WO2024174178A1 - 通信方法、电子设备及存储介质 - Google Patents
通信方法、电子设备及存储介质 Download PDFInfo
- Publication number
- WO2024174178A1 WO2024174178A1 PCT/CN2023/077969 CN2023077969W WO2024174178A1 WO 2024174178 A1 WO2024174178 A1 WO 2024174178A1 CN 2023077969 W CN2023077969 W CN 2023077969W WO 2024174178 A1 WO2024174178 A1 WO 2024174178A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- twt
- connection
- scheduling
- communication method
- identification information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 89
- 238000004891 communication Methods 0.000 title claims abstract description 63
- 230000005012 migration Effects 0.000 claims description 89
- 238000013508 migration Methods 0.000 claims description 89
- 238000013507 mapping Methods 0.000 claims description 45
- 230000005540 biological transmission Effects 0.000 claims description 29
- 238000004590 computer program Methods 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 9
- 239000000523 sample Substances 0.000 claims description 8
- 238000010295 mobile communication Methods 0.000 abstract description 2
- 230000007246 mechanism Effects 0.000 description 14
- 230000006870 function Effects 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 230000001934 delay Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the embodiments of the present disclosure relate to the field of mobile communication technology. Specifically, the embodiments of the present disclosure relate to a communication method, an electronic device, and a storage medium.
- the target wake time (TWT) mechanism is proposed to support energy saving work under large-scale Internet of Things (IoT) devices; at the same time, in order to ensure the transmission of latency sensitive traffic, the restricted target wake time (R-TWT) mechanism is proposed.
- IoT Internet of Things
- R-TWT restricted target wake time
- the embodiments of the present disclosure provide a communication method, an electronic device, and a storage medium to further improve the R-TWT mechanism and reduce the power consumption of Wi-Fi networks.
- an embodiment of the present disclosure provides a communication method, which is applied to a multi-connection access point device AP MLD, and the method includes:
- the first radio frame includes first identification information, and the first identification information indicates that the first restricted target wake-up time R-TWT scheduling of the first connection is migrated to the second connection;
- the first radio frame is sent.
- an embodiment of the present disclosure further provides a communication method, which is applied to a station device STA, and the method includes:
- the first identification information indicates that the access point device migrates the first restricted target wake-up time R-TWT scheduling of the first connection to the second connection.
- an embodiment of the present disclosure further provides an electronic device, wherein the electronic device is a multi-connection access point device AP MLD, and the electronic device includes:
- a determination module configured to determine a first radio frame; wherein the first radio frame includes first identification information, and the first identification information indicates that the first restricted target wake-up time R-TWT scheduling of the first connection is migrated to the second connection;
- a sending module is used to send the first wireless frame.
- an embodiment of the present disclosure further provides an electronic device, the electronic device is a station device STA, and the electronic device includes:
- a receiving module is used to receive a first wireless frame; wherein the first wireless frame includes first identification information, and the first identification information indicates that the access point device migrates the first restricted target wake-up time R-TWT scheduling of the first connection to the second connection.
- the embodiments of the present disclosure also provide an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, one or more methods described in the embodiments of the present disclosure are implemented.
- the embodiments of the present disclosure further provide a computer-readable storage medium, on which a computer program is stored.
- a computer program is stored.
- the computer program is executed by a processor, one or more of the methods described in the embodiments of the present disclosure are implemented.
- AP MLD determines a first wireless frame, carries first identification information in the first wireless frame, and indicates through the first identification information that the first R-TWT scheduling of the first connection is migrated to the second connection; in this way, when the first connection fails or is interrupted, the first R-TWT scheduling can continue to be executed on the second connection, avoiding interruption of low-latency service transmission corresponding to the first R-TWT scheduling.
- FIG1 is a flow chart of a communication method according to an embodiment of the present disclosure.
- FIG2 is a schematic diagram of a scenario of a first example of a communication method provided in an embodiment of the present disclosure
- FIG3 is a second flowchart of the communication method provided in an embodiment of the present disclosure.
- FIG4 is a schematic diagram of a structure of an electronic device provided by an embodiment of the present disclosure.
- FIG5 is a second structural diagram of an electronic device provided by an embodiment of the present disclosure.
- FIG. 6 is a third schematic diagram of the structure of the electronic device provided in the embodiment of the present disclosure.
- the embodiments of the present disclosure provide a communication method, an electronic device, and a storage medium to further improve the R-TWT mechanism and reduce the power consumption of Wi-Fi networks.
- the method and the device are based on the same application concept. Since the method and the device solve the problem in a similar principle, the implementation of the device and the method can refer to each other, and the repeated parts will not be repeated.
- an embodiment of the present disclosure provides a communication method, and optionally, the method may be applied to an access point (AP) device;
- AP access point
- an AP is, for example, a device having a wireless to wired bridging function, and the AP is responsible for extending the services provided by the wired network to the wireless network;
- STA station device
- an electronic device having a wireless network access function and provides a frame delivery service to enable information to be transmitted.
- an AP and a STA may be devices that support multiple connections, for example, they may be represented as an AP MLD and a non-AP MLD, respectively; an AP MLD may represent an access point that supports multiple connection communication functions, and a non-AP MLD may represent a station that supports multiple connection communication functions.
- the method may include the following steps:
- Step 101 determine a first wireless frame; wherein the first wireless frame includes first identification information, and the first identification information indicates that the first restricted target wake-up time R-TWT scheduling of the first connection is migrated to the second connection.
- Step 102 Send the first wireless frame.
- TWT is a technology for energy saving, which aims to further reduce the power consumption of Wi-Fi networks.
- TWT technology enables STA and AP to negotiate the service period (SP) to determine the STA sleep and wake-up time and frequency; STA remains active and communicates during the service time, so that it can sleep outside the service time to achieve the purpose of energy saving.
- SP service period
- TWT technology can also enable AP to provide higher quality services to multiple STAs, minimize competition or overlap, and improve spectrum efficiency while reducing the power consumption of Wi-Fi networks.
- R-TWT restricted target wake-up time
- the R-TWT mechanism allows the AP to use enhanced media access protection mechanisms and resource reservation mechanisms to provide more predictable delays to distinguish delay-sensitive traffic from other types of traffic, so that the AP can reduce the worst-case delay and/or reduce jitter, and provide more reliable services.
- R-TWT is used to serve low-latency services, such as services with an average delay of less than 10 milliseconds.
- low-latency services such as services with an average delay of less than 10 milliseconds.
- R-TWT SP only services marked as low-latency services communicate, and other communication services are suspended or postponed during this stage, thereby ensuring the transmission of low-latency services.
- the R-TWT planning device e.g., AP, or Scheduling AP
- the planned device e.g., STA, or Scheduled STA
- R-TWT schedule an R-TWT schedule
- the AP MLD determines a first wireless frame, carries first identification information in the first wireless frame, and indicates through the first identification information that the first R-TWT schedule of the first connection is migrated to the second connection; wherein the first connection and the second connection are both communication connections between the STA and the AP MLD; in this way, when the first connection fails or is interrupted, the first R-TWT schedule can continue to be executed on the second connection to avoid interruption of low-latency service transmission corresponding to the first R-TWT schedule.
- the first wireless frame includes a beacon frame or Probe Response frame.
- the AP MLD determines a first wireless frame and sends the first wireless frame to the STA; wherein the first identification information indicates that the first R-TWT scheduling of the first connection is migrated to the second connection.
- the present disclosure provides a communication method, which can be applied to AP MLD, and includes:
- the first radio frame includes first identification information, and the first identification information indicates that the first restricted target wake-up time R-TWT scheduling of the first connection is migrated to the second connection;
- the migrating the restricted target wake-up time R-TWT scheduling of the first connection to the second connection includes case 1 and/or case 2:
- Case 1 Map the low-latency service scheduled by the first R-TWT to the second connection, and update the transmission identifier to connection mapping (TID-To-Link Mapping) on the second connection.
- Case 2 broadcast the parameter information of the first R-TWT scheduling, that is, broadcast the R-TWT scheduling information that needs to be migrated.
- the present disclosure provides a communication method, which can be applied to AP MLD, and includes:
- the first radio frame includes first identification information, and the first identification information indicates that the first restricted target wake-up time R-TWT scheduling of the first connection is migrated to the second connection;
- the migrating of the restricted target wake-up time R-TWT scheduling of the first connection to the second connection includes: mapping the low-latency service of the first R-TWT scheduling to the second connection.
- Mapping the low-latency service scheduled by the first R-TWT to the second connection includes:
- the first wireless frame carries a transmission identifier to connection mapping TID-To-Link Mapping element, and the low-latency service type and the uplink and downlink transmission directions of the low-latency service are carried in the TID-To-Link Mapping element;
- WLAN prioritizes different services, and during the channel competition access process, each device has four different access levels, and each access level includes two different services; eight different service types are identified by traffic_0-traffic_7; in the TID-To-Link Mapping element, the service type of the low-latency service identified in the first R-TWT scheduling is mapped to the second connection, and the corresponding uplink (UL) and downlink (DL) transmissions are maintained.
- traffic_0 and traffic_2 are marked as DL
- traffic_1 and traffic_3 are marked as UL
- traffic_0 and traffic_2 in the TID-To-Link Mapping element need to be mapped to the second connection and their Direction is DL
- traffic_1 and traffic_3 need to be mapped to the second connection and their Direction is UL.
- the service type can be obtained from the Broadcast TWT element corresponding to the first R-TWT scheduling.
- the Scheduling AP identifies it in the Restricted TWT DL TID Bitmap and Restricted TWT UL TID Bitmap subfields in the Restricted TWT Traffic Info field in the Broadcast TWT element.
- the present disclosure provides a communication method, which can be applied to AP MLD, and includes:
- the first radio frame includes first identification information, and the first identification information indicates that the first restricted target wake-up time R-TWT scheduling of the first connection is migrated to the second connection;
- the first wireless frame carries an R-TWT migration (R-TWT Migration) element
- the R-TWT migration element carries parameter information of the first R-TWT scheduling.
- the AP MLD broadcasts the migration information of the first R-TWT scheduling through the R-TWT Migration element. Specifically, the AP MLD carries the R-TWT Migration element in the first radio frame to broadcast the parameter information of the first R-TWT scheduling.
- the present disclosure provides a communication method, which can be applied to AP MLD, and includes:
- the first radio frame includes first identification information, and the first identification information indicates that the first restricted target wake-up time R-TWT scheduling of the first connection is migrated to the second connection;
- the first wireless frame carries an R-TWT migration (R-TWT Migration) element
- the R-TWT migration element carries parameter information of the first R-TWT scheduling.
- the parameter information of the first R-TWT scheduling includes at least one of the following:
- the quantity information of the first R-TWT scheduling that is, the number of R-TWT scheduling that needs to be migrated
- Identification information of each of the first R-TWT scheduling such as an identification of the R-TWT scheduling
- the present disclosure provides a communication method, which can be applied to AP MLD, and includes:
- the first radio frame includes first identification information, and the first identification information indicates that the first restricted target wake-up time R-TWT scheduling of the first connection is migrated to the second connection;
- the first wireless frame carries an R-TWT migration (R-TWT Migration) element
- the R-TWT migration element carries parameter information of the first R-TWT scheduling.
- R-TWT migration elements include at least one of the following:
- R-TWT migration element Element identification field, length field, control field and R-TWT migration information field.
- R-TWT migration element As an example, the format of the R-TWT migration element is shown in Table 1 below:
- the R-TWT migration elements include but are not limited to the element identification (element ID) field, the length (Length) field, the control (Control) field and the R-TWT migration information (R-TWT Migration Info) field.
- control field includes the quantity information of the first R-TWT scheduling, that is, the number of R-TWT schedulings that need to be migrated; as an example, the format of the control field is shown in Table 2 below:
- the quantity field identifies the number of R-TWT schedules to be migrated.
- the R-TWT migration information field includes parameter information of one or more single R-TWT scheduling.
- the R-TWT migration information field may include one or more single R-TWT migration information (per-R-TWT Migration Info) subfields, and the single R-TWT migration information subfields correspond to a first R-TWT scheduling respectively.
- the number of single R-TWT migration information subfields is determined by the value of the Count subfield in the control field; wherein, the single R-TWT migration information includes the parameter information of the corresponding first R-TWT scheduling, and the parameter information such as the identification information of the first R-TWT scheduling, the original connection information corresponding to each of the first R-TWT scheduling, and the target connection information are carried in the R-TWT migration information field.
- Table 3 the format of a single R-TWT migration information is shown in Table 3 below:
- the present disclosure provides a communication method, which can be applied to AP MLD, and includes:
- the first radio frame includes first identification information, and the first identification information indicates that the first restricted target wake-up time R-TWT scheduling of the first connection is migrated to the second connection;
- the first identification information indicates that the first R-TWT scheduling is migrated to the second connection before the first connection fails or is interrupted; before the first connection fails or is interrupted, for example, the connection mapped by the R-TWT scheduling is interrupted or fails, and the failure is such as the connection being released or not enabled after the connection is established, then AP MLD determines a first wireless frame, carries the first identification information in the first wireless frame, and indicates that the first R-TWT scheduling of the first connection is migrated to the second connection through the first identification information.
- the present disclosure provides a communication method, which can be applied to AP MLD, and includes:
- the first radio frame includes first identification information, and the first identification information indicates that the first restricted target wake-up time R-TWT scheduling of the first connection is migrated to the second connection;
- the first radio frame is sent.
- the migrating the restricted target wake-up time R-TWT scheduling of the first connection to the second connection includes:
- mapping the low-latency service scheduled by the first R-TWT to the second connection includes:
- the first wireless frame carries a transmission identifier to connection mapping TID-To-Link Mapping element, and the TID-To-Link Mapping element carries the low-latency service and the service type of the low-latency service.
- the first wireless frame carries an R-TWT migration element
- the R-TWT migration element carries parameter information of the first R-TWT scheduling.
- the parameter information of the first R-TWT scheduling includes at least one of the following:
- the R-TWT migration element includes at least one of the following:
- Element identification field length field, control field and R-TWT migration information field.
- control field includes quantity information of the first R-TWT scheduling.
- the R-TWT migration information field includes parameter information of the first R-TWT scheduling.
- the first identification information indicates that the first R-TWT is scheduled to be migrated to the second connection before the first connection fails or is interrupted.
- the first radio frame includes a beacon frame or a probe response frame.
- the AP MLD determines a first wireless frame, carries first identification information in the first wireless frame, and indicates through the first identification information to migrate the first R-TWT scheduling of the first connection to the second connection; thus, when the first connection fails or is interrupted, the first R-TWT scheduling can continue to be executed on the second connection, avoiding the interruption of the low-latency service transmission corresponding to the first R-TWT scheduling.
- the disclosed embodiment provides a communication method, an electronic device, and a storage medium to further improve the R-TWT mechanism and reduce the power consumption of Wi-Fi networks.
- an embodiment of the present disclosure provides a communication method.
- the method may be applied to a station device STA.
- the method may include the following steps:
- Step 301 receiving a first wireless frame; wherein the first wireless frame includes first identification information, and the first identification information indicates that the access point device migrates the first restricted target wake-up time R-TWT scheduling of the first connection to the second connection.
- TWT is a technology for energy saving, which aims to further reduce the power consumption of Wi-Fi networks.
- TWT technology enables STA and AP to negotiate the service period (SP) to determine the STA sleep and wake-up time and frequency; STA remains active and communicates during the service time, so that it can sleep outside the service time to achieve the purpose of energy saving.
- SP service period
- TWT technology can also enable AP to provide higher quality services to multiple STAs, minimize competition or overlap, and improve spectrum efficiency while reducing the power consumption of Wi-Fi networks.
- R-TWT restricted target wake-up time
- the R-TWT mechanism allows the AP to use enhanced media access protection mechanisms and resource reservation mechanisms to provide more predictable delays to distinguish delay-sensitive traffic from other types of traffic, so that the AP can reduce the worst-case delay and/or reduce jitter, and provide more reliable services.
- R-TWT is used to serve low-latency services, such as services with an average delay of less than 10 milliseconds.
- low-latency services such as services with an average delay of less than 10 milliseconds.
- R-TWT SP only services marked as low-latency services communicate, and other communication services are suspended or postponed during this stage, thereby ensuring the transmission of low-latency services.
- the R-TWT planning device e.g., AP, or Scheduling AP
- the planned device e.g., STA, or Scheduled STA
- R-TWT schedule R-TWT scheduling
- the connection mapped by the R-TWT scheduling is interrupted or fails, and the failure is such as the connection being released or the connection being not enabled after being established
- the AP MLD determines a first wireless frame, carries the first identification information in the first wireless frame, and transmits the first identification information to the first wireless frame.
- the identification information indicates that the first R-TWT scheduling of the first connection is migrated to the second connection; wherein the first connection and the second connection are both communication connections between the STA and the AP MLD; in this way, when the first connection fails or is interrupted, the first R-TWT scheduling can continue to be executed on the second connection to avoid the interruption of the low-latency service transmission corresponding to the first R-TWT scheduling.
- the STA receives the first wireless frame and continues to transmit the low-latency service of the first R-TWT scheduling according to the parameter information of the first R-TWT scheduling.
- the first wireless frame includes a beacon frame or a probe response frame.
- the AP MLD determines a first wireless frame and sends the first wireless frame to the STA; wherein the first identification information indicates that the first R-TWT scheduling of the first connection is migrated to the second connection.
- the STA continues to transmit the low-latency service scheduled by the first R-TWT according to the parameter information of the first R-TWT scheduling.
- the present disclosure provides a communication method, which can be applied to a station device STA.
- the method may include the following steps:
- the migrating the restricted target wake-up time R-TWT scheduling of the first connection to the second connection includes case 1 and/or case 2:
- the access point device maps the low-latency service scheduled by the first R-TWT to the second connection, and updates the transmission identifier to connection mapping (TID-To-Link Mapping) on the second connection.
- the access point device broadcasts the parameter information of the first R-TWT scheduling, that is, broadcasts the R-TWT scheduling information that needs to be migrated.
- the present disclosure provides a communication method, which can be applied to a station device STA.
- the method may include the following steps:
- TID-To-Link Mapping element carries the low-latency service type and the uplink and downlink transmission directions of the low-latency service
- the first wireless frame includes first identification information, and the first identification information indicates that the access point device migrates the first restricted target wake-up time R-TWT scheduling of the first connection to the second connection.
- WLAN prioritizes different services.
- each device has four different access levels, and each access level contains two different services. Traffic_0-traffic_7 are used to identify eight different service types.
- the access point device maps the service type of the low-latency service identified in the first R-TWT scheduling to the second connection, and maintains the corresponding uplink (UL) and downlink (DL) transmissions.
- traffic_0 and traffic_2 are identified as DL, and traffic_1 and traffic_3 are identified as UL, then when performing the service mapping information of the second connection, traffic_0 and traffic_2 in the TID-to-link mapping element need to be mapped to the second connection and their Direction is DL, and traffic_1 and traffic_3 need to be mapped to the second connection and their Direction is UL.
- the service type can be obtained by the access point device from the Broadcast TWT element corresponding to the first R-TWT scheduling.
- the Scheduling AP identifies it through the Restricted TWT DL TID Bitmap and Restricted TWT UL TID Bitmap subfields in the Restricted TWT Traffic Info field in the Broadcast TWT element.
- the present disclosure provides a communication method, which can be applied to a station device STA.
- the method may include the following steps:
- Receive a first wireless frame and obtain an R-TWT migration element carried in the first wireless frame; wherein the R-TWT migration element carries parameter information of the first R-TWT scheduling.
- the first wireless frame includes first identification information, and the first identification information indicates that the access point device schedules the first restricted target wake-up time R-TWT of the first connection to migrate to the second Before the first connection fails or is interrupted, the access point device broadcasts the migration information of the first R-TWT scheduling through the R-TWT Migration element.
- the AP MLD carries the R-TWT Migration element in the first wireless frame to broadcast the parameter information of the first R-TWT scheduling.
- the present disclosure provides a communication method, which can be applied to a station device STA.
- the method may include the following steps:
- Receive a first wireless frame and obtain an R-TWT migration element carried in the first wireless frame; wherein the R-TWT migration element carries parameter information of the first R-TWT scheduling.
- the first wireless frame includes first identification information, and the first identification information indicates that the access point device migrates the first restricted target wake-up time R-TWT scheduling of the first connection to the second connection.
- the parameter information of the first R-TWT scheduling includes at least one of the following:
- the quantity information of the first R-TWT scheduling that is, the number of R-TWT scheduling that needs to be migrated
- Identification information of each of the first R-TWT scheduling such as an identification of the R-TWT scheduling
- the R-TWT migration element includes at least one of the following:
- Element identification field length field, control field and R-TWT migration information field.
- the format of the R-TWT migration element is shown in Table 1 above.
- the R-TWT migration element includes but is not limited to an element identification (element ID) field, a length (Length) field, a control (Control) field, and an R-TWT migration information (R-TWT Migration Info) field.
- the control field includes the quantity information of the first R-TWT scheduling.
- the format of the control field is as shown in the aforementioned Table 2, and the quantity field identifies the number of R-TWT scheduling to be migrated.
- the R-TWT migration information field includes parameter information of one or more single R-TWT scheduling.
- the R-TWT migration information field may include one or more single R-TWT migration information (per-R-TWT Migration Info) subfields, and the single R-TWT migration information subfields correspond to a first R-TWT scheduling.
- the number of single R-TWT migration information subfields is determined by the value of the Count subfield in the control field; as an example, the format of the single R-TWT migration information is as shown in the aforementioned Table 3, and the single R-TWT migration information includes the corresponding first R-TWT scheduling parameter information, such as the identification information of the first R-TWT scheduling, the original connection information corresponding to each of the first R-TWT scheduling, and the target connection information is carried in the R-TWT migration information field.
- the present disclosure provides a communication method, which can be applied to a station device STA.
- the method may include the following steps:
- the first wireless frame includes first identification information, and the first identification information indicates that the access point device schedules the first R-TWT to migrate to a second connection before the first connection fails or is interrupted.
- the first identification information indicates that the first R-TWT scheduling is migrated to the second connection before the first connection fails or is interrupted; before the first connection fails or is interrupted, for example, the connection mapped by the R-TWT scheduling is interrupted or fails, and the failure is such as the connection being released or not enabled after the connection is established, then AP MLD determines a first wireless frame, carries the first identification information in the first wireless frame, and indicates that the first R-TWT scheduling of the first connection is migrated to the second connection through the first identification information.
- the present disclosure provides a communication method, which can be applied to a station device STA.
- the method may include the following steps:
- the STA transmits the low-latency service of the first R-TWT scheduling according to the identification information (Broadcast TWT ID) of the first R-TWT scheduling.
- the STA to which the second connection is located will become the R-TWT schedule member identified by the Broadcast TWT ID in the R-TWT Migration element; and the STA performs corresponding low-latency service transmission according to the R-TWT information corresponding to the Broadcast TWT ID.
- the present disclosure provides a communication method, which can be applied to a station device STA.
- the method may include the following steps:
- the first wireless frame Used to receive a first wireless frame; wherein the first wireless frame includes first identification information, and the first identification information indicates that the access point device migrates the first restricted target wake-up time R-TWT scheduling of the first connection to the second connection.
- the migrating the restricted target wake-up time R-TWT scheduling of the first connection to the second connection includes:
- the receiving the first radio frame includes:
- TID-To-Link Mapping element carries the low-latency service type and the uplink and downlink transmission directions of the low-latency service.
- the receiving the first radio frame includes:
- the parameter information of the first R-TWT scheduling includes at least one of the following:
- the R-TWT migration element includes at least one of the following:
- Element identification field length field, control field and R-TWT migration information field.
- control field includes quantity information of the first R-TWT scheduling.
- the R-TWT migration information field includes parameter information of one or more single R-TWT scheduling.
- the first identification information instructs the access point device to schedule the migration of the first R-TWT to a second connection before the first connection fails or is interrupted.
- the first radio frame includes a beacon frame or a probe response frame.
- the method further comprises:
- the STA is attached to the multi-connection site device of the second connection, and transmits the low-latency service scheduled by the first R-TWT according to the identification information of the first R-TWT scheduling.
- the STA receives the first wireless frame, and continues to transmit the low-latency service of the first R-TWT scheduling according to the parameter information of the first R-TWT scheduling.
- the first R-TWT scheduling can continue to be executed on the second connection to avoid the interruption of the low-latency service transmission corresponding to the first R-TWT scheduling.
- the disclosed embodiment provides a communication method, an electronic device and a storage medium to further improve the R-TWT mechanism and reduce the power consumption of the Wi-Fi network.
- the embodiment of the present disclosure further provides an electronic device, the electronic device is a multi-connection access point device AP MLD, and the electronic device includes:
- the determination module 401 is used to determine a first radio frame; wherein the first radio frame includes first identification information, and the first identification information indicates that the first restricted target wake-up time R-TWT scheduling of the first connection is migrated to the second connection;
- the sending module 402 is configured to send the first wireless frame.
- the limiting target wake-up time R-TWT of the first connection Scheduling migration to the second connection includes:
- mapping the low-latency service scheduled by the first R-TWT to the second connection includes:
- the first wireless frame carries a transmission identifier to connection mapping TID-To-Link Mapping element, and the TID-To-Link Mapping element carries the low-latency service type and the uplink and downlink transmission directions of the low-latency service.
- the first wireless frame carries an R-TWT migration element
- the R-TWT migration element carries parameter information of the first R-TWT scheduling.
- the parameter information of the first R-TWT scheduling includes at least one of the following:
- the R-TWT migration element includes at least one of the following:
- Element identification field length field, control field and R-TWT migration information field.
- control field includes quantity information of the first R-TWT scheduling.
- the R-TWT migration information field includes parameter information of the first R-TWT scheduling.
- the first identification information indicates that the first R-TWT is scheduled to be migrated to the second connection before the first connection fails or is interrupted.
- the first radio frame includes a beacon frame or a probe response frame.
- the present disclosure also provides a communication device, which is applied to a multi-connection access point device AP MLD.
- the device includes:
- a radio frame determination module configured to determine a first radio frame; wherein the first radio frame includes first identification information, and the first identification information indicates that the first restricted target wake-up time R-TWT scheduling of the first connection is migrated to the second connection;
- a wireless frame sending module is used to send the first wireless frame.
- the device also includes other modules of the electronic device in the aforementioned embodiment, which will not be described in detail here.
- the embodiment of the present disclosure further provides an electronic device, the electronic device is a station device STA, and the electronic device includes:
- the receiving module 501 is used to receive a first wireless frame; wherein the first wireless frame includes first identification information, and the first identification information indicates that the access point device migrates the first restricted target wake-up time R-TWT scheduling of the first connection to the second connection.
- the migrating the restricted target wake-up time R-TWT scheduling of the first connection to the second connection includes:
- the receiving module 501 is used to:
- TID-To-Link Mapping element carries the low-latency service and the service type of the low-latency service.
- the receiving module 501 is used to:
- the parameter information of the first R-TWT scheduling includes at least one of the following:
- the R-TWT migration element includes at least one of the following:
- Element identification field length field, control field and R-TWT migration information field.
- control field includes quantity information of the first R-TWT scheduling.
- the R-TWT migration information field includes parameter information of one or more single R-TWT scheduling.
- the first identification information instructs the access point device to schedule the migration of the first R-TWT to a second connection before the first connection fails or is interrupted.
- the first radio frame includes a beacon frame or a probe response frame.
- the electronic device further includes:
- a transmission module is used for the STA to be attached to the multi-connection site device of the second connection, and to transmit the low-latency service scheduled by the first R-TWT according to the identification information of the first R-TWT scheduling.
- the STA receives the first wireless frame, and continues to transmit the low-latency service of the first R-TWT scheduling according to the parameter information of the first R-TWT scheduling.
- the first R-TWT scheduling can continue to be executed on the second connection to avoid the interruption of the transmission of the low-latency service corresponding to the first R-TWT scheduling.
- the disclosed embodiment provides a communication method, an electronic device and a storage medium to further improve the R-TWT mechanism and reduce the power consumption of the Wi-Fi network.
- the present disclosure also provides a communication device, which is applied to a station device STA.
- the device includes:
- a wireless frame receiving module is used to receive a first wireless frame; wherein the first wireless frame includes first identification information, and the first identification information indicates that the access point device migrates the first restricted target wake-up time R-TWT scheduling of the first connection to the second connection.
- the device also includes other modules of the electronic device in the aforementioned embodiment, which will not be described in detail here.
- the present disclosure also provides an electronic device, as shown in FIG.
- the electronic device 600 shown in FIG6 may be a server, including: a processor 601 and a memory 603.
- the processor 601 and the memory 603 are connected, such as through a bus 602.
- the electronic device 600 may further include a transceiver 604. It should be noted that in actual applications, the transceiver 604 is not limited to one, and the structure of the electronic device 600 does not constitute a limitation on the embodiments of the present disclosure.
- Processor 601 can be a CPU (Central Processing Unit), a general-purpose processor, a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute various exemplary logic blocks, modules and circuits described in conjunction with the disclosure of the present invention. Processor 601 can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
- the bus 602 may include a path for transmitting information between the above components.
- the bus 602 may be a PCI (Peripheral Component Interconnect) bus or an EISA (Extended Industry Standard Architecture) bus, etc.
- the bus 602 may be divided into an address bus, a data bus, a control bus, etc.
- FIG6 is represented by only one thick line, but it does not mean that there is only one bus or one type of bus.
- the memory 603 can be a ROM (Read Only Memory) or other types of static storage devices that can store static information and instructions, a RAM (Random Access Memory) or other types of dynamic storage devices that can store information and instructions, or an EEPROM (Electrically Erasable Programmable Read Only Memory), a CD-ROM (Compact Disc Read Only Memory) or other optical disk storage, optical disk storage (including compressed optical disk, laser disk, optical disk, digital versatile disk, Blu-ray disk, etc.), magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited to these.
- ROM Read Only Memory
- RAM Random Access Memory
- EEPROM Electrically Erasable Programmable Read Only Memory
- CD-ROM Compact Disc Read Only Memory
- optical disk storage including compressed optical disk, laser disk, optical disk, digital versatile disk, Blu-ray disk, etc.
- magnetic disk storage medium or other magnetic storage device or any other medium
- the memory 603 is used to store application code for executing the solution of the present disclosure, and the execution is controlled by the processor 601.
- the processor 601 is used to execute the application code stored in the memory 603. To implement the contents shown in the aforementioned method embodiment.
- the electronic devices include, but are not limited to, mobile phones, laptop computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMPs (portable multimedia players), vehicle-mounted terminals (such as vehicle-mounted navigation terminals), etc., and fixed terminals such as digital TVs, desktop computers, etc.
- PDAs personal digital assistants
- PADs tablet computers
- PMPs portable multimedia players
- vehicle-mounted terminals such as vehicle-mounted navigation terminals
- fixed terminals such as digital TVs, desktop computers, etc.
- the electronic device shown in FIG6 is only an example and should not bring any limitation to the functions and scope of use of the embodiments of the present disclosure.
- the server provided by the present disclosure may be an independent physical server, or a server cluster or distributed system composed of multiple physical servers, or a cloud server that provides basic cloud computing services such as cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communications, middleware services, domain name services, security services, CDN, and big data and artificial intelligence platforms.
- the terminal may be a smart phone, tablet computer, laptop computer, desktop computer, smart speaker, smart watch, etc., but is not limited thereto.
- the terminal and the server may be directly or indirectly connected via wired or wireless communication, which is not limited by the present disclosure.
- An embodiment of the present disclosure provides a computer-readable storage medium, on which a computer program is stored.
- the computer-readable storage medium is run on a computer, the computer can execute the corresponding contents of the aforementioned method embodiment.
- the computer-readable medium of the present disclosure may be a computer-readable signal medium or a computer-readable storage medium or any combination of the two.
- the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above. More specific examples of computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer, or a computer program product.
- a computer-readable storage medium may be any tangible medium containing or storing a program that can be used by or in combination with an instruction execution system, device or device.
- a computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, which carries a computer-readable program code. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
- a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which may send, propagate, or transmit a program for use by or in combination with an instruction execution system, device or device.
- the program code contained on the computer-readable medium may be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
- the computer-readable medium may be included in the electronic device, or may exist independently without being installed in the electronic device.
- the computer-readable medium carries one or more programs.
- the electronic device executes the method shown in the above embodiment.
- a computer program product or a computer program comprising computer instructions, the computer instructions being stored in a computer-readable storage medium.
- a processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the methods provided in the above-mentioned various optional implementations.
- Computer program code for performing operations of the present disclosure may be written in one or more programming languages, or a combination thereof, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional procedural programming languages such as "C" or similar programming languages.
- the program code may execute entirely on the user's computer, partially on the user's computer, as a stand-alone software package, partially on the user's computer and partially on a remote computer, or entirely on the remote computer or server.
- the remote computer may be connected to the computer over any type of network, including
- a wireless network may be connected to a user's computer, such as a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., via the Internet using an Internet service provider).
- LAN local area network
- WAN wide area network
- Internet service provider e.g., via the Internet using an Internet service provider
- each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function.
- the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved.
- each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs a specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
- modules involved in the embodiments described in the present disclosure may be implemented by software or hardware.
- the name of a module does not limit the module itself in some cases.
- module A may also be described as "module A for performing operation B".
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开实施例涉及移动通信技术领域,提供了一种通信方法、电子设备及存储介质。所述通信方法应用于多连接接入点设备AP MLD,所述方法包括:确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;发送所述第一无线帧。本公开实施例提供了一种为UE配置时间窗口相关的参数信息的方式。
Description
本公开实施例涉及移动通信技术领域,具体而言,本公开实施例涉及一种通信方法、电子设备及存储介质。
在目前所研究的无线保真(Wireless-Fidelity,Wi-Fi)技术中,为支持大规模物联网(Internet of Things,IoT)设备下的节能工作,提出了目标唤醒时间(Target Wake Time,TWT)机制;同时,为了保障时延敏感业务(Latency Sensitive Traffic)的传输,提出了限制目标唤醒时间(Restricted-TWT,R-TWT)机制。为了进一步降低Wi-Fi网络功耗,需要完善R-TWT机制。
发明内容
本公开实施例提供了一种通信方法、电子设备及存储介质,以进一步完善R-TWT机制,降低Wi-Fi网络功耗。
一方面,本公开实施例提供了一种通信方法,应用于多连接接入点设备AP MLD,所述方法包括:
确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;
发送所述第一无线帧。
另一方面,本公开实施例还提供了一种通信方法,应用于站点设备STA,所述方法包括:
接收第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述
第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
另一方面,本公开实施例还提供了一种电子设备,所述电子设备为多连接接入点设备AP MLD,所述电子设备包括:
确定模块,用于确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;
发送模块,用于发送所述第一无线帧。
另一方面,本公开实施例还提供了一种电子设备,所述电子设备为站点设备STA,所述电子设备包括:
接收模块,用于接收第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
本公开实施例还提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如本公开实施例中一个或多个所述的方法。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本公开实施例中一个或多个所述的方法。
本公开实施例中,AP MLD确定第一无线帧,在所述第一无线帧中携带第一标识信息,通过所述第一标识信息指示将第一连接的第一R-TWT调度迁移到第二连接上;这样,当第一连接失效或中断时,可以在第二连接上继续执行第一R-TWT调度,避免第一R-TWT调度对应的低时延业务传输中断。
本公开实施例附加的方面和优点将在下面的描述中部分给出,这些将
从下面的描述中变得明显,或通过本公开的实践了解到。
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的通信方法的流程图之一;
图2为本公开实施例提供的通信方法的第一示例的场景示意图;
图3为本公开实施例提供的通信方法的流程图之二;
图4为本公开实施例提供的电子设备的结构示意图之一;
图5为本公开实施例提供的电子设备的结构示意图之二;
图6为本公开实施例提供的电子设备的结构示意图之三。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开实施例中,使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。术语“多个”是指两个或两个以上,鉴于此,本公开实施例中也可以将“多个”理解为“至少两个”。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种
信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种通信方法、电子设备及存储介质,用以以进一步完善R-TWT机制,降低Wi-Fi网络功耗。。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图1中所示,本公开实施例提供了一种通信方法,可选地,所述方法可应用于接入点(Access Point,AP)设备;可选地,本公开实施例中,AP例如具有无线至有线桥接(Bridging)功能的设备,AP负责将有线网络所提供的服务延伸至无线网络;站点设备(Station,STA)例如具有无线网络接入功能的电子设备,提供帧传递(Frame Delivery)服务让信息得以传递。可选地,在本公开实施例中,AP和STA可以为支持多连接的设备,例如,可以被分别表示为AP MLD和non-AP MLD;AP MLD可以表示支持多连接通信功能的接入点,non-AP MLD可以表示支持多连接通信功能的站点。
该方法可以包括以下步骤:
步骤101,确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
步骤102,发送所述第一无线帧。
TWT是一种用于节能的技术,旨在进一步降低Wi-Fi网络功耗。具体地,TWT技术通过使STA和AP协商服务时间(Service Period,SP),确定STA休眠和唤醒时间和频率;STA在该服务时间保持活跃状态并进行通信,从而可以在服务时间以外的时间进行休眠,以达到节能的目的。此外,TWT技术还可以使AP向多个STA提供更高质量的服务,使竞争或重叠最小化,在降低Wi-Fi网络功耗的同时提高频谱效率。
在低时延传输场景下,较多的应用程序的实时数据流量具有严格的延迟要求,例如,平均延迟或最大延迟的数量级在几毫秒到几十毫秒之间,以及应用程序要求实时数据流量具有极小的抖动以及较强的可靠性。为了进一步确保低时延业务的通信,在TWT的技术基础上,提出了限制型目标唤醒时间(Restricted-Target Wake Time,R-TWT)。R-TWT机制允许AP使用增强的媒体访问保护机制和资源预留机制来提供更可预测的延迟,以将延迟敏感流量与其他类型的流量区分开,使得AP减少最坏情况的延迟和/或减少抖动,提供可靠性更高的服务。
具体地,R-TWT用于服务低时延业务,例如平均延迟小于10毫秒的业务。在R-TWT SP内,只有标识为低时延业务的业务进行通信,其他通信业务在该阶段内暂停或者推迟,从而确保低时延业务的传输。
本公开实施例中,R-TWT的规划设备(例如AP,或称为Scheduling AP)与被规划设备(例如STA,或称为Scheduled STA)可预先建立R-TWT调度(R-TWT schedule)。在一些场景下,例如R-TWT调度所映射的连接中断或者失效,例如连接解除或连接建立之后未使能,则AP MLD确定第一无线帧,在所述第一无线帧中携带第一标识信息,通过所述第一标识信息指示将第一连接的第一R-TWT调度迁移到第二连接上;其中,第一连接与第二连接均为STA与AP MLD之间的通信连接;这样,当第一连接失效或中断时,可以在第二连接上继续执行第一R-TWT调度,避免第一R-TWT schedule对应的低时延业务传输中断。
可选地,本公开实施例中,所述第一无线帧包括信标(Beacon)帧或
探测响应(Probe Response)帧。
作为第一示例,参见图2,图2示出了本公开实施例中的一个具体应用场景。如图2所示,AP MLD确定第一无线帧,并将第一无线帧发送至STA;其中,第一标识信息指示将第一连接的第一R-TWT调度迁移到第二连接上。
本公开实施例提供了一种通信方法,所述方法可应用于AP MLD,所述方法包括:
确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;
发送所述第一无线帧;
其中,所述将第一连接的限制目标唤醒时间R-TWT调度迁移到第二连接上包括情况一和/或情况二:
情况一,将第一R-TWT调度的低时延业务映射到所述第二连接上,在第二连接上更新传输标识至连接映射(TID-To-Link Mapping)。
情况二,广播所述第一R-TWT调度的参数信息,即广播需要迁移的R-TWT调度信息。
本公开实施例提供了一种通信方法,所述方法可应用于AP MLD,所述方法包括:
确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;
发送所述第一无线帧;
其中,所述将第一连接的限制目标唤醒时间R-TWT调度迁移到第二连接上,包括:将第一R-TWT调度的低时延业务映射到所述第二连接上。
将第一R-TWT调度的低时延业务映射到所述第二连接上,包括:
在所述第一无线帧中携带传输标识至连接映射TID-To-Link Mapping元素,在所述TID-To-Link Mapping元素中携带所述低时延业务类型以及所述低时延业务的上下行传输方向;WLAN将不同的业务进行优先级划分,在信道竞争接入过程中每个设备存在四个不同的接入等级,每个接入等级包含两种不同的业务;用traffic_0—traffic_7标识八种不同业务类型;在该TID-To-Link Mapping元素中,将第一R-TWT调度中所标识的低时延业务的业务类型映射到第二连接,并保持对应的上行(UL)、下行(DL)传输。例如,若第一R-TWT调度中,traffic_0和traffic_2标识为DL,traffic_1和traffic_3标识为UL,则在进行第二连接的业务映射信息时,TID-To-Link Mapping元素中traffic_0和traffic_2需映射到第二连接且其Direction为DL,traffic_1和traffic_3需映射到第二连接且其Direction为UL。
可选地,所述业务类型可以获取自第一R-TWT调度对应的Broadcast TWT元素。例如,Scheduling AP在Broadcast TWT元素中的Restricted TWT Traffic Info字段中,通过Restricted TWT DL TID Bitmap和Restricted TWT UL TID Bitmap子字段进行标识。
本公开实施例提供了一种通信方法,所述方法可应用于AP MLD,所述方法包括:
确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;
发送所述第一无线帧;
其中,所述第一无线帧中携带R-TWT迁移(R-TWT Migration)元素,在所述R-TWT迁移元素中携带所述第一R-TWT调度的参数信息。
在第一连接失效或中断前,AP MLD将第一R-TWT调度的迁移信息通过R-TWT Migration元素广播。具体地,AP MLD在第一无线帧中携带R-TWT Migration元素,以广播第一R-TWT调度的参数信息。
本公开实施例提供了一种通信方法,所述方法可应用于AP MLD,所述方法包括:
确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;
发送所述第一无线帧;
其中,所述第一无线帧中携带R-TWT迁移(R-TWT Migration)元素,在所述R-TWT迁移元素中携带所述第一R-TWT调度的参数信息。
所述第一R-TWT调度的参数信息包括以下至少一项:
所述第一R-TWT调度的数量信息,即需要迁移的R-TWT调度的个数;
每个所述第一R-TWT调度的标识信息,例如R-TWT调度的标识;
每个所述第一R-TWT调度对应的原连接信息(迁移前所在连接)以及每个所述第一R-TWT调度对应的目标连接信息(迁移的目标连接)。
本公开实施例提供了一种通信方法,所述方法可应用于AP MLD,所述方法包括:
确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;
发送所述第一无线帧;
其中,所述第一无线帧中携带R-TWT迁移(R-TWT Migration)元素,在所述R-TWT迁移元素中携带所述第一R-TWT调度的参数信息。
此外,R-TWT迁移元素还包括以下至少一项:
元素标识字段、长度字段、控制字段以及R-TWT迁移信息字段,作为示例,R-TWT迁移元素的格式如以下表1所示:
表1:
如表1所示,R-TWT迁移元素包括但不限于元素标识(element ID)字段、长度(Length)字段、控制(Control)字段和R-TWT迁移信息(R-TWT Migration Info)字段等。
可选地,所述控制字段包括所述第一R-TWT调度的数量信息,即需要迁移的R-TWT调度的个数;作为示例,控制字段的格式如以下表2所示:
表2:
其中,数量字段标识要迁移的R-TWT调度的个数。
可选地,所述R-TWT迁移信息字段包括一个或多个单个R-TWT调度的参数信息。
其中,R-TWT迁移信息字段可包含一个或者多个单个R-TWT迁移信息(per-R-TWT Migration Info)子字段,单个R-TWT迁移信息子字段分别对应一个第一R-TWT调度。单个R-TWT迁移信息子字段的个数由控制字段中Count子字段数值决定;其中,单个R-TWT迁移信息包括对应的第一R-TWT调度的参数信息,参数信息例如第一R-TWT调度的标识信息、每个所述第一R-TWT调度对应的原连接信息以及目标连接信息携带在所述R-TWT迁移信息字段中。作为示例,单个R-TWT迁移信息的格式如以下表3所示:
表3:
本公开实施例提供了一种通信方法,所述方法可应用于AP MLD,所述方法包括:
确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;
发送所述第一无线帧;
其中,所述第一标识信息指示在所述第一连接失效前或中断前,将所述第一R-TWT调度迁移到第二连接上;第一连接失效前或中断前例如R-TWT调度所映射的连接中断或者失效,失效例如连接解除或连接建立之后未使能,则AP MLD确定第一无线帧,在所述第一无线帧中携带第一标识信息,通过所述第一标识信息指示将第一连接的第一R-TWT调度迁移到第二连接上。
本公开实施例提供了一种通信方法,所述方法可应用于AP MLD,所述方法包括:
确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;
发送所述第一无线帧。
在一个可选实施例中,所述将第一连接的限制目标唤醒时间R-TWT调度迁移到第二连接上包括:
将第一R-TWT调度的低时延业务映射到所述第二连接上;
和/或
广播所述第一R-TWT调度的参数信息。
在一个可选实施例中,所述将第一R-TWT调度的低时延业务映射到所述第二连接上,包括:
在所述第一无线帧中携带传输标识至连接映射TID-To-Link Mapping元素元素,在所述TID-To-Link Mapping元素中携带所述低时延业务以及所述低时延业务的业务类型。
在一个可选实施例中,所述第一无线帧中携带R-TWT迁移元素,在所述R-TWT迁移元素中携带所述第一R-TWT调度的参数信息。
在一个可选实施例中,所述第一R-TWT调度的参数信息包括以下至少一项:
所述第一R-TWT调度的数量信息、每个所述第一R-TWT调度的标识信息、每个所述第一R-TWT调度对应的原连接信息以及每个所述第一R-TWT调度对应的目标连接信息。
在一个可选实施例中,所述R-TWT迁移元素包括以下至少一项:
元素标识字段、长度字段、控制字段以及R-TWT迁移信息字段。
在一个可选实施例中,所述控制字段包括所述第一R-TWT调度的数量信息。
在一个可选实施例中,所述R-TWT迁移信息字段包括所述第一R-TWT调度的参数信息。
在一个可选实施例中,所述第一标识信息指示在所述第一连接失效前或中断前,将所述第一R-TWT调度迁移到第二连接上。
在一个可选实施例中,所述第一无线帧包括信标帧或探测响应帧。
本公开实施例中,AP MLD确定第一无线帧,在所述第一无线帧中携带第一标识信息,通过所述第一标识信息指示将第一连接的第一R-TWT调度迁移到第二连接上;这样,当第一连接失效或中断时,可以在第二连接上继续执行第一R-TWT调度,避免第一R-TWT调度对应的低时延业务传输中断。本公开实施例提供了一种通信方法、电子设备及存储介质,以进一步完善R-TWT机制,降低Wi-Fi网络功耗。
参见图3,本公开实施例提供了一种通信方法,可选地,所述方法可应用于站点设备STA,该方法可以包括以下步骤:
步骤301,接收第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
TWT是一种用于节能的技术,旨在进一步降低Wi-Fi网络功耗。具体地,TWT技术通过使STA和AP协商服务时间(Service Period,SP),确定STA休眠和唤醒时间和频率;STA在该服务时间保持活跃状态并进行通信,从而可以在服务时间以外的时间进行休眠,以达到节能的目的。此外,TWT技术还可以使AP向多个STA提供更高质量的服务,使竞争或重叠最小化,在降低Wi-Fi网络功耗的同时提高频谱效率。
在低时延传输场景下,较多的应用程序的实时数据流量具有严格的延迟要求,例如,平均延迟或最大延迟的数量级在几毫秒到几十毫秒之间,以及应用程序要求实时数据流量具有极小的抖动以及较强的可靠性。为了进一步确保低时延业务的通信,在TWT的技术基础上,提出了限制型目标唤醒时间(Restricted-Target Wake Time,R-TWT)。R-TWT机制允许AP使用增强的媒体访问保护机制和资源预留机制来提供更可预测的延迟,以将延迟敏感流量与其他类型的流量区分开,使得AP减少最坏情况的延迟和/或减少抖动,提供可靠性更高的服务。
具体地,R-TWT用于服务低时延业务,例如平均延迟小于10毫秒的业务。在R-TWT SP内,只有标识为低时延业务的业务进行通信,其他通信业务在该阶段内暂停或者推迟,从而确保低时延业务的传输。
本公开实施例中,R-TWT的规划设备(例如AP,或称为Scheduling AP)与被规划设备(例如STA,或称为Scheduled STA)可预先建立R-TWT调度(R-TWT schedule)。在一些场景下,例如R-TWT调度所映射的连接中断或者失效,失效例如连接解除或连接建立之后未使能,则AP MLD确定第一无线帧,在所述第一无线帧中携带第一标识信息,通过所述第一
标识信息指示将第一连接的第一R-TWT调度迁移到第二连接上;其中,第一连接与第二连接均为STA与AP MLD之间的通信连接;这样,当第一连接失效或中断时,可以在第二连接上继续执行第一R-TWT调度,避免第一R-TWT调度对应的低时延业务传输中断。STA接收第一无线帧,根据所述第一R-TWT调度的参数信息继续传输所述第一R-TWT调度的低时延业务。
可选地,本公开实施例中,所述第一无线帧包括信标(Beacon)帧或探测响应(Probe Response)帧。
作为第一示例,参见图2,图2示出了本公开实施例中的一个具体应用场景。如图2所示,AP MLD确定第一无线帧,并将第一无线帧发送至STA;其中,第一标识信息指示将第一连接的第一R-TWT调度迁移到第二连接上。
若所述STA附属于所述第二连接的多连接站点设备,则所述STA根据所述第一R-TWT调度的参数信息继续传输所述第一R-TWT调度的低时延业务。
本公开实施例提供了一种通信方法,所述方法可应用于站点设备STA,该方法可以包括以下步骤:
接收第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
其中,所述将第一连接的限制目标唤醒时间R-TWT调度迁移到第二连接上包括情况一和/或情况二:
情况一,接入点设备将第一R-TWT调度的低时延业务映射到所述第二连接上,在第二连接上更新传输标识至连接映射(TID-To-Link Mapping)。
情况二,接入点设备广播所述第一R-TWT调度的参数信息,即广播需要迁移的R-TWT调度信息。
本公开实施例提供了一种通信方法,所述方法可应用于站点设备STA,该方法可以包括以下步骤:
接收第一无线帧,获取所述第一无线帧中携带的传输标识至连接映射TID-To-Link Mapping元素;其中,所述TID-To-Link Mapping元素中携带所述低时延业务类型以及所述低时延业务的上下行传输方向;
其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
WLAN将不同的业务进行优先级划分,在信道竞争接入过程中每个设备存在四个不同的接入等级,每个接入等级包含两种不同的业务;用traffic_0—traffic_7标识八种不同业务类型;;在该TID-To-Link Mapping元素中,接入点设备将第一R-TWT调度中所标识的低时延业务的业务类型映射到第二连接,并保持对应的上行(UL)、下行(DL)传输。例如,若第一R-TWT调度中,traffic_0和traffic_2标识为DL,traffic_1和traffic_3标识为UL,则在进行第二连接的业务映射信息时,TID-to-link mapping element中traffic_0和traffic_2需映射到第二连接且其Direction为DL,traffic_1和traffic_3需映射到第二连接且其Direction为UL。
可选地,所述业务类型可以由接入点设备获取自第一R-TWT调度对应的Broadcast TWT元素。例如,Scheduling AP在Broadcast TWT元素中的Restricted TWT Traffic Info字段中,通过Restricted TWT DL TID Bitmap和Restricted TWT UL TID Bitmap子字段进行标识。
本公开实施例提供了一种通信方法,所述方法可应用于站点设备STA,该方法可以包括以下步骤:
接收第一无线帧,获取所述第一无线帧中的携带R-TWT迁移元素;其中,所述R-TWT迁移元素中携带所述第一R-TWT调度的参数信息。
其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二
连接上。在第一连接失效或中断前,接入点设备将第一R-TWT调度的迁移信息通过R-TWT Migration元素广播。具体地,AP MLD在第一无线帧中携带R-TWT Migration元素,以广播第一R-TWT调度的参数信息。
本公开实施例提供了一种通信方法,所述方法可应用于站点设备STA,该方法可以包括以下步骤:
接收第一无线帧,获取所述第一无线帧中的携带R-TWT迁移元素;其中,所述R-TWT迁移元素中携带所述第一R-TWT调度的参数信息。
其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
所述第一R-TWT调度的参数信息包括以下至少一项:
所述第一R-TWT调度的数量信息,即需要迁移的R-TWT调度的个数;
每个所述第一R-TWT调度的标识信息,例如R-TWT调度的标识;
每个所述第一R-TWT调度对应的原连接信息(迁移前所在连接)以及每个所述第一R-TWT调度对应的目标连接信息(迁移的目标连接)。
可选地,本公开实施例中,所述R-TWT迁移元素包括以下至少一项:
元素标识字段、长度字段、控制字段以及R-TWT迁移信息字段。
作为示例,R-TWT迁移元素的格式如前述表1所示,R-TWT迁移元素包括但不限于元素标识(element ID)字段、长度(Length)字段、控制(Control)字段和R-TWT迁移信息(R-TWT Migration Info)字段等。
可选地,本公开实施例中,所述控制字段包括所述第一R-TWT调度的数量信息。作为示例,控制字段的格式如前述表2所示,数量字段标识要迁移的R-TWT调度的个数。
可选地,本公开实施例中,所述R-TWT迁移信息字段包括一个或多个单个R-TWT调度的参数信息。
其中,R-TWT迁移信息字段可包含一个或者多个单个R-TWT迁移信息(per-R-TWT Migration Info)子字段,单个R-TWT迁移信息子字段分别对应一个第一R-TWT调度。单个R-TWT迁移信息子字段的个数由控制字段中Count子字段数值决定;作为示例,单个R-TWT迁移信息的格式如前述表3所示,单个R-TWT迁移信息包括对应的第一R-TWT调度的参数信息,参数信息例如第一R-TWT调度的标识信息、每个所述第一R-TWT调度对应的原连接信息以及目标连接信息携带在所述R-TWT迁移信息字段中。
本公开实施例提供了一种通信方法,所述方法可应用于站点设备STA,该方法可以包括以下步骤:
接收第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示所述接入点设备在所述第一连接失效前或中断前,将所述第一R-TWT调度迁移到第二连接上。
其中,所述第一标识信息指示在所述第一连接失效前或中断前,将所述第一R-TWT调度迁移到第二连接上;第一连接失效前或中断前例如R-TWT调度所映射的连接中断或者失效,失效例如连接解除或连接建立之后未使能,则AP MLD确定第一无线帧,在所述第一无线帧中携带第一标识信息,通过所述第一标识信息指示将第一连接的第一R-TWT调度迁移到第二连接上。
本公开实施例提供了一种通信方法,所述方法可应用于站点设备STA,该方法可以包括以下步骤:
接收第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
若所述STA附属于所述第二连接的多连接站点设备,则所述STA根据所述第一R-TWT调度的标识信息(Broadcast TWT ID)传输所述第一R-TWT调度的低时延业务。
其中,STA所属的non-AP MLD接收到第一无线帧后,第二连接所在的STA,将成为R-TWT Migration元素中Broadcast TWT ID标识的R-TWT schedule成员;且该STA根据该Broadcast TWT ID对应的R-TWT信息执行相应的低时延业务传输。
本公开实施例提供了一种通信方法,所述方法可应用于站点设备STA,该方法可以包括以下步骤:
用于接收第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
在一个可选实施例中,所述将第一连接的限制目标唤醒时间R-TWT调度迁移到第二连接上包括:
将第一R-TWT调度的低时延业务映射到所述第二连接上;
和/或
广播所述第一R-TWT调度的参数信息。
在一个可选实施例中,所述接收第一无线帧包括:
接收所述第一无线帧,获取所述第一无线帧中携带的传输标识至连接映射TID-To-Link Mapping元素;其中,所述TID-To-Link Mapping元素中携带所述低时延业务类型以及所述低时延业务的上下行传输方向。
在一个可选实施例中,所述接收第一无线帧包括:
接收所述第一无线帧,获取所述第一无线帧中的携带R-TWT迁移元素;其中,所述R-TWT迁移元素中携带所述第一R-TWT调度的参数信息。
在一个可选实施例中,所述第一R-TWT调度的参数信息包括以下至少一项:
所述第一R-TWT调度的数量信息、每个所述第一R-TWT调度的标
识信息、每个所述第一R-TWT调度对应的原连接信息以及每个所述第一R-TWT调度对应的目标连接信息。
在一个可选实施例中,所述R-TWT迁移元素包括以下至少一项:
元素标识字段、长度字段、控制字段以及R-TWT迁移信息字段。
在一个可选实施例中,所述控制字段包括所述第一R-TWT调度的数量信息。
在一个可选实施例中,所述R-TWT迁移信息字段包括一个或多个单个R-TWT调度的参数信息。
在一个可选实施例中,所述第一标识信息指示所述接入点设备在所述第一连接失效前或中断前,将所述第一R-TWT调度迁移到第二连接上。
在一个可选实施例中,所述第一无线帧包括信标帧或探测响应帧。
在一个可选实施例中,所述方法还包括:
所述STA附属于所述第二连接的多连接站点设备,根据所述第一R-TWT调度的标识信息传输所述第一R-TWT调度的低时延业务。
本公开实施例中,STA接收第一无线帧,根据所述第一R-TWT调度的参数信息继续传输所述第一R-TWT调度的低时延业务。这样,当第一连接失效或中断时,可以在第二连接上继续执行第一R-TWT调度,避免第一R-TWT调度对应的低时延业务传输中断。本公开实施例提供了一种通信方法、电子设备及存储介质,以进一步完善R-TWT机制,降低Wi-Fi网络功耗。
参见图4,基于与本公开实施例所提供的方法相同的原理,本公开实施例还提供了一种电子设备,所述电子设备为多连接接入点设备AP MLD,所述电子设备包括:
确定模块401,用于确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;
发送模块402,用于发送所述第一无线帧。
在一个可选实施例中,所述将第一连接的限制目标唤醒时间R-TWT
调度迁移到第二连接上包括:
将第一R-TWT调度的低时延业务映射到所述第二连接上;
和/或
广播所述第一R-TWT调度的参数信息。
在一个可选实施例中,所述将第一R-TWT调度的低时延业务映射到所述第二连接上,包括:
在所述第一无线帧中携带传输标识至连接映射TID-To-Link Mapping元素,在所述TID-To-Link Mapping元素中携带所述低时延业务类型以及所述低时延业务的上下行传输方向。
在一个可选实施例中,所述第一无线帧中携带R-TWT迁移元素,在所述R-TWT迁移元素中携带所述第一R-TWT调度的参数信息。
在一个可选实施例中,所述第一R-TWT调度的参数信息包括以下至少一项:
所述第一R-TWT调度的数量信息、每个所述第一R-TWT调度的标识信息、每个所述第一R-TWT调度对应的原连接信息以及每个所述第一R-TWT调度对应的目标连接信息。
在一个可选实施例中,所述R-TWT迁移元素包括以下至少一项:
元素标识字段、长度字段、控制字段以及R-TWT迁移信息字段。
在一个可选实施例中,所述控制字段包括所述第一R-TWT调度的数量信息。
在一个可选实施例中,所述R-TWT迁移信息字段包括所述第一R-TWT调度的参数信息。
在一个可选实施例中,所述第一标识信息指示在所述第一连接失效前或中断前,将所述第一R-TWT调度迁移到第二连接上。
在一个可选实施例中,所述第一无线帧包括信标帧或探测响应帧。
本公开实施例还提供了一种通信装置,应用于多连接接入点设备AP MLD,所述装置包括:
无线帧确定模块,用于确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;
无线帧发送模块,用于发送所述第一无线帧。
所述装置还包括前述实施例中电子设备的其他模块,在此不再赘述。
参见图5,基于与本公开实施例所提供的方法相同的原理,本公开实施例还提供了一种电子设备,所述电子设备为站点设备STA,所述电子设备包括:
接收模块501,用于接收第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
在一个可选实施例中,所述将第一连接的限制目标唤醒时间R-TWT调度迁移到第二连接上包括:
将第一R-TWT调度的低时延业务映射到所述第二连接上;
和/或
广播所述第一R-TWT调度的参数信息。
在一个可选实施例中,所述接收模块501用于:
接收所述第一无线帧,获取所述第一无线帧中携带的传输标识至连接映射TID-To-Link Mapping元素;其中,所述TID-To-Link Mapping元素中携带所述低时延业务以及所述低时延业务的业务类型。
在一个可选实施例中,所述接收模块501用于:
接收所述第一无线帧,获取所述第一无线帧中的携带R-TWT迁移元素;其中,所述R-TWT迁移元素中携带所述第一R-TWT调度的参数信息。
在一个可选实施例中,所述第一R-TWT调度的参数信息包括以下至少一项:
所述第一R-TWT调度的数量信息、每个所述第一R-TWT调度的标识信息、每个所述第一R-TWT调度对应的原连接信息以及每个所述第一
R-TWT调度对应的目标连接信息。
在一个可选实施例中,所述R-TWT迁移元素包括以下至少一项:
元素标识字段、长度字段、控制字段以及R-TWT迁移信息字段。
在一个可选实施例中,所述控制字段包括所述第一R-TWT调度的数量信息。
在一个可选实施例中,所述R-TWT迁移信息字段包括一个或多个单个R-TWT调度的参数信息。
在一个可选实施例中,所述第一标识信息指示所述接入点设备在所述第一连接失效前或中断前,将所述第一R-TWT调度迁移到第二连接上。
在一个可选实施例中,所述第一无线帧包括信标帧或探测响应帧。
在一个可选实施例中,所述电子设备还包括:
传输模块,用于所述STA附属于所述第二连接的多连接站点设备,根据所述第一R-TWT调度的标识信息传输所述第一R-TWT调度的低时延业务。
本公开实施例中,STA接收第一无线帧,根据所述第一R-TWT调度的参数信息继续传输所述第一R-TWT调度的低时延业务。这样,当第一连接失效或中断时,可以在第二连接上继续执行第一R-TWT调度,避免第一R-TWT调度对应的低时延业务传输中断。本公开实施例提供了一种通信方法、电子设备及存储介质,以进一步完善R-TWT机制,降低Wi-Fi网络功耗。
本公开实施例还提供了一种通信装置,应用于站点设备STA,所述装置包括:
无线帧接收模块,用于接收第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
所述装置还包括前述实施例中电子设备的其他模块,在此不再赘述。
在一个可选实施例中,本公开实施例还提供了一种电子设备,如图6
所示,图6所示的电子设备600可以为服务器,包括:处理器601和存储器603。其中,处理器601和存储器603相连,如通过总线602相连。可选地,电子设备600还可以包括收发器604。需要说明的是,实际应用中收发器604不限于一个,该电子设备600的结构并不构成对本公开实施例的限定。
处理器601可以是CPU(Central Processing Unit,中央处理器),通用处理器,DSP(Digital Signal Processor,数据信号处理器),ASIC(Application Specific Integrated Circuit,专用集成电路),FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器601也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
总线602可包括一通路,在上述组件之间传送信息。总线602可以是PCI(Peripheral Component Interconnect,外设部件互连标准)总线或EISA(Extended Industry Standard Architecture,扩展工业标准结构)总线等。总线602可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器603可以是ROM(Read Only Memory,只读存储器)或可存储静态信息和指令的其他类型的静态存储设备,RAM(Random Access Memory,随机存取存储器)或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器603用于存储执行本公开方案的应用程序代码,并由处理器601来控制执行。处理器601用于执行存储器603中存储的应用程序代码,
以实现前述方法实施例所示的内容。
其中,电子设备包括但不限于:移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图6示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
本公开提供的服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN、以及大数据和人工智能平台等基础云计算服务的云服务器。终端可以是智能手机、平板电脑、笔记本电脑、台式计算机、智能音箱、智能手表等,但并不局限于此。终端以及服务器可以通过有线或无线通信方式进行直接或间接地连接,本公开在此不做限制。
本公开实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当其在计算机上运行时,使得计算机可以执行前述方法实施例中相应内容。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计
算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备执行上述实施例所示的方法。
根据本公开的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述各种可选实现方式中提供的方法。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包
括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的模块可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,模块的名称在某种情况下并不构成对该模块本身的限定,例如,A模块还可以被描述为“用于执行B操作的A模块”。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (25)
- 一种通信方法,应用于多连接接入点设备AP MLD,其特征在于,所述方法包括:确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;发送所述第一无线帧。
- 根据权利要求1所述的通信方法,其特征在于,所述将第一连接的限制目标唤醒时间R-TWT调度迁移到第二连接上包括:将第一R-TWT调度的低时延业务映射到所述第二连接上;和/或,广播所述第一R-TWT调度的参数信息。
- 根据权利要求2所述的通信方法,其特征在于,所述将第一R-TWT调度的低时延业务映射到所述第二连接上,包括:在所述第一无线帧中携带传输标识至连接映射TID-to-link mapping元素,在所述TID-to-link mapping元素中携带所述低时延业务以及所述低时延业务的业务类型。
- 根据权利要求1或2所述的通信方法,其特征在于,所述第一无线帧中携带R-TWT迁移元素,在所述R-TWT迁移元素中携带第一R-TWT调度的参数信息。
- 根据权利要求2或4中所述的通信方法,其特征在于,所述第一R-TWT调度的参数信息包括以下至少一项:所述第一R-TWT调度的数量信息、每个所述第一R-TWT调度的标识信息、每个所述第一R-TWT调度对应的原连接信息以及每个所述第一R-TWT调度对应的目标连接信息。
- 根据权利要求5所述的通信方法,其特征在于,所述R-TWT迁移元素包括以下至少一项:元素标识字段、长度字段、控制字段以及R-TWT迁移信息字段。
- 根据权利要求4或6所述的通信方法,其特征在于,所述R-TWT迁移元素的控制字段包括所述第一R-TWT调度的数量信息。
- 根据权利要求4至6中任一项所述的通信方法,其特征在于,所述R-TWT迁移信息字段包括所述第一R-TWT调度的参数信息。
- 根据权利要求1至8中任一项所述的通信方法,其特征在于,所述第一标识信息指示在所述第一连接失效前或中断前,将第一R-TWT调度迁移到第二连接上。
- 根据权利要求1至9中任一项所述的通信方法,其特征在于,所述第一无线帧包括信标帧或探测响应帧。
- 一种通信方法,应用于站点设备STA,其特征在于,所述方法包括:接收第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
- 根据权利要求11所述的通信方法,其特征在于,所述将第一连接的限制目标唤醒时间R-TWT调度迁移到第二连接上包括:将第一R-TWT调度的低时延业务映射到所述第二连接上;和/或,广播所述第一R-TWT调度的参数信息。
- 根据权利要求12所述的通信方法,其特征在于,所述接收第一无线帧,包括:接收所述第一无线帧,获取所述第一无线帧中携带的传输标识至连接映射TID-to-link mapping元素;其中,所述TID-to-link mapping元素中携带所述低时延业务以及所述低时延业务的业务类型。
- 根据权利要求11或12所述的通信方法,其特征在于,所述接收第一无线帧,包括:接收所述第一无线帧,获取所述第一无线帧中的携带R-TWT迁移元 素;其中,所述R-TWT迁移元素中携带第一R-TWT调度的参数信息。
- 根据权利要求12或14中所述的通信方法,其特征在于,所述第一R-TWT调度的参数信息包括以下至少一项:所述第一R-TWT调度的数量信息、每个所述第一R-TWT调度的标识信息、每个所述第一R-TWT调度对应的原连接信息以及每个所述第一R-TWT调度对应的目标连接信息。
- 根据权利要求15所述的通信方法,其特征在于,所述R-TWT迁移元素包括以下至少一项:元素标识字段、长度字段、控制字段以及R-TWT迁移信息字段。
- 根据权利要求14或16所述的通信方法,其特征在于,所述R-TWT迁移元素的控制字段包括所述第一R-TWT调度的数量信息。
- 根据权利要求14至16中任一项所述的通信方法,其特征在于,所述R-TWT迁移信息字段包括一个或多个单个R-TWT调度的参数信息。
- 根据权利要求11至18中任一项所述的通信方法,其特征在于,所述第一标识信息指示所述接入点设备在所述第一连接失效前或中断前,将第一R-TWT调度迁移到第二连接上。
- 根据权利要求11至19中任一项所述的通信方法,其特征在于,所述第一无线帧包括信标帧或探测响应帧。
- 根据权利要求11至20中任一项所述的通信方法,其特征在于,所述接收第一无线帧之后,所述方法包括:所述STA附属于所述第二连接的多连接站点设备,根据第一R-TWT调度的标识信息传输所述第一R-TWT调度的低时延业务。
- 一种电子设备,所述电子设备为多连接接入点设备AP MLD,其特征在于,所述电子设备包括:确定模块,用于确定第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上;发送模块,用于发送所述第一无线帧。
- 一种电子设备,所述电子设备为站点设备STA,其特征在于,所述电子设备包括:接收模块,用于接收第一无线帧;其中,所述第一无线帧中包括第一标识信息,所述第一标识信息指示接入点设备将第一连接的第一限制目标唤醒时间R-TWT调度迁移到第二连接上。
- 一种电子设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至10中任一项所述的方法或实现权利要求11至21中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至10中任一项所述的方法或实现权利要求11至21中任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380008407.6A CN116472750A (zh) | 2023-02-23 | 2023-02-23 | 通信方法、电子设备及存储介质 |
PCT/CN2023/077969 WO2024174178A1 (zh) | 2023-02-23 | 2023-02-23 | 通信方法、电子设备及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/077969 WO2024174178A1 (zh) | 2023-02-23 | 2023-02-23 | 通信方法、电子设备及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024174178A1 true WO2024174178A1 (zh) | 2024-08-29 |
Family
ID=87182934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/077969 WO2024174178A1 (zh) | 2023-02-23 | 2023-02-23 | 通信方法、电子设备及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116472750A (zh) |
WO (1) | WO2024174178A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111567125A (zh) * | 2018-01-10 | 2020-08-21 | 高通股份有限公司 | 用于支持辅信道操作的机制 |
CN112218355A (zh) * | 2019-07-12 | 2021-01-12 | 苹果公司 | 用于多链路无线局域网基础结构的功率节省 |
CN113541896A (zh) * | 2020-04-17 | 2021-10-22 | 华为技术有限公司 | 无线局域网中的信道指示方法和装置 |
WO2022032150A1 (en) * | 2020-08-06 | 2022-02-10 | Interdigital Patent Holdings, Inc. | Multi-link steering and control in wlan |
US20220386372A1 (en) * | 2021-05-25 | 2022-12-01 | Sony Group Corporation | Restricted target wait time (r-twt) operations and parameters |
-
2023
- 2023-02-23 WO PCT/CN2023/077969 patent/WO2024174178A1/zh unknown
- 2023-02-23 CN CN202380008407.6A patent/CN116472750A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111567125A (zh) * | 2018-01-10 | 2020-08-21 | 高通股份有限公司 | 用于支持辅信道操作的机制 |
CN112218355A (zh) * | 2019-07-12 | 2021-01-12 | 苹果公司 | 用于多链路无线局域网基础结构的功率节省 |
CN113541896A (zh) * | 2020-04-17 | 2021-10-22 | 华为技术有限公司 | 无线局域网中的信道指示方法和装置 |
WO2022032150A1 (en) * | 2020-08-06 | 2022-02-10 | Interdigital Patent Holdings, Inc. | Multi-link steering and control in wlan |
US20220386372A1 (en) * | 2021-05-25 | 2022-12-01 | Sony Group Corporation | Restricted target wait time (r-twt) operations and parameters |
Also Published As
Publication number | Publication date |
---|---|
CN116472750A (zh) | 2023-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230180208A1 (en) | Apparatus, system and method of scheduling time sensitive networking (tsn) wireless communications | |
US20140036879A1 (en) | Method and Apparatus for Configuring Transmission of a Power Headroom Report in Carrier Aggregation Systems | |
US11991635B2 (en) | Information sending and receiving method and device, terminal, and base station | |
WO2021103580A1 (zh) | 自动驾驶应用程序在不同开发平台间对接的方法 | |
CN107040977A (zh) | 一种系统信息传输方法及相关设备 | |
JP7373591B2 (ja) | Pdcchスキッピングおよびウェイクアップシグナリングを処理するためのメカニズム | |
JP2021516462A (ja) | データ伝送制御方法および関連製品 | |
EP3961999A1 (en) | Method for determining service transmission requirement, apparatus, and system | |
US11910205B2 (en) | Messaging in a wireless communication network | |
WO2024197732A1 (zh) | 通信方法、电子设备及存储介质 | |
JP2024526313A (ja) | 信号処理方法、信号処理装置、電子機器及び記憶媒体 | |
WO2024174178A1 (zh) | 通信方法、电子设备及存储介质 | |
WO2024164343A1 (zh) | 通信方法、电子设备及存储介质 | |
WO2024207486A1 (zh) | 省电信息协商方法、电子设备及存储介质 | |
WO2024108340A1 (zh) | 通信方法、电子设备及存储介质 | |
JP2021516889A (ja) | 同期信号送信方法、装置及びコンピュータ記憶媒体 | |
WO2024207483A1 (zh) | 通信方法、电子设备及存储介质 | |
WO2024082099A1 (zh) | 通信方法、电子设备及存储介质 | |
WO2024182923A1 (zh) | 通信方法、电子设备及存储介质 | |
WO2024221371A1 (zh) | 低时延业务传输方法、电子设备及存储介质 | |
WO2024216642A1 (zh) | 通信方法、电子设备及存储介质 | |
WO2024229703A1 (zh) | 休眠周期协商方法、电子设备及存储介质 | |
WO2024216643A1 (zh) | 通信方法、电子设备及存储介质 | |
WO2024192587A1 (zh) | 通信方法、电子设备及存储介质 | |
WO2024130667A1 (zh) | R-twt协议调整方法、装置、设备以及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23923355 Country of ref document: EP Kind code of ref document: A1 |