[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024171825A1 - Ion exchange resin column and method for removing boron - Google Patents

Ion exchange resin column and method for removing boron Download PDF

Info

Publication number
WO2024171825A1
WO2024171825A1 PCT/JP2024/003265 JP2024003265W WO2024171825A1 WO 2024171825 A1 WO2024171825 A1 WO 2024171825A1 JP 2024003265 W JP2024003265 W JP 2024003265W WO 2024171825 A1 WO2024171825 A1 WO 2024171825A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange resin
ion exchange
boron
resin layer
layer
Prior art date
Application number
PCT/JP2024/003265
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 藤平
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2024171825A1 publication Critical patent/WO2024171825A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/022Column or bed processes characterised by the construction of the column or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Definitions

  • the present invention relates to an ion exchange resin tower, and more specifically to an ion exchange resin tower having a boron adsorption resin and an ion exchange resin, and having excellent boron removal performance.
  • the present invention relates to an ion exchange resin tower that is particularly suitable for incorporation into the primary pure water system of an ultrapure water production system.
  • the present invention also relates to a method for removing boron using this ion exchange resin tower.
  • ultrapure water production equipment that produces ultrapure water from raw water such as city water, groundwater, and industrial water basically consists of a pretreatment device, a primary pure water production device, and a secondary pure water production device.
  • the pretreatment device consists of coagulation, flotation, filtration, and turbidity membrane devices.
  • the primary pure water production device consists of one or more devices from the activated carbon adsorption tower, ultraviolet (UV) oxidation device, chemical oxidation device, degasification device, etc., and a desalination device, of which the desalination device consists of one or more combinations of reverse osmosis (RO) membrane separation devices, electric deionization devices, and ion exchange devices (mixed-bed ion exchange devices or ion exchange pure water devices).
  • RO reverse osmosis
  • the secondary pure water production device is an appropriate combination of the same equipment units as the primary pure water production device, and generally consists of a low-pressure UV oxidation device, a mixed-bed ion exchange device, and an ultrafiltration (UF) membrane separation device.
  • a boron adsorption resin tower may be installed downstream of the RO membrane separation device.
  • Patent Document 1 describes a pure water production system equipped with a boron adsorption device, which is filled with a boron-selective adsorption resin, as well as a cation exchange resin and an anion exchange resin.
  • Patent Document 2 describes how the breakthrough capacity (BTC) of the boron adsorption tower can be increased by appropriately controlling the water flow rate SV to the boron adsorption tower. Patent Document 2 also describes how the boron adsorption tower can be installed at the final stage of the primary pure water system.
  • BTC breakthrough capacity
  • the objective of the present invention is to provide an ion exchange resin tower that can efficiently adsorb and remove boron over a long period of time, and a method for removing boron using this ion exchange resin tower.
  • the ion exchange resin tower of the present invention is an ion exchange resin tower for removing boron, which has a tower body and an ion exchange resin layer provided within the tower body, through which the water to be treated flows downward, and which has as the ion exchange resin layer a mixed bed resin layer arranged in the lower layer, an anion exchange resin layer arranged in the upper layer, and a boron adsorption resin layer arranged between the mixed bed resin layer and the anion exchange resin layer.
  • the ratio of the layer height of the ion exchange resin layer to the total layer height is: anion exchange resin layer: 1-20%, boron adsorption resin layer: 2-30%, mixed bed resin layer: 50-97%.
  • boron-containing water to be treated is passed through the ion exchange resin tower of the present invention in a downward flow.
  • the ion exchange resin tower and boron removal method of the present invention can efficiently adsorb and remove boron over a long period of time.
  • the present invention can increase the breakthrough capacity (BTC) of the boron adsorbing ion exchange resin tower.
  • an anion exchange resin layer is provided above the boron adsorption and removal layer, and the water to be treated introduced into the ion exchange resin tower first comes into contact with the anion exchange resin.
  • carbonate ions and organic acid ions in the water to be treated are adsorbed by the anion exchange resin, and the pH of the water flowing from the anion exchange resin layer to the boron adsorption resin layer increases.
  • boron in the water exists in the form of B(OH) 4 - , and is therefore efficiently adsorbed by the boron adsorption resin.
  • the downward flow velocity is greater toward the center of the tower (the center in the horizontal cross section; the same applies below).
  • an anion exchange resin layer is present above a boron adsorption resin layer
  • the treated water introduced into the ion exchange resin tower and flowing downward is subjected to a rectifying effect in the anion exchange resin layer (the effect of making the downward flow velocity distribution approximately equal in the horizontal cross section).
  • the downward flow velocity distribution in the boron adsorption resin layer becomes smaller.
  • the time difference until breakthrough between the center and peripheral sides of the boron adsorption removal layer becomes smaller, and the amount of boron adsorbed until breakthrough in the entire boron adsorption resin layer increases.
  • FIG. 2 is a schematic vertical cross-sectional view of an ion-exchange resin tower according to an embodiment.
  • FIG. 1 is an explanatory diagram of an experimental apparatus. 1 is a graph showing the results of an example.
  • the ion exchange resin tower 1 has a tower body 2 and a mixed bed resin layer M, a boron adsorption and removal layer B, and an anion exchange resin layer A, which are arranged in this tower body 2 from the bottom up.
  • An inlet for the water to be treated is provided at the top of the tower body 2, and an outlet for the treated water is provided at the bottom. The water to be treated flows downward through this ion exchange resin tower 1.
  • the mixed bed resin layer M is a mixed layer of anion exchange resin and cation exchange resin.
  • the mixing ratio of anion exchange resin to cation exchange resin is preferably 50:50 (weight ratio when dried, the same applies below), but it may be within the range of 50:50 to 90:10.
  • boron adsorption resin one that adsorbs boron by ion exchange or chelating action is suitable, and commercially available products (e.g., Diaion CRB manufactured by Mitsubishi Chemical Corporation, Chelesto Fiber GRY manufactured by Chelesto Co., Ltd., etc.) can be used.
  • the height of the resin-filled layer (total layer height) in the tower body 2 is preferably 500 to 3500 mm, and more preferably 500 to 1000 mm.
  • the layer height of the anion exchange resin layer A in the total layer height is preferably 1 to 50%, particularly preferably 10 to 25%, and even more preferably 10 to 20%.
  • the layer height of the boron adsorption resin layer B is preferably 2 to 30%, particularly preferably 15 to 25%, and the layer height of the mixed bed resin layer M is preferably 30 to 97%, particularly preferably 50 to 95%, and even more preferably 50 to 70%.
  • the water flow rate SV of the ion-exchange resin tower 1 is preferably about 20 to 200 hr ⁇ 1 , particularly about 20 to 100 hr ⁇ 1 .
  • an anion exchange resin layer A is provided above a boron adsorption removal layer B, and the water to be treated introduced into the ion exchange resin tower 1 first comes into contact with the anion exchange resin A.
  • carbonate ions and organic acid ions in the water to be treated are adsorbed by the anion exchange resin A, increasing the pH of the water flowing from the anion exchange resin layer A to the boron adsorption resin layer B.
  • boron in the water exists in the form of B(OH) 4 - and is therefore efficiently adsorbed by the boron adsorption resin.
  • the anion exchange resin layer A is present above the boron adsorption resin layer B, so that the water to be treated that is introduced into the ion exchange resin tower 1 and flows downward is subjected to a rectifying effect in the anion exchange resin layer A (the effect of making the downward flow velocity distribution approximately equal in horizontal cross section).
  • the downward flow velocity distribution in the boron adsorption resin layer B is smaller than when the anion exchange resin layer A is not provided.
  • the time difference until breakthrough between the center and peripheral sides of the boron adsorption removal layer B is reduced, and the amount of boron adsorbed until breakthrough in the entire boron adsorption resin layer B is increased.
  • This ion exchange resin tower 1 is preferably installed at the most downstream part of the primary pure water system.
  • the boron concentration in the water to be treated is preferably 5 to 1000 ng/L, and more preferably 50 to 800 ng/L.
  • the resistivity of the water to be treated is preferably ⁇ 10 M ⁇ cm, and more preferably ⁇ 15 M ⁇ cm.
  • ion exchange columns (1) to (4) were constructed by packing ion exchange resins in cylindrical columns having an inner diameter of 20 mm.
  • an anion exchange resin layer A is provided in the top layer, a boron adsorption and removal layer B is provided below that (middle), and a mixed bed resin layer M is provided below that (bottom layer).
  • ion exchange resins used are as follows: Anion exchange resin: Commercially available product (manufactured by Mitsubishi Chemical Corporation) Boron adsorption resin: Commercially available product (manufactured by Mitsubishi Chemical Corporation) Cation exchange resin: Commercially available product (manufactured by Mitsubishi Chemical Corporation)
  • the mixing ratio of anion exchange resin and cation exchange resin in the mixed bed resin layer M was 50:50 (weight ratio).
  • the treated water was ultrapure water containing boron, with 600 ng/L of B(OH) 3 added as boron.
  • the change in the boron concentration of the treated water over time is shown in Figure 3.
  • the ratio of the anion exchange resin A placed above the boron adsorption and removal layer B to the total layer height is preferably 10 to 50%, and more preferably 15 to 30%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

Disclosed is an ion exchange resin column 1 for boron removal, the ion exchange resin column 1 comprising a column body 2 and an ion exchange resin layer that is disposed within the column body 2, wherein water to be processed flows downward. With respect to this ion exchange resin column 1, the ion exchange resin layer comprises: a mixed bed resin layer M that is arranged as the lower layer; an anion exchange resin layer A that is arranged as the upper layer; and a boron adsorption resin layer B that is arranged between the mixed bed resin layer and the anion exchange resin. Also disclosed is a method for removing boron with use of this ion exchange resin column 1.

Description

イオン交換樹脂塔及びホウ素除去方法Ion exchange resin tower and boron removal method

 本発明はイオン交換樹脂塔に係り、詳しくはホウ素吸着樹脂とイオン交換樹脂とを有した、ホウ素除去性能に優れたイオン交換樹脂塔に関する。本発明は、特に超純水製造装置の一次純水装置に組み込むのに好適なイオン交換樹脂塔に関する。また、本発明は、このイオン交換樹脂塔を用いたホウ素除去方法に関する。 The present invention relates to an ion exchange resin tower, and more specifically to an ion exchange resin tower having a boron adsorption resin and an ion exchange resin, and having excellent boron removal performance. The present invention relates to an ion exchange resin tower that is particularly suitable for incorporation into the primary pure water system of an ultrapure water production system. The present invention also relates to a method for removing boron using this ion exchange resin tower.

 従来、市水、地下水、工水等の原水から超純水を製造する超純水製造装置は、基本的に、前処理装置、一次純水製造装置及び二次純水製造装置から構成される。このうち、前処理装置は、凝集、浮上、濾過、除濁膜装置等で構成される。一次純水製造装置は、活性炭吸着塔、紫外線(UV)酸化装置、化学的酸化装置、脱気装置等のうちの1種又は2種以上の装置と、脱塩装置とで構成され、このうち脱塩装置は、逆浸透(RO)膜分離装置、電気脱イオン装置、イオン交換装置(混床式イオン交換装置ないしはイオン交換純水装置)の1種或いは2種以上の組み合わせにより構成される。また、二次純水製造装置は、一次純水製造装置と同様な装置単位を適宜組み合わせたものであり、一般的には、低圧UV酸化装置、混床式イオン交換装置及び限外濾過(UF)膜分離装置で構成される。 Conventionally, ultrapure water production equipment that produces ultrapure water from raw water such as city water, groundwater, and industrial water basically consists of a pretreatment device, a primary pure water production device, and a secondary pure water production device. Of these, the pretreatment device consists of coagulation, flotation, filtration, and turbidity membrane devices. The primary pure water production device consists of one or more devices from the activated carbon adsorption tower, ultraviolet (UV) oxidation device, chemical oxidation device, degasification device, etc., and a desalination device, of which the desalination device consists of one or more combinations of reverse osmosis (RO) membrane separation devices, electric deionization devices, and ion exchange devices (mixed-bed ion exchange devices or ion exchange pure water devices). In addition, the secondary pure water production device is an appropriate combination of the same equipment units as the primary pure water production device, and generally consists of a low-pressure UV oxidation device, a mixed-bed ion exchange device, and an ultrafiltration (UF) membrane separation device.

 近年、超純水製造において、ホウ素については、例えば1ppt以下という厳しい水質が求められるようになってきている。 In recent years, strict water quality standards have been required for ultrapure water production, such as boron levels of 1 ppt or less.

 ホウ素を除去するために、RO膜分離装置の後段にホウ素吸着樹脂塔を設けることがある。 To remove boron, a boron adsorption resin tower may be installed downstream of the RO membrane separation device.

 特許文献1には、ホウ素吸着装置を備えた純水製造装置として、ホウ素選択性吸着樹脂が充填されると共に、カチオン交換樹脂、アニオン交換樹脂が充填されたものが記載されている。 Patent Document 1 describes a pure water production system equipped with a boron adsorption device, which is filled with a boron-selective adsorption resin, as well as a cation exchange resin and an anion exchange resin.

 特許文献2には、ホウ素吸着塔への通水SVを適切にコントロールすることによりホウ素吸着塔の貫流交換容量(BTC)を大きくすることが記載されている。また、特許文献2には、ホウ素吸着塔を一次純水システムの最後段に設けることが記載されている。 Patent Document 2 describes how the breakthrough capacity (BTC) of the boron adsorption tower can be increased by appropriately controlling the water flow rate SV to the boron adsorption tower. Patent Document 2 also describes how the boron adsorption tower can be installed at the final stage of the primary pure water system.

特開2005-828号公報JP 2005-828 A 特開2019-141775号公報JP 2019-141775 A

 本発明は、ホウ素を長期にわたって効率よく吸着除去することができるイオン交換樹脂塔と、このイオン交換樹脂塔を用いたホウ素除去方法を提供することを課題とする。 The objective of the present invention is to provide an ion exchange resin tower that can efficiently adsorb and remove boron over a long period of time, and a method for removing boron using this ion exchange resin tower.

 本発明のイオン交換樹脂塔は、塔体と、該塔体内に設けられたイオン交換樹脂層とを有し、被処理水が下向流にて通水される、ホウ素除去用のイオン交換樹脂塔であって、該イオン交換樹脂層として、下層に配置された混床樹脂層と、上層に配置されたアニオン交換樹脂層と、該混床樹脂層とアニオン交換樹脂層との間に配置されたホウ素吸着樹脂層とを有する。 The ion exchange resin tower of the present invention is an ion exchange resin tower for removing boron, which has a tower body and an ion exchange resin layer provided within the tower body, through which the water to be treated flows downward, and which has as the ion exchange resin layer a mixed bed resin layer arranged in the lower layer, an anion exchange resin layer arranged in the upper layer, and a boron adsorption resin layer arranged between the mixed bed resin layer and the anion exchange resin layer.

 本発明の一態様では、前記イオン交換樹脂層の全層高に対する層高の比率は、アニオン交換樹脂層:1~20%、ホウ素吸着樹脂層:2~30%、混床樹脂層:50~97%である。 In one embodiment of the present invention, the ratio of the layer height of the ion exchange resin layer to the total layer height is: anion exchange resin layer: 1-20%, boron adsorption resin layer: 2-30%, mixed bed resin layer: 50-97%.

 本発明のホウ素除去方法では、かかる本発明のイオン交換樹脂塔に、ホウ素を含有する被処理水を下向流にて通水する。 In the boron removal method of the present invention, boron-containing water to be treated is passed through the ion exchange resin tower of the present invention in a downward flow.

 本発明のイオン交換樹脂塔及びホウ素除去方法によると、ホウ素を長期にわたって効率よく吸着除去することができる。また、本発明によると、ホウ素吸着用イオン交換樹脂塔の貫流交換容量(BTC)を大きくすることができる。 The ion exchange resin tower and boron removal method of the present invention can efficiently adsorb and remove boron over a long period of time. In addition, the present invention can increase the breakthrough capacity (BTC) of the boron adsorbing ion exchange resin tower.

 すなわち、本発明では、ホウ素吸着除去層の上側にアニオン交換樹脂層を設けており、イオン交換樹脂塔内に導入された被処理水がまずアニオン交換樹脂と接触する。これにより、被処理水中の炭酸イオンや有機酸イオンがアニオン交換樹脂に吸着されることにより、アニオン交換樹脂層からホウ素吸着樹脂層に流れ込む水のpHが高くなる。pH7以上では、水中のホウ素は、B(OH) の状態で存在するため、ホウ素吸着樹脂に効率よく吸着される。 That is, in the present invention, an anion exchange resin layer is provided above the boron adsorption and removal layer, and the water to be treated introduced into the ion exchange resin tower first comes into contact with the anion exchange resin. As a result, carbonate ions and organic acid ions in the water to be treated are adsorbed by the anion exchange resin, and the pH of the water flowing from the anion exchange resin layer to the boron adsorption resin layer increases. At a pH of 7 or higher, boron in the water exists in the form of B(OH) 4 - , and is therefore efficiently adsorbed by the boron adsorption resin.

 また、一般にイオン交換樹脂塔では、塔の中央側(水平断面における中央側。以下、同様)ほど下向流速が大きくなる。ホウ素吸着樹脂層の上側にアニオン交換樹脂層が存在すると、イオン交換樹脂塔内に導入されて下向流にて流れる被処理水がアニオン交換樹脂層で整流作用(下向流速分布が水平断面において略均等化する作用)を受ける。この結果、ホウ素吸着樹脂層の下向流速分布が小さくなる。この結果、ホウ素吸着除去層の中央付近と周縁側とで破過に至るまでに時間差が小さくなり、ホウ素吸着樹脂層全体での破過に至るまでのホウ素吸着量が多くなる。 In addition, in general, in an ion exchange resin tower, the downward flow velocity is greater toward the center of the tower (the center in the horizontal cross section; the same applies below). If an anion exchange resin layer is present above a boron adsorption resin layer, the treated water introduced into the ion exchange resin tower and flowing downward is subjected to a rectifying effect in the anion exchange resin layer (the effect of making the downward flow velocity distribution approximately equal in the horizontal cross section). As a result, the downward flow velocity distribution in the boron adsorption resin layer becomes smaller. As a result, the time difference until breakthrough between the center and peripheral sides of the boron adsorption removal layer becomes smaller, and the amount of boron adsorbed until breakthrough in the entire boron adsorption resin layer increases.

実施の形態に係るイオン交換樹脂塔の概略的な縦断面図である。FIG. 2 is a schematic vertical cross-sectional view of an ion-exchange resin tower according to an embodiment. 実験装置の説明図である。FIG. 1 is an explanatory diagram of an experimental apparatus. 実施例の結果を示すグラフである。1 is a graph showing the results of an example.

 以下、図面を参照し実施の形態について説明する。 The following describes the embodiment with reference to the drawings.

 図1の通り、イオン交換樹脂塔1は塔体2と、該塔体2内に下側から順に配置された混床樹脂層M、ホウ素吸着除去層B及びアニオン交換樹脂層Aとを有する。塔体2の頂部に被処理水の流入口が設けられ、底部に処理水の流出口が設けられている。このイオン交換樹脂塔1には、被処理水が下向流にて通水される。 As shown in Figure 1, the ion exchange resin tower 1 has a tower body 2 and a mixed bed resin layer M, a boron adsorption and removal layer B, and an anion exchange resin layer A, which are arranged in this tower body 2 from the bottom up. An inlet for the water to be treated is provided at the top of the tower body 2, and an outlet for the treated water is provided at the bottom. The water to be treated flows downward through this ion exchange resin tower 1.

 混床樹脂層Mは、アニオン交換樹脂とカチオン交換樹脂との混合層である。アニオン交換樹脂とカチオン交換樹脂との混合比率は50:50(乾燥時重量比率、以下同様)が好ましいが、50:50~90:10の範囲内であればよい。 The mixed bed resin layer M is a mixed layer of anion exchange resin and cation exchange resin. The mixing ratio of anion exchange resin to cation exchange resin is preferably 50:50 (weight ratio when dried, the same applies below), but it may be within the range of 50:50 to 90:10.

 ホウ素吸着樹脂としては、イオン交換作用又はキレート作用でホウ素を吸着するものなどが好適であり、市販品(例えば、三菱ケミカル株式会社製ダイヤイオンCRB、キレスト株式会社製キレストファイバーGRYなど)を用いることができる。 As a boron adsorption resin, one that adsorbs boron by ion exchange or chelating action is suitable, and commercially available products (e.g., Diaion CRB manufactured by Mitsubishi Chemical Corporation, Chelesto Fiber GRY manufactured by Chelesto Co., Ltd., etc.) can be used.

 塔体2内の樹脂充填層高(全層高)は、500~3500mm、特に500~1000mmが好適である。 The height of the resin-filled layer (total layer height) in the tower body 2 is preferably 500 to 3500 mm, and more preferably 500 to 1000 mm.

 全層高に占めるアニオン交換樹脂層Aの層高は1~50%特に10~25%とりわけ10~20%が好ましく、ホウ素吸着樹脂層Bの層高は2~30%特に15~25%が好ましく、混床樹脂層Mの層高は30~97%特に50~95%とりわけ50~70%が好ましい。 The layer height of the anion exchange resin layer A in the total layer height is preferably 1 to 50%, particularly preferably 10 to 25%, and even more preferably 10 to 20%. The layer height of the boron adsorption resin layer B is preferably 2 to 30%, particularly preferably 15 to 25%, and the layer height of the mixed bed resin layer M is preferably 30 to 97%, particularly preferably 50 to 95%, and even more preferably 50 to 70%.

 イオン交換樹脂塔1への通水SVは20~200hr-1特に20~100hr-1程度が好適である。 The water flow rate SV of the ion-exchange resin tower 1 is preferably about 20 to 200 hr −1 , particularly about 20 to 100 hr −1 .

 このイオン交換樹脂塔1では、ホウ素吸着除去層Bの上側にアニオン交換樹脂層Aを設けており、イオン交換樹脂塔1内に導入された被処理水がまずアニオン交換樹脂Aと接触する。これにより、被処理水中の炭酸イオンや有機酸イオンがアニオン交換樹脂Aに吸着されることにより、アニオン交換樹脂層Aからホウ素吸着樹脂層Bに流れ込む水のpHが高くなる。pH7以上では、水中のホウ素は、B(OH) の状態で存在するため、ホウ素吸着樹脂に効率よく吸着される。 In this ion exchange resin tower 1, an anion exchange resin layer A is provided above a boron adsorption removal layer B, and the water to be treated introduced into the ion exchange resin tower 1 first comes into contact with the anion exchange resin A. As a result, carbonate ions and organic acid ions in the water to be treated are adsorbed by the anion exchange resin A, increasing the pH of the water flowing from the anion exchange resin layer A to the boron adsorption resin layer B. At a pH of 7 or higher, boron in the water exists in the form of B(OH) 4 - and is therefore efficiently adsorbed by the boron adsorption resin.

 また、このイオン交換樹脂塔1では、ホウ素吸着樹脂層Bの上側にアニオン交換樹脂層Aが存在するので、イオン交換樹脂塔1内に導入されて下向流にて流れる被処理水がアニオン交換樹脂層Aで整流作用(下向流速分布が水平断面において略均等化する作用)を受ける。この結果、アニオン交換樹脂層Aを設けない場合に比べて、ホウ素吸着樹脂層Bの下向流速分布が小さくなる。この結果、ホウ素吸着除去層Bの中央付近と周縁側とで破過に至るまでに時間差が小さくなり、ホウ素吸着樹脂層B全体での破過に至るまでのホウ素吸着量が多くなる。 In addition, in this ion exchange resin tower 1, the anion exchange resin layer A is present above the boron adsorption resin layer B, so that the water to be treated that is introduced into the ion exchange resin tower 1 and flows downward is subjected to a rectifying effect in the anion exchange resin layer A (the effect of making the downward flow velocity distribution approximately equal in horizontal cross section). As a result, the downward flow velocity distribution in the boron adsorption resin layer B is smaller than when the anion exchange resin layer A is not provided. As a result, the time difference until breakthrough between the center and peripheral sides of the boron adsorption removal layer B is reduced, and the amount of boron adsorbed until breakthrough in the entire boron adsorption resin layer B is increased.

 このイオン交換樹脂塔1は、一次純水装置の最下流部に設置されることが好ましい。この場合、被処理水中のホウ素濃度は5~1000ng/L特に50~800ng/L程度が好ましい。また、被処理水の比抵抗値は、≧10MΩ・cm、特に15MΩ・cm以上が好ましい。 This ion exchange resin tower 1 is preferably installed at the most downstream part of the primary pure water system. In this case, the boron concentration in the water to be treated is preferably 5 to 1000 ng/L, and more preferably 50 to 800 ng/L. In addition, the resistivity of the water to be treated is preferably ≧10 MΩ·cm, and more preferably ≧15 MΩ·cm.

[実験例1]
 図2の通り、内径20mmの円筒形カラム内にイオン交換樹脂を充填してイオン交換カラム(1)~(4)を構成した。
[Experimental Example 1]
As shown in FIG. 2, ion exchange columns (1) to (4) were constructed by packing ion exchange resins in cylindrical columns having an inner diameter of 20 mm.

 カラム(1)では、最上層にホウ素吸着除去層Bを設け、その下側に混床樹脂層Mを設けた。アニオン交換樹脂層は設けなかった。 In column (1), a boron adsorption and removal layer B was installed in the top layer, and a mixed bed resin layer M was installed below that. No anion exchange resin layer was installed.

 カラム(2)~(4)では、最上層にアニオン交換樹脂層Aを設け、その下側(中間)にホウ素吸着除去層Bを設け、その下側(最下層)に混床樹脂層Mを設けた。 In columns (2) to (4), an anion exchange resin layer A is provided in the top layer, a boron adsorption and removal layer B is provided below that (middle), and a mixed bed resin layer M is provided below that (bottom layer).

 全層高は1000mmであり、各層の層高は、次の通りである。
  カラム(1):B=200mm、M=800mm
  カラム(2):A=100mm、B=200mm、M=700mm
  カラム(3):A=200mm、B=200mm、M=600mm
  カラム(4):A=500mm、B=200mm、M=300mm
The total layer height is 1000 mm, and the layer height of each layer is as follows:
Column (1): B = 200 mm, M = 800 mm
Column (2): A = 100 mm, B = 200 mm, M = 700 mm
Column (3): A = 200 mm, B = 200 mm, M = 600 mm
Column (4): A = 500 mm, B = 200 mm, M = 300 mm

 用いたイオン交換樹脂は以下の通りである。
  アニオン交換樹脂:市販品(三菱ケミカル株式会社製)
  ホウ素吸着樹脂:市販品(三菱ケミカル株式会社製)
  カチオン交換樹脂:市販品(三菱ケミカル株式会社製)
The ion exchange resins used are as follows:
Anion exchange resin: Commercially available product (manufactured by Mitsubishi Chemical Corporation)
Boron adsorption resin: Commercially available product (manufactured by Mitsubishi Chemical Corporation)
Cation exchange resin: Commercially available product (manufactured by Mitsubishi Chemical Corporation)

 カラム(1)~(4)のいずれにおいても、混床樹脂層Mのアニオン交換樹脂とカチオン交換樹脂との混合比率は50:50(重量比)とした。 In all columns (1) to (4), the mixing ratio of anion exchange resin and cation exchange resin in the mixed bed resin layer M was 50:50 (weight ratio).

 被処理水として、超純水にB(OH)をホウ素として600ng/L添加したホウ素含有水をカラム上端から12.6L/h(ホウ素吸着樹脂層のSV=200hr-1、イオン交換樹脂塔(全層)のSV=40hr-1)にて通水し、カラム下端から流出した処理水のホウ素濃度をICP-MSにより測定した。処理水ホウ素濃度の経時変化を図3に示す。 The treated water was ultrapure water containing boron, with 600 ng/L of B(OH) 3 added as boron. The water was passed through the top of the column at 12.6 L/h (SV of boron adsorption resin layer = 200 hr -1 , SV of ion exchange resin tower (all layers) = 40 hr -1 ), and the boron concentration of the treated water flowing out from the bottom of the column was measured by ICP-MS. The change in the boron concentration of the treated water over time is shown in Figure 3.

<考察>
 図3の通り、カラム(2)~(4)によると、長時間にわたって処理水ホウ素濃度を低く維持することができる。
<Considerations>
As shown in FIG. 3, columns (2) to (4) enable the boron concentration in the treated water to be maintained low for a long period of time.

 処理水ホウ素濃度を1ng/L以下に維持することができるホウ素負荷量(mg-B/L-R)を比較すると、カラム(1)に比べてカラム(2)及び(4)では約1.5倍となり、カラム(3)では約1.7倍となった。 Comparing the boron loading (mg-B/L-R) required to maintain the treated water boron concentration at 1 ng/L or less, columns (2) and (4) were approximately 1.5 times higher than column (1), and column (3) was approximately 1.7 times higher.

 また、この結果より、ホウ素吸着除去層Bの上側に配置するアニオン交換樹脂Aの全層高に対する比率は10~50%特に15~30%程度が好ましいことが認められた。 These results also confirmed that the ratio of the anion exchange resin A placed above the boron adsorption and removal layer B to the total layer height is preferably 10 to 50%, and more preferably 15 to 30%.

[実験例2]
 実験例1において、ホウ素吸着除去層Bの層高を300mmとし、各層の層高を
  カラム(1):B=300mm、M=700mm
  カラム(2):A=100mm、B=300mm、M=600mm
  カラム(3):A=200mm、B=300mm、M=500mm
  カラム(4):A=500mm、B=300mm、M=200mm
としたこと以外は実験例1と同一条件にて試験を行った。
[Experimental Example 2]
In Experimental Example 1, the height of the boron adsorption/removal layer B was set to 300 mm, and the heights of the layers were as follows: Column (1): B = 300 mm, M = 700 mm
Column (2): A = 100 mm, B = 300 mm, M = 600 mm
Column (3): A = 200 mm, B = 300 mm, M = 500 mm
Column (4): A = 500 mm, B = 300 mm, M = 200 mm
The test was carried out under the same conditions as in Experimental Example 1, except for the above.

 その結果、処理水ホウ素濃度を1ng/L以下に維持することができる時間を比較すると、
  カラム(1)は80mg-B/L-R、
カラム(2)は120mg-B/L-R(カラム(1)の1.5倍)、
  カラム(3)は135mg-B/L-R(カラム(1)の1.7倍)、
  カラム(4)は120mg-B/L-R(カラム(1)の1.5倍)
であり、実験例1と同様の傾向が認められた。
As a result, when comparing the time during which the treated water boron concentration can be maintained at 1 ng/L or less,
Column (1) is 80 mg-B/L-R,
Column (2) was 120 mg-B/L-R (1.5 times that of column (1)),
Column (3) was 135 mg-B/L-R (1.7 times that of column (1)),
Column (4) is 120 mg-B/L-R (1.5 times that of column (1))
The same tendency as in Experimental Example 1 was observed.

 本発明を特定の態様を用いて詳細に説明したが、発明の効果が奏される範囲内で様々な変更が可能であることは当業者に明らかである。
 本出願は、2023年2月17日付で出願された日本特許出願2023-023544に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications are possible within the scope of the invention.
This application is based on Japanese Patent Application No. 2023-023544, filed on February 17, 2023, the entirety of which is incorporated by reference.

 1 イオン交換樹脂塔
 2 塔体

 
1 ion exchange resin tower 2 tower body

Claims (8)

 塔体と、該塔体内に設けられたイオン交換樹脂層とを有し、被処理水が下向流にて通水される、ホウ素除去用のイオン交換樹脂塔であって、
 該イオン交換樹脂層として、
 下層に配置された混床樹脂層と、
 上層に配置されたアニオン交換樹脂層と、
 該混床樹脂層とアニオン交換樹脂層との間に配置されたホウ素吸着樹脂層と
を有するイオン交換樹脂塔。
An ion exchange resin tower for removing boron, comprising a tower body and an ion exchange resin layer provided in the tower body, through which water to be treated flows downward,
The ion exchange resin layer may include
A mixed bed resin layer disposed in the lower layer;
An anion exchange resin layer disposed in an upper layer;
The ion exchange resin tower has a boron-adsorbing resin layer disposed between the mixed bed resin layer and the anion exchange resin layer.
 前記イオン交換樹脂層の全層高に対する層高の比率は、
 アニオン交換樹脂層:1~50%、
 ホウ素吸着樹脂層:2~30%、
 混床樹脂層:30~97%
である、請求項1のイオン交換樹脂塔。
The ratio of the layer height to the total layer height of the ion exchange resin layer is
Anion exchange resin layer: 1 to 50%,
Boron-adsorbed resin layer: 2 to 30%,
Mixed bed resin layer: 30-97%
The ion exchange resin tower according to claim 1,
 前記イオン交換樹脂層の全層高に対する層高の比率は、
 アニオン交換樹脂層:10~25%、
 ホウ素吸着樹脂層:15~25%、
 混床樹脂層:50~70%
である、請求項1のイオン交換樹脂塔。
The ratio of the layer height to the total layer height of the ion exchange resin layer is
Anion exchange resin layer: 10 to 25%,
Boron adsorption resin layer: 15 to 25%,
Mixed bed resin layer: 50-70%
The ion exchange resin tower according to claim 1,
 前記全層高は500~3500mmである請求項2のイオン交換樹脂塔。 The ion exchange resin tower of claim 2, wherein the total layer height is 500 to 3500 mm.  前記ホウ素吸着樹脂は、イオン交換作用又はキレート作用によってホウ素を吸着するものである請求項1のイオン交換樹脂塔。 The ion exchange resin tower of claim 1, wherein the boron adsorption resin adsorbs boron by ion exchange or chelating action.  請求項1~4のいずれかのイオン交換樹脂塔に、ホウ素を含有する被処理水を下向流にて通水する、ホウ素除去方法。 A method for removing boron, in which boron-containing water to be treated is passed downward through an ion exchange resin tower according to any one of claims 1 to 4.  前記被処理水中のホウ素濃度が5~1000ng/Lである請求項6のホウ素除去方法。 The boron removal method of claim 6, wherein the boron concentration in the treated water is 5 to 1000 ng/L.  前記イオン交換樹脂塔への通水SVが20~200hr-1である請求項6のホウ素除去方法。

 
The method for removing boron according to claim 6, wherein the water flow rate SV of the ion exchange resin tower is 20 to 200 hr −1 .

PCT/JP2024/003265 2023-02-17 2024-02-01 Ion exchange resin column and method for removing boron WO2024171825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023023544 2023-02-17
JP2023-023544 2023-02-17

Publications (1)

Publication Number Publication Date
WO2024171825A1 true WO2024171825A1 (en) 2024-08-22

Family

ID=92421843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/003265 WO2024171825A1 (en) 2023-02-17 2024-02-01 Ion exchange resin column and method for removing boron

Country Status (2)

Country Link
TW (1) TW202434361A (en)
WO (1) WO2024171825A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224164A (en) * 1975-07-25 1977-02-23 Kurita Water Ind Ltd Ion exchange apparatus
JPH0884986A (en) * 1994-07-22 1996-04-02 Japan Organo Co Ltd Method and device for production of pure water or ultrapure water
JPH08238478A (en) * 1995-03-02 1996-09-17 Japan Organo Co Ltd Method and apparatus for making pure water or ultrapure water from which boron is removed
JP2000000565A (en) * 1998-06-17 2000-01-07 Kurita Water Ind Ltd Pure water production equipment
JP2014100706A (en) * 2012-11-21 2014-06-05 Ovivo Luxembourg Srl Water treatment for particularly producing ultrapure water
JP2015136685A (en) * 2014-01-24 2015-07-30 三菱レイヨンアクア・ソリューションズ株式会社 Device for treating water to be treated, device for producing purified water, and method for treating water to be treated
JP2018086619A (en) * 2016-11-28 2018-06-07 栗田工業株式会社 Ultrapure water production system and ultrapure water production method
JP2019141775A (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Method for removing boron and method for producing pure water or ultra pure water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224164A (en) * 1975-07-25 1977-02-23 Kurita Water Ind Ltd Ion exchange apparatus
JPH0884986A (en) * 1994-07-22 1996-04-02 Japan Organo Co Ltd Method and device for production of pure water or ultrapure water
JPH08238478A (en) * 1995-03-02 1996-09-17 Japan Organo Co Ltd Method and apparatus for making pure water or ultrapure water from which boron is removed
JP2000000565A (en) * 1998-06-17 2000-01-07 Kurita Water Ind Ltd Pure water production equipment
JP2014100706A (en) * 2012-11-21 2014-06-05 Ovivo Luxembourg Srl Water treatment for particularly producing ultrapure water
JP2015136685A (en) * 2014-01-24 2015-07-30 三菱レイヨンアクア・ソリューションズ株式会社 Device for treating water to be treated, device for producing purified water, and method for treating water to be treated
JP2018086619A (en) * 2016-11-28 2018-06-07 栗田工業株式会社 Ultrapure water production system and ultrapure water production method
JP2019141775A (en) * 2018-02-20 2019-08-29 栗田工業株式会社 Method for removing boron and method for producing pure water or ultra pure water

Also Published As

Publication number Publication date
TW202434361A (en) 2024-09-01

Similar Documents

Publication Publication Date Title
KR100784438B1 (en) apparatus and method for continuous electrodeionization
TWI648093B (en) Ultrapure water manufacturing device and method
JP6011655B2 (en) Electrodeionization device and pure water production device
JP6728876B2 (en) Electric deionization device and method for producing deionized water
JP5649520B2 (en) Ultrapure water production equipment
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP6614266B2 (en) Electrodeionization apparatus and method for producing deionized water
JP2020078772A (en) Electrodeionization device and method for producing deionized water using the same
WO2018092395A1 (en) Electric de-ionization device and de-ionized water production method
JP6228471B2 (en) To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method
JP6310819B2 (en) Pure water production apparatus, ultrapure water production system, and pure water production method
JP2017127875A (en) Ultrapure water system and ultrapure water production method
JP4943377B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
WO2020179426A1 (en) Pure water production device and operation method of pure water production device
WO2018037870A1 (en) Regenerative ion exchange device and operation method therefor
WO2024171825A1 (en) Ion exchange resin column and method for removing boron
JP4467488B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP4552273B2 (en) Electrodeionization equipment
WO2023067912A1 (en) Electrode water recovery method and method for producing ultrapure water or pharmaceutical water
JP3256647B2 (en) Method for removing hydrogen peroxide in water to be treated and water treatment apparatus
JP2016150275A (en) Method and device for producing purified water
JP3867944B2 (en) Pure water production method and ultrapure water production apparatus with reduced oxidizing substances
WO2023199759A1 (en) Deionized water production device and method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2024506834

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24756675

Country of ref document: EP

Kind code of ref document: A1