波导121传输至输出耦合器130,再经由输出耦合器130耦合后输出。第三部分1112和第一部分1111采用相同的材质,第一部分1111和渐变段1211采用不同的材质。第一部分1111可以和渐变段1211一样为渐变设计,但渐变时变宽的方向和渐变段1211相反。
在一些实施例中,输出耦合器130还包括连接于第二耦接通道131和输出通道132之间的第二耦合导波133,第二耦接通道131还包括第四部分1312,第四部分1312连接于第二部分1311和第二耦合导波133之间,波导121内传输的光信号可经由对应的第二耦接通道131的第二部分1311和第四部分1312依次传输,第二耦合导波133用于耦合多个第二耦接通道131内传输的光信号,并分配至多个输出通道132,以经由多个输出通道132输出。在一些实施例中,设计阵列波导光栅10时,可针对不同材料平台以及波分通道的数量和间距,选择更为合适的排布样式,在此不作具体限制。
请参阅图7,本申请一实施例提供的一种集成芯片,包括偏振旋转分束器20、两个上述的阵列波导光栅10以及光电探测器30。
偏振旋转分束器20用于将输入的光分成第一光信号和第二光信号,两个阵列波导光栅10分别用于接收第一光信号和第二光信号,且其中一阵列波导光栅10的输出耦合器130包括用于输出第一光信号的第一输出通道1321,另一阵列波导光栅10的输出耦合器130包括用于输出第二光信号的第二输出通道1322,光电探测器30分别与第一输出通道1321和第二输出通道1322连接。
具体地,其中一阵列波导光栅10的输出耦合器130包括多个第一输出通道1321,另一阵列波导光栅10的输出耦合器130包括多个第二输出通道1322,光电探测器30分别与第一输出通道1321和第二输出通道1322一一对应,每一光电探测器30分别与对应的第一输出通道1321和对应的第二输出通道1322连接。
利用偏振旋转分束器20进行偏振复用的设计,可将输入的光分成第一光信号和第二光信号,且第一光信号和第二光信号能够具有相同偏振态(即TE偏振),第一光信号和第二光信号分别被输送至光电探测器30的两个端口,以合并成电信号。
在一些实施例中,输入耦合器110和输出耦合器130的材质为硅,波导121的材质为氮氧化硅或氮化硅,由于硅折射率较高,且硅的TE模式和TM模式的差异较大,使得集成芯片允许在更小尺寸上实现偏振态的转化,第一输出通道1321和第二输出通道1322能够更好地与光电探测器30连接,有利于在更小的尺寸上实现双偏振收端的功能并解决温飘的问题,此外,阵列波导光栅10采用两种材质,能很好地体现两种材质各自的优势,兼顾解决星型耦合器的插入损耗较高的问题和因波导阵列120的波导121的侧壁粗糙度而造成的相位误差较大的问题,使得阵列波导光栅10的插入损耗较低。
本申请一实施例提供的一种光通信系统,包括上述的集成芯片。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种阵列波导光栅,其特征在于,包括输入耦合器、波导阵列和输出耦合器;所述波导阵列耦接于所述输入耦合器和所述输出耦合器之间,所述波导阵列包括多个波导,所述输入耦合器用于将接收的光信号分配至所述多个波导,所述多个波导用于引导分配的光信号,所述输出耦合器用于耦合所述多个波导上传输的光信号;其中,所述输入耦合器具有第一折射率,所述多个波导具有第二折射率,所述输出耦合器具有第三折射率,所述第一折射率和所述第三折射率均大于所述第二折射率。
- 根据权利要求1所述的阵列波导光栅,其特征在于,所述第一折射率和所述第三折射率均大于3;所述第二折射率小于2.5。
- 根据权利要求1或2所述的阵列波导光栅,其特征在于,所述输入耦合器采用高精度光刻工艺制作;和/或所述输出耦合器采用高精度光刻工艺制作。
- 根据权利要求3所述的阵列波导光栅,其特征在于,所述输入耦合器和所述输出耦合器的材质均包括硅。
- 根据权利要求1或2所述的阵列波导光栅,其特征在于,所述波导的材质包括非温敏性材料。
- 根据权利要求5所述的阵列波导光栅,其特征在于,所述波导的材质包括氮化硅或氮氧化硅。
- 根据权利要求1或2所述的阵列波导光栅,其特征在于,所述波导的数量为n,所述输入耦合器用于将接收的光分配为m路光信号,并耦合至n个所述波导上传输,所述输出耦合器用于耦合n个所述波导上传输的光信号,并输出p路光信号;其中,m、n和p均为大于1的正整数,m大于或等于n。
- 根据权利要求7所述的阵列波导光栅,其特征在于,m大于n,所述输入耦合器包括n个第一耦接通道,所述输出耦合器包括n个第二耦接通道,所述波导一一对应地耦接于所述第一耦接通道与所述第二耦接通道之间;所述输入耦合器还包括监视通道和/或倾泻通道,所述监视通道和所述倾泻通道的总数为m-n个。
- 根据权利要求8所述的阵列波导光栅,其特征在于,所述波导包括分别耦接于对应的所述第一耦接通道和对应的所述第二耦接通道的两个渐变段;所述第一耦接通道包括耦接于对应的所述渐变段底侧的第一部分,所述第二耦接通道包括耦接于对应的所述渐变段底侧的第二部分;沿所述波导的纵长延伸方向指向远离所述输入耦合器的一侧,耦接于所述输入耦合器的所述渐变段的宽度逐渐变大,耦接于所述输出耦合器的所述渐变段的宽度逐渐变小;所述第一部分的宽度逐渐减小,所述第二部分的宽度逐渐增大;或沿所述输入耦合器指向所述输出耦合器的方向,耦接于所述输入耦合器的所述渐变段的厚度逐渐变大,耦接于所述输出耦合器的所述渐变段的厚度逐渐变小;所述第一部分的厚度逐渐减小,所述第二部分的厚度逐渐增大。
- 根据权利要求1或2所述的阵列波导光栅,其特征在于,多个所述波导的横截面均被构造为正方形。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310140368.7A CN115857097B (zh) | 2023-02-21 | 2023-02-21 | 阵列波导光栅 |
CN202310140368.7 | 2023-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024174630A1 true WO2024174630A1 (zh) | 2024-08-29 |
Family
ID=85658539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/133983 WO2024174630A1 (zh) | 2023-02-21 | 2023-11-24 | 阵列波导光栅 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115857097B (zh) |
WO (1) | WO2024174630A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115857097B (zh) * | 2023-02-21 | 2023-06-20 | 苏州旭创科技有限公司 | 阵列波导光栅 |
CN116106862B (zh) * | 2023-04-10 | 2023-08-04 | 深圳市速腾聚创科技有限公司 | 光芯片、激光雷达、自动驾驶系统及可移动设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002202420A (ja) * | 2000-12-28 | 2002-07-19 | Hitachi Cable Ltd | 光波長合分波器 |
CN104991309A (zh) * | 2015-04-29 | 2015-10-21 | 南京邮电大学 | 一种补偿阵列波导光栅偏振敏感性的方法 |
JP2018039022A (ja) * | 2016-09-06 | 2018-03-15 | いすゞ自動車株式会社 | 中子成型金型 |
CN112305668A (zh) * | 2020-10-21 | 2021-02-02 | 浙江大学 | 一种双层结构的阵列波导光栅 |
CN115857097A (zh) * | 2023-02-21 | 2023-03-28 | 苏州旭创科技有限公司 | 阵列波导光栅 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6870987B2 (en) * | 2002-08-20 | 2005-03-22 | Lnl Technologies, Inc. | Embedded mode converter |
US8031991B2 (en) * | 2008-05-28 | 2011-10-04 | Lightwire Inc. | Low index, large mode field diameter optical coupler |
JP5560602B2 (ja) * | 2009-07-17 | 2014-07-30 | 日本電気株式会社 | 光導波路 |
EP3153899B1 (en) * | 2015-10-09 | 2024-07-31 | Huawei Technologies Research & Development Belgium NV | Optical coupling scheme |
WO2018011868A1 (ja) * | 2016-07-11 | 2018-01-18 | 三菱電機株式会社 | 光回路、光走査器、光合分波器、波長モニタ、光合分波器モジュール、および波長モニタモジュール |
KR101930369B1 (ko) * | 2016-08-04 | 2018-12-18 | 국민대학교산학협력단 | 실리콘 벌크 기판을 활용한 광 인터커넥트 장치 및 광소자 집적 장치 |
ES2636713B2 (es) * | 2016-12-02 | 2018-05-18 | Universitat Politècnica De València | Dispositivo fotónico sensor, método de análisis de muestras que hace uso del mismo y usos de dicho dispositivo |
CN112470047B (zh) * | 2018-05-31 | 2023-03-24 | 博创科技股份有限公司 | 用于混合器件的二氧化硅到氮化硅plc波型变换器 |
CN112162350A (zh) * | 2020-10-12 | 2021-01-01 | 上海航天科工电器研究院有限公司 | 一种温度不敏感硅基阵列波导光栅结构波分复用器 |
CN113325515B (zh) * | 2021-05-21 | 2022-12-02 | 南京理工大学 | 一种采用狭缝阵列波导的阵列波导光栅 |
-
2023
- 2023-02-21 CN CN202310140368.7A patent/CN115857097B/zh active Active
- 2023-11-24 WO PCT/CN2023/133983 patent/WO2024174630A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002202420A (ja) * | 2000-12-28 | 2002-07-19 | Hitachi Cable Ltd | 光波長合分波器 |
CN104991309A (zh) * | 2015-04-29 | 2015-10-21 | 南京邮电大学 | 一种补偿阵列波导光栅偏振敏感性的方法 |
JP2018039022A (ja) * | 2016-09-06 | 2018-03-15 | いすゞ自動車株式会社 | 中子成型金型 |
CN112305668A (zh) * | 2020-10-21 | 2021-02-02 | 浙江大学 | 一种双层结构的阵列波导光栅 |
CN115857097A (zh) * | 2023-02-21 | 2023-03-28 | 苏州旭创科技有限公司 | 阵列波导光栅 |
Also Published As
Publication number | Publication date |
---|---|
CN115857097A (zh) | 2023-03-28 |
CN115857097B (zh) | 2023-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024174630A1 (zh) | 阵列波导光栅 | |
JP3338356B2 (ja) | 光デバイス | |
JP2858655B2 (ja) | 光波長合分波器 | |
KR101639602B1 (ko) | 광합류분기기, 쌍방향 광전파기, 및 광송수신 시스템 | |
JP4385224B2 (ja) | 光導波路デバイス及び光導波路モジュール | |
US9316784B2 (en) | Single- layer full-mesh, point-to-point network | |
JPH11326851A (ja) | プログラム可能な波長分割多重化追加/ドロップ装置 | |
JP4076785B2 (ja) | 光学結合デバイス | |
WO2022062676A1 (zh) | 波分复用 / 解复用器、光子集成芯片和光模块 | |
CN110850524A (zh) | 一种实现片上多波长复用的系统 | |
TWI838821B (zh) | 片上集成波分複用器及晶片 | |
CN110095841B (zh) | 一种基于亚波长光栅波导的模式选择性衰减器 | |
JP3703401B2 (ja) | 光波回路モジュール | |
CN109709643B (zh) | 一种基于单片集成的双偏振模式复用-解复用芯片 | |
JP4150374B2 (ja) | アレイ導波路型波長合分波器 | |
JP3966401B2 (ja) | 導波路型光合波器とこれを用いた多波長光源 | |
US11353661B1 (en) | Integrated multiplexer with improved performance | |
JP3042664B2 (ja) | 光周波数選択スイッチ | |
CN101106434A (zh) | 一种频谱平坦化的单纤三重波分复用器 | |
CN110941048B (zh) | 基于多模干涉原理的高消光比粗波分复用/解复用器 | |
CN114089472A (zh) | 一种聚合物模式复用器、空分复用器件及空分复用方法 | |
KR20210023511A (ko) | 배열도파로 격자 형태의 파장역다중화 소자 및 그 제조방법 | |
CN115421245B (zh) | 一种基于soi上氮化硅平台的o波段3d模式分束器 | |
JP2020027216A (ja) | モード合分波器 | |
JP2014071318A (ja) | 光素子とその使用方法、及び光集積回路とその検査方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23923793 Country of ref document: EP Kind code of ref document: A1 |