WO2024171832A1 - Wireless communication device - Google Patents
Wireless communication device Download PDFInfo
- Publication number
- WO2024171832A1 WO2024171832A1 PCT/JP2024/003341 JP2024003341W WO2024171832A1 WO 2024171832 A1 WO2024171832 A1 WO 2024171832A1 JP 2024003341 W JP2024003341 W JP 2024003341W WO 2024171832 A1 WO2024171832 A1 WO 2024171832A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- wireless communication
- communication device
- frequency
- housing
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 157
- 230000005540 biological transmission Effects 0.000 claims abstract description 43
- 239000005357 flat glass Substances 0.000 claims description 29
- 239000004973 liquid crystal related substance Substances 0.000 claims description 24
- 238000002834 transmittance Methods 0.000 claims description 6
- 230000000007 visual effect Effects 0.000 claims description 5
- 239000000758 substrate Substances 0.000 description 37
- 239000010410 layer Substances 0.000 description 33
- 239000002585 base Substances 0.000 description 32
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 239000010408 film Substances 0.000 description 11
- 239000011521 glass Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 230000003321 amplification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000005404 monopole Effects 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000005297 pyrex Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/08—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
- H01Q3/36—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
Definitions
- This disclosure relates to a wireless communication device.
- the transceiver unit is installed on the window glass of a building.
- the transceiver unit has an antenna unit that is installed on the outside surface of the window glass, and a power supply unit that is installed on the indoor surface of the window glass.
- the power supply unit supplies power to the antenna unit through the window glass.
- the antenna unit includes a first antenna plate and a second antenna plate. The first antenna plate receives radio waves from outdoors, and the second antenna plate radiates the signal received by the first antenna plate indoors (see, for example, Patent Document 1).
- the objective is to provide a compact wireless communication device that can communicate with a base station on multiple frequencies.
- a wireless communication device includes a signal processing unit, a housing that houses the signal processing unit, a first antenna that is provided outside the housing and connected to the signal processing unit via a transmission cable and communicates with a base station using radio waves at a first frequency, a second antenna that is provided inside the housing or on the outer surface of the housing and connected to the signal processing unit and communicates with the base station using radio waves at a second frequency that is lower than the first frequency, and a third antenna that is connected to the signal processing unit and communicates with a terminal.
- FIG. 1 is a diagram showing an example of a building in which a wireless communication device according to an embodiment is installed, as viewed from the side;
- FIG. 1 illustrates an example of a configuration of a wireless communication device according to an embodiment.
- FIG. 2 illustrates an example of a configuration of a first antenna of the wireless communication device according to the embodiment.
- 2 is a diagram illustrating an example of a circuit configuration of a signal processing unit of the wireless communication device according to the embodiment.
- 11 is a diagram illustrating an example of a configuration of a first antenna of a wireless communication device according to a first modified example of an embodiment.
- FIG. FIG. 13 is a diagram illustrating an example of a configuration of a wireless communication device according to a second modified example of the embodiment.
- the following defines and explains the XYZ coordinate system.
- the direction parallel to the X axis (X direction), the direction parallel to the Y axis (Y direction), and the direction parallel to the Z axis (Z direction) are mutually perpendicular.
- the length, width, thickness, etc. of each part may be exaggerated below to make the configuration easier to understand.
- terms such as parallel, right angle, orthogonal, horizontal, vertical, up and down, etc. are permitted to be misaligned to the extent that they do not impair the effect of the embodiment.
- radio waves refers to a type of electromagnetic wave, and generally, electromagnetic waves below 3 THz are called radio waves.
- electromagnetic waves emitted from outdoor base stations or relay stations will be called “radio waves”, and electromagnetic waves in general will be called “electromagnetic waves”.
- millimeter waves or “millimeter wave band” we mean not only the frequency band of 30 GHz to 300 GHz, but also the quasi-millimeter wave band of 24 GHz to 30 GHz.
- the wireless communication device of the embodiment can function as a repeater that receives radio waves coming from a base station or a relay station, performs processing such as amplification without converting the frequency, and then radiates the radio waves.
- the wireless communication device of the embodiment can also function as a repeater that receives radio waves coming from a base station, performs processing such as frequency conversion and amplification, and then radiates the radio waves.
- the wireless communication device of the embodiment is capable of transmitting and receiving radio waves of a first frequency and radio waves of a second frequency between a base station or a relay station.
- the second frequency is lower than the first frequency.
- the radio waves of the first frequency are radio waves in a frequency band equal to or greater than a specified frequency.
- the specified frequency is approximately 1 GHz to 3 GHz.
- the radio waves of the first frequency are radio waves in the millimeter wave band of the fifth generation mobile communication system (5G) or in a frequency band equal to or greater than a specified frequency of Sub-6, LTE (Long Term Evolution), LTE-A (LTE-Advanced), or UMB (Ultra Mobile Broadband).
- the second frequency radio wave is a radio wave with a frequency lower than a predetermined frequency.
- the predetermined frequency is about 1 GHz to 3 GHz.
- the second frequency radio wave is a radio wave with a frequency lower than the predetermined frequency of Sub-6, LTE, LTE-A, or UMB, such as the fifth generation mobile communication system (5G).
- 5G fifth generation mobile communication system
- the wireless communication device of the embodiment radiates radio waves received from a base station or relay station as a repeater
- the radio waves of the first frequency and the second frequency described above may be amplified or otherwise processed before being radiated without frequency conversion.
- the wireless communication device of the embodiment may perform processing such as frequency conversion and amplification on the radio waves of the first frequency or the second frequency described above, and radiate the radio waves as radio waves of IEEE802.11 (Wi-Fi (registered trademark)), IEEE802.16 (WiMAX (registered trademark)), IEEE802.20, UWB (Ultra-Wideband), Bluetooth (registered trademark), or LPWA (Low Power Wide Area), etc.
- Wi-Fi and WiMAX can be used as wireless LANs (Local Area Networks).
- Fig. 1 is a diagram showing an example of a building 1 in which a wireless communication device 100 according to an embodiment is installed, as seen from the side.
- Fig. 1 also shows base stations BS1 and BS2, and a smartphone 50.
- the base stations BS1 and BS2 are examples of external devices.
- Fig. 1 shows the base stations BS1 and BS2, but the external device of the wireless communication device 100 may be a relay station. Even if the external device of the wireless communication device 100 is a relay station, the wireless communication device 100 will communicate with the base station via the relay station.
- the operation and configuration of the wireless communication device 100 may be described using the operation of the wireless communication device 100 receiving radio waves. Since the operation of the wireless communication device 100 transmitting radio waves is the opposite operation to the operation of receiving radio waves, the description of the operation of the wireless communication device 100 transmitting radio waves may be omitted.
- the building 1 may be a detached house, a building, an apartment, or a commercial facility such as a shopping mall or a department store, an airport, a factory, a power facility, a government building, a station (station building), or a bus stop building.
- the window 10 is used in these buildings 1.
- the window 10 includes a window glass 11 and a window frame (the window frame on the building 1 side).
- the wireless communication device 100 is installed inside the building 1 as an example, and has a function as a repeater that relays radio waves arriving from the outside to the inside and relays radio waves from the inside to the outside. Note that, as an example, a form in which the wireless communication device 100 is installed inside the building 1 will be described here. However, the wireless communication device 100 may be installed outdoors as long as there are areas where radio waves of a first frequency described later cannot reach and areas where they can reach.
- the XYZ coordinate system is defined based on the indoor principal surface of the window glass 11.
- the indoor principal surface of the window glass 11 is the principal surface parallel to the XY plane on the +Z direction side of the window glass 11.
- the building 1 has a wall 1W parallel to the XY plane on the -Z direction side, and the window 10 is provided in the wall 1W.
- base station BS1 transmits and receives radio waves of a first frequency
- base station BS2 transmits and receives radio waves of a second frequency.
- the first frequency is a frequency equal to or higher than a predetermined frequency
- the second frequency is a frequency lower than the predetermined frequency.
- the predetermined frequency is approximately 1 GHz to 3 GHz. Note that, although the explanation is given here separately for base station BS1 and base station BS2, a single base station may transmit and receive radio waves of the first frequency and the second frequency.
- the first frequency is the frequency of radio waves that do not penetrate the wall 1W of the building 1
- the second frequency is the frequency of radio waves that penetrate the wall 1W of the building 1.
- the predetermined frequency that is the boundary between the first and second frequencies is approximately 1 GHz to 3 GHz, depending on the material and structure of the wall 1W. Note that radio waves not penetrating the wall 1W of the building 1 does not only mean that radio waves do not penetrate the wall 1W at all, but also means that the radio waves that penetrate the wall 1W are weak and do not provide sufficient radio wave strength for practical use to communicate with terminals such as smartphone 50 and PC (Personal Computer) inside (indoors) the wall 1W of the building 1.
- the first frequency radio waves emitted from base station BS1 do not penetrate the wall 1W of building 1, and therefore penetrate only the pane 11 of window 10 to enter the building. Because the first frequency radio waves have a high degree of directional propagating ability, they only reach the line of sight (LOS) area of window 10, which makes it easy for blind zones to form inside the building.
- the pane 11 of window 10 is the entry point for the first frequency radio waves into building 1.
- the second frequency radio waves emitted from base station BS2 penetrate the window glass 11 of the window 10 of building 1 and the wall 1W and enter the building, reaching not only the line of sight (LOS) area of the window 10 but the entire interior of building 1. For this reason, it is difficult for dead zones to occur indoors for the second frequency radio waves.
- LOS line of sight
- the wireless communication device 100 includes a first antenna 110 provided on the indoor main surface of the window glass 11 of the window 10 in order to transmit and receive radio waves of a first frequency to and from the outdoor base station BS1.
- the first antenna 110 is connected to the device body 101 via a transmission cable 115.
- the wireless communication device 100 includes a plurality of first antennas 110 as an example. In FIG. 1, a plurality of first antennas 110 are shown together, but each of the first antennas 110 is connected to one transmission cable 115. Since FIG. 1 shows four transmission cables 115 as an example, FIG. 1 shows a configuration in which four first antennas 110 are provided as an example. Details of the configuration of the first antennas 110 will be described later with reference to FIG. 3. Note that the wireless communication device 100 may include one first antenna 110.
- a matching layer 117 is provided between each first antenna 110 and the indoor main surface of the window glass 11.
- a liquid crystal phase shifter 118 is provided on the +Z direction side of each first antenna 110. That is, the first antenna 110 is provided between the matching layer 117 and the liquid crystal phase shifter 118.
- the first antenna 110 is adhered to the window glass 11 by a fixing member such as a holder (not shown).
- the matching layer 117 is held between the window glass 11 and the first antenna 110 by a holder (not shown).
- the liquid crystal phase shifter 118 is held on the +Z direction side of the first antenna 110 by a holder (not shown).
- the liquid crystal phase shifter 118 may be held by directly adhering to the +Z direction side of the first antenna 110 with an adhesive layer or the like.
- the liquid crystal phase shifter 118 is used when the wireless communication device 100 performs beamforming using the multiple first antennas 110 as a phased array antenna, but a phase shifter other than the liquid crystal phase shifter may be used instead of the liquid crystal phase shifter 118.
- the liquid crystal phase shifter 118 consumes little power and generates little heat, it is preferable to install it on the window glass 11 in that it can suppress thermal cracking.
- the wireless communication device 100 does not perform beamforming using the first antenna 110, the wireless communication device 100 does not need to include the liquid crystal phase shifter 118.
- the wireless communication device 100 does not need to include the matching layer 117.
- the matching layer 117 and the liquid crystal phase shifter 118 will be described later.
- the wireless communication device 100 also includes a second antenna (not shown in FIG. 1) installed inside the device body 101, which is installed indoors, to transmit and receive radio waves of a second frequency to and from the outdoor base station BS2.
- a second antenna (not shown in FIG. 1) installed inside the device body 101, which is installed indoors, to transmit and receive radio waves of a second frequency to and from the outdoor base station BS2.
- the wireless communication device 100 performs amplification processing, or amplification processing and frequency conversion processing, on the radio waves of the first frequency received by the first antenna 110 and the radio waves of the second frequency received by the second antenna 120, and outputs them indoors from a third antenna (not shown) or the like provided on the device main body 101.
- the signals can be easily received by devices indoors such as smartphones 50 and PCs.
- Fig. 2 is a diagram showing an example of the configuration of the wireless communication device 100.
- Fig. 2 simplifies the configuration and shows one first antenna 110 and one transmission cable 115.
- Fig. 3 is a diagram showing an example of the configuration of the first antenna 110.
- Fig. 3 shows four first antennas 110 as an example.
- the wireless communication device 100 includes a first antenna 110, a transmission cable 115, a matching layer 117, a liquid crystal phase shifter 118, a second antenna 120, third antennas 130A and 130B, connectors 135A-135C, a housing 140, and a signal processing unit 150.
- the connectors 135A-135C are an example of an input/output terminal. As described above, as an example, a form in which the wireless communication device 100 includes four first antennas 110 and four transmission cables 115 will be described here, but the wireless communication device 100 may include at least one first antenna 110 and one transmission cable 115.
- the second antenna 120, the third antennas 130A and 130B, the connectors 135A to 135C, and the signal processing unit 150 are housed inside the housing 140.
- the connector 135C is provided inside the housing 140 with a portion of it exposed to the outer surface of the housing 140.
- the connector 135C is a connector into which a LAN cable located outside the housing 140 can be inserted and removed, and therefore a portion of it is exposed to the outer surface of the housing 140.
- the wireless communication device 100 may be configured to include terminals to which the two third antennas 130A are connected, as an example of input/output terminals, instead of the connectors 135A and 135B.
- the terminals to which the two third antennas 130A are connected may be provided separately from the signal processing unit 150, for example, or may be provided in the signal processing unit 150.
- the terminals provided on the signal processing unit 150 may be terminals on the substrate of the signal processing unit 150, or terminals on an MCU (Micro Controller Unit) of a wireless module of the signal processing unit 150, which will be described later, etc.
- MCU Micro Controller Unit
- the second antenna 120, the third antennas 130A and 130B, the connectors 135A to 135C, the housing 140, and the signal processing unit 150 constitute the device body 101.
- the device body 101 is not transparent to visible light and does not transmit visible light.
- the wireless communication device 100 amplifies the radio waves of the first frequency received by the first antenna 110 in the signal processing unit 150 and radiates the radio waves indoors from the third antenna 130A.
- the wireless communication device 100 converts the radio waves of the second frequency received by the second antenna 120 into radio waves of a wireless LAN in the signal processing unit 150, amplifies the radio waves, and radiates the radio waves indoors from the third antenna 130B.
- a wireless LAN UWB, Bluetooth (registered trademark), LPWA, or the like may be used.
- the wireless communication device 100 converts the radio waves of the second frequency received by the second antenna 120 into a signal for a wired LAN in the signal processing unit 150, amplifies the signal, and transmits the signal to a terminal (not shown) such as a PC located indoors via a LAN cable (not shown) connected to the connector 135C.
- the wireless communication device 100 may be configured, for example, to perform either one of the following operations regarding the second frequency radio waves received by the second antenna 120: converting the radio waves into wireless LAN radio waves, amplifying the radio waves, and radiating the radio waves indoors from the third antenna 130B; or converting the radio waves into a signal for a wired LAN, amplifying the radio waves, and outputting the signal from the connector 135C.
- the wireless communication device 100 does not need to include the connector 135C for a wired LAN.
- the wireless communication device 100 may be configured to perform the following operation, for example, instead of the configuration for performing the above-mentioned operation.
- the wireless communication device 100 may convert the radio wave of the first frequency received by the first antenna 110 into a radio wave of a wireless LAN in the signal processing unit 150, amplify the radio wave, and radiate the radio wave indoors from the third antenna 130A.
- the wireless communication device 100 may convert the radio wave of the second frequency received by the second antenna 120 into a radio wave of a wireless LAN in the signal processing unit 150, amplify the radio wave, and radiate the radio wave indoors from the third antenna 130B.
- both the radio wave of the first frequency received by the first antenna 110 and the radio wave of the second frequency received by the second antenna 120 may be converted into a radio wave of a wireless LAN, amplified, and radiated indoors from the third antennas 130A and 130B.
- the wireless communication device 100 may convert radio waves of a first frequency received by the first antenna 110 into a signal for a wired LAN in the signal processing unit 150, amplify the signal, and transmit the signal to a terminal (not shown) such as a PC located indoors via a LAN cable (not shown) connected to the connector 135C.
- the wireless communication device 100 may amplify radio waves of a second frequency received by the second antenna 120 in the signal processing unit 150, and radiate the signal indoors from the third antenna 130B.
- the wireless communication device 100 may be configured, for example, to perform either one of the following operations: converting radio waves of the first frequency received by the first antenna 110 into wireless LAN radio waves, amplifying the radio waves, and radiating the radio waves indoors from the third antenna 130A; or converting the radio waves into a signal for a wired LAN, amplifying the radio waves, and outputting the signal from the connector 135C. In this case, if the operation of outputting a signal for a wired LAN from the connector 135C is not performed, the wireless communication device 100 does not need to include the connector 135C for a wired LAN.
- the wireless communication device 100 may be configured to perform the following operations, for example.
- the wireless communication device 100 may be configured to amplify radio waves of the first and second frequencies received by the first and second antennas 110 and 120 in the signal processing unit 150 and radiate the amplified radio waves indoors from the third antennas 130A and 130B. In this case, the wireless communication device 100 does not need to include the connector 135C for a wired LAN.
- the first antenna 110 is provided outside the housing 140 of the device main body 101, is connected to the signal processing unit 150 via a transmission cable 115, and is an antenna that communicates with the base station BS1 by radio waves of the first frequency.
- the first antenna 110 has a luminous transmittance of 50% or more. The details will be described later.
- the device body 101 does not transmit visible light and would obstruct visibility if placed on the window 10, so it is placed on a flat surface such as a wall 1W near the window 10 on the indoor side, a bay window frame, or a floor. In this case, the device body 101 may simply be placed on a flat surface such as a floor.
- the first antenna 110 is provided on the indoor main surface of the window glass 11 of the window 10 as shown in FIG. 1.
- the first antenna 110 is connected to a connector 145 of the housing 140 of the device main body 101 via a transmission cable 115 as shown in FIG. 2.
- the transmission cable 115 is formed of a coaxial cable as an example.
- one connector 145 is shown in FIG. 2, as an example, the wireless communication device 100 includes four first antennas 110 and four transmission cables 115, four connectors 145 are provided on the housing 140.
- Each first antenna 110 has a substrate 110A, an antenna element 111, a feed line 112, and branch lines 113 and 114.
- the substrates 110A of the four first antennas 110 are integrated.
- the antenna element 111, the feed line 112, and the branch lines 113 and 114 are provided on the surface on the -Z direction side of the substrate 110A.
- the first antenna 110 has a ground layer provided on the entire surface on the +Z direction side of the substrate 110A, but this is not shown in FIG. 3.
- the ground layer is connected to a ground potential point (not shown).
- FIG. 3 shows four antenna elements 111 of four first antennas 110.
- the configuration of the four antenna elements 111 is, for example, the same as each other.
- the pitch between adjacent antenna elements 111 is, for example, approximately ⁇ /2, where ⁇ is the wavelength at the communication frequency of the first antenna 110.
- the pitch between adjacent antenna elements 111 is the distance in the X direction between the centers of adjacent antenna elements 111.
- the wireless communication device 100 is capable of, for example, MIMO (Multiple-Input and Multiple-Output) communication using four antenna elements 111 (first antenna 110). Also, as an example, the wireless communication device 100 may perform beamforming using the four antenna elements 111 (first antenna 110) as a phased array antenna. Also, as an example, the wireless communication device 100 may be configured not to perform MIMO communication or beamforming using the four antenna elements 111 (first antenna 110).
- MIMO Multiple-Input and Multiple-Output
- the wireless communication device 100 may perform beamforming using the four antenna elements 111 (first antenna 110) as a phased array antenna. Also, as an example, the wireless communication device 100 may be configured not to perform MIMO communication or beamforming using the four antenna elements 111 (first antenna 110).
- Branch line 113 is an example of a first branch line
- branch line 114 is an example of a second branch line.
- the substrate 110A is formed of any material that is transparent to radio waves radiated from the base stations BS1 and BS2 and that can support the antenna element 111, the feed line 112, and the branch lines 113 and 114.
- Transparent to the radiated radio waves means, for example, that the transmission loss is 10 dB or less.
- the substrate 110A is transparent to the radiated radio waves means that the transmission loss of the substrate 110A is 10 dB or less, preferably 6 dB or less, more preferably 3 dB or less, and even more preferably 1 dB or less.
- the substrate 110A may also be transparent to visible light.
- Transparent to visible light means that the visual transmittance is at least 40%, preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.
- a resin substrate (resin film) may be used as the substrate 110A.
- resin materials that satisfy the above conditions include acrylic resins such as polymethyl methacrylate, cycloolefin resins, polycarbonate resins, and polyethylene terephthalate (PET).
- PET polyethylene terephthalate
- a glass plate may be used as the substrate 110A. Examples of glass plates that satisfy the above conditions include soda-lime glass, alkali-free glass, Pyrex (registered trademark) glass, and quartz glass. Note that, as an example, a form in which the substrate 110A is a resin substrate will be described here.
- the antenna element 111, the power feed line 112, and the branch lines 113 and 114 can be formed of, for example, a thin metal film of copper, nickel, gold, etc.
- the substrate 110A is transparent to visible light, it is preferable from the viewpoint of visibility that the antenna element 111, the power feed line 112, and the branch lines 113 and 114 are formed of, for example, a mesh-shaped thin metal film of copper, nickel, gold, etc.
- the antenna element 111, the power supply line 112, and the branch lines 113 and 114 may be formed of a transparent conductive film such as zinc oxide (ZnO), tin oxide (SnO 2 ), tin-doped indium oxide (ITO), indium oxide-tin oxide (IZO), or the like, a metal nitride such as titanium nitride (TiN) or chromium nitride (CrN), or a Low-e film for Low-e glass.
- a transparent conductive film such as zinc oxide (ZnO), tin oxide (SnO 2 ), tin-doped indium oxide (ITO), indium oxide-tin oxide (IZO), or the like, a metal nitride such as titanium nitride (TiN) or chromium nitride (CrN), or a Low-e film for Low-e glass.
- the first antenna 110 only needs to have a visual transmittance of 50% or more if the substrate 110A is transparent to visible light and the antenna element 111, the feed line 112, and the branch lines 113 and 114 are made of transparent conductors such as mesh-like thin metal films.
- the antenna element 111 has a rectangular shape in the XY plane (planar view of the first antenna 110) and constitutes a patch antenna together with a ground layer on the surface on the +Z direction side of the substrate 110A.
- the antenna element 111 has a feeding point 111A at the center of its width in the X direction at the end on the -Y direction side.
- the feed line 112 is connected to the feed point 111A and extends from the feed point 111A in the ⁇ Y direction.
- the feed line 112 overlaps with the ground layer on the opposite side of the substrate 110A, and thus constitutes a microstrip line.
- the end of the feed line 112 on the ⁇ Y direction side is connected to the signal line of the transmission cable 115, and is connected to the signal processing unit 150 via the connector 145.
- the transmission cable 115 is constituted by a coaxial cable
- the signal line of the transmission cable 115 is the core wire of the coaxial cable.
- the shield wire of the transmission cable 115 is connected to the ground layer provided on the surface of the substrate 110A on the +Z direction side.
- a waveguide, or a transmission line such as a microstrip line or a coplanar waveguide formed on a flexible substrate or the like may be used as the transmission cable 115.
- the branch line 113 branches off from the middle of the feed line 112 and extends in the ⁇ X direction, for example.
- the length of the branch line 113 is ⁇ e/2, where ⁇ e is the electrical length of the wavelength at the communication frequency of the first antenna 110.
- the length of the branch line 113 is the length in the extension direction between the end of the branch line 113 on the +X direction side where it is connected to the feed line 112, and the end (open end) on the ⁇ X direction side.
- Branch line 114 is connected to midpoint 113A of the length of branch line 113 in the extension direction.
- the length of the section of branch line 113 on the +X side of midpoint 113A is ⁇ e/4
- the length of the section of branch line 113 on the -X side of midpoint 113A is ⁇ e/4. Since the distance to midpoint 113A and the distance to the end of branch line 113 on the -X side and the end on the +X side are both ⁇ e/4, midpoint 113A is a node of the AC voltage when antenna element 111 transmits and receives radio waves. In other words, the voltage at midpoint 113A is always 0V.
- the branch line 114 branches off from a midpoint 113A of the length of the branch line 113 in the extension direction, and extends, for example, in the ⁇ Y direction. This is because the branch line 114 is less likely to affect the radiation characteristics of the antenna element 111 if it extends in the ⁇ Y direction rather than the +Y direction.
- the branch line 114 branches off from midpoint 113A of the length of the branch line 113 in the extension direction, and the voltage at midpoint 113A is always 0V. Therefore, connecting the branch line 114 to midpoint 113A of the branch line 113 is equivalent to a state in which nothing is connected to midpoint 113A of the branch line 113. In other words, the impedance of the branch line 114 theoretically does not affect the radiation characteristics of the antenna element 111.
- Such branch lines 113 and 114 form a choke structure.
- the four branch lines 114 of the four first antennas 110 have different resistance values from each other. This is to make the four first antennas 110 identifiable.
- the branch lines 113 and 114 are an example of a choke structure and an example of an identification portion.
- the resistance value of each branch line 114 is an example of a predetermined DC resistance value.
- the resistance values of the four branch lines 114 may be set to four different resistance values within a range of 0 ⁇ to 500 ⁇ .
- a pad 114A is provided at the end of the branch line 114 on the -Y direction side, and as an example, a through-hole via that penetrates the substrate 110A in the thickness direction (Z direction) is provided in the pad 114A.
- the end of the through-hole via on the +Z direction side is connected to a ground layer provided on the surface of the substrate 110A on the +Z direction side.
- the four branch lines 114 are made of a mesh-like thin metal film, for example, they may have different resistance values due to differences in mesh density, etc. Furthermore, when the four branch lines 114 are made of a thin metal film, for example, they may have different thicknesses, lengths, materials, etc., so that they have different resistance values. Furthermore, when the four branch lines 114 are made of a thin metal film, for example, they may have different resistance values due to differences in thickness, length, material, etc. Furthermore, when the four branch lines 114 are made of a thin metal film, for example, they may have different resistance values due to differences in resistance values of the resistors inserted in series in each branch line 114.
- a form having a mesh structure made of thin metal wires will be described.
- the signal processing unit 150 can identify the four antenna elements 111 (first antenna 110). This is because the signal processing unit 150 is connected to the antenna elements 111 and the ground layer on the surface on the +Z direction side of the substrate 110A via the transmission cable 115. Note that, as an example, when the wireless communication device 100 does not perform MIMO communication or beamforming with the four antenna elements 111 (first antenna 110), the resistance values of the four branch lines 114 may be equal to each other.
- the signal processing unit 150 can identify the attachment/detachment state of the four first antennas 110 to the four connectors 145.
- the branch lines 114 function as an identification unit.
- the signal processing unit 150 can identify the attached/detached state of the first antenna 110.
- the identification unit is not limited to one that uses the resistance value, and may be, for example, an identification unit that can output identification information such as an ID (identifier).
- the transmission cable 115 is detachable from the connector 145. That is, the transmission cable 115 is detachable from the housing 140.
- the transmission cable 115 may be a coaxial cable.
- the matching layer 117 (see FIG. 1 ) is provided between each first antenna 110 and the indoor main surface of the window glass 11.
- the wireless communication device 100 includes, as an example, four first antennas 110, the wireless communication device 100 includes four matching layers 117, but these are shown as an integrated unit in FIG. 1 .
- the radio waves of the first frequency pass through the window glass 11, the radio waves are attenuated.
- the matching layer 117 when the first antenna 110 transmits and receives radio waves, the electrical length of the radio waves passing through the window glass 11 can be adjusted to match the impedance, thereby reducing loss.
- the liquid crystal phase shifter 118 is provided on the +Z direction side of each first antenna 110.
- the liquid crystal phase shifter 118 and the signal processing unit 150 are connected via a signal line or the like (not shown).
- the dielectric constant of the liquid crystal layer of the phase shifter 118 is controlled by the signal processing unit 150 via a signal line or the like (not shown). Since the electrical length of the wavelength of the radio waves transmitted and received by the four first antennas 110 is changed, the phase of the radio waves transmitted and received by the four first antennas 110 can be changed. Beamforming is possible by using the antenna 110 as a phased array antenna.
- the liquid crystal phase shifter 118 is used when the wireless communication device 100 performs beamforming with the first antenna 110. If the wireless communication device 100 does not perform beamforming with the first antenna 110, the wireless communication device 100 does not need to include the liquid crystal phase shifter 118.
- the second antenna 120 is provided inside the housing 140 or on the outer surface of the housing 140, is connected to the signal processing unit 150, and communicates with the base station BS2 using radio waves of a second frequency lower than the first frequency.
- the second frequency radio waves penetrate the walls 1W of the building 1, and therefore reach the entire interior of the building 1, unlike the first frequency radio waves which only reach the line of sight (LOS) area of the window 10. Therefore, the second frequency radio waves reach the housing 140 which is placed on the floor or wall 1W inside the building 1. For this reason, as an example, the second antenna 120 is provided inside the housing 140 or on the outer surface of the housing 140.
- “Inside the housing 140” refers to the inside of the space surrounded by the outer wall of the housing 140, and "providing the second antenna 120 inside the housing 140” means that the second antenna 120 is located inside the housing 140. In this case, even if a part of the second antenna 120 is exposed to the outer surface of the housing 140, the second antenna 120 is considered to be located inside the housing 140.
- the outer surface of the housing 140 refers to the surface of the outer wall of the housing 140, and “providing the second antenna 120 on the outer surface of the housing 140” means that at least a part of the second antenna 120 may be located outside the outer surface of the housing 140.
- the second antenna 120 is provided directly behind the outer wall of the housing 140.
- the directly behind the outer wall of the housing 140 is inside the housing 140 (inside the housing 140).
- the window 10 is provided with a first antenna 110, and if more antennas are provided on the window 10, there is a risk that the visibility through the window 10 may be impaired. From this perspective, by not providing a second antenna 120 on the window 10, good visibility through the window 10 can be ensured.
- the second antenna 120 is preferably provided directly behind the outer wall on the upper side of the housing 140 so as to be able to receive radio waves of the second frequency more efficiently.
- the second antenna 120 may be of any type as long as it is an antenna capable of receiving radio waves of the second frequency, but an inverted F antenna is preferable because it can provide a wide bandwidth.
- the wireless communication device 100 may be configured to include multiple second antennas 120. In this case, the wireless communication device 100 may be configured to perform MIMO communication using multiple second antennas 120, as an example.
- the third antennas 130A and 130B are connected to the signal processing unit 150 via connectors 135A and 135B, respectively.
- the third antennas 130A and 130B may be antennas of an appropriate type according to the frequency of radio waves to be transmitted and received, etc.
- the third antenna 130A radiates radio waves of the first frequency that have been received by the first antenna 110 and processed by the signal processing unit 150, such as amplified, into the interior of the building 1.
- the third antenna 130A may be any antenna capable of transmitting and receiving radio waves of the first frequency, and may be, for example, a patch antenna or a monopole antenna.
- the third antenna 130B radiates indoors the wireless LAN radio waves that are received by the second antenna 120 and have their frequency converted and amplified by the signal processing unit 150.
- the third antenna 130B may, for example, be an antenna for the wireless LAN.
- the third antenna 130A radiates radio waves of the first frequency indoors in the building 1
- the third antenna 130B radiates radio waves of the wireless LAN indoors, so that, as an example, the smartphone 50 can receive both radio waves of the first frequency and radio waves of the wireless LAN indoors in the building 1.
- the connectors 135A to 135C are provided inside the housing 140 or on the outer surface of the housing 140, connected to the signal processing unit 150, and are connectors for inputting and outputting communication data transmitted and received by the second antenna 120.
- terminals to which the two third antennas 130A are connected may be used instead of the connectors 135A and 135B.
- “Inside the housing 140” refers to the inside of the space surrounded by the outer wall of the housing 140, and "providing the connector 135A inside the housing 140” means that the connector 135A is located inside the housing 140. In this case, even if a portion of the connector 135A is exposed on the outer surface of the housing 140, the connector 135A is treated as being located inside the housing 140.
- the outer surface of the housing 140 refers to the surface of the outer wall of the housing 140, and "providing the connector 135A on the outer surface of the housing 140” means that at least a portion of the connector 135A may be located outside the outer surface of the housing 140.
- Connectors 135A and 135B are connectors to which third antennas 130A and 130B are respectively connected.
- Connector 135C is a connector to which a LAN cable can be connected.
- connectors 135A and 135B are provided inside housing 140. This is because third antennas 130A and 130B are connected to connectors 135A and 135B, respectively, in advance.
- connector 135C is provided on the outer surface of housing 140. As an example, this is to allow a LAN cable connector to be detached (inserted and removed) from connector 135C as necessary. Note that multiple connectors 135C for LAN cables may be provided.
- the communication data received by the second antenna 120 can be acquired by the PC, and the data in the PC can be radiated from the second antenna 120 via the LAN cable and the connector 135C.
- the housing 140 accommodates therein the second antenna 120, the third antennas 130A and 130B, the connectors 135A to 135C, and the signal processing unit 150.
- the housing 140 is a case for the device main body 101, and is, for example, a box-shaped member. As an example, a part of the connector 135C is exposed on the outer surface of the housing 140.
- the housing 140 also has a connector 145.
- the connector 145 is a connector that allows the transmission cable 115 connected to the first antenna 110 to be detached, and therefore a portion of the connector 145 is exposed on the outer surface of the housing 140.
- the signal processing unit 150 is connected to the first antenna 110, the second antenna 120, the third antennas 130A and 130B, and the connector 135C. Among these, the signal processing unit 150 is connected to the first antenna 110 and the third antennas 130A and 130B via the connector 145 and the connectors 135A and 135B, respectively.
- the signal processing unit 150 amplifies the radio waves of the first frequency received by the first antenna 110 and outputs them to the connector 135A.
- the radio waves of the first frequency output to the connector 135A are radiated from the third antenna 130A to the interior of the building 1.
- the signal processing unit 150 converts the frequency of the radio waves of the second frequency received by the second antenna 120 to a wireless LAN frequency, amplifies the frequency, and outputs it to the connector 135B.
- the wireless LAN radio waves output to the connector 135B are radiated from the third antenna 130B to the interior of the building 1.
- the signal processing unit 150 also converts the frequency of the radio waves of the second frequency received by the second antenna 120 to a wired LAN frequency, amplifies the frequency, and outputs it to the connector 135C.
- the signal processing unit 150 performs the operations described in Part 1 and Part 2.
- Fig. 4 is a diagram showing an example of a circuit configuration of the signal processing unit 150 of the wireless communication device 100.
- Fig. 4 shows the first antenna 110, the transmission cable 115, the second antenna 120, the third antennas 130A and 130B, the connectors 135A to 135C, the housing 140, and the connector 145.
- the signal processing unit 150 has a wireless module 151, switches 152A, 152B, LNAs (Low Noise Amplifiers) 153A, 153B, ADCs (Analog to Digital Converters) 154A, 154B, DACs (Digital to Analog Converters) 155A, 155B, and PAs (Power Amplifiers) 156A, 156B.
- LNAs Low Noise Amplifiers
- ADCs Analog to Digital Converters
- DACs Digital to Analog Converters
- PAs Power Amplifiers
- the switch 152A is connected to the first antenna 110 via the transmission cable 115 and the connector 145, and the ADC 154A and the DAC 155A are connected to the switch 152A via the LNA 153A and the PA 156A, respectively.
- the ADC 154A and the DAC 155A are connected to the wireless module 151.
- the first antenna 110, the transmission cable 115, the connector 145, the switch 152A, the LNA 153A, the ADC 154A, the DAC 155A, and the PA 156A constitute the wireless communication unit 102A.
- the wireless communication device 100 performs MIMO communication using multiple first antennas 110, the number of wireless communication units 102A equal to the number of channels of the MIMO communication is connected to the wireless module 151.
- a switch 152B is connected to the second antenna 120, and an ADC 154B and a DAC 155B are connected to the switch 152B via an LNA 153B and a PA 156B, respectively.
- the ADC 154B and the DAC 155B are connected to the wireless module 151.
- the second antenna 120, the switch 152B, the LNA 153B, the ADC 154B, the DAC 155B, and the PA 156B constitute the wireless communication unit 102B.
- a number of wireless communication units 102B equal to the number of channels of the MIMO communication are connected to the wireless module 151.
- the wireless module 151 is, for example, configured with an MCU (Micro Controller Unit), and performs switching processing of the switches 152A and 152B, processing for setting the gain of the LNAs 153A, 153B, and the PAs 156A and 156B, and relay processing.
- the relay processing includes processing for converting the frequency of the radio waves from the first or second frequency to the frequency of a wireless LAN or a wired LAN.
- the wireless module 151 When the wireless module 151 receives radio waves through the first antenna 110 of the wireless communication unit 102A, it switches the three-terminal switch 152A to connect the first antenna 110 to the LNA 153A. When the wireless module 151 transmits radio waves through the first antenna 110, it switches the three-terminal switch 152A to connect the first antenna 110 to the PA 156A. When the wireless module 151 receives or transmits radio waves through the second antenna 120, it similarly switches the three-terminal switch 152B.
- LNA 153A is provided between switch 152A and ADC 154A, and amplifies the radio waves received by first antenna 110 and outputs them while preventing degradation of the signal-to-noise ratio. If necessary, a mixer may be provided between LNA 153A and ADC 154A to mix the radio waves output from LNA 153A with a local signal, demodulate the signal, and convert it into an intermediate frequency (IF) signal.
- IF intermediate frequency
- the ADC 154A digitally converts the signal output from the LNA 153A and outputs it to the wireless module 151.
- the DAC 155A converts the signal output by the wireless module 151 into an analog signal and outputs the analog signal to the PA 156A. If necessary, a mixer may be provided between the DAC 155A and the PA 156A to mix the signal with a local signal and perform modulation.
- PA156A amplifies the signal output from DAC155A and outputs it to the first antenna 110 via switch 152A.
- the wireless module 151 when the wireless module 151 transmits or receives radio waves using the second antenna 120 of the wireless communication unit 102B, it controls the PA 156B via the switch 152B of the wireless communication unit 102B to perform the same processing as that performed for the wireless communication unit 102A.
- First Modification of the Embodiment Fig. 5 is a diagram showing an example of the configuration of a first antenna 110M according to a first modified example of the embodiment.
- the first antenna 110M according to the first modified example of the embodiment has a substrate 110MA, an antenna element 111M, a feeder line 112, and branch lines 113 and 114M.
- the first antenna 110M differs from the first antenna 110 shown in Fig. 3 in that it has a substrate 110MA made of a glass plate, an antenna element 111M made of a monopole antenna, and a branch line 114M. The differences from the first antenna 110 shown in Fig. 3 will be described below.
- the substrate 110MA is a glass plate, and examples of the material that can be used include soda-lime glass, non-alkali glass, Pyrex (registered trademark) glass, and quartz glass.
- a ground layer 110MG is provided on approximately half of the surface on the +Z direction side of the substrate 110MA on the -Y direction side.
- the ground layer 110MG is formed, for example, of a mesh-like metal thin film made of copper, nickel, gold, or the like.
- antenna element 111M, feed line 112, and branch lines 113 and 114M are formed of a metal thin film such as copper, nickel, or gold, similar to the ground layer 110MG.
- the branch line 114M is set to a predetermined resistance value, similar to the branch line 114 of the first antenna 110 shown in Fig. 3, and therefore may be formed of a transparent conductive film such as ITO, which has a higher resistance value than a mesh-shaped metal.
- the first antenna 110M has a visual transmittance of 50% or more because the substrate 110MA is transparent to visible light, and the antenna element 111M, the feed line 112, and the branch lines 113 and 114M are made of transparent conductors such as mesh-like metal thin films.
- the antenna element 111M is, for example, a linear monopole antenna extending along the Y direction in the XY plane (planar view of the first antenna 110M), and extends further in the +Y direction than the ground layer 110MG provided on the surface of the substrate 110MA on the +Z direction side.
- the antenna element 111M has a feed point 111A at the end on the -Y direction side.
- the position of the feed point 111A in the Y direction is approximately equal to the position of the end edge extending in the X direction on the +Y direction side of the ground layer 110MG in plan view.
- Branch line 114M branches off from a midpoint 113A in the length of the branch line 113 in the extension direction, and extends, for example, in the -Y direction to a pad 114MA located on the end edge of the substrate 110MA in the -Y direction.
- the branch line 114M is bent between the midpoint 113A and the pad 114MA in order to increase its length.
- the branch lines 113 and 114M form a choke structure.
- the four branch lines 114M of the four first antennas 110M have different resistance values from each other. This is to make the four first antennas 110M identifiable.
- the branch lines 113 and 114M are an example of a choke structure and an example of an identification portion.
- the resistance value of each branch line 114M is an example of a predetermined DC resistance value.
- the resistance values of the four branch lines 114M may be set to four different resistance values within a range of 0 ⁇ to 500 ⁇ .
- a pad 114MA is provided at the end of the branch line 114M in the -Y direction. Because the substrate 110MA is a glass plate, it is not as easy to fabricate a through-hole via as it is with a resin substrate, and the cost is high. For this reason, when using the substrate 110MA made of a glass plate, a connector (not shown) is connected between the pad 114MA and the ground layer 110MG, and the connector is connected to the shielded wire of the coaxial cable used as the transmission cable 115.
- the four branch lines 114M are made of a mesh-like metal thin film, they may have different resistance values due to differences in mesh density, etc.
- the signal processing unit 150 can identify the four antenna elements 111M (first antennas 110M). This is because the signal processing unit 150 is connected to the antenna elements 111M and the ground layer 110MG of the substrate 110MA via the transmission cable 115. Note that, as an example, when the wireless communication device 100 does not perform MIMO communication or beamforming with the four antenna elements 111M (first antennas 110M), the resistance values of the four branch lines 114M may be equal to each other.
- the signal processing unit 150 can identify the attachment/detachment state of the four first antennas 110M to the four connectors 145.
- the branch lines 114M function as an identification unit.
- ⁇ Second Modification of the Embodiment> 6 is a diagram showing an example of the configuration of a wireless communication device 100M according to a second modified example of the embodiment.
- the wireless communication device 100M shown in FIG. 6 includes two sets of the first antenna 110, the transmission cable 115, the matching layer 117, and the liquid crystal phase shifter 118 shown in FIG. 1. As described with reference to FIGS. 1 to 4, one set includes four first antennas 110. Therefore, the wireless communication device 100M shown in FIG. 6 includes two sets of four first antennas 110. That is, the wireless communication device 100M includes two sets of eight first antennas 110.
- the wireless communication device 100M may include three or more sets of the first antenna 110, the transmission cable 115, the matching layer 117, and the liquid crystal phase shifter 118.
- Such a wireless communication device 100M can perform, for example, eight-channel MIMO communication at two types of first frequencies, beamforming to form two beams at two types of first frequencies, etc. If the wireless communication device 100M includes three or more sets of the first antenna 110, transmission cable 115, matching layer 117, and liquid crystal phase shifter 118, the number of channels and beams of MIMO communication can be further increased.
- the first antennas 110 of some of the multiple sets may constitute an array antenna that communicates at a first frequency of 10 GHz or less
- the first antennas 110 of some of the other multiple sets may constitute a phased array antenna that communicates at a first frequency of 25 GHz or more.
- beamforming can be performed by using the antenna elements 111 included in the first antennas 110 of some of the other multiple sets as a phased array antenna.
- the wireless communication device 100 includes a signal processing unit 150, a housing 140 that houses the signal processing unit 150, a first antenna 110 that is provided outside the housing 140 and connected to the signal processing unit 150 via a transmission cable 115, and communicates with a base station BS1 using radio waves of a first frequency, a second antenna 120 that is provided inside the housing 140 or on the outer surface of the housing 140, connected to the signal processing unit 150, and communicates with a base station BS2 using radio waves of a second frequency lower than the first frequency, and connectors (135A to 135C) that are provided inside the housing 140 or on the outer surface of the housing 140, connected to the signal processing unit 150, and input and output communication data transmitted and received by the first antenna 110 or the second antenna 120. Since the first antenna 110 is not provided inside the housing 140, the device body 101 and the housing 140 can be made smaller.
- the first antenna 110 may also be installed within the line of sight of the window 10 near the indoor window 10. In cases where radio waves of the first frequency pass through the window glass 11 without passing through the wall 1W of the building 1, installing the first antenna 110 within the line of sight of the window 10 ensures that communication using radio waves of the first frequency can be performed between the outdoor base station (BS1 or BS2) and the first antenna 110.
- the second antenna 120 may also be placed in a position that is not within the line of sight of the window 10. This allows for a high degree of freedom in the location where the housing 140 is placed.
- the first antenna 110 may also have a visual transmittance of 50% or more. When the first antenna 110 is provided on the window glass 11, this can prevent the visibility from being impaired and allow more visible light to enter the room through the window glass 11.
- the transmission cable 115 may be detachable from the housing 140. Since the transmission cable 115 can be detached from the housing 140, the first antenna 110 can be easily attached to the window glass 11, and the housing 140 can be easily installed. In addition, the first antenna 110 can be easily replaced.
- the first antenna 110 may also have an identification unit (113, 114) that allows the signal processing unit 150 to identify whether the first antenna 110 is attached to or detached from the housing 140.
- the signal processing unit 150 can identify whether the first antenna 110 is connected to the signal processing unit 150 or not based on the identification unit.
- the system may include a plurality of first antennas 110, and the identification units (113, 114) of the plurality of first antennas 110 may be different from each other.
- the signal processing unit 150 can easily identify the plurality of first antennas 110.
- the first antenna 110 may have an antenna element 111 and a choke structure (113, 114) connected to the antenna element 111, and the identification portion (113, 114) may be the choke structure (113, 114).
- the choke structure is invisible in terms of AC, so it is possible to make the first antenna 110 identifiable without affecting the antenna characteristics of the first antenna 110.
- the first antenna 110 further includes a feed line 112 connected to the antenna element 111, and if the electrical length of the wavelength at the communication frequency of the first antenna 110 is ⁇ e, the choke structure (113, 114) may include a branch line 113 that branches off from the feed line 112 and has a length of ⁇ e/2, and a branch line 114 that branches off from the midpoint of the length of the branch line 113 and has a predetermined DC resistance value.
- the choke structure including the branch lines 113 and 114 is not visible from the feed line 112 or ground in terms of AC, so that the first antenna 110 can be made identifiable without affecting the antenna characteristics of the first antenna 110.
- the specified DC resistance value may be between 0 ⁇ and 500 ⁇ .
- a DC resistance value between 0 ⁇ and 500 ⁇ allows the first antenna 110 to be reliably identified. Also, it allows easy determination as to whether the first antenna 110 is connected.
- a wireless communication device 100 capable of implementing MIMO communication, beamforming, etc. can be provided.
- the antenna may further include a matching layer 117 provided between the first antenna 110 and the window 10.
- a matching layer 117 provided between the first antenna 110 and the window 10.
- the multiple first antennas 110 may also be phased array antennas. This provides a wireless communication device 100 capable of implementing beamforming and the like.
- the phased array antenna may also be a phased array antenna having a liquid crystal phase shifter.
- a wireless communication device 100 can be provided that can adjust the phase with the liquid crystal phase shifter to achieve beamforming, etc.
- the first frequency is equal to or higher than a predetermined frequency
- the second frequency is lower than the predetermined frequency, which may be equal to or higher than 1 GHz and equal to or lower than 3 GHz.
- the second antenna 120 may also be an inverted F antenna. By making the second antenna 120 a broadband inverted F antenna, radio waves at the second frequency can be transmitted and received over a broadband even if the second antenna 120 is provided inside the housing 140 or on the outer surface of the housing 140.
- the first antenna 110 may also be adhered to the window glass 11 of the window 10. By adhering the first antenna 110 to the window glass 11, the first antenna 110 can be stably installed in the line of sight area of the window 10, and radio waves of the first frequency can be stably transmitted and received.
- the wireless communication device 100 may include a plurality of sets of the first antenna 110 and the transmission cable 115, and some of the first antennas 110 of the plurality of sets may constitute an array antenna that communicates at a first frequency of 10 GHz or less, and some of the other of the plurality of sets may constitute a phased array antenna that communicates at a first frequency of 25 GHz or more. It is possible to provide a wireless communication device 100 that transmits and receives radio waves of a relatively low first frequency using an array antenna, and can perform beamforming on radio waves of a relatively high first frequency using a phased array antenna. By performing beamforming on radio waves of a relatively high first frequency, it is possible to improve the gain and improve the performance of the wireless communication device 100. Radio waves can be transmitted and received under optimal conditions depending on the frequency levels of the plurality of first frequencies and the characteristics of the radio waves of each first frequency, such as the linearity.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Details Of Aerials (AREA)
Abstract
Provided is a wireless communication device which is capable of communicating with a base station at a plurality of frequencies and is reduced in size. The wireless communication device comprises: a signal processing unit; a housing in which the signal processing unit is contained; a first antenna which is provided outside the housing, is connected to the signal processing unit via a transmission cable, and communicates with a base station using radio waves of a first frequency; a second antenna which is provided in the housing or on the outer surface of the housing, is connected to the signal processing unit, and communicates with the base station using radio waves of a second frequency lower than the first frequency; and a third antenna which is connected to the signal processing unit and communicates with a terminal.
Description
本開示は、無線通信装置に関する。
This disclosure relates to a wireless communication device.
従来より、建物の窓の窓ガラスに設けられるトランシーバー部がある。トランシーバー部は、窓ガラスの外側の表面に設けられるアンテナ部と、窓ガラスの屋内側の表面に設けられる電源部とを有する。電源部は、窓ガラスを通して電力をアンテナ部に供給する。アンテナ部は、第1アンテナプレート及び第2アンテナプレートを含む。第1アンテナプレートは屋外から電波を受信し、第2アンテナプレートは、第1アンテナプレートが受信した信号を屋内に放射する(例えば、特許文献1参照)。
Conventionally, there is a transceiver unit that is installed on the window glass of a building. The transceiver unit has an antenna unit that is installed on the outside surface of the window glass, and a power supply unit that is installed on the indoor surface of the window glass. The power supply unit supplies power to the antenna unit through the window glass. The antenna unit includes a first antenna plate and a second antenna plate. The first antenna plate receives radio waves from outdoors, and the second antenna plate radiates the signal received by the first antenna plate indoors (see, for example, Patent Document 1).
ところで、外部の基地局と通信するアンテナの数が増えた場合に、1つの筐体内に複数のアンテナを配置すると、装置が大型化する。
However, if the number of antennas for communicating with external base stations increases, placing multiple antennas in one housing will result in the device becoming larger.
そこで、基地局と複数の周波数で通信可能で小型化を図った無線通信装置を提供することを目的とする。
The objective is to provide a compact wireless communication device that can communicate with a base station on multiple frequencies.
本開示の実施形態の無線通信装置は、信号処理部と、前記信号処理部を収容する筐体と、前記筐体の外側に設けられ、伝送ケーブルを介して前記信号処理部に接続され、第1周波数の電波で基地局と通信する第1アンテナと、前記筐体内又は前記筐体の外表面に設けられ、前記信号処理部に接続され、前記第1周波数よりも低い第2周波数の電波で前記基地局と通信する第2アンテナと、前記信号処理部に接続され、端末と通信する第3アンテナとを含む。
A wireless communication device according to an embodiment of the present disclosure includes a signal processing unit, a housing that houses the signal processing unit, a first antenna that is provided outside the housing and connected to the signal processing unit via a transmission cable and communicates with a base station using radio waves at a first frequency, a second antenna that is provided inside the housing or on the outer surface of the housing and connected to the signal processing unit and communicates with the base station using radio waves at a second frequency that is lower than the first frequency, and a third antenna that is connected to the signal processing unit and communicates with a terminal.
基地局と複数の周波数で通信可能で小型化を図った無線通信装置を提供できる。
It is possible to provide a compact wireless communication device that can communicate with a base station on multiple frequencies.
以下、本開示の無線通信装置を適用した実施形態について説明する。以下では、同一の要素に同一の符号を付して、重複する説明を省略する場合がある。
Below, an embodiment in which the wireless communication device of the present disclosure is applied will be described. In the following, the same elements will be given the same reference numerals, and duplicated explanations may be omitted.
以下では、XYZ座標系を定義して説明する。X軸に平行な方向(X方向)、Y軸に平行な方向(Y方向)、Z軸に平行な方向(Z方向)は、互いに直交する。また、以下では構成が分かりやすくなるように各部の長さ、太さ、厚さ等を誇張して示す場合がある。また、平行、直角、直交、水平、垂直、上下等の文言は、実施形態の効果を損なわない程度のずれを許容するものとする。
The following defines and explains the XYZ coordinate system. The direction parallel to the X axis (X direction), the direction parallel to the Y axis (Y direction), and the direction parallel to the Z axis (Z direction) are mutually perpendicular. In addition, the length, width, thickness, etc. of each part may be exaggerated below to make the configuration easier to understand. Furthermore, terms such as parallel, right angle, orthogonal, horizontal, vertical, up and down, etc., are permitted to be misaligned to the extent that they do not impair the effect of the embodiment.
また、以下の説明で、「電波」とは電磁波の一種であり、一般的に、3THz以下の電磁波は電波と呼ばれている。以下では、屋外の基地局又は中継局から放射された電磁波を「電波」と呼び、電磁波一般について言及するときは「電磁波」と呼ぶ。また、以下では、「ミリ波」又は「ミリ波帯」というときは、30GHz~300GHzの周波数帯域に加えて、24GHz~30GHzの準ミリ波帯も含むものとする。
In the following explanation, "radio waves" refers to a type of electromagnetic wave, and generally, electromagnetic waves below 3 THz are called radio waves. Below, electromagnetic waves emitted from outdoor base stations or relay stations will be called "radio waves", and electromagnetic waves in general will be called "electromagnetic waves". In addition, below, when we refer to "millimeter waves" or "millimeter wave band", we mean not only the frequency band of 30 GHz to 300 GHz, but also the quasi-millimeter wave band of 24 GHz to 30 GHz.
<実施形態>
実施形態の無線通信装置は、基地局又は中継局から到来する電波を受信し、周波数を変換せずに増幅等の処理を行って放射する中継機として機能しうる。また、実施形態の無線通信装置は、基地局から到来する電波を受信し、周波数の変換及び増幅等の処理を行って放射する中継機として機能しうる。 <Embodiment>
The wireless communication device of the embodiment can function as a repeater that receives radio waves coming from a base station or a relay station, performs processing such as amplification without converting the frequency, and then radiates the radio waves. The wireless communication device of the embodiment can also function as a repeater that receives radio waves coming from a base station, performs processing such as frequency conversion and amplification, and then radiates the radio waves.
実施形態の無線通信装置は、基地局又は中継局から到来する電波を受信し、周波数を変換せずに増幅等の処理を行って放射する中継機として機能しうる。また、実施形態の無線通信装置は、基地局から到来する電波を受信し、周波数の変換及び増幅等の処理を行って放射する中継機として機能しうる。 <Embodiment>
The wireless communication device of the embodiment can function as a repeater that receives radio waves coming from a base station or a relay station, performs processing such as amplification without converting the frequency, and then radiates the radio waves. The wireless communication device of the embodiment can also function as a repeater that receives radio waves coming from a base station, performs processing such as frequency conversion and amplification, and then radiates the radio waves.
実施形態の無線通信装置は、基地局又は中継局との間で、第1周波数の電波と、第2周波数の電波とを送受信可能である。第2周波数は、第1周波数よりも低い。
The wireless communication device of the embodiment is capable of transmitting and receiving radio waves of a first frequency and radio waves of a second frequency between a base station or a relay station. The second frequency is lower than the first frequency.
第1周波数の電波は、所定周波数以上の周波数帯域の電波である。所定周波数は、1GHz~3GHz程度である。第1周波数の電波は、一例として、第五世代移動通信システム(5G)等のミリ波帯や、Sub-6、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、又はUMB(Ultra Mobile Broadband)のうちの所定周波数以上の周波数帯域の電波である。
The radio waves of the first frequency are radio waves in a frequency band equal to or greater than a specified frequency. The specified frequency is approximately 1 GHz to 3 GHz. As an example, the radio waves of the first frequency are radio waves in the millimeter wave band of the fifth generation mobile communication system (5G) or in a frequency band equal to or greater than a specified frequency of Sub-6, LTE (Long Term Evolution), LTE-A (LTE-Advanced), or UMB (Ultra Mobile Broadband).
第2周波数の電波は、所定周波数未満の周波数の電波である。所定周波数は、1GHz~3GHz程度である。第2周波数の電波は、一例として、第五世代移動通信システム(5G)等のSub-6、LTE、LTE-A、又はUMBのうちの所定周波数未満の周波数の電波である。
The second frequency radio wave is a radio wave with a frequency lower than a predetermined frequency. The predetermined frequency is about 1 GHz to 3 GHz. As an example, the second frequency radio wave is a radio wave with a frequency lower than the predetermined frequency of Sub-6, LTE, LTE-A, or UMB, such as the fifth generation mobile communication system (5G).
また、実施形態の無線通信装置は、基地局又は中継局から受信した電波を中継機として放射する際には、上述した第1周波数の電波及び第2周波数の電波に対して周波数の変換を行わずに増幅等の処理を行って放射してもよい。
In addition, when the wireless communication device of the embodiment radiates radio waves received from a base station or relay station as a repeater, the radio waves of the first frequency and the second frequency described above may be amplified or otherwise processed before being radiated without frequency conversion.
また、実施形態の無線通信装置は、基地局又は中継局から受信した電波を中継機として放射する際に、上述した第1周波数の電波又は第2周波数の電波に対して周波数の変換及び増幅等の処理を行って、IEEE802.11(Wi-Fi(登録商標))、IEEE802.16(WiMAX(登録商標))、IEEE802.20、UWB(Ultra-Wideband)、Bluetooth(登録商標)、又はLPWA(Low Power Wide Area)等の電波として放射してもよい。これらのうち、Wi-Fi及びWiMAXは、無線LAN(Local Area Network)として利用可能である。
In addition, when the wireless communication device of the embodiment radiates radio waves received from a base station or relay station as a repeater, it may perform processing such as frequency conversion and amplification on the radio waves of the first frequency or the second frequency described above, and radiate the radio waves as radio waves of IEEE802.11 (Wi-Fi (registered trademark)), IEEE802.16 (WiMAX (registered trademark)), IEEE802.20, UWB (Ultra-Wideband), Bluetooth (registered trademark), or LPWA (Low Power Wide Area), etc. Of these, Wi-Fi and WiMAX can be used as wireless LANs (Local Area Networks).
<無線通信装置100の概略>
図1は、実施形態の無線通信装置100が設けられた建物1の一例を側方から示す図である。図1には、建物1及び無線通信装置100の他に、基地局BS1及びBS2、及びスマートフォン50を示す。基地局BS1及びBS2は、外部機器の一例である。図1には、基地局BS1及びBS2を示すが、無線通信装置100の外部機器は、中継局であってもよい。無線通信装置100の外部機器が中継局であっても、無線通信装置100は、中継局を介して基地局と通信することになる。 <Overview ofwireless communication device 100>
Fig. 1 is a diagram showing an example of a building 1 in which awireless communication device 100 according to an embodiment is installed, as seen from the side. In addition to the building 1 and the wireless communication device 100, Fig. 1 also shows base stations BS1 and BS2, and a smartphone 50. The base stations BS1 and BS2 are examples of external devices. Fig. 1 shows the base stations BS1 and BS2, but the external device of the wireless communication device 100 may be a relay station. Even if the external device of the wireless communication device 100 is a relay station, the wireless communication device 100 will communicate with the base station via the relay station.
図1は、実施形態の無線通信装置100が設けられた建物1の一例を側方から示す図である。図1には、建物1及び無線通信装置100の他に、基地局BS1及びBS2、及びスマートフォン50を示す。基地局BS1及びBS2は、外部機器の一例である。図1には、基地局BS1及びBS2を示すが、無線通信装置100の外部機器は、中継局であってもよい。無線通信装置100の外部機器が中継局であっても、無線通信装置100は、中継局を介して基地局と通信することになる。 <Overview of
Fig. 1 is a diagram showing an example of a building 1 in which a
以下では、無線通信装置100の動作や構成について、無線通信装置100が電波を受信する動作を用いて説明する場合がある。無線通信装置100が電波を送信する動作は、電波を受信する動作の反対の動作であるため、無線通信装置100が電波を送信する動作についての説明を省略する場合がある。
Below, the operation and configuration of the wireless communication device 100 may be described using the operation of the wireless communication device 100 receiving radio waves. Since the operation of the wireless communication device 100 transmitting radio waves is the opposite operation to the operation of receiving radio waves, the description of the operation of the wireless communication device 100 transmitting radio waves may be omitted.
建物1は、戸建住宅、ビル、又はマンション等の他に、ショッピングモールやデパート等の商業施設、空港、工場、電力施設、庁舎、駅(駅舎)、又はバス停の建屋等であってもよい。窓10は、これらの建物1に用いられる。窓10は、窓ガラス11及び窓枠(建物1側の窓枠)を含む。無線通信装置100は、一例として建物1の屋内に設けられ、屋外側から到来する電波を屋内側に中継するとともに、屋内側の電波を屋外側に中継する中継機としての機能を有する。なお、ここでは、一例として、無線通信装置100が建物1の屋内に設けられる形態について説明する。しかしながら、無線通信装置100は、後述する第1周波数の電波が到達不可能な領域と、到達可能な領域とがあるのであれば、屋外に配置されていてもよい。
The building 1 may be a detached house, a building, an apartment, or a commercial facility such as a shopping mall or a department store, an airport, a factory, a power facility, a government building, a station (station building), or a bus stop building. The window 10 is used in these buildings 1. The window 10 includes a window glass 11 and a window frame (the window frame on the building 1 side). The wireless communication device 100 is installed inside the building 1 as an example, and has a function as a repeater that relays radio waves arriving from the outside to the inside and relays radio waves from the inside to the outside. Note that, as an example, a form in which the wireless communication device 100 is installed inside the building 1 will be described here. However, the wireless communication device 100 may be installed outdoors as long as there are areas where radio waves of a first frequency described later cannot reach and areas where they can reach.
図1において、XYZ座標系は、一例として、窓ガラス11の屋内側の主面を基準として定義する。窓ガラス11の屋内側の主面は、窓ガラス11の+Z方向側でXY平面に平行な主面である。建物1は、-Z方向側でXY平面に平行な壁1Wを有し、窓10は、壁1Wに設けられている。
In FIG. 1, as an example, the XYZ coordinate system is defined based on the indoor principal surface of the window glass 11. The indoor principal surface of the window glass 11 is the principal surface parallel to the XY plane on the +Z direction side of the window glass 11. The building 1 has a wall 1W parallel to the XY plane on the -Z direction side, and the window 10 is provided in the wall 1W.
一例として、基地局BS1は、第1周波数の電波を送受信し、基地局BS2は、第2周波数の電波を送受信する。上述したように、第1周波数は、所定周波数以上の周波数であり、第2周波数は、所定周波数未満の周波数である。所定周波数は、1GHz~3GHz程度である。なお、ここでは、基地局BS1と基地局BS2に分けて説明するが、1つの基地局が、第1周波数及び第2周波数の電波を送受信してもよい。
As an example, base station BS1 transmits and receives radio waves of a first frequency, and base station BS2 transmits and receives radio waves of a second frequency. As described above, the first frequency is a frequency equal to or higher than a predetermined frequency, and the second frequency is a frequency lower than the predetermined frequency. The predetermined frequency is approximately 1 GHz to 3 GHz. Note that, although the explanation is given here separately for base station BS1 and base station BS2, a single base station may transmit and receive radio waves of the first frequency and the second frequency.
第1周波数は、建物1の壁1Wを透過しない電波の周波数であり、第2周波数は、建物1の壁1Wを透過する電波の周波数である。第1周波数と第2周波数の境界である所定周波数は、壁1Wの材質や構造等によるが、1GHz~3GHz程度である。なお、電波が建物1の壁1Wを透過しないとは、電波が壁1Wを全く透過しない場合に限らず、壁1Wを透過する電波が微弱で、建物1の壁1Wよりも内側(屋内)でスマートフォン50やPC(Personal Computer)等の端末で通信するのに、実用上十分な電波強度が得られない場合を含む意味である。
The first frequency is the frequency of radio waves that do not penetrate the wall 1W of the building 1, and the second frequency is the frequency of radio waves that penetrate the wall 1W of the building 1. The predetermined frequency that is the boundary between the first and second frequencies is approximately 1 GHz to 3 GHz, depending on the material and structure of the wall 1W. Note that radio waves not penetrating the wall 1W of the building 1 does not only mean that radio waves do not penetrate the wall 1W at all, but also means that the radio waves that penetrate the wall 1W are weak and do not provide sufficient radio wave strength for practical use to communicate with terminals such as smartphone 50 and PC (Personal Computer) inside (indoors) the wall 1W of the building 1.
基地局BS1から放射される第1周波数の電波は、建物1の壁1Wを透過しないため、窓10の窓ガラス11のみを透過して屋内に侵入する。第1周波数の電波は、高い直進性を有するために、窓10の見通し(LOS:Line of Sight)領域内にしか到達せず、屋内に不感地帯が生じやすくなる。窓10の窓ガラス11は、建物1における第1周波数の電波の侵入口である。
The first frequency radio waves emitted from base station BS1 do not penetrate the wall 1W of building 1, and therefore penetrate only the pane 11 of window 10 to enter the building. Because the first frequency radio waves have a high degree of directional propagating ability, they only reach the line of sight (LOS) area of window 10, which makes it easy for blind zones to form inside the building. The pane 11 of window 10 is the entry point for the first frequency radio waves into building 1.
また、基地局BS2から放射される第2周波数の電波は、建物1の窓10の窓ガラス11と、壁1Wとを透過して屋内に侵入するため、窓10の見通し(LOS)領域内だけでなく、建物1内の全体に到達する。このため、第2周波数の電波については、屋内に不感帯は生じにくい。
In addition, the second frequency radio waves emitted from base station BS2 penetrate the window glass 11 of the window 10 of building 1 and the wall 1W and enter the building, reaching not only the line of sight (LOS) area of the window 10 but the entire interior of building 1. For this reason, it is difficult for dead zones to occur indoors for the second frequency radio waves.
無線通信装置100は、第1周波数の電波を屋外の基地局BS1との間で送受信するために、窓10の窓ガラス11の屋内側の主面に設けられる第1アンテナ110を含む。第1アンテナ110は、伝送ケーブル115を介して装置本体101に接続されている。無線通信装置100は、一例として、複数の第1アンテナ110を含む。図1には、複数の第1アンテナ110をまとめて示すが、伝送ケーブル115は、各第1アンテナ110に1本ずつ接続されている。図1には、一例として4本の伝送ケーブル115を示すため、図1には、一例として4つの第1アンテナ110が設けられている構成を示す。第1アンテナ110の構成の詳細については、図3を用いて後述する。なお、無線通信装置100は、1つの第1アンテナ110を含む構成であってもよい。
The wireless communication device 100 includes a first antenna 110 provided on the indoor main surface of the window glass 11 of the window 10 in order to transmit and receive radio waves of a first frequency to and from the outdoor base station BS1. The first antenna 110 is connected to the device body 101 via a transmission cable 115. The wireless communication device 100 includes a plurality of first antennas 110 as an example. In FIG. 1, a plurality of first antennas 110 are shown together, but each of the first antennas 110 is connected to one transmission cable 115. Since FIG. 1 shows four transmission cables 115 as an example, FIG. 1 shows a configuration in which four first antennas 110 are provided as an example. Details of the configuration of the first antennas 110 will be described later with reference to FIG. 3. Note that the wireless communication device 100 may include one first antenna 110.
また、各第1アンテナ110と窓ガラス11の屋内側の主面との間には、整合層117が設けられている。各第1アンテナ110の+Z方向側には、液晶移相器118が設けられている。すなわち、第1アンテナ110は、整合層117と液晶移相器118との間に設けられている。一例として、第1アンテナ110は、図示しないホルダ等の固定部材によって窓ガラス11に接着されている。整合層117は、図示しないホルダ等によって、窓ガラス11と第1アンテナ110との間に保持されている。液晶移相器118は、一例として、図示しないホルダ等によって第1アンテナ110の+Z方向側に保持されている。また、液晶移相器118は、接着層等で第1アンテナ110の+Z方向側に直接接着することによって保持されていてもよい。
Also, a matching layer 117 is provided between each first antenna 110 and the indoor main surface of the window glass 11. A liquid crystal phase shifter 118 is provided on the +Z direction side of each first antenna 110. That is, the first antenna 110 is provided between the matching layer 117 and the liquid crystal phase shifter 118. As an example, the first antenna 110 is adhered to the window glass 11 by a fixing member such as a holder (not shown). The matching layer 117 is held between the window glass 11 and the first antenna 110 by a holder (not shown). As an example, the liquid crystal phase shifter 118 is held on the +Z direction side of the first antenna 110 by a holder (not shown). Also, the liquid crystal phase shifter 118 may be held by directly adhering to the +Z direction side of the first antenna 110 with an adhesive layer or the like.
なお、液晶移相器118は、無線通信装置100が、複数の第1アンテナ110をフェーズドアレイアンテナとして用いてビームフォーミングを行う場合に利用するものであるが、液晶移相器118の代わりに液晶移相器以外の移相器を用いてもよい。ただし、液晶移相器118は消費電力が少なく発熱量が少ないため、窓ガラス11に設ける場合には熱割れを抑制できる点で好ましい。また、無線通信装置100が第1アンテナ110でビームフォーミングを行わない場合には、無線通信装置100は、液晶移相器118を含まなくてよい。また、整合層117を含まなくても特に問題が無い場合は、無線通信装置100は、整合層117を含まなくてもよい。整合層117及び液晶移相器118については後述する。
The liquid crystal phase shifter 118 is used when the wireless communication device 100 performs beamforming using the multiple first antennas 110 as a phased array antenna, but a phase shifter other than the liquid crystal phase shifter may be used instead of the liquid crystal phase shifter 118. However, since the liquid crystal phase shifter 118 consumes little power and generates little heat, it is preferable to install it on the window glass 11 in that it can suppress thermal cracking. Furthermore, if the wireless communication device 100 does not perform beamforming using the first antenna 110, the wireless communication device 100 does not need to include the liquid crystal phase shifter 118. Furthermore, if there is no particular problem in not including the matching layer 117, the wireless communication device 100 does not need to include the matching layer 117. The matching layer 117 and the liquid crystal phase shifter 118 will be described later.
また、無線通信装置100は、第2周波数の電波を屋外の基地局BS2との間で送受信するために、屋内に設けられる装置本体101の内部に設けられる第2アンテナ(図1では図示を省略)を含む。
The wireless communication device 100 also includes a second antenna (not shown in FIG. 1) installed inside the device body 101, which is installed indoors, to transmit and receive radio waves of a second frequency to and from the outdoor base station BS2.
そして、無線通信装置100は、一例として、第1アンテナ110で受信した第1周波数の電波と、第2アンテナ120で受信した第2周波数の電波とに対して、増幅処理、又は、増幅処理及び周波数変換処理を行って、装置本体101に設けられる第3アンテナ(不図示)等から屋内に出力する。
Then, as an example, the wireless communication device 100 performs amplification processing, or amplification processing and frequency conversion processing, on the radio waves of the first frequency received by the first antenna 110 and the radio waves of the second frequency received by the second antenna 120, and outputs them indoors from a third antenna (not shown) or the like provided on the device main body 101.
無線通信装置100から屋内に電波を出力することで、屋内のスマートフォン50やPCのような端末で容易に受信できるようになる。
By outputting radio waves from the wireless communication device 100 indoors, the signals can be easily received by devices indoors such as smartphones 50 and PCs.
<無線通信装置100の具体的な構成>
無線通信装置100の具体的な構成については、図1に加えて図2及び図3を用いて説明する。図2は、無線通信装置100の構成の一例を示す図である。図2では、構成を簡略化して、第1アンテナ110及び伝送ケーブル115を1つずつ示す。図3は、第1アンテナ110の構成の一例を示す図である。図3には、一例として、4つの第1アンテナ110を示す。 <Specific configuration ofwireless communication device 100>
A specific configuration of thewireless communication device 100 will be described using Fig. 2 and Fig. 3 in addition to Fig. 1. Fig. 2 is a diagram showing an example of the configuration of the wireless communication device 100. Fig. 2 simplifies the configuration and shows one first antenna 110 and one transmission cable 115. Fig. 3 is a diagram showing an example of the configuration of the first antenna 110. Fig. 3 shows four first antennas 110 as an example.
無線通信装置100の具体的な構成については、図1に加えて図2及び図3を用いて説明する。図2は、無線通信装置100の構成の一例を示す図である。図2では、構成を簡略化して、第1アンテナ110及び伝送ケーブル115を1つずつ示す。図3は、第1アンテナ110の構成の一例を示す図である。図3には、一例として、4つの第1アンテナ110を示す。 <Specific configuration of
A specific configuration of the
無線通信装置100は、第1アンテナ110、伝送ケーブル115、整合層117、液晶移相器118、第2アンテナ120、第3アンテナ130A及び130B、コネクタ135A~135C、筐体140、及び信号処理部150を含む。コネクタ135A~135Cは、入出力端子の一例である。上述のように、ここでは一例として、無線通信装置100が第1アンテナ110及び伝送ケーブル115を4つずつ含む形態について説明するが、無線通信装置100は、第1アンテナ110及び伝送ケーブル115を少なくとも1つずつ含めばよい。
The wireless communication device 100 includes a first antenna 110, a transmission cable 115, a matching layer 117, a liquid crystal phase shifter 118, a second antenna 120, third antennas 130A and 130B, connectors 135A-135C, a housing 140, and a signal processing unit 150. The connectors 135A-135C are an example of an input/output terminal. As described above, as an example, a form in which the wireless communication device 100 includes four first antennas 110 and four transmission cables 115 will be described here, but the wireless communication device 100 may include at least one first antenna 110 and one transmission cable 115.
第2アンテナ120、第3アンテナ130A及び130B、コネクタ135A~135C、及び信号処理部150は、筐体140の内部に収容されている。これらのうち、コネクタ135Cは、一部が筐体140の外表面に露出した状態で、筐体140内に設けられている。コネクタ135Cは、筐体140の外側に位置するLANケーブルを挿抜可能なコネクタであるため、一部が筐体140の外表面に露出している。なお、無線通信装置100は、コネクタ135A及び135Bの代わりに、入出力端子の一例として、2つの第3アンテナ130Aが接続される端子を含む構成であってもよい。2つの第3アンテナ130Aが接続される端子は、例えば、信号処理部150とは別に設けられていてもよく、また、信号処理部150に設けられていてもよい。信号処理部150に設けられる端子は、信号処理部150の基板の端子や、信号処理部150の後述する無線モジュールのMCU(Micro Controller Unit)の端子等であってもよい。
The second antenna 120, the third antennas 130A and 130B, the connectors 135A to 135C, and the signal processing unit 150 are housed inside the housing 140. Of these, the connector 135C is provided inside the housing 140 with a portion of it exposed to the outer surface of the housing 140. The connector 135C is a connector into which a LAN cable located outside the housing 140 can be inserted and removed, and therefore a portion of it is exposed to the outer surface of the housing 140. Note that the wireless communication device 100 may be configured to include terminals to which the two third antennas 130A are connected, as an example of input/output terminals, instead of the connectors 135A and 135B. The terminals to which the two third antennas 130A are connected may be provided separately from the signal processing unit 150, for example, or may be provided in the signal processing unit 150. The terminals provided on the signal processing unit 150 may be terminals on the substrate of the signal processing unit 150, or terminals on an MCU (Micro Controller Unit) of a wireless module of the signal processing unit 150, which will be described later, etc.
第2アンテナ120、第3アンテナ130A及び130B、コネクタ135A~135C、筐体140、及び信号処理部150は、装置本体101を構成する。装置本体101は、可視光に対して透明ではなく、可視光を透過しない。
The second antenna 120, the third antennas 130A and 130B, the connectors 135A to 135C, the housing 140, and the signal processing unit 150 constitute the device body 101. The device body 101 is not transparent to visible light and does not transmit visible light.
<無線通信装置100の動作の一例>
ここで、以下では、一例として無線通信装置100が次のような動作を行う形態について説明する。無線通信装置100は、第1アンテナ110で受信した第1周波数の電波を信号処理部150で増幅して第3アンテナ130Aから屋内に放射する。また、無線通信装置100は、一例として、第2アンテナ120で受信した第2周波数の電波を信号処理部150で無線LANの電波に変換するとともに増幅して第3アンテナ130Bから屋内に放射する。無線LANの代わりに、UWB、Bluetooth(登録商標)、又はLPWA等を利用してもよい。また、無線通信装置100は、一例として、第2アンテナ120で受信した第2周波数の電波を信号処理部150で有線LAN用の信号に変換するとともに増幅して、コネクタ135Cに接続されたLANケーブル(不図示)を介して屋内にあるPC等の端末(不図示)に伝送する。 <Example of operation ofwireless communication device 100>
Here, the following describes an example of thewireless communication device 100 performing the following operation. The wireless communication device 100 amplifies the radio waves of the first frequency received by the first antenna 110 in the signal processing unit 150 and radiates the radio waves indoors from the third antenna 130A. In addition, as an example, the wireless communication device 100 converts the radio waves of the second frequency received by the second antenna 120 into radio waves of a wireless LAN in the signal processing unit 150, amplifies the radio waves, and radiates the radio waves indoors from the third antenna 130B. Instead of a wireless LAN, UWB, Bluetooth (registered trademark), LPWA, or the like may be used. In addition, as an example, the wireless communication device 100 converts the radio waves of the second frequency received by the second antenna 120 into a signal for a wired LAN in the signal processing unit 150, amplifies the signal, and transmits the signal to a terminal (not shown) such as a PC located indoors via a LAN cable (not shown) connected to the connector 135C.
ここで、以下では、一例として無線通信装置100が次のような動作を行う形態について説明する。無線通信装置100は、第1アンテナ110で受信した第1周波数の電波を信号処理部150で増幅して第3アンテナ130Aから屋内に放射する。また、無線通信装置100は、一例として、第2アンテナ120で受信した第2周波数の電波を信号処理部150で無線LANの電波に変換するとともに増幅して第3アンテナ130Bから屋内に放射する。無線LANの代わりに、UWB、Bluetooth(登録商標)、又はLPWA等を利用してもよい。また、無線通信装置100は、一例として、第2アンテナ120で受信した第2周波数の電波を信号処理部150で有線LAN用の信号に変換するとともに増幅して、コネクタ135Cに接続されたLANケーブル(不図示)を介して屋内にあるPC等の端末(不図示)に伝送する。 <Example of operation of
Here, the following describes an example of the
なお、この場合に、無線通信装置100は、一例として、第2アンテナ120で受信した第2周波数の電波については、無線LANの電波に変換するとともに増幅して第3アンテナ130Bから屋内に放射する動作、及び、有線LAN用の信号に変換するとともに増幅してコネクタ135Cから出力する動作のいずれか一方を行う構成であってもよい。この場合に、有線LAN用の信号をコネクタ135Cから出力する動作を行わない場合には、無線通信装置100は、有線LAN用のコネクタ135Cを含まなくてよい。
In this case, the wireless communication device 100 may be configured, for example, to perform either one of the following operations regarding the second frequency radio waves received by the second antenna 120: converting the radio waves into wireless LAN radio waves, amplifying the radio waves, and radiating the radio waves indoors from the third antenna 130B; or converting the radio waves into a signal for a wired LAN, amplifying the radio waves, and outputting the signal from the connector 135C. In this case, if the operation of outputting a signal for a wired LAN from the connector 135C is not performed, the wireless communication device 100 does not need to include the connector 135C for a wired LAN.
<無線通信装置100の動作の変形例(パート1)>
また、無線通信装置100は、上述のような動作を行う構成の代わりに、一例として次のような動作を行う構成であってもよい。無線通信装置100は、一例として、第1アンテナ110で受信した第1周波数の電波を信号処理部150で無線LANの電波に変換するとともに増幅して第3アンテナ130Aから屋内に放射してもよい。この場合に、無線通信装置100は、一例として、第2アンテナ120で受信した第2周波数の電波を信号処理部150で無線LANの電波に変換するとともに増幅して第3アンテナ130Bから屋内に放射してもよい。すなわち、第1アンテナ110で受信した第1周波数の電波と、第2アンテナ120で受信した第2周波数の電波との両方を無線LANの電波に変換するとともに増幅して第3アンテナ130A及び130Bから屋内に放射してもよい。また、無線通信装置100は、一例として、第1アンテナ110で受信した第1周波数の電波を信号処理部150で有線LAN用の信号に変換するとともに増幅して、コネクタ135Cに接続されたLANケーブル(不図示)を介して屋内にあるPC等の端末(不図示)に伝送してもよい。また、無線通信装置100は、一例として、第2アンテナ120で受信した第2周波数の電波を信号処理部150で増幅して第3アンテナ130Bから屋内に放射してもよい。 <Modification of the operation of the wireless communication device 100 (part 1)>
Also, thewireless communication device 100 may be configured to perform the following operation, for example, instead of the configuration for performing the above-mentioned operation. For example, the wireless communication device 100 may convert the radio wave of the first frequency received by the first antenna 110 into a radio wave of a wireless LAN in the signal processing unit 150, amplify the radio wave, and radiate the radio wave indoors from the third antenna 130A. In this case, for example, the wireless communication device 100 may convert the radio wave of the second frequency received by the second antenna 120 into a radio wave of a wireless LAN in the signal processing unit 150, amplify the radio wave, and radiate the radio wave indoors from the third antenna 130B. That is, both the radio wave of the first frequency received by the first antenna 110 and the radio wave of the second frequency received by the second antenna 120 may be converted into a radio wave of a wireless LAN, amplified, and radiated indoors from the third antennas 130A and 130B. Also, as an example, the wireless communication device 100 may convert radio waves of a first frequency received by the first antenna 110 into a signal for a wired LAN in the signal processing unit 150, amplify the signal, and transmit the signal to a terminal (not shown) such as a PC located indoors via a LAN cable (not shown) connected to the connector 135C. Also, as an example, the wireless communication device 100 may amplify radio waves of a second frequency received by the second antenna 120 in the signal processing unit 150, and radiate the signal indoors from the third antenna 130B.
また、無線通信装置100は、上述のような動作を行う構成の代わりに、一例として次のような動作を行う構成であってもよい。無線通信装置100は、一例として、第1アンテナ110で受信した第1周波数の電波を信号処理部150で無線LANの電波に変換するとともに増幅して第3アンテナ130Aから屋内に放射してもよい。この場合に、無線通信装置100は、一例として、第2アンテナ120で受信した第2周波数の電波を信号処理部150で無線LANの電波に変換するとともに増幅して第3アンテナ130Bから屋内に放射してもよい。すなわち、第1アンテナ110で受信した第1周波数の電波と、第2アンテナ120で受信した第2周波数の電波との両方を無線LANの電波に変換するとともに増幅して第3アンテナ130A及び130Bから屋内に放射してもよい。また、無線通信装置100は、一例として、第1アンテナ110で受信した第1周波数の電波を信号処理部150で有線LAN用の信号に変換するとともに増幅して、コネクタ135Cに接続されたLANケーブル(不図示)を介して屋内にあるPC等の端末(不図示)に伝送してもよい。また、無線通信装置100は、一例として、第2アンテナ120で受信した第2周波数の電波を信号処理部150で増幅して第3アンテナ130Bから屋内に放射してもよい。 <Modification of the operation of the wireless communication device 100 (part 1)>
Also, the
なお、この場合に、無線通信装置100は、一例として、第1アンテナ110で受信した第1周波数の電波については、無線LANの電波に変換するとともに増幅して第3アンテナ130Aから屋内に放射する動作、及び、有線LAN用の信号に変換するとともに増幅してコネクタ135Cから出力する動作のいずれか一方を行う構成であってもよい。この場合に、有線LAN用の信号をコネクタ135Cから出力する動作を行わない場合には、無線通信装置100は、有線LAN用のコネクタ135Cを含まなくてよい。
In this case, the wireless communication device 100 may be configured, for example, to perform either one of the following operations: converting radio waves of the first frequency received by the first antenna 110 into wireless LAN radio waves, amplifying the radio waves, and radiating the radio waves indoors from the third antenna 130A; or converting the radio waves into a signal for a wired LAN, amplifying the radio waves, and outputting the signal from the connector 135C. In this case, if the operation of outputting a signal for a wired LAN from the connector 135C is not performed, the wireless communication device 100 does not need to include the connector 135C for a wired LAN.
<無線通信装置100の動作の変形例(パート2)>
また、無線通信装置100は、上述のような動作を行う構成の代わりに、一例として次のような動作を行う構成であってもよい。無線通信装置100は、一例として、第1アンテナ110及び第2アンテナ120で受信した第1周波数及び第2周波数の電波を信号処理部150で増幅して第3アンテナ130A及び第3アンテナ130Bから屋内に放射する構成であってもよい。この場合には、無線通信装置100は、有線LAN用のコネクタ135Cを含まなくてよい。 <Modification of the operation of the wireless communication device 100 (part 2)>
Also, instead of being configured to perform the above-mentioned operations, thewireless communication device 100 may be configured to perform the following operations, for example. The wireless communication device 100 may be configured to amplify radio waves of the first and second frequencies received by the first and second antennas 110 and 120 in the signal processing unit 150 and radiate the amplified radio waves indoors from the third antennas 130A and 130B. In this case, the wireless communication device 100 does not need to include the connector 135C for a wired LAN.
また、無線通信装置100は、上述のような動作を行う構成の代わりに、一例として次のような動作を行う構成であってもよい。無線通信装置100は、一例として、第1アンテナ110及び第2アンテナ120で受信した第1周波数及び第2周波数の電波を信号処理部150で増幅して第3アンテナ130A及び第3アンテナ130Bから屋内に放射する構成であってもよい。この場合には、無線通信装置100は、有線LAN用のコネクタ135Cを含まなくてよい。 <Modification of the operation of the wireless communication device 100 (part 2)>
Also, instead of being configured to perform the above-mentioned operations, the
<第1アンテナ110>
第1アンテナ110は、装置本体101の筐体140の外側に設けられ、伝送ケーブル115を介して信号処理部150に接続され、第1周波数の電波で基地局BS1と通信するアンテナである。第1アンテナ110は、視感透過率が50%以上である。この詳細については後述する。 <First Antenna 110>
Thefirst antenna 110 is provided outside the housing 140 of the device main body 101, is connected to the signal processing unit 150 via a transmission cable 115, and is an antenna that communicates with the base station BS1 by radio waves of the first frequency. The first antenna 110 has a luminous transmittance of 50% or more. The details will be described later.
第1アンテナ110は、装置本体101の筐体140の外側に設けられ、伝送ケーブル115を介して信号処理部150に接続され、第1周波数の電波で基地局BS1と通信するアンテナである。第1アンテナ110は、視感透過率が50%以上である。この詳細については後述する。 <
The
装置本体101は、可視光を透過せず、窓10に配置すると視界の妨げになるため、屋内側における窓10の付近の壁1W、出窓のフレーム、又は床等の平坦な場所に配置することになる。この場合に、装置本体101は、床等の平坦な場所等に置かれているだけでもよい。
The device body 101 does not transmit visible light and would obstruct visibility if placed on the window 10, so it is placed on a flat surface such as a wall 1W near the window 10 on the indoor side, a bay window frame, or a floor. In this case, the device body 101 may simply be placed on a flat surface such as a floor.
基地局BS1から放射される第1周波数の電波は、窓10の窓ガラス11のみを透過して屋内に侵入するので、第1アンテナ110で第1周波数の電波を受信するためには、窓10の見通し(LOS)領域内に第1アンテナ110を配置することが好ましい。このような理由から、第1アンテナ110は、筐体140の外側に設けられている。第1アンテナ110を筐体140内に設けないため、装置本体101及び筐体140の小型化を図ることができる。
The first frequency radio waves emitted from base station BS1 penetrate only through the window glass 11 of window 10 and enter the interior of the building, so in order for the first antenna 110 to receive the first frequency radio waves, it is preferable to place the first antenna 110 within the line of sight (LOS) area of the window 10. For this reason, the first antenna 110 is provided outside the housing 140. As the first antenna 110 is not provided inside the housing 140, the device main body 101 and the housing 140 can be made smaller.
第1アンテナ110は、より具体的には、図1に示すように窓10の窓ガラス11の屋内側の主面に設けられている。第1アンテナ110は、図2に示すように伝送ケーブル115を介して装置本体101の筐体140のコネクタ145に接続されている。伝送ケーブル115は、一例として同軸ケーブルで構成される。図2には、1つのコネクタ145を示すが、一例として無線通信装置100が第1アンテナ110及び伝送ケーブル115を4つずつ含むため、筐体140には4つのコネクタ145が設けられる。
More specifically, the first antenna 110 is provided on the indoor main surface of the window glass 11 of the window 10 as shown in FIG. 1. The first antenna 110 is connected to a connector 145 of the housing 140 of the device main body 101 via a transmission cable 115 as shown in FIG. 2. The transmission cable 115 is formed of a coaxial cable as an example. Although one connector 145 is shown in FIG. 2, as an example, the wireless communication device 100 includes four first antennas 110 and four transmission cables 115, four connectors 145 are provided on the housing 140.
各第1アンテナ110は、基板110A、アンテナエレメント111、給電線路112、及び分岐線路113及び114を有する。一例として、4つの第1アンテナ110の基板110Aは、一体化されている。
Each first antenna 110 has a substrate 110A, an antenna element 111, a feed line 112, and branch lines 113 and 114. As an example, the substrates 110A of the four first antennas 110 are integrated.
アンテナエレメント111、給電線路112、及び分岐線路113及び114は、基板110Aの-Z方向側の表面に設けられている。第1アンテナ110は、基板110Aの+Z方向側の表面の全体に設けられるグランド層を有するが、図3では図示を省略する。グランド層は、図示しないグランド電位点に接続されている。
The antenna element 111, the feed line 112, and the branch lines 113 and 114 are provided on the surface on the -Z direction side of the substrate 110A. The first antenna 110 has a ground layer provided on the entire surface on the +Z direction side of the substrate 110A, but this is not shown in FIG. 3. The ground layer is connected to a ground potential point (not shown).
図3には、4つの第1アンテナ110の4つのアンテナエレメント111を示す。4つのアンテナエレメント111の構成は、一例として互いに等しい。隣り合うアンテナエレメント111同士のピッチは、第1アンテナ110の通信周波数における波長をλとすると、一例として約λ/2である。隣り合うアンテナエレメント111同士のピッチとは、隣り合うアンテナエレメント111の中心同士のX方向の間隔である。
FIG. 3 shows four antenna elements 111 of four first antennas 110. The configuration of the four antenna elements 111 is, for example, the same as each other. The pitch between adjacent antenna elements 111 is, for example, approximately λ/2, where λ is the wavelength at the communication frequency of the first antenna 110. The pitch between adjacent antenna elements 111 is the distance in the X direction between the centers of adjacent antenna elements 111.
無線通信装置100は、一例として、4つのアンテナエレメント111(第1アンテナ110)を利用して、例えば、MIMO(Multiple-Input and Multiple-Output)通信が可能である。また、無線通信装置100は、一例として、4つのアンテナエレメント111(第1アンテナ110)をフェーズドアレイアンテナとして利用して、ビームフォーミングを行ってもよい。また、無線通信装置100は、一例として、4つのアンテナエレメント111(第1アンテナ110)でMIMO通信又はビームフォーミングを行わない構成であってもよい。
As an example, the wireless communication device 100 is capable of, for example, MIMO (Multiple-Input and Multiple-Output) communication using four antenna elements 111 (first antenna 110). Also, as an example, the wireless communication device 100 may perform beamforming using the four antenna elements 111 (first antenna 110) as a phased array antenna. Also, as an example, the wireless communication device 100 may be configured not to perform MIMO communication or beamforming using the four antenna elements 111 (first antenna 110).
各アンテナエレメント111に対応して、給電線路112と分岐線路113及び114が1本ずつ設けられている。分岐線路113は、第1分岐線路の一例であり、分岐線路114は、第2分岐線路の一例である。
A feed line 112 and branch lines 113 and 114 are provided for each antenna element 111. Branch line 113 is an example of a first branch line, and branch line 114 is an example of a second branch line.
<基板110A>
基板110Aは、基地局BS1及びBS2から放射される電波に対して透明で、かつ、アンテナエレメント111、給電線路112、及び分岐線路113及び114を担持することのできる任意の材料で形成されている。放射される電波に対して透明とは、例えば透過損失が10dB以下であることをいう。基板110Aが放射される電波に対して透明であるとは、基板110Aの透過損失が10dB以下、好ましくは6dB以下、より好ましくは3dB以下、さらに好ましくは1dB以下であることをいう。 <Substrate 110A>
Thesubstrate 110A is formed of any material that is transparent to radio waves radiated from the base stations BS1 and BS2 and that can support the antenna element 111, the feed line 112, and the branch lines 113 and 114. "Transparent to the radiated radio waves" means, for example, that the transmission loss is 10 dB or less. "The substrate 110A is transparent to the radiated radio waves" means that the transmission loss of the substrate 110A is 10 dB or less, preferably 6 dB or less, more preferably 3 dB or less, and even more preferably 1 dB or less.
基板110Aは、基地局BS1及びBS2から放射される電波に対して透明で、かつ、アンテナエレメント111、給電線路112、及び分岐線路113及び114を担持することのできる任意の材料で形成されている。放射される電波に対して透明とは、例えば透過損失が10dB以下であることをいう。基板110Aが放射される電波に対して透明であるとは、基板110Aの透過損失が10dB以下、好ましくは6dB以下、より好ましくは3dB以下、さらに好ましくは1dB以下であることをいう。 <
The
また、基板110Aは、可視光に対して透明であってよい。可視光に対して「透明」とは、視感透過率が少なくとも40%以上、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上であることをいう。
The substrate 110A may also be transparent to visible light. "Transparent" to visible light means that the visual transmittance is at least 40%, preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.
一例として、基板110Aとして、樹脂基板(樹脂フィルム)を用いてもよい。上記の条件を満たす樹脂材料として、ポリメチルメタクリレート等のアクリル系樹脂、シクロオレフィン系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタラート(PET)等を用いることができる。また、基板110Aとして、ガラス板を用いてもよい。上記の条件を満たすガラス板として、ソーダ石灰ガラス、無アルカリガラス、パイレックス(登録商標)ガラス、石英ガラス等を用いることができる。なお、ここでは、一例として、基板110Aが樹脂基板である形態について説明する。
As an example, a resin substrate (resin film) may be used as the substrate 110A. Examples of resin materials that satisfy the above conditions include acrylic resins such as polymethyl methacrylate, cycloolefin resins, polycarbonate resins, and polyethylene terephthalate (PET). Also, a glass plate may be used as the substrate 110A. Examples of glass plates that satisfy the above conditions include soda-lime glass, alkali-free glass, Pyrex (registered trademark) glass, and quartz glass. Note that, as an example, a form in which the substrate 110A is a resin substrate will be described here.
<アンテナエレメント111、給電線路112、及び分岐線路113及び114の全体の構成>
アンテナエレメント111、給電線路112、及び分岐線路113及び114は、一例として、銅、ニッケル、又は金等の金属薄膜で形成可能である。アンテナエレメント111、給電線路112、及び分岐線路113及び114は、基板110Aが可視光に対して透明である場合には、一例として、銅、ニッケル、又は金等のメッシュ状の金属薄膜で形成されていることが視認性の観点から好ましい。 <Overall configuration ofantenna element 111, feed line 112, and branch lines 113 and 114>
Theantenna element 111, the power feed line 112, and the branch lines 113 and 114 can be formed of, for example, a thin metal film of copper, nickel, gold, etc. When the substrate 110A is transparent to visible light, it is preferable from the viewpoint of visibility that the antenna element 111, the power feed line 112, and the branch lines 113 and 114 are formed of, for example, a mesh-shaped thin metal film of copper, nickel, gold, etc.
アンテナエレメント111、給電線路112、及び分岐線路113及び114は、一例として、銅、ニッケル、又は金等の金属薄膜で形成可能である。アンテナエレメント111、給電線路112、及び分岐線路113及び114は、基板110Aが可視光に対して透明である場合には、一例として、銅、ニッケル、又は金等のメッシュ状の金属薄膜で形成されていることが視認性の観点から好ましい。 <Overall configuration of
The
また、アンテナエレメント111、給電線路112、及び分岐線路113及び114は、酸化亜鉛(ZnO)、酸化スズ(SnO2)、スズドープ酸化インジウム(ITO)、酸化インジウム・酸化スズ(IZO)等の透明導電膜、窒化チタン(TiN)や窒化クロム(CrN)等の金属窒化物、又はLow-e(low emissivity)ガラス用のLow-e膜で形成されていてもよい。
In addition, the antenna element 111, the power supply line 112, and the branch lines 113 and 114 may be formed of a transparent conductive film such as zinc oxide (ZnO), tin oxide (SnO 2 ), tin-doped indium oxide (ITO), indium oxide-tin oxide (IZO), or the like, a metal nitride such as titanium nitride (TiN) or chromium nitride (CrN), or a Low-e film for Low-e glass.
第1アンテナ110は、上述のように、基板110Aが可視光に対して透明であって、かつ、アンテナエレメント111、給電線路112、及び分岐線路113及び114がメッシュ状の金属薄膜等のような透明導体で構成される場合には、視感透過率が50%以上であればよい。
As described above, the first antenna 110 only needs to have a visual transmittance of 50% or more if the substrate 110A is transparent to visible light and the antenna element 111, the feed line 112, and the branch lines 113 and 114 are made of transparent conductors such as mesh-like thin metal films.
<アンテナエレメント111>
アンテナエレメント111は、XY面視(第1アンテナ110の平面視)で矩形状であり、基板110Aの+Z方向側の表面のグランド層とともに、パッチアンテナを構成する。アンテナエレメント111は、-Y方向側の端部におけるX方向の幅の中央に、給電点111Aを有する。 <Antenna element 111>
Theantenna element 111 has a rectangular shape in the XY plane (planar view of the first antenna 110) and constitutes a patch antenna together with a ground layer on the surface on the +Z direction side of the substrate 110A. The antenna element 111 has a feeding point 111A at the center of its width in the X direction at the end on the -Y direction side.
アンテナエレメント111は、XY面視(第1アンテナ110の平面視)で矩形状であり、基板110Aの+Z方向側の表面のグランド層とともに、パッチアンテナを構成する。アンテナエレメント111は、-Y方向側の端部におけるX方向の幅の中央に、給電点111Aを有する。 <
The
<給電線路112>
給電線路112は、給電点111Aに接続され、給電点111Aから-Y方向に延在している。給電線路112は、基板110Aの反対側のグランド層と重なっているため、マイクロストリップ線路を構成している。給電線路112の-Y方向側の端部は、伝送ケーブル115の信号線に接続されており、コネクタ145を介して信号処理部150に接続されている。伝送ケーブル115の信号線は、伝送ケーブル115が同軸ケーブルで構成される場合には、同軸ケーブルの芯線である。なお、この場合には、伝送ケーブル115のシールド線は、基板110Aの+Z方向側の表面に設けられるグランド層に接続される。なお、伝送ケーブル115として、同軸ケーブルの代わりに、導波管、又は、フレキシブル基板等に形成されたマイクロストリップ線路やコプレーナ導波路のような伝送路等を用いてもよい。 <Power supply line 112>
Thefeed line 112 is connected to the feed point 111A and extends from the feed point 111A in the −Y direction. The feed line 112 overlaps with the ground layer on the opposite side of the substrate 110A, and thus constitutes a microstrip line. The end of the feed line 112 on the −Y direction side is connected to the signal line of the transmission cable 115, and is connected to the signal processing unit 150 via the connector 145. When the transmission cable 115 is constituted by a coaxial cable, the signal line of the transmission cable 115 is the core wire of the coaxial cable. In this case, the shield wire of the transmission cable 115 is connected to the ground layer provided on the surface of the substrate 110A on the +Z direction side. In addition, instead of a coaxial cable, a waveguide, or a transmission line such as a microstrip line or a coplanar waveguide formed on a flexible substrate or the like may be used as the transmission cable 115.
給電線路112は、給電点111Aに接続され、給電点111Aから-Y方向に延在している。給電線路112は、基板110Aの反対側のグランド層と重なっているため、マイクロストリップ線路を構成している。給電線路112の-Y方向側の端部は、伝送ケーブル115の信号線に接続されており、コネクタ145を介して信号処理部150に接続されている。伝送ケーブル115の信号線は、伝送ケーブル115が同軸ケーブルで構成される場合には、同軸ケーブルの芯線である。なお、この場合には、伝送ケーブル115のシールド線は、基板110Aの+Z方向側の表面に設けられるグランド層に接続される。なお、伝送ケーブル115として、同軸ケーブルの代わりに、導波管、又は、フレキシブル基板等に形成されたマイクロストリップ線路やコプレーナ導波路のような伝送路等を用いてもよい。 <
The
<分岐線路113>
分岐線路113は、給電線路112の途中から分岐して、一例として-X方向に延在している。分岐線路113の長さは、第1アンテナ110の通信周波数における波長の電気長をλeとすると、λe/2である。分岐線路113の長さとは、分岐線路113が給電線路112に接続される+X方向側の端部と、-X方向側の端部(開放端)との間の延在方向における長さである。 <Branch line 113>
Thebranch line 113 branches off from the middle of the feed line 112 and extends in the −X direction, for example. The length of the branch line 113 is λe/2, where λe is the electrical length of the wavelength at the communication frequency of the first antenna 110. The length of the branch line 113 is the length in the extension direction between the end of the branch line 113 on the +X direction side where it is connected to the feed line 112, and the end (open end) on the −X direction side.
分岐線路113は、給電線路112の途中から分岐して、一例として-X方向に延在している。分岐線路113の長さは、第1アンテナ110の通信周波数における波長の電気長をλeとすると、λe/2である。分岐線路113の長さとは、分岐線路113が給電線路112に接続される+X方向側の端部と、-X方向側の端部(開放端)との間の延在方向における長さである。 <
The
分岐線路113の延在方向における長さの中点113Aには、分岐線路114が接続される。分岐線路113の中点113Aよりも+X方向側の区間の長さはλe/4であり、分岐線路113の中点113Aよりも-X方向側の区間の長さはλe/4である。中点113Aは、分岐線路113の-X方向側の端部までの距離と、+X方向側の端部までの距離とが、ともにλe/4の位置にあるため、アンテナエレメント111が電波を送受信する際に、交流電圧の節になる点である。すなわち、中点113Aの電圧は、常に0Vである。
Branch line 114 is connected to midpoint 113A of the length of branch line 113 in the extension direction. The length of the section of branch line 113 on the +X side of midpoint 113A is λe/4, and the length of the section of branch line 113 on the -X side of midpoint 113A is λe/4. Since the distance to midpoint 113A and the distance to the end of branch line 113 on the -X side and the end on the +X side are both λe/4, midpoint 113A is a node of the AC voltage when antenna element 111 transmits and receives radio waves. In other words, the voltage at midpoint 113A is always 0V.
<分岐線路114>
分岐線路114は、分岐線路113の延在方向における長さの中点113Aから分岐し、一例として-Y方向側に延在している。分岐線路114が+Y方向側よりも-Y方向側に延在する方が、アンテナエレメント111の放射特性に影響を与えにくいからである。 <Branch line 114>
Thebranch line 114 branches off from a midpoint 113A of the length of the branch line 113 in the extension direction, and extends, for example, in the −Y direction. This is because the branch line 114 is less likely to affect the radiation characteristics of the antenna element 111 if it extends in the −Y direction rather than the +Y direction.
分岐線路114は、分岐線路113の延在方向における長さの中点113Aから分岐し、一例として-Y方向側に延在している。分岐線路114が+Y方向側よりも-Y方向側に延在する方が、アンテナエレメント111の放射特性に影響を与えにくいからである。 <
The
分岐線路114は、分岐線路113の延在方向における長さの中点113Aから分岐しており、中点113Aの電圧は常に0Vである。このため、分岐線路113の中点113Aに分岐線路114が接続されていることは、分岐線路113の中点113Aに何も接続されていない状態と等価である。すなわち、分岐線路114のインピーダンスは、理論上はアンテナエレメント111の放射特性に影響を与えないことになる。このような分岐線路113及び114は、チョーク構造を構成する。
The branch line 114 branches off from midpoint 113A of the length of the branch line 113 in the extension direction, and the voltage at midpoint 113A is always 0V. Therefore, connecting the branch line 114 to midpoint 113A of the branch line 113 is equivalent to a state in which nothing is connected to midpoint 113A of the branch line 113. In other words, the impedance of the branch line 114 theoretically does not affect the radiation characteristics of the antenna element 111. Such branch lines 113 and 114 form a choke structure.
また、4つの第1アンテナ110の4つの分岐線路114は、互いに異なる抵抗値を有する。4つの第1アンテナ110を識別可能にするためである。分岐線路113及び114は、チョーク構造の一例であるとともに、識別部の一例である。
Furthermore, the four branch lines 114 of the four first antennas 110 have different resistance values from each other. This is to make the four first antennas 110 identifiable. The branch lines 113 and 114 are an example of a choke structure and an example of an identification portion.
各分岐線路114の抵抗値は、所定の直流抵抗値の一例である。4つの分岐線路114の抵抗値は、一例として、0Ωから500Ωの範囲内で、互いに異なる4つの抵抗値に設定すればよい。
The resistance value of each branch line 114 is an example of a predetermined DC resistance value. As an example, the resistance values of the four branch lines 114 may be set to four different resistance values within a range of 0 Ω to 500 Ω.
分岐線路114の-Y方向側の端部にはパッド114Aが設けられており、一例としてパッド114Aには、基板110Aを厚さ方向(Z方向)に貫通するスルーホールビアが設けられている。スルーホールビアの+Z方向側の端部は、基板110Aの+Z方向側の表面に設けられるグランド層に接続されている。
A pad 114A is provided at the end of the branch line 114 on the -Y direction side, and as an example, a through-hole via that penetrates the substrate 110A in the thickness direction (Z direction) is provided in the pad 114A. The end of the through-hole via on the +Z direction side is connected to a ground layer provided on the surface of the substrate 110A on the +Z direction side.
4つの分岐線路114は、一例として、メッシュ状の金属薄膜で構成される場合には、メッシュの密度等が異なることによって、互いに異なる抵抗値を有する構成であってよい。また、4つの分岐線路114は、一例として、金属薄膜で構成される場合には、互いに太さ、長さ、又は材質等が異なることによって、互いに異なる抵抗値を有する構成であってもよい。また、4つの分岐線路114は、一例として、各分岐線路114に抵抗器が直列に挿入されており、抵抗器の抵抗値が互いに異なることによって、互いに異なる抵抗値を有する構成であってもよい。ここでは、金属細線で構成されるメッシュ構造を有する形態について説明する。
When the four branch lines 114 are made of a mesh-like thin metal film, for example, they may have different resistance values due to differences in mesh density, etc. Furthermore, when the four branch lines 114 are made of a thin metal film, for example, they may have different thicknesses, lengths, materials, etc., so that they have different resistance values. Furthermore, when the four branch lines 114 are made of a thin metal film, for example, they may have different resistance values due to differences in thickness, length, material, etc. Furthermore, when the four branch lines 114 are made of a thin metal film, for example, they may have different resistance values due to differences in resistance values of the resistors inserted in series in each branch line 114. Here, a form having a mesh structure made of thin metal wires will be described.
4つの分岐線路114の抵抗値が互いに異なるので、例えば、無線通信装置100が4つのアンテナエレメント111(第1アンテナ110)でMIMO通信又はビームフォーミングを行う場合に、信号処理部150で4つのアンテナエレメント111(第1アンテナ110)を識別可能である。信号処理部150は、伝送ケーブル115を介してアンテナエレメント111と、基板110Aの+Z方向側の表面のグランド層とに接続されているからである。なお、一例として、無線通信装置100が4つのアンテナエレメント111(第1アンテナ110)でMIMO通信又はビームフォーミングを行わない場合には、4つの分岐線路114の抵抗値は互いに等しくてよい。
Since the resistance values of the four branch lines 114 are different from each other, for example, when the wireless communication device 100 performs MIMO communication or beamforming with the four antenna elements 111 (first antenna 110), the signal processing unit 150 can identify the four antenna elements 111 (first antenna 110). This is because the signal processing unit 150 is connected to the antenna elements 111 and the ground layer on the surface on the +Z direction side of the substrate 110A via the transmission cable 115. Note that, as an example, when the wireless communication device 100 does not perform MIMO communication or beamforming with the four antenna elements 111 (first antenna 110), the resistance values of the four branch lines 114 may be equal to each other.
また、4つの分岐線路114の抵抗値が互いに異なる場合、及び、4つの分岐線路114の抵抗値が互いに等しい場合のいずれの場合においても、信号処理部150は、4つのコネクタ145に対する4つの第1アンテナ110の着脱状態を識別可能である。分岐線路114は、識別部として機能する。
In addition, in both cases where the resistance values of the four branch lines 114 are different from one another and where the resistance values of the four branch lines 114 are equal to one another, the signal processing unit 150 can identify the attachment/detachment state of the four first antennas 110 to the four connectors 145. The branch lines 114 function as an identification unit.
第1アンテナ110が信号処理部150に対して接続されている状態と、接続されていない状態とで抵抗値が異なるため、信号処理部150は第1アンテナ110の着脱状態を識別できる。なお、識別部は、抵抗値を利用したものに限らず、例えば、ID(Identifier)のような識別情報を出力可能な識別部であってもよい。
Since the resistance value differs between when the first antenna 110 is connected to the signal processing unit 150 and when it is not connected, the signal processing unit 150 can identify the attached/detached state of the first antenna 110. Note that the identification unit is not limited to one that uses the resistance value, and may be, for example, an identification unit that can output identification information such as an ID (identifier).
<伝送ケーブル115>
伝送ケーブル115は、一例として、コネクタ145に対して着脱可能である。すなわち、伝送ケーブル115は、筐体140に対して着脱可能である。伝送ケーブル115としては、一例として、同軸ケーブルを用いることができる。 <Transmission cable 115>
For example, thetransmission cable 115 is detachable from the connector 145. That is, the transmission cable 115 is detachable from the housing 140. For example, the transmission cable 115 may be a coaxial cable.
伝送ケーブル115は、一例として、コネクタ145に対して着脱可能である。すなわち、伝送ケーブル115は、筐体140に対して着脱可能である。伝送ケーブル115としては、一例として、同軸ケーブルを用いることができる。 <
For example, the
<整合層117>
整合層117(図1参照)は、上述のように、各第1アンテナ110と窓ガラス11の屋内側の主面との間に設けられている。無線通信装置100は、一例として4つの第1アンテナ110を含むため、4つの整合層117を含むが、図1では一体的に示す。 <Matching layer 117>
As described above, the matching layer 117 (see FIG. 1 ) is provided between eachfirst antenna 110 and the indoor main surface of the window glass 11. As the wireless communication device 100 includes, as an example, four first antennas 110, the wireless communication device 100 includes four matching layers 117, but these are shown as an integrated unit in FIG. 1 .
整合層117(図1参照)は、上述のように、各第1アンテナ110と窓ガラス11の屋内側の主面との間に設けられている。無線通信装置100は、一例として4つの第1アンテナ110を含むため、4つの整合層117を含むが、図1では一体的に示す。 <
As described above, the matching layer 117 (see FIG. 1 ) is provided between each
第1周波数の電波が窓ガラス11を透過する際には電波が減衰する。電波の減衰(損失)を抑制するためには、整合層117を設けることが好ましい。整合層117を用いれば、第1アンテナ110が電波を送受信する際に、窓ガラス11を透過する電波の電気長を調整してインピーダンスを整合させることで、損失を低減することができる。
When radio waves of the first frequency pass through the window glass 11, the radio waves are attenuated. In order to suppress the attenuation (loss) of the radio waves, it is preferable to provide a matching layer 117. By using the matching layer 117, when the first antenna 110 transmits and receives radio waves, the electrical length of the radio waves passing through the window glass 11 can be adjusted to match the impedance, thereby reducing loss.
<液晶移相器118>
液晶移相器118は、各第1アンテナ110の+Z方向側に設けられている。液晶移相器118と信号処理部150とは、図示しない信号線等を介して接続されており、液晶移相器118の液晶層の誘電率は、図示しない信号線等を介して、信号処理部150によって制御される。液晶移相器118の液晶層の誘電率を変化させることで、第1アンテナ110が送受信する電波の波長の電気長が変わるため、第1アンテナ110が送受信する電波の位相を変更できる。4つの第1アンテナ110が送受信する電波の位相が変更されることで、4つの第1アンテナ110をフェーズドアレイアンテナとして利用してビームフォーミングが可能である。 <Liquidcrystal phase shifter 118>
The liquidcrystal phase shifter 118 is provided on the +Z direction side of each first antenna 110. The liquid crystal phase shifter 118 and the signal processing unit 150 are connected via a signal line or the like (not shown). The dielectric constant of the liquid crystal layer of the phase shifter 118 is controlled by the signal processing unit 150 via a signal line or the like (not shown). Since the electrical length of the wavelength of the radio waves transmitted and received by the four first antennas 110 is changed, the phase of the radio waves transmitted and received by the four first antennas 110 can be changed. Beamforming is possible by using the antenna 110 as a phased array antenna.
液晶移相器118は、各第1アンテナ110の+Z方向側に設けられている。液晶移相器118と信号処理部150とは、図示しない信号線等を介して接続されており、液晶移相器118の液晶層の誘電率は、図示しない信号線等を介して、信号処理部150によって制御される。液晶移相器118の液晶層の誘電率を変化させることで、第1アンテナ110が送受信する電波の波長の電気長が変わるため、第1アンテナ110が送受信する電波の位相を変更できる。4つの第1アンテナ110が送受信する電波の位相が変更されることで、4つの第1アンテナ110をフェーズドアレイアンテナとして利用してビームフォーミングが可能である。 <Liquid
The liquid
なお、上述のように、液晶移相器118は、無線通信装置100が第1アンテナ110でビームフォーミングを行う場合に利用するものであり、無線通信装置100が第1アンテナ110でビームフォーミングを行わない場合には、無線通信装置100は、液晶移相器118を含まなくてよい。
As mentioned above, the liquid crystal phase shifter 118 is used when the wireless communication device 100 performs beamforming with the first antenna 110. If the wireless communication device 100 does not perform beamforming with the first antenna 110, the wireless communication device 100 does not need to include the liquid crystal phase shifter 118.
<第2アンテナ120>
第2アンテナ120は、筐体140内又は筐体140の外表面に設けられ、信号処理部150に接続され、第1周波数よりも低い第2周波数の電波で基地局BS2と通信するアンテナである。 <Second Antenna 120>
Thesecond antenna 120 is provided inside the housing 140 or on the outer surface of the housing 140, is connected to the signal processing unit 150, and communicates with the base station BS2 using radio waves of a second frequency lower than the first frequency.
第2アンテナ120は、筐体140内又は筐体140の外表面に設けられ、信号処理部150に接続され、第1周波数よりも低い第2周波数の電波で基地局BS2と通信するアンテナである。 <
The
第2周波数の電波は、建物1の壁1Wを透過するので、窓10の見通し(LOS)領域内のみに到達する第1周波数の電波と異なり、建物1内の全体に到達する。このため、第2周波数の電波は、建物1の屋内の床や壁1W等に配置される筐体140に到達する。このため、一例として、第2アンテナ120を筐体140内又は筐体140の外表面に設けることとしている。
The second frequency radio waves penetrate the walls 1W of the building 1, and therefore reach the entire interior of the building 1, unlike the first frequency radio waves which only reach the line of sight (LOS) area of the window 10. Therefore, the second frequency radio waves reach the housing 140 which is placed on the floor or wall 1W inside the building 1. For this reason, as an example, the second antenna 120 is provided inside the housing 140 or on the outer surface of the housing 140.
筐体140内とは、筐体140の外壁で囲まれた空間の内部であり、第2アンテナ120を筐体140内に設けるとは、第2アンテナ120が筐体140の内部に位置することをいう。この場合に、第2アンテナ120の一部が筐体140の外表面に露出していても、第2アンテナ120は、筐体140内に位置することとする。また、筐体140の外表面とは、筐体140の外壁の表面であり、第2アンテナ120を筐体140の外表面に設けるとは、第2アンテナ120の少なくとも一部が筐体140の外表面よりも外側に位置していてもよいことを意味する。
"Inside the housing 140" refers to the inside of the space surrounded by the outer wall of the housing 140, and "providing the second antenna 120 inside the housing 140" means that the second antenna 120 is located inside the housing 140. In this case, even if a part of the second antenna 120 is exposed to the outer surface of the housing 140, the second antenna 120 is considered to be located inside the housing 140. In addition, "the outer surface of the housing 140" refers to the surface of the outer wall of the housing 140, and "providing the second antenna 120 on the outer surface of the housing 140" means that at least a part of the second antenna 120 may be located outside the outer surface of the housing 140.
ここでは、一例として、第2アンテナ120は、筐体140の外壁の真裏に設けられていることとする。筐体140の外壁の真裏は、筐体140内(筐体140の内部)である。
Here, as an example, the second antenna 120 is provided directly behind the outer wall of the housing 140. The directly behind the outer wall of the housing 140 is inside the housing 140 (inside the housing 140).
窓10には第1アンテナ110が設けられており、窓10に設けるアンテナをさらに増やすと、窓10を通じて得られる視界が損なわれるおそれがある。このような観点からも、第2アンテナ120を窓10に設けないことで、窓10の良好な視界を確保できる。
The window 10 is provided with a first antenna 110, and if more antennas are provided on the window 10, there is a risk that the visibility through the window 10 may be impaired. From this perspective, by not providing a second antenna 120 on the window 10, good visibility through the window 10 can be ensured.
第2アンテナ120は、第2周波数の電波をより効率的に受信できるようにするために、筐体140の上面側の外壁の真裏に設けることが好ましい。また、第2アンテナ120は、第2周波数の電波を受信可能なアンテナであれば、どのような形式のアンテナであってもよいが、逆Fアンテナを用いると、帯域を広く取ることができる点で好ましい。また、無線通信装置100は、第2アンテナ120を複数含む構成であってよい。この場合に、無線通信装置100は、一例として、複数の第2アンテナ120でMIMO通信を行う構成であってもよい。
The second antenna 120 is preferably provided directly behind the outer wall on the upper side of the housing 140 so as to be able to receive radio waves of the second frequency more efficiently. The second antenna 120 may be of any type as long as it is an antenna capable of receiving radio waves of the second frequency, but an inverted F antenna is preferable because it can provide a wide bandwidth. The wireless communication device 100 may be configured to include multiple second antennas 120. In this case, the wireless communication device 100 may be configured to perform MIMO communication using multiple second antennas 120, as an example.
<第3アンテナ130A及び130B>
第3アンテナ130A及び130Bは、一例として、それぞれ、コネクタ135A及び135Bを介して、信号処理部150に接続されている。第3アンテナ130A及び130Bは、送受信する電波の周波数等に応じた適切な形式のアンテナであればよい。 < Third Antennas 130A and 130B>
As an example, the third antennas 130A and 130B are connected to the signal processing unit 150 via connectors 135A and 135B, respectively. The third antennas 130A and 130B may be antennas of an appropriate type according to the frequency of radio waves to be transmitted and received, etc.
第3アンテナ130A及び130Bは、一例として、それぞれ、コネクタ135A及び135Bを介して、信号処理部150に接続されている。第3アンテナ130A及び130Bは、送受信する電波の周波数等に応じた適切な形式のアンテナであればよい。 <
As an example, the
第3アンテナ130Aは、一例として、第1アンテナ110によって受信され、信号処理部150で増幅等の処理が行われた第1周波数の電波を建物1の屋内に放射する。この場合に、第3アンテナ130Aは、第1周波数の電波を送受信可能なアンテナであればよく、一例として、パッチアンテナやモノポールアンテナであればよい。
As an example, the third antenna 130A radiates radio waves of the first frequency that have been received by the first antenna 110 and processed by the signal processing unit 150, such as amplified, into the interior of the building 1. In this case, the third antenna 130A may be any antenna capable of transmitting and receiving radio waves of the first frequency, and may be, for example, a patch antenna or a monopole antenna.
第3アンテナ130Bは、一例として、第2アンテナ120によって受信され、信号処理部150で周波数の変換及び増幅が行われた無線LANの電波を屋内に放射する。この場合に、第3アンテナ130Bは、一例として、無線LAN用のアンテナであればよい。
The third antenna 130B, for example, radiates indoors the wireless LAN radio waves that are received by the second antenna 120 and have their frequency converted and amplified by the signal processing unit 150. In this case, the third antenna 130B may, for example, be an antenna for the wireless LAN.
このように、一例として、第3アンテナ130Aが第1周波数の電波を建物1の屋内に放射するとともに、第3アンテナ130Bが無線LANの電波を屋内に放射することで、建物1の屋内では、一例として、スマートフォン50は、第1周波数の電波、及び、無線LANの電波の両方を受信可能である。
In this way, as an example, the third antenna 130A radiates radio waves of the first frequency indoors in the building 1, and the third antenna 130B radiates radio waves of the wireless LAN indoors, so that, as an example, the smartphone 50 can receive both radio waves of the first frequency and radio waves of the wireless LAN indoors in the building 1.
<コネクタ135A~135C>
コネクタ135A~135Cは、筐体140内又は筐体140の外表面に設けられ、信号処理部150に接続され、第2アンテナ120で送受信される通信用のデータの入出力を行うコネクタである。なお、コネクタ135A及び135Bについては、上述したように、コネクタ135A及び135Bの代わりに、2つの第3アンテナ130Aが接続される端子を用いてもよい。 <Connectors 135A to 135C>
Theconnectors 135A to 135C are provided inside the housing 140 or on the outer surface of the housing 140, connected to the signal processing unit 150, and are connectors for inputting and outputting communication data transmitted and received by the second antenna 120. As for the connectors 135A and 135B, as described above, terminals to which the two third antennas 130A are connected may be used instead of the connectors 135A and 135B.
コネクタ135A~135Cは、筐体140内又は筐体140の外表面に設けられ、信号処理部150に接続され、第2アンテナ120で送受信される通信用のデータの入出力を行うコネクタである。なお、コネクタ135A及び135Bについては、上述したように、コネクタ135A及び135Bの代わりに、2つの第3アンテナ130Aが接続される端子を用いてもよい。 <
The
筐体140内とは、筐体140の外壁で囲まれた空間の内部であり、コネクタ135Aを筐体140内に設けるとは、コネクタ135Aが筐体140の内部に位置することをいう。この場合に、コネクタ135Aの一部が筐体140の外表面に露出していても、コネクタ135Aは、筐体140内に位置することとして取り扱う。また、筐体140の外表面とは、筐体140の外壁の表面であり、コネクタ135Aを筐体140の外表面に設けるとは、コネクタ135Aの少なくとも一部が筐体140の外表面よりも外側に位置していてもよいことを意味する。
"Inside the housing 140" refers to the inside of the space surrounded by the outer wall of the housing 140, and "providing the connector 135A inside the housing 140" means that the connector 135A is located inside the housing 140. In this case, even if a portion of the connector 135A is exposed on the outer surface of the housing 140, the connector 135A is treated as being located inside the housing 140. In addition, the outer surface of the housing 140 refers to the surface of the outer wall of the housing 140, and "providing the connector 135A on the outer surface of the housing 140" means that at least a portion of the connector 135A may be located outside the outer surface of the housing 140.
コネクタ135A及び135Bは、第3アンテナ130A及び130Bがそれぞれ接続されるコネクタである。コネクタ135Cは、LANケーブルを接続可能なコネクタである。
Connectors 135A and 135B are connectors to which third antennas 130A and 130B are respectively connected. Connector 135C is a connector to which a LAN cable can be connected.
一例として、コネクタ135A及び135Bは、筐体140内に設けられている。コネクタ135A及び135Bには、予め第3アンテナ130A及び130Bがそれぞれ接続されているからである。一例として、コネクタ135Cは、筐体140の外表面に設けられている。一例として、必要に応じてコネクタ135CにLANケーブルのコネクタを着脱(挿抜)可能にするためである。なお、LANケーブル用のコネクタ135Cは、複数設けられていてもよい。
As an example, connectors 135A and 135B are provided inside housing 140. This is because third antennas 130A and 130B are connected to connectors 135A and 135B, respectively, in advance. As an example, connector 135C is provided on the outer surface of housing 140. As an example, this is to allow a LAN cable connector to be detached (inserted and removed) from connector 135C as necessary. Note that multiple connectors 135C for LAN cables may be provided.
一例として、LANケーブルでコネクタ135C及びPCを接続すれば、第2アンテナ120で受信される通信用のデータをPCで取得でき、PC内のデータをLANケーブル及びコネクタ135Cを介して、第2アンテナ120から放射できる。
As an example, if a LAN cable is used to connect the connector 135C and a PC, the communication data received by the second antenna 120 can be acquired by the PC, and the data in the PC can be radiated from the second antenna 120 via the LAN cable and the connector 135C.
<筐体140>
筐体140は、第2アンテナ120、第3アンテナ130A及び130B、コネクタ135A~135C、及び信号処理部150を内部に収容する。筐体140は、装置本体101のケースであり、一例として箱状の部材である。一例として、筐体140の外表面には、コネクタ135Cの一部が露出する。 <Housing 140>
Thehousing 140 accommodates therein the second antenna 120, the third antennas 130A and 130B, the connectors 135A to 135C, and the signal processing unit 150. The housing 140 is a case for the device main body 101, and is, for example, a box-shaped member. As an example, a part of the connector 135C is exposed on the outer surface of the housing 140.
筐体140は、第2アンテナ120、第3アンテナ130A及び130B、コネクタ135A~135C、及び信号処理部150を内部に収容する。筐体140は、装置本体101のケースであり、一例として箱状の部材である。一例として、筐体140の外表面には、コネクタ135Cの一部が露出する。 <
The
また、筐体140は、コネクタ145を有する。コネクタ145は、第1アンテナ110に接続される伝送ケーブル115を着脱可能にするコネクタであるため、コネクタ145の一部は、筐体140の外表面に露出する。
The housing 140 also has a connector 145. The connector 145 is a connector that allows the transmission cable 115 connected to the first antenna 110 to be detached, and therefore a portion of the connector 145 is exposed on the outer surface of the housing 140.
<信号処理部150>
信号処理部150は、第1アンテナ110、第2アンテナ120、第3アンテナ130A及び130B、及びコネクタ135Cに接続されている。これらのうち、第1アンテナ110と第3アンテナ130A及び130Bについては、信号処理部150は、コネクタ145とコネクタ135A及び135Bを介してそれぞれ接続されている。 <Signal Processing Unit 150>
Thesignal processing unit 150 is connected to the first antenna 110, the second antenna 120, the third antennas 130A and 130B, and the connector 135C. Among these, the signal processing unit 150 is connected to the first antenna 110 and the third antennas 130A and 130B via the connector 145 and the connectors 135A and 135B, respectively.
信号処理部150は、第1アンテナ110、第2アンテナ120、第3アンテナ130A及び130B、及びコネクタ135Cに接続されている。これらのうち、第1アンテナ110と第3アンテナ130A及び130Bについては、信号処理部150は、コネクタ145とコネクタ135A及び135Bを介してそれぞれ接続されている。 <
The
信号処理部150は、第1アンテナ110で受信された第1周波数の電波を増幅してコネクタ135Aに出力する。コネクタ135Aに出力された第1周波数の電波は、第3アンテナ130Aから建物1の屋内に放射される。信号処理部150は、第2アンテナ120で受信された第2周波数の電波の周波数を無線LANの周波数に変換するとともに増幅してコネクタ135Bに出力する。コネクタ135Bに出力された無線LANの電波は、第3アンテナ130Bから建物1の屋内に放射される。また、信号処理部150は、第2アンテナ120で受信された第2周波数の電波の周波数を有線LANの周波数に変換するとともに増幅してコネクタ135Cに出力する。
The signal processing unit 150 amplifies the radio waves of the first frequency received by the first antenna 110 and outputs them to the connector 135A. The radio waves of the first frequency output to the connector 135A are radiated from the third antenna 130A to the interior of the building 1. The signal processing unit 150 converts the frequency of the radio waves of the second frequency received by the second antenna 120 to a wireless LAN frequency, amplifies the frequency, and outputs it to the connector 135B. The wireless LAN radio waves output to the connector 135B are radiated from the third antenna 130B to the interior of the building 1. The signal processing unit 150 also converts the frequency of the radio waves of the second frequency received by the second antenna 120 to a wired LAN frequency, amplifies the frequency, and outputs it to the connector 135C.
なお、上述した無線通信装置100の動作の変形例のパート1及びパート2の場合には、信号処理部150は、パート1及びパート2で説明した動作を行う。
In the case of Part 1 and Part 2 of the modified operation of the wireless communication device 100 described above, the signal processing unit 150 performs the operations described in Part 1 and Part 2.
<信号処理部150の回路構成>
図4は、無線通信装置100の信号処理部150の回路構成の一例を示す図である。図4には、信号処理部150に加えて、第1アンテナ110、伝送ケーブル115、第2アンテナ120、第3アンテナ130A及び130B、コネクタ135A~135C、筐体140、コネクタ145を示す。 <Circuit configuration ofsignal processing unit 150>
Fig. 4 is a diagram showing an example of a circuit configuration of thesignal processing unit 150 of the wireless communication device 100. In addition to the signal processing unit 150, Fig. 4 shows the first antenna 110, the transmission cable 115, the second antenna 120, the third antennas 130A and 130B, the connectors 135A to 135C, the housing 140, and the connector 145.
図4は、無線通信装置100の信号処理部150の回路構成の一例を示す図である。図4には、信号処理部150に加えて、第1アンテナ110、伝送ケーブル115、第2アンテナ120、第3アンテナ130A及び130B、コネクタ135A~135C、筐体140、コネクタ145を示す。 <Circuit configuration of
Fig. 4 is a diagram showing an example of a circuit configuration of the
信号処理部150は、無線モジュール151、スイッチ152A、152B、LNA(Low Noise Amplifier)153A、153B、ADC(Analog to Digital Converter)154A、154B、DAC(Digital to Analog Converter)155A、155B、及びPA(Power Amplifier)156A、156Bを有する。
The signal processing unit 150 has a wireless module 151, switches 152A, 152B, LNAs (Low Noise Amplifiers) 153A, 153B, ADCs (Analog to Digital Converters) 154A, 154B, DACs (Digital to Analog Converters) 155A, 155B, and PAs (Power Amplifiers) 156A, 156B.
第1アンテナ110には伝送ケーブル115及びコネクタ145を介してスイッチ152Aが接続され、スイッチ152Aには、LNA153A及びPA156Aを介してADC154A及びDAC155Aがそれぞれ接続されている。ADC154A及びDAC155Aは、無線モジュール151に接続されている。第1アンテナ110、伝送ケーブル115、コネクタ145、スイッチ152A、LNA153A、ADC154A、DAC155A、及びPA156Aは、無線通信部102Aを構成する。無線通信装置100が複数の第1アンテナ110を用いてMIMO通信を行う場合には、MIMO通信のチャンネル数分と等しい数の無線通信部102Aが無線モジュール151に接続されることになる。
The switch 152A is connected to the first antenna 110 via the transmission cable 115 and the connector 145, and the ADC 154A and the DAC 155A are connected to the switch 152A via the LNA 153A and the PA 156A, respectively. The ADC 154A and the DAC 155A are connected to the wireless module 151. The first antenna 110, the transmission cable 115, the connector 145, the switch 152A, the LNA 153A, the ADC 154A, the DAC 155A, and the PA 156A constitute the wireless communication unit 102A. When the wireless communication device 100 performs MIMO communication using multiple first antennas 110, the number of wireless communication units 102A equal to the number of channels of the MIMO communication is connected to the wireless module 151.
第2アンテナ120にはスイッチ152Bが接続され、スイッチ152Bには、LNA153B及びPA156Bを介してADC154B及びDAC155Bがそれぞれ接続されている。ADC154B及びDAC155Bは、無線モジュール151に接続されている。第2アンテナ120、スイッチ152B、LNA153B、ADC154B、DAC155B、及びPA156Bは、無線通信部102Bを構成する。無線通信装置100が複数の第2アンテナ120を用いてMIMO通信を行う場合には、MIMO通信のチャンネル数分と等しい数の無線通信部102Bが無線モジュール151に接続されることになる。
A switch 152B is connected to the second antenna 120, and an ADC 154B and a DAC 155B are connected to the switch 152B via an LNA 153B and a PA 156B, respectively. The ADC 154B and the DAC 155B are connected to the wireless module 151. The second antenna 120, the switch 152B, the LNA 153B, the ADC 154B, the DAC 155B, and the PA 156B constitute the wireless communication unit 102B. When the wireless communication device 100 performs MIMO communication using multiple second antennas 120, a number of wireless communication units 102B equal to the number of channels of the MIMO communication are connected to the wireless module 151.
無線モジュール151は、一例としてMCU(Micro Controller Unit)で構成され、スイッチ152A、152Bの切り替え処理、LNA153A、153B、PA156A、156Bの増幅率の設定処理、及び中継処理等を行う。中継処理には、電波の周波数を第1周波数又は第2周波数から無線LANや有線LANの周波数に変換する処理等が含まれる。
The wireless module 151 is, for example, configured with an MCU (Micro Controller Unit), and performs switching processing of the switches 152A and 152B, processing for setting the gain of the LNAs 153A, 153B, and the PAs 156A and 156B, and relay processing. The relay processing includes processing for converting the frequency of the radio waves from the first or second frequency to the frequency of a wireless LAN or a wired LAN.
無線モジュール151は、無線通信部102Aの第1アンテナ110で電波を受信する際には、3端子型のスイッチ152Aを切り換えて、第1アンテナ110とLNA153Aとを接続する。また、無線モジュール151は、第1アンテナ110で電波を送信する際には、3端子型のスイッチ152Aを切り換えて、第1アンテナ110とPA156Aを接続する。また、無線モジュール151は、第2アンテナ120で電波を受信又は受信する際には、3端子型のスイッチ152Bを同様に切り換える。
When the wireless module 151 receives radio waves through the first antenna 110 of the wireless communication unit 102A, it switches the three-terminal switch 152A to connect the first antenna 110 to the LNA 153A. When the wireless module 151 transmits radio waves through the first antenna 110, it switches the three-terminal switch 152A to connect the first antenna 110 to the PA 156A. When the wireless module 151 receives or transmits radio waves through the second antenna 120, it similarly switches the three-terminal switch 152B.
LNA153Aは、スイッチ152AとADC154Aとの間に設けられ、第1アンテナ110で受信した電波を増幅し、信号とノイズの比の劣化を防ぎながら出力する。なお、必要に応じて、LNA153AとADC154Aの間にミキサを配置して、LNA153Aから出力される電波をローカル信号と混合して復調し、IF(Intermediate Frequency)信号に変換する処理を行ってもよい。
LNA 153A is provided between switch 152A and ADC 154A, and amplifies the radio waves received by first antenna 110 and outputs them while preventing degradation of the signal-to-noise ratio. If necessary, a mixer may be provided between LNA 153A and ADC 154A to mix the radio waves output from LNA 153A with a local signal, demodulate the signal, and convert it into an intermediate frequency (IF) signal.
ADC154Aは、LNA153Aから出力される信号をデジタル変換して無線モジュール151に出力する。
The ADC 154A digitally converts the signal output from the LNA 153A and outputs it to the wireless module 151.
DAC155Aは、無線通信装置100が第1アンテナ110から信号を送信する際に、無線モジュール151が出力する信号をアナログ変換してPA156Aに出力する。なお、必要に応じて、DAC155AとPA156Aの間にミキサを設けて、ローカル信号と混合して変調する処理を行ってもよい。
When the wireless communication device 100 transmits a signal from the first antenna 110, the DAC 155A converts the signal output by the wireless module 151 into an analog signal and outputs the analog signal to the PA 156A. If necessary, a mixer may be provided between the DAC 155A and the PA 156A to mix the signal with a local signal and perform modulation.
PA156Aは、DAC155Aから出力される信号を増幅して、スイッチ152Aを介して第1アンテナ110に出力する。
PA156A amplifies the signal output from DAC155A and outputs it to the first antenna 110 via switch 152A.
また、無線モジュール151は、無線通信部102Bの第2アンテナ120で電波を送信又は受信する際には、無線通信部102Bのスイッチ152BからPA156Bを制御して、無線通信部102Aについて行う処理と同様の処理を行う。
In addition, when the wireless module 151 transmits or receives radio waves using the second antenna 120 of the wireless communication unit 102B, it controls the PA 156B via the switch 152B of the wireless communication unit 102B to perform the same processing as that performed for the wireless communication unit 102A.
<実施形態の第1変形例>
図5は、実施形態の第1変形例の第1アンテナ110Mの構成の一例を示す図である。実施形態の第1変形例の第1アンテナ110Mは、基板110MA、アンテナエレメント111M、給電線路112、及び分岐線路113及び114Mを有する。第1アンテナ110Mは、ガラス板で構成される基板110MAと、モノポールアンテナで構成されるアンテナエレメント111Mと、分岐線路114Mとを有する点が図3に示す第1アンテナ110と異なる。以下、図3に示す第1アンテナ110との相違点について説明する。 First Modification of the Embodiment
Fig. 5 is a diagram showing an example of the configuration of afirst antenna 110M according to a first modified example of the embodiment. The first antenna 110M according to the first modified example of the embodiment has a substrate 110MA, an antenna element 111M, a feeder line 112, and branch lines 113 and 114M. The first antenna 110M differs from the first antenna 110 shown in Fig. 3 in that it has a substrate 110MA made of a glass plate, an antenna element 111M made of a monopole antenna, and a branch line 114M. The differences from the first antenna 110 shown in Fig. 3 will be described below.
図5は、実施形態の第1変形例の第1アンテナ110Mの構成の一例を示す図である。実施形態の第1変形例の第1アンテナ110Mは、基板110MA、アンテナエレメント111M、給電線路112、及び分岐線路113及び114Mを有する。第1アンテナ110Mは、ガラス板で構成される基板110MAと、モノポールアンテナで構成されるアンテナエレメント111Mと、分岐線路114Mとを有する点が図3に示す第1アンテナ110と異なる。以下、図3に示す第1アンテナ110との相違点について説明する。 First Modification of the Embodiment
Fig. 5 is a diagram showing an example of the configuration of a
<基板110MA>
基板110MAは、ガラス板であり、一例として、ソーダ石灰ガラス、無アルカリガラス、パイレックス(登録商標)ガラス、石英ガラス等を用いることができる。基板110MAの+Z方向側の表面のうちの-Y方向側の約半分の部分には、グランド層110MGが設けられている。グランド層110MGは、一例として、一例として、銅、ニッケル、又は金等のメッシュ状の金属薄膜で形成されている。 <Substrate 110MA>
The substrate 110MA is a glass plate, and examples of the material that can be used include soda-lime glass, non-alkali glass, Pyrex (registered trademark) glass, and quartz glass. A ground layer 110MG is provided on approximately half of the surface on the +Z direction side of the substrate 110MA on the -Y direction side. The ground layer 110MG is formed, for example, of a mesh-like metal thin film made of copper, nickel, gold, or the like.
基板110MAは、ガラス板であり、一例として、ソーダ石灰ガラス、無アルカリガラス、パイレックス(登録商標)ガラス、石英ガラス等を用いることができる。基板110MAの+Z方向側の表面のうちの-Y方向側の約半分の部分には、グランド層110MGが設けられている。グランド層110MGは、一例として、一例として、銅、ニッケル、又は金等のメッシュ状の金属薄膜で形成されている。 <Substrate 110MA>
The substrate 110MA is a glass plate, and examples of the material that can be used include soda-lime glass, non-alkali glass, Pyrex (registered trademark) glass, and quartz glass. A ground layer 110MG is provided on approximately half of the surface on the +Z direction side of the substrate 110MA on the -Y direction side. The ground layer 110MG is formed, for example, of a mesh-like metal thin film made of copper, nickel, gold, or the like.
<アンテナエレメント111M、給電線路112、及び分岐線路113及び114Mの全体の構成>
アンテナエレメント111M、給電線路112、及び分岐線路113及び114Mは、一例として、グランド層110MGと同様に、銅、ニッケル、又は金等の金属薄膜で形成される。なお、分岐線路114Mは、図3に示す第1アンテナ110の分岐線路114と同様に、所定の抵抗値に設定されるため、メッシュ状の金属よりも抵抗値が大きいITO等の透明導電膜で形成されてもよい。 <Overall configuration ofantenna element 111M, feed line 112, and branch lines 113 and 114M>
As an example, theantenna element 111M, the feed line 112, and the branch lines 113 and 114M are formed of a metal thin film such as copper, nickel, or gold, similar to the ground layer 110MG. Note that the branch line 114M is set to a predetermined resistance value, similar to the branch line 114 of the first antenna 110 shown in Fig. 3, and therefore may be formed of a transparent conductive film such as ITO, which has a higher resistance value than a mesh-shaped metal.
アンテナエレメント111M、給電線路112、及び分岐線路113及び114Mは、一例として、グランド層110MGと同様に、銅、ニッケル、又は金等の金属薄膜で形成される。なお、分岐線路114Mは、図3に示す第1アンテナ110の分岐線路114と同様に、所定の抵抗値に設定されるため、メッシュ状の金属よりも抵抗値が大きいITO等の透明導電膜で形成されてもよい。 <Overall configuration of
As an example, the
第1アンテナ110Mは、基板110MAが可視光に対して透明であって、かつ、アンテナエレメント111M、給電線路112、及び分岐線路113及び114Mがメッシュ状の金属薄膜等のような透明導体で構成されているため、視感透過率が50%以上である。
The first antenna 110M has a visual transmittance of 50% or more because the substrate 110MA is transparent to visible light, and the antenna element 111M, the feed line 112, and the branch lines 113 and 114M are made of transparent conductors such as mesh-like metal thin films.
<アンテナエレメント111M>
アンテナエレメント111Mは、XY面視(第1アンテナ110Mの平面視)で、一例としてY方向に沿って延在する直線状のモノポールアンテナであり、基板110MAの+Z方向側の表面に設けられるグランド層110MGよりも+Y方向側に延在している。アンテナエレメント111Mは、-Y方向側の端部に給電点111Aを有する。給電点111AのY方向における位置は、平面視におけるグランド層110MGの+Y方向側でX方向に延在する端辺の位置と略等しい。 <Antenna element 111M>
Theantenna element 111M is, for example, a linear monopole antenna extending along the Y direction in the XY plane (planar view of the first antenna 110M), and extends further in the +Y direction than the ground layer 110MG provided on the surface of the substrate 110MA on the +Z direction side. The antenna element 111M has a feed point 111A at the end on the -Y direction side. The position of the feed point 111A in the Y direction is approximately equal to the position of the end edge extending in the X direction on the +Y direction side of the ground layer 110MG in plan view.
アンテナエレメント111Mは、XY面視(第1アンテナ110Mの平面視)で、一例としてY方向に沿って延在する直線状のモノポールアンテナであり、基板110MAの+Z方向側の表面に設けられるグランド層110MGよりも+Y方向側に延在している。アンテナエレメント111Mは、-Y方向側の端部に給電点111Aを有する。給電点111AのY方向における位置は、平面視におけるグランド層110MGの+Y方向側でX方向に延在する端辺の位置と略等しい。 <
The
<分岐線路114M>
分岐線路114Mは、分岐線路113の延在方向における長さの中点113Aから分岐し、一例として-Y方向側に向かって基板110MAの-Y方向側の端辺上に位置するパッド114MAまで延在している。図5には、分岐線路114Mの長さを稼ぐために中点113Aとパッド114MAとの間で屈曲している。分岐線路113及び114Mは、チョーク構造を構成する。 <Branch line 114M>
Thebranch line 114M branches off from a midpoint 113A in the length of the branch line 113 in the extension direction, and extends, for example, in the -Y direction to a pad 114MA located on the end edge of the substrate 110MA in the -Y direction. In Fig. 5, the branch line 114M is bent between the midpoint 113A and the pad 114MA in order to increase its length. The branch lines 113 and 114M form a choke structure.
分岐線路114Mは、分岐線路113の延在方向における長さの中点113Aから分岐し、一例として-Y方向側に向かって基板110MAの-Y方向側の端辺上に位置するパッド114MAまで延在している。図5には、分岐線路114Mの長さを稼ぐために中点113Aとパッド114MAとの間で屈曲している。分岐線路113及び114Mは、チョーク構造を構成する。 <
The
また、4つの第1アンテナ110Mの4つの分岐線路114Mは、互いに異なる抵抗値を有する。4つの第1アンテナ110Mを識別可能にするためである。分岐線路113及び114Mは、チョーク構造の一例であるとともに、識別部の一例である。
Furthermore, the four branch lines 114M of the four first antennas 110M have different resistance values from each other. This is to make the four first antennas 110M identifiable. The branch lines 113 and 114M are an example of a choke structure and an example of an identification portion.
各分岐線路114Mの抵抗値は、所定の直流抵抗値の一例である。4つの分岐線路114Mの抵抗値は、一例として、0Ωから500Ωの範囲内で、互いに異なる4つの抵抗値に設定すればよい。
The resistance value of each branch line 114M is an example of a predetermined DC resistance value. As an example, the resistance values of the four branch lines 114M may be set to four different resistance values within a range of 0 Ω to 500 Ω.
分岐線路114Mの-Y方向側の端部にはパッド114MAが設けられている。基板110MAはガラス板であるため、樹脂基板に比べると、スルーホールビアを作製するのは容易ではなく、コストが嵩む。このため、ガラス板で構成される基板110MAを用いる場合には、パッド114MAと、グランド層110MGとの間にコネクタ(不図示)を接続し、コネクタを伝送ケーブル115として用いる同軸ケーブルのシールド線に接続すればよい。
A pad 114MA is provided at the end of the branch line 114M in the -Y direction. Because the substrate 110MA is a glass plate, it is not as easy to fabricate a through-hole via as it is with a resin substrate, and the cost is high. For this reason, when using the substrate 110MA made of a glass plate, a connector (not shown) is connected between the pad 114MA and the ground layer 110MG, and the connector is connected to the shielded wire of the coaxial cable used as the transmission cable 115.
4つの分岐線路114Mは、一例として、メッシュ状の金属薄膜で構成される場合には、メッシュの密度等が異なることによって、互いに異なる抵抗値を有する構成であってよい。
As an example, if the four branch lines 114M are made of a mesh-like metal thin film, they may have different resistance values due to differences in mesh density, etc.
4つの分岐線路114Mの抵抗値が互いに異なるので、例えば、無線通信装置100が4つのアンテナエレメント111M(第1アンテナ110M)でMIMO通信又はビームフォーミングを行う場合に、信号処理部150で4つのアンテナエレメント111M(第1アンテナ110M)を識別可能である。信号処理部150は、伝送ケーブル115を介してアンテナエレメント111Mと、基板110MAのグランド層110MGとに接続されているからである。なお、一例として、無線通信装置100が4つのアンテナエレメント111M(第1アンテナ110M)でMIMO通信又はビームフォーミングを行わない場合には、4つの分岐線路114Mの抵抗値は互いに等しくてよい。
Since the resistance values of the four branch lines 114M are different from each other, for example, when the wireless communication device 100 performs MIMO communication or beamforming with the four antenna elements 111M (first antennas 110M), the signal processing unit 150 can identify the four antenna elements 111M (first antennas 110M). This is because the signal processing unit 150 is connected to the antenna elements 111M and the ground layer 110MG of the substrate 110MA via the transmission cable 115. Note that, as an example, when the wireless communication device 100 does not perform MIMO communication or beamforming with the four antenna elements 111M (first antennas 110M), the resistance values of the four branch lines 114M may be equal to each other.
また、4つの分岐線路114Mの抵抗値が互いに異なる場合、及び、4つの分岐線路114Mの抵抗値が互いに等しい場合のいずれの場合においても、信号処理部150は、4つのコネクタ145に対する4つの第1アンテナ110Mの着脱状態を識別可能である。分岐線路114Mは、識別部として機能する。
In addition, in both cases where the resistance values of the four branch lines 114M are different from one another and where the resistance values of the four branch lines 114M are equal to one another, the signal processing unit 150 can identify the attachment/detachment state of the four first antennas 110M to the four connectors 145. The branch lines 114M function as an identification unit.
<実施形態の第2変形例>
図6は、実施形態の第2変形例の無線通信装置100Mの構成の一例を示す図である。図6に示す無線通信装置100Mは、図1に示す第1アンテナ110、伝送ケーブル115、整合層117、及び液晶移相器118の組を2組含む。1つの組には、図1乃至図4を用いて説明したように、4つの第1アンテナ110が含まれる。このため、図6に示す無線通信装置100Mは、4つの第1アンテナ110を2組含む。すなわち、無線通信装置100Mは、8つの第1アンテナ110を2組含む。なお、無線通信装置100Mは、第1アンテナ110、伝送ケーブル115、整合層117、及び液晶移相器118の組を3組以上含んでもよい。 <Second Modification of the Embodiment>
6 is a diagram showing an example of the configuration of awireless communication device 100M according to a second modified example of the embodiment. The wireless communication device 100M shown in FIG. 6 includes two sets of the first antenna 110, the transmission cable 115, the matching layer 117, and the liquid crystal phase shifter 118 shown in FIG. 1. As described with reference to FIGS. 1 to 4, one set includes four first antennas 110. Therefore, the wireless communication device 100M shown in FIG. 6 includes two sets of four first antennas 110. That is, the wireless communication device 100M includes two sets of eight first antennas 110. The wireless communication device 100M may include three or more sets of the first antenna 110, the transmission cable 115, the matching layer 117, and the liquid crystal phase shifter 118.
図6は、実施形態の第2変形例の無線通信装置100Mの構成の一例を示す図である。図6に示す無線通信装置100Mは、図1に示す第1アンテナ110、伝送ケーブル115、整合層117、及び液晶移相器118の組を2組含む。1つの組には、図1乃至図4を用いて説明したように、4つの第1アンテナ110が含まれる。このため、図6に示す無線通信装置100Mは、4つの第1アンテナ110を2組含む。すなわち、無線通信装置100Mは、8つの第1アンテナ110を2組含む。なお、無線通信装置100Mは、第1アンテナ110、伝送ケーブル115、整合層117、及び液晶移相器118の組を3組以上含んでもよい。 <Second Modification of the Embodiment>
6 is a diagram showing an example of the configuration of a
このような無線通信装置100Mは、例えば、2種類の第1周波数で8チャンネルのMIMO通信や、2種類の第1周波数の2本のビームを形成するビームフォーミング等を行うことができる。無線通信装置100Mが第1アンテナ110、伝送ケーブル115、整合層117、及び液晶移相器118の組を3組以上含む場合には、MIMO通信のチャンネル数やビームの数をさらに増やすことができる。
Such a wireless communication device 100M can perform, for example, eight-channel MIMO communication at two types of first frequencies, beamforming to form two beams at two types of first frequencies, etc. If the wireless communication device 100M includes three or more sets of the first antenna 110, transmission cable 115, matching layer 117, and liquid crystal phase shifter 118, the number of channels and beams of MIMO communication can be further increased.
また、複数の組のうちの一部の複数の組の第1アンテナ110は、10GHz以下の第1周波数で通信するアレイアンテナを構成し、複数の組のうちの他の一部の複数の組の第1アンテナ110は、25GHz以上の第1周波数で通信するフェーズドアレイアンテナを構成してもよい。この場合に、他の一部の複数の組の第1アンテナ110に含まれる複数のアンテナエレメント111をフェーズドアレイアンテナとして利用して、ビームフォーミングを行えばよい。
Furthermore, the first antennas 110 of some of the multiple sets may constitute an array antenna that communicates at a first frequency of 10 GHz or less, and the first antennas 110 of some of the other multiple sets may constitute a phased array antenna that communicates at a first frequency of 25 GHz or more. In this case, beamforming can be performed by using the antenna elements 111 included in the first antennas 110 of some of the other multiple sets as a phased array antenna.
<効果>
無線通信装置100は、信号処理部150と、信号処理部150を収容する筐体140と、筐体140の外側に設けられ、伝送ケーブル115を介して信号処理部150に接続され、第1周波数の電波で基地局BS1と通信する第1アンテナ110と、筐体140内又は筐体140の外表面に設けられ、信号処理部150に接続され、第1周波数よりも低い第2周波数の電波で基地局BS2と通信する第2アンテナ120と、筐体140内又は筐体140の外表面に設けられ、信号処理部150に接続され、第1アンテナ110又は第2アンテナ120で送受信される通信用のデータの入出力を行うコネクタ(135A~135C)とを含む。第1アンテナ110を筐体140内に設けないため、装置本体101及び筐体140の小型化を図ることができる。 <Effects>
Thewireless communication device 100 includes a signal processing unit 150, a housing 140 that houses the signal processing unit 150, a first antenna 110 that is provided outside the housing 140 and connected to the signal processing unit 150 via a transmission cable 115, and communicates with a base station BS1 using radio waves of a first frequency, a second antenna 120 that is provided inside the housing 140 or on the outer surface of the housing 140, connected to the signal processing unit 150, and communicates with a base station BS2 using radio waves of a second frequency lower than the first frequency, and connectors (135A to 135C) that are provided inside the housing 140 or on the outer surface of the housing 140, connected to the signal processing unit 150, and input and output communication data transmitted and received by the first antenna 110 or the second antenna 120. Since the first antenna 110 is not provided inside the housing 140, the device body 101 and the housing 140 can be made smaller.
無線通信装置100は、信号処理部150と、信号処理部150を収容する筐体140と、筐体140の外側に設けられ、伝送ケーブル115を介して信号処理部150に接続され、第1周波数の電波で基地局BS1と通信する第1アンテナ110と、筐体140内又は筐体140の外表面に設けられ、信号処理部150に接続され、第1周波数よりも低い第2周波数の電波で基地局BS2と通信する第2アンテナ120と、筐体140内又は筐体140の外表面に設けられ、信号処理部150に接続され、第1アンテナ110又は第2アンテナ120で送受信される通信用のデータの入出力を行うコネクタ(135A~135C)とを含む。第1アンテナ110を筐体140内に設けないため、装置本体101及び筐体140の小型化を図ることができる。 <Effects>
The
したがって、基地局と複数の周波数で通信可能で小型化を図った無線通信装置100を提供できる。
As a result, it is possible to provide a wireless communication device 100 that is compact and capable of communicating with a base station at multiple frequencies.
また、コネクタ(135A又は135B)に接続される第3アンテナ130A又は130Bをさらに含んでもよい。このため、第1アンテナ110又は第2アンテナ120で送受信される通信用のデータをコネクタ(135A又は135B)に接続される第3アンテナ130A又は130Bから放射できる。第3アンテナ130A又は130Bが放射する電波を受信可能なスマートフォン50やPC等の端末に第1周波数又は第2周波数の電波を中継できる。
It may further include a third antenna 130A or 130B connected to the connector (135A or 135B). Therefore, communication data transmitted and received by the first antenna 110 or the second antenna 120 can be radiated from the third antenna 130A or 130B connected to the connector (135A or 135B). Radio waves of the first or second frequency can be relayed to a terminal such as a smartphone 50 or a PC that can receive the radio waves radiated by the third antenna 130A or 130B.
また、第1アンテナ110は、屋内側の窓10の付近の窓10の見通し領域内に設置されてもよい。第1周波数の電波が、建物1の壁1Wを透過せずに窓ガラス11を透過する場合に、窓10の見通し領域内に第1アンテナ110を設置することで、屋外側の基地局(BS1又はBS2)と第1アンテナ110との間で第1周波数の電波での通信を確実に行うことができる。また、第2アンテナ120については、窓10の見通し領域内ではない位置に配置してもよい。このため、筐体140を配置する場所の自由度が高い。
The first antenna 110 may also be installed within the line of sight of the window 10 near the indoor window 10. In cases where radio waves of the first frequency pass through the window glass 11 without passing through the wall 1W of the building 1, installing the first antenna 110 within the line of sight of the window 10 ensures that communication using radio waves of the first frequency can be performed between the outdoor base station (BS1 or BS2) and the first antenna 110. The second antenna 120 may also be placed in a position that is not within the line of sight of the window 10. This allows for a high degree of freedom in the location where the housing 140 is placed.
また、第1アンテナ110は、視感透過率が50%以上であってもよい。第1アンテナ110が窓ガラス11に設けられるような場合に、視界を損なうことを抑制できるとともに、窓ガラス11を通じてより多くの可視光を屋内に採り入れることができる。
The first antenna 110 may also have a visual transmittance of 50% or more. When the first antenna 110 is provided on the window glass 11, this can prevent the visibility from being impaired and allow more visible light to enter the room through the window glass 11.
また、伝送ケーブル115は、筐体140に対して着脱可能であってもよい。伝送ケーブル115を筐体140から取り外せるので、第1アンテナ110を窓ガラス11に容易に取付可能であるとともに、筐体140を容易に設置可能である。また、第1アンテナ110を容易に交換可能である。
In addition, the transmission cable 115 may be detachable from the housing 140. Since the transmission cable 115 can be detached from the housing 140, the first antenna 110 can be easily attached to the window glass 11, and the housing 140 can be easily installed. In addition, the first antenna 110 can be easily replaced.
また、第1アンテナ110は、信号処理部150が筐体140に対する着脱状態を識別可能な識別部(113、114)を有してもよい。第1アンテナ110が信号処理部150に対して接続されている状態と、接続されていない状態とを識別部に基づいて信号処理部150が識別できる。
The first antenna 110 may also have an identification unit (113, 114) that allows the signal processing unit 150 to identify whether the first antenna 110 is attached to or detached from the housing 140. The signal processing unit 150 can identify whether the first antenna 110 is connected to the signal processing unit 150 or not based on the identification unit.
また、第1アンテナ110を複数含み、複数の第1アンテナ110の識別部(113、114)は、互いに異なってもよい。例えば、MIMO通信又はビームフォーミングを行う場合に、信号処理部150が容易に複数の第1アンテナ110を識別できる。
Furthermore, the system may include a plurality of first antennas 110, and the identification units (113, 114) of the plurality of first antennas 110 may be different from each other. For example, when performing MIMO communication or beamforming, the signal processing unit 150 can easily identify the plurality of first antennas 110.
また、第1アンテナ110は、アンテナエレメント111と、アンテナエレメント111に接続されるチョーク構造(113、114)とを有し、識別部(113、114)は、チョーク構造(113、114)であってもよい。チョーク構造は、交流的には見えないので、第1アンテナ110のアンテナ特性に影響を与えることなく、第1アンテナ110を識別可能にできる。
The first antenna 110 may have an antenna element 111 and a choke structure (113, 114) connected to the antenna element 111, and the identification portion (113, 114) may be the choke structure (113, 114). The choke structure is invisible in terms of AC, so it is possible to make the first antenna 110 identifiable without affecting the antenna characteristics of the first antenna 110.
また、第1アンテナ110は、アンテナエレメント111に接続される給電線路112をさらに有し、第1アンテナ110の通信周波数における波長の電気長をλeとすると、チョーク構造(113、114)は、給電線路112から分岐し、λe/2の長さを有する分岐線路113と、分岐線路113の長さの中点の部分から分岐し、所定の直流抵抗値を有する分岐線路114とを有していてもよい。分岐線路113及び114を含むチョーク構造は、給電線路112やグランドから交流的には見えないので、第1アンテナ110のアンテナ特性に影響を与えることなく、第1アンテナ110を識別可能にできる。
The first antenna 110 further includes a feed line 112 connected to the antenna element 111, and if the electrical length of the wavelength at the communication frequency of the first antenna 110 is λe, the choke structure (113, 114) may include a branch line 113 that branches off from the feed line 112 and has a length of λe/2, and a branch line 114 that branches off from the midpoint of the length of the branch line 113 and has a predetermined DC resistance value. The choke structure including the branch lines 113 and 114 is not visible from the feed line 112 or ground in terms of AC, so that the first antenna 110 can be made identifiable without affecting the antenna characteristics of the first antenna 110.
また、所定の直流抵抗値は、0Ωから500Ωであってもよい。0Ωから500Ωの直流抵抗値であれば、第1アンテナ110を確実に識別可能である。また、第1アンテナ110が接続されているかどうかを容易に判定可能である。
The specified DC resistance value may be between 0 Ω and 500 Ω. A DC resistance value between 0 Ω and 500 Ω allows the first antenna 110 to be reliably identified. Also, it allows easy determination as to whether the first antenna 110 is connected.
また、第1アンテナ110、又は、第2アンテナ120を複数含んでもよい。MIMO通信やビームフォーミング等を実現可能な無線通信装置100を提供できる。
Furthermore, a plurality of first antennas 110 or second antennas 120 may be included. A wireless communication device 100 capable of implementing MIMO communication, beamforming, etc. can be provided.
また、第1アンテナ110と窓10との間に設けられる整合層117をさらに含んでもよい。第1アンテナ110が電波を送受信する際に、窓ガラス11を透過する電波の電気長を調整してインピーダンスを整合させることで、損失を低減することができる。
The antenna may further include a matching layer 117 provided between the first antenna 110 and the window 10. When the first antenna 110 transmits and receives radio waves, the electrical length of the radio waves passing through the window glass 11 is adjusted to match the impedance, thereby reducing loss.
また、複数の第1アンテナ110は、フェーズドアレイアンテナであってもよい。ビームフォーミング等を実現可能な無線通信装置100を提供できる。
The multiple first antennas 110 may also be phased array antennas. This provides a wireless communication device 100 capable of implementing beamforming and the like.
また、フェーズドアレイアンテナは、液晶移相器を有するフェーズドアレイアンテナであってもよい。液晶移相器で位相を調整してビームフォーミング等を実現可能な無線通信装置100を提供できる。
The phased array antenna may also be a phased array antenna having a liquid crystal phase shifter. A wireless communication device 100 can be provided that can adjust the phase with the liquid crystal phase shifter to achieve beamforming, etc.
また、第1周波数は所定周波数以上であり、第2周波数は所定周波数未満であり、所定周波数は、1GHz以上で3GHz以下であってもよい。建物1の壁1Wの構造等に応じて適切な所定周波数に設定することで、第1アンテナ110で窓ガラス11を透過する第1周波数の電波を送受信できるとともに、第2アンテナ120で壁1Wを透過する第2周波数の電波を送受信できる無線通信装置100を提供できる。
The first frequency is equal to or higher than a predetermined frequency, and the second frequency is lower than the predetermined frequency, which may be equal to or higher than 1 GHz and equal to or lower than 3 GHz. By setting an appropriate predetermined frequency according to the structure of the wall 1W of the building 1, it is possible to provide a wireless communication device 100 that can transmit and receive radio waves of the first frequency that pass through the window glass 11 using the first antenna 110, and can transmit and receive radio waves of the second frequency that pass through the wall 1W using the second antenna 120.
また、第2アンテナ120は逆Fアンテナであってもよい。第2アンテナ120を広帯域な逆Fアンテナにすることで、第2アンテナ120が筐体140内又は筐体140の外表面に設けられる構成であっても、広帯域で第2周波数の電波を送受信可能である。
The second antenna 120 may also be an inverted F antenna. By making the second antenna 120 a broadband inverted F antenna, radio waves at the second frequency can be transmitted and received over a broadband even if the second antenna 120 is provided inside the housing 140 or on the outer surface of the housing 140.
また、第1アンテナ110は、窓10の窓ガラス11に接着されてもよい。第1アンテナ110を窓ガラス11に接着することで、第1アンテナ110を窓10の見通し領域に安定的に設置でき、第1周波数の電波を安定的に送受信可能である。
The first antenna 110 may also be adhered to the window glass 11 of the window 10. By adhering the first antenna 110 to the window glass 11, the first antenna 110 can be stably installed in the line of sight area of the window 10, and radio waves of the first frequency can be stably transmitted and received.
また、第1アンテナ110及び伝送ケーブル115の組を複数含み、複数の組のうちの一部の複数の組の第1アンテナ110は、10GHz以下の第1周波数で通信するアレイアンテナを構成し、複数の組のうちの他の一部の複数の組の第1アンテナ110は、25GHz以上の第1周波数で通信するフェーズドアレイアンテナを構成してもよい。比較的低い第1周波数の電波をアレイアンテナで送受信するとともに、比較的高い第1周波数の電波についてはフェーズドアレイアンテナでビームフォーミングが可能な無線通信装置100を提供できる。比較的高い第1周波数の電波についてはビームフォーミングを行うことで、利得を向上させることができ、無線通信装置100の性能を向上させることができる。複数の第1周波数の周波数レベルと、各第1周波数の電波の直進性等の特性とに応じて、最適な状況で電波の送受信が可能になる。
Furthermore, the wireless communication device 100 may include a plurality of sets of the first antenna 110 and the transmission cable 115, and some of the first antennas 110 of the plurality of sets may constitute an array antenna that communicates at a first frequency of 10 GHz or less, and some of the other of the plurality of sets may constitute a phased array antenna that communicates at a first frequency of 25 GHz or more. It is possible to provide a wireless communication device 100 that transmits and receives radio waves of a relatively low first frequency using an array antenna, and can perform beamforming on radio waves of a relatively high first frequency using a phased array antenna. By performing beamforming on radio waves of a relatively high first frequency, it is possible to improve the gain and improve the performance of the wireless communication device 100. Radio waves can be transmitted and received under optimal conditions depending on the frequency levels of the plurality of first frequencies and the characteristics of the radio waves of each first frequency, such as the linearity.
以上、本開示の例示的な無線通信装置について説明したが、本開示は、具体的に開示された実施形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
The above describes an exemplary wireless communication device of the present disclosure, but the present disclosure is not limited to the specifically disclosed embodiments, and various modifications and variations are possible without departing from the scope of the claims.
なお、本国際出願は、2023年2月14日に出願した日本国特許出願2023-020790に基づく優先権を主張するものであり、その全内容は本国際出願にここでの参照により援用されるものとする。
This international application claims priority to Japanese Patent Application No. 2023-020790, filed on February 14, 2023, the entire contents of which are incorporated herein by reference.
1 建物
1W 壁
10 窓
11 窓ガラス
50 スマートフォン
100、100M 無線通信装置
101 装置本体
102A、102B 無線通信部
110、110M 第1アンテナ
110A、110MA 基板
110MG グランド層
111、111M アンテナエレメント
111A 給電点
112 給電線路
113、114、分岐線路 分岐線路(識別部、チョーク構造の一例)
113A 中点
114A、114MA パッド
115 伝送ケーブル
117 整合層
118 液晶移相器
120 第2アンテナ
130A、130B 第3アンテナ
135A~135C コネクタ(入出力端子の一例)
140 筐体
145 コネクタ
150 信号処理部
151 無線モジュール
152A、152B スイッチ
153A、153B LNA
154A、154B ADC
155A、155B DAC
156A、156B PA1 Building 1W Wall 10 Window 11 Window glass 50 Smartphone 100, 100M Wireless communication device 101 Device main body 102A, 102B Wireless communication unit 110, 110M First antenna 110A, 110MA Substrate 110MG Ground layer 111, 111M Antenna element 111A Power supply point 112 Power supply line 113, 114, branch line Branch line (identification unit, an example of a choke structure)
113A:midpoint 114A, 114MA: pad 115: transmission cable 117: matching layer 118: liquid crystal phase shifter 120: second antenna 130A, 130B: third antenna 135A to 135C: connector (an example of an input/output terminal)
140: Housing 145: Connector 150: Signal processing unit 151: Wireless module 152A, 152B: Switch 153A, 153B: LNA
154A, 154B ADC
155A, 155B DAC
156A, 156B PA
1W 壁
10 窓
11 窓ガラス
50 スマートフォン
100、100M 無線通信装置
101 装置本体
102A、102B 無線通信部
110、110M 第1アンテナ
110A、110MA 基板
110MG グランド層
111、111M アンテナエレメント
111A 給電点
112 給電線路
113、114、分岐線路 分岐線路(識別部、チョーク構造の一例)
113A 中点
114A、114MA パッド
115 伝送ケーブル
117 整合層
118 液晶移相器
120 第2アンテナ
130A、130B 第3アンテナ
135A~135C コネクタ(入出力端子の一例)
140 筐体
145 コネクタ
150 信号処理部
151 無線モジュール
152A、152B スイッチ
153A、153B LNA
154A、154B ADC
155A、155B DAC
156A、156B PA
113A:
140: Housing 145: Connector 150: Signal processing unit 151:
154A, 154B ADC
155A, 155B DAC
156A, 156B PA
Claims (18)
- 信号処理部と、
前記信号処理部を収容する筐体と、
前記筐体の外側に設けられ、伝送ケーブルを介して前記信号処理部に接続され、第1周波数の電波で基地局と通信する第1アンテナと、
前記筐体内又は前記筐体の外表面に設けられ、前記信号処理部に接続され、前記第1周波数よりも低い第2周波数の電波で前記基地局と通信する第2アンテナと、
前記筐体内又は前記筐体の外表面に設けられ、前記信号処理部に接続され、前記第1アンテナ又は前記第2アンテナで送受信される通信用のデータの入出力を行う入出力端子と
を含む、無線通信装置。 A signal processing unit;
A housing that houses the signal processing unit;
a first antenna provided outside the housing, connected to the signal processing unit via a transmission cable, and configured to communicate with a base station using radio waves of a first frequency;
a second antenna provided within the housing or on an outer surface of the housing, connected to the signal processing unit, and configured to communicate with the base station using radio waves having a second frequency that is lower than the first frequency;
an input/output terminal provided within the housing or on an outer surface of the housing, connected to the signal processing unit, and performing input/output of communication data transmitted and received by the first antenna or the second antenna. - 前記入出力端子に接続される第3アンテナをさらに含む、請求項1に記載の無線通信装置。 The wireless communication device of claim 1, further comprising a third antenna connected to the input/output terminal.
- 前記第1アンテナは、屋内側の窓の付近の前記窓の見通し領域内に設置される、請求項1又は2に記載の無線通信装置。 The wireless communication device according to claim 1 or 2, wherein the first antenna is installed in the vicinity of an indoor window and within the line of sight of the window.
- 前記第1アンテナは、視感透過率が50%以上である、請求項1乃至3のいずれか1項に記載の無線通信装置。 The wireless communication device according to any one of claims 1 to 3, wherein the first antenna has a visual transmittance of 50% or more.
- 前記伝送ケーブルは、前記筐体に対して着脱可能である、請求項1乃至4のいずれか1項に記載の無線通信装置。 The wireless communication device according to any one of claims 1 to 4, wherein the transmission cable is detachable from the housing.
- 前記第1アンテナは、前記信号処理部が前記筐体に対する着脱状態を識別可能な識別部を有する、請求項1乃至5のいずれか1項に記載の無線通信装置。 The wireless communication device according to any one of claims 1 to 5, wherein the first antenna has an identification unit that enables the signal processing unit to identify whether the first antenna is attached to or detached from the housing.
- 前記第1アンテナを複数含み、
前記複数の前記第1アンテナの前記識別部は、互いに異なる、請求項6に記載の無線通信装置。 The first antenna includes a plurality of first antennas,
The wireless communication device according to claim 6 , wherein the identification portions of the plurality of first antennas are different from one another. - 前記第1アンテナは、
アンテナエレメントと
前記アンテナエレメントに接続されるチョーク構造と
を有し、
前記識別部は、前記チョーク構造である、請求項7に記載の無線通信装置。 The first antenna is
an antenna element; and a choke structure connected to the antenna element;
The wireless communication device according to claim 7 , wherein the identification portion is the choke structure. - 前記第1アンテナは、前記アンテナエレメントに接続される給電線路をさらに有し、
前記第1アンテナの通信周波数における波長の電気長をλeとすると、
前記チョーク構造は、
前記給電線路から分岐し、λe/2の長さを有する第1分岐線路と、
前記第1分岐線路の前記長さの中点の部分から分岐し、所定の直流抵抗値を有する第2分岐線路と
を有する、請求項8に記載の無線通信装置。 The first antenna further includes a feed line connected to the antenna element,
If the electrical length of the wavelength of the first antenna at the communication frequency is λe, then
The choke structure includes:
A first branch line branching off from the feed line and having a length of λe/2;
The wireless communication device according to claim 8 , further comprising: a second branch line branching off from a midpoint of the length of the first branch line and having a predetermined DC resistance value. - 前記所定の直流抵抗値は、0Ωから500Ωである、請求項9に記載の無線通信装置。 The wireless communication device according to claim 9, wherein the predetermined DC resistance value is between 0 Ω and 500 Ω.
- 前記第1アンテナ、又は、前記第2アンテナを複数含む、請求項1乃至10のいずれか1項に記載の無線通信装置。 The wireless communication device according to any one of claims 1 to 10, comprising a plurality of the first antennas or the second antennas.
- 前記第1アンテナと前記窓との間に設けられる整合層をさらに含む、請求項3に記載の無線通信装置。 The wireless communication device of claim 3, further comprising a matching layer disposed between the first antenna and the window.
- 前記複数の前記第1アンテナは、フェーズドアレイアンテナである、請求項11に記載の無線通信装置。 The wireless communication device according to claim 11, wherein the first antennas are phased array antennas.
- 前記フェーズドアレイアンテナは、液晶移相器を有するフェーズドアレイアンテナである、請求項13に記載の無線通信装置。 The wireless communication device according to claim 13, wherein the phased array antenna is a phased array antenna having a liquid crystal phase shifter.
- 前記第1周波数は所定周波数以上であり、前記第2周波数は前記所定周波数未満であり、
前記所定周波数は、1GHz以上で3GHz以下である、請求項1乃至14のいずれか1項に記載の無線通信装置。 the first frequency is equal to or greater than a predetermined frequency, and the second frequency is less than the predetermined frequency,
The wireless communication device according to claim 1 , wherein the predetermined frequency is equal to or higher than 1 GHz and equal to or lower than 3 GHz. - 前記第2アンテナは逆Fアンテナである、請求項1乃至15のいずれか1項に記載の無線通信装置。 The wireless communication device according to any one of claims 1 to 15, wherein the second antenna is an inverted F antenna.
- 前記第1アンテナは、前記窓の窓ガラスに接着される、請求項3に記載の無線通信装置。 The wireless communication device according to claim 3, wherein the first antenna is attached to the window glass of the window.
- 前記第1アンテナ及び前記伝送ケーブルの組を複数含み、
前記複数の組のうちの一部の複数の組の前記第1アンテナは、10GHz以下の前記第1周波数で通信するアレイアンテナを構成し、
前記複数の組のうちの他の一部の複数の組の前記第1アンテナは、25GHz以上の前記第1周波数で通信するフェーズドアレイアンテナを構成する、請求項1乃至17のいずれか1項に記載の無線通信装置。 a plurality of pairs of the first antenna and the transmission cable;
the first antennas of some of the plurality of sets constitute an array antenna that communicates at the first frequency of 10 GHz or less;
The wireless communication device according to claim 1 , wherein the first antennas of other of the plurality of sets constitute a phased array antenna that communicates at the first frequency of 25 GHz or higher.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023020790 | 2023-02-14 | ||
JP2023-020790 | 2023-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024171832A1 true WO2024171832A1 (en) | 2024-08-22 |
Family
ID=92421602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/003341 WO2024171832A1 (en) | 2023-02-14 | 2024-02-01 | Wireless communication device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024171832A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06181451A (en) * | 1992-12-14 | 1994-06-28 | Nippon Telegr & Teleph Corp <Ntt> | Radio repeater |
JP2008199454A (en) * | 2007-02-15 | 2008-08-28 | Mitsubishi Electric Corp | Television receiver |
US20180317153A1 (en) * | 2017-04-27 | 2018-11-01 | Airspan Networks Inc. | Apparatus and method for improving connectivity for items of user equipment in a wireless network |
US20200021038A1 (en) * | 2018-07-13 | 2020-01-16 | Amazon Technologies, Inc. | Surface-link antenna architecture |
WO2020095597A1 (en) * | 2018-11-05 | 2020-05-14 | ソフトバンク株式会社 | Area construction method |
-
2024
- 2024-02-01 WO PCT/JP2024/003341 patent/WO2024171832A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06181451A (en) * | 1992-12-14 | 1994-06-28 | Nippon Telegr & Teleph Corp <Ntt> | Radio repeater |
JP2008199454A (en) * | 2007-02-15 | 2008-08-28 | Mitsubishi Electric Corp | Television receiver |
US20180317153A1 (en) * | 2017-04-27 | 2018-11-01 | Airspan Networks Inc. | Apparatus and method for improving connectivity for items of user equipment in a wireless network |
US20200021038A1 (en) * | 2018-07-13 | 2020-01-16 | Amazon Technologies, Inc. | Surface-link antenna architecture |
WO2020095597A1 (en) * | 2018-11-05 | 2020-05-14 | ソフトバンク株式会社 | Area construction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230120342A1 (en) | Multi-Amplifier Repeater System for Wireless Communication | |
US10270152B2 (en) | Broadband transceiver and distributed antenna system utilizing same | |
US20060223439A1 (en) | Wireless repeater assembly | |
US10249955B2 (en) | Antenna structure for distributed antenna system | |
US11658731B2 (en) | High gain active relay antenna system | |
ATE264009T1 (en) | ROUND BEAM ANTENNA WITH ASYMMETRIC DOUBLE CONE AS A PASSIVE FEED ELEMENT FOR A RADIATOR ELEMENT | |
WO2018207500A1 (en) | Wireless relay device | |
US20200091990A1 (en) | Multi-band antenna arrangements | |
WO2024171832A1 (en) | Wireless communication device | |
US11664882B2 (en) | Radio wave repeater and communication system | |
EP2022189A1 (en) | Wireless repeater assembly | |
TW202437598A (en) | Wireless communication device | |
US6603439B2 (en) | Radiating antenna with galvanic insulation | |
US11973260B2 (en) | Antenna | |
WO2024228350A1 (en) | Antenna device, repeater, window glass system, and method for installing antenna device | |
JP7383934B2 (en) | Signal transmission device and signal transmission method | |
WO2024116989A1 (en) | Antenna device and adjusting method for antenna device | |
US11949160B2 (en) | Distributed antenna and distributed antenna system | |
JP2004166072A (en) | Radio communication system | |
US20240243463A1 (en) | Transparent antenna and communication system | |
WO2024171893A1 (en) | Method for selecting interface layer | |
WO2023157689A1 (en) | Wireless communication device | |
US20240275054A1 (en) | Antenna and electronic device | |
WO2024207451A1 (en) | Antenna and electronic device | |
JP2024104319A (en) | Antenna device and radio communication apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24756682 Country of ref document: EP Kind code of ref document: A1 |