WO2024172697A1 - Method for separating target fractions from natural gas (embodiments) - Google Patents
Method for separating target fractions from natural gas (embodiments) Download PDFInfo
- Publication number
- WO2024172697A1 WO2024172697A1 PCT/RU2024/050005 RU2024050005W WO2024172697A1 WO 2024172697 A1 WO2024172697 A1 WO 2024172697A1 RU 2024050005 W RU2024050005 W RU 2024050005W WO 2024172697 A1 WO2024172697 A1 WO 2024172697A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- tda
- turbine
- natural gas
- natural
- Prior art date
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 356
- 239000003345 natural gas Substances 0.000 title claims abstract description 175
- 238000000034 method Methods 0.000 title claims abstract description 139
- 239000007789 gas Substances 0.000 claims abstract description 374
- 238000001816 cooling Methods 0.000 claims abstract description 42
- 238000010438 heat treatment Methods 0.000 claims abstract description 35
- 239000012528 membrane Substances 0.000 claims abstract description 29
- 238000000926 separation method Methods 0.000 claims abstract description 26
- 238000001179 sorption measurement Methods 0.000 claims abstract description 12
- 238000010521 absorption reaction Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims description 30
- 230000006835 compression Effects 0.000 claims description 21
- 238000007906 compression Methods 0.000 claims description 21
- 238000005057 refrigeration Methods 0.000 claims description 21
- 238000012546 transfer Methods 0.000 claims description 15
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 11
- 238000009833 condensation Methods 0.000 claims description 11
- 230000005494 condensation Effects 0.000 claims description 11
- 238000002485 combustion reaction Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 10
- 230000002378 acidificating effect Effects 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 5
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 abstract description 4
- HOWJQLVNDUGZBI-UHFFFAOYSA-N butane;propane Chemical compound CCC.CCCC HOWJQLVNDUGZBI-UHFFFAOYSA-N 0.000 abstract description 3
- 238000000605 extraction Methods 0.000 abstract description 2
- 238000011144 upstream manufacturing Methods 0.000 abstract 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 16
- 238000010586 diagram Methods 0.000 description 16
- 238000009434 installation Methods 0.000 description 13
- 239000006096 absorbing agent Substances 0.000 description 11
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 10
- 239000002250 absorbent Substances 0.000 description 8
- 230000002745 absorbent Effects 0.000 description 8
- 239000003463 adsorbent Substances 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- -1 nanoporous Substances 0.000 description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 5
- 239000003546 flue gas Substances 0.000 description 5
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 5
- 239000001294 propane Substances 0.000 description 5
- 239000010457 zeolite Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920005597 polymer membrane Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- PZZOEXPDTYIBPI-UHFFFAOYSA-N 2-[[2-(4-hydroxyphenyl)ethylamino]methyl]-3,4-dihydro-2H-naphthalen-1-one Chemical compound C1=CC(O)=CC=C1CCNCC1C(=O)C2=CC=CC=C2CC1 PZZOEXPDTYIBPI-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical class [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000012465 retentate Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0242—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/06—Heat exchange, direct or indirect
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/46—Compressors or pumps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/48—Expanders, e.g. throttles or flash tanks
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/541—Absorption of impurities during preparation or upgrading of a fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/542—Adsorption of impurities during preparation or upgrading of a fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/548—Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/90—Hot gas waste turbine of an indirect heated gas for power generation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/60—Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
Definitions
- the invention relates to the gas industry, namely to processes for separating target fractions from gas mixtures, in particular, it can be used to extract propane-butane and ethane fractions, stable natural gasoline, acidic components, water, etc. from natural gas.
- Natural gases are gases contained in the bowels of the Earth, as well as gases of the Earth's atmosphere.
- the proposed technology can be used for air drying, flue gas treatment, etc.
- a method for processing natural gas is known from the prior art, disclosed in US Patent 4,889,545, published on 26.12.1989, which provides for multi-stage low-temperature cooling of gas with condensation due to heat recovery in heat exchangers, single-stage separation of the released liquid, pressure relief on gas flows by throttling and expanding it in the turbine of a turboexpander unit (TEU), feeding all cold flows into a rectification column to obtain a methane gas fraction and a fraction containing mainly ethane, propane and heavy hydrocarbons, heating the methane gas fraction in heat exchangers and then compressing it in the compressor section of the TDU. Before feeding into the gas pipeline, the methane gas fraction is additionally compressed in a compressor.
- TEU turboexpander unit
- the disadvantage of this method is that the pressure of the methane gas fraction after the compressor part of the TDA is significantly lower than the gas pressure at the entrance to the unit, therefore, an additional compressor is required at the exit from the unit, which significantly increases the capital costs of building such a unit.
- the closest analogue to the claimed invention in terms of the set of essential features is the method and installation for separating target fractions from natural gas, disclosed in patent RU 2749628, published on 16.06.2021, in which gas is processed by sequentially following processes of gas compression in the main compressor, gas cooling in an air cooling apparatus, separating propane-butane and ethane fractions from gas in a low-temperature condensation unit, including the process of gas cooling in heat exchangers, separating condensed condensate from gas, expanding gas in the turbine of the main turboexpander or in a throttle, processing cooled gas and/or condensate separated from gas in a distillation column, heating gas in heat exchangers, and after gas compression in the main In the compressor, compressed gas with a temperature of at least 100°C is sent to the turbine of an additional turboexpander.
- the technical problem that the claimed invention is aimed at solving is the reduction of capital costs for the construction of installations for extracting target fractions from gas mixtures, by eliminating expensive compressor stations from the equipment of such installations.
- the technical result achieved by implementing the claimed invention is a significant reduction in capital and operating costs for installations designed to extract target fractions.
- the installations for extracting target fractions from natural gas include compressor stations.
- output compressor stations are installed, which serve to increase the pressure of the commercial gas to the level necessary for feeding commercial natural gas into the main gas pipeline.
- gas processing includes the following successive processes: heating the natural gas in a gas-gas heat exchanger and a heater, expansion of the heated natural gas in the turbine of a turboexpander unit (TEU), cooling the gas in a gas-to-gas heat exchanger, separating target fractions of natural gas from the natural gas by means of absorption or adsorption or membrane separation, compressing the entire flow of processed gas in the compressor section of the TDU, wherein the temperature of the gas in front of the TDU turbine is provided at such a level that the gas pressure at the outlet of the compressor section of the TDU exceeds the gas pressure in front of the TDU turbine.
- TEU turboexpander unit
- the gas processing includes the following successive processes: heating the natural gas in a gas-to-gas heat exchanger and a heater, expanding the heated natural gas in the TDA, cooling the gas in the gas-to-gas heat exchanger, partially condensing the gas using the cold of the refrigeration machine and separating the target components condensed during cooling in a separator and/or a rectification column, followed by compression of the entire gas flow in the compressor section of the TDA, wherein the gas temperature in front of the TDA turbine is provided at such a level that the gas pressure at the outlet of the compressor section of the TDA exceeds the gas pressure in front of the TDA turbine.
- the gas processing includes the following successive processes: heating the gas in a gas-to-gas heat exchanger and a heater, expanding the heated gas in a turbine of a turbo-expander unit (TEU), cooling the gas in a gas-to-gas heat exchanger, compressing the entire gas flow in the compressor section of the TEU, separating target fractions of natural gas from natural gas by means of absorption or adsorption or membrane separation, wherein the gas temperature before the TEU turbine is provided at such a level that the gas pressure at the outlet of the compressor section of the TEU exceeds the gas pressure before the TEU turbine.
- TEU turbo-expander unit
- the gas processing includes the following successive processes: heating the natural gas in a gas-to-gas heat exchanger and a heater, expanding the heated natural gas in the TDA turbine, cooling the gas in the gas-to-gas heat exchanger, compressing the entire gas flow in the compressor section of the TDA, partially condensing the gas using the cold of the refrigeration machine and separating the target components condensed during cooling in a separator and/or a rectification column, wherein the gas temperature in front of the TDA turbine is provided at such a level that the gas pressure at the outlet of the compressor section of the TDA exceeds the gas pressure in front of the TDA turbine.
- gas processing includes the following successive processes: separating target fractions of natural gas from natural gas by absorption or adsorption or membrane separation, heating the gas in a gas-to-gas heat exchanger and a heater, expanding the heated gas in the TDA turbine, cooling the gas in at least the gas-to-gas heat exchanger, compressing the entire gas flow in the compressor section of the TDA, wherein the gas temperature in front of the TDA turbine is provided at such a level that the gas pressure at the outlet of the compressor section of the TDA exceeds the gas pressure in front of the TDA turbine.
- the gas processing includes the following successive processes: partial condensation of the gas using the cold of the refrigeration machine and separation of the target components condensed during cooling in a separator and/or a rectification column, subsequent heating of the gas in a gas-to-gas heat exchanger and a heater, expansion of the heated gas in the turbine of a turboexpander unit (TDU), cooling of the gas in the gas-to-gas heat exchanger, compression of the entire gas flow in the compressor section of the TDU, wherein the gas temperature in front of the TDU turbine is provided at such a level that the gas pressure at the outlet of the compressor section of the TDU exceeds the gas pressure in front of the TDU turbine.
- TDU turboexpander unit
- the implementation of one of the six proposed options depends on the input pressure of natural gas.
- the first two options are implemented if the input gas pressure is too high for normal operation of the unit for separating target fractions of natural gas from natural gas; in this option, before feeding gas to the unit, the gas pressure in the TDA turbine is reduced.
- the third and fourth variants of the proposed method are implemented in the event that the input gas pressure is insufficient for the normal operation of the unit for separating target fractions of natural gas from natural gas.
- the gas pressure increases to a level exceeding the input gas pressure.
- the fifth and sixth variants of the proposed method are implemented when the input gas pressure is sufficient for the normal operation of the unit for separating target fractions of natural gas from natural gas, but after the unit it is necessary to increase the pressure of the commercial gas.
- the gas is additionally subjected to at least one additional processing, including heating the gas in additional gas-gas heat exchangers and/or additional heaters, expansion of the heated gas in the turbine of the additional turbo-expander unit (ATEU), cooling the gas and compressing the gas in the compressor section of the ATEU.
- additional processing including heating the gas in additional gas-gas heat exchangers and/or additional heaters, expansion of the heated gas in the turbine of the additional turbo-expander unit (ATEU), cooling the gas and compressing the gas in the compressor section of the ATEU.
- the turbine of the TDA and/or DTDA include at least two turbine working wheels
- the compressor part of the TDA and/or DTDA include at least two compressor working wheels.
- the gas Before any turbine wheel, the gas can be additionally heated, which allows increasing the mechanical energy extraction from the turbine wheel. Before any compressor wheel, the gas can be additionally cooled, which allows increasing the degree of gas compression in the compressor wheel.
- the unit for extracting the target fractions of natural gas from natural gas may be located at a distance from the compressor part of the TDA, in which case the gas is transferred between the unit for extracting the target fractions of natural gas from natural gas and the TDA via a gas pipeline. Also, the unit for extracting the target fractions of natural gas from natural gas may be located at a distance from the heat exchangers and/or heaters, in which case the gas is transferred between the unit for extracting the target fractions of natural gas from natural gas and the heat exchangers and heaters via a gas pipeline.
- the gas temperature in front of the TDA turbine is maintained at a level above 200°C
- Heating of natural gas in heat exchangers and/or heaters can be carried out using heat generated during combustion of natural gas in pure oxygen.
- combustion of natural gas in pure oxygen will produce flue gas with a high concentration of CO2, which can be immediately pumped back into the formation at the field.
- Fig. 1 shows a diagram of the proposed method according to the first and second embodiments of the method
- Fig. 2 - a diagram of the proposed method according to the third and fourth embodiments of the method
- Fig. 3 - a diagram of the proposed method according to the fifth and sixth embodiments of the method
- Fig. 4 - a diagram of the proposed method, explaining paragraphs 2, 12, 22, 32, 42, 52 of the formula of the invention
- Fig. 1 shows a diagram of the proposed method according to the first and second embodiments of the method
- Fig. 2 - a diagram of the proposed method according to the third and fourth embodiments of the method
- Fig. 3 - a diagram of the proposed method according to the fifth and sixth embodiments of the method
- Fig. 4 - a diagram of the proposed method, explaining paragraphs 2,
- Fig. 6 is a diagram of the proposed method, explaining the implementation of the method according to paragraphs 5, 6, 15, 16, 25, 26, 35, 36, 45, 46, 55, 56 of the claims.
- Fig. 7 is a diagram of the gas processing unit in the unit for separating target fractions of natural gas from natural gas using the low-temperature condensation process, in the case of separating the SZ+ fraction (NGL).
- Fig. 8 is a diagram of the gas processing unit in the unit for separating target fractions of natural gas from natural gas using the low-temperature condensation process, in the case of separating water vapor from natural gas.
- the operation of the proposed invention according to the first embodiment of the proposed method is illustrated using the example of an installation, the diagram of which is shown in Fig. 1.
- the input flow of natural gas 1 is heated in heat exchangers 2 and heaters 4 and expand in turbine 6 TDA.
- the gas is cooled, for example in heat exchanger 2, and processed in block 8 for separating target fractions from natural gas.
- the gas is compressed in compressor section 10 TDA, and the gas temperature before turbine 6 TDA is provided at such a level that the gas pressure at the outlet of compressor section 10 TDA exceeds the gas pressure before turbine section 6 TDA.
- absorbers and/or adsorbers and/or membrane separation are used in block 8 for separating target fractions from natural gas.
- absorbent In absorbers, a gas mixture is separated into its component parts by dissolving one or more components of this mixture in a liquid called an absorbent.
- An absorber is usually a column with packing or plates, into the lower part of which gas is fed, and into the upper part - liquid; gas is removed from the absorber from the top, and liquid - from the bottom. In this case, the target fractions are absorbed by the liquid. In some cases, gas bubbles through the absorbent poured into the column in the absorber.
- An adsorber is a device for absorbing dissolved or gaseous substances by the surface layer of a solid body, called an adsorbent (absorbent).
- An adsorber is usually a vertical or horizontal vessel filled with a solid adsorbent.
- Activated carbon, silica gels, zeolites, clayey materials, etc. can be used as an adsorbent.
- Chemical and physical adsorption are known. During physical adsorption, the absorption of target fractions occurs without chemical reactions, while during chemical adsorption, new chemical compounds are formed.
- Adsorbent regeneration is usually carried out by heating it and/or blowing gas. Detailed information on the designs of various adsorbers can be found in the book by N.V. Keltsev, Fundamentals of Adsorption Technology, Moscow, 1984.
- membrane separation the separation of target fractions from natural gas is carried out in membranes that have the property of selective permeability of natural gas components, i.e. different fractions of natural gas penetrate through the membrane at different rates.
- the original natural gas is divided into two flows - into target fractions penetrating through the membrane (permeate) and into purified natural gas (retentate).
- Two-stage processing of natural gas is often used, in which the permeate is processed in the second stage also using membranes.
- Membranes are made of various materials, such as polymers, nanoporous, zeolite or silica materials, etc. Detailed information on the designs of various membranes can be found in the book by Yu.I. Dytnersky, V.P. Brykov, G.G. Kagramanov, Membrane Separation of Gases, Moscow “Chemistry", 1991.
- gas processing is carried out using a low-temperature condensation process, in which the gas is cooled using heat exchangers and a refrigeration machine, and the target components condensed during cooling are separated in a separator and/or a rectification column.
- Fig. 7 shows a diagram of a possible configuration of such a block 8.
- the gas is cooled in recuperative heat exchangers 26 and 27, then the cooled gas is additionally cooled in the evaporator of the refrigeration machine 28.
- the hydrocarbon condensate condensed during the cooling of the gas is separated from the gas in the separator 29.
- the separated condensate is heated in the recuperative heat exchanger 26 and sent to the rectification column 31.
- the target fractions 25 are collected, from the top of the column, the weathering gases are collected, which are compressed with the help of the compressor 30 and the gas is fed before the separator 29.
- Table 1 shows the parameters of the main flows for the unit shown in Fig. 1 for the case of extracting a fraction consisting of hydrocarbon components heavier than propane (SZ+, NGL) from associated gas.
- the input flow 1 of natural gas with a pressure of 8.0 MPa and a temperature of 30°C is heated in heat exchanger 2 and heater 4 to a temperature of 287.9°C.
- the heated gas expands in the turbine of the turboexpander unit to a pressure of 5.0 MPa and is cooled in heat exchanger 2 to a temperature of 35°C and sent to block 8 for separating the target fractions of natural gas from natural gas.
- the target fractions of 25 natural gas SZ+ are separated from the natural gas.
- the gas purified from the target fractions from the outlet of block 8 with a pressure of 4.8 MPa is compressed in the compressor part of the TDA to a pressure of 10.0 MPa.
- Heat exchangers 2 can be installed both in series with heaters 4, as shown in Fig. 1, and in parallel. Heat exchangers 2 can have different designs and are manufactured in the form of shell-and-tube, twisted, plate and other devices.
- Heaters 4 are heat exchangers in which gas heating is performed by transferring heat from a hot heat carrier, such as, for example, hot oil, steam, flue gases, hot gas, hot liquid, etc.
- a hot heat carrier such as, for example, hot oil, steam, flue gases, hot gas, hot liquid, etc.
- heaters 4 can consist of several heat exchangers with different heat carriers.
- heaters 4 can be implemented both in one block with a heat carrier heating furnace, and separately.
- Hot gases present in the plant can serve as a hot gas used as a heat carrier, in particular, for example, hot gases formed after gas compression in the compressor part of the TDA (stream 11).
- a turboexpander unit is a machine in which either the turbine and compressor part are mechanically connected, with the mechanical energy from the turbine being transferred to the compressor part, or the turbine and compressor part are electrically connected, with the turbine connected to an electric generator, and the compressor part is connected to an electric motor (electric energy from the electric generator is transferred to the electric motor).
- Each turbine and compressor part of the TDU can be made according to a radial, axial and radial-axial scheme. In turn, in the case of using a radial scheme, both centripetal and centrifugal working wheels and guide vanes. Since the turbine and compressor parts must not contain mechanical and liquid impurities at the inlet, the TDA must be equipped with devices (separators, filters) that process the gas before feeding the gas to the turbines and compressor parts.
- the operation of the proposed invention according to the third and fourth embodiments of the proposed method is illustrated by the example of the installation, the diagram of which is shown in Fig. 2.
- the input flow of natural gas 1 is heated in heat exchangers 2 and heaters 4 and expanded in turbine 6 of the TDA.
- the gas is cooled, for example in heat exchanger 2, and compressed in compressor section 10 of the TDA, the compressed gas is processed in block 8 for separating target fractions from natural gas, and the gas temperature before turbine 6 of the TDA is provided at such a level that the gas pressure at the outlet of compressor section 10 of the TDA exceeds the gas pressure before turbine section 6 of the TDA.
- Cooling of gas before the compressor section of the 10 TDA can also be carried out in an air cooling apparatus.
- the separation of target fractions can be carried out using absorbers, adsorbers, membrane separation, or by partial condensation of gas using the cold of a refrigeration machine and separation target components condensed during cooling in a separator and/or rectification column,
- Table 2 shows the parameters of the main flows for the installation shown in Fig. 2 for the case of extracting water vapor from associated gas (gas drying).
- the input flow 1 of natural gas with a pressure of 5.0 MPa and a temperature of 30°C is heated in heat exchanger 2 and heater 4 to a temperature of 306.6°C.
- the heated gas expands in the turbine of the turboexpander unit to a pressure of 3.0 MPa and is cooled in heat exchanger 2 to a temperature of 35°C and compressed in the compressor section of the TDA to a pressure of 6.0 MPa.
- the compressed gas is sent to block 8 for separating the target fractions of natural gas from natural gas.
- water is separated from natural gas 25.
- 800 kg/day of water is separated from the input gas with a flow rate of 730.5 tons/day of natural gas.
- the gas pressure at the outlet of the compressor section 10 TDA exceeds the gas pressure in front of the turbine 6 TDA.
- ethylene glycol ethylene glycol
- DEG diethylene glycol
- TEG triethylene glycol
- methanol the fourth variant of the proposed method
- absorbent - as an adsorbent
- aluminum oxide aluminum oxide
- zeolites silica gel
- silica gel etc.
- FIG. 8 For the example under consideration, one of the possible block 8 schemes according to the sixth method is shown in Fig. 8.
- Gas 7 is cooled in the recuperative heat exchanger 27 and the evaporator of the refrigeration machine to a temperature of -25°C, the condensed water is separated from the gas in the separator 29, the gas from the top of the separator is directed to be heated in the recuperative heat exchanger.
- the operation of the proposed invention according to the fifth and sixth embodiments of the proposed method is illustrated by the example of the installation, the diagram of which is shown in Fig. 3.
- the input flow of natural gas 1 is processed in the unit 8 for separating target fractions from natural gas, heated in heat exchangers 2 and heaters 4 and expanded in the turbine 6 of the TDA.
- the gas is cooled, for example in the heat exchanger 2, and compressed in the compressor section 10 of the TDA, wherein the gas temperature in front of the turbine 6 of the TDA is provided at such a level that the gas pressure at the outlet of the compressor section 10 of the TDA exceeds the gas pressure in front of the turbine section 6 of the TDA.
- Cooling of gas before the compressor section of the 10 TDA can also be carried out in an air cooling apparatus.
- Table 3 shows the parameters of the main flows for the installation shown in Fig. 3 for the case of extracting acidic components H2S and CO2 from associated gas.
- the input flow 1 of natural gas with a pressure of 6.0 MPa and a temperature of 30°C is directed to the unit 8 for extracting acidic components H2S and CO2 from natural gas, in which the flow of acidic components 38 is separated, and the gas purified from acidic components is heated in heat exchanger 2 and heater 4 to a temperature of 300°C.
- the separation of acidic components from natural gas is carried out using absorbers; or adsorbers and/or membranes; or using a low-temperature condensation process, in which the gas is cooled using heat exchangers and a refrigeration machine, and the target components condensed during cooling are separated in a separator and/or a rectification column; the separation of acidic components H2S and CO2 from natural gas occurs.
- the gas pressure at the outlet of the compressor section 10 TDA exceeds the gas pressure in front of the turbine 6 TDA.
- adsorbent as an adsorbent, activated carbon, molecular sieves, Zn oxides or Cu oxides, zinc-copper absorbent, synthetic sorbent for cleaning gases from hydrogen sulfide with a content of 35-95% manganese oxides, or other innovative adsorbents (the eighth variant of the proposed method),
- FIG. 8 As a refrigeration machine, propane, freon, ammonia, mixed refrigerants, carbon dioxide, air or other innovative refrigeration machines (the ninth variant of the proposed method),
- Fig. 8 Gas 7 is cooled in the recuperative heat exchanger 27 and the evaporator of the refrigeration machine to a temperature of -20°C, the condensed water is separated from the gas in the separator 29, the gas from the top of the separator is directed to be heated in the recuperative heat exchanger.
- FIG. 4 shows an embodiment of the method according to paragraph 2, 12, 22, 32, 42, 52 of the invention formula, in which after gas compression in the compressor section 10 of the TDA, the gas is additionally subjected to at least one additional processing, including heating the gas in additional gas-gas heat exchangers 21 and/or additional heaters 22, expanding the heated gas in the turbine 23 of the additional turboexpander unit (ATEU), cooling the gas in the heat exchanger 21, and compressing the gas in the compressor section 24 of the ATEU. Similar, at least one-time additional gas processing can also be carried out after gas processing in the unit for separating target fractions of natural gas from natural gas.
- at least one-time additional gas processing can also be carried out after gas processing in the unit for separating target fractions of natural gas from natural gas.
- the TDA and/or DTDA turbine may include at least two turbine working wheels.
- Fig. 5 shows the TDA turbine 13 with two working wheels.
- the use of two or more turbine wheels is advisable at high gas expansion rates in the turbine, in which case the use of several working wheels allows increasing the efficiency (efficiency) of gas expansion in the turbine. This allows taking off more mechanical energy from the turbine.
- the compressor section of the TDA and/or DTDA may include at least two compressor working wheels.
- Fig. 5 shows the compressor section of the TDA 14 with two compressor working wheels.
- the use of two or more compressor wheels is advisable at high gas compression ratios in the compressor section of the TDA, in which case the use of several working wheels allows increasing the efficiency (efficiency) of gas compression in the compressor section of the TDA. This allows for a higher gas compression ratio in the compressor section of the TDA.
- Compressor and turbine impellers of the TDA and/or DTDA can be divided into several independent casings to reduce the size of the casings and reduce the cost of the TDA and DTDA.
- the gas can be additionally heated before any turbine wheel, as shown in the diagram in Fig. 6.
- the gas expands in the first turbine wheel of the TDA, then the gas is heated in additional heater 16 and expand in the second working wheel of the TDA turbine.
- the gas can be additionally cooled before any compressor wheel as shown in the diagram in Fig. 6.
- the gas is cooled, for example, in the air cooling apparatus 19, and expanded in the second compressor wheel of the TDA.
- the gas transfer between the unit for separating the target fractions of natural gas from natural gas and the TDA can be carried out by means of a long gas pipeline.
- the gas transfer between the unit for separating the target fractions of natural gas from natural gas and the heat exchangers and/or heaters can also be carried out by means of a long gas pipeline. In some cases, the length of this gas pipeline can reach several tens of kilometers.
- the DTA and DTDA can be implemented in one housing.
- the gas temperature before the TDA turbine in some cases, is provided at a level above 200°C.
- currently existing turboexpander units allow providing gas pressure at the outlet of the TDA compressor section exceeding the gas pressure before the TDA turbine section, with the gas temperature level before the TDA turbine at a level above 200°C.
- Heating of natural gas in heat exchangers and/or heaters can be carried out due to the heat generated during combustion of natural gas in pure oxygen.
- pure oxygen obtained in the air separation plant and natural gas are fed to the heater burner.
- the flue gases will contain mainly CO2 and water vapor.
- the flue gas after preliminary processing, can be pumped into the formation, or used for other needs (for example, for the production of pure CO2 or for nutrition of plants or bacteria, in the production of protein).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
СПОСОБ ВЫДЕЛЕНИЯ ИЗ ПРИРОДНОГО ГАЗА ЦЕЛЕВЫХ ФРАКЦИЙ (ВАРИАНТЫ) METHOD OF SEPARATION OF TARGET FRACTIONS FROM NATURAL GAS (OPTIONS)
Область техники Field of technology
Изобретение относится к газовой отрасли промышленности, а именно к процессам выделения из газовых смесей целевых фракций, в частности, может быть использовано для извлечения из природного газа пропан - бутановой и этановой фракций, стабильного газового бензина, кислых компонентов, воды и т.д. Под природными газами понимаются газы, содержащиеся в недрах Земли, а также газы земной атмосферы. Предлагаемая технология может быть использована для осушки воздуха, обработки дымовых газов и т.д. The invention relates to the gas industry, namely to processes for separating target fractions from gas mixtures, in particular, it can be used to extract propane-butane and ethane fractions, stable natural gasoline, acidic components, water, etc. from natural gas. Natural gases are gases contained in the bowels of the Earth, as well as gases of the Earth's atmosphere. The proposed technology can be used for air drying, flue gas treatment, etc.
Предшествующий уровень техники Prior art
Из уровня техники известен способ переработки природного газа, раскрытый в патенте US 4,889,545, опубликованном 26.12.1989, который предусматривает многостадийное низкотемпературное охлаждение газа с конденсацией за счет рекуперации тепла в теплообменниках, одноступенчатого сепарирования выделившейся жидкости, сброса давления на потоках газа путем его дросселирования и расширения в турбине турбодетандерного агрегата (ТДА), подачу всех холодных потоков в ректификационную колонну с получением метановой газовой фракции и фракции, содержащей в основном этан, пропан и тяжелые углеводороды, нагрева метановой газовой фракции в теплообменниках и последующего сжатия ее в компрессорной части ТДА. Перед подачей в газопровод метановую газовую фракцию дополнительно сжимают в компрессоре. Недостатком данного способа является то, что давление метановой газовой фракции после компрессорной части ТДА существенно ниже, чем давление газа входе в установку, поэтому на выходе из установки необходим дополнительный компрессор, который существенно увеличивает капитальные затраты на строительство такой установки. A method for processing natural gas is known from the prior art, disclosed in US Patent 4,889,545, published on 26.12.1989, which provides for multi-stage low-temperature cooling of gas with condensation due to heat recovery in heat exchangers, single-stage separation of the released liquid, pressure relief on gas flows by throttling and expanding it in the turbine of a turboexpander unit (TEU), feeding all cold flows into a rectification column to obtain a methane gas fraction and a fraction containing mainly ethane, propane and heavy hydrocarbons, heating the methane gas fraction in heat exchangers and then compressing it in the compressor section of the TDU. Before feeding into the gas pipeline, the methane gas fraction is additionally compressed in a compressor. The disadvantage of this method is that the pressure of the methane gas fraction after the compressor part of the TDA is significantly lower than the gas pressure at the entrance to the unit, therefore, an additional compressor is required at the exit from the unit, which significantly increases the capital costs of building such a unit.
Наиболее близким аналогом к заявленному изобретению по совокупности существенных признаков являются способ и установка выделения из природного газа целевых фракций, раскрытые в патенте RU 2749628, опубликованном 16.06.2021 , в котором газ обрабатывается путем последовательно следующих друг за другом процессов сжатия газа в основном компрессоре, охлаждения газа в аппарате воздушного охлаждения, выделения из газа пропан-бутановой и этановой фракции в блоке низкотемпературной конденсации, включающем в себя процесс охлаждения газа в теплообменниках, сепарации из газа сконденсировавшегося конденсата, расширения газа в турбине основного турбодетандера или в дросселе, обработки охлажденного газа и/или выделенного из газа конденсата в ректификационной колонне, нагреве газа в теплообменниках, при этом после сжатия газа в основ ном компрессоре сжатый газ с температурой не менее 100°С направляется в турбину дополнительного турбодетандера. The closest analogue to the claimed invention in terms of the set of essential features is the method and installation for separating target fractions from natural gas, disclosed in patent RU 2749628, published on 16.06.2021, in which gas is processed by sequentially following processes of gas compression in the main compressor, gas cooling in an air cooling apparatus, separating propane-butane and ethane fractions from gas in a low-temperature condensation unit, including the process of gas cooling in heat exchangers, separating condensed condensate from gas, expanding gas in the turbine of the main turboexpander or in a throttle, processing cooled gas and/or condensate separated from gas in a distillation column, heating gas in heat exchangers, and after gas compression in the main In the compressor, compressed gas with a temperature of at least 100°C is sent to the turbine of an additional turboexpander.
Недостатком данного способа является то, что давление газа на выходе из такой установки (в описанном патенте 75 атм.) существенно ниже, чем давление газа после входного компрессора (150 атм.), поэтому для транспортирования товарного газа на большие расстояния по магистральным газопроводам на выходе из предлагаемой установки необходимо устанавливать дополнительную компрессорную станцию для сжатия товарного газа, перед его подачей в газопровод. Часто, давление в таких газопроводах превышает 150 атм. Стоимость такой компрессорной станции обычно соизмеримо со стоимостью установки выделения из природного газа целевых фракций. The disadvantage of this method is that the gas pressure at the outlet of such a unit (in the described patent 75 atm.) is significantly lower than the gas pressure after the inlet compressor (150 atm.), therefore, to transport commercial gas over long distances through main gas pipelines, an additional compressor station must be installed at the outlet of the proposed unit to compress the commercial gas before feeding it into the gas pipeline. Often, the pressure in such gas pipelines exceeds 150 atm. The cost of such a compressor station is usually commensurate with the cost of the unit for separating target fractions from natural gas.
Раскрытие изобретения Disclosure of invention
Технической задачей, на решение которой направлено заявленное изобретение, является снижение капитальных затрат на строительство установок извлечения целевых фракций из газовых смесей, за счет исключения из состава оборудования таких установок, дорогостоящих компрессорных станций. The technical problem that the claimed invention is aimed at solving is the reduction of capital costs for the construction of installations for extracting target fractions from gas mixtures, by eliminating expensive compressor stations from the equipment of such installations.
Техническим результатом, достигаемым при реализации заявленного изобретения, является существенное сокращение капитальных и эксплуатационных затрат на установках, предназначенных для извлечения целевых фракций. The technical result achieved by implementing the claimed invention is a significant reduction in capital and operating costs for installations designed to extract target fractions.
Далее на примере природного газа, добываемого на газовых или нефтяных месторождениях, будет описан принцип работы предлагаемого способа (варианты).Below, using the example of natural gas extracted from gas or oil fields, the operating principle of the proposed method (options) will be described.
Обычно установки извлечения целевых фракций из природного газа включают в себя компрессорные станции. В частности, на выходе из установок извлечения целевых фракций устанавливают выходные компрессорные станции, которые служат для увеличения давления товарного газа до уровня, необходимого для подачи товарного природного газа в магистральный газопровод. Typically, the installations for extracting target fractions from natural gas include compressor stations. In particular, at the outlet of the installations for extracting target fractions, output compressor stations are installed, which serve to increase the pressure of the commercial gas to the level necessary for feeding commercial natural gas into the main gas pipeline.
В предлагаемом способе, за счет специальной схемы применения турбодетандерного агрегата, удается обеспечить работу установки извлечения целевых фракций из природного газа, таким образом, что давление газа на выходе из установки превышает давление газа на входе в установку. Таким образом обеспечивается бескомпрессорная подача товарного газа в магистральный газопровод. Сокращение капитальных затрат происходит за счет того, что стоимость турбодетандерного агрегата (ТДА) в несколько раз меньше, чем стоимость компрессорного агрегата той же мощности. In the proposed method, due to a special scheme for using a turbo-expander unit, it is possible to ensure the operation of the unit for extracting target fractions from natural gas in such a way that the gas pressure at the outlet of the unit exceeds the gas pressure at the inlet of the unit. Thus, a compressor-free supply of commercial gas to the main gas pipeline is ensured. The reduction in capital costs occurs due to the fact that the cost of a turbo-expander unit (TEU) is several times less than the cost of a compressor unit of the same capacity.
Согласно изобретению техническая задача решается, а технический результат достигается за счет того, что в первом способе выделения из природного газа целевых фракций обработка газа включает в себя следующие друг за другом процессы: нагрева природного газа в теплообменнике газ-газ и нагревателе, расширения нагретого природного газа в турбине турбодетандерного агрегата (ТДА), охлаждения газа в теплообменнике газ-газ, выделения из природного газа целевых фракций природного газа посредством абсорбции или адсорбции или мембранного разделения, сжатия всего потока обработанного газа в компрессорной части ТДА, причем температуру газа перед турбиной ТДА обеспечивают на таком уровне, чтобы давление газа на выходе из компрессорной части ТДА превышало давление газа перед турбиной ТДА.According to the invention, the technical problem is solved and the technical result is achieved due to the fact that in the first method of separating target fractions from natural gas, gas processing includes the following successive processes: heating the natural gas in a gas-gas heat exchanger and a heater, expansion of the heated natural gas in the turbine of a turboexpander unit (TEU), cooling the gas in a gas-to-gas heat exchanger, separating target fractions of natural gas from the natural gas by means of absorption or adsorption or membrane separation, compressing the entire flow of processed gas in the compressor section of the TDU, wherein the temperature of the gas in front of the TDU turbine is provided at such a level that the gas pressure at the outlet of the compressor section of the TDU exceeds the gas pressure in front of the TDU turbine.
Во втором варианте способа выделения из природного газа целевых фракций обработка газа включает в себя следующие друг за другом процессы: нагрева природного газа в теплообменнике газ-газ и нагревателе, расширение нагретого природного газа в ТДА, охлаждение газа в теплообменнике газ-газ, частичной конденсации газа с использованием холода холодильной машины и выделение целевых компонентов, сконденсировавшихся при охлаждении, в сепараторе и/или ректификационной колонне, последующем сжатии всего потока газа в компрессорной части ТДА, причем температуру газа перед турбиной ТДА обеспечивают на таком уровне, чтобы давление газа на выходе из компрессорной части ТДА превышало давление газа перед турбиной ТДА. In the second variant of the method for separating target fractions from natural gas, the gas processing includes the following successive processes: heating the natural gas in a gas-to-gas heat exchanger and a heater, expanding the heated natural gas in the TDA, cooling the gas in the gas-to-gas heat exchanger, partially condensing the gas using the cold of the refrigeration machine and separating the target components condensed during cooling in a separator and/or a rectification column, followed by compression of the entire gas flow in the compressor section of the TDA, wherein the gas temperature in front of the TDA turbine is provided at such a level that the gas pressure at the outlet of the compressor section of the TDA exceeds the gas pressure in front of the TDA turbine.
В третьем варианте способа выделения из природного газа целевых фракций обработка газа включает в себя следующие друг за другом процессы: нагрева газа в теплообменнике газ-газ и нагревателе, расширение нагретого газа в турбине турбодетандерного агрегата (ТДА), охлаждение газа в теплообменнике газ-газ, сжатия всего потока газа в компрессорной части ТДА, выделения из природного газа целевых фракций природного газа посредством абсорбции или адсорбции или мембранного разделения, причем температуру газа перед турбиной ТДА обеспечивают на таком уровне, чтобы давление газа на выходе из компрессорной части ТДА превышало давление газа перед турбиной ТДА. In the third variant of the method for separating target fractions from natural gas, the gas processing includes the following successive processes: heating the gas in a gas-to-gas heat exchanger and a heater, expanding the heated gas in a turbine of a turbo-expander unit (TEU), cooling the gas in a gas-to-gas heat exchanger, compressing the entire gas flow in the compressor section of the TEU, separating target fractions of natural gas from natural gas by means of absorption or adsorption or membrane separation, wherein the gas temperature before the TEU turbine is provided at such a level that the gas pressure at the outlet of the compressor section of the TEU exceeds the gas pressure before the TEU turbine.
В четвертом варианте способа выделения из природного газа целевых фракций обработка газа включает в себя следующие друг за другом процессы: нагрева природного газа в теплообменнике газ-газ и нагревателе, расширение нагретого природного газа в турбине ТДА, охлаждение газа в теплообменнике газ-газ, сжатия всего потока газа в компрессорной части ТДА, частичной конденсации газа с использованием холода холодильной машины и выделения целевых компонентов, сконденсировавшихся при охлаждении, в сепараторе и/или ректификационной колонне, причем температуру газа перед турбиной ТДА обеспечивают на таком уровне, чтобы давление газа на выходе из компрессорной части ТДА превышало давление газа перед турбиной ТДА. In the fourth variant of the method for separating target fractions from natural gas, the gas processing includes the following successive processes: heating the natural gas in a gas-to-gas heat exchanger and a heater, expanding the heated natural gas in the TDA turbine, cooling the gas in the gas-to-gas heat exchanger, compressing the entire gas flow in the compressor section of the TDA, partially condensing the gas using the cold of the refrigeration machine and separating the target components condensed during cooling in a separator and/or a rectification column, wherein the gas temperature in front of the TDA turbine is provided at such a level that the gas pressure at the outlet of the compressor section of the TDA exceeds the gas pressure in front of the TDA turbine.
В пятом варианте способа выделения из природного газа целевых фракций обработка газа включает в себя следующие друг за другом процессы: выделения из природного газа целевых фракций природного газа посредством абсорбции или адсорбции или мембранного разделения, нагрева газа в теплообменнике газ-газ и нагревателе, расширения нагретого газа в турбине ТДА охлаждение газа по меньшей мере теплообменнике газ-газ, сжатия всего потока газа в компрессорной части ТДА, причем температуру газа перед турбиной ТДА обеспечивают на таком уровне, чтобы давление газа на выходе из компрессорной части ТДА превышало давление газа перед турбиной ТДА. In the fifth variant of the method for separating target fractions from natural gas, gas processing includes the following successive processes: separating target fractions of natural gas from natural gas by absorption or adsorption or membrane separation, heating the gas in a gas-to-gas heat exchanger and a heater, expanding the heated gas in the TDA turbine, cooling the gas in at least the gas-to-gas heat exchanger, compressing the entire gas flow in the compressor section of the TDA, wherein the gas temperature in front of the TDA turbine is provided at such a level that the gas pressure at the outlet of the compressor section of the TDA exceeds the gas pressure in front of the TDA turbine.
В шестом варианте способа выделения из природного газа целевых фракций обработка газа включает в себя следующие друг за другом процессы: частичной конденсации газа с использованием холода холодильной машины и выделения целевых компонентов, сконденсировавшихся при охлаждении, в сепараторе и/или ректификационной колонне, последующего нагрева газа в теплообменнике газ-газ и нагревателе, расширения нагретого газа в турбине турбодетандерного агрегата (ТДА) , охлаждение газа в теплообменнике газ-газ, сжатие всего потока газа в компрессорной части ТДА, причем температуру газа перед турбиной ТДА обеспечивают на таком уровне, чтобы давление газа на выходе из компрессорной части ТДА превышало давление газа перед турбиной ТДА. In the sixth variant of the method for separating target fractions from natural gas, the gas processing includes the following successive processes: partial condensation of the gas using the cold of the refrigeration machine and separation of the target components condensed during cooling in a separator and/or a rectification column, subsequent heating of the gas in a gas-to-gas heat exchanger and a heater, expansion of the heated gas in the turbine of a turboexpander unit (TDU), cooling of the gas in the gas-to-gas heat exchanger, compression of the entire gas flow in the compressor section of the TDU, wherein the gas temperature in front of the TDU turbine is provided at such a level that the gas pressure at the outlet of the compressor section of the TDU exceeds the gas pressure in front of the TDU turbine.
Реализация одного из шести предложенных вариантов зависит от входного давления природного газа. Первые два варианта реализуются, если давление входного газа слишком высокое для нормальной работы блока выделения из природного газа целевых фракций природного газа, в этом варианте перед подачей газа в блок, осуществляется снижение давления газа в турбине ТДА. The implementation of one of the six proposed options depends on the input pressure of natural gas. The first two options are implemented if the input gas pressure is too high for normal operation of the unit for separating target fractions of natural gas from natural gas; in this option, before feeding gas to the unit, the gas pressure in the TDA turbine is reduced.
Третий и четвертый варианты предлагаемого способа реализуются в том случае, если давление входного газа недостаточно для нормальной работы блока выделения из природного газа целевых фракций природного газа. В этом варианте после сжатия в компрессорной части ТДА происходит повышение давления газа до уровня, превышающего давление входного газа. The third and fourth variants of the proposed method are implemented in the event that the input gas pressure is insufficient for the normal operation of the unit for separating target fractions of natural gas from natural gas. In this variant, after compression in the compressor part of the TDA, the gas pressure increases to a level exceeding the input gas pressure.
Пятый и шестой варианты предлагаемого способа реализуется, когда давление входного газа достаточно для нормальной работы блока выделения из природного газа целевых фракций природного газа, но после блока необходимо увеличить давление товарного газа. The fifth and sixth variants of the proposed method are implemented when the input gas pressure is sufficient for the normal operation of the unit for separating target fractions of natural gas from natural gas, but after the unit it is necessary to increase the pressure of the commercial gas.
Во всех вариантах реализации способа после сжатия газа в компрессорной части ТДА и/или после выделения из природного газа целевых фракций природного газа, газ дополнительно подвергают по крайней мере однократной дополнительной обработке, включающей в себя нагрев газа в дополнительных теплообменниках газ-газ и/или дополнительных нагревателях, расширение нагретого газа в турбине дополнительного турбодетандерного агрегата (ДТДА), охлаждение газа и сжатие газа в компрессорной части ДТДА. В случаях, когда необходимо достичь высоких коэффициентов полезного действия турбин и компрессорных частей ТДА и/или ДТДА, целесообразно, чтобы турбина ТДА и /или ДТДА включали в себя, по крайней мере, два турбинных рабочих колеса, а компрессорная часть ТДА и/или ДТДА, по крайней мере, два компрессорных рабочих колеса. In all embodiments of the method, after compression of the gas in the compressor section of the TDA and/or after separation of the target fractions of natural gas from the natural gas, the gas is additionally subjected to at least one additional processing, including heating the gas in additional gas-gas heat exchangers and/or additional heaters, expansion of the heated gas in the turbine of the additional turbo-expander unit (ATEU), cooling the gas and compressing the gas in the compressor section of the ATEU. In cases where it is necessary to achieve high efficiency factors of turbines and compressor parts of the TDA and/or DTDA, it is advisable that the turbine of the TDA and/or DTDA include at least two turbine working wheels, and the compressor part of the TDA and/or DTDA include at least two compressor working wheels.
Перед любым турбинным рабочим колесом газ может быть дополнительно нагрет, что позволяет увеличивать отбор механической энергии с турбинного рабочего колеса. Перед любым компрессорным рабочим колесом газ может быть дополнительно охлажден, что позволяет увеличивать степень сжатия газа в компрессорном рабочем колесе. Before any turbine wheel, the gas can be additionally heated, which allows increasing the mechanical energy extraction from the turbine wheel. Before any compressor wheel, the gas can be additionally cooled, which allows increasing the degree of gas compression in the compressor wheel.
Блок выделения из природного газа целевых фракций природного газа может находиться на удалении от компрессорной части ТДА, в этих случаях передача газа между блоком выделения из природного газа целевых фракций природного газа и ТДА осуществляется посредством газопровода. Также, блок выделения из природного газа целевых фракций природного газа может находиться на удалении от теплообменников и/или нагревателей, в этих случаях передачу газа между блоком выделения из природного газа целевых фракций природного газа и теплообменниками и нагревателями осуществляет посредством газопровода. The unit for extracting the target fractions of natural gas from natural gas may be located at a distance from the compressor part of the TDA, in which case the gas is transferred between the unit for extracting the target fractions of natural gas from natural gas and the TDA via a gas pipeline. Also, the unit for extracting the target fractions of natural gas from natural gas may be located at a distance from the heat exchangers and/or heaters, in which case the gas is transferred between the unit for extracting the target fractions of natural gas from natural gas and the heat exchangers and heaters via a gas pipeline.
Для обеспечения снятия максимальной механической энергии, температуру газа перед турбиной ТДА обеспечивают на уровне выше 200°С, To ensure the removal of maximum mechanical energy, the gas temperature in front of the TDA turbine is maintained at a level above 200°C,
Нагрев природного газа в теплообменниках и/или нагревателях можно осуществлять за счет тепла, образующегося при сгорании природного газа в чистом кислороде. В этом случае при сгорании природного газа в чистом кислороде будут образовываться дымовой газ высокой концентрацией СОг, который сразу же можно закачивать обратно в пласт на месторождении. Heating of natural gas in heat exchangers and/or heaters can be carried out using heat generated during combustion of natural gas in pure oxygen. In this case, combustion of natural gas in pure oxygen will produce flue gas with a high concentration of CO2, which can be immediately pumped back into the formation at the field.
Краткое описание фигур чертежей Brief description of drawing figures
Сущность изобретения поясняется чертежами, где: на Фиг.1 представлена схема предлагаемого способа по первому и второму варианту реализации способа; на Фиг.2 - схема предлагаемого способа по третьему и четвертому варианту реализации способа; на Фиг.З - схема предлагаемого способа по пятому и шестому варианту реализации способа; на Фиг.4 - схема предлагаемого способа, поясняющая п. 2, 12, 22, 32, 42, 52 формулы изобретения; на Фиг.5 - схема предлагаемого способа, поясняющая реализацию способа по п.3,4, 13,14,23,24,33,34,43,44,53,54 формулы изобретения. на Фиг.6 - схема предлагаемого способа, поясняющая реализацию способа по п.5, 6, 15, 16, 25, 26, 35, 36, 45, 46, 55, 56 формулы изобретения. на Фиг.7 - схема блока обработки газа в блоке выделения из природного газа целевых фракций природного газа с использованием процесса низкотемпературной конденсации, в случае выделения фракции СЗ+ (ШФЛУ). на Фиг.8 - схема блока обработки газа в блоке выделения из природного газа целевых фракций природного газа с использованием процесса низкотемпературной конденсации, в случае выделения водяного пара из природного газа. The essence of the invention is explained by drawings, where: Fig. 1 shows a diagram of the proposed method according to the first and second embodiments of the method; Fig. 2 - a diagram of the proposed method according to the third and fourth embodiments of the method; Fig. 3 - a diagram of the proposed method according to the fifth and sixth embodiments of the method; Fig. 4 - a diagram of the proposed method, explaining paragraphs 2, 12, 22, 32, 42, 52 of the formula of the invention; Fig. 5 - a diagram of the proposed method, explaining the implementation of the method according to paragraphs 3, 4, 13, 14, 23, 24, 33, 34, 43, 44, 53, 54 of the formula of the invention. Fig. 6 is a diagram of the proposed method, explaining the implementation of the method according to paragraphs 5, 6, 15, 16, 25, 26, 35, 36, 45, 46, 55, 56 of the claims. Fig. 7 is a diagram of the gas processing unit in the unit for separating target fractions of natural gas from natural gas using the low-temperature condensation process, in the case of separating the SZ+ fraction (NGL). Fig. 8 is a diagram of the gas processing unit in the unit for separating target fractions of natural gas from natural gas using the low-temperature condensation process, in the case of separating water vapor from natural gas.
На фигурах обозначены следующие позиции: The following positions are indicated on the figures:
1 - входной поток природного газа, 1 - input flow of natural gas,
2 - теплообменник, 2 - heat exchanger,
4 - нагреватель, 4 - heater,
6 - турбина ТДА, 6 - TDA turbine,
8 - блок выделения из природного газа целевых фракций природного газа, 8 - block for separating target fractions of natural gas from natural gas,
10 - компрессорная часть ТДА, 10 - compressor part of the TDA,
13 - турбина ТДА с двумя рабочими колесами, 13 - TDA turbine with two working wheels,
14 - компрессорная часть ТДА с двумя колесами, 14 - compressor part of the TDA with two wheels,
15 - первое турбинное колесо турбины ТДА, 15 - the first turbine wheel of the TDA turbine,
16 - промежуточный нагреватель, 16 - intermediate heater,
17 - второе рабочее колесо турбины ТДА, 17 - the second working wheel of the TDA turbine,
18 - первое рабочее колесо компрессорной части ТДА, 18 - the first working wheel of the compressor part of the TDA,
19 - промежуточный охладитель, 19 - intercooler,
20 - второе рабочее колесо компрессорной части ТДА, 20 - the second working wheel of the compressor part of the TDA,
21 - дополнительный теплообменник, 21 - additional heat exchanger,
22 - дополнительный нагреватель, 22 - additional heater,
23 - турбина ДТДА, 23 - turbine DTDA,
24 - компрессорная часть дополнительного ДТДА, 24 - compressor part of the additional DTDA,
25 - целевые фракции, извлеченные из природного газа, 25 - target fractions extracted from natural gas,
26, 27 - рекуперативные теплообменники, 26, 27 - recuperative heat exchangers,
28 - холодильная машина, 28 - refrigeration machine,
29 - сепаратор, 29 - separator,
30 - компрессор, 30 - compressor,
31 - ректификационная колонна, 31 - distillation column,
3, 5, 7, 9, 1 1 , 12, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 , 42, 43, 44 - потоки по установке. 3, 5, 7, 9, 11, 12, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44 - installation flows.
Варианты осуществление изобретения Variants of implementation of the invention
Работа предлагаемого изобретения по первому варианту реализации предлагаемого способа иллюстрируется на примере установки, схема которого приведена на Фиг.1. Входной поток природный газа 1 нагревают в теплообменниках 2 и нагревателях 4 и расширяют в турбине 6 ТДА. Далее газ охлаждают, например в теплообменнике 2, и обрабатывают в блоке 8 выделения из природного газа целевых фракций, Газ после обработки в блоке 8 сжимают в компрессорной части 10 ТДА, причем температуру газа перед турбиной 6 ТДА обеспечивают на таком уровне, чтобы давление газа на выходе из компрессорной части 10 ТДА превышало давление газа перед турбинной частью 6 ТДА. The operation of the proposed invention according to the first embodiment of the proposed method is illustrated using the example of an installation, the diagram of which is shown in Fig. 1. The input flow of natural gas 1 is heated in heat exchangers 2 and heaters 4 and expand in turbine 6 TDA. Then the gas is cooled, for example in heat exchanger 2, and processed in block 8 for separating target fractions from natural gas. After processing in block 8, the gas is compressed in compressor section 10 TDA, and the gas temperature before turbine 6 TDA is provided at such a level that the gas pressure at the outlet of compressor section 10 TDA exceeds the gas pressure before turbine section 6 TDA.
В соответствии с первым и вторым вариантом реализации предлагаемого способа, в блоке 8 выделения из природного газа целевых фракций используются абсорберы, и/или адсорберы, и/или мембранное разделение. In accordance with the first and second variants of implementing the proposed method, absorbers and/or adsorbers and/or membrane separation are used in block 8 for separating target fractions from natural gas.
В абсорберах осуществляется разделения газовой смеси на составные части растворением одного или нескольких компонентов этой смеси в жидкости, называемой абсорбентом. Абсорбер обычно представляет собой колонку с насадкой или тарелками, в нижнюю часть которой подаётся газ, а в верхнюю - жидкость; газ удаляется из абсорбера сверху, а жидкость - снизу. При этом, целевые фракции поглощаются жидкостью. В некоторых случаях в абсорбере газ барботируется через абсорбент, залитый в колонну. Детально с конструкциями различных абсорберов можно ознакомиться в книге Рамм В. М. Адсорбция газов. Изд. 2-е, переработ. и доп. М., "Химия", 1976. In absorbers, a gas mixture is separated into its component parts by dissolving one or more components of this mixture in a liquid called an absorbent. An absorber is usually a column with packing or plates, into the lower part of which gas is fed, and into the upper part - liquid; gas is removed from the absorber from the top, and liquid - from the bottom. In this case, the target fractions are absorbed by the liquid. In some cases, gas bubbles through the absorbent poured into the column in the absorber. Detailed information on the designs of various absorbers can be found in the book by Ramm V. M. Adsorption of gases. 2nd ed., revised. and add. Moscow, "Chemistry", 1976.
Адсорбер - это аппарат для поглощения поверхностным слоем твердого тела, называемого адсорбентом (поглотителем), растворенных или газообразных веществ. Обычно адсорбер это вертикальный или горизонтальный сосуд, заполненный твердым адсорбентом. В качестве адсорбента можно использовать активированный уголь, селикагели, цеолиты, глингистые материалы и т.д. Известны химическая и физическая адсорбция. При физической адсорбции поглощение целевых фракций происходит без химических реакций, при химической адсорбции происходит образование новых химических соединений. Одна из особенностей адсорберов - необходимость непрерывной или периодической регенерации. Регенерацию адсорбента проводят обычно посредством его нагрева и/или продувкой газом. Детально с конструкциями различных адсорберов можно ознакомиться в книге Н.В.Кельцев, Основы адсорбционной техники, М., 1984. An adsorber is a device for absorbing dissolved or gaseous substances by the surface layer of a solid body, called an adsorbent (absorbent). An adsorber is usually a vertical or horizontal vessel filled with a solid adsorbent. Activated carbon, silica gels, zeolites, clayey materials, etc. can be used as an adsorbent. Chemical and physical adsorption are known. During physical adsorption, the absorption of target fractions occurs without chemical reactions, while during chemical adsorption, new chemical compounds are formed. One of the features of adsorbers is the need for continuous or periodic regeneration. Adsorbent regeneration is usually carried out by heating it and/or blowing gas. Detailed information on the designs of various adsorbers can be found in the book by N.V. Keltsev, Fundamentals of Adsorption Technology, Moscow, 1984.
В случае использования мембранного разделения, выделение целевых фракций из природного газа осуществляется в мембранах, обладающих свойством селективной проницаемости компонентов природного газа, т. е. различные фракции природного газа проникают через мембрану с различной скоростью. При обработке газа в мембранном модуле исходный природный газ разделяется на два потока - на проникающие через мембрану целевые фракции (пермеат) и на очищенный природный газ (ретентат). Часто используют двухступенчатую обработку природного газа, при которой пермиат обрабатывают во второй ступени также с помощью мембран. Мембраны изготавливаются из различных материалов, например из полимеров, из нанопористых, цеолитовых или кремнеземных материалов и др. Детально с конструкциями различных мембран можно ознакомиться в книге Ю.И.Дытнерский, В.П. Брыков, Г. Г. Каграманов, Мембранное разделение газов, М. «Химия», 1991 г. In the case of membrane separation, the separation of target fractions from natural gas is carried out in membranes that have the property of selective permeability of natural gas components, i.e. different fractions of natural gas penetrate through the membrane at different rates. When processing gas in a membrane module, the original natural gas is divided into two flows - into target fractions penetrating through the membrane (permeate) and into purified natural gas (retentate). Two-stage processing of natural gas is often used, in which the permeate is processed in the second stage also using membranes. Membranes are made of various materials, such as polymers, nanoporous, zeolite or silica materials, etc. Detailed information on the designs of various membranes can be found in the book by Yu.I. Dytnersky, V.P. Brykov, G.G. Kagramanov, Membrane Separation of Gases, Moscow "Chemistry", 1991.
В соответствии со вторым вариантом реализации предлагаемого способа, в блоке 8 выделения из природного газа целевых фракций обработку газа проводят с использованием процесса низкотемпературной конденсации, при котором газ охлаждают с использованием теплообменников и холодильной машины, а целевые компоненты, сконденсировавшиеся при охлаждении выделяют в сепараторе и/или ректификационной колонне. В качестве примера, на Фиг.7 приведена схема возможной конфигурации такого блока 8. В блоке 8 газ охлаждается в рекуперативных теплообменниках 26 и 27, далее охлажденный газ дополнительно охлаждается в испарителе холодильной машины 28. Сконденсировавшийся при охлаждении газа углеводородный конденсат отделяют от газа в сепараторе 29. Далее отделенный конденсат нагревают в рекуперативном теплообменнике 26 и направляют в ректификационную колонну 31. Снизу колонны 31 отбирают целевые фракции 25, сверху колонны отбирается газы выветривания, которые с помощью компрессора 30 сжимаются и подаются газ перед сепаратором 29. In accordance with the second embodiment of the proposed method, in block 8 for separating target fractions from natural gas, gas processing is carried out using a low-temperature condensation process, in which the gas is cooled using heat exchangers and a refrigeration machine, and the target components condensed during cooling are separated in a separator and/or a rectification column. As an example, Fig. 7 shows a diagram of a possible configuration of such a block 8. In block 8, the gas is cooled in recuperative heat exchangers 26 and 27, then the cooled gas is additionally cooled in the evaporator of the refrigeration machine 28. The hydrocarbon condensate condensed during the cooling of the gas is separated from the gas in the separator 29. Then the separated condensate is heated in the recuperative heat exchanger 26 and sent to the rectification column 31. From the bottom of the column 31, the target fractions 25 are collected, from the top of the column, the weathering gases are collected, which are compressed with the help of the compressor 30 and the gas is fed before the separator 29.
В качестве одного из возможных применений предлагаемого способа, в таблице 1 приведены параметры основных потоков по установке показанной на Фиг.1 для случая извлечения из попутного газа фракции, состоящей из углеводородных компонентов тяжелее пропана (СЗ+, ШФЛУ). Входной поток 1 природного газа с давлением 8.0 МПА и температурой 30°С, нагревается в теплообменнике 2 и нагревателе 4 до температуры 287, 9°С. Далее нагретый газ расширяется в турбине турбодетандерного агрегата до давления 5.0 МПА и охлаждается в теплообменнике 2 до температуры 35°С и направляется в блок 8 выделения из природного газа целевых фракций природного газа. В котором с помощью абсорберов (первый вариант реализации предлагаемого способа); либо адсорберов и/или мембран (второй вариант реализации предлагаемого способа); либо с использованием процесса низкотемпературной конденсации, при котором газ охлаждают с использованием теплообменников и холодильной машины, а целевые компоненты, сконденсировавшиеся при охлаждении выделяют в сепараторе и/или ректификационной колонне (третий вариант реализации предлагаемого способа), происходит отделение из природного газа целевых фракций 25 природного газа СЗ+ (ШФЛУ). Очищенный от целевых фракций газ с выхода блока 8 с давлением 4.8 МПА сжимается в компрессорной части ТДА до давления 10,0 МПА. В данном примере из входного газа с расходом 910,8 тонн/день природного газа выделяется 188,9 тонн целевых фракций СЗ+. При этом газ давление газа 11 на выходе из компрессорной части ТДА превышает давление газа 5 перед турбинной частью ТДА. As one of the possible applications of the proposed method, Table 1 shows the parameters of the main flows for the unit shown in Fig. 1 for the case of extracting a fraction consisting of hydrocarbon components heavier than propane (SZ+, NGL) from associated gas. The input flow 1 of natural gas with a pressure of 8.0 MPa and a temperature of 30°C is heated in heat exchanger 2 and heater 4 to a temperature of 287.9°C. Then, the heated gas expands in the turbine of the turboexpander unit to a pressure of 5.0 MPa and is cooled in heat exchanger 2 to a temperature of 35°C and sent to block 8 for separating the target fractions of natural gas from natural gas. In which, using absorbers (the first embodiment of the proposed method); or adsorbers and/or membranes (the second embodiment of the proposed method); or using a low-temperature condensation process, in which the gas is cooled using heat exchangers and a refrigeration machine, and the target components condensed during cooling are separated in a separator and/or a rectification column (the third embodiment of the proposed method), the target fractions of 25 natural gas SZ+ (NGL) are separated from the natural gas. The gas purified from the target fractions from the outlet of block 8 with a pressure of 4.8 MPa is compressed in the compressor part of the TDA to a pressure of 10.0 MPa. In this example, 188.9 tons of natural gas are separated from the inlet gas with a flow rate of 910.8 tons/day target fractions SZ+. In this case, the gas pressure of gas 11 at the outlet of the compressor part of the TDA exceeds the pressure of gas 5 before the turbine part of the TDA.
В блоке 8 для выделения целевых фракций СЗ+ из природного газа, в данном конкретном примере, целесообразно применять: In block 8, to isolate the target fractions of SZ+ from natural gas, in this specific example, it is advisable to use:
- в качестве абсорбента бензин, керосин, солярный дистиллят, либо фракции, входящие в состав природного газа, в случае использования абсорберов (первый вариант предлагаемого способа), - gasoline, kerosene, solar distillate, or fractions included in natural gas, as an absorbent, in the case of using absorbers (the first version of the proposed method),
- в качестве адсорбента оксид алюминий, цеолиты, селикагель и.т.п., в случае использования адсорберов (второй вариант предлагаемого способа), - as an adsorbent, aluminum oxide, zeolites, silica gel, etc., in the case of using adsorbers (the second version of the proposed method),
- в качестве мембран половолоконные газоразделительные мембраны, полимерные мембраны и.т.п., в случае использования мембран (второй вариант предлагаемого способа), - as membranes, hollow fiber gas separation membranes, polymer membranes, etc., in the case of using membranes (the second version of the proposed method),
- в качестве холодильной машины пропановые, фреоновые, аммиачные холодильные машины, в случае использования холодильных машин (третий вариант предлагаемого способа), - as a refrigeration machine, propane, freon, ammonia refrigeration machines, in the case of using refrigeration machines (the third version of the proposed method),
Теплообменники 2 могут быть установлены как последовательно с нагревателями 4, как это показано на Фиг.1 , так и параллельно. Теплообменники 2 могут иметь различную конструкцию, и изготовлены в виде кожухотрубных, витых, пластинчатых и др. аппаратов. Heat exchangers 2 can be installed both in series with heaters 4, as shown in Fig. 1, and in parallel. Heat exchangers 2 can have different designs and are manufactured in the form of shell-and-tube, twisted, plate and other devices.
Нагреватели 4 представляют собой теплообменные аппараты, в которых нагрев газа осуществляется за счет передачи тепла от горячего теплоносителя, такого, например, как горячее масло, пар, дымовые газы, горячий газ, горячая жидкость и.т.д. При этом нагреватели 4 могут состоять из нескольких теплообменных аппаратов с разными теплоносителями. Аппаратно, нагреватели 4 могут быть выполнены как в одном блоке с печью нагрева теплоносителя, так и раздельно. Горячим газом, используемым в качестве теплоносителя, могут служить горячие газы, имеющиеся на установке, в частности, например, горячие газы, образующиеся после компримирования газа в компрессорной части ТДА (поток 11). Heaters 4 are heat exchangers in which gas heating is performed by transferring heat from a hot heat carrier, such as, for example, hot oil, steam, flue gases, hot gas, hot liquid, etc. In this case, heaters 4 can consist of several heat exchangers with different heat carriers. In terms of hardware, heaters 4 can be implemented both in one block with a heat carrier heating furnace, and separately. Hot gases present in the plant can serve as a hot gas used as a heat carrier, in particular, for example, hot gases formed after gas compression in the compressor part of the TDA (stream 11).
Под турбодетандерным агрегатом (ТДА) понимаются машины, в которых либо турбина и компрессорная часть связаны механически, при этом механическая энергия от турбины передается компрессорной части, либо турбина и компрессорная часть связаны электрически, при этом турбина связана с электрическим генератором, а компрессорная часть связана с электродвигателем (электрическая энергия от электрического генератора передается электродвигателю). Иногда целесообразно передавать механическую работу от турбины компрессорной части используя мультипликаторы и редукторы. Каждая турбина и компрессорная часть ТДА может быть выполнена по радиальной, осевой и радиально-осевой схеме. В свою очередь в случае использования радиальной схемы, могут быть применены как центростремительные, так и центробежные рабочие колеса и направляющие аппараты. Так как на входе турбину и компрессорную часть недопустимо содержание механических и жидких примесей, поэтому в ТДА должны быть предусмотрены устройства (сепараторы, фильтры), обрабатывающие газ, перед подачей газа в турбины и компрессорные части. A turboexpander unit (TDU) is a machine in which either the turbine and compressor part are mechanically connected, with the mechanical energy from the turbine being transferred to the compressor part, or the turbine and compressor part are electrically connected, with the turbine connected to an electric generator, and the compressor part is connected to an electric motor (electric energy from the electric generator is transferred to the electric motor). Sometimes it is advisable to transfer mechanical work from the turbine to the compressor part using multipliers and reducers. Each turbine and compressor part of the TDU can be made according to a radial, axial and radial-axial scheme. In turn, in the case of using a radial scheme, both centripetal and centrifugal working wheels and guide vanes. Since the turbine and compressor parts must not contain mechanical and liquid impurities at the inlet, the TDA must be equipped with devices (separators, filters) that process the gas before feeding the gas to the turbines and compressor parts.
Таблица 1
Table 1Работа предлагаемого изобретения по третьему и четвертому варианту реализации предлагаемого способа иллюстрируется на примере установки, схема которого приведена на Фиг.2. Входной поток природный газа 1 нагревают в теплообменниках 2 и нагревателях 4 и расширяют в турбине 6 ТДА. Далее газ охлаждают, например в теплообменнике 2, и сжимают в компрессорной части 10 ТДА, сжатый газ обрабатывают в блоке 8 выделения из природного газа целевых фракций, причем температуру газа перед турбиной 6 ТДА обеспечивают на таком уровне, чтобы давление газа на выходе из компрессорной части 10 ТДА превышало давление газа перед турбинной частью 6 ТДА. The operation of the proposed invention according to the third and fourth embodiments of the proposed method is illustrated by the example of the installation, the diagram of which is shown in Fig. 2. The input flow of natural gas 1 is heated in heat exchangers 2 and heaters 4 and expanded in turbine 6 of the TDA. Then the gas is cooled, for example in heat exchanger 2, and compressed in compressor section 10 of the TDA, the compressed gas is processed in block 8 for separating target fractions from natural gas, and the gas temperature before turbine 6 of the TDA is provided at such a level that the gas pressure at the outlet of compressor section 10 of the TDA exceeds the gas pressure before turbine section 6 of the TDA.
Охлаждение газа перед компрессорной частью 10 ТДА может осуществляться также в аппарате воздушного охлаждения. Cooling of gas before the compressor section of the 10 TDA can also be carried out in an air cooling apparatus.
В блоке 8 выделение целевых фракций может осуществляться как с помощью абсорберов, адсорберов, мембранного разделения, так и с помощью частичной конденсации газа с использованием холода холодильной машины и выделения целевых компонентов, сконденсировавшихся при охлаждении, в сепараторе и/или ректификационной колонне, In block 8, the separation of target fractions can be carried out using absorbers, adsorbers, membrane separation, or by partial condensation of gas using the cold of a refrigeration machine and separation target components condensed during cooling in a separator and/or rectification column,
В качестве одного из возможных применений предлагаемого способа, в таблице 2 приведены параметры основных потоков по установке показанной на Фиг.2 для случая извлечения из попутного газа водяных паров (осушка газа). Входной поток 1 природного газа с давлением 5.0 МПА и температурой 30°С, нагревается в теплообменнике 2 и нагревателе 4 до температуры 306, 6°С. Далее нагретый газ расширяется в турбине турбодетандерного агрегата до давления 3.0 МПА и охлаждается в теплообменнике 2 до температуры 35°С и сжимается в компрессорной части ТДА до давления 6,0 МПА. Сжатый газ направляется в блок 8 выделения из природного газа целевых фракций природного газа. В котором с помощью абсорберов; либо адсорберов и/или мембран; либо с использованием процесса низкотемпературной конденсации, при котором газ охлаждают с использованием теплообменников и холодильной машины, а целевые компоненты, сконденсировавшиеся при охлаждении выделяют в сепараторе, происходит отделение из природного газа воды 25. В данном примере из входного газа с расходом 730,5 тонн/день природного газа выделяется 800 кг/день воды. При этом давление газа на выходе из компрессорной части 10 ТДА превышает давление газа перед турбиной 6 ТДА. As one of the possible applications of the proposed method, Table 2 shows the parameters of the main flows for the installation shown in Fig. 2 for the case of extracting water vapor from associated gas (gas drying). The input flow 1 of natural gas with a pressure of 5.0 MPa and a temperature of 30°C is heated in heat exchanger 2 and heater 4 to a temperature of 306.6°C. Then, the heated gas expands in the turbine of the turboexpander unit to a pressure of 3.0 MPa and is cooled in heat exchanger 2 to a temperature of 35°C and compressed in the compressor section of the TDA to a pressure of 6.0 MPa. The compressed gas is sent to block 8 for separating the target fractions of natural gas from natural gas. In which, using absorbers; or adsorbers and/or membranes; or using a low-temperature condensation process, in which the gas is cooled using heat exchangers and a refrigeration machine, and the target components condensed during cooling are separated in a separator, water is separated from natural gas 25. In this example, 800 kg/day of water is separated from the input gas with a flow rate of 730.5 tons/day of natural gas. In this case, the gas pressure at the outlet of the compressor section 10 TDA exceeds the gas pressure in front of the turbine 6 TDA.
Таблица 2
Table 2В блоке 8 для выделения водяных паров из природного газа, в данном конкретном примере, целесообразно применять: в качестве абсорбента этиленгликоль (ЭГ), диэтиленгликоль (ДЭГ) , триэтиленгликоль (ТЭГ), метанол (четвертый вариант предлагаемого способа), - в качестве адсорбента оксид алюминий, цеолиты, селикагель и. т.п. (пятый вариант предлагаемого способа), In block 8, for the separation of water vapor from natural gas, in this specific example, it is advisable to use: ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), methanol (the fourth variant of the proposed method) as an absorbent, - as an adsorbent, aluminum oxide, zeolites, silica gel, etc. (the fifth variant of the proposed method),
- в качестве мембран половолоконные газоразделительные мембраны, полимерные мембраны и. т.п. (пятый вариант предлагаемого способа), - hollow fiber gas separation membranes, polymer membranes, etc. as membranes (the fifth variant of the proposed method),
- в качестве холодильной машины пропановые, фреоновые, аммиачные и т.п. (шестой вариант предлагаемого способа), - as a refrigeration machine propane, freon, ammonia, etc. (the sixth variant of the proposed method),
Для рассматриваемого примера, одна из возможных схем блока 8 по шестому способу приведена на Фиг.8. Газ 7 охлаждается в рекуперативном теплообменнике 27 и испарителе холодильной машины до температуры -25°С, сконденсировавшаяся вода отделяется от газа в сепараторе 29, газ с верха сепаратора направляется на нагрев в рекуперативный теплообменник. For the example under consideration, one of the possible block 8 schemes according to the sixth method is shown in Fig. 8. Gas 7 is cooled in the recuperative heat exchanger 27 and the evaporator of the refrigeration machine to a temperature of -25°C, the condensed water is separated from the gas in the separator 29, the gas from the top of the separator is directed to be heated in the recuperative heat exchanger.
Работа предлагаемого изобретения по пятому и шестому вариантам реализации предлагаемого способа иллюстрируется на примере установки, схема которого приведена на Фиг.З. Входной поток природного газа 1 обрабатывают в блоке 8 выделения из природного газа целевых фракций, нагревают в теплообменниках 2 и нагревателях 4 и расширяют в турбине 6 ТДА. Далее газ охлаждают, например в теплообменнике 2, и сжимают в компрессорной части 10 ТДА, причем температуру газа перед турбиной 6 ТДА обеспечивают на таком уровне, чтобы давление газа на выходе из компрессорной части 10 ТДА превышало давление газа перед турбинной частью 6 ТДА. The operation of the proposed invention according to the fifth and sixth embodiments of the proposed method is illustrated by the example of the installation, the diagram of which is shown in Fig. 3. The input flow of natural gas 1 is processed in the unit 8 for separating target fractions from natural gas, heated in heat exchangers 2 and heaters 4 and expanded in the turbine 6 of the TDA. Then the gas is cooled, for example in the heat exchanger 2, and compressed in the compressor section 10 of the TDA, wherein the gas temperature in front of the turbine 6 of the TDA is provided at such a level that the gas pressure at the outlet of the compressor section 10 of the TDA exceeds the gas pressure in front of the turbine section 6 of the TDA.
Охлаждение газа перед компрессорной частью 10 ТДА может осуществляться также в аппарате воздушного охлаждения. Cooling of gas before the compressor section of the 10 TDA can also be carried out in an air cooling apparatus.
В качестве одного из возможных применений предлагаемого способа, в таблице 3 приведены параметры основных потоков по установке показанной на Фиг.З для случая извлечения из попутного газа кислых компонентов H2S и СОг. Входной поток 1 природного газа с давлением 6.0 МПА и температурой 30°С направляется в блок 8 выделения из природного газа кислых компонентов H2S и СОг, в котором отделяется поток кислых компонентов 38, а очищенный от кислых компонентов газ нагревается в теплообменнике 2 и нагревателе 4 до температуры 300°С. Далее нагретый газ расширяется в турбине турбодетандерного агрегата до давления 4.0 МПА и охлаждается в теплообменнике 2 до температуры 50°С и сжимается в компрессорной части ТДА до давления 6,5 МПА. Таблица 3
As one of the possible applications of the proposed method, Table 3 shows the parameters of the main flows for the installation shown in Fig. 3 for the case of extracting acidic components H2S and CO2 from associated gas. The input flow 1 of natural gas with a pressure of 6.0 MPa and a temperature of 30°C is directed to the unit 8 for extracting acidic components H2S and CO2 from natural gas, in which the flow of acidic components 38 is separated, and the gas purified from acidic components is heated in heat exchanger 2 and heater 4 to a temperature of 300°C. Then the heated gas expands in the turbine of the turboexpander unit to a pressure of 4.0 MPa and is cooled in heat exchanger 2 to a temperature of 50°C and is compressed in the compressor part of the TDA to a pressure of 6.5 MPa. Table 3В блоке 8 выделение из природного газа кислых компонентов осуществляется с помощью абсорберов; либо адсорберов и/или мембран; либо с использованием процесса низкотемпературной конденсации, при котором газ охлаждают с использованием теплообменников и холодильной машины, а целевые компоненты, сконденсировавшиеся при охлаждении выделяют в сепараторе и/или ректификационной колонне, происходит отделение из природного газа кислых компонентов H2S и СОг. При этом давление газа на выходе из компрессорной части 10 ТДА превышает давление газа перед турбиной 6 ТДА. In block 8, the separation of acidic components from natural gas is carried out using absorbers; or adsorbers and/or membranes; or using a low-temperature condensation process, in which the gas is cooled using heat exchangers and a refrigeration machine, and the target components condensed during cooling are separated in a separator and/or a rectification column; the separation of acidic components H2S and CO2 from natural gas occurs. In this case, the gas pressure at the outlet of the compressor section 10 TDA exceeds the gas pressure in front of the turbine 6 TDA.
В блоке 8 для выделения кислых компонентов H2S и СОг из природного газа, в данном конкретном примере, целесообразно применять: In block 8, to separate the acidic components H2S and CO2 from natural gas, in this specific example, it is advisable to use:
- в качестве абсорбента амины, цеолиты, щелочи, или другие инновационные абсорбентов (седьмой вариант предлагаемого способа), - amines, zeolites, alkalis, or other innovative absorbents as an absorbent (the seventh variant of the proposed method),
- в качестве адсорбента, активированный уголь, молекулярные сита, оксиды Zn или оксиды Си, цинк-медный поглотитель, синтетический сорбент для очистки газов от сероводорода с содержанием 35-95% оксидов марганца, или другие инновационные адсорбенты (восьмой вариант предлагаемого способа), - as an adsorbent, activated carbon, molecular sieves, Zn oxides or Cu oxides, zinc-copper absorbent, synthetic sorbent for cleaning gases from hydrogen sulfide with a content of 35-95% manganese oxides, or other innovative adsorbents (the eighth variant of the proposed method),
- в качестве мембран, эластичная мембрана, полимерные мембраны или другие инновационных мембраны (восьмой вариант предлагаемого способа), - as membranes, elastic membrane, polymer membranes or other innovative membranes (the eighth variant of the proposed method),
- в качестве холодильной машины, пропановые, фреоновые, аммиачные, на смешанных хладагентах, углекислотные, воздушные или другие инновационные холодильные машины (девятый вариант предлагаемого способа), Для рассматриваемого примера, одна из возможных схем блока 8 по шестому варианту способа приведена на Фиг.8. Газ 7 охлаждается в рекуперативном теплообменнике 27 и испарителе холодильной машины до температуры -20°С, сконденсировавшаяся вода отделяется от газа в сепараторе 29, газ с верха сепаратора направляется на нагрев в рекуперативный теплообменник. - as a refrigeration machine, propane, freon, ammonia, mixed refrigerants, carbon dioxide, air or other innovative refrigeration machines (the ninth variant of the proposed method), For the example under consideration, one of the possible block 8 schemes according to the sixth variant of the method is shown in Fig. 8. Gas 7 is cooled in the recuperative heat exchanger 27 and the evaporator of the refrigeration machine to a temperature of -20°C, the condensed water is separated from the gas in the separator 29, the gas from the top of the separator is directed to be heated in the recuperative heat exchanger.
В случаях когда требуется значительное увеличение давления газа на выходе из установки, на Фиг.4 представлен вариант реализации способа по п.2, 12,22,32,42,52 формулы изобретения, в котором после сжатия газа в компрессорной части 10 ТДА, газ дополнительно подвергают по крайней мере однократной дополнительной обработке, включающей в себя нагрев газа в дополнительных теплообменниках 21 газ-газ и/или дополнительных нагревателях 22, расширение нагретого газа в турбине 23 дополнительного турбодетандерного агрегата (ДТДА), охлаждение газа в теплообменнике 21 , сжатие газа в компрессорной части 24 ДТДА. Аналогичную, по крайней мере, однократную дополнительную обработку газа можно проводить и после обработки газа в блоке выделения из природного газа целевых фракций природного газа. In cases where a significant increase in the gas pressure at the outlet of the plant is required, Fig. 4 shows an embodiment of the method according to paragraph 2, 12, 22, 32, 42, 52 of the invention formula, in which after gas compression in the compressor section 10 of the TDA, the gas is additionally subjected to at least one additional processing, including heating the gas in additional gas-gas heat exchangers 21 and/or additional heaters 22, expanding the heated gas in the turbine 23 of the additional turboexpander unit (ATEU), cooling the gas in the heat exchanger 21, and compressing the gas in the compressor section 24 of the ATEU. Similar, at least one-time additional gas processing can also be carried out after gas processing in the unit for separating target fractions of natural gas from natural gas.
Турбина ТДА и /или ДТДА, может включать в себя, по крайней мере, два турбинных рабочих колеса. На Фиг.5 показана турбина ТДА 13 с двумя рабочими колесами. Использование двух и более турбинных колеса целесообразно при больших степенях расширения газа в турбине, в этом случае использование нескольких рабочих колес позволяет увеличить эффективность (КПД) расширения газа в турбине. Это позволяет отобрать большую механическую энергию с турбины. The TDA and/or DTDA turbine may include at least two turbine working wheels. Fig. 5 shows the TDA turbine 13 with two working wheels. The use of two or more turbine wheels is advisable at high gas expansion rates in the turbine, in which case the use of several working wheels allows increasing the efficiency (efficiency) of gas expansion in the turbine. This allows taking off more mechanical energy from the turbine.
Компрессорная часть ТДА и /или ДТДА, может включать в себя, по крайней мере, два компрессорных рабочих колеса. На Фиг.5 показана компрессорная часть ТДА 14 с двумя компрессорными рабочими колесами. Использование двух и более компрессорных колеса целесообразно при больших степенях сжатия газа в компрессорной части ТДА, в этом случае использование нескольких рабочих колес позволяет увеличить эффективность (КПД) сжатия газа в компрессорной части ТДА. Это позволяет обеспечить более высокую степень сжатия газа в компрессорной части ТДА. The compressor section of the TDA and/or DTDA may include at least two compressor working wheels. Fig. 5 shows the compressor section of the TDA 14 with two compressor working wheels. The use of two or more compressor wheels is advisable at high gas compression ratios in the compressor section of the TDA, in which case the use of several working wheels allows increasing the efficiency (efficiency) of gas compression in the compressor section of the TDA. This allows for a higher gas compression ratio in the compressor section of the TDA.
Компрессорные и турбинные рабочие колеса ТДА и /или ДТДА могут быть разбиты на несколько независимых корпусов для уменьшения размера корпусов, и снижения стоимости ТДА и ДТДА. Compressor and turbine impellers of the TDA and/or DTDA can be divided into several independent casings to reduce the size of the casings and reduce the cost of the TDA and DTDA.
Для увеличения отбираемой механической энергии, перед любым турбинным рабочим колесом газ может быть дополнительно нагрет, как это показано на схеме Фиг.6. В этой схеме после нагрева газа в теплообменнике 2 и нагревателе 4 газ расширяется в первом рабочем колесе турбины ТДА, затем газ нагревают в дополнительном нагревателе 16 и расширяют во втором рабочем колесе турбины ТДА. To increase the extracted mechanical energy, the gas can be additionally heated before any turbine wheel, as shown in the diagram in Fig. 6. In this diagram, after heating the gas in heat exchanger 2 and heater 4, the gas expands in the first turbine wheel of the TDA, then the gas is heated in additional heater 16 and expand in the second working wheel of the TDA turbine.
Для увеличения степени сжатия в компрессорной части ТДА, перед любым компрессорным рабочим колесом газ может быть дополнительно охлажден как это показано на схеме Фиг.6. В этой схеме после сжатия газа в первом компрессорном рабочем колесе газ охлаждается, например в аппарате воздушного охлаждения 19, и расширяется во втором компрессорном рабочем колесе ТДА To increase the degree of compression in the compressor section of the TDA, the gas can be additionally cooled before any compressor wheel as shown in the diagram in Fig. 6. In this diagram, after the gas is compressed in the first compressor wheel, the gas is cooled, for example, in the air cooling apparatus 19, and expanded in the second compressor wheel of the TDA.
В случае значительного удаления ТДА от блока выделения из природного газа целевых фракций природного газа, передача газа между блоком выделения из природного газа целевых фракций природного газа и ТДА может осуществляется посредством газопровода большой протяженности. Аналогично, передача газа между блоком выделения из природного газа целевых фракций природного газа и теплообменниками и/или нагревателями также может осуществляться посредством газопровода большой протяженности. В некоторых случаях длина данного газопровода может достигать нескольких десятков километров. In case of a significant distance of the TDA from the unit for separating the target fractions of natural gas from natural gas, the gas transfer between the unit for separating the target fractions of natural gas from natural gas and the TDA can be carried out by means of a long gas pipeline. Similarly, the gas transfer between the unit for separating the target fractions of natural gas from natural gas and the heat exchangers and/or heaters can also be carried out by means of a long gas pipeline. In some cases, the length of this gas pipeline can reach several tens of kilometers.
Для снижения капитальных затрат, ДТА и ДТДА могут быть выполнены в одном корпусе. To reduce capital costs, the DTA and DTDA can be implemented in one housing.
Температуру газа перед турбиной ТДА, в некоторых случаях, обеспечивают на уровне выше 200°С. Как показывают опытные испытания установок, базирующихся на предлагаемом способе, существующие в настоящее время турбодетандерные агрегаты позволяют обеспечивать давление газа на выходе из компрессорной части ТДА превышающее давление газа перед турбинной частью ТДА, при уровне температуры газа перед турбиной ТДА на уровне выше 200°С. The gas temperature before the TDA turbine, in some cases, is provided at a level above 200°C. As shown by experimental tests of installations based on the proposed method, currently existing turboexpander units allow providing gas pressure at the outlet of the TDA compressor section exceeding the gas pressure before the TDA turbine section, with the gas temperature level before the TDA turbine at a level above 200°C.
Нагрев природного газа в теплообменниках и/или нагревателях можно осуществлять за счет тепла, образующегося при сгорании природного газа в чистом кислороде. В этом случае в горелку нагревателя, подают чистый кислород, получаемый на воздухоразделительной установке, и природный газ. При сгорании природного газа в чистом кислороде в дымовых газах будет содержаться в основном СОг и пары воды. В этом случае дымовой газ, после предварительной обработки может быть закачан в пласт, или использован для других нужд (например, для производства чистого СОг или для питания растений или бактерий, при производстве протеина). Heating of natural gas in heat exchangers and/or heaters can be carried out due to the heat generated during combustion of natural gas in pure oxygen. In this case, pure oxygen obtained in the air separation plant and natural gas are fed to the heater burner. When natural gas is burned in pure oxygen, the flue gases will contain mainly CO2 and water vapor. In this case, the flue gas, after preliminary processing, can be pumped into the formation, or used for other needs (for example, for the production of pure CO2 or for nutrition of plants or bacteria, in the production of protein).
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2023103377A RU2801681C1 (en) | 2023-02-15 | Method for separation of target fractions from natural gas (embodiments) | |
RU2023103377 | 2023-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024172697A1 true WO2024172697A1 (en) | 2024-08-22 |
Family
ID=92420399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2024/050005 WO2024172697A1 (en) | 2023-02-15 | 2024-01-11 | Method for separating target fractions from natural gas (embodiments) |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024172697A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2088866C1 (en) * | 1995-04-21 | 1997-08-27 | Всероссийский научно-исследовательский институт природных газов и газовых технологий | Method of preparation of natural gas for transportation |
US20100242536A1 (en) * | 2009-03-25 | 2010-09-30 | Henri Paradowski | Method of processing a feed natural gas to obtain a processed natural gas and a cut of c5+ hydrocarbons, and associated installation |
RU2626270C1 (en) * | 2016-07-28 | 2017-07-25 | Акционерное общество "Научно-исследовательский и проектный институт по переработке газа" (АО "НИПИгазпереработка") | Method of stripped gas compression |
RU2630202C1 (en) * | 2016-09-30 | 2017-09-05 | Публичное акционерное общество "Газпром" | Method of extracting c2+ fraction from raw gas and plant for its implementation |
RU2749628C1 (en) * | 2020-04-24 | 2021-06-16 | Общество с ограниченной ответственностью "АЭРОГАЗ" (ООО "АЭРОГАЗ") | Method and installation for separation of target fractions from natural gas |
-
2024
- 2024-01-11 WO PCT/RU2024/050005 patent/WO2024172697A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2088866C1 (en) * | 1995-04-21 | 1997-08-27 | Всероссийский научно-исследовательский институт природных газов и газовых технологий | Method of preparation of natural gas for transportation |
US20100242536A1 (en) * | 2009-03-25 | 2010-09-30 | Henri Paradowski | Method of processing a feed natural gas to obtain a processed natural gas and a cut of c5+ hydrocarbons, and associated installation |
RU2626270C1 (en) * | 2016-07-28 | 2017-07-25 | Акционерное общество "Научно-исследовательский и проектный институт по переработке газа" (АО "НИПИгазпереработка") | Method of stripped gas compression |
RU2630202C1 (en) * | 2016-09-30 | 2017-09-05 | Публичное акционерное общество "Газпром" | Method of extracting c2+ fraction from raw gas and plant for its implementation |
RU2749628C1 (en) * | 2020-04-24 | 2021-06-16 | Общество с ограниченной ответственностью "АЭРОГАЗ" (ООО "АЭРОГАЗ") | Method and installation for separation of target fractions from natural gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7145530B2 (en) | VOCs recovery system by cryogenic condensation using air as a refrigerant | |
EP2231306B1 (en) | Methods of generating and utilizing utility gas | |
RU2730344C1 (en) | Extraction of helium from natural gas | |
US6648944B1 (en) | Carbon dioxide removal process | |
CA2543510C (en) | A membrane/distillation method and system for extracting co2 from hydrocarbon gas | |
CN102985161B (en) | The separation equipment and process thereof of producing gases at high pressure is purged by gas pressurized | |
US3989478A (en) | Producing gaseous fuels of high calorific value | |
CN107106937B (en) | Cyclonic separation and recovery of carbon dioxide from heated liquid adsorbents | |
WO2000016879A1 (en) | Process for separating natural gas and carbon dioxide | |
CN104884148A (en) | Membrane-based gas separation process using ejector-driven gas recycle | |
EA009089B1 (en) | Configurations and methods of acid gas removal | |
WO2009007938A2 (en) | Process and apparatus for the separation of carbon dioxide from a gaseous mixture | |
EP3229940B1 (en) | Method for energy efficient recovery of carbon dioxide from an absorbent and a plant suitable for operating the method | |
EP2167891A2 (en) | Process and apparatus for the separation of a gaseous mixture | |
CN115069057B (en) | Method for purifying and recovering carbon dioxide by low-temperature rectification | |
WO2016108731A1 (en) | Method of complex extraction of valuable impurities from helium-rich hydrocarbon natural gas with high nitrogen content | |
CN108463280A (en) | Method and system for using film purified natural gas | |
KR20180007519A (en) | Multi-stage membrane system with improved methane recovery rate from bio-gas | |
CN116600878A (en) | Purification of landfill biogas by combined membrane and cryogenic distillation, plant for producing gaseous methane by purifying biogas from landfill | |
CN101760270A (en) | Method for removing and recycling CO2 in natural gas | |
US9206795B2 (en) | Process and apparatus for drying and compressing a CO2-rich stream | |
US9964034B2 (en) | Methods for producing a fuel gas stream | |
Puri | Commercial applications of membranes in gas separations | |
CN111447985B (en) | Method for distilling an oxygen-containing gas stream | |
RU2801681C1 (en) | Method for separation of target fractions from natural gas (embodiments) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24757366 Country of ref document: EP Kind code of ref document: A1 |