WO2024172041A1 - Three-dimensional modeling method, method for manufacturing three-dimensional model, and three-dimensional model - Google Patents
Three-dimensional modeling method, method for manufacturing three-dimensional model, and three-dimensional model Download PDFInfo
- Publication number
- WO2024172041A1 WO2024172041A1 PCT/JP2024/004885 JP2024004885W WO2024172041A1 WO 2024172041 A1 WO2024172041 A1 WO 2024172041A1 JP 2024004885 W JP2024004885 W JP 2024004885W WO 2024172041 A1 WO2024172041 A1 WO 2024172041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shell
- core
- core material
- dimensional object
- hardening
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 122
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- 239000011162 core material Substances 0.000 claims abstract description 353
- 239000011257 shell material Substances 0.000 claims abstract description 193
- 238000007789 sealing Methods 0.000 claims abstract description 52
- 239000007791 liquid phase Substances 0.000 claims abstract description 11
- 239000011347 resin Substances 0.000 claims description 19
- 229920005989 resin Polymers 0.000 claims description 19
- 238000000926 separation method Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 10
- 229920001187 thermosetting polymer Polymers 0.000 claims description 6
- 238000000465 moulding Methods 0.000 abstract description 13
- 230000007547 defect Effects 0.000 abstract description 11
- 239000011258 core-shell material Substances 0.000 abstract description 8
- 239000007789 gas Substances 0.000 abstract 1
- UQMRAFJOBWOFNS-UHFFFAOYSA-N butyl 2-(2,4-dichlorophenoxy)acetate Chemical compound CCCCOC(=O)COC1=CC=C(Cl)C=C1Cl UQMRAFJOBWOFNS-UHFFFAOYSA-N 0.000 description 15
- 239000007788 liquid Substances 0.000 description 11
- 238000001723 curing Methods 0.000 description 9
- 238000005429 filling process Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000013007 heat curing Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 5
- 238000010146 3D printing Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 238000010112 shell-mould casting Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000001029 thermal curing Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/379—Handling of additively manufactured objects, e.g. using robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
Definitions
- the present invention relates to a three-dimensional modeling method, a method for manufacturing a three-dimensional object, and a three-dimensional model, and more specifically to a three-dimensional modeling method for manufacturing a three-dimensional object using additive manufacturing techniques such as 3D printing, a method for manufacturing a three-dimensional object, and a three-dimensional model.
- 3D printer is widely used as the name for manufacturing equipment that uses 3D printing technology.
- a 3D printer is a three-dimensional modeling device that uses a computer to calculate the cross-sectional shape of an object based on three-dimensional CAD data, divides the object into thin, round cross-sectional components, forms these components using various methods, and stacks them to create the desired object.
- Internationally, 3D printing technology is often used as a synonym for Additive Manufacturing Technology, and the Japanese translation is additive manufacturing technology.
- Patent Document 1 The applicant has proposed a three-dimensional modeling method described in the following Patent Document 1 as one of the technologies related to the additive manufacturing technology described above.
- the three-dimensional modeling method described in Patent Document 1 is characterized in that after shell modeling and core material filling are repeated multiple times in a modeling tank, the core material is cured all at once by irradiating it with active energy rays or applying thermal energy.
- This three-dimensional modeling method makes it possible to create a three-dimensional object in which there is no layer interface in the part modeled with the core material, in other words, which has no directional rigidity or strength.
- the three-dimensional object is generally defined as a combination of the shell that forms the outer layer and the hardened core material inside the shell.
- the shell and the hardened core material are in close contact with each other, a step of applying an external force to the shell by cutting or the like is required to separate the shell from the core material.
- a step of applying an external force to the shell by cutting or the like is required to separate the shell from the core material.
- the shell when the core material in a liquid phase state is hardened all at once, in order to harden the core material without distortion, it is desirable that the shell has a sufficient thickness so that the shell does not deform when the core material hardens.
- the thicker the shell the more difficult it becomes to separate the shell from the core material after hardening. Therefore, if it is necessary to separate the shell from the core material after hardening, it is desirable for the shell to be thin.
- the shell softens due to the application of thermal energy in the process of hardening the core material, and the weight of the core material before hardening is also added, causing the shape of the shell to deform, which in turn causes the shape of the core material after hardening to also deform.
- FIGS. 6 and 7 are schematic diagrams showing the states before and after a conventional process of hardening the core materials all at once in the core-shell method.
- Figure 6(a) is a plan view showing the state of the core material before hardening when the shell is thick
- (b) is a cross-sectional view taken along line b-b in (a)
- (c) is a plan view showing the state of the core material after hardening when the shell is thick
- (d) is a cross-sectional view taken along line d-d in (c).
- Figure 7(a) is a plan view showing the state of the core material before hardening when the shell is thin
- (b) is a cross-sectional view taken along line b-b in (a)
- (c) is a plan view showing the state of the core material after hardening when the shell is thin
- (d) is a cross-sectional view taken along line d-d in (c).
- the shell 40 before the core material hardens, the shell 40 has a box shape with a bottom that opens upward, and the core portion 50, which is the part surrounded by the shell 40, is filled with the core material 60, and the shell material 2, which is a liquid phase material, remains in an unhardened state on the upper surface of the core material 60.
- the shell 40 when the shell 40 is thick, there is almost no deformation of the shell 40 and the core portion 50 before and after the core material hardens, and the hardened core material 60a is in a form in which the core material 60 has hardened with almost no distortion.
- the shell 40 may soften due to heat during the process of thermally hardening the core material 60, and the weight of the unhardened core material 60 may be applied to the shell 40, causing deformation of the shapes of the shell 40 and the core portion 50, resulting in a decrease in the dimensional accuracy of the hardened core material 60a.
- the following method shown in FIG. 8 can be considered as an example of a method for suppressing deformation of the shell 40 during the hardening process of the core material 60.
- the uncured shell material 2 remaining on the upper surface of the core material 60 is irradiated with active energy rays.
- all of the uncured shell material 2 is cured, and the upper surface of the core material 60 is sealed with the shell 40.
- a step of applying thermal energy to cure the core material 60 is performed.
- the present invention has been made in consideration of the above problems, and aims to provide a three-dimensional modeling method, a manufacturing method for a three-dimensional object, and a three-dimensional object that can prevent molding defects in the core material caused by gas generated from the core material during the process of hardening the core material, and can suppress deformation of the core portion in the so-called core-shell type three-dimensional modeling method.
- a three-dimensional object forming method (1) comprises: a shell forming process for forming a shell that defines an outer shape of a three-dimensional object using a shell material; a core material filling step of filling a core portion, which is a portion surrounded by an inner surface of the shell, with a core material, which is a liquid phase material; and hardening the core material in the core portion, a core portion sealing step of sealing an opening of the core portion while leaving an uncured region of the shell material on an upper surface of the core material filled in the core portion;
- the method is characterized in that the core material hardening step is carried out after the core sealing step.
- the core portion sealing process seals the opening of the core portion so as to leave an unhardened area of the shell material on the upper surface of the core material filled in the core portion, and the core material hardening process is carried out after the core portion sealing process. Therefore, when gas is generated from the core material in the core material hardening step, the gas is expelled into the unhardened region of the shell material that exists in a liquid state on the upper surface of the core material, and it is possible to prevent molding defects such as void defects caused by the gas in the hardened core material. In addition, since the core material hardening step is performed with the opening of the core portion sealed, deformation of the core portion in the core material hardening step can also be suppressed.
- the present invention also provides a three-dimensional object forming method (2), comprising the steps of:
- the core sealing step includes: The opening of the core portion is sealed by curing only the upper layer portion of the uncured region of the shell material.
- the opening of the core in the core sealing step, can be sealed by curing only the upper layer of the uncured region of the shell material while leaving the uncured region of the shell material on the upper surface of the core material.
- the present invention also provides a three-dimensional object fabrication method (3), comprising the steps of: the shell material contains a resin that is cured by irradiation with active energy rays, In the core sealing step, the active energy rays are irradiated onto an upper surface of the uncured region of the shell material to cure only the upper layer portion of the uncured region of the shell material, the core material comprises a thermosetting resin;
- the core material hardening step is characterized in that thermal energy is applied to the core material to thermally harden the core material.
- the active energy rays are irradiated onto the upper surface of the uncured region of the shell material to harden only the upper layer of the uncured region of the shell material, so that the process of sealing the opening of the core portion while leaving the uncured region of the shell material on the upper surface of the core material can be carried out efficiently.
- the core material is composed of a thermosetting resin, the core material filling process can be easily carried out under normal temperature and pressure conditions, and in the core material hardening process, gas generated from the core material can be expelled into the unhardened area of the shell material, while the entire core material can be efficiently hardened into an integrated state.
- the present invention provides a three-dimensional object fabrication method (4) in any one of the three-dimensional object fabrication methods (1) to (3), The size of the uncured region of the shell material is adjusted according to the amount of the core material filled in the core portion.
- the size (volume) of the unhardened area of the shell material is adjusted to increase in accordance with an increase in the amount of the core material filled in the core section, so that the gas generated in the core material hardening process can be more reliably removed into the unhardened area of the shell material.
- the present invention provides a three-dimensional object forming method (5) in any one of the above three-dimensional object forming methods (1) to (4), After the core material hardening step, The method includes a separation step of separating at least a portion of the shell from the hardened core material to obtain a three-dimensional object having a shape following the shape of the core portion and made mainly of the core material.
- the three-dimensional modeling method (5) includes the separation step after the core material hardening step, so that a three-dimensional model consisting mainly of the hardened core material can be obtained without molding defects such as voids caused by the gas and with reduced deformation.
- the method for producing a three-dimensional object according to the present invention is characterized in that the three-dimensional object is produced using the three-dimensional object production method (5) described above.
- the method for manufacturing a three-dimensional object described above provides the same effects as those obtained by the three-dimensional modeling method (5) described above when manufacturing the three-dimensional object, and can improve the accuracy of the dimensions and shape of the three-dimensional object mainly made of the core material after hardening.
- the three-dimensional object (1) according to the present invention is a three-dimensional object having a structure including a shell forming an outer shell layer and a hardened core material in a core portion surrounded by an inner surface of the shell, The shell is formed by hardening a shell material, an uncured region of the shell material on an upper surface of the cured core material; The opening of the core portion is sealed.
- a three-dimensional object (2) according to the present invention is the three-dimensional object (1) described above, characterized in that an opening of the core portion is sealed with the shell.
- the three-dimensional object (1) has an uncured region of the shell material on the upper surface of the hardened core material, and the opening of the core portion is sealed.
- the three-dimensional object (2) has an opening of the core portion sealed with the shell.
- the three-dimensional objects (1) and (2) have a form in which the uncured shell material is enclosed on the upper surface of the hardened core material, so that it is possible to provide an object with fewer molding defects in the hardened core material and reduced deformation of the core portion.
- FIG. 1 is a schematic diagram showing a configuration example of a 3D object modeling system used in a 3D object modeling method according to an embodiment of the present invention
- 5A and 5B are diagrams for explaining an example of a three-dimensional object forming method according to an embodiment, in which FIG. 5A is a diagram for explaining a shell forming step, and FIG. 5B is a diagram for explaining a core material filling step.
- 5A and 5B are cross-sectional views illustrating an example of a core portion sealing step in the three-dimensional object manufacturing method according to the embodiment, in which FIG. 5A is a cross-sectional view illustrating a state of the three-dimensional object before sealing the core portion and FIG.
- 5B is a cross-sectional view illustrating a state of the three-dimensional object after sealing the core portion.
- 5A and 5B are cross-sectional views illustrating an example of a core material hardening step in the three-dimensional object fabrication method according to the embodiment, in which FIG. 5A is a cross-sectional view illustrating a state of the three-dimensional object before the core material is hardened, and FIG. 5B is a cross-sectional view illustrating a state of the three-dimensional object after the core material is hardened.
- 5A and 5B are cross-sectional views for explaining an example of a separation step in the three-dimensional object fabrication method according to the embodiment, in which FIG. 5A is a cross-sectional view showing a state before shell separation and FIG.
- 5B is a cross-sectional view showing a state after shell separation.
- 1A and 1B are diagrams showing an example of the state of a three-dimensional object before and after a conventional process of hardening a core material in a core-shell method, in which (a) is a plan view showing the state before the core material hardens when the shell is thick, (b) is a cross-sectional view taken along line b-b in (a), (c) is a plan view showing the state after the core material hardens when the shell is thick, and (d) is a cross-sectional view taken along line d-d in (c).
- FIG. 13 is a diagram showing an example of the state of a three-dimensional object before and after a conventional process of hardening a core material in a core-shell method, in which (a) is a plan view showing the state before the core material hardens when the shell is thin, (b) is a cross-sectional view taken along line b-b in (a), (c) is a plan view showing the state after the core material hardens when the shell is thin, and (d) is a cross-sectional view taken along line d-d in (c).
- 1A to 1C are diagrams showing an example of a conventional method for suppressing deformation of a core portion in a process of hardening a core material.
- the three-dimensional object modeling system 100 includes a three-dimensional object modeling apparatus 10 , an ultraviolet ray irradiation apparatus 20 , and a thermal curing means 30 .
- the three-dimensional modeling device 10 is used in the shell modeling process and the core material filling process, and has the function of a composite 3D printer. Its main components are a modeling tank 11 in which modeling takes place, a laser optical system 12, and a core material supply system 13.
- a photocurable resin which is a liquid phase material
- the liquid level position can be maintained and adjusted at a predetermined position by a photocurable resin adjustment system (not shown).
- a photocurable resin adjustment system for the shell material 2
- known ultraviolet curable resins such as epoxy and acrylic resins can be used.
- a modeling table 15 is provided in the modeling tank 11. The modeling table 15 is for supporting the object being modeled, and can be moved (raised and lowered) and set to any position in the z-axis direction in the figure by a drive mechanism (not shown).
- the laser optical system 12 includes an ultraviolet laser light source 12a and a scanning optical system 12b.
- Ultraviolet laser light 12c is emitted from the ultraviolet laser light source 12a, and the emitted ultraviolet laser light 12c can be caused to scan a predetermined range on the liquid surface of the shell material 2 (i.e., the xy plane) by driving the scanning optical system 12b.
- the shell material 2 is cured to a predetermined depth from the liquid surface by irradiation with ultraviolet laser light 12c, which is a type of active energy ray, as shown by the cured ultraviolet cured resin layer 3 in Figure 1.
- This curing depth can be adjusted to a certain extent by adjusting the output of the ultraviolet laser light source 12a, and is adjusted to a range of, for example, about 0.1 mm to 0.4 mm.
- a cured ultraviolet cured resin layer 3 of any area is formed on the modeling table 15. Then, after the cured ultraviolet cured resin layer 3 is formed on the modeling table 15, the modeling table 15 is lowered by the curing depth and an arbitrary position on the liquid surface of the shell material 2 is irradiated with ultraviolet laser light 12c, so that a cured ultraviolet cured resin layer 3 is layered on top of the cured ultraviolet cured resin layer 3.
- the object thus shaped is called the shell 4 (see FIG. 2).
- the shell 4 functions as an outer shell layer for filling the core material 6, and the part surrounded by the inner surface of the shell 4 and having a bottom surface is called the core portion 5 (see FIG. 2).
- the core material supply system 13 supplies the core material 6 from the core material tank 13a, which stores the core material 6 inside, by pump 13b, sending it through piping systems 13c and 13d in sequence, and exhales the core material 6 from the tip of the nozzle 14.
- the nozzle 14 can be moved and fixed in each of the x, y and z directions in the figure by a nozzle movement mechanism (not shown). For this reason, the piping system 13d is constructed with a flexible structure and material so that it can follow the movement of the nozzle 14.
- the core material 6 is composed of a composite material in which a reinforcing material is uniformly dispersed in a thermosetting resin, which is a known liquid phase material such as an epoxy or acrylic resin.
- the reinforcing material may be, for example, a fibrous reinforcing material containing at least one of carbon fiber, glass fiber, and aramid fiber, or may be an inorganic material powder such as silica.
- the core material 6 has a higher specific gravity than the shell material 2.
- the viscosity of the core material 6 is preferably at least twice as high as that of the shell material 2.
- the shell 4 has a physical property of a glass transition temperature Tgs, which is lower than the heat curing temperature Tpc of the core material 6.
- the ultraviolet irradiation device 20 is used in the core sealing process, and is configured to include one or more ultraviolet irradiators 21 that irradiate ultraviolet light, which is one type of active energy ray.
- the target of ultraviolet irradiation here is the shell 4 (see FIG. 3(a)) that has been removed from the molding tank 11, has the core portion 5 filled with the core material 6, and has an uncured area 2a of the shell material 2 present on the upper surface of the core material 6.
- the ultraviolet irradiation device 20 has a function capable of irradiating ultraviolet rays onto, for example, the opening of the shell 4, i.e., the entire upper surface of the core portion 5.
- the ultraviolet irradiator 21 adjusts the output (intensity) of the ultraviolet rays and the irradiation time, making it possible to harden only a predetermined depth (for example, about 1 to 2 mm) from the top surface of the unhardened area 2a of the shell material 2 present on the top surface of the core material 6 filled in the core portion 5 of the shell 4.
- the heat curing means 30 is used in the core material curing process after the core sealing process, and is composed of a heating furnace having a chamber capable of sealing the heating target.
- the heating target here is the shell 4 (see FIG. 4(a)) after being treated by the ultraviolet irradiation device 20.
- the heat curing means 30 is capable of raising and lowering the temperature inside the heating furnace to a temperature higher than the heat curing temperature Tpc of the core material 6, and is capable of curing the core material 6 all at once.
- this hardened core material 6 is called hardened core material 6a (see FIG. 4(b)).
- the three-dimensional object fabrication method according to the embodiment includes a shell fabrication step, a core material filling step, a core sealing step, a core material hardening step, and a separation step. Note that the separation step is not essential and may be performed as necessary.
- a process of fabricating the shell 4 and a process of filling the core material 6 into the fabricated shell 4 are performed by the three-dimensional object fabrication apparatus 10 .
- the ultraviolet laser light 12c is irradiated to any position on the liquid surface of the shell material 2 on the modeling table 15, and the modeling table 15 is lowered alternately by an amount corresponding to the curing depth.
- the shell modeling process is called the shell modeling process.
- the shell 4 shown in FIG. 2 is shaped like a bottomed box with an opening on the top surface.
- the thickness of the shell 4 is not particularly limited, but if a separation process is to be performed later, it is preferable to form the shell 4 thin, for example, to about 1 mm to 3 mm.
- the nozzle 14 moves into the core portion 5 formed in the shell 4 as shown in FIG. 2(b), and the core material 6 is ejected from the nozzle 14 into the core portion 5, thereby filling the core portion 5 with the core material 6.
- the process of filling the core portion 5, which is surrounded by the inner surface of the shell 4, with the core material 6 as described above is called the core material filling process.
- the core material filling step is performed with the shell 4 immersed in the shell material 2 in the forming tank 11, and before the core material 6 is filled, the shell material 2 is present in the core portion 5 as shown in FIG. 2(a). Then, as the core material 6, which has a larger specific gravity than the shell material 2, is filled into the core portion 5, the shell material 2 in the core portion 5 is pushed up, and as shown in FIG. 2(b), the shell material 2 is pushed out of the shell 4 through the opening of the core portion 5, and the shell material 2 is replaced by the core material 6.
- the above shell forming process and core material filling process may be performed alternately multiple times. That is, the shell 4 may be formed to a predetermined height, the core portion 5 formed by the shell 4 may be filled with the core material 6, the shell 4 may be expanded, and the newly formed core portion 5 by the expanded shell 4 may be filled with the core material 6.
- the shell 4 may be formed to a predetermined height
- the core portion 5 formed by the shell 4 may be filled with the core material 6
- the shell 4 may be expanded
- the newly formed core portion 5 by the expanded shell 4 may be filled with the core material 6.
- the core material filling process is completed when the shell material 2 remains on the top surface of the core material 6 filled in the core portion 5, that is, when a layer consisting of the unhardened area 2a of the shell material 2 is formed as shown in FIG. 2(b).
- the above shell molding process and core material filling process can be carried out in a normal room temperature (e.g., 20°C to 30°C) environment.
- the size (volume) of the unhardened region 2a of the shell material 2 is adjusted according to the amount of core material 6 filled in the core portion 5. For example, as the amount of core material 6 filled in the core portion 5 increases, the amount of gas generated from the core material 6 during the core material hardening process tends to increase. Therefore, in order to ensure that the gas generated from the core material 6 is removed into the unhardened region 2a of the shell material 2, the size (volume) of the unhardened region 2a of the shell material 2 is adjusted to increase as the amount of core material 6 filled in the core portion 5 increases. Therefore, the core portion 5 formed by the shell 4 has a shape that takes into consideration the amount of core material 6 filled and the size of the unhardened region 2a of the shell material 2 required to remove the gas generated from the core material 6.
- the molding table 15 in the molding tank 11 is then raised above the liquid level of the shell material 2, and the shell 4 filled with the core material 6 is removed from the molding table 15, and the process proceeds to the next core sealing process.
- the core sealing step is a step of sealing the opening of the core portion 5 so as to leave an uncured region 2 a of the shell material 2 on the upper surface of the core material 6 filled in the core portion 5 .
- the shell 4 removed from the modeling table 15 is placed under the ultraviolet irradiator 21 of the ultraviolet irradiation device 20.
- the shell 4 removed from the modeling table 15 has the core portion 5 filled with the core material 6 and has a layer made of the uncured region 2a of the shell material 2 on the upper surface of the core material 6.
- ultraviolet light is applied to the top surface of the uncured region 2a of the shell material 2 using an ultraviolet irradiator 21, and as shown in FIG. 3(b), only the upper layer 2b of the uncured region 2a of the shell material 2 is cured to form a sealing portion 4a.
- the depth of the upper layer 2b to be cured can be adjusted by adjusting the output (intensity) of the ultraviolet light from the ultraviolet irradiator 21 and the irradiation time, and can be adjusted to a depth of, for example, about 1 mm to 2 mm.
- an ultraviolet irradiation device 20 to harden only the upper layer 2b of the unhardened region 2a of the shell material 2, it is possible to form a sealing portion 4a that seals the opening of the core portion 5 while leaving the unhardened region 2a of the shell material 2 on the upper surface of the core material 6. Then, when the core sealing step is completed, the shell 4 with the sealing portion 4a formed therein is removed from the ultraviolet irradiating device 20, and the process proceeds to the next core material hardening step.
- the shell 4 having an unhardened area 2a of the shell material 2 on the upper surface of the core material 6 in the core portion 5 and a sealing portion 4a formed on the upper surface of the unhardened area 2a is placed into a heat hardening means 30, and the heat hardening process for hardening the core material 6 in the core portion 5 is started. That is, the shell 4 is placed in the heat curing means 30, and the temperature inside the heat curing means 30 is raised to a temperature higher than the heat curing temperature Tpc of the core material 6, whereby the entire shaped object including the shell 4 and the core material 6 is heated, and the hardening of the core material 6 begins and progresses. After a predetermined time has elapsed, the hardening of the entire core material 6 is completed, and a hardened core material 6a is formed in the core portion 5, as shown in FIG. 4(b).
- the core material hardening step when the core material 6, which is a liquid phase material, is hardened by heating, gas present and dissolved in the core material 6 may be generated as bubbles 6b.
- the shell 4 fed into the heat curing means 30 has the uncured region 2a of the shell material 2 on the upper surface of the core material 6 in the core portion 5, so that even if air bubbles 6b are generated in the core material 6, the air bubbles 6b in the core material 6 move (rise) from the core material 6 into the uncured region 2a of the shell material 2 and accumulate at the boundary between the uncured region 2a and the sealing portion 4a. In other words, the air bubbles 6b are eliminated from the core material 6.
- the sealing portion 4a that is integrated with the shell 4 is formed on the upper surface of the unhardened area 2a of the shell material 2, so the sealing portion 4a can prevent the sidewall of the shell 4 from being unable to withstand the weight of the core material 6 and becoming deformed.
- thermosetting resin a material containing a thermosetting resin as the core material 6 as in this embodiment, and to thermally harden the core material 6 by applying thermal energy in the core material hardening process.
- the shell 4 (shell 4 with hardened core material 6a formed in the core portion 5) is removed from the heat hardening means 30 and proceeds to the next separation process.
- This separation process is a process for separating at least a portion of the shell 4 from the hardened core material 6a.
- a tool 31 such as a cutting tool is used to separate the unnecessary sealing portion 4a and shell 4 from the hardened core material 6a, thereby obtaining a three-dimensional object 1 made of the hardened core material 6a having a shape following the shape of the core portion 5, as shown in FIG. 5(b).
- all of the shells 4 are separated to obtain a three-dimensional object 1 consisting only of the hardened core material 6a, but this is not limited thereto.
- a portion of the shell 4 may be left, and the combination of this portion of the shell 4 and the hardened core material 6a may be called the three-dimensional object 1.
- the sealing portion 4a is formed on the upper surface of the core material 6 filled in the core portion 5 so as to leave the uncured region 2a of the shell material 2, and the opening of the core portion 5 is sealed by the sealing portion 4a. Then, after the core portion sealing step, the core material curing step illustrated in Fig. 4 is performed. Therefore, if gas is generated from the heated core material 6 during the core material hardening process, the generated gas will be removed from the unhardened region 2a of the shell material 2 as air bubbles 6b, thereby preventing molding defects such as void-like defects in the hardened core material 6a due to the air bubbles 6b.
- the sealing portion 4a can prevent the shell 4 from being unable to withstand the weight of the core material 6 and becoming deformed.
- the sealing portion 4a acts to suppress deformation of the shell 4, and can also suppress deformation of the core portion 5 during the core material hardening process.
- the core portion sealing process ultraviolet light is irradiated onto the upper surface of the uncured region 2a of the shell material 2 within the core portion 5 to harden only the upper layer 2b of the uncured region 2a, so that the process of forming the sealing portion 4a on the upper surface of the core material 6 within the core portion 5 while leaving the uncured region 2a on its upper surface can be performed efficiently.
- the core material 6 is composed of a thermosetting resin, the core material filling process illustrated in FIG. 2 can be easily carried out under normal temperature and pressure conditions, and in the core material hardening process, the entire core material 6 can be efficiently hardened into an integrated state.
- the size (volume) of the unhardened area 2a of the shell material 2 in the core portion 5 is adjusted according to the amount of core material 6 filled in the core portion 5, so that gas generated from the core material 6 during the core material hardening process can be more reliably expelled into the unhardened area 2a of the shell material 2.
- a separation process is provided after the core material hardening process, so that a three-dimensional modeled object 1 mainly made of hardened core material 6a can be obtained without molding defects such as void-like defects caused by gas generated from the core material 6 and with deformation suppressed. Furthermore, by manufacturing the three-dimensional object 1 using the three-dimensional modeling method according to the above embodiment, it is possible to improve the accuracy of the dimensions and shape of the three-dimensional object 1 which is mainly made of the hardened core material 6a, and since there is no layer interface in the hardened core material 6a, it is possible to form a three-dimensional object 1 which has no directionality in rigidity or strength.
- the core sealing step in the three-dimensional modeling method according to the embodiment described above is performed by the ultraviolet irradiation device 20.
- the modeling table 15 in the modeling tank 11 may be raised above the liquid level of the shell material 2, and then an ultraviolet irradiator 21 may be positioned above the shell 4 on the modeling table 15, and ultraviolet light may be irradiated from the ultraviolet irradiator 21 toward the upper surface of the shell 4 to form the sealing portion 4a.
- the opening of the core part 5 is sealed by hardening only the upper layer of the unhardened area of the shell material 2.
- the opening of the core part 5 may be sealed by covering the opening of the core part 5 with a separately prepared lid member.
- the shell 4 removed from the heat hardening means 30 may be handled as a three-dimensional object without performing the separation process, that is, the shell 4 having the unhardened area 2a of the shell material 2 on the upper surface of the hardened core material 6a and the opening of the core portion 5 sealed.
- the present invention is not limited to the above embodiments, and each of the steps of the shell forming process, core material filling process, core sealing process, core hardening process, and separation process can be modified in various ways depending on the shape of the molded object, etc., and it goes without saying that these are also included within the scope of the present invention.
- the shell material 2 used to form the shell 4 is a liquid phase material
- the method of forming the shell 4 is not limited to the method of hardening a liquid phase material (liquid phase polymerization method), and other additive manufacturing methods such as fused deposition molding (FDM) may also be applied.
- FDM fused deposition molding
- the present invention is widely applicable in the field of additive manufacturing technology such as 3D printers, and by applying the present invention to this field, it will be possible to realize not only prototyping but also mass production of parts and products that require light weight and high strength, such as parts used in various industrial equipment such as automobiles, aircraft, and robots, nursing care products, and sporting goods.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
Abstract
Provided is a three-dimensional modeling method for a core-shell system, in which, in a step for curing a core material, molding defects caused by gases emitted from the core material can be prevented, and deformation of the shell can be suppressed. Specifically, this three-dimensional modeling method includes: a shell modeling step for using a shell material to model a shell that defines the external shape of a three-dimensional model; a core material filling step for filling a liquid-phase core material into a core section, which is a section enclosed by the inner surface of the shell; and a core material curing step for curing the core material inside the core section. The method also includes a core section sealing step for sealing an opening in the core section by leaving an uncured region of the shell material on the upper surface of the core material filled into the core section. The core material curing step is performed after the core section sealing step.
Description
本発明は立体造形方法、立体造形物の製造方法、及び立体造形物に関し、より詳細には、3Dプリンティングなどの付加製造技術を用いて立体造形物を造形する立体造形方法、立体造形物の製造方法、及び立体造形物に関する。
The present invention relates to a three-dimensional modeling method, a method for manufacturing a three-dimensional object, and a three-dimensional model, and more specifically to a three-dimensional modeling method for manufacturing a three-dimensional object using additive manufacturing techniques such as 3D printing, a method for manufacturing a three-dimensional object, and a three-dimensional model.
3Dプリンティング技術を用いた製造装置の名称として、広く3Dプリンタという言葉が使われている。3Dプリンタは、3次元のCADデータをもとにコンピュータで造形物の断面形状を計算し、該造形物を薄い輪切り状の断面構成要素に分割して、その断面構成要素を種々の方法で形成し、それを積層させて目的とする造形物を造形する立体造形装置である。3Dプリンティング技術は、国際的にはAdditive Manufacturing Technologyと同義語として使われる場合が多く、日本語訳として、付加製造技術が用いられている。
The term 3D printer is widely used as the name for manufacturing equipment that uses 3D printing technology. A 3D printer is a three-dimensional modeling device that uses a computer to calculate the cross-sectional shape of an object based on three-dimensional CAD data, divides the object into thin, round cross-sectional components, forms these components using various methods, and stacks them to create the desired object. Internationally, 3D printing technology is often used as a synonym for Additive Manufacturing Technology, and the Japanese translation is additive manufacturing technology.
近年は、3Dプリンタで造形した造形物に対しても、実製品の量産前の評価目的で外観だけでなく剛性や強度が要求されるようになり、金属3Dプリンタや複合材3Dプリンタなどが注目されている。
In recent years, metal 3D printers and composite 3D printers have been attracting attention as they are now required to have rigidity and strength in addition to appearance for the purpose of evaluating the actual product before mass production.
本出願人は、上記した付加製造技術に関連する技術の一つとして、下記の特許文献1記載の立体造形方法を提案している。特許文献1記載の立体造形方法は、造形槽内で複数回のシェルの造形とコア材の充填とを繰り返した後、活性エネルギー線の照射又は熱エネルギーの付与により前記コア材を一括して硬化させることを特徴としている。係る立体造形方法により、前記コア材により造形された部分に積層界面が存在しない、換言すれば、剛性、強度に方向性が無い立体造形物を造形することが可能となった。
The applicant has proposed a three-dimensional modeling method described in the following Patent Document 1 as one of the technologies related to the additive manufacturing technology described above. The three-dimensional modeling method described in Patent Document 1 is characterized in that after shell modeling and core material filling are repeated multiple times in a modeling tank, the core material is cured all at once by irradiating it with active energy rays or applying thermal energy. This three-dimensional modeling method makes it possible to create a three-dimensional object in which there is no layer interface in the part modeled with the core material, in other words, which has no directional rigidity or strength.
上記特許文献1記載の立体造形方法(以下この方法をコアシェル方式とも言う。)で立体造形物を得るにあたり、一般には外殻層を形成するシェルと、該シェルの内側の硬化したコア材とを合わせたものを立体造形物と呼んでいる。
[発明が解決しようとする課題] When obtaining a three-dimensional object using the three-dimensional modeling method described inPatent Document 1 above (hereinafter, this method is also referred to as the core-shell method), the three-dimensional object is generally defined as a combination of the shell that forms the outer layer and the hardened core material inside the shell.
[Problem to be solved by the invention]
[発明が解決しようとする課題] When obtaining a three-dimensional object using the three-dimensional modeling method described in
[Problem to be solved by the invention]
一方で、このコアシェル方式で立体造形物を得るにあたり、立体造形物の一体性が重視されたり、前記シェルの強度が問題視されたりする場合に、前記シェルの少なくとも一部を硬化後の前記コア材から分離させて、硬化後のコア材を主とする立体造形物が求められる場合がある。
On the other hand, when obtaining a three-dimensional object using this core-shell method, if importance is placed on the integrity of the three-dimensional object or the strength of the shell is an issue, it may be necessary to separate at least a portion of the shell from the hardened core material to produce a three-dimensional object that is primarily made of the hardened core material.
この場合、前記シェルと硬化後の前記コア材とは密着しているため、前記シェルに切削等による外力を加えて前記コア材から前記シェルを分離する工程が必要となる。
上記コアシェル方式においては、液相状態の前記コア材を一括して硬化させる際、前記コア材を歪みなく硬化させるために、前記シェルの厚さは、前記コア材の硬化時に変形しない十分な厚みを有していることが望ましい。 In this case, since the shell and the hardened core material are in close contact with each other, a step of applying an external force to the shell by cutting or the like is required to separate the shell from the core material.
In the above-mentioned core-shell method, when the core material in a liquid phase state is hardened all at once, in order to harden the core material without distortion, it is desirable that the shell has a sufficient thickness so that the shell does not deform when the core material hardens.
上記コアシェル方式においては、液相状態の前記コア材を一括して硬化させる際、前記コア材を歪みなく硬化させるために、前記シェルの厚さは、前記コア材の硬化時に変形しない十分な厚みを有していることが望ましい。 In this case, since the shell and the hardened core material are in close contact with each other, a step of applying an external force to the shell by cutting or the like is required to separate the shell from the core material.
In the above-mentioned core-shell method, when the core material in a liquid phase state is hardened all at once, in order to harden the core material without distortion, it is desirable that the shell has a sufficient thickness so that the shell does not deform when the core material hardens.
一方で、前記シェルの厚みが増すほど、硬化後の前記コア材から前記シェルを分離しにくくなるため、硬化後の前記コア材から前記シェルを分離させる必要がある場合は、前記シェルの厚さは薄い方が望ましい。
しかしながら、前記シェルの厚さを薄くした場合、前記コア材を硬化させる工程における熱エネルギーの付与によって前記シェルが軟化し、硬化前の前記コア材の自重等も加わって、前記シェルの形状が変形し、それに伴って、硬化後の前記コア材の形状も変形してしまうという課題があった。 On the other hand, the thicker the shell, the more difficult it becomes to separate the shell from the core material after hardening. Therefore, if it is necessary to separate the shell from the core material after hardening, it is desirable for the shell to be thin.
However, when the thickness of the shell is reduced, the shell softens due to the application of thermal energy in the process of hardening the core material, and the weight of the core material before hardening is also added, causing the shape of the shell to deform, which in turn causes the shape of the core material after hardening to also deform.
しかしながら、前記シェルの厚さを薄くした場合、前記コア材を硬化させる工程における熱エネルギーの付与によって前記シェルが軟化し、硬化前の前記コア材の自重等も加わって、前記シェルの形状が変形し、それに伴って、硬化後の前記コア材の形状も変形してしまうという課題があった。 On the other hand, the thicker the shell, the more difficult it becomes to separate the shell from the core material after hardening. Therefore, if it is necessary to separate the shell from the core material after hardening, it is desirable for the shell to be thin.
However, when the thickness of the shell is reduced, the shell softens due to the application of thermal energy in the process of hardening the core material, and the weight of the core material before hardening is also added, causing the shape of the shell to deform, which in turn causes the shape of the core material after hardening to also deform.
上記課題が生じる現象の一例について、図6、7を用いて説明する。
図6、7は、上記コアシェル方式において、従来のコア材を一括して硬化させる工程の前後の状態を模式的に示す図である。
図6(a)は、シェルの厚さが厚い場合のコア材硬化前の状態を模式的に示す平面図であり、(b)は、(a)におけるb-b線断面図であり、(c)は、シェルの厚さが厚い場合のコア材硬化後の状態を模式的に示す平面図であり、(d)は、(c)におけるd-d線断面図である。
図7(a)は、シェルの厚さが薄い場合のコア材硬化前の状態を模式的に示す平面図であり、(b)は、(a)におけるb-b線断面図であり、(c)は、シェルの厚さが薄い場合のコア材硬化後の状態を模式的に示す平面図であり、(d)は、(c)におけるd-d線断面図である。 An example of a phenomenon that causes the above problem will be described with reference to FIGS.
6 and 7 are schematic diagrams showing the states before and after a conventional process of hardening the core materials all at once in the core-shell method.
Figure 6(a) is a plan view showing the state of the core material before hardening when the shell is thick, (b) is a cross-sectional view taken along line b-b in (a), (c) is a plan view showing the state of the core material after hardening when the shell is thick, and (d) is a cross-sectional view taken along line d-d in (c).
Figure 7(a) is a plan view showing the state of the core material before hardening when the shell is thin, (b) is a cross-sectional view taken along line b-b in (a), (c) is a plan view showing the state of the core material after hardening when the shell is thin, and (d) is a cross-sectional view taken along line d-d in (c).
図6、7は、上記コアシェル方式において、従来のコア材を一括して硬化させる工程の前後の状態を模式的に示す図である。
図6(a)は、シェルの厚さが厚い場合のコア材硬化前の状態を模式的に示す平面図であり、(b)は、(a)におけるb-b線断面図であり、(c)は、シェルの厚さが厚い場合のコア材硬化後の状態を模式的に示す平面図であり、(d)は、(c)におけるd-d線断面図である。
図7(a)は、シェルの厚さが薄い場合のコア材硬化前の状態を模式的に示す平面図であり、(b)は、(a)におけるb-b線断面図であり、(c)は、シェルの厚さが薄い場合のコア材硬化後の状態を模式的に示す平面図であり、(d)は、(c)におけるd-d線断面図である。 An example of a phenomenon that causes the above problem will be described with reference to FIGS.
6 and 7 are schematic diagrams showing the states before and after a conventional process of hardening the core materials all at once in the core-shell method.
Figure 6(a) is a plan view showing the state of the core material before hardening when the shell is thick, (b) is a cross-sectional view taken along line b-b in (a), (c) is a plan view showing the state of the core material after hardening when the shell is thick, and (d) is a cross-sectional view taken along line d-d in (c).
Figure 7(a) is a plan view showing the state of the core material before hardening when the shell is thin, (b) is a cross-sectional view taken along line b-b in (a), (c) is a plan view showing the state of the core material after hardening when the shell is thin, and (d) is a cross-sectional view taken along line d-d in (c).
なお、図6、7に示した例では、コア材硬化前のシェル40は、上方に開口する有底箱形状を有し、シェル40で囲われた部分であるコア部50にコア材60が充填され、コア材60の上面に液相材料であるシェル材2が未硬化の状態で残存している。
図6に示すように、シェル40の厚さが厚い場合は、コア材硬化前後でシェル40及びコア部50の変形はほとんど生じておらず、硬化コア材60aはコア材60がほとんど歪みなく硬化された形態となっている。 In the example shown in Figures 6 and 7, before the core material hardens, theshell 40 has a box shape with a bottom that opens upward, and the core portion 50, which is the part surrounded by the shell 40, is filled with the core material 60, and the shell material 2, which is a liquid phase material, remains in an unhardened state on the upper surface of the core material 60.
As shown in FIG. 6, when theshell 40 is thick, there is almost no deformation of the shell 40 and the core portion 50 before and after the core material hardens, and the hardened core material 60a is in a form in which the core material 60 has hardened with almost no distortion.
図6に示すように、シェル40の厚さが厚い場合は、コア材硬化前後でシェル40及びコア部50の変形はほとんど生じておらず、硬化コア材60aはコア材60がほとんど歪みなく硬化された形態となっている。 In the example shown in Figures 6 and 7, before the core material hardens, the
As shown in FIG. 6, when the
一方、図7に示すように、シェル40の厚さが薄い場合は、図7(c)、(d)に示すコア材硬化後において、シェル40の長手方向の外周面が少し膨らんだ状態となり、図7(d)の断面図に示すように、シェル40の上部が広がった形態に変形し、これに伴いコア部50も変形することにより、硬化コア材60aは歪んだ形態となっている。
このようにシェル40の厚さを薄くすると、コア材60を熱硬化させる工程において、熱によってシェル40が軟化し、硬化前のコア材60の自重がシェル40に加わって、シェル40及びコア部50の形状が変形して、硬化コア材60aの寸法精度が低下する現象が生じることがある。 On the other hand, as shown in Figure 7, when the thickness of theshell 40 is thin, after the core material hardens as shown in Figures 7(c) and (d), the outer peripheral surface of the shell 40 in the longitudinal direction becomes slightly bulged, and as shown in the cross-sectional view of Figure 7(d), the upper part of the shell 40 deforms into a wider shape, and accordingly, the core portion 50 also deforms, resulting in a distorted shape of the hardened core material 60a.
If the thickness of theshell 40 is made thin in this manner, the shell 40 may soften due to heat during the process of thermally hardening the core material 60, and the weight of the unhardened core material 60 may be applied to the shell 40, causing deformation of the shapes of the shell 40 and the core portion 50, resulting in a decrease in the dimensional accuracy of the hardened core material 60a.
このようにシェル40の厚さを薄くすると、コア材60を熱硬化させる工程において、熱によってシェル40が軟化し、硬化前のコア材60の自重がシェル40に加わって、シェル40及びコア部50の形状が変形して、硬化コア材60aの寸法精度が低下する現象が生じることがある。 On the other hand, as shown in Figure 7, when the thickness of the
If the thickness of the
このような現象に対して、シェル40の厚さを薄くした場合であっても、コア材60の硬化工程においてシェル40の変形を抑制するための方法の一例として、図8に示す次の方法が考えられる。
図8(a)に示すように、コア部50にコア材60を充填する工程を終えた後、コア材60の上面部分に残存する未硬化のシェル材2に活性エネルギー線を照射する。そして、図8(b)に示すように、未硬化のシェル材2を全て硬化させて、コア材60の上面をシェル40で封止する。その後、熱エネルギーを付与してコア材60を硬化させる工程を行う。 As a countermeasure against such a phenomenon, even if the thickness of theshell 40 is reduced, the following method shown in FIG. 8 can be considered as an example of a method for suppressing deformation of the shell 40 during the hardening process of the core material 60.
As shown in Fig. 8(a), after the step of filling thecore portion 50 with the core material 60 is completed, the uncured shell material 2 remaining on the upper surface of the core material 60 is irradiated with active energy rays. Then, as shown in Fig. 8(b), all of the uncured shell material 2 is cured, and the upper surface of the core material 60 is sealed with the shell 40. After that, a step of applying thermal energy to cure the core material 60 is performed.
図8(a)に示すように、コア部50にコア材60を充填する工程を終えた後、コア材60の上面部分に残存する未硬化のシェル材2に活性エネルギー線を照射する。そして、図8(b)に示すように、未硬化のシェル材2を全て硬化させて、コア材60の上面をシェル40で封止する。その後、熱エネルギーを付与してコア材60を硬化させる工程を行う。 As a countermeasure against such a phenomenon, even if the thickness of the
As shown in Fig. 8(a), after the step of filling the
しかしながら、図8に示す方法では、コア材60を硬化させる工程において、熱エネルギーの付与によってコア材60内に内在、溶存しているガス(気体)がコア材60から気泡となって発生した場合に、図8(c)に示すように、気泡がシェル40との界面に溜まっていき、気泡による空隙60bが生じることがある。そして、空隙60bが残ったままの状態でコア材60が硬化されると、硬化コア材60aの上面に空隙60bに伴う窪みや隙間が形成されて、硬化コア材60aの成形不良が発生する懸念があるという課題があった。
However, in the method shown in FIG. 8, when gas (air) contained and dissolved within the core material 60 is generated as bubbles from the core material 60 by the application of thermal energy in the process of hardening the core material 60, the bubbles may accumulate at the interface with the shell 40, causing voids 60b due to the bubbles, as shown in FIG. 8(c). If the core material 60 is hardened with the voids 60b remaining, depressions or gaps due to the voids 60b will be formed on the upper surface of the hardened core material 60a, raising the issue of concern that molding defects in the hardened core material 60a may occur.
本発明は上記課題に鑑みなされたものであって、いわゆるコアシェル方式の立体造形方法において、コア材を硬化させる工程で、コア材から生じるガスによるコア材の成形不良を防止でき、かつコア部の変形を抑制することができる立体造形方法、立体造形物の製造方法、及び立体造形物を提供することを目的とする。
The present invention has been made in consideration of the above problems, and aims to provide a three-dimensional modeling method, a manufacturing method for a three-dimensional object, and a three-dimensional object that can prevent molding defects in the core material caused by gas generated from the core material during the process of hardening the core material, and can suppress deformation of the core portion in the so-called core-shell type three-dimensional modeling method.
上記目的を達成するために本発明に係る立体造形方法(1)は、
立体造形物の外形を規定するシェルをシェル材を用いて造形するシェル造形工程と、
前記シェルの内側面に囲われた部分であるコア部に液相材料であるコア材を充填するコア材充填工程と、
前記コア部内の前記コア材を硬化させるコア材硬化工程と、を含む立体造形方法であって、
前記コア部に充填された前記コア材の上面に前記シェル材の未硬化領域を残すようにして前記コア部の開口を封止するコア部封止工程を含み、
該コア部封止工程の後に前記コア材硬化工程を行うことを特徴としている。 In order to achieve the above object, a three-dimensional object forming method (1) according to the present invention comprises:
a shell forming process for forming a shell that defines an outer shape of a three-dimensional object using a shell material;
a core material filling step of filling a core portion, which is a portion surrounded by an inner surface of the shell, with a core material, which is a liquid phase material;
and hardening the core material in the core portion,
a core portion sealing step of sealing an opening of the core portion while leaving an uncured region of the shell material on an upper surface of the core material filled in the core portion;
The method is characterized in that the core material hardening step is carried out after the core sealing step.
立体造形物の外形を規定するシェルをシェル材を用いて造形するシェル造形工程と、
前記シェルの内側面に囲われた部分であるコア部に液相材料であるコア材を充填するコア材充填工程と、
前記コア部内の前記コア材を硬化させるコア材硬化工程と、を含む立体造形方法であって、
前記コア部に充填された前記コア材の上面に前記シェル材の未硬化領域を残すようにして前記コア部の開口を封止するコア部封止工程を含み、
該コア部封止工程の後に前記コア材硬化工程を行うことを特徴としている。 In order to achieve the above object, a three-dimensional object forming method (1) according to the present invention comprises:
a shell forming process for forming a shell that defines an outer shape of a three-dimensional object using a shell material;
a core material filling step of filling a core portion, which is a portion surrounded by an inner surface of the shell, with a core material, which is a liquid phase material;
and hardening the core material in the core portion,
a core portion sealing step of sealing an opening of the core portion while leaving an uncured region of the shell material on an upper surface of the core material filled in the core portion;
The method is characterized in that the core material hardening step is carried out after the core sealing step.
上記立体造形方法(1)によれば、前記コア部封止工程により、前記コア部に充填された前記コア材の上面に前記シェル材の未硬化領域を残すようにして前記コア部の開口が封止され、前記コア部封止工程の後に前記コア材硬化工程が行われる。
したがって、前記コア材硬化工程において、前記コア材からガスが発生した場合に、前記ガスが前記コア材の上面に液相状態で存在する前記シェル材の未硬化領域に排除されることとなり、硬化後のコア材に前記ガスによる空隙状の欠陥などの成形不良が発生する現象を防止することができる。また、前記コア部の開口が封止された状態で前記コア材硬化工程が行われるので、前記コア材硬化工程での前記コア部の変形も抑制することができる。 According to the above-mentioned three-dimensional modeling method (1), the core portion sealing process seals the opening of the core portion so as to leave an unhardened area of the shell material on the upper surface of the core material filled in the core portion, and the core material hardening process is carried out after the core portion sealing process.
Therefore, when gas is generated from the core material in the core material hardening step, the gas is expelled into the unhardened region of the shell material that exists in a liquid state on the upper surface of the core material, and it is possible to prevent molding defects such as void defects caused by the gas in the hardened core material. In addition, since the core material hardening step is performed with the opening of the core portion sealed, deformation of the core portion in the core material hardening step can also be suppressed.
したがって、前記コア材硬化工程において、前記コア材からガスが発生した場合に、前記ガスが前記コア材の上面に液相状態で存在する前記シェル材の未硬化領域に排除されることとなり、硬化後のコア材に前記ガスによる空隙状の欠陥などの成形不良が発生する現象を防止することができる。また、前記コア部の開口が封止された状態で前記コア材硬化工程が行われるので、前記コア材硬化工程での前記コア部の変形も抑制することができる。 According to the above-mentioned three-dimensional modeling method (1), the core portion sealing process seals the opening of the core portion so as to leave an unhardened area of the shell material on the upper surface of the core material filled in the core portion, and the core material hardening process is carried out after the core portion sealing process.
Therefore, when gas is generated from the core material in the core material hardening step, the gas is expelled into the unhardened region of the shell material that exists in a liquid state on the upper surface of the core material, and it is possible to prevent molding defects such as void defects caused by the gas in the hardened core material. In addition, since the core material hardening step is performed with the opening of the core portion sealed, deformation of the core portion in the core material hardening step can also be suppressed.
また本発明に係る立体造形方法(2)は、上記立体造形方法(1)において、
前記コア部封止工程が、
前記シェル材の未硬化領域の上層部のみを硬化させることにより前記コア部の開口を封止することを特徴としている。 The present invention also provides a three-dimensional object forming method (2), comprising the steps of:
The core sealing step includes:
The opening of the core portion is sealed by curing only the upper layer portion of the uncured region of the shell material.
前記コア部封止工程が、
前記シェル材の未硬化領域の上層部のみを硬化させることにより前記コア部の開口を封止することを特徴としている。 The present invention also provides a three-dimensional object forming method (2), comprising the steps of:
The core sealing step includes:
The opening of the core portion is sealed by curing only the upper layer portion of the uncured region of the shell material.
上記立体造形方法(2)によれば、前記コア部封止工程において、前記コア材の上面に前記シェル材の未硬化領域を残しつつ、前記シェル材の未硬化領域の上層部のみを硬化させることにより前記コア部の開口を封止することができる。
According to the three-dimensional modeling method (2), in the core sealing step, the opening of the core can be sealed by curing only the upper layer of the uncured region of the shell material while leaving the uncured region of the shell material on the upper surface of the core material.
また本発明に係る立体造形方法(3)は、上記立体造形方法(2)において、
前記シェル材が、活性エネルギー線の照射により硬化する樹脂を含み、
前記コア部封止工程では、前記シェル材の未硬化領域の上面に前記活性エネルギー線を照射して前記シェル材の未硬化領域の前記上層部のみを硬化させ、
前記コア材が、熱硬化性樹脂を含み、
前記コア材硬化工程では、前記コア材に熱エネルギーを付与して前記コア材を熱硬化させることを特徴としている。 The present invention also provides a three-dimensional object fabrication method (3), comprising the steps of:
the shell material contains a resin that is cured by irradiation with active energy rays,
In the core sealing step, the active energy rays are irradiated onto an upper surface of the uncured region of the shell material to cure only the upper layer portion of the uncured region of the shell material,
the core material comprises a thermosetting resin;
The core material hardening step is characterized in that thermal energy is applied to the core material to thermally harden the core material.
前記シェル材が、活性エネルギー線の照射により硬化する樹脂を含み、
前記コア部封止工程では、前記シェル材の未硬化領域の上面に前記活性エネルギー線を照射して前記シェル材の未硬化領域の前記上層部のみを硬化させ、
前記コア材が、熱硬化性樹脂を含み、
前記コア材硬化工程では、前記コア材に熱エネルギーを付与して前記コア材を熱硬化させることを特徴としている。 The present invention also provides a three-dimensional object fabrication method (3), comprising the steps of:
the shell material contains a resin that is cured by irradiation with active energy rays,
In the core sealing step, the active energy rays are irradiated onto an upper surface of the uncured region of the shell material to cure only the upper layer portion of the uncured region of the shell material,
the core material comprises a thermosetting resin;
The core material hardening step is characterized in that thermal energy is applied to the core material to thermally harden the core material.
上記立体造形方法(3)によれば、前記コア部封止工程において、前記シェル材の未硬化領域の上面に前記活性エネルギー線を照射して前記シェル材の未硬化領域の上層部のみを硬化させるので、前記コア材の上面に前記シェル材の未硬化領域を残しつつ前記コア部の開口を封止する工程を効率良く行うことができる。
また、前記コア材が熱硬化性樹脂を含んで構成されているので、前記コア材充填工程を常温、常圧環境下で容易に行うことができ、また、前記コア材硬化工程において、前記コア材から発生するガスを前記シェル材の未硬化領域に排除しつつ、前記コア材全体を一体化させた状態に効率良く硬化させることができる。 According to the above-mentioned three-dimensional modeling method (3), in the core portion sealing process, the active energy rays are irradiated onto the upper surface of the uncured region of the shell material to harden only the upper layer of the uncured region of the shell material, so that the process of sealing the opening of the core portion while leaving the uncured region of the shell material on the upper surface of the core material can be carried out efficiently.
Furthermore, since the core material is composed of a thermosetting resin, the core material filling process can be easily carried out under normal temperature and pressure conditions, and in the core material hardening process, gas generated from the core material can be expelled into the unhardened area of the shell material, while the entire core material can be efficiently hardened into an integrated state.
また、前記コア材が熱硬化性樹脂を含んで構成されているので、前記コア材充填工程を常温、常圧環境下で容易に行うことができ、また、前記コア材硬化工程において、前記コア材から発生するガスを前記シェル材の未硬化領域に排除しつつ、前記コア材全体を一体化させた状態に効率良く硬化させることができる。 According to the above-mentioned three-dimensional modeling method (3), in the core portion sealing process, the active energy rays are irradiated onto the upper surface of the uncured region of the shell material to harden only the upper layer of the uncured region of the shell material, so that the process of sealing the opening of the core portion while leaving the uncured region of the shell material on the upper surface of the core material can be carried out efficiently.
Furthermore, since the core material is composed of a thermosetting resin, the core material filling process can be easily carried out under normal temperature and pressure conditions, and in the core material hardening process, gas generated from the core material can be expelled into the unhardened area of the shell material, while the entire core material can be efficiently hardened into an integrated state.
また本発明に係る立体造形方法(4)は、上記立体造形方法(1)~(3)のいずれかにおいて、
前記シェル材の未硬化領域の大きさが、前記コア部に充填される前記コア材の量に応じて調整されることを特徴としている。 Further, the present invention provides a three-dimensional object fabrication method (4) in any one of the three-dimensional object fabrication methods (1) to (3),
The size of the uncured region of the shell material is adjusted according to the amount of the core material filled in the core portion.
前記シェル材の未硬化領域の大きさが、前記コア部に充填される前記コア材の量に応じて調整されることを特徴としている。 Further, the present invention provides a three-dimensional object fabrication method (4) in any one of the three-dimensional object fabrication methods (1) to (3),
The size of the uncured region of the shell material is adjusted according to the amount of the core material filled in the core portion.
上記立体造形方法(4)によれば、前記コア部に充填される前記コア材の量の増加に応じて、前記コア材硬化工程において前記コア材から発生する前記ガスの量が増加する場合であっても、前記コア部に充填される前記コア材の量の増加に応じて、前記シェル材の未硬化領域の大きさ(体積)を大きくする調整を行うことにより、前記コア材硬化工程において発生する前記ガスを前記シェル材の未硬化領域に、より確実に排除することができる。
According to the above three-dimensional modeling method (4), even if the amount of gas generated from the core material in the core material hardening process increases in accordance with an increase in the amount of the core material filled in the core section, the size (volume) of the unhardened area of the shell material is adjusted to increase in accordance with an increase in the amount of the core material filled in the core section, so that the gas generated in the core material hardening process can be more reliably removed into the unhardened area of the shell material.
また本発明に係る立体造形方法(5)は、上記立体造形方法(1)~(4)のいずれかにおいて、
前記コア材硬化工程の後に、
前記シェルの少なくとも一部を硬化後の前記コア材から分離させ、前記コア部の形状に倣った形状を有し、主として前記コア材からなる立体造形物を得る分離工程を備えていることを特徴としている。 Further, the present invention provides a three-dimensional object forming method (5) in any one of the above three-dimensional object forming methods (1) to (4),
After the core material hardening step,
The method includes a separation step of separating at least a portion of the shell from the hardened core material to obtain a three-dimensional object having a shape following the shape of the core portion and made mainly of the core material.
前記コア材硬化工程の後に、
前記シェルの少なくとも一部を硬化後の前記コア材から分離させ、前記コア部の形状に倣った形状を有し、主として前記コア材からなる立体造形物を得る分離工程を備えていることを特徴としている。 Further, the present invention provides a three-dimensional object forming method (5) in any one of the above three-dimensional object forming methods (1) to (4),
After the core material hardening step,
The method includes a separation step of separating at least a portion of the shell from the hardened core material to obtain a three-dimensional object having a shape following the shape of the core portion and made mainly of the core material.
上記立体造形方法(5)によれば、前記コア材硬化工程の後に前記分離工程を備えているので、前記ガスによる空隙状の欠陥などの成形不良がなく、かつ変形が抑制された、硬化後の前記コア材を主とする立体造形物を得ることができる。
The three-dimensional modeling method (5) includes the separation step after the core material hardening step, so that a three-dimensional model consisting mainly of the hardened core material can be obtained without molding defects such as voids caused by the gas and with reduced deformation.
また本発明に係る立体造形物の製造方法は、上記立体造形方法(5)を用いて立体造形物を製造することを特徴としている。
The method for producing a three-dimensional object according to the present invention is characterized in that the three-dimensional object is produced using the three-dimensional object production method (5) described above.
上記立体造形物の製造方法によれば、前記立体造形物を製造する場合に、上記立体造形方法(5)により得られる効果を奏することとなり、硬化後の前記コア材を主とする立体造形物の寸法形状の精度を向上させることできる。
The method for manufacturing a three-dimensional object described above provides the same effects as those obtained by the three-dimensional modeling method (5) described above when manufacturing the three-dimensional object, and can improve the accuracy of the dimensions and shape of the three-dimensional object mainly made of the core material after hardening.
また本発明に係る立体造形物(1)は、外殻層を形成するシェルと、該シェルの内側面に囲われた部分であるコア部に硬化コア材とを有する構造を備えた立体造形物であって、
前記シェルがシェル材を硬化させたものであり、
前記硬化コア材の上面に前記シェル材の未硬化領域を有し、
前記コア部の開口が封止されていることを特徴としている。
また本発明に係る立体造形物(2)は、上記立体造形物(1)において、前記コア部の開口が前記シェルで封止されていることを特徴としている。 The three-dimensional object (1) according to the present invention is a three-dimensional object having a structure including a shell forming an outer shell layer and a hardened core material in a core portion surrounded by an inner surface of the shell,
The shell is formed by hardening a shell material,
an uncured region of the shell material on an upper surface of the cured core material;
The opening of the core portion is sealed.
A three-dimensional object (2) according to the present invention is the three-dimensional object (1) described above, characterized in that an opening of the core portion is sealed with the shell.
前記シェルがシェル材を硬化させたものであり、
前記硬化コア材の上面に前記シェル材の未硬化領域を有し、
前記コア部の開口が封止されていることを特徴としている。
また本発明に係る立体造形物(2)は、上記立体造形物(1)において、前記コア部の開口が前記シェルで封止されていることを特徴としている。 The three-dimensional object (1) according to the present invention is a three-dimensional object having a structure including a shell forming an outer shell layer and a hardened core material in a core portion surrounded by an inner surface of the shell,
The shell is formed by hardening a shell material,
an uncured region of the shell material on an upper surface of the cured core material;
The opening of the core portion is sealed.
A three-dimensional object (2) according to the present invention is the three-dimensional object (1) described above, characterized in that an opening of the core portion is sealed with the shell.
上記立体造形物(1)によれば、前記硬化コア材の上面に前記シェル材の未硬化領域を有し、前記コア部の開口が封止されている。また上記立体造形物(2)によれば、前記コア部の開口が前記シェルで封止されている。上記立体造形物(1)、(2)によれば前記硬化コア材の上面に未硬化の前記シェル材が閉じ込められた形態を有しているので、前記硬化コア材の成形不良が少なく、前記コア部の変形が抑えられた造形物を提供することができる。
The three-dimensional object (1) has an uncured region of the shell material on the upper surface of the hardened core material, and the opening of the core portion is sealed. The three-dimensional object (2) has an opening of the core portion sealed with the shell. The three-dimensional objects (1) and (2) have a form in which the uncured shell material is enclosed on the upper surface of the hardened core material, so that it is possible to provide an object with fewer molding defects in the hardened core material and reduced deformation of the core portion.
以下、本発明に係る立体造形方法、立体造形物の製造方法、及び立体造形物の実施の形態を図面に基づいて説明する。なお、図面に記載しているシェルやコア部の形態などは、本発明の主旨が容易に理解できるように模式的に描かれており、これらの形態に限定されるものではない。
Below, the three-dimensional modeling method, the manufacturing method of a three-dimensional object, and the three-dimensional object according to the present invention will be described with reference to the drawings. Note that the shapes of the shell and core parts shown in the drawings are depicted diagrammatically so that the gist of the present invention can be easily understood, and the present invention is not limited to these shapes.
図1に基づいて、実施の形態に係る立体造形方法に用いる立体造形システムの構成例について説明する。
立体造形システム100は、立体造形装置10と、紫外線照射装置20と、熱硬化手段30とを含んで構成されている。
立体造形装置10は、シェル造形工程及びコア材充填工程で使用されるものであり、複合材3Dプリンタとしての機能を備え、造形が行われる造形槽11、レーザー光学系12、コア材供給系13を主たる構成要素としている。 An example of the configuration of a three-dimensional object modeling system used in a three-dimensional object modeling method according to an embodiment will be described with reference to FIG.
The three-dimensionalobject modeling system 100 includes a three-dimensional object modeling apparatus 10 , an ultraviolet ray irradiation apparatus 20 , and a thermal curing means 30 .
The three-dimensional modeling device 10 is used in the shell modeling process and the core material filling process, and has the function of a composite 3D printer. Its main components are a modeling tank 11 in which modeling takes place, a laser optical system 12, and a core material supply system 13.
立体造形システム100は、立体造形装置10と、紫外線照射装置20と、熱硬化手段30とを含んで構成されている。
立体造形装置10は、シェル造形工程及びコア材充填工程で使用されるものであり、複合材3Dプリンタとしての機能を備え、造形が行われる造形槽11、レーザー光学系12、コア材供給系13を主たる構成要素としている。 An example of the configuration of a three-dimensional object modeling system used in a three-dimensional object modeling method according to an embodiment will be described with reference to FIG.
The three-dimensional
The three-
造形槽11内には、シェル材2として、例えば、液相材料である光硬化性樹脂が貯留されており、図示しない光硬化性樹脂調整系により、その液面位置を所定位置に維持、調整可能となっている。シェル材2には、例えば、エポキシ系、アクリル系などの公知の紫外線硬化樹脂などが使用可能である。また、造形槽11内には造形台15が設けられている。造形台15は、造形中の造形物を支持するためのものであり、図示しない駆動機構により図中z軸方向の任意の位置に移動(昇降)かつ設置可能となっている。
In the modeling tank 11, for example, a photocurable resin, which is a liquid phase material, is stored as the shell material 2, and the liquid level position can be maintained and adjusted at a predetermined position by a photocurable resin adjustment system (not shown). For the shell material 2, for example, known ultraviolet curable resins such as epoxy and acrylic resins can be used. In addition, a modeling table 15 is provided in the modeling tank 11. The modeling table 15 is for supporting the object being modeled, and can be moved (raised and lowered) and set to any position in the z-axis direction in the figure by a drive mechanism (not shown).
レーザー光学系12は、紫外線レーザー光源12a、及び走査光学系12bを備えている。紫外線レーザー光源12aから紫外線レーザー光12cが出射され、出射された紫外線レーザー光12cは、走査光学系12bの駆動により、シェル材2の液面上(すなわちxy平面)の所定範囲を走査させることが可能となっている。
The laser optical system 12 includes an ultraviolet laser light source 12a and a scanning optical system 12b. Ultraviolet laser light 12c is emitted from the ultraviolet laser light source 12a, and the emitted ultraviolet laser light 12c can be caused to scan a predetermined range on the liquid surface of the shell material 2 (i.e., the xy plane) by driving the scanning optical system 12b.
シェル材2は、活性エネルギー線の一つである紫外線レーザー光12cの照射により、図1にて硬化済み紫外線硬化樹脂層3で示すように液面から所定の深さだけ硬化するようになっている。この硬化深度は、紫外線レーザー光源12aの出力を調整することにより、ある程度の幅で調整可能となっており、例えば、0.1mm~0.4mm程度の範囲で調整されている。
The shell material 2 is cured to a predetermined depth from the liquid surface by irradiation with ultraviolet laser light 12c, which is a type of active energy ray, as shown by the cured ultraviolet cured resin layer 3 in Figure 1. This curing depth can be adjusted to a certain extent by adjusting the output of the ultraviolet laser light source 12a, and is adjusted to a range of, for example, about 0.1 mm to 0.4 mm.
したがって、造形台15上面をシェル材2の液面から所定の硬化深度だけ沈めた深さに位置させ、シェル材2の液面の任意の位置へ紫外線レーザー光12cを照射することにより、造形台15上に任意の面積の硬化済み紫外線硬化樹脂層3が形成される。そして、造形台15上に硬化済み紫外線硬化樹脂層3が形成された後、硬化深度分だけ造形台15を下降させ、シェル材2の液面の任意の位置へ紫外線レーザー光12cを照射することにより、硬化済み紫外線硬化樹脂層3の上に硬化済み紫外線硬化樹脂層3が積層されるようになっている。
Therefore, by positioning the top surface of the modeling table 15 at a depth that is a predetermined curing depth below the liquid surface of the shell material 2 and irradiating an arbitrary position on the liquid surface of the shell material 2 with ultraviolet laser light 12c, a cured ultraviolet cured resin layer 3 of any area is formed on the modeling table 15. Then, after the cured ultraviolet cured resin layer 3 is formed on the modeling table 15, the modeling table 15 is lowered by the curing depth and an arbitrary position on the liquid surface of the shell material 2 is irradiated with ultraviolet laser light 12c, so that a cured ultraviolet cured resin layer 3 is layered on top of the cured ultraviolet cured resin layer 3.
そして、造形台15の下降とシェル材2液面への紫外線レーザー光12cの照射とを繰り返し実施することにより、硬化済み紫外線硬化樹脂層3の積層が進行し、3次元形状の硬化済み紫外線硬化樹脂層3を得ることが可能となっている。
本実施の形態では、このようにして造形された造形物をシェル4(図2参照)と呼ぶ。また、このシェル4は、コア材6を充填するための外殻層として機能するものであり、シェル4の内側面に囲われた部分のうち底面を有する部分をコア部5(図2参照)と呼ぶ。 Then, by repeatedly lowering the modeling table 15 and irradiating the liquid surface of theshell material 2 with ultraviolet laser light 12c, the layering of the cured ultraviolet-cured resin layer 3 progresses, and it is possible to obtain a cured ultraviolet-cured resin layer 3 having a three-dimensional shape.
In this embodiment, the object thus shaped is called the shell 4 (see FIG. 2). Theshell 4 functions as an outer shell layer for filling the core material 6, and the part surrounded by the inner surface of the shell 4 and having a bottom surface is called the core portion 5 (see FIG. 2).
本実施の形態では、このようにして造形された造形物をシェル4(図2参照)と呼ぶ。また、このシェル4は、コア材6を充填するための外殻層として機能するものであり、シェル4の内側面に囲われた部分のうち底面を有する部分をコア部5(図2参照)と呼ぶ。 Then, by repeatedly lowering the modeling table 15 and irradiating the liquid surface of the
In this embodiment, the object thus shaped is called the shell 4 (see FIG. 2). The
コア材供給系13は、コア材6を内部に貯留するコア材タンク13a中から、ポンプ13bで配管系13c、13dを順に介して送りながらコア材6を供給し、ノズル14先端からコア材6を吐出する。ノズル14は図示しないノズル移動機構により、図中xyz各方向に移動かつ固定可能となっている。このため配管系13dはノズル14の移動に追随するようフレキシブルな構造及び材料で構成されている。
The core material supply system 13 supplies the core material 6 from the core material tank 13a, which stores the core material 6 inside, by pump 13b, sending it through piping systems 13c and 13d in sequence, and exhales the core material 6 from the tip of the nozzle 14. The nozzle 14 can be moved and fixed in each of the x, y and z directions in the figure by a nozzle movement mechanism (not shown). For this reason, the piping system 13d is constructed with a flexible structure and material so that it can follow the movement of the nozzle 14.
コア材6は、例えば、エポキシ系、アクリル系など公知の液相材料である熱硬化性樹脂の中に強化材が均一に分散された複合材で構成されている。前記強化材は、例えば、炭素繊維、ガラス繊維、及びアラミド繊維のうちの少なくとも1つを含む繊維状の強化材でもよいし、シリカ等の無機材料粉などでもよい。コア材6にはシェル材2よりも高比重なものが使用されている。また、コア材6の粘度は、シェル材2の粘度よりも2倍以上であることが好ましい。なお、シェル4は、物性としてガラス転移温度Tgsを有し、このガラス転移温度Tgsはコア材6の熱硬化温度Tpcよりも低い値となっている。
The core material 6 is composed of a composite material in which a reinforcing material is uniformly dispersed in a thermosetting resin, which is a known liquid phase material such as an epoxy or acrylic resin. The reinforcing material may be, for example, a fibrous reinforcing material containing at least one of carbon fiber, glass fiber, and aramid fiber, or may be an inorganic material powder such as silica. The core material 6 has a higher specific gravity than the shell material 2. The viscosity of the core material 6 is preferably at least twice as high as that of the shell material 2. The shell 4 has a physical property of a glass transition temperature Tgs, which is lower than the heat curing temperature Tpc of the core material 6.
紫外線照射装置20は、コア部封止工程で使用されるものであり、活性エネルギー線の一つである紫外線を照射する1以上の紫外線照射器21を含んで構成されている。ここでの紫外線照射対象は、造形槽11から取り出された、コア部5にコア材6が充填され、かつコア材6の上面にシェル材2の未硬化領域2aが存在している状態のシェル4(図3(a)参照)である。
The ultraviolet irradiation device 20 is used in the core sealing process, and is configured to include one or more ultraviolet irradiators 21 that irradiate ultraviolet light, which is one type of active energy ray. The target of ultraviolet irradiation here is the shell 4 (see FIG. 3(a)) that has been removed from the molding tank 11, has the core portion 5 filled with the core material 6, and has an uncured area 2a of the shell material 2 present on the upper surface of the core material 6.
紫外線照射装置20は、例えば、シェル4の開口部分、すなわちコア部5の上面全体に紫外線を照射可能な機能を備えている。紫外線照射器21は、紫外線の出力(強度)と照射時間とを調整することにより、シェル4のコア部5に充填されたコア材6の上面に存在するシェル材2の未硬化領域2aの上面から所定の深さ(例えば、1~2mm程度)だけ硬化させることが可能となっている。
The ultraviolet irradiation device 20 has a function capable of irradiating ultraviolet rays onto, for example, the opening of the shell 4, i.e., the entire upper surface of the core portion 5. The ultraviolet irradiator 21 adjusts the output (intensity) of the ultraviolet rays and the irradiation time, making it possible to harden only a predetermined depth (for example, about 1 to 2 mm) from the top surface of the unhardened area 2a of the shell material 2 present on the top surface of the core material 6 filled in the core portion 5 of the shell 4.
熱硬化手段30は、コア部封止工程後のコア材硬化工程で使用されるものであり、加熱対象を密閉可能なチャンバを有する加熱炉で構成されている。ここでの加熱対象は、紫外線照射装置20で処理された後のシェル4(図4(a)参照)である。熱硬化手段30は、その加熱炉内をコア材6の熱硬化温度Tpcよりも高い温度まで昇降させることが可能であり、コア材6を一括して硬化させることが可能となっている。この硬化したコア材6を本実施の形態では硬化コア材6a(図4(b)参照)と呼ぶ。
The heat curing means 30 is used in the core material curing process after the core sealing process, and is composed of a heating furnace having a chamber capable of sealing the heating target. The heating target here is the shell 4 (see FIG. 4(a)) after being treated by the ultraviolet irradiation device 20. The heat curing means 30 is capable of raising and lowering the temperature inside the heating furnace to a temperature higher than the heat curing temperature Tpc of the core material 6, and is capable of curing the core material 6 all at once. In this embodiment, this hardened core material 6 is called hardened core material 6a (see FIG. 4(b)).
次に、実施の形態に係る立体造形方法の一例について、図2~5を用いて説明する。
実施の形態に係る立体造形方法は、シェル造形工程と、コア材充填工程と、コア部封止工程と、コア材硬化工程と、分離工程とを含んでいる。なお、分離工程は、必須ではなく、必要に応じて実施すればよい。 Next, an example of a three-dimensional object fabrication method according to the embodiment will be described with reference to FIGS.
The three-dimensional object fabrication method according to the embodiment includes a shell fabrication step, a core material filling step, a core sealing step, a core material hardening step, and a separation step. Note that the separation step is not essential and may be performed as necessary.
実施の形態に係る立体造形方法は、シェル造形工程と、コア材充填工程と、コア部封止工程と、コア材硬化工程と、分離工程とを含んでいる。なお、分離工程は、必須ではなく、必要に応じて実施すればよい。 Next, an example of a three-dimensional object fabrication method according to the embodiment will be described with reference to FIGS.
The three-dimensional object fabrication method according to the embodiment includes a shell fabrication step, a core material filling step, a core sealing step, a core material hardening step, and a separation step. Note that the separation step is not essential and may be performed as necessary.
実施の形態に係る立体造形方法では、最初に立体造形装置10によってシェル4の造形工程、及び造形されたシェル4内へのコア材6の充填工程が行われる。
具体的には、まず、図2(a)に示すようにノズル14が紫外線レーザー光12cの照射範囲から退避した状態において、造形台15上のシェル材2の液面の任意の位置への紫外線レーザー光12cの照射、及び硬化深度分の造形台15の降下が交互に行われる。この動作により、所望の形状をしたコア部5を有するシェル4が造形されていく。上記のようにして、立体造形物の外形を規定するシェル4をシェル材2を用いて造形する工程をシェル造形工程という。 In the three-dimensional object fabrication method according to the embodiment, first, a process of fabricating theshell 4 and a process of filling the core material 6 into the fabricated shell 4 are performed by the three-dimensional object fabrication apparatus 10 .
Specifically, first, as shown in Fig. 2(a), with thenozzle 14 retracted from the irradiation range of the ultraviolet laser light 12c, the ultraviolet laser light 12c is irradiated to any position on the liquid surface of the shell material 2 on the modeling table 15, and the modeling table 15 is lowered alternately by an amount corresponding to the curing depth. Through this operation, a shell 4 having a core portion 5 of a desired shape is formed. The process of forming the shell 4, which defines the outer shape of the three-dimensional object, using the shell material 2 as described above is called the shell modeling process.
具体的には、まず、図2(a)に示すようにノズル14が紫外線レーザー光12cの照射範囲から退避した状態において、造形台15上のシェル材2の液面の任意の位置への紫外線レーザー光12cの照射、及び硬化深度分の造形台15の降下が交互に行われる。この動作により、所望の形状をしたコア部5を有するシェル4が造形されていく。上記のようにして、立体造形物の外形を規定するシェル4をシェル材2を用いて造形する工程をシェル造形工程という。 In the three-dimensional object fabrication method according to the embodiment, first, a process of fabricating the
Specifically, first, as shown in Fig. 2(a), with the
図2に示すシェル4は、上面に開口を有する有底箱形状に造形されている。また、シェル4の厚さは、特に限定されないが、後に分離工程を有する場合は、例えば、1mm~3mm程度となるように薄く造形することが好ましい。
The shell 4 shown in FIG. 2 is shaped like a bottomed box with an opening on the top surface. The thickness of the shell 4 is not particularly limited, but if a separation process is to be performed later, it is preferable to form the shell 4 thin, for example, to about 1 mm to 3 mm.
シェル造形工程を終えると、次に、図2(b)に示すようにシェル4内に形成されたコア部5内へノズル14が移動し、ノズル14からコア部5へコア材6が吐出されることにより、コア部5内へのコア材6の充填が進行する。上記のようにしてシェル4の内側面に囲われた部分であるコア部5へコア材6を充填する工程をコア材充填工程という。
After the shell molding process is completed, the nozzle 14 moves into the core portion 5 formed in the shell 4 as shown in FIG. 2(b), and the core material 6 is ejected from the nozzle 14 into the core portion 5, thereby filling the core portion 5 with the core material 6. The process of filling the core portion 5, which is surrounded by the inner surface of the shell 4, with the core material 6 as described above is called the core material filling process.
本実施の形態では、コア材充填工程は、シェル4が造形槽11内のシェル材2に浸漬した状態で実施され、コア材6の充填前には、図2(a)に示すようにコア部5にシェル材2が存在する。そして、シェル材2より比重が大きいコア材6がコア部5に充填されていくにしたがって、コア部5内のシェル材2は押し上げられ、図2(b)に示すように、コア部5の開口からシェル4の外部へシェル材2が押し出されて、シェル材2からコア材6への置換が行われる。
In this embodiment, the core material filling step is performed with the shell 4 immersed in the shell material 2 in the forming tank 11, and before the core material 6 is filled, the shell material 2 is present in the core portion 5 as shown in FIG. 2(a). Then, as the core material 6, which has a larger specific gravity than the shell material 2, is filled into the core portion 5, the shell material 2 in the core portion 5 is pushed up, and as shown in FIG. 2(b), the shell material 2 is pushed out of the shell 4 through the opening of the core portion 5, and the shell material 2 is replaced by the core material 6.
なお、上記のシェル造形工程、及びコア材充填工程は交互に複数回ずつ実施されてもよい。すなわち、所定の高さまでシェル4を造形し、そのシェル4によって形成されるコア部5にコア材6を充填した後、さらにシェル4を増築し、そして増築されたシェル4によって新たに形成されたコア部5にコア材6を充填する、という工程を繰り返し行っても良い。このようにシェル4の造形を複数回に分割することで、特にコア部5が複雑な形状(例えば、狭い、細い、薄い、など)を有する場合にも、段階的にコア材6を充填することによってコア部5の隅々までコア材6を充填することが可能となる。
The above shell forming process and core material filling process may be performed alternately multiple times. That is, the shell 4 may be formed to a predetermined height, the core portion 5 formed by the shell 4 may be filled with the core material 6, the shell 4 may be expanded, and the newly formed core portion 5 by the expanded shell 4 may be filled with the core material 6. By dividing the formation of the shell 4 into multiple steps in this way, it is possible to fill every corner of the core portion 5 with the core material 6 by filling it in stages, especially when the core portion 5 has a complex shape (e.g., narrow, thin, thin, etc.).
そして、コア部5に充填されたコア材6の上面にシェル材2が残存している状態、すなわち、図2(b)に示すように、シェル材2の未硬化領域2aからなる層が形成されている状態で、コア材充填工程を終える。なお、上記シェル造形工程およびコア材充填工程は、通常室温(例えば、20℃~30℃)環境下にて実施可能となっている。
Then, the core material filling process is completed when the shell material 2 remains on the top surface of the core material 6 filled in the core portion 5, that is, when a layer consisting of the unhardened area 2a of the shell material 2 is formed as shown in FIG. 2(b). Note that the above shell molding process and core material filling process can be carried out in a normal room temperature (e.g., 20°C to 30°C) environment.
また、シェル材2の未硬化領域2aの大きさ(体積)は、コア部5に充填されるコア材6の量に応じて調整される。例えば、コア部5に充填されるコア材6の量が多くなるにつれて、コア材硬化工程時にコア材6から発生するガスの量が増える傾向がある。そのため、コア材6から発生したガスがシェル材2の未硬化領域2aに確実に排除できるようにするために、コア部5に充填されるコア材6の量が多くなるにつれて、シェル材2の未硬化領域2aの大きさ(体積)も大きくなるように調整される。したがって、シェル4によって形成されるコア部5は、充填されるコア材6の量と、コア材6から発生するガスを排除するために必要となるシェル材2の未硬化領域2aの大きさとが考慮された形状となっている。
The size (volume) of the unhardened region 2a of the shell material 2 is adjusted according to the amount of core material 6 filled in the core portion 5. For example, as the amount of core material 6 filled in the core portion 5 increases, the amount of gas generated from the core material 6 during the core material hardening process tends to increase. Therefore, in order to ensure that the gas generated from the core material 6 is removed into the unhardened region 2a of the shell material 2, the size (volume) of the unhardened region 2a of the shell material 2 is adjusted to increase as the amount of core material 6 filled in the core portion 5 increases. Therefore, the core portion 5 formed by the shell 4 has a shape that takes into consideration the amount of core material 6 filled and the size of the unhardened region 2a of the shell material 2 required to remove the gas generated from the core material 6.
そして、シェル造形工程とコア材充填工程とが完了すると、次に造形槽11内にある造形台15をシェル材2の液面よりも上に上昇させて、コア材6が充填されたシェル4を造形台15から取り外し、次のコア部封止工程に進む。
Once the shell molding process and core material filling process are completed, the molding table 15 in the molding tank 11 is then raised above the liquid level of the shell material 2, and the shell 4 filled with the core material 6 is removed from the molding table 15, and the process proceeds to the next core sealing process.
コア部封止工程は、コア部5に充填されたコア材6の上面にシェル材2の未硬化領域2aを残すようにしてコア部5の開口を封止する工程である。
本実施の形態では、図3(a)に示すように、造形台15から取り出したシェル4を紫外線照射装置20の紫外線照射器21の下に設置する。造形台15から取り出したシェル4は、コア部5にコア材6が充填され、コア材6の上面にシェル材2の未硬化領域2aからなる層を備えている。 The core sealing step is a step of sealing the opening of thecore portion 5 so as to leave an uncured region 2 a of the shell material 2 on the upper surface of the core material 6 filled in the core portion 5 .
3A, theshell 4 removed from the modeling table 15 is placed under the ultraviolet irradiator 21 of the ultraviolet irradiation device 20. The shell 4 removed from the modeling table 15 has the core portion 5 filled with the core material 6 and has a layer made of the uncured region 2a of the shell material 2 on the upper surface of the core material 6.
本実施の形態では、図3(a)に示すように、造形台15から取り出したシェル4を紫外線照射装置20の紫外線照射器21の下に設置する。造形台15から取り出したシェル4は、コア部5にコア材6が充填され、コア材6の上面にシェル材2の未硬化領域2aからなる層を備えている。 The core sealing step is a step of sealing the opening of the
3A, the
そして、紫外線照射器21を用いてシェル材2の未硬化領域2aの上面に紫外線を照射して、図3(b)に示すように、シェル材2の未硬化領域2aの上層部2bのみを硬化させて封止部4aを形成する。硬化させる上層部2bの深さは、紫外線照射器21の紫外線の出力(強度)と照射時間とを調整することにより調整可能となっており、例えば、1mm~2mm程度の深さに調整可能となっている。
Then, ultraviolet light is applied to the top surface of the uncured region 2a of the shell material 2 using an ultraviolet irradiator 21, and as shown in FIG. 3(b), only the upper layer 2b of the uncured region 2a of the shell material 2 is cured to form a sealing portion 4a. The depth of the upper layer 2b to be cured can be adjusted by adjusting the output (intensity) of the ultraviolet light from the ultraviolet irradiator 21 and the irradiation time, and can be adjusted to a depth of, for example, about 1 mm to 2 mm.
紫外線照射装置20を用いてシェル材2の未硬化領域2aの上層部2bのみを硬化させることにより、コア材6の上面にシェル材2の未硬化領域2aを残した状態でコア部5の開口を封止する封止部4aを形成することが可能となっている。
そして、コア部封止工程が完了すると、封止部4aが形成された状態のシェル4を紫外線照射装置20から取り出し、次のコア材硬化工程に進む。 By using anultraviolet irradiation device 20 to harden only the upper layer 2b of the unhardened region 2a of the shell material 2, it is possible to form a sealing portion 4a that seals the opening of the core portion 5 while leaving the unhardened region 2a of the shell material 2 on the upper surface of the core material 6.
Then, when the core sealing step is completed, theshell 4 with the sealing portion 4a formed therein is removed from the ultraviolet irradiating device 20, and the process proceeds to the next core material hardening step.
そして、コア部封止工程が完了すると、封止部4aが形成された状態のシェル4を紫外線照射装置20から取り出し、次のコア材硬化工程に進む。 By using an
Then, when the core sealing step is completed, the
コア材硬化工程では、図4(a)に示すように、コア部5内のコア材6の上面にシェル材2の未硬化領域2aを有し、かつ未硬化領域2aの上面に封止部4aが形成された状態のシェル4を熱硬化手段30に投入して、コア部5内のコア材6を硬化させる熱硬化処理を開始する。
すなわち、シェル4を熱硬化手段30内に載置し、熱硬化手段30内をコア材6の熱硬化温度Tpcよりも高い温度まで上昇させることにより、シェル4及びコア材6を含む造形物全体が加熱されて、コア材6の硬化が開始、進行していく。そこから所定時間経過するとコア材6全体の硬化が完了して、図4(b)に示すように、コア部5に硬化コア材6aが形成される。 In the core material hardening process, as shown in FIG. 4(a), theshell 4 having an unhardened area 2a of the shell material 2 on the upper surface of the core material 6 in the core portion 5 and a sealing portion 4a formed on the upper surface of the unhardened area 2a is placed into a heat hardening means 30, and the heat hardening process for hardening the core material 6 in the core portion 5 is started.
That is, theshell 4 is placed in the heat curing means 30, and the temperature inside the heat curing means 30 is raised to a temperature higher than the heat curing temperature Tpc of the core material 6, whereby the entire shaped object including the shell 4 and the core material 6 is heated, and the hardening of the core material 6 begins and progresses. After a predetermined time has elapsed, the hardening of the entire core material 6 is completed, and a hardened core material 6a is formed in the core portion 5, as shown in FIG. 4(b).
すなわち、シェル4を熱硬化手段30内に載置し、熱硬化手段30内をコア材6の熱硬化温度Tpcよりも高い温度まで上昇させることにより、シェル4及びコア材6を含む造形物全体が加熱されて、コア材6の硬化が開始、進行していく。そこから所定時間経過するとコア材6全体の硬化が完了して、図4(b)に示すように、コア部5に硬化コア材6aが形成される。 In the core material hardening process, as shown in FIG. 4(a), the
That is, the
コア材硬化工程では、液相材料であるコア材6が加熱により硬化していく際に、コア材6中に内在、溶存しているガスが気泡6bとなって生じることがある。
本実施の形態では、熱硬化手段30に投入されるシェル4がコア部5内のコア材6の上面にシェル材2の未硬化領域2aを有しているので、コア材6中に気泡6bが発生したとしても、コア材6中の気泡6bがコア材6からシェル材2の未硬化領域2a内に移動(上昇)し、未硬化領域2aと封止部4aとの境界部分に溜まるようになっている。すなわち、コア材6から気泡6bが排除されるようになっている。 In the core material hardening step, when thecore material 6, which is a liquid phase material, is hardened by heating, gas present and dissolved in the core material 6 may be generated as bubbles 6b.
In this embodiment, theshell 4 fed into the heat curing means 30 has the uncured region 2a of the shell material 2 on the upper surface of the core material 6 in the core portion 5, so that even if air bubbles 6b are generated in the core material 6, the air bubbles 6b in the core material 6 move (rise) from the core material 6 into the uncured region 2a of the shell material 2 and accumulate at the boundary between the uncured region 2a and the sealing portion 4a. In other words, the air bubbles 6b are eliminated from the core material 6.
本実施の形態では、熱硬化手段30に投入されるシェル4がコア部5内のコア材6の上面にシェル材2の未硬化領域2aを有しているので、コア材6中に気泡6bが発生したとしても、コア材6中の気泡6bがコア材6からシェル材2の未硬化領域2a内に移動(上昇)し、未硬化領域2aと封止部4aとの境界部分に溜まるようになっている。すなわち、コア材6から気泡6bが排除されるようになっている。 In the core material hardening step, when the
In this embodiment, the
また、コア材硬化工程において、シェル4のガラス転移温度Tgs以上の温度で加熱されて、シェル4が軟らかくなったとしても、シェル材2の未硬化領域2aの上面に、シェル4と一体化された封止部4aが形成されているので、封止部4aによって、シェル4の側壁がコア材6の自重に耐えきれずに変形する現象を抑えることが可能となっている。
In addition, even if the shell 4 is heated to a temperature equal to or higher than the glass transition temperature Tgs of the shell 4 during the core material hardening process and becomes soft, the sealing portion 4a that is integrated with the shell 4 is formed on the upper surface of the unhardened area 2a of the shell material 2, so the sealing portion 4a can prevent the sidewall of the shell 4 from being unable to withstand the weight of the core material 6 and becoming deformed.
なお、コア部5に充填されたコア材6全体を硬化させるためには、本実施の形態のようにコア材6として熱硬化性樹脂を含む材料を使用し、コア材硬化工程では、熱エネルギーを付与することにより、コア材6を熱硬化させることが好ましい。
In order to harden the entire core material 6 filled in the core portion 5, it is preferable to use a material containing a thermosetting resin as the core material 6 as in this embodiment, and to thermally harden the core material 6 by applying thermal energy in the core material hardening process.
コア材硬化工程が完了した後、熱硬化手段30内からシェル4(コア部5に硬化コア材6aが形成された状態のシェル4)を取り出し、次の分離工程に進む。
After the core material hardening process is completed, the shell 4 (shell 4 with hardened core material 6a formed in the core portion 5) is removed from the heat hardening means 30 and proceeds to the next separation process.
この分離工程は、シェル4の少なくとも一部を硬化コア材6aから分離させる工程である。図5(a)に示すように、例えば、切削工具などの工具31を用いて、不要となる封止部4aやシェル4を硬化コア材6aから分離することによって、図5(b)に示すように、コア部5の形状に倣った形状を有する硬化コア材6aからなる立体造形物1が得られる。
This separation process is a process for separating at least a portion of the shell 4 from the hardened core material 6a. As shown in FIG. 5(a), for example, a tool 31 such as a cutting tool is used to separate the unnecessary sealing portion 4a and shell 4 from the hardened core material 6a, thereby obtaining a three-dimensional object 1 made of the hardened core material 6a having a shape following the shape of the core portion 5, as shown in FIG. 5(b).
なお、図5(b)に示す例では、全てのシェル4が分離されて硬化コア材6aのみからなる立体造形物1が得られているが、これに限らず、シェル4の一部が残され、このシェル4の一部と硬化コア材6aとを合わせたものを立体造形物1と呼んでもよい。
In the example shown in FIG. 5(b), all of the shells 4 are separated to obtain a three-dimensional object 1 consisting only of the hardened core material 6a, but this is not limited thereto. A portion of the shell 4 may be left, and the combination of this portion of the shell 4 and the hardened core material 6a may be called the three-dimensional object 1.
上記実施の形態に係る立体造形方法によれば、図3に例示したコア部封止工程において、コア部5に充填されたコア材6の上面にシェル材2の未硬化領域2aを残すように封止部4aが形成され、封止部4aによりコア部5の開口が封止される。そして、コア部封止工程の後に図4に例示したコア材硬化工程が行われる。
したがって、コア材硬化工程において、加熱されたコア材6からガスが発生した場合に、発生したガスがシェル材2の未硬化領域2aに気泡6bとなって排除されることとなり、硬化コア材6aに気泡6bによる空隙状の欠陥などの成形不良が発生する現象を防止することができる。 According to the three-dimensional object forming method according to the embodiment described above, in the core portion sealing step illustrated in Fig. 3, the sealingportion 4a is formed on the upper surface of the core material 6 filled in the core portion 5 so as to leave the uncured region 2a of the shell material 2, and the opening of the core portion 5 is sealed by the sealing portion 4a. Then, after the core portion sealing step, the core material curing step illustrated in Fig. 4 is performed.
Therefore, if gas is generated from theheated core material 6 during the core material hardening process, the generated gas will be removed from the unhardened region 2a of the shell material 2 as air bubbles 6b, thereby preventing molding defects such as void-like defects in the hardened core material 6a due to the air bubbles 6b.
したがって、コア材硬化工程において、加熱されたコア材6からガスが発生した場合に、発生したガスがシェル材2の未硬化領域2aに気泡6bとなって排除されることとなり、硬化コア材6aに気泡6bによる空隙状の欠陥などの成形不良が発生する現象を防止することができる。 According to the three-dimensional object forming method according to the embodiment described above, in the core portion sealing step illustrated in Fig. 3, the sealing
Therefore, if gas is generated from the
また、熱硬化手段30を用いたコア材硬化工程では、コア部5の開口が封止部4aで封止された状態で加熱が行われる。そのため、熱硬化手段30の内部をコア材6の熱硬化温度Tpcよりも高い温度まで上昇させて、シェル4が軟らかくなったとしても、シェル4がコア材6の自重に耐えきれずに変形するのを封止部4aによって抑えることができる。すなわち、封止部4aがシェル4の変形を抑制する作用を示し、コア材硬化工程でのコア部5の変形も抑制することができる。
Furthermore, in the core material hardening process using the heat hardening means 30, heating is performed with the opening of the core portion 5 sealed by the sealing portion 4a. Therefore, even if the temperature inside the heat hardening means 30 is raised to a temperature higher than the heat hardening temperature Tpc of the core material 6 and the shell 4 becomes soft, the sealing portion 4a can prevent the shell 4 from being unable to withstand the weight of the core material 6 and becoming deformed. In other words, the sealing portion 4a acts to suppress deformation of the shell 4, and can also suppress deformation of the core portion 5 during the core material hardening process.
また上記実施の形態に係る立体造形方法によれば、コア部封止工程において、コア部5内のシェル材2の未硬化領域2aの上面に紫外線を照射して未硬化領域2aの上層部2bのみを硬化させるので、コア部5内のコア材6の上面に未硬化領域2aを残しつつその上面に封止部4aを形成する工程を効率良く行うことができる。
また、コア材6が熱硬化性樹脂を含んで構成されているので、図2に例示したコア材充填工程を常温、常圧環境下で容易に行うことができ、また、コア材硬化工程において、コア材6全体を一体化させた状態に効率良く硬化させることができる。 Furthermore, according to the three-dimensional modeling method of the above embodiment, in the core portion sealing process, ultraviolet light is irradiated onto the upper surface of theuncured region 2a of the shell material 2 within the core portion 5 to harden only the upper layer 2b of the uncured region 2a, so that the process of forming the sealing portion 4a on the upper surface of the core material 6 within the core portion 5 while leaving the uncured region 2a on its upper surface can be performed efficiently.
Furthermore, since thecore material 6 is composed of a thermosetting resin, the core material filling process illustrated in FIG. 2 can be easily carried out under normal temperature and pressure conditions, and in the core material hardening process, the entire core material 6 can be efficiently hardened into an integrated state.
また、コア材6が熱硬化性樹脂を含んで構成されているので、図2に例示したコア材充填工程を常温、常圧環境下で容易に行うことができ、また、コア材硬化工程において、コア材6全体を一体化させた状態に効率良く硬化させることができる。 Furthermore, according to the three-dimensional modeling method of the above embodiment, in the core portion sealing process, ultraviolet light is irradiated onto the upper surface of the
Furthermore, since the
また上記実施の形態に係る立体造形方法によれば、コア部5内のシェル材2の未硬化領域2aの大きさ(体積)が、コア部5に充填されるコア材6の量に応じて調整されるので、コア材硬化工程においてコア材6から発生するガスをシェル材2の未硬化領域2aに、より確実に排除することができる。
Furthermore, according to the three-dimensional modeling method of the above embodiment, the size (volume) of the unhardened area 2a of the shell material 2 in the core portion 5 is adjusted according to the amount of core material 6 filled in the core portion 5, so that gas generated from the core material 6 during the core material hardening process can be more reliably expelled into the unhardened area 2a of the shell material 2.
また上記実施の形態に係る立体造形方法によれば、コア材硬化工程の後に分離工程を備えているので、コア材6から生じるガスによる空隙状の欠陥などの成形不良がなく、かつ変形が抑制された、硬化コア材6aを主とする立体造形物1を得ることができる。
また上記実施の形態に係る立体造形方法を用いて立体造形物1を製造することにより、硬化コア材6aを主とする立体造形物1の寸法形状の精度を向上させることができ、また、硬化コア材6aには積層界面が存在しないため、剛性、強度に方向性が無い立体造形物1を造形することが可能となる。 Furthermore, according to the three-dimensional modeling method of the above embodiment, a separation process is provided after the core material hardening process, so that a three-dimensional modeledobject 1 mainly made of hardened core material 6a can be obtained without molding defects such as void-like defects caused by gas generated from the core material 6 and with deformation suppressed.
Furthermore, by manufacturing the three-dimensional object 1 using the three-dimensional modeling method according to the above embodiment, it is possible to improve the accuracy of the dimensions and shape of the three-dimensional object 1 which is mainly made of the hardened core material 6a, and since there is no layer interface in the hardened core material 6a, it is possible to form a three-dimensional object 1 which has no directionality in rigidity or strength.
また上記実施の形態に係る立体造形方法を用いて立体造形物1を製造することにより、硬化コア材6aを主とする立体造形物1の寸法形状の精度を向上させることができ、また、硬化コア材6aには積層界面が存在しないため、剛性、強度に方向性が無い立体造形物1を造形することが可能となる。 Furthermore, according to the three-dimensional modeling method of the above embodiment, a separation process is provided after the core material hardening process, so that a three-dimensional modeled
Furthermore, by manufacturing the three-
なお、上記した実施の形態に係る立体造形方法におけるコア部封止工程は、紫外線照射装置20で実施されているが、別の実施の形態では、例えば、コア材充填工程後、造形槽11内にある造形台15をシェル材2の液面よりも上に上昇させた後、造形台15上のシェル4の上方に紫外線照射器21を配置させて、紫外線照射器21からシェル4の上面に向けて紫外線を照射して、封止部4aを形成する方法を採用してもよい。
In addition, the core sealing step in the three-dimensional modeling method according to the embodiment described above is performed by the ultraviolet irradiation device 20. However, in another embodiment, for example, after the core material filling step, the modeling table 15 in the modeling tank 11 may be raised above the liquid level of the shell material 2, and then an ultraviolet irradiator 21 may be positioned above the shell 4 on the modeling table 15, and ultraviolet light may be irradiated from the ultraviolet irradiator 21 toward the upper surface of the shell 4 to form the sealing portion 4a.
また、上記した実施の形態に係る立体造形方法では、コア部封止工程において、シェル材2の未硬化領域の上層部のみを硬化させることによりコア部5の開口を封止するようになっているが、別の実施の形態では、コア部封止工程において、別途用意していた蓋部材をコア部5の開口に被せることによりコア部5の開口を封止するようにしてもよい。
In addition, in the three-dimensional modeling method according to the embodiment described above, in the core sealing step, the opening of the core part 5 is sealed by hardening only the upper layer of the unhardened area of the shell material 2. However, in another embodiment, in the core sealing step, the opening of the core part 5 may be sealed by covering the opening of the core part 5 with a separately prepared lid member.
また、別の実施の形態では、コア材硬化工程が完了した後、分離工程は行わずに、熱硬化手段30内から取り出したシェル4、すなわち、硬化コア材6aの上面にシェル材2の未硬化領域2aを有し、コア部5の開口が封止されているシェル4を立体造形物として取り扱ってもよい。
In another embodiment, after the core material hardening process is completed, the shell 4 removed from the heat hardening means 30 may be handled as a three-dimensional object without performing the separation process, that is, the shell 4 having the unhardened area 2a of the shell material 2 on the upper surface of the hardened core material 6a and the opening of the core portion 5 sealed.
本発明は、以上の実施の形態に限定されるものではなく、シェル造形工程、コア材充填工程、コア部封止工程、コア部硬化工程、及び分離工程の各工程は、造形物の形状等に応じて種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。
なお、上記実施の形態では、シェル4の造形に用いられるシェル材2が液相材料である場合について説明したが、シェル4の造形は、液相材料を硬化させる方法(液相重合法)に限定されるものではなく、たとえば熱溶解積層方式(Fused Deposition Molding、FDM)等の他の付加製造の方法などが適用されてもよい。 The present invention is not limited to the above embodiments, and each of the steps of the shell forming process, core material filling process, core sealing process, core hardening process, and separation process can be modified in various ways depending on the shape of the molded object, etc., and it goes without saying that these are also included within the scope of the present invention.
In the above embodiment, the case where theshell material 2 used to form the shell 4 is a liquid phase material has been described. However, the method of forming the shell 4 is not limited to the method of hardening a liquid phase material (liquid phase polymerization method), and other additive manufacturing methods such as fused deposition molding (FDM) may also be applied.
なお、上記実施の形態では、シェル4の造形に用いられるシェル材2が液相材料である場合について説明したが、シェル4の造形は、液相材料を硬化させる方法(液相重合法)に限定されるものではなく、たとえば熱溶解積層方式(Fused Deposition Molding、FDM)等の他の付加製造の方法などが適用されてもよい。 The present invention is not limited to the above embodiments, and each of the steps of the shell forming process, core material filling process, core sealing process, core hardening process, and separation process can be modified in various ways depending on the shape of the molded object, etc., and it goes without saying that these are also included within the scope of the present invention.
In the above embodiment, the case where the
本発明は、3Dプリンタなどの付加製造技術の分野において広く適用可能であり、係る分野に本発明を適用することにより、例えば、自動車、航空機、ロボットなどの各種産業機器に用いられる部品、介護用品、スポーツ用品など、特に、軽量且つ高強度が要求される部品、製品の試作のみならず、量産化を実現することが可能となる。
The present invention is widely applicable in the field of additive manufacturing technology such as 3D printers, and by applying the present invention to this field, it will be possible to realize not only prototyping but also mass production of parts and products that require light weight and high strength, such as parts used in various industrial equipment such as automobiles, aircraft, and robots, nursing care products, and sporting goods.
1 立体造形物
2 シェル材
2a 未硬化領域
2b 上層部
3 硬化済み紫外線硬化樹脂層
4、40 シェル
4a 封止部
5、50 コア部
6、60 コア材
6a、60a 硬化コア材
6b、60b 空隙
100 立体造形システム
10 立体造形装置
11 造形槽
12 レーザー光学系
12a 紫外線レーザー光源
12b 走査光学系
12c 紫外線レーザー光
13 コア材供給系
13a コア材タンク
13b ポンプ
13c、13d 配管系
14 ノズル
15 造形台
20 紫外線照射装置
21 紫外線照射器
30 熱硬化手段
31 工具Reference Signs List 1 Three-dimensional object 2 Shell material 2a Uncured region 2b Upper layer 3 Cured ultraviolet curable resin layer 4, 40 Shell 4a Sealing portion 5, 50 Core portion 6, 60 Core material 6a, 60a Cured core material 6b, 60b Gap 100 Three-dimensional modeling system 10 Three-dimensional modeling device 11 Modeling tank 12 Laser optical system 12a Ultraviolet laser light source 12b Scanning optical system 12c Ultraviolet laser light 13 Core material supply system 13a Core material tank 13b Pump 13c, 13d Piping system 14 Nozzle 15 Modeling table 20 Ultraviolet irradiation device 21 Ultraviolet irradiator 30 Thermal curing means 31 Tool
2 シェル材
2a 未硬化領域
2b 上層部
3 硬化済み紫外線硬化樹脂層
4、40 シェル
4a 封止部
5、50 コア部
6、60 コア材
6a、60a 硬化コア材
6b、60b 空隙
100 立体造形システム
10 立体造形装置
11 造形槽
12 レーザー光学系
12a 紫外線レーザー光源
12b 走査光学系
12c 紫外線レーザー光
13 コア材供給系
13a コア材タンク
13b ポンプ
13c、13d 配管系
14 ノズル
15 造形台
20 紫外線照射装置
21 紫外線照射器
30 熱硬化手段
31 工具
Claims (8)
- 立体造形物の外形を規定するシェルをシェル材を用いて造形するシェル造形工程と、
前記シェルの内側面に囲われた部分であるコア部に液相材料であるコア材を充填するコア材充填工程と、
前記コア部内の前記コア材を硬化させるコア材硬化工程と、を含む立体造形方法であって、
前記コア部に充填された前記コア材の上面に前記シェル材の未硬化領域を残すようにして前記コア部の開口を封止するコア部封止工程を含み、
該コア部封止工程の後に前記コア材硬化工程を行うことを特徴とする立体造形方法。 a shell forming process for forming a shell that defines an outer shape of a three-dimensional object using a shell material;
a core material filling step of filling a core portion, which is a portion surrounded by an inner surface of the shell, with a core material, which is a liquid phase material;
and hardening the core material in the core portion,
a core portion sealing step of sealing an opening of the core portion while leaving an uncured region of the shell material on an upper surface of the core material filled in the core portion;
the core material hardening step is carried out after the core sealing step. - 前記コア部封止工程が、
前記シェル材の未硬化領域の上層部のみを硬化させることにより前記コア部の開口を封止することを特徴とする請求項1記載の立体造形方法。 The core sealing step includes:
2. The method for fabricating a three-dimensional object according to claim 1, wherein the opening of the core portion is sealed by curing only an upper layer portion of the uncured region of the shell material. - 前記シェル材が、活性エネルギー線の照射により硬化する樹脂を含み、
前記コア部封止工程では、前記シェル材の未硬化領域の上面に前記活性エネルギー線を照射して前記シェル材の未硬化領域の前記上層部のみを硬化させ、
前記コア材が、熱硬化性樹脂を含み、
前記コア材硬化工程では、前記コア材に熱エネルギーを付与して前記コア材を熱硬化させることを特徴とする請求項2記載の立体造形方法。 the shell material contains a resin that is cured by irradiation with active energy rays,
In the core sealing step, the active energy rays are irradiated onto an upper surface of the uncured region of the shell material to cure only the upper layer portion of the uncured region of the shell material,
the core material comprises a thermosetting resin;
3. The three-dimensional object fabrication method according to claim 2, wherein in the core material hardening step, thermal energy is applied to the core material to thermally harden the core material. - 前記シェル材の未硬化領域の大きさが、前記コア部に充填される前記コア材の量に応じて調整されることを特徴とする請求項1~3のいずれかの項に記載の立体造形方法。 The three-dimensional modeling method according to any one of claims 1 to 3, characterized in that the size of the unhardened area of the shell material is adjusted according to the amount of the core material filled in the core portion.
- 前記コア材硬化工程の後に、
前記シェルの少なくとも一部を硬化後の前記コア材から分離させ、前記コア部の形状に倣った形状を有し、主として前記コア材からなる立体造形物を得る分離工程を備えていることを特徴とする請求項1~3のいずれかの項に記載の立体造形方法。 After the core material hardening step,
The method for three-dimensional object fabrication according to any one of claims 1 to 3, further comprising a separation step of separating at least a part of the shell from the hardened core material to obtain a three-dimensional object having a shape following a shape of the core portion and consisting mainly of the core material. - 請求項5記載の立体造形方法を用いて立体造形物を製造することを特徴とする立体造形物の製造方法。 A method for manufacturing a three-dimensional object, comprising the steps of: Manufacturing a three-dimensional object using the three-dimensional modeling method according to claim 5.
- 外殻層を形成するシェルと、該シェルの内側面に囲われた部分であるコア部に硬化コア材とを有する構造を備えた立体造形物であって、
前記シェルがシェル材を硬化させたものであり、
前記硬化コア材の上面に前記シェル材の未硬化領域を有し、
前記コア部の開口が封止されていることを特徴とする立体造形物。 A three-dimensional object having a structure including a shell forming an outer shell layer and a hardened core material in a core portion surrounded by an inner surface of the shell,
The shell is formed by hardening a shell material,
an uncured region of the shell material on an upper surface of the cured core material;
A three-dimensional object, wherein the opening of the core portion is sealed. - 前記コア部の開口が前記シェルで封止されていることを特徴とする請求項7記載の立体造形物。 The three-dimensional object according to claim 7, characterized in that the opening of the core portion is sealed with the shell.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023023863A JP2024117651A (en) | 2023-02-17 | 2023-02-17 | Three-dimensional molding method, method for producing three-dimensional molded article, and three-dimensional molded article |
JP2023-023863 | 2023-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024172041A1 true WO2024172041A1 (en) | 2024-08-22 |
Family
ID=92420119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/004885 WO2024172041A1 (en) | 2023-02-17 | 2024-02-13 | Three-dimensional modeling method, method for manufacturing three-dimensional model, and three-dimensional model |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024117651A (en) |
WO (1) | WO2024172041A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB460239A (en) * | 1934-07-24 | 1937-01-25 | Du Pont | Improvements in or relating to the production of cast synthetic resins |
JP2001062929A (en) * | 1999-08-30 | 2001-03-13 | Suzuki Motor Corp | Three-dimensional matter fabricating method |
WO2017038985A1 (en) * | 2015-09-04 | 2017-03-09 | Jsr株式会社 | Method for manufacturing three-dimensional modeled object and nozzle movement path data creation method used in same, and device for manufacturing three-dimensional modeled object and nozzle movement path data creation program used in same |
JP2019136923A (en) * | 2018-02-09 | 2019-08-22 | 東レエンジニアリング株式会社 | Three dimensional modeling method |
JP2021505432A (en) * | 2017-12-06 | 2021-02-18 | マッシビット スリーディー プリンティング テクノロジーズ リミテッド | Manufacture of 3D objects with complex shapes |
JP2023018936A (en) * | 2021-07-28 | 2023-02-09 | 東レエンジニアリング株式会社 | Stereo lithography method, method for manufacturing stereoscopic objects, program, and stereoscopic modeling device |
-
2023
- 2023-02-17 JP JP2023023863A patent/JP2024117651A/en active Pending
-
2024
- 2024-02-13 WO PCT/JP2024/004885 patent/WO2024172041A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB460239A (en) * | 1934-07-24 | 1937-01-25 | Du Pont | Improvements in or relating to the production of cast synthetic resins |
JP2001062929A (en) * | 1999-08-30 | 2001-03-13 | Suzuki Motor Corp | Three-dimensional matter fabricating method |
WO2017038985A1 (en) * | 2015-09-04 | 2017-03-09 | Jsr株式会社 | Method for manufacturing three-dimensional modeled object and nozzle movement path data creation method used in same, and device for manufacturing three-dimensional modeled object and nozzle movement path data creation program used in same |
JP2021505432A (en) * | 2017-12-06 | 2021-02-18 | マッシビット スリーディー プリンティング テクノロジーズ リミテッド | Manufacture of 3D objects with complex shapes |
JP2019136923A (en) * | 2018-02-09 | 2019-08-22 | 東レエンジニアリング株式会社 | Three dimensional modeling method |
JP2023018936A (en) * | 2021-07-28 | 2023-02-09 | 東レエンジニアリング株式会社 | Stereo lithography method, method for manufacturing stereoscopic objects, program, and stereoscopic modeling device |
Also Published As
Publication number | Publication date |
---|---|
JP2024117651A (en) | 2024-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6308421B2 (en) | Manufacturing method of three-dimensional structure | |
EP3750689B1 (en) | Three-dimensional forming method | |
WO2016017155A1 (en) | Method for producing three-dimensionally shaped molded article, and three-dimensionally shaped molded article | |
JP6798269B2 (en) | Resin molding equipment and resin molding method | |
JP6888259B2 (en) | Laminated modeling structure, laminated modeling method and laminated modeling equipment | |
WO2018097157A1 (en) | Three-dimensional molding method | |
JP2023164670A (en) | Method for manufacturing three-dimensional shaped object, three-dimensional shaping apparatus and shaped object | |
WO2024172041A1 (en) | Three-dimensional modeling method, method for manufacturing three-dimensional model, and three-dimensional model | |
JP4739507B2 (en) | 3D modeling equipment | |
JP2024115478A (en) | Three-dimensional molding method and method for producing three-dimensional molded article | |
JP2024101200A (en) | Three-dimensional modeling method, and method of manufacturing three-dimensional modeled object | |
JP2023018936A (en) | Stereo lithography method, method for manufacturing stereoscopic objects, program, and stereoscopic modeling device | |
JP2010052318A (en) | Light shaping method | |
JP2024104679A (en) | Three-dimensional molding method and manufacturing method of three-dimensional object | |
JP2970300B2 (en) | 3D modeling method | |
JP2024117649A (en) | Three-dimensional molding method and three-dimensional molded article | |
JP2024042445A (en) | Three-dimensional modeling method | |
JP2024000737A (en) | Three-dimensional molding method | |
JP7584343B2 (en) | 3D modeling method | |
JP2023137216A (en) | Stereo molding method | |
WO2022209028A1 (en) | Solid shaping method | |
JP2023135436A (en) | Method of molding three-dimensional solid | |
JP2023149574A (en) | Three-dimensional molding method | |
JP7353745B2 (en) | Method for manufacturing three-dimensional objects, three-dimensional printing devices, objects and recording media | |
JP2023145974A (en) | Stereo-lithography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24756883 Country of ref document: EP Kind code of ref document: A1 |