[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024171913A1 - Rosin-based emulsion sizing agent, and paper - Google Patents

Rosin-based emulsion sizing agent, and paper Download PDF

Info

Publication number
WO2024171913A1
WO2024171913A1 PCT/JP2024/004025 JP2024004025W WO2024171913A1 WO 2024171913 A1 WO2024171913 A1 WO 2024171913A1 JP 2024004025 W JP2024004025 W JP 2024004025W WO 2024171913 A1 WO2024171913 A1 WO 2024171913A1
Authority
WO
WIPO (PCT)
Prior art keywords
rosin
sizing agent
paper
component
based emulsion
Prior art date
Application number
PCT/JP2024/004025
Other languages
French (fr)
Japanese (ja)
Inventor
駿 数見
賢至 高木
良 金濱
Original Assignee
荒川化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荒川化学工業株式会社 filed Critical 荒川化学工業株式会社
Publication of WO2024171913A1 publication Critical patent/WO2024171913A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/62Rosin; Derivatives thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents

Definitions

  • the present invention relates to a rosin-based emulsion sizing agent and paper.
  • sizing agents one of these chemicals, an increase in the pH of the papermaking water causes the destruction of emulsion sizing agent particles, significantly inhibiting the dispersion and adhesion of the sizing agent to the pulp fibers and reducing the sizing effect.
  • sizing agents when diluted with industrial water and added to the papermaking system, they are destroyed if exposed to high pH industrial water for long periods of time, which can also cause problems with the addition equipment becoming dirty.
  • a rosin-based emulsion sizing agent is a composition formed by emulsifying rosins in the presence of an emulsifier and water, and is widely used in the manufacture of paperboard and western-style paper due to its good sizing effect and ease of handling. Paper obtained using this sizing agent exhibits good sizing effect due to the emulsion particles fixed to the pulp fibers.
  • the rosins mentioned above are commonly used in the form of so-called fortified rosins obtained by modifying natural rosins such as gum rosin, tall oil rosin, and wood rosin with ⁇ , ⁇ -unsaturated carboxylic acids such as maleic acid, and/or rosin esters obtained by reacting natural rosin with alcohol, due to their excellent sizing effect (Patent Documents 1 and 2).
  • the rosin ester used here as a raw material has the effect of suppressing the elution of resin acids containing carboxyl groups in rosins in the neutral to alkaline region of papermaking pH 6-9.
  • rosin esters have been fully esterified so that no hydroxyl groups remain, but because the resin acids are prone to elution (insufficient resistance to elution), the sizing effect was also insufficient.
  • the objective of the present invention is to provide a rosin-based emulsion sizing agent that has high resistance to leaching and exhibits excellent sizing effect.
  • the present invention relates to the following rosin-based emulsion sizing agent and paper.
  • a rosin-based emulsion sizing agent containing a rosin (A) contains a rosin diester (a1) represented by general formula (1), A rosin-based emulsion sizing agent, in which the area ratio of component (a1) is 1 to 40% as measured by gel permeation chromatography of component (A).
  • X is an alkylene group having 3 to 5 carbon atoms, and R 1 and R 2 each independently represent a skeleton derived from rosin.
  • the rosin-based emulsion sizing agent (hereinafter simply referred to as "sizing agent”) of the present invention contains a diester having a hydroxyl group (OH group), and therefore has high resistance to leaching and exhibits excellent sizing effect.
  • the rosin-based emulsion sizing agent of the present invention contains, as rosin (A) (hereinafter also referred to as (A) component), a rosin diester (a1) (hereinafter also referred to as (a1) component) represented by the general formula (1).
  • a component rosin (A)
  • a1 component rosin diester
  • the resulting sizing agent has high resistance to leaching, so that when the sizing agent is added to a papermaking system in the neutral to alkaline range, it is easily fixed in the paper and has excellent sizing effect.
  • X is an alkylene group having 3 to 5 carbon atoms, and R 1 and R 2 each independently represent a skeleton derived from rosin.
  • the alkylene group having 3 to 5 carbon atoms is classified into a straight-chain alkylene group (for example, -CH 2 CH 2 CH 2 -) and a branched alkylene group (for example, -CH 2 -CH(CH 3 )-CH 2 -).
  • the OH group in formula (1) is not particularly limited as long as it is bonded at a position replacing one hydrogen atom of the alkylene group. Among them, a straight-chain alkylene group having 3 to 5 carbon atoms is preferred.
  • Straight-chain alkylene groups having 3 to 5 carbon atoms include trimethylene, tetramethylene, and pentamethylene groups.
  • trimethylene groups are more preferred, and more specifically, rosin diesters represented by the following general formulas (2-1) and/or (2-2) are particularly preferred.
  • R 1 and R 2 independently represent a skeleton derived from rosin.
  • R 1 and R 2 independently represent a skeleton derived from rosin.
  • the rosin-derived skeleton refers to those represented by the following general formulas (3-1) to (3-3). Each will be explained below.
  • Examples of compounds represented by formula (3-1) include the abietic acid skeleton, neoabietic acid skeleton, palustric acid skeleton, levopimaric acid skeleton, dehydroabietic acid skeleton, dihydroabietic acid skeleton, and tetraabietic acid skeleton.
  • Y represents a CH 2 CH 3 group or a CH ⁇ CH 2 group.
  • the bond indicated by the dashed line means that a carbon-carbon bond may be present there.
  • Examples of compounds represented by formula (3-2) include a pimaric acid skeleton, an isopimaric acid skeleton, and a sandaracopimaric acid skeleton.
  • Z2 represents a CH3 group or a CH2COOH group
  • the bond in the broken line portion means that there may be a carbon-carbon bond therein.
  • Examples of compounds represented by formula (3-3) include the communicable acid skeleton and the dihydroagatoic acid skeleton.
  • the component (a1) also includes those having a skeleton represented by formula (3-4).
  • the bond in the broken line means that there may be a carbon-carbon bond therein.
  • the method for producing the component (a1) can be, for example, by reacting natural rosin with a trihydric alcohol at 200 to 300°C (preferably 250 to 280°C) for 1 to 15 hours (preferably 3 to 8 hours), or by reacting natural rosin with epihalohydrin at 70 to 200°C for 1 to 8 hours.
  • the reaction can be carried out under normal pressure, reduced pressure, or increased pressure.
  • the order of addition of the natural rosin, trihydric alcohol, or epihalohydrin in the reaction is not limited, and they can be added midway.
  • an acid such as paratoluenesulfonic acid
  • a base such as sodium hydroxide, potassium hydroxide, trimethylamine hydrochloride, or triethylamine hydrochloride
  • an antioxidant etc.
  • the reaction may be carried out under a nitrogen stream.
  • the reaction may contain unreacted natural rosin, and may contain rosin monoesters and rosin triesters produced as by-products.
  • unreacted alcohol or epihalohydrin can be removed by atmospheric distillation, reduced pressure distillation, vacuum distillation, separation, liquid chromatography, or the like.
  • Natural rosin is a mixture of resin acids extracted from plants of the pine family, and is classified into gum rosin, wood rosin, and tall oil rosin. Examples of plants of the pine family include masson pine, red pine, black pine, great king pine, loblolly pine, Kessia pine, Merkus pine, slash pine, marsh pine, and Caribbean pine. Natural rosin may be used alone or in combination of two or more types. Furthermore, as the natural rosin, purified rosin purified by a known method (e.g., reduced pressure distillation, reduced pressure distillation, steam distillation, extraction, recrystallization, etc.) may also be used.
  • a known method e.g., reduced pressure distillation, reduced pressure distillation, steam distillation, extraction, recrystallization, etc.
  • trihydric alcohols examples include glycerin, trimethylolethane, trimethylolpropane, and 3-methylpentane-1,3,5-triol. These may be used alone or in combination of two or more.
  • the molar amount of the trihydric alcohol is preferably 0.25 to 0.8 moles, and more preferably 0.4 to 0.6 moles, per mole of natural rosin.
  • epihalohydrin examples include epichlorohydrin and epibromohydrin. These may be used alone or in combination of two or more.
  • the molar amount of epihalohydrin is preferably 0.4 to 0.8 moles, and more preferably 0.5 to 0.7 moles, per mole of natural rosin.
  • the (A) component may further contain rosins (a2) (hereinafter referred to as (a2) component) other than the (a1) component.
  • a2) component examples include the above-mentioned natural rosin (including purified rosin), hydrogenated rosin, disproportionated rosin, reinforced rosin, reinforced rosin ester, and rosin esters not containing the (a1) component (rosin monoester, rosin triester, or mixtures thereof). These may be used alone or in combination of two or more types. Among these, it is preferable to contain reinforced rosin, as this tends to improve the sizing effect.
  • Reinforced rosin is made by adding ⁇ , ⁇ -unsaturated carboxylic acid to natural rosin, and can also be called ⁇ , ⁇ -unsaturated carboxylic acid modified rosin.
  • ⁇ , ⁇ -unsaturated carboxylic acids examples include ⁇ , ⁇ -unsaturated dicarboxylic acids such as maleic acid, maleic anhydride, and fumaric acid; and ⁇ , ⁇ -unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid. These may be used alone or in combination of two or more.
  • the amount of ⁇ , ⁇ -unsaturated carboxylic acid used is usually about 1 to 30 parts by weight per 100 parts by weight of natural rosin.
  • One example of a method for producing reinforced rosin is to mix unmodified rosin and ⁇ , ⁇ -unsaturated carboxylic acid together in a suitable reaction vessel, heat them to melt them, and react them at about 190 to 230°C for about 1 to 3 hours.
  • the sizing agent of the present invention is obtained by adding emulsifier (B) (hereinafter also referred to as component (B)) to component (A) and dispersing it.
  • component (B) emulsifier
  • component (B) for example, those described in JP-A-2017-040021, JP-A-2017-066579, JP-A-2021-155862, JP-A-2022-045340, JP-A-2022-140358, etc. can be used.
  • the content of component (B) is preferably 1 to 20 parts by weight, and more preferably 5 to 10 parts by weight, in terms of solid content, per 100 parts by weight of component (A).
  • a method for dispersing component (A) in component (B) i.e., a method for producing a sizing agent
  • a method for producing a sizing agent either high-pressure emulsification or inversion emulsification can be used.
  • water it is preferable to use water as the dispersion medium, but a mixed solvent of water and an organic solvent may also be used.
  • organic solvents examples include alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, n-octyl alcohol, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, and diacetone alcohol; and ethers such as ethylene glycol monobutyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. These may be used alone or in combination of two or more. When an organic solvent is contained, the content of the organic solvent is preferably less than 10% by weight.
  • component (A) is melted or dissolved in an aromatic solvent such as benzene or toluene, then component (B) is added and mixed with warm water at the same time, and emulsified using a high-pressure emulsifier, after which it can be obtained as is or by distilling off the aromatic solvent.
  • the sizing agent can be obtained by thoroughly kneading components (A) and (B), and then gradually adding warm water dropwise while stirring in a molten state to invert the phase.
  • the solids concentration of the obtained sizing agent is usually 10 to 50% by weight, and it may be diluted with water if necessary.
  • the sizing agent of the present invention can also contain additives such as celluloses, such as carboxymethyl cellulose; water-soluble polymers, such as polyvinyl alcohols, polyacrylamides, and sodium alginate; anti-slip agents, preservatives, rust inhibitors, pH adjusters, defoamers (e.g., silicon-based defoamers), thickeners, fillers, antioxidants, water-resistant agents, film-forming aids, pigments, and dyes.
  • additives such as celluloses, such as carboxymethyl cellulose; water-soluble polymers, such as polyvinyl alcohols, polyacrylamides, and sodium alginate; anti-slip agents, preservatives, rust inhibitors, pH adjusters, defoamers (e.g., silicon-based defoamers), thickeners, fillers, antioxidants, water-resistant agents, film-forming aids, pigments, and dyes.
  • celluloses such as carboxymethyl cellulose
  • water-soluble polymers such
  • the physical properties of the resulting sizing agent are that the rosin diester is 1-40% in terms of the area ratio of component (A) measured by gel permeation chromatography. If the area ratio of component (a1) is less than 1%, component (A) is likely to dissolve in the papermaking system, and if it exceeds 40%, the number of COOH groups in component (A) will decrease, and in either case the sizing effect will tend to be poor. From the same point of view, the area ratio of component (a1) is preferably 3-35%, more preferably 10-35%. The area ratio here is the value obtained from the results of gel permeation chromatography measurement using a solution of rosins (A), the raw material for the sizing agent.
  • the volume average particle diameter of the sizing agent is preferably 0.1 to 1 ⁇ m, and more preferably 0.3 to 0.6 ⁇ m.
  • the volume average particle diameter is a value measured using a particle diameter measuring device using the laser diffraction/scattering method.
  • the sizing agent of the present invention is characterized by its excellent resistance to elution.
  • the resistance to elution was measured by reading the turbidity values of the sizing agent diluted to a specific non-volatile content concentration at its initial pH and at pH 10.5 using a commercially available turbidity meter and pH meter, and the value calculated using the relative turbidity represented by Equation 1 was used.
  • the paper of the present invention is obtained by using the sizing agent of the present invention.
  • Methods for obtaining paper using the sizing agent include internal addition, surface coating, and a combination of these.
  • the sizing agent of the present invention is added to the pulp slurry, and paper is made in the neutral to alkaline range.
  • the amount of the sizing agent of the present invention used is usually 0.05 to 3% by weight based on the solids weight of the pulp.
  • the types of pulp include chemical pulps such as hardwood pulp (LBKP) and softwood pulp (NBKP); mechanical pulps such as groundwood pulp (GP), refiner ground pulp (RGP), and thermomechanical pulp (TMP); and waste paper pulp such as waste corrugated cardboard.
  • LLKP hardwood pulp
  • NNKP softwood pulp
  • mechanical pulps such as groundwood pulp (GP), refiner ground pulp (RGP), and thermomechanical pulp (TMP)
  • waste paper pulp such as waste corrugated cardboard.
  • the pH of the pulp slurry can be adjusted with sulfuric acid, sodium hydroxide, etc.
  • Other additives that can be used include, for example, alkenyl succinic anhydride, alkyl ketene dimer, epichlorohydrin modified fatty acid-polyalkyl polyamine condensates, starches (e.g., cationic starch, oxidized starch, etc.), polyacrylamides (cationic, anionic, amphoteric), polyamide polyamine-epichlorohydrin resin, dicyandiamide-epichlorohydrin resin, styrene-dimethylaminoethyl methacrylate-epichlorohydrin resin, Mannich modified polyacrylamide, acrylamide-dimethylaminoethyl methacrylate copolymer, Hoffman decomposition product of polyacrylamide, etc.
  • Fillers such as talc, clay, kaolin, titanium dioxide, and calcium carbonate may also be added to the pulp
  • the sizing agent of the present invention is diluted to a solid content concentration of 0.01 to 2% by weight to prepare a sizing liquid, which is then coated onto the base paper.
  • the coating method include a size press method, a gate roll method, a bar coater method, a calendar method, and a spray method.
  • the size press method include a two-roll size press coating method and a rod metering size press coating method.
  • the amount of the sizing liquid applied (solid content) is usually 0.001 to 2 g/m 2 , and preferably 0.005 to 0.5 g/m 2 .
  • uncoated paper made of wood cellulose fiber can be used.
  • the pulp constituting the base paper include those mentioned above.
  • the base paper may be one that has been made using the fixing agent and/or additives, or one that has been surface-coated.
  • the paper of the present invention can be used for various products depending on the basis weight.
  • low to medium basis weight papers of 20 to 150 g/ m2 can be used as recording paper such as form paper, PPC paper, thermal recording base paper and pressure-sensitive recording base paper; coated paper such as art paper, cast coated paper and fine coated paper; wrapping paper such as kraft paper and pure white roll paper; and western paper such as notebook paper, book paper, printing paper and newsprint.
  • high basis weight papers of 150 g/ m2 or more can be used as paperboard such as manila cardboard, white cardboard, chipboard, liner and corrugating medium.
  • RI detector Tosoh Corporation, Bryce type double path, double flow method, red LED (wavelength: 630 to 670 nm) Measurement sample: The sample was diluted with the above eluent so that the concentration of rosins was 0.1%.
  • volume average particle size The volume average particle diameter of the sizing agent was measured using a particle size measuring device based on a laser diffraction/scattering method (product name: "LASER DIFFRACTION PARTICLE SIZE ANALYZER SALD-7500 nano", manufactured by Shimadzu Corporation).
  • Relative turbidity is 80% or more.
  • Relative turbidity is 70% or more and less than 80%.
  • Relative turbidity is 60% or more and less than 70%.
  • Relative turbidity is less than 60%.
  • a rosin ester containing rosin diester (a1) having an acid value of 9.7 mg KOH/g, a hydroxyl value of 43.0 mg KOH/g, and a softening point of 94° C.
  • Production Example 1-2 An intermediate was obtained by reacting 200 parts of gum rosin and 400 parts of epichlorohydrin in a 1 L four-neck flask at 80° C. for 4 hours. Next, 110 parts of this intermediate and 80 parts of gum rosin were charged into another 1 L four-neck flask and reacted at 180° C. for 30 minutes to obtain a rosin ester (containing rosin diester (a1)) having an acid value of 0.8 mg KOH/g, a hydroxyl value of 75.0 mg KOH/g and a softening point of 77° C.
  • a rosin ester containing rosin diester (a1)
  • a rosin ester not including rosin diester (a1) having an acid value of 14.2 mg KOH/g, a hydroxyl value of 7.0 mg KOH/g, and a softening point of 104° C.
  • Production Example 2-1 A 1 L four-neck flask was charged with 500 parts of gum rosin and heated to melt at 200° C., after which 35 parts of maleic anhydride was added and maintained for 2 hours to obtain a maleated rosin with an acid value of 229 mg KOH/g and a softening point of 110° C.
  • Production Example 2-2 The same procedure as in Production Example 2-1 was repeated, except that 35 parts of maleic anhydride was replaced with 30 parts of fumaric acid, to obtain a fumarated rosin having an acid value of 210 mgKOH/g and a softening point of 102°C.
  • Production Example 3-1 In a 1L four-neck flask, 25.0 g (18.3 mol%) of itaconic acid, 8.0 g (4.1 mol%) of 2-ethylhexyl acrylate, 10.0 g (5.7 mol%) of cyclohexyl methacrylate, 2.5 g (1.5 mol%) of sodium methallylsulfonate, 52.50 g (70.3 mol%) of acrylamide, 220 g of water, 250 g of isopropyl alcohol, and 0.5 g of 2-mercaptoethanol were charged, and the mixture was heated to 50 ° C. while stirring and bubbling with nitrogen gas.
  • ammonium persulfate APS
  • the mixture was heated to 90 ° C., and the mixture was stirred for 100 minutes, and then 10.1 g of ammonium persulfate (APS) was added and stirred for 60 minutes.
  • APS ammonium persulfate
  • 118.9 g of a 48% aqueous sodium hydroxide solution was added to neutralize unreacted methacrylic acid, and water was added so that the non-volatile content concentration became 25%, followed by cooling to obtain a saponified styrene-methacrylic acid polymer.
  • Example 1 In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, 30 parts of the rosin ester of Production Example 1-1 and 70 parts of the maleic rosin of Production Example 2-1 were charged and melted by heating at 160°C (the area ratio of the rosin diester in the rosins measured by GPC was 7%; the same applies below). 32 parts of component (B-1) (non-volatile content: 8 parts) were gradually added dropwise to the mixture to obtain a W/O emulsion, and hot water was further added to obtain an O/W emulsion.
  • component (B-1) non-volatile content: 8 parts
  • the emulsion was then cooled to obtain a rosin-based emulsion size with a non-volatile content of 50% and a particle size of 0.52 ⁇ m.
  • the volume average particle size of the obtained rosin-based emulsion size is shown in Table 1 (the same applies below).
  • Example 2 Comparative Examples 1 to 2
  • Example 2 Comparative Examples 1 to 2
  • the same procedure as in Example 1 was repeated except that the compositions and parts by weight were changed to those shown in Table 1, to obtain rosin-based emulsion sizing agents each having a solid content of 50%.
  • each sizing agent was added to the pulp slurry so that the amount was 0.1% (solid content equivalent) relative to the pulp, and a papermaking machine was used to make a wet paper.
  • the wet paper was dehydrated using a roll press machine (linear pressure: 25 kg/cm, feed speed: 2 m/min) and dried at 80°C for 2.5 minutes using a rotary dryer.
  • the obtained dried paper was conditioned for 24 hours in a constant temperature and humidity environment (temperature: 23°C, relative humidity: 50%) to obtain a finished paper (test paper) with a basis weight of 75 g/ m2 .
  • the Cobb water absorbency (contact time 1 minute) of each test paper was measured in accordance with JIS-P8140. The results are shown in Table 1. The smaller the Cobb water absorbency value, the better.

Landscapes

  • Paper (AREA)

Abstract

The present invention addresses the problem of providing a rosin-based emulsion sizing agent having high elution resistance and exhibiting an excellent sizing effect. The present invention relates to: a rosin-based emulsion sizing agent containing a rosin compound (A), in which the component (A) comprises a rosin diester (a1) represented by a specific formula and the content ratio of the component (a1) is 1 to 40% in terms of area ratio when measured by subjecting the component (A) to gel permeation chromatography; and paper containing a rosin-based emulsion sizing agent.

Description

ロジン系エマルジョンサイズ剤、紙Rosin-based emulsion sizing agent, paper
 本発明は、ロジン系エマルジョンサイズ剤、紙に関する。 The present invention relates to a rosin-based emulsion sizing agent and paper.
 紙の製造工程においては、(1)安価填料である炭酸カルシウムの利用による抄紙pHの上昇、(2)古紙使用比率のアップ、(3)抄紙排水低減のための抄紙系クローズド化により製紙薬品の効果が発現し難い状況に変化してきている。 In the paper manufacturing process, (1) the use of calcium carbonate, an inexpensive filler, has increased the pH of paper, (2) the ratio of recycled paper used has increased, and (3) the papermaking system has been closed to reduce wastewater from papermaking, making it difficult for papermaking chemicals to be effective.
 その薬品の1つであるサイズ剤についても、抄紙用水pHの上昇はエマルジョンサイズ剤粒子の破壊を引き起こし、パルプ繊維へのサイズ剤の分散・定着を著しく阻害してサイズ効果を低下させる。また、サイズ剤を工業用水にて希釈して抄紙系に添加する際、pHが高い工業用水に長期間晒されると破壊が生じ、添加設備を汚す問題も発生している。 As for sizing agents, one of these chemicals, an increase in the pH of the papermaking water causes the destruction of emulsion sizing agent particles, significantly inhibiting the dispersion and adhesion of the sizing agent to the pulp fibers and reducing the sizing effect. In addition, when sizing agents are diluted with industrial water and added to the papermaking system, they are destroyed if exposed to high pH industrial water for long periods of time, which can also cause problems with the addition equipment becoming dirty.
 そのようなサイズ剤の一例としては、ロジン系エマルジョンサイズ剤がある。ロジン系エマルジョンサイズ剤とは、乳化剤及び水の存在下でロジン類を乳化してなる組成物をいい、良好なサイズ効果や取り扱いの容易さから板紙や洋紙の製造に広く使用されている。当該サイズ剤を用いて得られた紙は、パルプ繊維に定着したエマルジョン粒子に起因して良好なサイズ効果を示す。 One example of such a sizing agent is a rosin-based emulsion sizing agent. A rosin-based emulsion sizing agent is a composition formed by emulsifying rosins in the presence of an emulsifier and water, and is widely used in the manufacture of paperboard and western-style paper due to its good sizing effect and ease of handling. Paper obtained using this sizing agent exhibits good sizing effect due to the emulsion particles fixed to the pulp fibers.
 前記のロジン類としては、優れたサイズ効果を有する点から、ガムロジン、トール油ロジン、ウッドロジン等の天然ロジンを、マレイン酸等のα,β-不飽和カルボン酸で変性した所謂強化ロジン、及び/又は天然ロジンをアルコールで反応させたロジンエステルが汎用されている(特許文献1、2)。 The rosins mentioned above are commonly used in the form of so-called fortified rosins obtained by modifying natural rosins such as gum rosin, tall oil rosin, and wood rosin with α,β-unsaturated carboxylic acids such as maleic acid, and/or rosin esters obtained by reacting natural rosin with alcohol, due to their excellent sizing effect (Patent Documents 1 and 2).
特開2009-287148号公報JP 2009-287148 A 特開2015-105452号公報JP 2015-105452 A
 ここで、原料に用いられるロジンエステルは、抄紙pH6~9の中性からアルカリ領域において、ロジン類中のカルボキシ基を有する樹脂酸の溶出を抑制する効果を有するものである。これまでのロジンエステルとしては水酸基が残存しないように、全てエステル化されたものが使用されていたが、樹脂酸が溶出しやすい(耐溶出性が不十分である)ため、サイズ効果も不十分となっていた。 The rosin ester used here as a raw material has the effect of suppressing the elution of resin acids containing carboxyl groups in rosins in the neutral to alkaline region of papermaking pH 6-9. Up until now, rosin esters have been fully esterified so that no hydroxyl groups remain, but because the resin acids are prone to elution (insufficient resistance to elution), the sizing effect was also insufficient.
 本発明の課題は、高い耐溶出性を有し、優れたサイズ効果を示すロジン系エマルジョンサイズ剤を提供することにある。 The objective of the present invention is to provide a rosin-based emulsion sizing agent that has high resistance to leaching and exhibits excellent sizing effect.
 本発明者らは、鋭意検討することにより、耐溶出性の向上を目的に使用されるロジンエステルとして、ヒドロキシ基(OH基)を有するジエステル体が有効であることを見出し、本発明を完成するに至った。すなわち、本発明は、以下のロジン系エマルジョンサイズ剤、紙に関する。 The inventors conducted extensive research and discovered that a diester having a hydroxy group (OH group) is effective as a rosin ester used to improve resistance to leaching, leading to the completion of the present invention. In other words, the present invention relates to the following rosin-based emulsion sizing agent and paper.
1.ロジン類(A)を含むロジン系エマルジョンサイズ剤であって、
(A)成分が、一般式(1)で表されるロジンジエステル(a1)を含み、
(A)成分のゲル浸透クロマトグラフィーでの測定における面積比率で、(a1)成分が1~40%であるロジン系エマルジョンサイズ剤。
(式(1)において、Xは炭素数3~5のアルキレン基、R、Rは独立してロジン由来の骨格を示す。)
1. A rosin-based emulsion sizing agent containing a rosin (A),
The component (A) contains a rosin diester (a1) represented by general formula (1),
A rosin-based emulsion sizing agent, in which the area ratio of component (a1) is 1 to 40% as measured by gel permeation chromatography of component (A).
(In formula (1), X is an alkylene group having 3 to 5 carbon atoms, and R 1 and R 2 each independently represent a skeleton derived from rosin.)
2.前記サイズ剤が、更に強化ロジンを含む前項1に記載のロジン系エマルジョンサイズ剤。 2. A rosin-based emulsion sizing agent according to paragraph 1 above, further comprising a fortified rosin.
3.前項1又は2に記載のロジン系エマルジョンサイズ剤を含む紙。 3. Paper containing the rosin-based emulsion sizing agent described in paragraph 1 or 2 above.
 本発明に係るロジン系エマルジョンサイズ剤(以下、単に“サイズ剤”ともいう。)によれば、ヒドロキシ基(OH基)を有するジエステル体を含むため、高い耐溶出性を有し、優れたサイズ効果を示す。 The rosin-based emulsion sizing agent (hereinafter simply referred to as "sizing agent") of the present invention contains a diester having a hydroxyl group (OH group), and therefore has high resistance to leaching and exhibits excellent sizing effect.
 本発明のロジン系エマルジョンサイズ剤は、ロジン類(A)(以下、(A)成分ともいう。)として、一般式(1)で表されるロジンジエステル(a1)(以下、(a1)成分ともいう。)を含むものである。(a1)成分を含むことにより、得られたサイズ剤が高い耐溶出性を有するため、中性からアルカリ領域の抄紙系内へサイズ剤を添加した際に、紙中に定着しやすくなり、サイズ効果にも優れたものとなる。 The rosin-based emulsion sizing agent of the present invention contains, as rosin (A) (hereinafter also referred to as (A) component), a rosin diester (a1) (hereinafter also referred to as (a1) component) represented by the general formula (1). By containing the (a1) component, the resulting sizing agent has high resistance to leaching, so that when the sizing agent is added to a papermaking system in the neutral to alkaline range, it is easily fixed in the paper and has excellent sizing effect.
(式(1)において、Xは炭素数3~5のアルキレン基、R、Rは独立してロジン由来の骨格を示す。) (In formula (1), X is an alkylene group having 3 to 5 carbon atoms, and R 1 and R 2 each independently represent a skeleton derived from rosin.)
 式(1)において、炭素数3~5のアルキレン基としては、直鎖型アルキレン基(例えば、-CHCHCH-)、分岐型アルキレン基(例えば、-CH-CH(CH)-CH-)に分類される。式(1)中のOH基は当該アルキレン基の水素原子1つと置換した位置で結合していれば特に限定されない。中でも、炭素数3~5の直鎖型アルキレン基が好ましい。 In formula (1), the alkylene group having 3 to 5 carbon atoms is classified into a straight-chain alkylene group (for example, -CH 2 CH 2 CH 2 -) and a branched alkylene group (for example, -CH 2 -CH(CH 3 )-CH 2 -). The OH group in formula (1) is not particularly limited as long as it is bonded at a position replacing one hydrogen atom of the alkylene group. Among them, a straight-chain alkylene group having 3 to 5 carbon atoms is preferred.
 炭素数3~5の直鎖型アルキレン基としては、トリメチレン基、テトラメチレン基、ペンタメチレン基が挙げられる。中でも、トリメチレン基がより好ましく、詳しくは下記の一般式(2-1)及び/又は(2-2)で表されるロジンジエステルが特に好ましい。 Straight-chain alkylene groups having 3 to 5 carbon atoms include trimethylene, tetramethylene, and pentamethylene groups. Among these, trimethylene groups are more preferred, and more specifically, rosin diesters represented by the following general formulas (2-1) and/or (2-2) are particularly preferred.
(式(2-1)において、R、Rは独立してロジン由来の骨格を示す。) (In formula (2-1), R 1 and R 2 independently represent a skeleton derived from rosin.)
(式(2-2)において、R、Rは独立してロジン由来の骨格を示す。) (In formula (2-2), R 1 and R 2 independently represent a skeleton derived from rosin.)
 式(1)、(2-1)又は(2-2)において、ロジン由来の骨格とは、以下の一般式(3-1)~(3-3)で表されるものを指す。それぞれ説明する。 In formula (1), (2-1) or (2-2), the rosin-derived skeleton refers to those represented by the following general formulas (3-1) to (3-3). Each will be explained below.
 式(3-1)中、破線部の結合は炭素-炭素結合があっても良いことを意味する。 In formula (3-1), the bond in the dashed line indicates that a carbon-carbon bond may also be present.
 式(3-1)で表されるものとしては、例えば、アビエチン酸骨格、ネオアビエチン酸骨格、パラストリン酸骨格、レボピマル酸骨格、デヒドロアビエチン酸骨格、ジヒドロアビエチン酸骨格、テトラアビエチン酸骨格が挙げられる。 Examples of compounds represented by formula (3-1) include the abietic acid skeleton, neoabietic acid skeleton, palustric acid skeleton, levopimaric acid skeleton, dehydroabietic acid skeleton, dihydroabietic acid skeleton, and tetraabietic acid skeleton.
 式(3-2)中、YはCHCH基又はCH=CH基を表す。また、破線部の結合はそこに炭素-炭素結合があっても良いことを意味する。 In formula (3-2), Y represents a CH 2 CH 3 group or a CH═CH 2 group. The bond indicated by the dashed line means that a carbon-carbon bond may be present there.
 式(3-2)で表されるものとしては、例えば、ピマル酸骨格、イソピマル酸骨格、サンダラコピマル酸骨格が挙げられる。 Examples of compounds represented by formula (3-2) include a pimaric acid skeleton, an isopimaric acid skeleton, and a sandaracopimaric acid skeleton.
 式(3-3)中、ZはCH基又はCH=CH基、ZはCH基又はCHCOOH基を表す。また、破線部の結合はそこに炭素-炭素結合があっても良いことを意味する。 In formula (3-3), Z1 represents a CH3 group or a CH= CH2 group, Z2 represents a CH3 group or a CH2COOH group, and the bond in the broken line portion means that there may be a carbon-carbon bond therein.
 式(3-3)で表されるものとしては、例えば、コムン酸骨格、ジヒドロアガト酸骨格が挙げられる。 Examples of compounds represented by formula (3-3) include the communicable acid skeleton and the dihydroagatoic acid skeleton.
 また、本発明においては、式(3-4)で表される骨格を有するものも(a1)成分に含まれる。 In the present invention, the component (a1) also includes those having a skeleton represented by formula (3-4).
式(3-4)中、ZはCH基又はCH=CH基を表す。また、破線部の結合はそこに炭素-炭素結合があっても良いことを意味する。 In formula (3-4), Z3 represents a CH3 group or a CH= CH2 group. The bond in the broken line means that there may be a carbon-carbon bond therein.
 (a1)成分の製造方法としては、例えば、天然ロジンと、3価アルコールとを通常200~300℃(好ましくは250~280℃)で1~15時間(好ましくは3~8時間)反応させる(ことにより得られる。)、又は、天然ロジンとエピハロヒドリンとを通常70~200℃で1~8時間反応させることが挙げられる。また、反応は常圧下、減圧下及び加圧下のいずれかで行うこともできる。また、反応において、天然ロジン、3価アルコール又はエピハロヒドリンの添加順序は限定されず、途中で追加することもできる。さらに、反応の際には、パラトルエンスルホン酸等の酸;水酸化ナトリウム、水酸化カリウム、トリメチルアミン塩酸塩、トリエチルアミン塩酸塩等の塩基;酸化防止剤等を使用しても良い。また、反応は、窒素気流下で行っても良い。また、反応においては、未反応の天然ロジンが含まれても良く、副生物として生成するロジンモノエステル、ロジントリエステルを含んでも良い。反応終了後は、常圧蒸留、減圧蒸留、減圧留去、分液、液体クロマトグラフィーによる分取等により、未反応のアルコール又はエピハロヒドリンを除去することもできる。 The method for producing the component (a1) can be, for example, by reacting natural rosin with a trihydric alcohol at 200 to 300°C (preferably 250 to 280°C) for 1 to 15 hours (preferably 3 to 8 hours), or by reacting natural rosin with epihalohydrin at 70 to 200°C for 1 to 8 hours. The reaction can be carried out under normal pressure, reduced pressure, or increased pressure. The order of addition of the natural rosin, trihydric alcohol, or epihalohydrin in the reaction is not limited, and they can be added midway. In addition, during the reaction, an acid such as paratoluenesulfonic acid; a base such as sodium hydroxide, potassium hydroxide, trimethylamine hydrochloride, or triethylamine hydrochloride; an antioxidant, etc. may be used. The reaction may be carried out under a nitrogen stream. The reaction may contain unreacted natural rosin, and may contain rosin monoesters and rosin triesters produced as by-products. After the reaction is complete, unreacted alcohol or epihalohydrin can be removed by atmospheric distillation, reduced pressure distillation, vacuum distillation, separation, liquid chromatography, or the like.
 天然ロジンとは、マツ科植物から採取される樹脂酸の混合物であり、ガムロジン、ウッドロジン、トール油ロジンに分類される。マツ科植物としては、例えば、馬尾松、赤松、黒松、大王松、テーダ松、ケシア松、メルクシ松、スラッシュ松、湿地松、カリビア松等が挙げられる。天然ロジンは単独でも2種以上を併用しても良い。また、前記天然ロジンとしては、公知の方法(例えば、減圧留去法、減圧蒸留法、水蒸気蒸留法、抽出法、再結晶法等)で精製した精製ロジンも使用しても良い。 Natural rosin is a mixture of resin acids extracted from plants of the pine family, and is classified into gum rosin, wood rosin, and tall oil rosin. Examples of plants of the pine family include masson pine, red pine, black pine, great king pine, loblolly pine, Kessia pine, Merkus pine, slash pine, marsh pine, and Caribbean pine. Natural rosin may be used alone or in combination of two or more types. Furthermore, as the natural rosin, purified rosin purified by a known method (e.g., reduced pressure distillation, reduced pressure distillation, steam distillation, extraction, recrystallization, etc.) may also be used.
 3価アルコールとしては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン及び3-メチルペンタン-1,3,5-トリオール等が挙げられる。これらは単独でも2種以上を組み合わせても良い。3価アルコールのモル量としては、天然ロジン1モルに対して、好ましくは0.25~0.8モルであり、より好ましくは0.4~0.6モルである。 Examples of trihydric alcohols include glycerin, trimethylolethane, trimethylolpropane, and 3-methylpentane-1,3,5-triol. These may be used alone or in combination of two or more. The molar amount of the trihydric alcohol is preferably 0.25 to 0.8 moles, and more preferably 0.4 to 0.6 moles, per mole of natural rosin.
 エピハロヒドリンとしては、例えば、エピクロロヒドリン、エピブロモヒドリン等が挙げられる。これらは単独でも2種以上を組み合わせても良い。エピハロヒドリンのモル量としては、天然ロジン1モルに対して、好ましくは0.4~0.8モルであり、より好ましくは0.5~0.7モルである。 Examples of epihalohydrin include epichlorohydrin and epibromohydrin. These may be used alone or in combination of two or more. The molar amount of epihalohydrin is preferably 0.4 to 0.8 moles, and more preferably 0.5 to 0.7 moles, per mole of natural rosin.
 (A)成分としては、さらに(a1)成分以外のロジン類(a2)(以下、(a2)成分という。)を含んでも良い。(a2)成分としては、例えば、前述の天然ロジン(精製ロジンを含む)、水素化ロジン、不均化ロジン、強化ロジン、強化ロジンエステル、(a1)成分を含まないロジンエステル(ロジンモノエステル、ロジントリエステル又はこれらの混合物)等が挙げられる。これらは単独でも2種以上を組み合わせても良い。中でも、サイズ効果が向上しやすい点から、強化ロジンを含むことが好ましい。 The (A) component may further contain rosins (a2) (hereinafter referred to as (a2) component) other than the (a1) component. Examples of the (a2) component include the above-mentioned natural rosin (including purified rosin), hydrogenated rosin, disproportionated rosin, reinforced rosin, reinforced rosin ester, and rosin esters not containing the (a1) component (rosin monoester, rosin triester, or mixtures thereof). These may be used alone or in combination of two or more types. Among these, it is preferable to contain reinforced rosin, as this tends to improve the sizing effect.
 強化ロジンとは、天然ロジン及びに、α,β-不飽和カルボン酸を付加反応させたものであり、α,β-不飽和カルボン酸変性ロジンと言い換えることもできる。 Reinforced rosin is made by adding α,β-unsaturated carboxylic acid to natural rosin, and can also be called α,β-unsaturated carboxylic acid modified rosin.
 α,β-不飽和カルボン酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸等のα,β-不飽和ジカルボン酸;アクリル酸、メタクリル酸等のα,β-不飽和モノカルボン酸等が挙げられる。これらは単独でも2種以上を組み合わせても良い。α,β-不飽和カルボン酸の使用量としては、天然ロジン100重量部に対して通常1~30重量部程度である。 Examples of α,β-unsaturated carboxylic acids include α,β-unsaturated dicarboxylic acids such as maleic acid, maleic anhydride, and fumaric acid; and α,β-unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid. These may be used alone or in combination of two or more. The amount of α,β-unsaturated carboxylic acid used is usually about 1 to 30 parts by weight per 100 parts by weight of natural rosin.
 強化ロジンの製造方法としては、例えば、適当な反応容器内で未変性ロジン及びα,β-不飽和カルボン酸を一括混合後、加熱溶融し、190~230℃程度で1~3時間程度反応させる方法等が挙げられる。 One example of a method for producing reinforced rosin is to mix unmodified rosin and α,β-unsaturated carboxylic acid together in a suitable reaction vessel, heat them to melt them, and react them at about 190 to 230°C for about 1 to 3 hours.
 本発明のサイズ剤は、(A)成分に、乳化剤(B)(以下、(B)成分ともいう。)を添加して分散させることにより得られる。 The sizing agent of the present invention is obtained by adding emulsifier (B) (hereinafter also referred to as component (B)) to component (A) and dispersing it.
 (B)成分としては、例えば、特開2017-040021号、特開2017-066579号、特開2021-155862号、特開2022-045340号、特開2022-140358号等に記載されたものを使用できる。 As component (B), for example, those described in JP-A-2017-040021, JP-A-2017-066579, JP-A-2021-155862, JP-A-2022-045340, JP-A-2022-140358, etc. can be used.
 (B)成分の含有量としては、(A)成分100重量部に対して、固形分重量で、1~20重量部が好ましく、5~10重量部がより好ましい。 The content of component (B) is preferably 1 to 20 parts by weight, and more preferably 5 to 10 parts by weight, in terms of solid content, per 100 parts by weight of component (A).
 (A)成分を(B)成分で分散させる方法、すなわちサイズ剤を製造する方法としては、高圧乳化法、反転乳化法のいずれも採用することができる。なお、分散媒としては、環境負荷を低減する点から、水を用いることが好ましいが、水と有機溶媒との混合溶媒を用いても良い。 As a method for dispersing component (A) in component (B), i.e., a method for producing a sizing agent, either high-pressure emulsification or inversion emulsification can be used. Note that, from the viewpoint of reducing the environmental load, it is preferable to use water as the dispersion medium, but a mixed solvent of water and an organic solvent may also be used.
 有機溶媒としては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、n-オクチルアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ジアセトンアルコール等のアルコール;エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のエーテル等が挙げられる。これらは単独でも2種以上を組み合わせても良い。なお、有機溶媒を含有する場合、有機溶媒の含有量としては、10重量%未満が好ましい。 Examples of organic solvents include alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, n-octyl alcohol, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, and diacetone alcohol; and ethers such as ethylene glycol monobutyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. These may be used alone or in combination of two or more. When an organic solvent is contained, the content of the organic solvent is preferably less than 10% by weight.
 高圧乳化法による場合は、(A)成分を溶融させるか、あるいはベンゼン、トルエン等の芳香族系溶媒に溶解させ、次いで(B)成分を加えると同時に温水を混合し、高圧乳化機を使用して乳化した後、そのままで、あるいは芳香族系溶媒を留去することにより得ることができる。また、反転乳化法による場合は、(A)成分と(B)成分とを充分混練した後に溶融下、撹拌しながら徐々に温水を滴下し、相反転させることにより得ることができる。得られたサイズ剤の固形分濃度は、通常は10~50重量%であり、必要に応じて、水で稀釈しても良い。 In the case of the high-pressure emulsification method, component (A) is melted or dissolved in an aromatic solvent such as benzene or toluene, then component (B) is added and mixed with warm water at the same time, and emulsified using a high-pressure emulsifier, after which it can be obtained as is or by distilling off the aromatic solvent. In the case of the inversion emulsification method, the sizing agent can be obtained by thoroughly kneading components (A) and (B), and then gradually adding warm water dropwise while stirring in a molten state to invert the phase. The solids concentration of the obtained sizing agent is usually 10 to 50% by weight, and it may be diluted with water if necessary.
 また、本発明のサイズ剤には、例えば、カルボキシメチルセルロース等のセルロース類;ポリビニルアルコール類、ポリアクリルアミド類、アルギン酸ソーダ等の水溶性高分子;防滑剤、防腐剤、防錆剤、pH調整剤、消泡剤(シリコン系消泡剤等)、増粘剤、充填剤、酸化防止剤、耐水化剤、造膜助剤、顔料、染料等を添加できる。 The sizing agent of the present invention can also contain additives such as celluloses, such as carboxymethyl cellulose; water-soluble polymers, such as polyvinyl alcohols, polyacrylamides, and sodium alginate; anti-slip agents, preservatives, rust inhibitors, pH adjusters, defoamers (e.g., silicon-based defoamers), thickeners, fillers, antioxidants, water-resistant agents, film-forming aids, pigments, and dyes.
 得られたサイズ剤の物性としては、(A)成分のゲル浸透クロマトグラフィーでの測定における面積比率で、ロジンジエステルが1~40%である。(a1)成分の面積比率が1%未満であると抄紙系内で(A)成分が溶出しやすく、40%を超えると、(A)成分中のCOOH基が少なくなるため、いずれもサイズ効果が劣りやすくなる。また、同様の点から、当該面積比率で、(a1)成分は3~35%が好ましく、10~35%がより好ましい。ここでの面積比率は、サイズ剤の原料であるロジン類(A)の溶液を用いてゲル浸透クロマトグラフィーで測定した結果から得られる値である。 The physical properties of the resulting sizing agent are that the rosin diester is 1-40% in terms of the area ratio of component (A) measured by gel permeation chromatography. If the area ratio of component (a1) is less than 1%, component (A) is likely to dissolve in the papermaking system, and if it exceeds 40%, the number of COOH groups in component (A) will decrease, and in either case the sizing effect will tend to be poor. From the same point of view, the area ratio of component (a1) is preferably 3-35%, more preferably 10-35%. The area ratio here is the value obtained from the results of gel permeation chromatography measurement using a solution of rosins (A), the raw material for the sizing agent.
 また、そのほかの物性としては、サイズ剤の体積平均粒子径が、好ましくは0.1~1μm、より好ましくは0.3~0.6μmである。なお、体積平均粒子径は、レーザー回折・散乱法による粒子径測定装置により測定された値である。 As for other physical properties, the volume average particle diameter of the sizing agent is preferably 0.1 to 1 μm, and more preferably 0.3 to 0.6 μm. The volume average particle diameter is a value measured using a particle diameter measuring device using the laser diffraction/scattering method.
 本発明のサイズ剤は、耐溶出性に優れる効果を特徴とし、その耐溶出性については、市販の濁度計及びpHメーターを用いて、特定の不揮発分濃度に希釈したサイズ剤のpHが初期値のとき、及び10.5のときの濁度の値をそれぞれ読み取り、式1で表す相対濁度で算出した値を採用した。
(式1)[サイズ剤の相対濁度(%)]
={(pH10.5のときの濁度の値)/(初期のpHにおける濁度の値)}×100
The sizing agent of the present invention is characterized by its excellent resistance to elution. The resistance to elution was measured by reading the turbidity values of the sizing agent diluted to a specific non-volatile content concentration at its initial pH and at pH 10.5 using a commercially available turbidity meter and pH meter, and the value calculated using the relative turbidity represented by Equation 1 was used.
(Equation 1) [Relative turbidity of sizing agent (%)]
= {(Turbidity value at pH 10.5)/(Turbidity value at initial pH)} × 100
 相対濁度の値が高いほど、サイズ剤が溶出しやすい中性からアルカリ領域で耐溶出性に優れていることを表し、そのような耐溶出性を示すことにより、当該領域での抄紙系において、優れたサイズ効果を示していると推測する。 The higher the relative turbidity value, the better the resistance to leaching in the neutral to alkaline range where the sizing agent is more likely to dissolve. It is presumed that such resistance to leaching indicates excellent sizing effect in papermaking systems in that range.
 本発明の紙は、本発明のサイズ剤を用いて得られる。当該サイズ剤を用いて紙を得る方法としては、内部添加(内添)、表面塗工、及びこれらの組み合わせが挙げられる。 The paper of the present invention is obtained by using the sizing agent of the present invention. Methods for obtaining paper using the sizing agent include internal addition, surface coating, and a combination of these.
 内部添加(内添)においては、本発明のサイズ剤をパルプスラリーに添加し、中性からアルカリの領域で抄紙する。また、本発明のサイズ剤の使用量は、通常、パルプの固形分重量に対して0.05~3重量%である。また、パルプの種類としては、広葉樹パルプ(LBKP)、針葉樹パルプ(NBKP)等の化学パルプ;砕木パルプ(GP)、リファイナーグランドパルプ(RGP)、サーモメカニカルパルプ(TMP)等の機械パルプ;段ボール古紙等の古紙パルプ等が挙げられる。また、内添サイジングの際には、定着剤として、硫酸アルミニウム及び/又は水酸化アルミニウムを添加することが好ましい。また、パルプスラリーのpHは、硫酸や水酸化ナトリウム等によって調節できる。また、他の添加剤として、例えば、アルケニル無水コハク酸、アルキルケテンダイマー、脂肪酸-ポリアルキルポリアミン縮合物のエピクロロヒドリン変性物、澱粉類(例えば、カチオン化澱粉、酸化澱粉等)、ポリアクリルアミド(カチオン性、アニオン性、両性)、ポリアミドポリアミン-エピクロロヒドリン樹脂、ジシアンジアミド-エピクロロヒドリン樹脂、スチレン-ジメチルアミノエチルメタクリレート-エピクロロヒドリン樹脂、ポリアクリルアミドのマンニッヒ変性物、アクリルアミド-ジメチルアミノエチルメタクリレート共重合体、ポリアクリルアミドのホフマン分解物等を併用できる。また、パルプスラリーには、タルク、クレー、カオリン、二酸化チタン及び炭酸カルシウム等の填料を添加しても良い。 In the case of internal addition (internal addition), the sizing agent of the present invention is added to the pulp slurry, and paper is made in the neutral to alkaline range. The amount of the sizing agent of the present invention used is usually 0.05 to 3% by weight based on the solids weight of the pulp. The types of pulp include chemical pulps such as hardwood pulp (LBKP) and softwood pulp (NBKP); mechanical pulps such as groundwood pulp (GP), refiner ground pulp (RGP), and thermomechanical pulp (TMP); and waste paper pulp such as waste corrugated cardboard. In the case of internal addition sizing, it is preferable to add aluminum sulfate and/or aluminum hydroxide as a fixing agent. The pH of the pulp slurry can be adjusted with sulfuric acid, sodium hydroxide, etc. Other additives that can be used include, for example, alkenyl succinic anhydride, alkyl ketene dimer, epichlorohydrin modified fatty acid-polyalkyl polyamine condensates, starches (e.g., cationic starch, oxidized starch, etc.), polyacrylamides (cationic, anionic, amphoteric), polyamide polyamine-epichlorohydrin resin, dicyandiamide-epichlorohydrin resin, styrene-dimethylaminoethyl methacrylate-epichlorohydrin resin, Mannich modified polyacrylamide, acrylamide-dimethylaminoethyl methacrylate copolymer, Hoffman decomposition product of polyacrylamide, etc. Fillers such as talc, clay, kaolin, titanium dioxide, and calcium carbonate may also be added to the pulp slurry.
 表面塗工においては、本発明のサイズ剤を固形分濃度で0.01~2重量%に希釈してサイズ液となし、原紙に塗工する。塗工方法としては、例えば、サイズプレス法、ゲートロール法、バーコーター法、カレンダー法、スプレー法等が挙げられる。また、サイズプレス法としては、例えば、2ロールサイズプレス塗工方式やロッドメタリングサイズプレス塗工方式が挙げられる。また、サイズ液の塗布量(固形分)としては、通常、0.001~2g/m、好ましくは0.005~0.5g/mである。また、原紙としては、例えば、木材セルロース繊維を原料とする未塗工の紙を用いることができる。また、原紙を構成するパルプとしては前記したものが挙げられる。また原紙は、前記定着剤及び/又は、添加剤等を用いて抄紙されたものや、表面に塗工されたものを使用しても良い。 In surface coating, the sizing agent of the present invention is diluted to a solid content concentration of 0.01 to 2% by weight to prepare a sizing liquid, which is then coated onto the base paper. Examples of the coating method include a size press method, a gate roll method, a bar coater method, a calendar method, and a spray method. Examples of the size press method include a two-roll size press coating method and a rod metering size press coating method. The amount of the sizing liquid applied (solid content) is usually 0.001 to 2 g/m 2 , and preferably 0.005 to 0.5 g/m 2 . For the base paper, for example, uncoated paper made of wood cellulose fiber can be used. Examples of the pulp constituting the base paper include those mentioned above. The base paper may be one that has been made using the fixing agent and/or additives, or one that has been surface-coated.
 本発明の紙は、坪量に応じて様々な製品に供される。例えば20~150g/mの低~中坪量の成紙は、例えば、フォーム用紙、PPC用紙、感熱記録原紙及び感圧記録原紙等の記録用紙;アート紙、キャストコート紙、上質コート紙等のコート紙;クラフト紙、純白ロール紙等の包装用紙;ノート用紙、書籍用紙、印刷用紙、新聞用紙等の洋紙等として利用できる。また、150g/m以上の高坪量の成紙は、例えば、マニラボール、白ボール、チップボール、ライナー、中芯等の板紙等として利用できる。 The paper of the present invention can be used for various products depending on the basis weight. For example, low to medium basis weight papers of 20 to 150 g/ m2 can be used as recording paper such as form paper, PPC paper, thermal recording base paper and pressure-sensitive recording base paper; coated paper such as art paper, cast coated paper and fine coated paper; wrapping paper such as kraft paper and pure white roll paper; and western paper such as notebook paper, book paper, printing paper and newsprint. Furthermore, high basis weight papers of 150 g/ m2 or more can be used as paperboard such as manila cardboard, white cardboard, chipboard, liner and corrugating medium.
 以下、実施例を挙げて、更に本発明を具体的に説明するが、本発明を限定するものではない。また特段の断りがない限り、「%」、「ppm」はいずれも重量基準である。 The present invention will be explained in more detail below with reference to examples, but is not limited thereto. Unless otherwise specified, "%" and "ppm" are all by weight.
(酸価)
 JIS K 0070に準拠して、ロジンエステル及び強化ロジンの酸価を測定した。
(Acid value)
The acid values of the rosin ester and the fortified rosin were measured in accordance with JIS K 0070.
(水酸基価)
 JIS K 0070に準拠して、ロジンエステル及び強化ロジンの水酸基価を測定した。
(Hydroxyl value)
The hydroxyl values of the rosin ester and the fortified rosin were measured in accordance with JIS K 0070.
(軟化点)
 JIS K 2531の環球法に準拠して、ロジンエステル及び強化ロジンの軟化点を測定した。
(Softening point)
The softening points of the rosin ester and the fortified rosin were measured according to the ring and ball method of JIS K 2531.
(ロジンジエステルの定量)
 各実施例及び比較例のロジン類(A)のゲル浸透クロマトグラフィー(GPC)を測定し、ロジンジエステルに由来するピークの面積比率を読みとった。以下に測定条件を記載する。
(測定条件)
装置:東ソー(株)製 高速GPC装置HLC-8320GPC
カラム:東ソー(株)製  TSKgel guardcolumn HXL-L/G2000HXL×3本/G1000HXL
溶離液:テトラヒドロフラン
流速:1.0mL/分
温度:40℃
RI検出器:東ソー(株)製、ブライス型ダブルパス、ダブルフロー方式、赤色LED(波長:630~670nm)
測定サンプル:ロジン類の濃度が0.1%となるように、上記溶離液で希釈して測定した。
(Quantitative Analysis of Rosin Diester)
The rosins (A) of each of the Examples and Comparative Examples were subjected to gel permeation chromatography (GPC) to measure the area ratio of the peak derived from the rosin diester. The measurement conditions are described below.
(Measurement conditions)
Apparatus: Tosoh Corporation high-speed GPC apparatus HLC-8320GPC
Column: Tosoh Corporation TSKgel guard column HXL-L/G2000HXL x 3/G1000HXL
Eluent: tetrahydrofuran Flow rate: 1.0 mL/min Temperature: 40° C.
RI detector: Tosoh Corporation, Bryce type double path, double flow method, red LED (wavelength: 630 to 670 nm)
Measurement sample: The sample was diluted with the above eluent so that the concentration of rosins was 0.1%.
(体積平均粒子径)
 レーザー回折・散乱法による粒子径測定装置(製品名「LASER DIFFRACTION PARTICLE SIZE ANALYZER SALD-7500nanо」、(株)島津製作所製)を用いてサイズ剤の体積平均粒子径を測定した。
(Volume average particle size)
The volume average particle diameter of the sizing agent was measured using a particle size measuring device based on a laser diffraction/scattering method (product name: "LASER DIFFRACTION PARTICLE SIZE ANALYZER SALD-7500 nano", manufactured by Shimadzu Corporation).
(耐溶出性)
 各サイズ剤をイオン交換水で不揮発分濃度が100ppmになるまで希釈した。この液をスターラーにて300rpmで撹拌しながら、市販の濁度計(装置名:「ANALITE NEP 160」、赤外波長:900nm、McVan Instruments社製、予めホルマジン標準液(400NTU、和光純薬工業(株)製で校正したものを使用)及びハンディ式pHメーター((株)堀場製作所製)で値が安定したときの濁度とpHを読み取った(初期濁度の値:200~300NTU)。不揮発分濃度0.2%の水酸化ナトリウム水溶液を少しずつ滴下し、pHが10.5となったときの濁度の値(単位:NTU)を読み取り、下記の(式1)から測定濁度を算出し、以下の基準により耐溶出性を評価した。
(式1)[サイズ剤の相対濁度(%)]={(pH10.5のときの濁度の値)/(初期のpHのときの濁度の値)}×100
(Elution resistance)
Each sizing agent was diluted with ion-exchanged water until the non-volatile content was 100 ppm. While stirring this liquid at 300 rpm with a stirrer, the turbidity and pH were read when the values stabilized using a commercially available turbidity meter (device name: "ANALITE NEP 160", infrared wavelength: 900 nm, manufactured by McVan Instruments, previously calibrated with a formazin standard solution (400 NTU, manufactured by Wako Pure Chemical Industries, Ltd.) and a handy pH meter (manufactured by Horiba, Ltd.) (initial turbidity value: 200 to 300 NTU). Aqueous sodium hydroxide solution with a non-volatile content concentration of 0.2% was gradually added dropwise, and the turbidity value (unit: NTU) was read when the pH reached 10.5. The measured turbidity was calculated from the following (Equation 1), and the elution resistance was evaluated according to the following criteria.
(Formula 1) [Relative turbidity of sizing agent (%)] = {(Turbidity value at pH 10.5) / (Turbidity value at initial pH)} × 100
(評価基準)
◎:相対濁度が80%以上
〇:相対濁度が70%以上80%未満
△:相対濁度が60%以上70%未満
×:相対濁度が60%未満
(Evaluation Criteria)
◎: Relative turbidity is 80% or more. ◯: Relative turbidity is 70% or more and less than 80%. △: Relative turbidity is 60% or more and less than 70%. ×: Relative turbidity is less than 60%.
製造例1-1
 1L四つ口フラスコに、ガムロジン600部とグリセリン70部(OH/COOH=1.3(モル比))を仕込み、窒素気流下で250℃まで加熱し、さらに260℃で5時間反応させて、酸価9.7mgKOH/g、水酸基価43.0mgKOH/g、軟化点94℃のロジンエステル(ロジンジエステル(a1)を含む)を得た。
Production Example 1-1
A 1 L four-neck flask was charged with 600 parts of gum rosin and 70 parts of glycerin (OH/COOH=1.3 (molar ratio)), heated to 250° C. under a nitrogen stream, and further reacted at 260° C. for 5 hours to obtain a rosin ester (containing rosin diester (a1)) having an acid value of 9.7 mg KOH/g, a hydroxyl value of 43.0 mg KOH/g, and a softening point of 94° C.
製造例1-2
 1L四つ口フラスコに、ガムロジン200部とエピクロロヒドリン400部を80℃で4時間反応させて中間体を得た。次に、別の1L四つ口フラスコに、この中間体110部とガムロジン80部を仕込み、180℃で30分間反応させて、酸価0.8mgKOH/g、水酸基価75.0mgKOH/g、軟化点77℃のロジンエステル(ロジンジエステル(a1)を含む)を得た。
Production Example 1-2
An intermediate was obtained by reacting 200 parts of gum rosin and 400 parts of epichlorohydrin in a 1 L four-neck flask at 80° C. for 4 hours. Next, 110 parts of this intermediate and 80 parts of gum rosin were charged into another 1 L four-neck flask and reacted at 180° C. for 30 minutes to obtain a rosin ester (containing rosin diester (a1)) having an acid value of 0.8 mg KOH/g, a hydroxyl value of 75.0 mg KOH/g and a softening point of 77° C.
製造例1-3
 1L四つ口フラスコに、ガムロジン600部とグリセリン53部(OH/COOH=1.00(モル比))を仕込み、窒素気流下で250℃まで加熱し、さらに280℃で18時間反応させて、酸価14.2mgKOH/g、水酸基価7.0mgKOH/g、軟化点104℃のロジンエステル(ロジンジエステル(a1)を含まない)を得た。
Production Example 1-3
A 1 L four-neck flask was charged with 600 parts of gum rosin and 53 parts of glycerin (OH/COOH=1.00 (molar ratio)), heated to 250° C. under a nitrogen stream, and further reacted at 280° C. for 18 hours to obtain a rosin ester (not including rosin diester (a1)) having an acid value of 14.2 mg KOH/g, a hydroxyl value of 7.0 mg KOH/g, and a softening point of 104° C.
製造例2-1
 1L四つ口フラスコに、ガムロジン500部を仕込み、200℃で加熱溶融させた後、無水マレイン酸35部加えて2時間保持し、酸価が229mgKOH/g、軟化点110℃のマレイン化ロジンを得た。
Production Example 2-1
A 1 L four-neck flask was charged with 500 parts of gum rosin and heated to melt at 200° C., after which 35 parts of maleic anhydride was added and maintained for 2 hours to obtain a maleated rosin with an acid value of 229 mg KOH/g and a softening point of 110° C.
製造例2-2
 製造例2-1において、無水マレイン酸35部をフマル酸30部に変更して同様に行い、酸価が210mgKOH/g、軟化点102℃のフマル化ロジンを得た。
Production Example 2-2
The same procedure as in Production Example 2-1 was repeated, except that 35 parts of maleic anhydride was replaced with 30 parts of fumaric acid, to obtain a fumarated rosin having an acid value of 210 mgKOH/g and a softening point of 102°C.
製造例3-1
 1L四つ口フラスコに、イタコン酸25.0g(18.3モル%)、2-エチルヘキシルアクリレート8.0g(4.1モル%)、シクロヘキシルメタクリレート10.0g(5.7モル%)、メタリルスルホン酸ナトリウム2.5g(1.5モル%)、アクリルアミド52.50g(70.3モル%)、水220g、イソプロピルアルコール250g、及び2-メルカプトエタノール0.5gを仕込み、この混合液を撹拌しながら窒素ガスでバブリングしながら50℃まで昇温させた。次いで、過硫酸アンモニウム(APS)2.2gを加えて80℃まで昇温し、180分間撹拌した。水蒸気を吹き込んでイソプロピルアルコールを留去し、不揮発分濃度が25%となるように水を加えて冷却し、(メタ)アクリルアミド系重合体を得た。
Production Example 3-1
In a 1L four-neck flask, 25.0 g (18.3 mol%) of itaconic acid, 8.0 g (4.1 mol%) of 2-ethylhexyl acrylate, 10.0 g (5.7 mol%) of cyclohexyl methacrylate, 2.5 g (1.5 mol%) of sodium methallylsulfonate, 52.50 g (70.3 mol%) of acrylamide, 220 g of water, 250 g of isopropyl alcohol, and 0.5 g of 2-mercaptoethanol were charged, and the mixture was heated to 50 ° C. while stirring and bubbling with nitrogen gas. Next, 2.2 g of ammonium persulfate (APS) was added, and the mixture was heated to 80 ° C. and stirred for 180 minutes. Steam was blown in to distill off isopropyl alcohol, and water was added so that the non-volatile content concentration was 25%, and the mixture was cooled to obtain a (meth)acrylamide polymer.
製造例3-2
 3L四つ口フラスコに、n-ブチルアクリレート30.5g(5モル%)、n-ブチルメタクリレート33.8g(5モル%)、メチルメタクリレート142.8g(30モル%)、スチレン59.5g(12モル%)、α-メチルスチレン73.1g(13モル%)、メタクリル酸153.5g(30モル%)、及びメタリルスルホン酸ナトリウム37.6g(5モル%)、水1563.6g、及びn-ドデシルメルカプタン8.6g(モノマー成分の総モルに対し0.9モル%)を仕込み、窒素ガスでバブリングしながら撹拌して、80℃まで昇温した。次いで、過硫酸アンモニウム(APS)25.2gを加えて、90℃まで昇温し、100分間撹拌した後、更に過硫酸アンモニウム(APS)10.1gを加えて60分撹拌した。48%水酸化ナトリウム水溶液118.9gを加えて、未反応のメタクリル酸を中和し、不揮発分濃度が25%となるように水を加えて冷却し、スチレン-メタクリル酸系重合体の鹸化物を得た。
Production Example 3-2
In a 3L four-neck flask, 30.5 g (5 mol%) of n-butyl acrylate, 33.8 g (5 mol%) of n-butyl methacrylate, 142.8 g (30 mol%) of methyl methacrylate, 59.5 g (12 mol%) of styrene, 73.1 g (13 mol%) of α-methylstyrene, 153.5 g (30 mol%) of methacrylic acid, and 37.6 g (5 mol%) of sodium methallylsulfonate, 1563.6 g of water, and 8.6 g of n-dodecyl mercaptan (0.9 mol% relative to the total moles of the monomer components) were charged, and the mixture was stirred while bubbling with nitrogen gas and heated to 80 ° C. Then, 25.2 g of ammonium persulfate (APS) was added, the mixture was heated to 90 ° C., and the mixture was stirred for 100 minutes, and then 10.1 g of ammonium persulfate (APS) was added and stirred for 60 minutes. 118.9 g of a 48% aqueous sodium hydroxide solution was added to neutralize unreacted methacrylic acid, and water was added so that the non-volatile content concentration became 25%, followed by cooling to obtain a saponified styrene-methacrylic acid polymer.
実施例1
 撹拌機、温度計、還流冷却器及び窒素ガス導入管を備えた反応容器に、製造例1-1のロジンエステル30部と、製造例2-1のマレイン化ロジン70部とを仕込み、160℃に加熱溶融した(GPC測定による当該ロジン類中のロジンジエステルの面積比率は7%であった。以下同様)。これに(B-1)成分32部(不揮発分:8部)を徐々に滴下して、W/O形態のエマルジョンとし、更に熱水を加えてO/W型エマルジョンとした。その後、このエマルジョンを冷却することにより、不揮発分濃度50%、粒子径0.52μmのロジン系エマルションサイズ剤を得た。得られたロジン系エマルジョンサイズ剤の体積平均粒子径を表1に示す(以下同様)。
Example 1
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, 30 parts of the rosin ester of Production Example 1-1 and 70 parts of the maleic rosin of Production Example 2-1 were charged and melted by heating at 160°C (the area ratio of the rosin diester in the rosins measured by GPC was 7%; the same applies below). 32 parts of component (B-1) (non-volatile content: 8 parts) were gradually added dropwise to the mixture to obtain a W/O emulsion, and hot water was further added to obtain an O/W emulsion. The emulsion was then cooled to obtain a rosin-based emulsion size with a non-volatile content of 50% and a particle size of 0.52 μm. The volume average particle size of the obtained rosin-based emulsion size is shown in Table 1 (the same applies below).
実施例2~11、比較例1~2
 実施例1において、表1に示した組成及び重量部に変更してそれぞれ行い、それぞれ固形分50%のロジン系エマルションサイズ剤を得た。
Examples 2 to 11, Comparative Examples 1 to 2
The same procedure as in Example 1 was repeated except that the compositions and parts by weight were changed to those shown in Table 1, to obtain rosin-based emulsion sizing agents each having a solid content of 50%.
(抄紙評価)
 L-BKPに、パルプ固形分濃度が2%になる量の水道水を加え、ビーターを用いて350mlカナディアン・スタンダード・フリーネスまで叩解した。次いで、得られたパルプスラリーを更に水道水で希釈し、パルプ固形分濃度を1%に調製した。このスラリーに、対パルプ1.5%となる硫酸アルミニウムを添加して、pH7.0のパルプスラリーを調成した。なお、抄紙系のpHは水酸化ナトリウム水溶液で調節した。
 次いで、当該パルプスラリーに、各サイズ剤を、対パルプ0.1%(固形分換算)となるように加え、抄紙機を用いて抄紙し、湿紙を得た。湿紙をロールプレス機(線圧:25kg/cm、送り速度:2m/分)で脱水し、回転式ドライヤーを用いて80℃で2.5分間乾燥させた。得られた乾燥紙を恒温恒湿(温度:23℃、相対湿度:50%)環境下で24時間調湿させて、坪量が75g/mの成紙(試験用紙)をそれじれ得た。
 次いで、各試験用紙について、JIS-P8140に準じてCobb吸水度(接触時間1分)を測定した。結果を表1に示す。なお、Cobb吸水度は値が小さいほど良い。
(Papermaking evaluation)
Tap water was added to the L-BKP in an amount that would result in a pulp solids concentration of 2%, and the mixture was beaten to a Canadian Standard Freeness of 350 ml using a beater. The resulting pulp slurry was then further diluted with tap water to adjust the pulp solids concentration to 1%. Aluminum sulfate was added to this slurry in an amount of 1.5% relative to the pulp, to prepare a pulp slurry with a pH of 7.0. The pH of the papermaking system was adjusted with an aqueous sodium hydroxide solution.
Next, each sizing agent was added to the pulp slurry so that the amount was 0.1% (solid content equivalent) relative to the pulp, and a papermaking machine was used to make a wet paper. The wet paper was dehydrated using a roll press machine (linear pressure: 25 kg/cm, feed speed: 2 m/min) and dried at 80°C for 2.5 minutes using a rotary dryer. The obtained dried paper was conditioned for 24 hours in a constant temperature and humidity environment (temperature: 23°C, relative humidity: 50%) to obtain a finished paper (test paper) with a basis weight of 75 g/ m2 .
Next, the Cobb water absorbency (contact time 1 minute) of each test paper was measured in accordance with JIS-P8140. The results are shown in Table 1. The smaller the Cobb water absorbency value, the better.
*1:乳化剤は、不揮発分重量で8重量部使用した。
*2:F-13-ポリオキシエチレンスチリルフェニルエーテルスルホコハク酸ナトリウム、商品名:「ネオハイテノールF-13」、不揮発分濃度:25%、第一工業製薬(株)製
*1: The emulsifier used was 8 parts by weight in terms of non-volatile matter.
*2: F-13-polyoxyethylene styryl phenyl ether sodium sulfosuccinate, product name: "Neohitenor F-13", non-volatile content: 25%, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.

Claims (3)

  1.  ロジン類(A)を含むロジン系エマルジョンサイズ剤であって、
    (A)成分が、一般式(1)で表されるロジンジエステル(a1)を含み、
    (A)成分のゲル浸透クロマトグラフィーでの測定における面積比率で、(a1)成分が1~40%であるロジン系エマルジョンサイズ剤。
    (式(1)において、Xは炭素数3~5のアルキレン基、R、Rは独立してロジン由来の骨格を示す。)
    A rosin-based emulsion sizing agent containing a rosin (A),
    The component (A) contains a rosin diester (a1) represented by general formula (1),
    A rosin-based emulsion sizing agent, in which the area ratio of component (a1) is 1 to 40% as measured by gel permeation chromatography of component (A).
    (In formula (1), X is an alkylene group having 3 to 5 carbon atoms, and R 1 and R 2 each independently represent a skeleton derived from rosin.)
  2.  前記サイズ剤が、更に強化ロジンを含む請求項1に記載のロジン系エマルジョンサイズ剤。 The rosin-based emulsion sizing agent according to claim 1, further comprising a fortified rosin.
  3.  請求項1又は2に記載のロジン系エマルジョンサイズ剤を含む紙。 Paper containing the rosin-based emulsion sizing agent according to claim 1 or 2.
PCT/JP2024/004025 2023-02-14 2024-02-07 Rosin-based emulsion sizing agent, and paper WO2024171913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023020453 2023-02-14
JP2023-020453 2023-02-14

Publications (1)

Publication Number Publication Date
WO2024171913A1 true WO2024171913A1 (en) 2024-08-22

Family

ID=92421818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/004025 WO2024171913A1 (en) 2023-02-14 2024-02-07 Rosin-based emulsion sizing agent, and paper

Country Status (1)

Country Link
WO (1) WO2024171913A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299498A (en) * 1993-02-10 1994-10-25 Arakawa Chem Ind Co Ltd Rosin-based emulsion sizing agent for neutralized paper and method for sizing neutralized paper
JP2000328482A (en) * 1999-05-20 2000-11-28 Harima Chem Inc Sizing agent for paper making and paper using the same
JP2007056416A (en) * 2005-08-26 2007-03-08 Kindai Kagaku Kogyo Kk Dispersant for rosin emulsion sizing agent
JP2020090767A (en) * 2018-11-22 2020-06-11 東邦化学工業株式会社 Rosin emulsion size agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299498A (en) * 1993-02-10 1994-10-25 Arakawa Chem Ind Co Ltd Rosin-based emulsion sizing agent for neutralized paper and method for sizing neutralized paper
JP2000328482A (en) * 1999-05-20 2000-11-28 Harima Chem Inc Sizing agent for paper making and paper using the same
JP2007056416A (en) * 2005-08-26 2007-03-08 Kindai Kagaku Kogyo Kk Dispersant for rosin emulsion sizing agent
JP2020090767A (en) * 2018-11-22 2020-06-11 東邦化学工業株式会社 Rosin emulsion size agent

Similar Documents

Publication Publication Date Title
FI121811B (en) New dispersions and processes for their preparation
US5393337A (en) Rosin emulsion sizing agent, paper sized therewith and method of sizing using the same
CA1244005A (en) Modified colophony rosins, a process for their preparation, their use and paper-sizing agents containing such modified colophony rosins
JP2844437B2 (en) Sizing method and aqueous sizing dispersion
KR920006423B1 (en) Sizing composition and sizing method
TW201728690A (en) Rosin-based emulsion sizing agent and paper obtained by using the sizing agent
US4842691A (en) Sizing agents in neutral range and sizing methods using the same
CN103306162B (en) Rosin emulsion-type sizing agent, its manufacture method and paper
WO2024171913A1 (en) Rosin-based emulsion sizing agent, and paper
JP3928416B2 (en) Rosin emulsion composition, paper sizing method and paper
JP7547750B2 (en) Rosin-based emulsion sizing agent, paper
KR102123557B1 (en) Glycerol-based polymers for reducing deposition of organic contaminants in papermaking processes
Carter The chemistry of paper preservation: part 4. Alkaline paper
US8709209B2 (en) Anionic lipophilic glycerol-based polymers for organic deposition control in papermaking processes
JP3158585B2 (en) Rosin-based emulsion sizing agent for papermaking and sizing method
JP2002256150A (en) Rosin emulsion composition, sizing method of paper, and paper
JP2022045340A (en) Cationic rosin-based emulsion size agent, paper
CA2892629C (en) Anionic lipophilic glycerol-based polymers for organic deposition control in papermaking processes
JP3266094B2 (en) Rosin-based neutral sizing agent, neutral papermaking sizing method and neutral papermaking sizing paper
JP2908775B2 (en) Neutral sizing agent for papermaking and paper sizing method using the same
JP6268579B2 (en) Rosin emulsion sizing agent
JPH09143895A (en) Sizing auxiliary for paper making, aqueous sizing dispersion for paper making, paper made by using the same and sizing process
JPH10195795A (en) Papermaking and paper produced by papermaking
JPH07189173A (en) Rosin emulsion composition, its production, sizing agent sizing method and sized paper
JP2016188440A (en) Solution rosin size agent and paper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24756761

Country of ref document: EP

Kind code of ref document: A1