[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024174177A1 - 通信方法、装置、终端设备、介质、芯片、产品及程序 - Google Patents

通信方法、装置、终端设备、介质、芯片、产品及程序 Download PDF

Info

Publication number
WO2024174177A1
WO2024174177A1 PCT/CN2023/077967 CN2023077967W WO2024174177A1 WO 2024174177 A1 WO2024174177 A1 WO 2024174177A1 CN 2023077967 W CN2023077967 W CN 2023077967W WO 2024174177 A1 WO2024174177 A1 WO 2024174177A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
offset
transmission
time unit
time
Prior art date
Application number
PCT/CN2023/077967
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2023/077967 priority Critical patent/WO2024174177A1/zh
Publication of WO2024174177A1 publication Critical patent/WO2024174177A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically to a communication method, apparatus, terminal equipment, medium, chip, product and program.
  • SL Sidelink
  • PUCCH Physical Uplink Control Channel
  • Embodiments of the present application provide a communication method, apparatus, terminal equipment, medium, chip, product and program.
  • an embodiment of the present application provides a communication method, the method comprising:
  • the terminal device determines the starting time unit of the sidelink SL transmission and/or the starting time unit of the physical uplink control channel PUCCH transmission.
  • an embodiment of the present application provides a communication device, including:
  • the determination unit is used to determine the starting time unit of the sidelink SL transmission and/or the starting time unit of the physical uplink control channel PUCCH transmission.
  • an embodiment of the present application provides a terminal device, including: a processor and a memory,
  • the memory is used to store computer programs.
  • the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the method described in the first aspect.
  • an embodiment of the present application provides a computer storage medium, wherein the computer storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the method described in the first aspect.
  • an embodiment of the present application provides a chip, comprising: a processor, configured to call and run a computer program from a memory to implement the method described in the first aspect.
  • an embodiment of the present application provides a computer program product, the computer program product comprising a computer storage medium, the computer storage medium storing a computer program, the computer program comprising instructions executable by at least one processor, and the method described in the first aspect is implemented when the instructions are executed by the at least one processor.
  • an embodiment of the present application provides a computer program, which enables a computer to execute the method described in the first aspect.
  • the terminal device determines the starting time unit of the sidelink SL transmission and/or the starting time unit of the physical uplink control channel PUCCH transmission. In this way, the terminal device can first determine the starting time unit of the SL transmission and/or the starting time unit of the PUCCH transmission, and then start the SL transmission and/or PUCCH transmission from the starting time unit of the SL transmission and/or the starting time unit of the PUCCH transmission, and then the SL transmission and/or PUCCH transmission can be performed on the corresponding resources, which is conducive to improving the reliability of the SL transmission and/or PUCCH transmission.
  • FIG1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG2 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the architecture of another communication system provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a timing relationship provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of another timing relationship provided in an embodiment of the present application.
  • FIG6 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG8 is a schematic structural diagram of a terminal device provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120.
  • the network device 120 may communicate with the terminal device 110 via an air interface.
  • the terminal device 110 and the network device 120 support multi-service transmission.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NR system evolution system LTE on unlicensed spectrum (LTE-based access to unlicensed spectrum, LTE-U) system, NR on unlicensed spectrum (NR-based access to unlicensed spectrum) system.
  • NR-U Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • UMTS Universal Mobile Telecommunication System
  • IoT Internet of Things
  • NTN Non-terrestrial Network
  • eMTC enhanced Machine-Type Communications
  • future communication systems such as 6G, 7G communication systems
  • the network device 120 in the embodiment of the present application may include an access network device 121 and/or a core network device 122.
  • the access network device may provide communication coverage for a specific geographical area and may communicate with a terminal device 110 (eg, UE) located in the coverage area.
  • the terminal device in any embodiment of the present application can be a device with wireless communication function, which can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on the water surface (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons and satellites, etc.).
  • the terminal device in any embodiment of the present application can be called user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), user unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device.
  • the terminal device in any embodiment of the present application may include one of the following or a combination of at least two of them: Internet of Things (IoT) devices, satellite terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistants (PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, servers, mobile phones, tablet computers (Pad), computers with wireless transceiver functions, PDAs, desktop computers, personal digital assistants, portable media players, smart speakers, navigation devices, smart watches, smart glasses, smart necklaces and other wearable devices, pedometers, digital TVs, virtual reality (VR) terminal devices, augmented reality devices, Augmented Reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, as well as vehicles, on-board equipment, on-board modules, wireless modems, handheld devices, customer premises equipment (CPE), smart home appliances, etc. in the Internet
  • the terminal device 110 may be any terminal device, including but not limited to a terminal device that is compatible with the network device 120 or other terminal devices. Terminal equipment using wired or wireless connection.
  • the terminal device 110 can be used for device to device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the access network equipment 121 may include one of the following or a combination of at least two: evolved base stations (Evolutional Node B, eNB or eNodeB) in the Long Term Evolution (LTE) system, next generation radio access network (Next Generation Radio Access Network, NG RAN) equipment, base stations (gNB) in the NR system, small cells, micro cells, wireless controllers in the Cloud Radio Access Network (CRAN), access points for Wireless-Fidelity (Wi-Fi), transmission reception points (TRP), relay stations, access points, vehicle-mounted devices, wearable devices, hubs, switches, bridges, routers, satellites, network equipment in the future evolved Public Land Mobile Network (PLMN), etc.
  • Evolutional Node B, eNB or eNodeB evolved base stations
  • NG RAN next generation Radio Access Network
  • gNB next generation Radio Access Network
  • CRAN Cloud Radio Access Network
  • Wi-Fi Wireless-Fidelity
  • TRP transmission reception points
  • PLMN Public Land Mobile Network
  • the core network device 122 may be a 5G core network (5G Core, 5GC) device, and the core network device 122 may include one of the following or a combination of at least two: Access and Mobility Management Function (Access and Mobility Management Function, AMF), Authentication Server Function (Authentication Server Function, AUSF), User Plane Function (User Plane Function, UPF), Session Management Function (Session Management Function, SMF), Location Management Function (Location Management Function, LMF), Policy Control Function (Policy Control Function, PCF).
  • Access and Mobility Management Function Access and Mobility Management Function
  • AMF Access and Mobility Management Function
  • AUSF Authentication Server Function
  • UPF User Plane Function
  • Session Management Function Session Management Function
  • SMF Session Management Function
  • LMF Location Management Function
  • Policy Control Function Policy Control Function
  • the core network device may also be an Evolved Packet Core (EPC) device of an LTE network, for example, Session Management Function + Core Packet Gateway (SMF+PGW-C) device of a core network.
  • EPC Evolved Packet Core
  • SMF+PGW-C Session Management Function + Core Packet Gateway
  • SMF+PGW-C can simultaneously implement the functions that can be implemented by SMF and PGW-C.
  • the core network device 122 may also be called other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited in the embodiments of the present application.
  • the various functional units in the communication system 100 can also establish connections and achieve communication through the next generation network (NG) interface.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface for transmitting user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); the access network device, such as the next generation wireless access base station (gNB), can establish a user plane data connection with the UPF through the NG interface 3 (N3 for short); the access network device can establish a control plane signaling connection with the AMF through the NG interface 2 (N2 for short); the UPF can establish a control plane signaling connection with the SMF through the NG interface 4 (N4 for short); the UPF can exchange user plane data with the data network through the NG interface 6 (N6 for short); the AMF can establish a control plane signaling connection with the SMF through the NG interface 11 (N11 for short); the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • the access network device such as the next generation wireless access base station
  • Figure 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminal devices within its coverage area, which is not limited in the embodiments of the present application.
  • FIG. 1 is only an example of the system to which the present application is applicable.
  • the method shown in the embodiment of the present application can also be applied to other systems.
  • system and “network” are often used interchangeably in this article.
  • the term “and/or” in this article is only a description of the association relationship of the associated objects, indicating that there can be three relationships.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or” relationship.
  • the "indication" mentioned in the embodiment of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, B can be obtained through C; it can also mean that A and B have an association relationship.
  • the "correspondence” mentioned in the embodiment of the present application can mean that there is a direct or indirect correspondence relationship between the two, or it can mean that there is an association relationship between the two, or it can mean that the relationship between indicating and being indicated, configuring and being configured, etc.
  • predefined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices), and the present application does not limit its specific implementation method.
  • predefined may refer to the definition in the protocol.
  • the "protocol” may refer to a standard protocol in the field of communications, such as LTE protocols, NR protocols, and related protocols used in future communication systems, and the present application does not limit this.
  • 5G Fifth Generation Partnership Project
  • eMBB enhanced Mobile BroadBand
  • mMTC massive Machine Type Communication
  • URLLC Ultra-Reliable and Low Latency Communications
  • eMBB still aims at users to obtain multimedia content, services and data, and its demand is growing rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, in urban areas, and in rural areas, its capabilities and requirements vary greatly, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, remote medical operations (surgery), traffic safety, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of modules, etc.
  • NR can also be deployed independently.
  • a new radio resource control (RRC) state is defined, namely the RRC inactive (RRC_INACTIVE) state, which is different from the RRC idle (RRC_IDLE) state and the RRC active (RRC_ACTIVE) state.
  • RRC_IDLE Mobility is based on UE cell selection reselection, paging is initiated by the Core Network (CN), and the paging area is configured by the CN. There is no UE Access Stratum (AS) context on the base station side. There is no RRC connection.
  • CN Core Network
  • AS UE Access Stratum
  • RRC_CONNECTED (also called RRC_ACTIVE): There is an RRC connection, and a UE AS context exists between the base station and the UE. The network knows the location of the UE at the cell level. Mobility is controlled by the network. Unicast data can be transmitted between the UE and the base station.
  • Mobility is UE-based cell selection reselection, there is a connection between CN-NR, the UE AS context exists on a base station, paging is triggered by the Radio Access Network (RAN), the RAN-based paging area is managed by the RAN, and the network side knows the UE's location based on the RAN paging area level.
  • RAN Radio Access Network
  • NTN non-terrestrial network equipment
  • satellite communication is not limited by the user's geographical location. For example, general land communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or where communication coverage is not provided due to sparse population.
  • general land communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or where communication coverage is not provided due to sparse population.
  • satellite communication since one satellite can cover a large area of land, and satellites can orbit around the earth, in theory, every corner of the earth can be covered by satellite communication.
  • satellite communication has great social value.
  • Satellite communication can cover remote mountainous areas, poor and backward countries or regions at a low cost, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital divide with developed areas and promoting the development of these areas.
  • satellite communication has a long distance, and the cost of communication does not increase significantly as the communication distance increases; finally, satellite communication has high stability and is not restricted by natural disasters.
  • NTN technology can be combined with various communication systems.
  • NTN technology can be combined with NR system to form NR-NTN system.
  • NTN technology can be combined with Internet of Things (IoT) system to form IoT-NTN system.
  • IoT-NTN system can include NB-IoT-NTN system and eMTC-NTN system.
  • the NTN network consists of at least one of the following:
  • One or more gateways for connecting satellites to terrestrial public networks are One or more gateways for connecting satellites to terrestrial public networks
  • Feeder link a link used for communication between the gateway and the satellite;
  • Service link the link used for communication between the terminal and the satellite;
  • Satellite Based on the functions it provides, it can be divided into two types: transparent forwarding and regenerative forwarding. Among them, transparent forwarding: only provides the functions of wireless frequency filtering, frequency conversion and amplification; only provides transparent forwarding of signals, and does not change the waveform signal it forwards. Regenerative forwarding: In addition to providing the functions of wireless frequency filtering, frequency conversion and amplification, it can also provide demodulation/decoding, routing/conversion, encoding/modulation functions. It has some or all of the functions of a base station.
  • Intersatellite link exists in the regenerative forwarding network architecture.
  • FIG2 is a schematic diagram of an NTN scenario based on a transparent forwarding satellite provided in an embodiment of the present application
  • FIG3 is a schematic diagram of an NTN scenario based on a regenerative forwarding satellite provided in an embodiment of the present application.
  • the gateway and satellite communicate through the feeder link, and the satellite and terminal can communicate through the service link.
  • the gateway and satellite communicate through inter-satellite links, the gateway and satellite communicate through feeder links, and the satellite and terminal can communicate through service links.
  • the gateway is used to connect the satellite and the terrestrial public network (such as a data network).
  • the feeder link is used for the communication link between the gateway and the satellite.
  • the service link is used for the communication link between the terminal and the satellite.
  • the intersatellite link exists in the regenerative forwarding network architecture.
  • Satellites include but are not limited to: Low-Earth Orbit (LEO) satellites, Medium-Earth Orbit (MEO) satellites, Geostationary Earth Orbit (GEO) satellites, High-Earth Orbit (HEO) satellites, High Elliptical Orbit (HEO) satellites, etc. Satellites can use multiple beams to cover the ground. For example, a satellite can form dozens or even hundreds of beams to cover the ground. In other words, a satellite beam can cover a ground area with a diameter of tens to hundreds of kilometers to ensure satellite coverage and improve the system capacity of the entire satellite communication system.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High-Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude range of LEO satellites can be 500 km to 1500 km, the corresponding orbital period can be about 1.5 hours to 2 hours, the signal propagation delay of single-hop communication between users can generally be less than 20 milliseconds, the maximum satellite visibility time can be 20 minutes, the signal propagation distance of LEO satellites is short and the link loss is small, and the transmission power requirements of user terminals are not high.
  • the orbital altitude of GEO satellites can be 35786 km, the rotation period around the earth can be 24 hours, and the signal propagation delay of single-hop communication between users can generally be 250 milliseconds.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover a ground area with a diameter of tens to hundreds of kilometers.
  • the propagation delay of signal communication is usually less than 1ms.
  • the propagation delay of signal communication is very large, ranging from tens of milliseconds to hundreds of milliseconds.
  • the specific propagation delay is related to at least one of the following: satellite orbit height, satellite communication service type.
  • the timing relationship of the NTN system needs to be enhanced relative to the NR system.
  • the UE needs to consider the effect of timing advance (TA) when performing uplink transmission. Since the propagation delay in the system is large, the range of TA values is also relatively large.
  • TA timing advance
  • the UE considers the round-trip propagation delay and transmits in advance during uplink transmission, so that the signal can reach the network device in time slot n of the network device's uplink.
  • Figure 4 is a schematic diagram of a timing relationship provided in an embodiment of the present application.
  • the downlink time slot (e.g., gNB DL) and the uplink time slot (e.g., gNB UL) of the network device are aligned, that is, the downlink time slot n of the network device and the uplink time slot n of the network device are aligned.
  • the uplink transmission of the terminal device reaches the network device after a propagation delay of 1 (Delay1). That is, the uplink transmission of the network device is delayed by Delay 1 compared to the uplink transmission of the terminal device.
  • the downlink transmission of the network device reaches the terminal device after a propagation delay of 2 (Delay2). That is, the downlink transmission of the terminal device (UE DL) is delayed by Delay 2 compared to the downlink transmission of the network device.
  • the terminal device In order to align the uplink transmission of the terminal device with the uplink time slot of the network device, the terminal device needs to use a larger TA value. Furthermore, the terminal device also needs to introduce a larger offset value (eg, Koffset) when performing uplink transmission.
  • a larger offset value eg, Koffset
  • Figure 5 is a schematic diagram of another timing relationship provided in an embodiment of the present application.
  • the offset value is the downlink-uplink frame time offset (gNB DL-UL frame timing shift) of the network device, that is, the downlink time slot n of the network device and the uplink time slot n of the network device are not aligned.
  • the uplink transmission of the terminal device reaches the network device after a propagation delay of 1 (Delay1). That is, the uplink transmission of the network device is delayed by Delay 1 compared to the uplink transmission of the terminal device.
  • the downlink transmission of the network device reaches the terminal device after a propagation delay of 2 (Delay2). That is, the downlink transmission of the terminal device (UE DL) is delayed by Delay 2 compared to the downlink transmission of the network device.
  • the terminal device only needs to use a smaller TA value.
  • the network device may need additional scheduling complexity to handle the corresponding scheduling timing.
  • the timing relationship in the NR system is as follows:
  • the DCI includes the indication information of K 0 , which is used to determine the time slot for transmitting the PDSCH. For example, if the scheduling DCI is received on time slot n, the time slot allocated for PDSCH transmission is time slot K0 is determined according to the subcarrier spacing of PDSCH, ⁇ PDSCH and ⁇ PDCCH are used to determine the subcarrier spacing configured for PDSCH and Physical Downlink Control Channel (PDCCH), respectively.
  • the value range of K0 is 0 to 32.
  • the DCI-scheduled Physical Uplink Shared Channel (PUSCH) transmission timing When a UE is scheduled by DCI to send PUSCH, the DCI includes K 2 indication information, which is used to determine the time slot for transmitting the PUSCH. For example, if the scheduling DCI is received on time slot n, the time slot allocated for PUSCH transmission is time slot K 2 is determined according to the subcarrier spacing of PDSCH, ⁇ PUSCH and ⁇ PDCCH are used to determine the subcarrier spacing configured for PUSCH and PDCCH respectively. The value range of K 2 is 0 to 32.
  • RAR Random Access Response
  • HARQ-ACK Hybrid Automatic Repeat Qequest-Acknowledgment
  • PUCCH Physical Uplink Control Channel
  • the UE shall transmit the corresponding HARQ-ACK information on the PUCCH resources in time slot n+K 1 , where K 1 is the number of time slots and is indicated by the PDSCH-to-HARQ-timing-indicator information field in the DCI format, or provided by the downlink data to uplink feedback (dl-DataToUL-ACK) parameter.
  • K 1 0 corresponds to the last time slot of PUCCH transmission overlapping with the time slot of PDSCH reception or PDCCH reception indicating SPS PDSCH release.
  • MAC CE Medium Access Control Element
  • the CSI transmission timing on PUSCH is the same as the transmission timing of DCI-scheduled PUSCH transmission in general.
  • the CSI reference resource for reporting CSI in uplink time slot n′ is determined based on a single downlink time slot nn CSI_ref , where: ⁇ DL and ⁇ UL are the subcarrier spacing configurations for downlink and uplink, respectively.
  • n CSI_ref depends on the type of CSI reporting.
  • Aperiodic Sounding Reference Signal (SRS) transmission timing If a UE receives a DCI triggering the transmission of an aperiodic SRS in time slot n, the UE transmits an aperiodic SRS in time slot n.
  • the non-periodic SRS in each triggered SRS resource set is transmitted, where k is configured by the high-level parameter slot offset (slotOffset) in each triggered SRS resource set and is determined according to the subcarrier spacing corresponding to the triggered SRS transmission, ⁇ SRS and ⁇ PDCCH are the subcarrier spacing configurations of the triggered SRS transmission and the PDCCH carrying the trigger command, respectively.
  • slotOffset high-level parameter slot offset
  • the PDSCH reception timing in the NR system is only affected by the timing of the downlink receiving side and is not affected by the large transmission round-trip delay in the NTN system. Therefore, the NTN system can reuse the PDSCH reception timing in the NR system.
  • K offset also called koffset, Koffset, k_offset or K_offset, etc.
  • the transmission timing of the DCI-scheduled PUSCH (including the CSI transmitted on the PUSCH) is: If the scheduled DCI is received on time slot n, the time slot allocated for PUSCH transmission is time slot
  • Transmission timing of PUSCH scheduled by RAR grant For the time slot for PUSCH transmission scheduled by RAR grant, the UE transmits the PUSCH in the time slot n+K 2 + ⁇ +K offset .
  • Transmission timing of HARQ-ACK on PUCCH For the time slot of PUCCH transmission, the UE shall transmit the corresponding HARQ-ACK information on the PUCCH resources within the time slot n+K 1 +K offset .
  • MAC CE activation timing When the HARQ-ACK information corresponding to the PDSCH including the MAC CE command is transmitted in time slot n, the corresponding behavior indicated by the MAC CE command and the downlink configuration assumed by the UE should be transmitted from time slot n. It takes effect from the first time slot after the NTN, where X may be determined by the UE capability of the NTN and the value may not be 3.
  • the CSI reference resource timing For CSI reporting in uplink time slot n′, the CSI reference resource is based on a single downlink time slot Sure.
  • Aperiodic SRS transmission timing If a UE receives a DCI triggering the transmission of an aperiodic SRS in time slot n, the UE The non-periodic SRS in each triggered SRS resource set is transmitted.
  • the network will configure the cell-level K offset by broadcasting.
  • the network can configure a dedicated K offset for the UE through MAC. If the network does not configure a UE-specific K offset , the UE uses the broadcast K offset .
  • NTN has enhanced the scheduling timing of Uu interface.
  • the sending UE is configured as SL resource allocation mode 1, its resources for SL transmission
  • the timing of the UE receiving the PDCCH to the SL transmission, and the timing of the UE receiving the Physical Sidelink Feedback Channel (PSFCH) to the PUCCH transmission, will be affected by the increase of the TA of the UE sending in the NTN network.
  • PSFCH Physical Sidelink Feedback Channel
  • FIG6 is a flow chart of a communication method provided in an embodiment of the present application. As shown in FIG6 , the method is applied to a terminal device, and the method includes:
  • the terminal device determines a starting time unit for sidelink SL transmission and/or a starting time unit for physical uplink control channel PUCCH transmission.
  • SL transmission can be replaced by one of the following: SL information/data transmission, SL information/data sending, SL sending, SL channel transmission, etc.
  • PUCCH transmission may be replaced by one of the following: UCI transmission, UCI sending, PUCCH information/data transmission, PUCCH information/data sending.
  • the time unit may include at least one of the following: one or more frames, one or more subframes, one or more time slots, one or more symbols, etc.
  • the start time unit may include at least one of the following: one or more frames at the start, one or more subframes at the start, one or more time slots at the start, and one or more symbols at the start.
  • the start time unit may include: one or more symbols at the start of one or more time slots at the start.
  • the start time unit may include: one or more symbols at the start of one or more time slots at the start of one or more frames/subframes.
  • the start time unit may include: one or more time slots at the start.
  • the start time unit may include at least one of the following: a start frame, a start subframe, a start time slot, a start symbol.
  • the start time unit may include: a start symbol in a start time slot.
  • the start time unit may include: a start symbol in a start time slot in a start frame/subframe.
  • the start time unit may include: a start time slot.
  • the start time unit may include: a start time slot.
  • the terminal device may determine the start time unit of SL transmission.
  • the terminal device may determine the start time unit of PUCCH transmission.
  • the terminal device may determine the start time unit of SL transmission and the start time unit of PUCCH transmission.
  • the start time unit of SL transmission and the start time unit of PUCCH transmission may be different time units.
  • the terminal device may start SL transmission from the starting time unit of SL transmission.
  • the starting time unit of SL transmission may be used for SL transmission, or in other words, the resources corresponding to the starting time unit of SL transmission may be used to carry SL information.
  • the starting time unit of SL transmission may not be used for SL transmission, and the time unit after the starting time unit of SL transmission is used for SL transmission, or in other words, the resources corresponding to the starting time unit of SL transmission are not used to carry SL information, and the time unit after the starting time unit of SL transmission is used to carry SL information.
  • the terminal device may perform PUCCH transmission starting from the starting time unit of PUCCH transmission.
  • the starting time unit of PUCCH transmission may be used for PUCCH transmission, or in other words, the resources corresponding to the starting time unit of PUCCH transmission may be used to carry PUCCH information.
  • the starting time unit of PUCCH transmission may not be used for PUCCH transmission, and the time unit after the starting time unit of PUCCH transmission is used for PUCCH transmission, or in other words, the resources corresponding to the starting time unit of PUCCH transmission are not used to carry PUCCH information, and the time unit after the starting time unit of PUCCH transmission is used to carry PUCCH information.
  • the terminal device may determine the starting time unit of SL transmission and/or the starting time unit of PUCCH transmission based on at least one of the following: pre-configuration of the terminal device, information configured by the network device to the terminal device, predefined information, and information agreed upon in the protocol.
  • the terminal device determines the starting time unit of the sidelink SL transmission and/or the starting time unit of the physical uplink control channel PUCCH transmission. In this way, the terminal device can first determine the starting time unit of the SL transmission and/or the starting time unit of the PUCCH transmission, and then start the SL transmission and/or PUCCH transmission from the starting time unit of the SL transmission and/or the starting time unit of the PUCCH transmission, and then the SL transmission and/or PUCCH transmission can be performed on the corresponding resources, which is conducive to improving the reliability of the SL transmission and/or PUCCH transmission.
  • the service cell of the terminal device includes an NTN cell.
  • the terminal device determines the starting time unit of SL transmission and/or the starting time unit of PUCCH transmission.
  • the terminal device determines a starting time unit of SL transmission in the NTN cell and/or a starting time unit of PUCCH transmission in the NTN cell.
  • the terminal device is configured as SL resource allocation mode 1, or the terminal device is configured for the SL
  • the transmission resources are scheduled by the network device to the terminal device.
  • the start time unit of SL transmission may include: a start time unit of SL transmission on the SL resources scheduled by the network device to the terminal device.
  • SL resource allocation mode 1 may include: SL resources are scheduled by network devices.
  • the terminal device determines that the SL resource allocation mode is SL resource allocation mode 1 according to pre-configuration, that is, the terminal device is configured as SL resource allocation mode 1.
  • the terminal device can activate SL resource allocation mode 1 by itself, so that the terminal device is configured as SL resource allocation mode 1.
  • the terminal device can receive activation of SL resource allocation mode 1 sent by the network device, activate SL resource allocation mode 1, and thus the terminal device is configured as SL resource allocation mode 1.
  • SL resource allocation mode 1 may be included in multiple SL resource allocation modes.
  • multiple SL resource allocation modes include at least one of the following: SL resource allocation mode 1, SL resource allocation mode 2, etc.
  • SL resource allocation mode 2 may include: SL resources are selected by the terminal device itself.
  • the terminal device determines the starting time unit of SL transmission, which may include: the terminal device determines the starting time unit of SL transmission based on the first offset.
  • the terminal device determines the starting time unit of the SL transmission, which may include: the terminal device determines the starting time unit of the SL transmission indicated/scheduled by the PDCCH.
  • the terminal device determines the starting time unit of the SL transmission, including: the terminal device determines the starting time unit of the SL transmission indicated/scheduled by the PDCCH based on the first offset.
  • the first offset may include at least one of the following: one or more frames, one or more subframes, one or more time slots, one or more symbols, etc., or the first offset may be a period of time, or the first offset may be 0.
  • the SL transmission indicated/scheduled by PDCCH may include: PDCCH indicating/scheduling SL resources, and the SL resources are used for SL transmission.
  • the SL transmission indicated/scheduled by the PDCCH may be a single SL transmission.
  • the SL resources indicated/scheduled by the PDCCH may be resources used for a single SL transmission. For example, each time a terminal device receives a PDCCH, it performs a single SL transmission indicated/scheduled by the PDCCH. The next SL transmission indicated/scheduled by the PDCCH needs to be indicated by the next received PDCCH.
  • the SL transmission indicated/scheduled by PDCCH may be multiple SL transmissions, or periodic SL transmissions, or semi-persistent SL transmissions.
  • the SL resources indicated/scheduled by PDCCH may be resources used for multiple SL transmissions, or may be resources used for periodic SL transmissions, or may be resources used for semi-persistent SL transmissions.
  • the terminal device receives a PDCCH once, and performs multiple SL transmissions indicated/scheduled by PDCCH, or performs periodic SL transmissions indicated/scheduled by PDCCH, or performs semi-persistent SL transmissions indicated/scheduled by PDCCH.
  • the network device may also indicate the stopping of SL transmission through PDCCH.
  • PDCCH may indicate at least one of the following SL transmissions: period, start time unit, end time unit.
  • the terminal device starts SL transmission at the start time unit of the SL transmission indicated/scheduled by PDCCH.
  • the terminal device may start SL transmission at the start time point or the end time point of the start time unit of the SL transmission indicated/scheduled by PDCCH.
  • the PDCCH may also indicate at least one of the following: an end time unit of SL transmission, a start time unit of PUCCH transmission, and an end time unit of PUCCH transmission.
  • the terminal device when the PDCCH indicates the end time unit of the SL transmission, the terminal device performs SL transmission at a time between the start time unit of the SL transmission and the end time unit of the SL transmission.
  • the terminal device when the PDCCH indicates the start time unit of PUCCH transmission, the terminal device starts PUCCH transmission at the start time unit of PUCCH transmission, or the terminal device starts PUCCH transmission at the start time point or the end time point of the start time unit of PUCCH transmission.
  • the network device may start transmitting PUCCH at the start time unit of PUCCH transmission, or the network device may start transmitting PUCCH at the start time point or the end time point of the start time unit of PUCCH transmission.
  • the terminal device determines the starting time unit of the SL transmission indicated/scheduled by the PDCCH based on the time when the PDCCH is received and the first offset.
  • the moment may be a time point, or may be a time unit.
  • the terminal device determines the starting time unit of the SL transmission indicated/scheduled by the PDCCH based on the sum of the time when the PDCCH is received and the first offset.
  • the terminal device determines the starting time unit of the SL transmission indicated/scheduled by the PDCCH based on the starting time of the downlink time unit in which the downlink control information DCI corresponding to the PDCCH is received and the first offset.
  • the terminal device determines the starting time unit of the SL transmission indicated/scheduled by the PDCCH based on the sum of the starting time of the downlink time unit where the downlink control information DCI corresponding to the PDCCH is received and the first offset.
  • the downlink time unit may include: a downlink frame, a downlink subframe, a downlink time slot or a downlink symbol, etc.
  • the downlink time unit may include a downlink time slot.
  • the method further includes: the terminal device receiving a SL dynamic scheduling authorization indicated by the PDCCH.
  • the method also includes: the terminal device receives activation of SL configured grant type 2 (sidelink configured grant type 2) indicated by the PDCCH.
  • the method further includes: the terminal device receives the SL transmission authorization indicated by the PDCCH through activation indicated by the PDCCH.
  • the terminal device determines the starting time unit of the SL transmission indicated/scheduled by the PDCCH based on the first offset.
  • SL configuration grant type 2 may include SL transmission grant provided by PDCCH/DCI.
  • activation of SL transmission grant is indicated by PDCCH/DCI, and the parameters required for SL transmission grant are configured by information element configuration grant configuration (e.g. IE ConfiguredGrantConfig), but activation of PDCCH/DCI is required for use.
  • information element configuration grant configuration e.g. IE ConfiguredGrantConfig
  • SL configuration authorization type 2 is included in multiple SL configuration authorization types.
  • the multiple SL configuration authorization types include at least one of the following: SL configuration authorization type 1 and SL configuration authorization type 2.
  • SL configuration authorization type 1 indicates that the SL transmission authorization is configured by RRC through high-layer signaling.
  • the starting time unit of the SL transmission indicated/scheduled by the PDCCH is in the resource pool of the SL transmission and is no earlier than the first time
  • the first moment is determined based on the first offset.
  • the resource pool for SL transmission may also be referred to as a SL data resource pool or a SL communication resource pool.
  • the resource pool for SL transmission may be a resource pool for SL transmission.
  • the resource pool for SL transmission may include: a resource pool for SL transmission and/or a resource pool for SL reception.
  • the resource pool for SL transmission may be predefined by the terminal device, or preconfigured, or agreed upon by a protocol.
  • the first moment can be determined based on the first offset and the moment when the terminal device receives the PDCCH.
  • the starting point of the starting time unit of the SL transmission indicated/scheduled by the PDCCH is in the resource pool of the SL transmission and is no earlier than the first moment.
  • the starting time unit of the SL transmission indicated/scheduled by the PDCCH is no earlier than the first time slot after the first moment, or no earlier than the first symbol after the first moment, or no earlier than the first frame after the first moment, or no earlier than the first subframe after the first moment.
  • no earlier than includes later than or equal to.
  • the starting time of the starting time unit of the SL transmission indicated/scheduled by the PDCCH may be the same as the first time, or may be after the first time (ie, later than the first time).
  • the first time is determined based on the first offset and based on at least one of the following:
  • a second time where the second time includes a start time of a downlink timeslot where downlink control information DCI corresponding to the PDCCH is located;
  • the duration of the time unit is the duration of the time unit.
  • the first moment can be determined based on the first offset and the second moment.
  • the first moment can be determined based on the first offset and TA.
  • the first moment can be determined based on the first offset, the time unit interval indicated by the DCI, and the duration of the time unit.
  • the first moment can be determined based on the first offset, the second moment, and TA.
  • the first moment can be determined based on the first offset, the second moment, the time unit interval indicated by the DCI, and the duration of the time unit.
  • the first moment can be determined based on the first offset, TA, the time unit interval indicated by the DCI, and the duration of the time unit.
  • the first moment can be determined based on the first offset, the second moment, TA, the time unit interval indicated by the DCI, and the duration of the time unit.
  • the second moment may be other.
  • the second moment may include the end moment of the downlink control information DCI corresponding to the PDCCH, or the start moment of the downlink control information DCI corresponding to the PDCCH, or the end moment of the downlink time slot where the downlink control information DCI corresponding to the PDCCH is located, or the start moment or end moment of the downlink symbol where the downlink control information DCI corresponding to the PDCCH is located, etc.
  • the time unit interval may include a frame interval, a subframe interval, a time slot interval or a symbol interval.
  • the time unit interval may be an integer multiple or a decimal multiple of a time unit.
  • the time unit interval may be 1 time unit, 0.5 time unit, 1.5 time units, 5 time units, etc.
  • the time slot interval may be 1 time slot, 0.5 time slot, 1.5 time slot, 5 time slots, etc.
  • the first time is determined based on the first offset and at least one of: the second time; the TA/2; the product of the time unit interval and the duration of the time unit.
  • the first moment can be determined based on the first offset and the second moment.
  • the first moment can be determined based on the first offset and TA/2.
  • the first moment can be determined based on the first offset, and the product of the time unit interval and the duration of the time unit.
  • the first moment can be determined based on the first offset, the second moment, and TA/2.
  • the first moment can be determined based on the first offset, the second moment, and the product of the time unit interval and the duration of the time unit.
  • the first moment can be determined based on the first offset, TA/2, and the product of the time unit interval and the duration of the time unit.
  • the first moment can be determined based on the first offset, the second moment, TA/2, and the product of the time unit interval and the duration of the time unit.
  • the first time is determined based on the following:
  • the result of subtracting TA/2 from the second time is added to the first offset, and then added to the product of the time unit interval and the duration of the time unit.
  • the first moment is determined by the following formula:
  • T DL is the second time
  • T TA is TA
  • offset1 is the first offset
  • K SL is the time unit interval
  • T slot is the duration of the time slot.
  • the first offset is determined based on a second offset configured by a network device to the terminal device.
  • the first offset may be the same as or different from the second offset.
  • the first offset may be greater than, less than or equal to the second offset.
  • the first offset is determined based on a second offset at a cell level.
  • the second offset at the cell level may be referred to as a cell level offset in other embodiments.
  • the first offset may be a second offset at a cell level, or the first offset may be obtained by calculating the second offset at a cell level.
  • the second offset at the cell level may include at least one of the following: a maximum cell offset, a minimum cell offset, and an offset determined based on the maximum cell offset and/or the minimum cell offset.
  • the second offset at the cell level may be broadcast/multicast by the network device.
  • the second offset at the cell level may be included in one of the following, or carried in one of the following, or indicated by one of the following: system message (System Information, SI), master information block (Master Information Block, MIB), system information block (System Information Block, SIB).
  • the second cell-level offset obtained by different terminal devices in a cell is the same.
  • the first offset is determined based on a second offset at a cell level.
  • the second offset specific to the terminal device may be referred to as a terminal device specific offset in other embodiments.
  • the second offset specific to the terminal device may be configured by the network device to the terminal device separately.
  • the second offset specific to the terminal device obtained by different terminal devices in a cell may be the same or different.
  • the network device may configure the second offset specific to the terminal device to the terminal device according to the distance between the network device and the terminal device or the information propagation delay.
  • the first offset is determined based on the second offset specific to the terminal device.
  • the first offset is determined based on a second offset at a cell level and a first value.
  • the first value may be any real number greater than or equal to 0.
  • the first value may be 0, 0.5, 1, 2, or 3.
  • the first value when the second offset at the cell level is the maximum offset of the cell, the first value is a real number greater than or equal to 0 and less than or equal to 1.
  • the second offset at the cell level is the minimum offset of the cell, the first value is a real number greater than or equal to 1.
  • the first offset may be determined based on the product of the second offset at the cell level and the first value.
  • the first offset may be determined based on the sum of the second offset at the cell level and the first value.
  • the first offset may be determined based on the difference between the second offset at the cell level and the first value.
  • the first offset is determined based on a product of a second offset at a cell level and a first value.
  • the first offset may include: a product of a second cell-level offset and a first value.
  • the first offset may include: an offset value obtained by mathematically calculating the product of the second cell-level offset and the first value.
  • the first offset is determined based on a second offset specific to the terminal device.
  • the first offset may be a second offset specific to the terminal device, or the first offset may be calculated by using the second offset specific to the terminal device.
  • the first offset is determined based on the second offset specific to the terminal device.
  • the second offset specific to the terminal device may be unicasted by the network device to the terminal device, or the second offset specific to the terminal device may be determined by the terminal device based on the second offset at the cell level.
  • the terminal device determines the second offset specific to the terminal device by performing mathematical calculations on the second offset at the cell level.
  • the second offset specific to the terminal device may be included in one of the following, or carried in one of the following, or indicated by one of the following: RRC signaling, MAC CE, or DCI corresponding to the PDCCH.
  • the first offset is determined based on a second offset specific to the terminal device and a first value.
  • the first offset may be determined based on the product of the second offset specific to the terminal device and the first value.
  • the first offset may be determined based on the sum of the second offset specific to the terminal device and the first value.
  • the first offset may be determined based on the difference between the second offset specific to the terminal device and the first value.
  • the first offset is determined based on a product of a second offset specific to the terminal device and a first value.
  • the first offset may include: the product of the second offset specific to the terminal device and the first value.
  • the first offset may include: an offset value obtained by mathematically calculating the product of the second offset specific to the terminal device and the first value.
  • the first value is configured by the network device to the terminal device, or is determined by the terminal device based on pre-configuration, or is agreed upon by a protocol, or is predefined.
  • the network device may broadcast/multicast/unicast the first value, so that the terminal device can obtain the first value.
  • the first numerical value may be included in one of the following, or carried in one of the following, or indicated by one of the following: system message, MIB, SIB, RRC signaling, MAC CE, and DCI corresponding to the PDCCH.
  • the first value may be related to the distance between the terminal device and the network device.
  • the first value may be related to the information propagation time from the terminal device to the network device and/or the information propagation time from the network device to the terminal device. For example, the longer the distance between the terminal device and the network device, or the longer the information propagation time, the larger the value of the first value. Conversely, the shorter the distance between the terminal device and the network device, or the shorter the information propagation time, the smaller the value of the first value.
  • the first value is related to at least one of the following of the terminal device: moving speed, moving direction, moving distance, moving route, etc.
  • moving speed moving direction
  • moving distance moving route
  • the first value gradually increases.
  • the moving distance of the terminal device gradually increases and moves toward the network device
  • the first value gradually decreases.
  • the first value may be selected from a plurality of values.
  • the plurality of values may be configured by the network device to the terminal device, or may be determined by the terminal device based on pre-configuration, or may be agreed upon by a protocol, or may be predefined.
  • the first offset is an offset configured by the network device to the terminal device.
  • the first offset is carried in at least one of the following, or the first offset is indicated by at least one of the following: system information block SIB, terminal device dedicated radio resource control RRC signaling, media access control control unit MAC CE, the PDCCH.
  • the first offset is predefined or agreed upon by protocol.
  • the first offset is associated with a first cell type; wherein the first cell type is included in one or more cell types, and different cell types in the multiple cell types are associated with different offsets.
  • the first cell type is associated with a first offset
  • the second cell type is associated with a second offset
  • the third cell type is associated with a third offset
  • the different cell types may include at least one of the following differences: different NTN scenarios corresponding to the cells, and different heights of network devices corresponding to the cells from the ground.
  • the NTN scenarios may include at least one of the following: GEO, MEO, LEO.
  • different offsets are associated with different cell types, so that when the cell type of the service cell of the terminal device is different, the terminal device uses different offsets.
  • different cell types are associated with the same first offset. For example, any two different cell types are associated with the first offset.
  • different cell types are associated with the same first offset, so that the cell types of the serving cells of the terminal devices are different.
  • the terminal device uses the same first offset.
  • the terminal device determines the starting time unit of PUCCH transmission, including: the terminal device determines the starting time unit of PUCCH transmission based on a first time interval.
  • the terminal device determines the starting time unit of PUCCH transmission, including: the terminal device determines the starting time unit of the PUCCH transmission corresponding to the reception of the physical side feedback channel PSFCH.
  • the terminal device determines a start time unit for PUCCH transmission, including:
  • the terminal device determines, based on the first time interval, a starting time unit for receiving the corresponding PUCCH transmission via a physical side feedback channel PSFCH.
  • the first time interval may include at least one of the following: one or more frames, one or more subframes, one or more time slots, one or more symbols, etc., or the first time interval may be a period of time, or the first time interval may be 0.
  • the starting time unit of the PUCCH transmission corresponding to the PSFCH reception may be after the first time interval after the PSFCH reception.
  • the terminal device first receives the PDCCH, and then determines the starting time unit of the SL transmission indicated/scheduled by the PDCCH, and then the terminal device starts the SL transmission from the starting time unit of the SL transmission, or the terminal device starts the SL transmission from the starting time point or the end time point of the starting time unit of the SL transmission, and then the terminal device determines the starting time unit of the PUCCH transmission corresponding to the PSFCH reception when receiving the PSFCH, so that the terminal device starts the PUCCH transmission at the starting time unit of the PUCCH transmission, or the terminal device starts the PUCCH transmission at the starting time point or the end time point of the starting time unit of the PUCCH transmission.
  • the PUCCH transmission includes transmitting hybrid automatic repeat request HARQ feedback information on the PUCCH resource.
  • the HARQ feedback information may be HARQ feedback information for a received PSFCH.
  • the HARQ feedback information may include HARQ-ACK or Hybrid Automatic Repeat Qequest-Negative Acknowledgment (HARQ-NACK).
  • the start time unit of the PUCCH transmission is after the first time interval after the PSFCH reception ends.
  • the end of PSFCH reception may include: after the time slot corresponding to the received PSFCH, or after the start time point or end time point of the time slot corresponding to the received PSFCH, or after the start time point or end time point corresponding to the received PSFCH, or after the start time point or end time point of the symbol corresponding to the received PSFCH, or after the symbol corresponding to the received PSFCH.
  • the start time unit of the PUCCH transmission is determined based on the sum of the end time unit of the PSFCH reception and the first time interval.
  • the start time unit of the PUCCH transmission may be no earlier than the sum of the end time unit of the PSFCH reception and the first time interval.
  • the start time unit of the PUCCH transmission may be the sum of the end time unit of the PSFCH reception and the first time interval.
  • the start time unit of the PUCCH transmission may be obtained by mathematically calculating the sum of the end time unit of the PSFCH reception and the first time interval.
  • the start time unit of the PUCCH transmission is determined based on the sum of the end time unit of the PSFCH reception, the first time interval, and the second time interval;
  • the second time interval includes: the time corresponding to the sum of the end time unit of the PSFCH reception and the first time interval as the starting time, and the time interval to the first or most recent available PUCCH resource.
  • the start time unit of the PUCCH transmission may include: the sum of the end time unit of the PSFCH reception, the first time interval and the second time interval.
  • the start time unit of the PUCCH transmission may include: determined by mathematically calculating the sum of the end time unit of the PSFCH reception, the first time interval and the second time interval.
  • the second time interval may include at least one of the following: one or more frames, one or more subframes, one or more time slots, one or more symbols, etc., or the second time interval may be a period of time, or the second time interval may be 0.
  • the end time unit of the PSFCH reception is time slot n, and the first time interval is m, which can be divided into at least one of the following situations:
  • the second time interval is 0;
  • the second time interval is 0 time slots or 2 symbols
  • the second time interval is 1 time slot; if there is an available PUCCH resource on the third symbol in time slot n+m+1, the second time interval is 1 time slot or 1 Time slot 2 symbols.
  • the first time interval is a minimum time unit interval between the PSFCH transmission resource and the PUCCH transmission resource.
  • the first time interval is determined based on a minimum time unit interval between the PSFCH transmission resource and the PUCCH transmission resource.
  • the first time interval may be determined by mathematically calculating the minimum time unit interval.
  • the first time interval may be the minimum time interval plus a specific time interval.
  • the first time interval is determined by the terminal device based on the capabilities of the terminal device.
  • the corresponding time intervals may be the same or different for different capabilities.
  • the corresponding time interval is the first time interval; and/or, when the capability of the terminal device is the second capability, the corresponding time interval is the second time interval.
  • the capability of the terminal device may be determined based on a pre-configuration of the terminal device, or based on a configuration from a network device to the terminal device.
  • the terminal device may have multiple capabilities, and the terminal device may determine a capability currently activated or used by the terminal device from the multiple capabilities based on the pre-configuration, or the terminal device may determine a capability currently activated or used from the multiple capabilities based on a configuration from a network device to the terminal device.
  • the terminal device may have one capability.
  • the terminal device may send the first time interval to the network device.
  • the terminal device may send the capability of the terminal device to the network device, so that the network device determines the first time interval based on the capability of the terminal device.
  • the first time interval is configured by the network device to the terminal device.
  • the first time interval is broadcast/multicast by a network device.
  • the first time interval may be included in one of the following, or carried in one of the following, or indicated by one of the following: system message, MIB, SIB.
  • the first time interval is configured by the network device to the terminal device via terminal device-specific signaling.
  • the first time interval may be included in one of the following, or carried in one of the following, or indicated by one of the following: RRC signaling, MAC CE, or DCI corresponding to the PDCCH.
  • the first time interval is indicated in a DCI corresponding to the PDCCH.
  • the first time interval is predefined or agreed upon by protocol.
  • the method further comprises:
  • the terminal device sends a second time interval to the network device; wherein the second time interval is determined by the terminal device based on the capability of the terminal device, and the second time interval is used by the terminal device and/or the network device to determine the first time interval.
  • the terminal device and/or the network device may determine the second time interval as the first time interval.
  • the terminal device and/or the network device may obtain the first time interval by performing mathematical calculation on the second time interval.
  • the first time interval is included in one or more time intervals configured by a higher layer.
  • the first time interval is a time interval configured by the high-level layer.
  • the first time interval is selected from the plurality of time intervals.
  • the network device may indicate the first time interval among the plurality of time intervals to the terminal device.
  • the network device may indicate the first time interval among the plurality of time intervals to the terminal device through one of the following: system message, MIB, SIB, RRC signaling, MAC CE, DCI corresponding to the PDCCH.
  • the terminal device may determine the first time interval among the plurality of time intervals according to a preconfiguration.
  • UE determines the starting time slot of SL transmission based on a first offset (also referred to as a first time domain offset).
  • a first offset also referred to as a first time domain offset
  • the value of the first offset is configured by a network device or is a predefined value.
  • a UE configured for SL resource allocation mode 1 when the UE receives a PDCCH indicating a SL dynamic scheduling grant, or when the UE receives a PDCCH indicating activation of SL configuration authorization type 2, if the current cell is an NTN cell, then: the UE determines the time slot corresponding to the first SL transmission scheduled by the PDCCH based on the time when the PDCCH is received and the first time domain offset.
  • the time slot of the first SL transmission resource scheduled by the PDCCH is located in the corresponding resource pool and is not earlier than The first time slot of the time.
  • T DL is the time corresponding to the start position of the downlink timeslot where the DCI is located
  • T TA is the TA corresponding to the timing advance group TAG of the serving cell to which the UE receives the DCI;
  • K SL is the time slot interval determined by the Time gap information field in the DCI and the high-level configuration sl-DCI-ToSL-Trans.
  • T slot is Indicates the duration of the time slot;
  • offset1 is the first offset.
  • the first offset offset1 may be determined by at least one of the following methods:
  • Method 1 Determined by network device configuration.
  • offset1 is determined according to the cell-level Koffset (i.e., cell-specific Koffset (cellSpecificKoffset)) broadcast by the network device in the NTN cell.
  • cell-level Koffset i.e., cell-specific Koffset (cellSpecificKoffset)
  • offset1 is determined according to the cell-level Koffset broadcast by the network device in the NTN cell, that is, replace the UE Specific Koffset in the above formula with cellSpecificKoffset;
  • offset1 is a parameter configured separately by the network device (i.e., it is unrelated to Koffset).
  • This configuration parameter can be carried in at least one of the signalings of SIB, UE-specific RRC signaling, MAC CE, and PDCCH.
  • Method 2 Use predefined values.
  • an offset1 value is predefined respectively, and the UE uses the corresponding offset1 value according to the current NTN cell type;
  • a common offset1 value is predefined for all NTN scenarios.
  • the UE transmits the corresponding HARQ feedback information on the first available PUCCH resource no earlier than the first time interval after the end of PSFCH reception, and the value of the first time interval is determined by the UE capability and/or network device configuration or a predefined method.
  • the UE receives the PSFCH in time slot n, where time slot n is the end time slot of the PSFCH reception opportunity. If the current cell is an NTN cell, then: the UE transmits the corresponding HARQ feedback information on the PUCCH resource in time slot n+k+delta_pucch.
  • delta_pucch is the time interval from PUCCH time slot n+k to the first available PUCCH resource
  • k is the minimum time slot interval between the PSFCH transmission resource and the PUCCH transmission resource.
  • the relevant interpretation of the k value includes at least one of the following:
  • the UE/network device determines the k value based on the UE processing capability
  • the UE reports the k value to the network device
  • the network device configures the k value to the UE through broadcast or UE-specific signaling (such as RRC signaling);
  • the UE can report the minimum k value it can support based on its capabilities
  • the network device indicates in the DCI indicating SL scheduling, that is, reuses the relevant technology, and the high layer configures multiple PSFCH to PUCCH interval values (i.e., parameter sl-PSFCH-ToPUCCH), and the DCI indicates one of the values;
  • the k value uses a predefined value.
  • the embodiment of the present application provides a method for a sidelink terminal in an NTN to determine a scheduling timing. Using this method, the transmission/reception of the UE on the Uu interface and the reception/transmission on the PC5 interface can be better matched with the larger TA of the UE in the NTN.
  • the UE determines the starting time slot of SL transmission based on a first time domain offset, and the value of the first offset is configured by a network device or is a predefined value.
  • the UE transmits corresponding HARQ feedback information on the first available PUCCH resource no earlier than the first time interval after the end of PSFCH reception, and the value of the first time interval is determined by the UE capability and/or network device configuration or a predefined method.
  • downlink indicates that the transmission direction of the signal or data
  • uplink is used to indicate that the transmission direction of the signal or data is a second direction from the user equipment of the cell to the site
  • sidelink is used to indicate that the transmission direction of the signal or data is a third direction from user equipment 1 to user equipment 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term "and/or” is merely a description of the association relationship of associated objects, indicating that three relationships may exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist at the same time, and B exists alone. In addition, the character "/" in this article generally indicates that the previously associated objects are in an "or" relationship.
  • FIG. 7 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application, which is applied to a terminal device. As shown in FIG. 7 , the communication device 700 includes:
  • the determination unit 701 is used to determine the starting time unit of the sidelink SL transmission and/or the starting time unit of the physical uplink control channel PUCCH transmission.
  • the communication device 700 may be included in a terminal device, or the communication device 700 may be applied in a terminal device.
  • the communication device 700 also includes: a communication unit 702, which is used to: start SL transmission from the starting time unit of SL transmission, or from the starting time point or end time point of the starting time unit of SL transmission, or, start PUCCH transmission from the starting time unit of PUCCH transmission, or from the starting time point or end time point of the starting time unit of PUCCH transmission.
  • a communication unit 702 which is used to: start SL transmission from the starting time unit of SL transmission, or from the starting time point or end time point of the starting time unit of SL transmission, or, start PUCCH transmission from the starting time unit of PUCCH transmission, or from the starting time point or end time point of the starting time unit of PUCCH transmission.
  • the service cell of the terminal device includes an NTN cell.
  • the terminal device is configured as SL resource allocation mode 1, or the resources of the terminal device used for the SL transmission are scheduled by a network device to the terminal device.
  • the determination unit 701 is further used to: determine the starting time unit of the SL transmission indicated/scheduled by the PDCCH based on the first offset.
  • the determination unit 701 is further used to determine the starting time unit of the SL transmission indicated/scheduled by the PDCCH based on the time when the PDCCH is received and the first offset.
  • the communication unit 702 is further used to: receive the SL dynamic scheduling authorization indicated by the PDCCH, or receive the activation of the SL configuration authorization type 2 indicated by the PDCCH, or receive the activation of the SL transmission authorization indicated by the PDCCH through the PDCCH indication.
  • the starting time unit of the SL transmission indicated/scheduled by the PDCCH is in the resource pool of the SL transmission and is no earlier than the first time
  • the first moment is determined based on the first offset.
  • the first time is determined based on the first offset and based on at least one of the following:
  • a second time where the second time includes a start time of a downlink timeslot where downlink control information DCI corresponding to the PDCCH is located;
  • the duration of the time unit is the duration of the time unit.
  • the first time is determined based on the first offset and at least one of: the second time; the TA/2; the product of the time unit interval and the duration of the time unit.
  • the first time is determined based on the following:
  • the result of subtracting TA/2 from the second time is added to the first offset, and then added to the product of the time unit interval and the duration of the time unit.
  • the first offset is determined based on a second offset configured by a network device to the terminal device.
  • the first offset is determined based on a second offset at a cell level.
  • the first offset is determined based on a second offset at a cell level.
  • the first offset is determined based on a second offset at a cell level and a first value.
  • the first offset is determined based on a product of a second offset at a cell level and a first value.
  • the first offset is determined based on a second offset specific to the terminal device.
  • the first offset is determined based on a second offset specific to the terminal device and a first value.
  • the first offset is determined based on a product of a second offset specific to the terminal device and a first value.
  • the first value is configured by the network device to the terminal device, or is configured by the terminal device based on Determined by preconfiguration, or agreed upon by protocol, or predefined.
  • the first offset is an offset configured by the network device to the terminal device.
  • the first offset is carried in at least one of the following, or the first offset is indicated by at least one of the following: system information block SIB, terminal device dedicated radio resource control RRC signaling, media access control control unit MAC CE, the PDCCH.
  • the first offset is predefined or agreed upon by protocol.
  • the first offset is associated with a first cell type; wherein the first cell type is included in one or more cell types, and different cell types in the multiple cell types are associated with different offsets.
  • the determination unit 701 is further used to: determine, based on the first time interval, a starting time unit for receiving the PUCCH transmission corresponding to the physical sidelink feedback channel PSFCH.
  • the PUCCH transmission includes transmitting hybrid automatic repeat request HARQ feedback information on the PUCCH resource.
  • the start time unit of the PUCCH transmission is after the first time interval after the PSFCH reception ends.
  • the start time unit of the PUCCH transmission is determined based on the sum of the end time unit of the PSFCH reception and the first time interval.
  • the start time unit of the PUCCH transmission is determined based on the sum of the end time unit of the PSFCH reception, the first time interval, and the second time interval;
  • the second time interval includes: the time corresponding to the sum of the end time unit of the PSFCH reception and the first time interval as the starting time, and the time interval to the first or most recent available PUCCH resource.
  • the first time interval is a minimum time unit interval between the PSFCH transmission resource and the PUCCH transmission resource, or the first time interval is determined based on the minimum time unit interval between the PSFCH transmission resource and the PUCCH transmission resource.
  • the first time interval is determined by the terminal device based on the capabilities of the terminal device.
  • the first time interval is configured by the network device to the terminal device.
  • the first time interval is broadcast/multicast by the network device, or the first time interval is configured by the network device to the terminal device through terminal device-specific signaling.
  • the first time interval is indicated in a DCI corresponding to the PDCCH.
  • the first time interval is predefined or agreed upon by protocol.
  • the communication unit 702 is also used to: send a second time interval to a network device; wherein the second time interval is determined by the terminal device based on the capability of the terminal device, and the second time interval is used by the terminal device and/or the network device to determine the first time interval.
  • the first time interval is included in one or more time intervals configured by a higher layer.
  • Figure 8 is a schematic structural diagram of a terminal device provided in an embodiment of the present application.
  • the terminal device 800 shown in Figure 8 may include a processor 810 and a memory 820, wherein the memory 820 is used to store computer programs, and the processor 810 is used to call and run the computer program stored in the memory 820, so that the terminal device 800 executes the method in any of the above embodiments.
  • the memory 820 may be a separate device independent of the processor 810 , or may be integrated into the processor 810 .
  • the terminal device 800 may further include a transceiver 830 , and the processor 810 may control the transceiver 830 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of the antennas may be one or more.
  • An embodiment of the present application further provides a computer storage medium, which stores one or more programs.
  • the one or more programs can be executed by one or more processors to implement the communication method in any embodiment of the present application.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • FIG9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 900 shown in FIG9 includes a processor 910.
  • the processor 910 is used to call and run a computer program from a memory to implement a method in any embodiment of the present application.
  • the chip 900 may further include a memory 920.
  • the processor 910 may call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated into the processor 910 .
  • the chip 900 may further include an input interface 930.
  • the processor 910 may control the input interface 930 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940.
  • the processor 910 may control the output interface 940 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • An embodiment of the present application also provides a computer program product, which includes a computer storage medium, the computer storage medium storing a computer program, and the computer program including instructions that can be executed by at least one processor.
  • the instructions are executed by the at least one processor, the communication method in any embodiment of the present application is implemented.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the computer program product in the embodiments of the present application may also be referred to as a software product in other embodiments.
  • An embodiment of the present application also provides a computer program, which enables a computer to execute the communication method in any embodiment of the present application.
  • the computer program can be applied to the terminal device in the embodiments of the present application.
  • the computer program runs on the computer, the computer executes the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the processor, communication device or chip of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor, communication device or chip may include any one or more of the following integrations: general processor, application specific integrated circuit (Application Specific Integrated Circuit, ASIC), digital signal processor (Digital Signal Processor, DSP), digital signal processing device (Digital Signal Processing Device, DSPD), programmable logic device (Programmable Logic Device, PLD), field programmable gate array (Field Programmable Gate Array, FPGA), central processing unit (Central Processing Unit, CPU), graphics processing unit (Graphics Processing Unit, GPU), embedded neural network processor (neural-network processing units, NPU), controller, microcontroller, microprocessor, programmable logic device, discrete gate or transistor logic device, discrete hardware components.
  • the methods, steps and logic diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as a hardware decoding processor for execution, or a combination of hardware and software modules in the decoding processor for execution.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory or computer storage medium in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM Direct Rambus RAM
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM,
  • static RAM static random access memory
  • dynamic RAM dynamic random access memory
  • the memory in the embodiments of the present invention includes, but is not limited to, these and any other suitable types of memory.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • a time interval, a time period, a duration range, a duration or a time window, etc. may include all endpoint times, or may include part of the endpoint times (for example, including the left endpoint time but not the right endpoint time, or including the right endpoint time but not the left endpoint time), or may not include the endpoint time.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置、终端设备、介质、芯片、产品及程,该方法包括:终端设备确定侧行SL传输的起始时间单元和/或物理上行控制信道PUCCH传输的起始时间单元。

Description

通信方法、装置、终端设备、介质、芯片、产品及程序 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种通信方法、装置、终端设备、介质、芯片、产品及程序。
背景技术
侧行(Sidelink,SL)传输是终端设备与终端设备之间的传输,物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输是终端设备向网络设备发送的。
终端设备的SL传输和/或PUCCH传输是本领域一直以来关心的问题。
发明内容
本申请实施例提供一种通信方法、装置、终端设备、介质、芯片、产品及程序。
第一方面,本申请实施例提供一种通信方法,所述方法包括:
终端设备确定侧行SL传输的起始时间单元和/或物理上行控制信道PUCCH传输的起始时间单元。
第二方面,本申请实施例提供一种通信装置,包括:
确定单元,用于确定侧行SL传输的起始时间单元和/或物理上行控制信道PUCCH传输的起始时间单元。
第三方面,本申请实施例提供一种终端设备,包括:处理器和存储器,
所述存储器用于存储计算机程序,
所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述终端设备执行第一方面所述方法。
第四方面,本申请实施例提供一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现第一方面所述方法。
第五方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,以实现如第一方面所述方法。
第六方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机存储介质,所述计算机存储介质存储计算机程序,所述计算机程序包括能够由至少一个处理器执行的指令,当所述指令由所述至少一个处理器执行时实现第一方面所述方法。
第七方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行如第一方面所述方法。
在本申请实施例中,终端设备确定侧行SL传输的起始时间单元和/或物理上行控制信道PUCCH传输的起始时间单元。这样,终端设备能够先确定SL传输的起始时间单元和/或PUCCH传输的起始时间单元,然后从SL传输的起始时间单元和/或PUCCH传输的起始时间单元开始,进行SL传输和/或PUCCH传输,进而SL传输和/或PUCCH传输能够在相应地资源上进行,有利于提高SL传输和/或PUCCH传输的可靠性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例的一个应用场景的示意图;
图2为本申请实施例提供的一种通信系统的架构示意图;
图3为本申请实施例提供的另一种通信系统的架构示意图;
图4为本申请实施例提供的一种定时关系的示意图;
图5为本申请实施例提供的另一种定时关系的示意图;
图6为本申请实施例提供的一种通信方法的流程示意图;
图7为本申请实施例提供的通信装置的结构组成示意图;
图8为本申请实施例提供的一种终端设备示意性结构图;
图9为本申请实施例的芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
图1为本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、非地面网络(Non-terrestrial Network,NTN)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、或未来的通信系统(例如6G、7G通信系统)等。
本申请实施例中的网络设备120可以包括接入网设备121和/或核心网设备122。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
本申请任一实施例中的终端设备可以是一种具有无线通信功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。本申请任一实施例中的终端设备,可以称为用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请任一实施例中的终端设备,可以包括以下之一或者至少两者的组合:物联网(Internet of Things,IoT)设备、卫星终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、服务器、手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、掌上电脑、台式计算机、个人数字助理、便捷式媒体播放器、智能音箱、导航装置、智能手表、智能眼镜、智能项链等可穿戴设备、计步器、数字TV、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端以及车联网系统中的车、车载设备、车载模块、无线调制解调器(modem)、手持设备(handheld)、客户终端设备(Customer Premise Equipment,CPE)、智能家电等。
可选地,终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备 采用有线或者无线连接的终端设备。
可选地,终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
接入网设备121可以包括以下之一或者至少两者的组合:长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB)、下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备、NR系统中的基站(gNB)、小站、微站、云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器、无线保真(Wireless-Fidelity,Wi-Fi)的接入点、传输接收点(transmission reception point,TRP)、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、卫星、未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
核心网设备122可以是5G核心网(5G Core,5GC)设备,核心网设备122可以包括以下之一或者至少两者的组合:接入与移动性管理功能(Access and Mobility Management Function,AMF)、认证服务器功能(Authentication Server Function,AUSF)、用户面功能(User Plane Function,UPF)、会话管理功能(Session Management Function,SMF)、位置管理功能(Location Management Function,LMF)、策略控制功能(Policy Control Function,PCF)。在另一些实施方式中,核心网络设备也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备122也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”、“协议约定”、“预先确定”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
当前,随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)国际标准组织开始研发第五代(5th Genenration,5G)。5G的主要应用场景为:增强移动宽带(enhanced Mobile BroadBand, eMBB),海量机器类型通信(massive Machine TypeCommunication,mMTC),高可靠低延迟通信(Ultra-Reliable and Low Latency Communications,URLLC)。
eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,便如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
NR也可以独立部署,5G网络环境中为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC非激活(RRC_INACTIVE)状态,这种状态有别于RRC空闲(RRC_IDLE)状态和RRC激活(RRC_ACTIVE)状态。
RRC_IDLE:移动性为基于UE的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在UE接入层(Access Stratum,AS)上下文。不存在RRC连接。
RRC_CONNECTED(也称RRC_ACTIVE):存在RRC连接,基站和UE存在UE AS上下文。网络侧知道UE的位置是具体小区级别的。移动性是网络侧控制的移动性。UE和基站之间可以传输单播数据。
RRC_INACTIVE:移动性为基于UE的小区选择重选,存在CN-NR之间的连接,UE AS上下文存在某个基站上,寻呼由无线接入网(Radio Access Network,RAN)触发,基于RAN的寻呼区域由RAN管理,网络侧知道UE的位置是基于RAN的寻呼区域级别的。
3GPP正在研究非地面通信网络设备(Non Terrestrial Network,NTN)技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
NTN技术可以和各种通信系统结合。例如,NTN技术可以和NR系统结合为NR-NTN系统。又例如,NTN技术可以和物联网(Internet of Things,IoT)系统结合为IoT-NTN系统。作为示例,IoT-NTN系统可以包括NB-IoT-NTN系统和eMTC-NTN系统。
NTN网络由以下至少之一的部分组成:
一个或者多个网关,用于连接卫星和地面公共网络;
馈线链路:用于网关和卫星之间通信的链路;
服务链路:用于终端和卫星之间通信的链路;
卫星:从其提供的功能上可以分为透明转发和再生转发这两种。其中,透明转发:只提供无线频率滤波,频率转换和放大的功能;只提供信号的透明转发,不会改变其转发的波形信号。再生转发:除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能。其具有基站的部分或者全部功能。
星间链路:存在于再生转发网络架构下。
图2为本申请实施例提供的基于透传转发卫星的NTN场景的示意图,图3为本申请实施例提供的基于再生转发卫星的NTN场景的示意图。
如图2所示,对于基于透传转发卫星的NTN场景,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。如图3所示,对于基于再生转发卫星的NTN场景,卫星和卫星之间通过星间链路(InterStar link)进行通信,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。
在图2和图3中,网关用于连接卫星和地面公共网络(例如数据网络)。馈线链路用于网关和卫星之间通信的链路。服务链路用于终端和卫星之间通信的链路。星间链路存在于再生转发网络架构下。
应理解,上述卫星包括但不限于:低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭 圆轨道(High Elliptical Orbit,HEO)卫星等等。卫星可采用多波束覆盖地面,例如,一颗卫星可以形成几十甚至数百个波束来覆盖地面。换言之,一个卫星波束可以覆盖直径几十至上百公里的地面区域,以保证卫星的覆盖以及提升整个卫星通信系统的系统容量。
作为示例,LEO卫星的高度范围可以为500千米~1500千米,相应轨道周期约可以为1.5小时~2小时,用户间单跳通信的信号传播延迟一般可小于20毫秒,最大卫星可视时间可以为20分钟,LEO卫星的信号传播距离短且链路损耗少,对用户终端的发射功率要求不高。GEO卫星的轨道高度可以35786km,围绕地球旋转周期可以为24小时,用户间单跳通信的信号传播延迟一般可为250毫秒。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
在陆地通信系统中,信号通信的传播时延通常小于1ms。在NTN系统中,由于终端设备和卫星(或者说网络设备)之间的通信距离很远,信号通信的传播时延很大,范围可以从几十毫秒到几百毫秒,具体的传播时延与以下至少之一相关:卫星轨道高度、卫星通信的业务类型。为了处理比较大的传播时延,NTN系统的定时关系相对于NR系统需要增强。
在NTN系统中,和NR系统一样,UE在进行上行传输时需要考虑定时提前(Timing Advance,TA)的影响。由于系统中的传播时延较大,因此TA值的范围也比较大。当UE被调度在时隙n进行上行传输时,该UE考虑往返传播时延,在上行传输时提前传输,从而可以信号到达网络设备时在网络设备上行的时隙n上。
图4为本申请实施例提供的一种定时关系的示意图,如图4所示,网络设备的下行(例如gNB DL)时隙和上行时隙(例如gNB UL)是对齐的,即网络设备的下行时隙n和网络设备的上行时隙n是对齐的。
终端设备的上行(UE UL)传输,经过传播时延1(Delay1)到达网络设备,即网络设备的上行传输相较于终端设备的上行传输延迟时延1。
网络设备的下行传输,经过传播时延2(Delay2)到达终端设备,即终端设备的下行(UE DL)传输相较于网络设备的下行传输延迟时延2。
为了使终端设备的上行传输和网络设备的上行时隙对齐,终端设备需要使用一个较大的TA值。进一步,终端设备在进行上行传输时,也需要引入一个较大的偏移值(例如Koffset)。
图5为本申请实施例提供的另一种定时关系的示意图,如图5所示,网络设备的下行(例如gNB DL)时隙和上行时隙(例如gNB UL)之间有一个偏移值,该偏移值为网络设备下行-上行帧时间偏移(gNB DL-UL frame timing shift),即网络设备的下行时隙n和网络设备的上行时隙n是不对齐的。
终端设备的上行(UE UL)传输,经过传播时延1(Delay1)到达网络设备,即网络设备的上行传输相较于终端设备的上行传输延迟时延1。
网络设备的下行传输,经过传播时延2(Delay2)到达终端设备,即终端设备的下行(UE DL)传输相较于网络设备的下行传输延迟时延2。
在这种情况下,如果想要使终端设备的上行传输和网络设备的上行时隙对齐,终端设备只需要使用一个较小的TA值。但是,该情况下网络设备可能需要额外的调度复杂度来处理相应的调度时序。
NR系统中的时序关系如下:
物理下行共享信道(Physical Downlink Shared Channel,PDSCH)接收时序:当UE被下行控制信息(Downlink Control Information,DCI)调度接收PDSCH时,该DCI中包括K0的指示信息,该K0用于确定传输该PDSCH的时隙。例如,如果在时隙n上收到该调度DCI,那么被分配用于PDSCH传输的时隙为时隙其中,K0是根据PDSCH的子载波间隔确定的,μPDSCH和μPDCCH分别用于确定为PDSCH和物理下行控制信道(Physical Downlink Control Channel,PDCCH)配置的子载波间隔。K0的取值范围是0到32。
DCI调度的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的传输时序:当UE被DCI调度发送PUSCH时,该DCI中包括K2的指示信息,该K2用于确定传输该PUSCH的时隙。例如,如果在时隙n上收到该调度DCI,那么被分配用于PUSCH传输的时隙为时隙其中,K2是根据PDSCH的子载波间隔确定的,μPUSCH和μPDCCH分别用于确定为PUSCH和PDCCH配置的子载波间隔。K2的取值范围是0到32。
随机接入响应(Random Access Response,RAR)授权(grant)调度的PUSCH的传输时序:对于被RAR grant调度进行PUSCH传输的时隙,如果UE发起物理随机接入信道(Physical Random Access Channel,PRACH)传输后,该UE收到包括该对应RAR grant消息的PDSCH的结束位置在时隙n,那么UE在时隙n+K2+Δ上传输该PUSCH,其中,K2和Δ是协议约定的。
物理上行控制信道(Physical Uplink Control Channel,PUCCH)上传输混合自动重传请求-确认(Hybrid Automatic Repeat Qequest-Acknowledgment,HARQ-ACK)的传输时序:对于PUCCH传输的时隙,如果一个PDSCH接收的结束位置在时隙n或一个指示半持续调度(Semi-Persistent Scheduling,SPS)PDSCH释放的PDCCH接收的结束位置在时隙n,UE应在时隙n+K1内的PUCCH资源上传输对应的HARQ-ACK信息,其中K1是时隙个数并且是通过DCI格式中PDSCH到HARQ定时指示(PDSCH-to-HARQ-timing-indicator)信息域来指示的,或是通过下行数据到上行反馈(dl-DataToUL-ACK)参数提供的。K1=0对应PUCCH传输的最后一个时隙与PDSCH接收或指示SPS PDSCH释放的PDCCH接收的时隙重叠。
媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)激活时序:当包括MAC CE命令的PDSCH对应的HARQ-ACK信息在时隙n上传输,该MAC CE命令指示的对应行为以及UE假设的下行配置应从时隙后的第一个时隙开始生效,其中,表示子载波间隔配置μ下每个子帧包括的时隙个数。
PUSCH上的信道状态信息(Channel State Information,CSI)传输时序:PUSCH上的CSI传输时序和一般情况下DCI调度PUSCH传输的传输时序相同。
CSI参考资源时序:对于在上行时隙n′上上报CSI的CSI参考资源是根据单个下行时隙n-nCSI_ref确定的,其中,μDL和μUL分别是下行和上行的子载波间隔配置。nCSI_ref的取值取决于CSI上报的类型。
非周期探测参考信号(Sounding Reference Signal,SRS)传输时序:如果UE在时隙n上收到DCI触发传输非周期SRS,该UE在时隙上传输每个被触发的SRS资源集合中的非周期SRS,其中k是通过每个被触发的SRS资源集合中的高层参数时隙偏移(slotOffset)配置的并且是根据被触发的SRS传输对应的子载波间隔确定的,μSRS和μPDCCH分别是被触发的SRS传输和携带触发命令的PDCCH的子载波间隔配置。
NR系统中的PDSCH接收时序只受下行接收侧的时序影响,不受NTN系统中的大传输往返时延的影响,因此NTN系统可以重用NR系统中的PDSCH接收时序。
对于其他受下行接收和上行发送交互影响的时序,为了能在NTN系统中正常工作,或者说,为了克服NTN系统中的大传输时延,时序关系需要增强。一个简单的方案是在系统中引入一个偏移参数Koffset(也称koffset、Koffset、k_offset或K_offset等),并将该参数应用到相关的时序关系中。
DCI调度的PUSCH(包括PUSCH上传输的CSI)的传输时序:如果在时隙n上收到该调度DCI,那么被分配用于PUSCH传输的时隙为时隙
RAR grant调度的PUSCH的传输时序:对于被RAR grant调度进行PUSCH传输的时隙,UE在时隙n+K2+Δ+Koffset上传输该PUSCH。
PUCCH上传输HARQ-ACK的传输时序:对于PUCCH传输的时隙,UE应在时隙n+K1+Koffset内的PUCCH资源上传输对应的HARQ-ACK信息。
MAC CE激活时序:当包括MAC CE命令的PDSCH对应的HARQ-ACK信息在时隙n上传输,该MAC CE命令指示的对应行为以及UE假设的下行配置应从时隙后的第一个时隙开始生效,其中,X可能由NTN的UE能力确定,取值可以不为3。
CSI参考资源时序:对于在上行时隙n′上上报CSI的CSI参考资源是根据单个下行时隙确定的。
非周期SRS传输时序:如果UE在时隙n上收到DCI触发传输非周期SRS,该UE在时隙上传输每个被触发的SRS资源集合中的非周期SRS。
对于Koffset的配置,网络会通过广播的方式配置小区级的Koffset。对于连接态的UE,网络可以通过MAC为UE配置专属的Koffset。如果网络没有配置UE专属的Koffset,则UE使用广播的Koffset
为了适配NTN中UE维护的较大的TA,目前NTN针对Uu接口的调度时序进行了增强。对于NTN网络下的SL通信,如果发送方UE被配置为SL资源分配模式1,由于其用于SL传输的资源 完全由其服务基站调度决定,此时发送方UE从接收PDCCH到SL传输的定时或时序(timing),以及UE从接收到物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)到PUCCH传输的timing,都会因为NTN网络中发送方UE TA的增大而受到影响。在NTN中如何对Uu传输和SL传输之间的timing进行增强,目前没有公开的方案。
图6为本申请实施例提供的一种通信方法的流程示意图,如图6所示,该方法应用于终端设备,该方法包括:
S601、终端设备确定侧行SL传输的起始时间单元和/或物理上行控制信道PUCCH传输的起始时间单元。
可选地,SL传输可以替换为以下之一:SL信息/数据传输、SL信息/数据发送,SL发送、SL信道传输等。
可选地,PUCCH传输可以替换为以下之一:UCI传输、UCI发送、PUCCH信息/数据传输、PUCCH信息/数据发送。
可选地,在本申请任一实施例中,时间单元可以包括以下至少之一:一个或多个帧、一个或多个子帧、一个或多个时隙、一个或多个符号等。
可选地,起始时间单元可以包括以下至少之一:起始的一个或多个帧、起始的一个或多个子帧、起始的一个或多个时隙、起始的一个或多个符号。例如,起始时间单元可以包括:起始的一个或多个时隙中起始的一个或多个符号。又例如,起始时间单元可以包括:起始的一个或多个帧/子帧中起始的一个或多个时隙中起始的一个或多个符号。再例如,起始时间单元可以包括:起始的一个或多个时隙。
可选地,起始时间单元可以包括以下至少之一:起始帧、起始子帧、起始时隙、起始符号。例如,起始时间单元可以包括:起始时隙中的起始符号。又例如,起始时间单元可以包括:起始帧/子帧中的起始时隙中的起始符号。再例如,起始时间单元可以包括:起始时隙。示例性地,起始时间单元可以包括:起始时隙。
可选地,终端设备可以确定SL传输的起始时间单元。可选地,终端设备可以确定PUCCH传输的起始时间单元。可选地,终端设备可以确定SL传输的起始时间单元和PUCCH传输的起始时间单元。可选地,SL传输的起始时间单元与PUCCH传输的起始时间单元可以是不同的时间单元。
可选地,在终端设备确定SL传输的起始时间单元的情况下,终端设备可以在从SL传输的起始时间单元开始进行SL传输。可选地,SL传输的起始时间单元可以用于进行SL传输,或者说,SL传输的起始时间单元对应的资源可以用于承载SL信息。可选地,SL传输的起始时间单元可以不用于进行SL传输,SL传输的起始时间单元之后的时间单元用于进行SL传输,或者说,SL传输的起始时间单元对应的资源不用于承载SL信息,SL传输的起始时间单元之后的时间单元用于承载SL信息。
可选地,在终端设备确定PUCCH传输的起始时间单元的情况下,终端设备可以在从PUCCH传输的起始时间单元开始进行PUCCH传输。可选地,PUCCH传输的起始时间单元可以用于进行PUCCH传输,或者说,PUCCH传输的起始时间单元对应的资源可以用于承载PUCCH信息。可选地,PUCCH传输的起始时间单元可以不用于进行PUCCH传输,PUCCH传输的起始时间单元之后的时间单元用于进行PUCCH传输,或者说,PUCCH传输的起始时间单元对应的资源不用于承载PUCCH信息,PUCCH传输的起始时间单元之后的时间单元用于承载PUCCH信息。
可选地,终端设备可以根据以下至少之一确定SL传输的起始时间单元和/或PUCCH传输的起始时间单元:终端设备的预配置、网络设备向终端设备配置的信息、预定义信息、协议约定的信息。
在本申请实施例中,终端设备确定侧行SL传输的起始时间单元和/或物理上行控制信道PUCCH传输的起始时间单元。这样,终端设备能够先确定SL传输的起始时间单元和/或PUCCH传输的起始时间单元,然后从SL传输的起始时间单元和/或PUCCH传输的起始时间单元开始,进行SL传输和/或PUCCH传输,进而SL传输和/或PUCCH传输能够在相应地资源上进行,有利于提高SL传输和/或PUCCH传输的可靠性。
在一些实施例中,所述终端设备的服务小区包括NTN小区。
可选地,在所述终端设备的服务小区包括NTN小区的情况下,终端设备确定SL传输的起始时间单元和/或PUCCH传输的起始时间单元。
可选地,终端设备确定NTN小区下的SL传输的起始时间单元,和/或,NTN小区下的PUCCH传输的起始时间单元。
在一些实施例中,所述终端设备配置为SL资源分配模式1,或者所述终端设备的用于所述SL 传输的资源是网络设备向所述终端设备调度的。
可选地,SL传输的起始时间单元,可以包括:网络设备向所述终端设备调度的SL资源上的SL传输的起始时间单元。
可选地,SL资源分配模式1可以包括:SL资源是网络设备调度的。
可选地,终端设备根据预配置确定SL资源分配模式为SL资源分配模式1,即所述终端设备配置为SL资源分配模式1。可选地,终端设备可以自行激活SL资源分配模式1,从而所述终端设备配置为SL资源分配模式1。可选地,终端设备可以接收网络设备发送的SL资源分配模式1的激活,激活SL资源分配模式1,从而所述终端设备配置为SL资源分配模式1。
可选地,SL资源分配模式1可以包括在多个SL资源分配模式中。可选地,多个SL资源分配模式包括以下至少之一:SL资源分配模式1、SL资源分配模式2等。可选地,SL资源分配模式2可包括:SL资源是终端设备自己选择的。
在一些实施例中,所述终端设备确定SL传输的起始时间单元,可以包括:所述终端设备基于所述第一偏移量,确定SL传输的起始时间单元。
在一些实施例中,所述终端设备确定SL传输的起始时间单元,可以包括:所述终端设备确定PDCCH指示/调度的所述SL传输的起始时间单元。
在一些实施例中,所述终端设备确定SL传输的起始时间单元,包括:所述终端设备基于所述第一偏移量,确定PDCCH指示/调度的所述SL传输的起始时间单元。
可选地,第一偏移量可以包括以下至少之一:一个或多个帧、一个或多个子帧、一个或多个时隙、一个或多个符号等,或者,第一偏移量可以为一段时长,或者,第一偏移量可以为0。
可选地,PDCCH指示/调度的所述SL传输,可以包括:PDCCH指示/调度SL资源,SL资源用于SL传输。
可选地,PDCCH指示/调度的所述SL传输,可以是一次SL的传输。这样,PDCCH指示/调度SL资源可以是用于一次SL传输的资源。例如,终端设备每接收到一次PDCCH,进行一次PDCCH指示/调度的所述SL传输,下次进行的PDCCH指示/调度的所述SL传输,需要通过下次接收到的PDCCH来指示。
可选地,PDCCH指示/调度的所述SL传输,可以是多次SL的传输,或者周期性SL的传输,或者半持久性SL的传输。这样,PDCCH指示/调度SL资源可以是用于多次SL传输的资源,或者可以是用于周期性SL传输的资源,或者可以是用于半持久性SL传输的资源。例如,终端设备接收一次PDCCH,进行多次PDCCH指示/调度的所述SL传输,或者进行周期性的PDCCH指示/调度的所述SL传输,或者进行半持久的PDCCH指示/调度的所述SL传输。可选地,网络设备还可以通过PDCCH来指示停止SL的传输。可选地,PDCCH可以指示SL传输的以下至少之一:周期,开始时间单元、结束时间单元。
示例性地,在PDCCH指示/调度的所述SL传输的起始时间单元的情况下,终端设备在PDCCH指示/调度的所述SL传输的起始时间单元,开始进行SL传输。示例性地,在PDCCH指示/调度的所述SL传输的起始时间单元的情况下,终端设备可以在PDCCH指示/调度的所述SL传输的起始时间单元的起始时间点或结束时间点,开始进行SL传输。
可选地,PDCCH还可以指示以下至少之一:SL传输的结束时间单元、PUCCH传输的起始时间单元、PUCCH传输的结束时间单元。
示例性地,在PDCCH指示SL传输的结束时间单元的情况下,终端设备在SL传输的起始时间单元与SL传输的结束时间单元之间的时间上进行SL传输。
示例性地,在PDCCH指示PUCCH传输的起始时间单元的情况下,终端设备在PUCCH传输的起始时间单元,或者终端设备在PUCCH传输的起始时间单元的起始时间点或结束时间点,开始进行PUCCH传输。可选地,网络设备可以在PUCCH传输的起始时间单元,或者网络设备可以在PUCCH传输的起始时间单元的起始时间点或结束时间点,开始传输PUCCH。
在一些实施例中,所述终端设备基于接收到所述PDCCH的时刻和所述第一偏移量,确定所述PDCCH指示/调度的所述SL传输的起始时间单元。
可选地,在本申请任一实施例中,时刻可以为时间点,或者,可以为时间单元。
可选地,所述终端设备基于接收到所述PDCCH的时刻与所述第一偏移量之和,确定所述PDCCH指示/调度的所述SL传输的起始时间单元。
可选地,所述终端设备基于接收到所述PDCCH对应的下行控制信息DCI所在的下行时间单元的起始时刻,和所述第一偏移量,确定所述PDCCH指示/调度的所述SL传输的起始时间单元。
可选地,所述终端设备基于接收到所述PDCCH对应的下行控制信息DCI所在的下行时间单元的起始时刻,与所述第一偏移量之和,确定所述PDCCH指示/调度的所述SL传输的起始时间单元。
可选地,下行时间单元可以包括:下行帧、下行子帧、下行时隙或下行符号等。例如,下行时间单元可以包括下行时隙。
在一些实施例中,所述方法还包括:所述终端设备接收所述PDCCH指示的SL动态调度授权。
在一些实施例中,所述方法还包括:所述终端设备接收所述PDCCH指示的SL配置授权类型2(sidelink configured grant type 2)的激活。
在一些实施例中,所述方法还包括:所述终端设备接收所述PDCCH指示的SL传输授权通过所述PDCCH指示的激活。
可选地,在所述终端设备接收所述PDCCH指示的SL动态调度授权,或者接收所述PDCCH指示的SL配置授权类型2的激活,或者接收所述PDCCH指示的SL传输授权通过所述PDCCH指示的激活的情况下,所述终端设备基于所述第一偏移量,确定PDCCH指示/调度的所述SL传输的起始时间单元。
可选地,SL配置授权类型2可以包括SL传输授权由PDCCH/DCI提供。可选地,通过PDCCH/DCI指示SL传输授权的激活,SL传输授权需要的参数由信息单元配置授权配置(例如IE ConfiguredGrantConfig)进行配置,但是需要PDCCH/DCI的激活才能使用。
可选地,SL配置授权类型2包括在多个SL配置授权类型中。可选地,多个SL配置授权类型包括以下至少之一:SL配置授权类型1、SL配置授权类型2。其中,SL配置授权类型1指示SL传输授权由RRC通过高层信令进行配置。
在一些实施例中,所述PDCCH指示/调度的所述SL传输的起始时间单元,在所述SL传输的资源池中,且不早于第一时刻;
其中,所述第一时刻基于所述第一偏移量确定。
可选地,SL传输的资源池也可以称为SL数据资源池或SL通信资源池。可选地,SL传输的资源池可以为用于进行SL传输的资源池。可选地,SL传输的资源池可以包括:SL发送的资源池和/或SL接收的资源池。
可选地,SL传输的资源池可以是终端设备预定义的,或者是预配置的,或者是协议约定的。
可选地,第一时刻可以基于第一偏移量与终端设备基于接收到所述PDCCH的时刻确定。
可选地,所述PDCCH指示/调度的所述SL传输的起始时间单元的起始点,在所述SL传输的资源池中,且不早于第一时刻。
可选地,所述PDCCH指示/调度的所述SL传输的起始时间单元,不早于第一时刻后的第一个时隙,或者不早于第一时刻后的第一个符号,或者不早于第一时刻后的第一个帧,或者不早于第一时刻后的第一个子帧。
可选地,在本申请任一实施例中,不早于包括晚于或等于。
可选地,所述PDCCH指示/调度的所述SL传输的起始时间单元的起始时刻,可以与第一时刻相同,或者可以在第一时刻之后(即晚于第一时刻)。
在一些实施例中,所述第一时刻基于所述第一偏移量,以及基于以下至少之一确定:
第二时刻,所述第二时刻包括所述PDCCH对应的下行控制信息DCI所在的下行时隙的起始时刻;
所述终端设备的服务小区所属的定时提前组TAG的定时提前TA;
所述PDCCH对应的DCI指示的时间单元间隔;
时间单元的时长。
例如,第一时刻可以基于第一偏移量和第二时刻确定。又例如,第一时刻可以基于第一偏移量与TA确定。又例如,第一时刻可以基于第一偏移量、DCI指示的时间单元间隔以及时间单元的时长确定。又例如,第一时刻可以基于第一偏移量、第二时刻以及TA确定。又例如,第一时刻可以基于第一偏移量、第二时刻、DCI指示的时间单元间隔以及时间单元的时长确定。又例如,第一时刻可以基于第一偏移量、TA、DCI指示的时间单元间隔以及时间单元的时长确定。又例如,第一时刻可以基于第一偏移量、第二时刻、TA、DCI指示的时间单元间隔以及时间单元的时长确定。
可选地,在另一些实施例中,与上述实施例不同的是,第二时刻可以为其它。例如,第二时刻可以包括PDCCH对应的下行控制信息DCI的结束时刻,或者,PDCCH对应的下行控制信息DCI的开始时刻,或者,PDCCH对应的下行控制信息DCI所在的下行时隙的结束时刻,或者,PDCCH对应的下行控制信息DCI所在的下行符号的起始时刻或结束时刻等等。
可选地,时间单元间隔可以包括帧间隔,子帧间隔、时隙间隔或符号间隔。时间单元间隔,可以是时间单元的整数倍或小数倍。例如,时间单元间隔可以为1个时间单元,0.5个时间单元、1.5个时间单元、5个时间单元等等。示例性地,以时间单元间隔包括时隙间隔为例,时隙间隔可以为1个时隙,0.5个时隙、1.5个时隙、5个时隙等等。
在一些实施例中,所述第一时刻基于所述第一偏移量,以及基于以下至少之一确定:所述第二时刻;所述TA/2;所述时间单元间隔与所述时间单元的时长的乘积。
例如,第一时刻可以基于第一偏移量与第二时刻确定。又例如,第一时刻可以基于第一偏移量与TA/2确定。又例如,第一时刻可以基于第一偏移量、以及所述时间单元间隔与所述时间单元的时长的乘积确定。又例如,第一时刻可以基于第一偏移量、第二时刻以及TA/2确定。又例如,第一时刻可以基于第一偏移量、第二时刻、以及所述时间单元间隔与所述时间单元的时长的乘积确定。又例如,第一时刻可以基于第一偏移量、TA/2、以及所述时间单元间隔与所述时间单元的时长的乘积确定。又例如,第一时刻可以基于第一偏移量、第二时刻、TA/2、以及所述时间单元间隔与所述时间单元的时长的乘积确定。
在一些实施例中,所述第一时刻基于以下内容确定:
所述第二时刻减去所述TA/2的结果,再加上所述第一偏移量,再加上所述时间单元间隔与所述时间单元的时长的乘积。
可选地,第一时刻通过以下公式确定:
其中,TDL为第二时刻;TTA为TA;offset1为第一偏移量;KSL为时间单元间隔;Tslot为时隙的时长。
在一些实施例中,所述第一偏移量基于网络设备向所述终端设备配置的第二偏移量确定。
可选地,第一偏移量可以与第二偏移量相同或不同。可选地,第一偏移量可以大于、小于或等于第二偏移量。
在一些实施例中,所述第一偏移量基于小区级别的第二偏移量确定。
可选地,小区级别的第二偏移量在其它实施例中可以称为小区级别偏移量。
可选地,第一偏移量可以为小区级别的第二偏移量,或者,第一偏移量可以通过对小区级别的第二偏移量计算得到。
可选地,小区级别的第二偏移量可以包括以下至少之一:小区最大偏移量、小区最小偏移量、基于小区最大偏移量和/或小区最小偏移量确定的偏移量。
可选地,小区级别的第二偏移量,可以是网络设备广播/组播的。可选地,小区级别的第二偏移量可以包括在以下之一中,或者携带在以下之一中,或者通过以下之一指示:系统消息(System Information,SI)、主信息块(Master Information Block,MIB)、系统信息块(System Information Block,SIB)。
可选地,一个小区内的不同终端设备得到的小区级别的第二偏移量是相同的。
在一些实施例中,在所述终端设备没有配置所述终端设备专属的第二偏移量的情况下,所述第一偏移量基于小区级别的第二偏移量确定。
可选地,终端设备专属的第二偏移量在其它实施例中可以称为终端设备专属偏移量。
可选地,所述终端设备专属的第二偏移量可以是网络设备向所述终端设备单独配置的。可选地,一个小区内不同终端设备得到的终端设备专属的第二偏移量可以相同或不同。可选地,网络设备可以根据网络设备与终端设备之间的距离或信息传播时延,向终端设备配置终端设备专属的第二偏移量。
可选地,在所述终端设备配置所述终端设备专属的第二偏移量的情况下,所述第一偏移量基于所述终端设备专属的第二偏移量确定。
在一些实施例中,所述第一偏移量基于小区级别的第二偏移量和第一数值确定。
可选地,在本申请任一实施例中,第一数值可以为大于或等于0的任一实数。例如,第一数值可以为0、0.5、1、2或3等。
可选地,在小区级别的第二偏移量为小区最大偏移量的情况下,第一数值为大于或等于0且小于或等于1的实数。可选地,在小区级别的第二偏移量为小区最小偏移量的情况下,第一数值为大于或等于1的实数。
示例性地,所述第一偏移量可以基于所述小区级别的第二偏移量与第一数值的乘积确定。示例性地,所述第一偏移量可以基于所述小区级别的第二偏移量与第一数值的和确定。示例性地,所述第一偏移量可以基于所述小区级别的第二偏移量与第一数值的差确定。
在一些实施例中,所述第一偏移量基于小区级别的第二偏移量和第一数值的乘积确定。
可选地,所述第一偏移量可以包括:小区级别的第二偏移量和第一数值的乘积。可选地,所述第一偏移量可以包括:通过对小区级别的第二偏移量和第一数值的乘积进行数学计算得到的偏移值。
在一些实施例中,所述第一偏移量基于所述终端设备专属的第二偏移量确定。
可选地,第一偏移量可以为终端设备专属的第二偏移量,或者,第一偏移量可以通过对终端设备专属的第二偏移量计算得到。
可选地,在所述终端设备配置所述终端设备专属的第二偏移量的情况下,所述第一偏移量基于所述终端设备专属的第二偏移量确定。
可选地,终端设备专属的第二偏移量,可以是网络设备向终端设备单播的,或者,终端设备专属的第二偏移量,可以是终端设备基于小区级别的第二偏移量确定的。例如,终端设备通过对小区级别的第二偏移量进行数学计算,确定终端设备专属的第二偏移量。
可选地,终端设备专属的第二偏移量,可以包括在以下之一中,或者携带在以下之一中,或者通过以下之一指示:RRC信令、MAC CE、所述PDCCH对应的DCI。
在一些实施例中,所述第一偏移量基于所述终端设备专属的第二偏移量和第一数值确定。
示例性地,所述第一偏移量可以基于所述终端设备专属的第二偏移量与第一数值的乘积确定。示例性地,所述第一偏移量可以基于所述终端设备专属的第二偏移量与第一数值的和确定。示例性地,所述第一偏移量可以基于所述终端设备专属的第二偏移量与第一数值的差确定。
在一些实施例中,所述第一偏移量基于所述终端设备专属的第二偏移量和第一数值的乘积确定。
可选地,所述第一偏移量可以包括:述终端设备专属的第二偏移量和第一数值的乘积。可选地,所述第一偏移量可以包括:通过对终端设备专属的第二偏移量和第一数值的乘积进行数学计算得到的偏移值。
在一些实施例中,所述第一数值是网络设备向所述终端设备配置的,或者是所述终端设备基于预配置确定的,或者是协议约定的,或者是预定义的。
可选地,网络设备可以广播/组播/单播第一数值,从而终端设备能够得到第一数值。
可选地,第一数值可以包括在以下之一中,或者携带在以下之一中,或者通过以下之一指示:系统消息、MIB、SIB、RRC信令、MAC CE、所述PDCCH对应的DCI。
可选地,第一数值可以与终端设备与网络设备之间的距离有关。可选地,第一数值可以与终端设备到网络设备的信息传播时长和/或网络设备到终端设备的信息传播时长有关。例如,终端设备与网络设备之间的距离越长,或者,信息传播时长越长,第一数值的值越大,反之,终端设备与网络设备之间的距离越短,或者,信息传播时长越短,第一数值的值越小。
可选地,第一数值与终端设备的以下至少之一有关:移动速度、移动方向、移动距离、移动路线等。例如,终端设备的移动距离逐渐变大,且向远离网络设备的方向移动时,第一数值逐渐增大。又例如,终端设备的移动距离逐渐变大,且向靠近网络设备的方向移动时,第一数值逐渐减小。
可选地,第一数值可以是从多个数值中选择的。可选地,多个数值可以是网络设备向终端设备配置的,或者可以是终端设备基于预配置确定的,或者可以是协议约定的,或者可以是预定义的。
在一些实施例中,所述第一偏移量是网络设备向所述终端设备配置的偏移量。
在一些实施例中,所述第一偏移量携带在以下至少之一中,或者所述第一偏移量通过以下至少之一指示:系统信息块SIB,终端设备专用无线资源控制RRC信令,媒体接入控制控制单元MAC CE,所述PDCCH。
在一些实施例中,所述第一偏移量是预定义的或协议约定的。
在一些实施例中,所述第一偏移量与第一小区类型关联;其中,所述第一小区类型包括在一个或多个小区类型中,所述多个小区类型中不同的小区类型关联不同的偏移量。
例如,第一小区类型关联第一偏移量,第二小区类型关联第二偏移量,第三小区类型关联第三偏移量等。
可选地,小区类型不同可以包括以下至少之一不同:小区对应的NTN场景不同、小区对应的网络设备到地面的高度不同。可选地,NTN场景可以包括以下至少之一:GEO、MEO、LEO。
可选地,通过不同的小区类型关联不同的偏移量,从而终端设备的服务小区的小区类型不同的情况下,终端设备使用的偏移量不同。
在另一些实施例中,不同的小区类型关联相同的第一偏移量。例如,任何两个不同的小区类型均关联第一偏移量。
可选地,不同的小区类型关联相同的第一偏移量,从而终端设备的服务小区的小区类型不同的 情况下,终端设备使用的相同的第一偏移量。
在一些实施例中,所述终端设备确定PUCCH传输的起始时间单元,包括:所述终端设备基于第一时间间隔,确定PUCCH传输的起始时间单元。
在一些实施例中,所述终端设备确定PUCCH传输的起始时间单元,包括:所述终端设备确定物理侧行反馈信道PSFCH接收对应的所述PUCCH传输的起始时间单元。
在一些实施例中,所述终端设备确定PUCCH传输的起始时间单元,包括:
所述终端设备基于第一时间间隔,确定物理侧行反馈信道PSFCH接收对应的所述PUCCH传输的起始时间单元。
可选地,第一时间间隔可以包括以下至少之一:一个或多个帧、一个或多个子帧、一个或多个时隙、一个或多个符号等,或者,第一时间间隔可以为一段时长,或者,第一时间间隔可以为0。
可选地,PSFCH接收对应的所述PUCCH传输的起始时间单元,可以是PSFCH接收后的第一时间间隔之后。
可选地,终端设备先接收PDCCH,然后确定PDCCH指示/调度的所述SL传输的起始时间单元,然后终端设备从SL传输的起始时间单元,或者终端设备从SL传输的起始时间单元的起始时间点或结束时间点,开始进行SL传输,接着终端设备在接收到PSFCH的情况下,确定PSFCH接收对应的所述PUCCH传输的起始时间单元,从而终端设备在PUCCH传输的起始时间单元,或者终端设备在PUCCH传输的起始时间单元的起始时间点或结束时间点,开始进行PUCCH传输。
在一些实施例中,所述PUCCH传输包括在所述PUCCH资源上传输混合自动重传请求HARQ反馈信息。
可选地,HARQ反馈信息可以为针对接收的PSFCH的HARQ反馈信息。可选地,HARQ反馈信息可以包括HARQ-ACK或混合自动重传请求-非确认(Hybrid Automatic Repeat Qequest-Negative Acknowledgment,HARQ-NACK)。
在一些实施例中,所述PUCCH传输的起始时间单元,在PSFCH接收结束后的所述第一时间间隔之后。
可选地,PSFCH接收结束可以包括:接收的PSFCH所对应的时隙后,或者,接收的PSFCH所对应的时隙的开始时间点或结束时间点后,或者,接收的PSFCH所对应的开始时间点或结束时间点后,或者,接收的PSFCH所对应的符号的开始时间点或结束时间点后,或者,接收的PSFCH所对应的符号后。
在一些实施例中,所述PUCCH传输的起始时间单元,基于PSFCH接收的结束时间单元与所述第一时间间隔之和确定。
可选地,所述PUCCH传输的起始时间单元,可以不早于PSFCH接收的结束时间单元与所述第一时间间隔之和。可选地,所述PUCCH传输的起始时间单元,可以为PSFCH接收的结束时间单元与所述第一时间间隔之和。可选地,所述PUCCH传输的起始时间单元,可以通过对PSFCH接收的结束时间单元与所述第一时间间隔之和进行数学计算得到。
在一些实施例中,所述PUCCH传输的起始时间单元,基于PSFCH接收的结束时间单元、所述第一时间间隔以及第二时间间隔之和确定;
其中,所述第二时间间隔包括:所述PSFCH接收的结束时间单元与所述第一时间间隔之和对应的时刻作为起始时刻,至第一个或者最近一个可用PUCCH资源的时间间隔。
可选地,所述PUCCH传输的起始时间单元,可以包括:PSFCH接收的结束时间单元、所述第一时间间隔以及第二时间间隔之和。可选地,所述PUCCH传输的起始时间单元,可以包括:通过对PSFCH接收的结束时间单元、所述第一时间间隔以及第二时间间隔之和进行数学计算确定。
可选地,第二时间间隔可以包括以下至少之一:一个或多个帧、一个或多个子帧、一个或多个时隙、一个或多个符号等,或者,第二时间间隔可以为一段时长,或者,第二时间间隔可以为0。
可选地,所述PSFCH接收的结束时间单元为时隙n,第一时间间隔为m,可以分为以下至少之一的情况:
如果在时隙n+m中的第一个符号上有可用PUCCH资源,则第二时间间隔为0;
如果在时隙n+m中的第三个符号上有可用PUCCH资源,则第二时间间隔为0个时隙或2个符号;
如果第一个或者最近一个可用PUCCH资源在时隙n+m+1中(即在时隙n+m中没有可用PUCCH资源),则:如果在时隙n+m+1中的第一个符号上有可用PUCCH资源,则第二时间间隔为1个时隙;如果在时隙n+m+1中的第三个符号上有可用PUCCH资源,则第二时间间隔为1个时隙或1个 时隙2个符号。
在一些实施例中,所述第一时间间隔为所述PSFCH传输资源与所述PUCCH传输资源之间的最小时间单元间隔。
在一些实施例中,所述第一时间间隔基于所述PSFCH传输资源与所述PUCCH传输资源之间的最小时间单元间隔确定。
例如,所述第一时间间隔可以是通过对最小时间单元间隔进行数学计算确定。例如,第一时间间隔可以为最小时间间隔加上特定时间间隔。
在一些实施例中,所述第一时间间隔是所述终端设备基于所述终端设备的能力确定的。
可选地,能力不同,对应的时间间隔可以相同或不同。例如,在终端设备的能力为第一能力的情况下,对应的时间间隔为第一时间间隔;和/或,在终端设备的能力为第二能力的情况下,对应的时间间隔为第二时间间隔。
可选地,所述终端设备的能力,可以基于终端设备的预配置确定,或者基于网络设备向终端设备的配置确定。可选地,终端设备可以具有多个能力,终端设备可以基于预配置,从多个能力中确定终端设备当前激活或使用的一个能力,或者,终端设备可以基于网络设备向终端设备的配置,从多个能力中确定当前激活或使用的一个能力。可选地,终端设备可以具有一个能力。
可选地,终端设备可以向网络设备发送第一时间间隔。可选地,终端设备可以向网络设备发送终端设备的能力,以使网络设备基于终端设备的能力确定第一时间间隔。
在一些实施例中,所述第一时间间隔是网络设备向所述终端设备配置的。
在一些实施例中,所述第一时间间隔是网络设备广播/组播的。
可选地,所述第一时间间隔可以包括在以下之一中,或者携带在以下之一中,或者通过以下之一指示:系统消息、MIB、SIB。
在一些实施例中,所述第一时间间隔是网络设备通过终端设备专用信令向所述终端设备配置的。
可选地,所述第一时间间隔可以包括在以下之一中,或者携带在以下之一中,或者通过以下之一指示:RRC信令、MAC CE、所述PDCCH对应的DCI。
在一些实施例中,所述第一时间间隔是在所述PDCCH对应的DCI中指示的。
在一些实施例中,所述第一时间间隔是预定义的或协议约定的。
在一些实施例中,所述方法还包括:
所述终端设备向网络设备发送第二时间间隔;其中,所述第二时间间隔是所述终端设备基于所述终端设备的能力确定的,所述第二时间间隔用于所述终端设备和/或所述网络设备确定所述第一时间间隔。
可选地,所述终端设备和/或所述网络设备,可以将第二时间间隔确定为第一时间间隔。可选地,所述终端设备和/或所述网络设备,可以通过对第二时间间隔进行数学计算,得到第一时间间隔。
在一些实施例中,所述第一时间间隔包括在高层配置的一个或多个时间间隔中。
可选地,在高层配置一个时间间隔的情况下,第一时间间隔为高层配置的一个时间间隔。
可选地,在高层配置多个时间间隔的情况下,第一时间间隔是从多个时间间隔中选择的。可选地,网络设备可以向所述终端设备指示多个时间间隔中的第一时间间隔。例如,网络设备可以通过以下之一,向终端设备指示多个时间间隔中的第一时间间隔:系统消息、MIB、SIB、RRC信令、MAC CE、所述PDCCH对应的DCI。可选地,终端设备可以根据预配置,确定多个时间间隔中的第一时间间隔。
以下提供两种实施例:
实施例一
在NTN中,针对PDCCH指示的SL传输,UE基于第一偏移量(也可以称为第一时域偏移量)确定SL传输的起始时隙。可选地,所述第一偏移量的取值由网络设备配置或者为预定义的值。
可选地,对于配置为SL资源分配模式1的UE,该UE在接收到PDCCH指示SL动态调度grant,或者在接收到PDCCH指示SL配置授权类型2的激活时,如果当前小区为NTN小区,则:UE基于接收到该PDCCH的时刻以及第一时域偏移量确定该PDCCH调度的第一个SL传输对应的时隙。
可选地,该PDCCH调度的第一个SL传输资源的时隙是位于对应的资源池中且不早于时刻的第一个时隙。其中:
TDL是该DCI所在的下行时隙的起始位置对应的时刻;
TTA是UE在接收到该DCI的服务小区所属的定时提前组TAG上对应的TA;
KSL是根据DCI中的Time gap信息域以及高层配置sl-DCI-ToSL-Trans确定的时隙间隔,Tslot表 示时隙的时长;
offset1为第一偏移量。
可选地,所述第一偏移量offset1的确定方式可以通过以下至少一种方法确定:
方法1:由网络设备配置决定。
例如,offset1根据NTN小区中网络设备广播的小区级别的Koffset(即小区特定Koffset(cellSpecificKoffset))确定。比如:offset1=cellSpecificKoffset*alpha,其中alpha(对应上述的第一数值)取值可以是网络设备配置,也可以是采用预定义的值,如alpha=1/2;
又例如,offset1根据UE在该NTN小区中的UE专属Koffset(UE Specific Koffset)确定,比如offset1=UE Specific Koffset*alpha,其中alpha取值可以是网络设备配置,也可以是采用预定义的值,如alpha=1/2。可选地,如果UE没有配置UE专属Koffset,则offset1根据NTN小区中网络设备广播的小区级别的Koffset确定,即:将上式中的UE Specific Koffset替换为cellSpecificKoffset;
又例如,offset1为网络设备单独配置的一个参数(即与Koffset无关),该配置参数可以携带在SIB,UE专用RRC信令,MAC CE,PDCCH的至少一种信令中。
方法2:使用预定义的值。
例如,针对不同的NTN场景(如GEO场景、MEO场景、LEO场景),分别预定义一个offset1取值,UE根据当前NTN小区类型使用对应的offset1取值;
又例如,不区分NTN场景,针对所有NTN场景预定义一个公用的offset1取值。
实施例二
在NTN中,针对SL传输,UE在PSFCH接收结束之后不早于第一时间间隔的第一个可用的PUCCH资源上传输对应的HARQ反馈信息,所述第一时间间隔的取值由UE能力和/或网络设备配置或预定义的方式确定。
可选地,对于配置为SL资源分配模式1的UE,该UE在时隙n接收完PSFCH,所述时隙n为PSFCH接收时机的结束时隙,如果当前小区为NTN小区,则:UE在时隙n+k+delta_pucch在PUCCH资源上传输对应的HARQ反馈信息。其中:
delta_pucch为PUCCH时隙n+k到第一个可用PUCCH资源的时间间隔;
k为PSFCH传输资源与PUCCH传输资源之间的最小时隙间隔。可选地,k值的相关解释包括以下至少之一:
UE/网络设备根据UE处理能力确定k值;
UE将k值上报给网络设备;
网络设备通过广播或者UE专用信令(如RRC信令)将k值配置给UE;
为了辅助网络设备配置,UE可以根据能力上报其所能支持的最小k值;
网络设备在指示SL调度的DCI中指示,即重用相关技术,高层配置多个PSFCH到PUCCH的间隔值(即参数sl-PSFCH-ToPUCCH),DCI指示其中的一个值;
k值采用预定义的值。
本申请实施例提供一种NTN中侧行链路终端确定调度时序的方法。使用该方法,能够使得UE在Uu接口上的发送/接收和在PC5接口上的接收/发送较好的匹配NTN中UE较大的TA。
在本申请实施例中,在NTN中,针对PDCCH指示的SL传输,UE基于第一时域偏移量确定SL传输的起始时隙,所述第一偏移量的取值由网络设备配置或者为预定义的值。
在本申请实施例中,在NTN中,针对SL传输,UE在PSFCH接收结束之后不早于第一时间间隔的第一个可用的PUCCH资源上传输对应的HARQ反馈信息,所述第一时间间隔的取值由UE能力和/或网络设备配置或预定义的方式确定。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限 定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图7为本申请实施例提供的通信装置的结构组成示意图,应用于终端设备,如图7所示,所述通信装置700包括:
确定单元701,用于确定侧行SL传输的起始时间单元和/或物理上行控制信道PUCCH传输的起始时间单元。
在一些实施例中,所述通信装置700可以包括在终端设备中,或者所述通信装置700可以应用于终端设备中。
在一些实施例中,所述通信装置700还包括:通信单元702,用于:从SL传输的起始时间单元,或者从SL传输的起始时间单元的起始时间点或结束时间点,开始进行SL传输,或者,从PUCCH传输的起始时间单元,或者从PUCCH传输的起始时间单元的起始时间点或结束时间点,开始进行PUCCH传输。
在一些实施例中,所述终端设备的服务小区包括NTN小区。
在一些实施例中,所述终端设备配置为SL资源分配模式1,或者所述终端设备的用于所述SL传输的资源是网络设备向所述终端设备调度的。
在一些实施例中,确定单元701,还用于:基于所述第一偏移量,确定PDCCH指示/调度的所述SL传输的起始时间单元。
在一些实施例中,确定单元701,还用于:基于接收到所述PDCCH的时刻和所述第一偏移量,确定所述PDCCH指示/调度的所述SL传输的起始时间单元。
在一些实施例中,通信单元702,还用于:接收所述PDCCH指示的SL动态调度授权,或者接收所述PDCCH指示的SL配置授权类型2的激活,或者接收所述PDCCH指示的SL传输授权通过所述PDCCH指示的激活。
在一些实施例中,所述PDCCH指示/调度的所述SL传输的起始时间单元,在所述SL传输的资源池中,且不早于第一时刻;
其中,所述第一时刻基于所述第一偏移量确定。
在一些实施例中,所述第一时刻基于所述第一偏移量,以及基于以下至少之一确定:
第二时刻,所述第二时刻包括所述PDCCH对应的下行控制信息DCI所在的下行时隙的起始时刻;
所述终端设备的服务小区所属的定时提前组TAG的定时提前TA;
所述PDCCH对应的DCI指示的时间单元间隔;
时间单元的时长。
在一些实施例中,所述第一时刻基于所述第一偏移量,以及基于以下至少之一确定:所述第二时刻;所述TA/2;所述时间单元间隔与所述时间单元的时长的乘积。
在一些实施例中,所述第一时刻基于以下内容确定:
所述第二时刻减去所述TA/2的结果,再加上所述第一偏移量,再加上所述时间单元间隔与所述时间单元的时长的乘积。
在一些实施例中,所述第一偏移量基于网络设备向所述终端设备配置的第二偏移量确定。
在一些实施例中,所述第一偏移量基于小区级别的第二偏移量确定。
在一些实施例中,在所述终端设备没有配置所述终端设备专属的第二偏移量的情况下,所述第一偏移量基于小区级别的第二偏移量确定。
在一些实施例中,所述第一偏移量基于小区级别的第二偏移量和第一数值确定。
在一些实施例中,所述第一偏移量基于小区级别的第二偏移量和第一数值的乘积确定。
在一些实施例中,所述第一偏移量基于所述终端设备专属的第二偏移量确定。
在一些实施例中,所述第一偏移量基于所述终端设备专属的第二偏移量和第一数值确定。
在一些实施例中,所述第一偏移量基于所述终端设备专属的第二偏移量和第一数值的乘积确定。
在一些实施例中,所述第一数值是网络设备向所述终端设备配置的,或者是所述终端设备基于 预配置确定的,或者是协议约定的,或者是预定义的。
在一些实施例中,所述第一偏移量是网络设备向所述终端设备配置的偏移量。
在一些实施例中,所述第一偏移量携带在以下至少之一中,或者所述第一偏移量通过以下至少之一指示:系统信息块SIB,终端设备专用无线资源控制RRC信令,媒体接入控制控制单元MAC CE,所述PDCCH。
在一些实施例中,所述第一偏移量是预定义的或协议约定的。
在一些实施例中,所述第一偏移量与第一小区类型关联;其中,所述第一小区类型包括在一个或多个小区类型中,所述多个小区类型中不同的小区类型关联不同的偏移量。
在一些实施例中,确定单元701,还用于:基于第一时间间隔,确定物理侧行反馈信道PSFCH接收对应的所述PUCCH传输的起始时间单元。
在一些实施例中,所述PUCCH传输包括在所述PUCCH资源上传输混合自动重传请求HARQ反馈信息。
在一些实施例中,所述PUCCH传输的起始时间单元,在PSFCH接收结束后的所述第一时间间隔之后。
在一些实施例中,所述PUCCH传输的起始时间单元,基于PSFCH接收的结束时间单元与所述第一时间间隔之和确定。
在一些实施例中,所述PUCCH传输的起始时间单元,基于PSFCH接收的结束时间单元、所述第一时间间隔以及第二时间间隔之和确定;
其中,所述第二时间间隔包括:所述PSFCH接收的结束时间单元与所述第一时间间隔之和对应的时刻作为起始时刻,至第一个或者最近一个可用PUCCH资源的时间间隔。
在一些实施例中,所述第一时间间隔为所述PSFCH传输资源与所述PUCCH传输资源之间的最小时间单元间隔,或者,所述第一时间间隔基于所述PSFCH传输资源与所述PUCCH传输资源之间的最小时间单元间隔确定。
在一些实施例中,所述第一时间间隔是所述终端设备基于所述终端设备的能力确定的。
在一些实施例中,所述第一时间间隔是网络设备向所述终端设备配置的。
在一些实施例中,所述第一时间间隔是网络设备广播/组播的,或者,所述第一时间间隔是网络设备通过终端设备专用信令向所述终端设备配置的。
在一些实施例中,所述第一时间间隔是在所述PDCCH对应的DCI中指示的。
在一些实施例中,所述第一时间间隔是预定义的或协议约定的。
在一些实施例中,通信单元702,还用于:向网络设备发送第二时间间隔;其中,所述第二时间间隔是所述终端设备基于所述终端设备的能力确定的,所述第二时间间隔用于所述终端设备和/或所述网络设备确定所述第一时间间隔。
在一些实施例中,所述第一时间间隔包括在高层配置的一个或多个时间间隔中。
本领域技术人员应当理解,本申请实施例的上述通信装置的相关描述可以参照本申请实施例的通信方法的相关描述进行理解。
图8为本申请实施例提供的一种终端设备示意性结构图,图8所示的终端设备800可以包括处理器810和存储器820,所述存储器820用于存储计算机程序,所述处理器810用于调用并运行所述存储器820中存储的计算机程序,使得所述终端设备800执行上述任一实施例中的方法。
可选地,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
在一些实施例中,如图8所示,终端设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
本申请实施例还提供了一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现本申请任一实施例中的通信方法。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图9为本申请实施例的芯片的示意性结构图,图9所示的芯片900包括处理器910,处理器910用于从存储器中调用并运行计算机程序,以实现本申请任一实施例中的方法。
在一些实施例中,如图9所示,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
在一些实施例中,该芯片900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机存储介质,所述计算机存储介质存储计算机程序,所述计算机程序包括能够由至少一个处理器执行的指令,当所述指令由所述至少一个处理器执行时实现本申请任一实施例中的通信方法。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例中的计算机程序产品在另一些实施例中也可以称为软件产品。
本申请实施例还提供了一种计算机程序,所述计算机程序使得计算机执行本申请任一实施例中的通信方法。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例的处理器、通信装置或者芯片可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器、通信装置或者芯片可以包括以下任一个或多个的集成:通用处理器、特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、图形处理器(Graphics Processing Unit,GPU)、嵌入式神经网络处理器(neural-network processing units,NPU)、控制器、微控制器、微处理器、可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器或计算机存储介质可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器或计算机存储介质为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM, DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在本申请的任一实施例中,时间间隔、时间段、时长范围内、时长内或时间窗内等,可以包括全部的端点时间,或者可以包括部分的端点时间(例如包括左端点时间而不包括右端点时间,或者包括右端点时间而不包括左端点时间),或者不包括端点时间。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (42)

  1. 一种通信方法,所述方法包括:
    终端设备确定侧行SL传输的起始时间单元和/或物理上行控制信道PUCCH传输的起始时间单元。
  2. 根据权利要求1所述的方法,所述终端设备的服务小区包括NTN小区。
  3. 根据权利要求1或2所述的方法,所述终端设备配置为SL资源分配模式1,或者所述终端设备的用于所述SL传输的资源是网络设备向所述终端设备调度的。
  4. 根据权利要求1至3任一项所述的方法,所述终端设备确定SL传输的起始时间单元,包括:
    所述终端设备基于所述第一偏移量,确定PDCCH指示/调度的所述SL传输的起始时间单元。
  5. 根据权利要求4所述的方法,所述终端设备基于所述第一偏移量,确定PDCCH指示/调度的所述SL传输的起始时间单元,包括:
    所述终端设备基于接收到所述PDCCH的时刻和所述第一偏移量,确定所述PDCCH指示/调度的所述SL传输的起始时间单元。
  6. 根据权利要求4或5所述的方法,所述方法还包括:
    所述终端设备接收所述PDCCH指示的SL动态调度授权,或者接收所述PDCCH指示的SL配置授权类型2的激活,或者接收所述PDCCH指示的SL传输授权通过所述PDCCH指示的激活。
  7. 根据权利要求4至6任一项所述的方法,所述PDCCH指示/调度的所述SL传输的起始时间单元,在所述SL传输的资源池中,且不早于第一时刻;
    其中,所述第一时刻基于所述第一偏移量确定。
  8. 根据权利要求7所述的方法,所述第一时刻基于所述第一偏移量,以及基于以下至少之一确定:
    第二时刻,所述第二时刻包括所述PDCCH对应的下行控制信息DCI所在的下行时隙的起始时刻;
    所述终端设备的服务小区所属的定时提前组TAG的定时提前TA;
    所述PDCCH对应的DCI指示的时间单元间隔;
    时间单元的时长。
  9. 根据权利要求8所述的方法,所述第一时刻基于所述第一偏移量,以及基于以下至少之一确定:所述第二时刻;所述TA/2;所述时间单元间隔与所述时间单元的时长的乘积。
  10. 根据权利要求8或9所述的方法,所述第一时刻基于以下内容确定:
    所述第二时刻减去所述TA/2的结果,再加上所述第一偏移量,再加上所述时间单元间隔与所述时间单元的时长的乘积。
  11. 根据权利要求4至10任一项所述的方法,所述第一偏移量基于网络设备向所述终端设备配置的第二偏移量确定。
  12. 根据权利要求4至11任一项所述的方法,所述第一偏移量基于小区级别的第二偏移量确定。
  13. 根据权利要求4至12任一项所述的方法,在所述终端设备没有配置所述终端设备专属的第二偏移量的情况下,所述第一偏移量基于小区级别的第二偏移量确定。
  14. 根据权利要求4至13任一项所述的方法,所述第一偏移量基于小区级别的第二偏移量和第一数值确定。
  15. 根据权利要求4至14任一项所述的方法,所述第一偏移量基于小区级别的第二偏移量和第一数值的乘积确定。
  16. 根据权利要求4至11任一项所述的方法,所述第一偏移量基于所述终端设备专属的第二偏移量确定。
  17. 根据权利要求4至11、16任一项所述的方法,所述第一偏移量基于所述终端设备专属的第二偏移量和第一数值确定。
  18. 根据权利要求4至11、16、17任一项所述的方法,所述第一偏移量基于所述终端设备专属的第二偏移量和第一数值的乘积确定。
  19. 根据权利要求14、15、17或18所述的方法,所述第一数值是网络设备向所述终端设备配置的,或者是所述终端设备基于预配置确定的,或者是协议约定的,或者是预定义的。
  20. 根据权利要求4至11任一项所述的方法,所述第一偏移量是网络设备向所述终端设备配置的偏移量。
  21. 根据权利要求20所述的方法,所述第一偏移量携带在以下至少之一中,或者所述第一偏移量通过以下至少之一指示:系统信息块SIB,终端设备专用无线资源控制RRC信令,媒体接入控制控制单元MAC CE,所述PDCCH。
  22. 根据权利要求4至11任一项所述的方法,所述第一偏移量是预定义的或协议约定的。
  23. 根据权利要求4至22任一项所述的方法,所述第一偏移量与第一小区类型关联;其中,所述第一小区类型包括在一个或多个小区类型中,所述多个小区类型中不同的小区类型关联不同的偏移量。
  24. 根据权利要求1至23任一项所述的方法,所述终端设备确定PUCCH传输的起始时间单元,包括:
    所述终端设备基于第一时间间隔,确定物理侧行反馈信道PSFCH接收对应的所述PUCCH传输的起始时间单元。
  25. 根据权利要求24所述的方法,所述PUCCH传输包括在所述PUCCH资源上传输混合自动重传请求HARQ反馈信息。
  26. 根据权利要求24或25所述的方法,所述PUCCH传输的起始时间单元,在PSFCH接收结束后的所述第一时间间隔之后。
  27. 根据权利要求24至26任一项所述的方法,所述PUCCH传输的起始时间单元,基于PSFCH接收的结束时间单元与所述第一时间间隔之和确定。
  28. 根据权利要求24至27任一项所述的方法,所述PUCCH传输的起始时间单元,基于PSFCH接收的结束时间单元、所述第一时间间隔以及第二时间间隔之和确定;
    其中,所述第二时间间隔包括:所述PSFCH接收的结束时间单元与所述第一时间间隔之和对应的时刻作为起始时刻,至第一个或者最近一个可用PUCCH资源的时间间隔。
  29. 根据权利要求24至28任一项所述的方法,所述第一时间间隔为所述PSFCH传输资源与所述PUCCH传输资源之间的最小时间单元间隔,或者,所述第一时间间隔基于所述PSFCH传输资源与所述PUCCH传输资源之间的最小时间单元间隔确定。
  30. 根据权利要求24至29任一项所述的方法,所述第一时间间隔是所述终端设备基于所述终端设备的能力确定的。
  31. 根据权利要求24至29任一项所述的方法,所述第一时间间隔是网络设备向所述终端设备配置的。
  32. 根据权利要求31所述的方法,所述第一时间间隔是网络设备广播/组播的,或者,所述第一时间间隔是网络设备通过终端设备专用信令向所述终端设备配置的。
  33. 根据权利要求31所述的方法,所述第一时间间隔是在所述PDCCH对应的DCI中指示的。
  34. 根据权利要求24至29任一项所述的方法,所述第一时间间隔是预定义的或协议约定的。
  35. 根据权利要求24至34任一项所述的方法,所述方法还包括:
    所述终端设备向网络设备发送第二时间间隔;其中,所述第二时间间隔是所述终端设备基于所述终端设备的能力确定的,所述第二时间间隔用于所述终端设备和/或所述网络设备确定所述第一时间间隔。
  36. 根据权利要求24至35任一项所述的方法,所述第一时间间隔包括在高层配置的一个或多个时间间隔中。
  37. 一种通信装置,包括:确定单元,用于确定侧行SL传输的起始时间单元和/或物理上行控制信道PUCCH传输的起始时间单元。
  38. 一种终端设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述终端设备执行权利要求1至36任一项所述方法。
  39. 一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要求1至36任一项所述方法。
  40. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,以实现如权利要求1至36任一项所述方法。
  41. 一种计算机程序产品,所述计算机程序产品包括计算机存储介质,所述计算机存储介质存储计算机程序,所述计算机程序包括能够由至少一个处理器执行的指令,当所述指令由所述至少一个处理器执行时实现权利要求1至36任一项所述方法。
  42. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至36任一项所述方法。
PCT/CN2023/077967 2023-02-23 2023-02-23 通信方法、装置、终端设备、介质、芯片、产品及程序 WO2024174177A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/077967 WO2024174177A1 (zh) 2023-02-23 2023-02-23 通信方法、装置、终端设备、介质、芯片、产品及程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/077967 WO2024174177A1 (zh) 2023-02-23 2023-02-23 通信方法、装置、终端设备、介质、芯片、产品及程序

Publications (1)

Publication Number Publication Date
WO2024174177A1 true WO2024174177A1 (zh) 2024-08-29

Family

ID=92499927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077967 WO2024174177A1 (zh) 2023-02-23 2023-02-23 通信方法、装置、终端设备、介质、芯片、产品及程序

Country Status (1)

Country Link
WO (1) WO2024174177A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113785602A (zh) * 2020-04-10 2021-12-10 华为技术有限公司 信息发送方法、信息接收方法、相关装置和设备
WO2022085252A1 (ja) * 2020-10-22 2022-04-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、基地局、送信方法および受信方法
WO2022110233A1 (zh) * 2020-11-30 2022-06-02 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
US20220255680A1 (en) * 2019-06-14 2022-08-11 Electronics And Telecommunications Research Institute Method and apparatus for sidelink communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220255680A1 (en) * 2019-06-14 2022-08-11 Electronics And Telecommunications Research Institute Method and apparatus for sidelink communication
CN113785602A (zh) * 2020-04-10 2021-12-10 华为技术有限公司 信息发送方法、信息接收方法、相关装置和设备
WO2022085252A1 (ja) * 2020-10-22 2022-04-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、基地局、送信方法および受信方法
WO2022110233A1 (zh) * 2020-11-30 2022-06-02 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (HUAWEI): "Summary of [107-e-NR-5G_V2X-03]: Correction on processing time for simultaneous SL and UL transmissions/receptions", 3GPP DRAFT; R1-2112879, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211111 - 20211119, 23 November 2021 (2021-11-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052080473 *

Similar Documents

Publication Publication Date Title
WO2021022496A1 (zh) 随机接入的方法和设备
WO2024103798A1 (zh) 无线通信的方法及装置
WO2023279308A1 (zh) 确定drx激活期的方法及终端设备
US20240267992A1 (en) Wireless communication method, terminal device, and network device
US20240031964A1 (en) Adjustment method and determination method for transmission timing, and terminal device
WO2024174177A1 (zh) 通信方法、装置、终端设备、介质、芯片、产品及程序
WO2022205223A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2022205015A1 (zh) 一种同步方法及装置、终端设备、网络设备
EP4090110B1 (en) Channel processing method, apparatus, device and storage medium
WO2022067528A1 (zh) 信道传输的方法、终端设备和网络设备
WO2024092649A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2024119496A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
US20240121762A1 (en) Wireless communication method, terminal device, and network device
CN114642028A (zh) 信息处理方法、装置、设备及存储介质
WO2023206419A1 (zh) 无线通信方法、终端设备和网络设备
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
WO2024174059A1 (zh) 用于侧行通信的方法、终端设备及网络设备
WO2023108642A1 (zh) 通信方法、装置、设备、芯片、存储介质、产品及程序
WO2022246824A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023077384A1 (zh) 无线通信方法、终端设备和网络设备
US20230403668A1 (en) Method and apparatus for reporting timing advance, and terminal device
WO2022236574A1 (zh) 时域参数确定方法、终端设备及网络设备
WO2022205482A1 (zh) 无线通信方法和终端设备
WO2023087326A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2024036627A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23923354

Country of ref document: EP

Kind code of ref document: A1