WO2024171561A1 - Arc welding device and welding condition correction method using same, and welding condition correction program - Google Patents
Arc welding device and welding condition correction method using same, and welding condition correction program Download PDFInfo
- Publication number
- WO2024171561A1 WO2024171561A1 PCT/JP2023/043422 JP2023043422W WO2024171561A1 WO 2024171561 A1 WO2024171561 A1 WO 2024171561A1 JP 2023043422 W JP2023043422 W JP 2023043422W WO 2024171561 A1 WO2024171561 A1 WO 2024171561A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- welding
- speed
- welding condition
- condition table
- workpiece
- Prior art date
Links
- 238000003466 welding Methods 0.000 title claims abstract description 471
- 238000000034 method Methods 0.000 title claims description 54
- 238000012937 correction Methods 0.000 title claims description 25
- 238000004364 calculation method Methods 0.000 claims abstract description 53
- 238000005259 measurement Methods 0.000 description 11
- 239000011324 bead Substances 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 238000012549 training Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000005057 finger movement Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000002542 deteriorative effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/10—Other electric circuits therefor; Protective circuits; Remote controls
Definitions
- This disclosure relates to an arc welding device, a welding condition correction method using the same, and a welding condition correction program.
- Patent Document 1 discloses a simulation system that simulates the operation of a welding torch by a welding worker.
- this simulation system includes a three-dimensional display device, a computer device, and a tracking controller.
- the three-dimensional display device simulates welding work on a three-dimensional welded area.
- the computer device sets the work content and work conditions.
- the tracking controller detects the position, posture, and movement trajectory of the tip of the welding torch relative to the three-dimensional display device in real time and in three dimensions when the welding worker holds and operates the welding torch in his or her hand.
- the simulation system Based on the work content and work conditions set by the computer device and the position, posture, and movement trajectory of the tip of the welding torch detected by the tracking controller, the simulation system simulates in real time a work situation that is visually identical to that when a welding worker is performing welding work using a welding torch, with the position of the tip of the welding torch as the reference.
- the welding speed corresponds to the speed at which the welder moves the welding torch along the intended welding location on the workpiece.
- This disclosure has been made in consideration of these points, and its purpose is to provide an arc welding device that can appropriately correct welding conditions, specifically welding parameters, according to the proficiency of the welding operator, as well as a welding condition correction method and welding condition correction program using the same.
- the arc welding device is an arc welding device including at least an input unit, a memory unit, a calculation unit, a welding power source, and a welding torch, the input unit including a touch panel, the memory unit storing a plurality of welding condition tables for each of a plurality of types of workpieces, the calculation unit calculating a first speed based on the distance of movement of the hand detected by the touch panel when a welding operator moves his/her hand along the surface of the touch panel, reading out from the memory unit a first welding condition table out of the plurality of welding condition tables corresponding to the workpiece to be welded, and when the difference between the first welding speed described in the first welding condition table and the first speed exceeds a predetermined range, the calculation unit corrects the welding parameters described in the first welding condition table in accordance with the difference.
- the welding condition correction method disclosed herein is a welding condition correction method using the arc welding device, and is characterized in that a first step calculates the first speed when the welding operator moves his/her hand along the surface of the touch panel, and a second step corrects the welding parameters described in the first welding condition table in accordance with the difference when the difference between the first welding speed and the first speed exceeds the predetermined range.
- the welding condition correction program disclosed herein is characterized in that each step in the welding condition correction method is executed by a computer system having one or more processors.
- welding parameters can be appropriately corrected according to the proficiency of the welding operator.
- the proficiency of the welding operator in operating the welding torch can be quantitatively understood.
- FIG. 1 is a schematic configuration diagram of an arc welding device according to an embodiment
- 10 is a flowchart showing a welding condition correction procedure.
- 13 is a schematic diagram showing a display screen of the remote controller during a first speed measurement process.
- FIG. 13 is a schematic diagram showing a display screen of the welding power source during a first speed measurement process.
- FIG. 1 is a schematic diagram of an arc welding apparatus according to an embodiment of the present invention.
- An arc welding apparatus 70 includes a welding power source 10, a remote controller 20, a wire feeder 30, and a welding torch 50.
- the welding power source 10 has at least a main circuit 11 that generates welding power, a first control unit 12, a first memory unit 13, and a first display unit 14.
- the main circuit 11 supplies welding power to a welding wire 60 held by a welding torch 50.
- the main circuit 11 has a transformer and a power switch (not shown), and in the example shown in this embodiment, the positive terminal is connected to the welding wire 60 via the wire feeder 30, and the negative terminal is connected to the base material W via an earth wire 41.
- the first control unit 12 is configured with a CPU (Central Processing Unit) or an MCU (Micro Controller Unit), or a combination of these. Note that the first control unit 12 may be configured with multiple CPUs or MCUs, or a combination of these.
- CPU Central Processing Unit
- MCU Micro Controller Unit
- the first control unit 12 reads out a welding program stored in advance in the first storage unit 13 based on the input from the first display unit 14 or the remote controller 20, and controls the operation of the main circuit 11. Furthermore, the first control unit 12 changes the welding conditions and sends wire feeding commands to the wire feeder 30 based on the input from the first display unit 14 or the remote controller 20.
- the first memory unit 13 is composed of a semiconductor memory, such as a RAM (Random Access Memory) or SSD (Solid State Drive).
- the first memory unit 13 stores a welding program and a welding condition table required to execute the program.
- the first memory unit 13 stores a set of multiple welding parameters in table format according to the type of workpiece W to be welded, and the set of welding parameters is called a welding condition table.
- the first memory unit 13 may also temporarily store the input contents from the remote controller 20, and, if the first display unit 14 functions as an input unit, the input contents from the first display unit 14.
- the type of workpiece W is classified according to the material of the workpiece W, the welding method (DC or pulse), and the diameter of the welding wire 60 (hereinafter sometimes referred to as the wire diameter).
- the type of workpiece W is also classified according to the shape of the workpiece W and the plate thickness of the workpiece W.
- a shielding gas is sprayed onto the welding point from a gas supply pipe (not shown) provided on the welding cable 40, the type of workpiece W is also classified according to the type of shielding gas.
- the main welding parameters in this embodiment are the welding current flowing from the main circuit 11 to the welding wire 60, the welding voltage applied between the welding wire 60 and the workpiece W, the feeding speed of the welding wire 60 by the wire feeder 30, and the welding speed.
- the flow rate of the shielding gas is also included in the welding parameters.
- the welding speed refers to the speed at which the welding operator moves the welding torch 50 along the weld line on the workpiece W.
- the weld line is an imaginary line on the surface of the workpiece W, and after manual welding, a weld bead (not shown) is formed on the surface of the workpiece W along the weld line.
- the first display unit 14 is composed of a display device such as a liquid crystal display.
- the first display unit 14 displays the welding conditions called up from the first storage unit 13, newly generated welding conditions, and various parameters during welding.
- the first display unit 14 may function as an input unit.
- the first display unit 14 is composed of a touch panel 14a.
- operation buttons, a jog dial, etc. may be further provided.
- the remote controller 20 has at least a second input unit 21 and a second control unit 22.
- a welding operator holds the remote controller 20 in his/her hand and operates it manually.
- the second input unit 21 includes a touch panel 21a. As described later, this touch panel 21a also functions as a display unit. The second input unit 21 is also provided with operation buttons, a jog dial, etc., which are not shown.
- the welding operator operates the second input unit 21 to select a desired welding condition table from among the multiple welding condition tables stored in the first memory unit 13.
- the selected welding condition table is called up to the first control unit 12.
- new welding parameters are input from the second input unit 21 to generate a new welding condition table.
- the generated welding condition table is stored in the first memory unit 13.
- the welding operator also operates the second input unit 21 when correcting each welding parameter described in the first welding condition table after calling up one welding condition table (hereinafter referred to as the first welding condition table) corresponding to the type of workpiece W from the first memory unit 13.
- each welding parameter in the welding condition table selected by operating the second input unit 21 and the values of each welding parameter entered by operating the second input unit 21 are configured to be displayed in real time. This allows the welding operator to change the welding conditions while checking the input contents. As described above, it is preferable that the touch panel 21a of the second input unit 21 functions as a display unit and displays the values of the welding parameters.
- the second control unit 22 like the first control unit 12, is configured with a CPU or MCU or a combination of these.
- the second control unit 22 transmits the contents input by the welding operator by operating the second input unit 21, such as changes to the welding voltage and welding current, to the first control unit 12 of the welding power source 10.
- the remote controller 20 also receives the welding conditions being used, etc. from the first control unit 12 of the welding power source 10, and displays these contents on the touch panel 21a of the second input unit 21.
- the second control unit 22 also transmits the contents input to the second input unit 21 to the first memory unit 13 of the welding power source 10, and the first control unit 12 calls up the input contents from the first memory unit 13.
- the remote controller 20 is connected to the welding power source 10 via the first signal line 31, the second signal line 32, and the wire feeder 30, but is not limited to this example.
- the welding cable 40 and the first signal line 31 may be integrated, and the first signal line 31 may branch off from the middle and be connected to the remote controller 20.
- the first signal line 31 may be directly connected to the welding power source 10.
- the second control unit 22 of the remote controller 20 and the first control unit 12 of the welding power source 10 may be configured to be able to wirelessly communicate with each other. In that case, the first signal line 31 and the second signal line 32 are omitted.
- a communication unit (not shown) may be provided in each of the welding power source 10 and the remote controller 20 for mutual communication.
- the welding power source 10 or the combination of the welding power source 10 and the remote controller 20 includes a CPU or MCU, etc., and the first memory unit 13, and can be considered as a type of computer system. Furthermore, in the following explanation, among the functional blocks possessed by the first control unit 12 and the second control unit 22, the functional blocks that execute the numerical calculation function and the numerical correction function described later may be referred to as the first calculation unit 12a and the second calculation unit 22a, respectively.
- the wire feeder 30 feeds the welding wire 60 toward the base material W based on a wire feed command from the welding power source 10 or the remote controller 20. Note that the wire feeder 30 may also perform a so-called reverse feed operation, which feeds the welding wire 60 away from the base material W.
- the welding cable 40 is a composite cable that integrates a supply pipe (not shown) for the welding wire 60 and a supply pipe for the shielding gas (not shown).
- the welding torch 50 is manually operated by the welding operator, and the welding wire 60 held by the welding torch 50 is fed toward the workpiece W.
- a predetermined welding power is supplied to the welding wire 60, and the tip of the molten welding wire 60 is transferred to the workpiece W, and the welding progresses sequentially.
- shielding gas is sprayed from the welding cable 40 onto the welding point.
- a so-called consumable electrode type arc welding device in which the welding wire 60 is melted and transferred to the workpiece W, but the arc welding device 70 may also be a non-consumable electrode type arc welding device.
- FIG. 2 is a flow chart showing the welding condition correction procedure
- Fig. 3 is a schematic diagram showing a display screen of the remote controller during the first speed measurement process.
- the remote controller 20 shown in Fig. 3 components other than the touch panel 21a are omitted from the illustration.
- the desired welding speed may not be obtained, and as a result, a weld bead of the desired shape may not be obtained.
- the welding operator operates the second input unit 21 to call up and start the welding condition correction program stored in the first storage unit 13 (step S1). Furthermore, the welding operator calls up the first welding condition table as an appropriate welding condition table according to the type of workpiece W. In addition, the welding speed described in the first welding condition table, that is, the first welding speed, is confirmed (step S2). In this case, each welding parameter of the first welding condition table, including the first welding speed, is displayed on the touch panel 21a of the second input unit 21.
- This process is a loop process, and steps S3 and S4 shown below are repeated m times (m is an integer equal to or greater than 1).
- step S3 The welding operator moves his/her finger along the surface of the touch panel 21a (step S3).
- the trajectory of the finger movement is detected by the touch panel 21a, and the finger movement distance can be calculated based on the trajectory. Therefore, in the second calculation unit 22a, the first speed, which is the finger movement speed, is calculated by dividing the movement distance by the time required for the movement (step S4; first step). Note that in step S4, the finger movement distance and movement time may be transmitted from the remote controller 20 to the welding power source 10, and the first calculation unit 12a may calculate the first speed.
- the value of m can be changed as appropriate depending on the skill level of the welding operator. For example, if the welding operator is a beginner, the value of m may be 10 or more. On the other hand, if the welding operator has some experience, the value of m may be about 1 to 3.
- the value of m may be preset in the welding condition correction program, or may be determined on the spot by the welding operator.
- step S3 Before step S3 is executed, as shown on the left side of Fig. 3, a message saying "Please trace the touch panel” is displayed on the touch panel 21a.
- a message saying "Measurement result: xx cm/min. is displayed on the touch panel 21a.
- the latter message is displayed on the touch panel 21a after steps S3 and S4 are repeated m times.
- this is not limited to the above, and the message may be displayed on the touch panel 21a every time step S4 is executed.
- step S5 it is determined whether the difference between the first welding speed and the first speed is within a predetermined range.
- the determination in step S5 is performed by the second calculation unit 22a or the first calculation unit 12a. However, the welding operator may perform the calculations and perform the determination task in step S5 by himself.
- step S4 by calculating the first speed each time step S4 is performed, m first speeds are obtained.
- the difference between the average value of the m first speeds and the first welding speed may be evaluated in step S5, or the value of the m first speeds that has the largest difference from the first welding speed may be evaluated in step S5.
- step S5 If the result of the determination in step S5 is negative, that is, if the difference between the first welding speed and the first speed exceeds a predetermined range, the first calculation unit 12a or the second calculation unit 22a corrects each welding parameter described in the first condition table according to the difference and generates a new welding condition table (step S6; second step).
- the workpiece W is welded using the new welding condition table that has been generated.
- a new welding condition table is generated using multiple welding condition tables related to the same type of workpiece W as the first welding condition table, from among the multiple welding condition tables stored in the first storage unit 13.
- the welding speed is generated by interpolating the welding speeds in multiple welding condition tables so that the difference from the first welding speed is within a predetermined range.
- Other welding parameters which are welding parameters other than the welding speed, are generated by performing an interpolation process on the other welding parameters in multiple welding condition tables based on the interpolation coefficients obtained by the above-mentioned interpolation process.
- the interpolation method is linear. However, it is not limited to this and may be generated using higher-order interpolation processing.
- step S5 if the determination result in step S5 is positive, that is, if the difference between the first welding speed and the first speed is within the predetermined range, the work may be ended without correcting the welding speed. In this case, other welding parameters are not changed, and the workpiece W is welded using the first welding condition table as is.
- a second welding condition table may be stored in the first storage unit 13, which describes welding conditions for the same type of workpiece W and a welding speed whose difference from the first welding speed is within a predetermined range.
- the first calculation unit 12a or the second calculation unit 22a replaces the second welding condition table with the first welding condition table (step S7; third step).
- the workpiece W is welded using the replaced second welding condition table.
- the first speed is calculated by the welding operator tracing the surface of the touch panel 21a with his/her finger.
- the first speed may be calculated by tracing the surface of the touch panel 21a with the tip of a welding torch 50 or a training tool simulating a welding torch 50.
- what is detected by the touch panel 21a is the movement trajectory of the hand when the welding operator moves his/her hand to match the first welding speed.
- the first calculation unit 12a or the second calculation unit 22a calculates the movement distance of the hand.
- the first calculation unit 12a or the second calculation unit 22a calculates the first speed. In this case, it is preferable to wear a protective gear on the tip to prevent the surface of the touch panel 21a from being scratched.
- the touch panel 21a is not limited to a contact-type touch panel such as a pressure-sensitive type, but may be a non-contact type touch panel such as a capacitance type or an optical detection type. In this case, it may be unnecessary to attach protective equipment to the tip of the welding torch 50 or the training equipment.
- the arc welding device 70 includes at least the welding power source 10 , the remote controller 20 , and the welding torch 50 .
- the welding power source 10 has at least a main circuit 11, a first control unit 12, a first memory unit 13, and a first display unit 14.
- the first control unit 12 has a first calculation unit 12a.
- the remote controller 20 has at least a second input unit 21 and a second control unit 22.
- the second control unit 22 has a second calculation unit 22a.
- the second input unit 21 includes a touch panel 21a.
- the first memory unit 13 stores multiple welding condition tables for each of multiple types of workpieces W.
- the first calculation unit 12a or the second calculation unit 22a calculates a first speed based on the distance of movement of the hand detected by the touch panel when the welding operator moves his/her hand along the surface 21a of the touch panel.
- the first calculation unit 12a or the second calculation unit 22a reads out a first welding condition table from the first storage unit 13 out of multiple welding condition tables corresponding to the workpiece W to be welded.
- the first calculation unit 12a or the second calculation unit 22a corrects the welding parameters described in the first welding condition table according to the difference.
- the welding operator by having the welding operator move his/her finger, the welding torch 50, etc. along the surface of the touch panel 21a, it is possible to quantitatively evaluate whether the welding operator can move the welding torch 50 at a target speed.
- this speed corresponds to the welding speed of the workpiece W, the welding operator can actually feel the extent of the difference between the first welding speed, which is the target value, and the first speed, which is the welding operator's actual operating speed.
- the welding speed and other welding parameters can be appropriately corrected in accordance with the difference.
- a weld bead having the desired shape or a shape close to the desired shape can be obtained.
- deterioration of the appearance of the weld bead can be suppressed.
- the first speed may be the speed at which a welding operator moves his/her finger along the surface of the touch panel 21a.
- the first speed may also be the speed at which the tip of a welding torch 50 or a training tool simulating the same moves along the surface of the touch panel 21a.
- the first calculation unit 12a or the second calculation unit 22a executes the process shown below.
- the first calculation unit 12a or the second calculation unit 22a generates a new welding condition table for welding the workpiece W using multiple welding condition tables stored in the first storage unit 13.
- the welding speed is generated by interpolating the welding speeds in multiple welding condition tables so that the difference from the first welding speed is within a predetermined range.
- other welding parameters other than the welding speed are generated by performing an interpolation process on the other welding parameters in the multiple welding condition tables based on the interpolation coefficients obtained by the above-mentioned interpolation process.
- each welding parameter can be made to an appropriate value that can actually be used.
- the first calculation unit 12a or the second calculation unit 22a executes the process shown below.
- the first calculation unit 12a or the second calculation unit 22a reads the second welding condition table from the first storage unit 13 and sets it as a new welding condition table for welding the workpiece W.
- the second welding condition table describes a welding speed whose difference from the first welding speed is within a predetermined range.
- the calculation process for correction can be omitted, and the calculation load on the first calculation unit 12a or the second calculation unit 22a can be reduced.
- the second welding condition table that has already been acquired is used, appropriate welding can be performed without deteriorating the shape of the weld bead, etc.
- the degree of variation in the first speed for each welding operator in other words, the degree of variation in the work, can be quantified. This makes it possible to appropriately grasp the level of work proficiency for each welding operator.
- the welding condition correction method includes at least a first step (step S4 in FIG. 2) of calculating a first speed, and a second step (step S6 in FIG. 2) of correcting the welding parameters described in the first welding condition table in accordance with the difference between the first welding speed and the first speed described in the first welding condition table corresponding to the workpiece W to be welded if the difference exceeds a predetermined range.
- the difference between the first welding speed and the first speed is quantified and understood, making it possible to appropriately grasp the skill level of the welding operator.
- the welding speed and other welding parameters can be appropriately corrected in accordance with the difference.
- a weld bead having the desired shape or a shape close to the desired shape can be obtained.
- deterioration of the appearance of the weld bead can be suppressed.
- a training effect can be achieved in that the welding operator is trained to move the welding torch 50 at a speed that matches the target value.
- m is an integer equal to or greater than 1
- a new welding condition table for welding the workpiece W is generated using the multiple welding condition tables stored in the first memory unit 13.
- the welding speed is generated by interpolating the welding speeds in multiple welding condition tables so that the difference from the first welding speed is within a predetermined range.
- other welding parameters other than the welding speed are generated by performing an interpolation process on the other welding parameters in the multiple welding condition tables based on the interpolation coefficients obtained by the above-mentioned interpolation process.
- each welding parameter can be set to an appropriate value that can actually be used.
- a second welding condition table exists among the multiple welding condition tables stored in the first storage unit 13 and related to the same type of workpiece W, it is preferable to further provide a third step (step S7 in FIG. 2) in place of the second step, of setting the second welding condition table as a new welding condition table for welding the workpiece W.
- the second welding condition table describes a welding speed whose difference from the first welding speed is within a predetermined range.
- the welding work training program causes a computer system having one or more processors to execute at least the first and second steps (steps S4 and S6 in FIG. 2) or the first and third steps (steps S4 and S7 in FIG. 2) in the above-mentioned welding condition correction method.
- the computer system in this embodiment includes at least the first calculation unit 12a or the second calculation unit 22a or both and the first storage unit 13, and more preferably includes the first display unit 14 and the second input unit 21.
- the first speed may be calculated by moving a finger, the welding torch 50, or the like along the surface of the touch panel 14a of the first display unit 14 provided on the welding power source 10, as shown in FIG. 4.
- the first display unit 14 also functions as an input unit.
- the touch panel 14a may be either a contact type or a non-contact type.
- the remote controller 20 may have a first speed measurement function.
- the touch panel 14a of the first display unit (input unit) 14 or the touch panel 21a of the second input unit 21 may be used to measure the first speed.
- the welding power source 10 is provided with the first storage unit 13, but the storage destination of the welding condition correction program and the welding condition table is not particularly limited to this.
- an external memory may be connected to the welding power source 10, and the external memory may be used as the storage destination of the welding condition correction program, the welding condition table, etc.
- the external memory may be, for example, an SD (registered trademark) card or a USB (trademark) memory, or may be a server configured to be capable of communicating with the welding power source 10.
- the arc welding device disclosed herein is useful because it can appropriately correct welding parameters according to the skill level of the welding operator.
- FIG. 10 Welding power source 11: Main circuit 12: First control unit 12a: First calculation unit (calculation unit) 13 First storage section (storage section) 14 First display unit (input unit) 14a touch panel 20 remote controller 21 second input unit 21a touch panel 22 second control unit 22a second calculation unit (calculation unit) 30 Wire feeder 31 First signal line 32 Second signal line 40 Welding cable 41 Ground wire 50 Welding torch 60 Welding wire 70 Arc welding device W Workpiece
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Arc Welding Control (AREA)
Abstract
This arc welding device (70) comprises a welding power supply (10), a remote controller (20), and a welding torch (50). The remote controller (20) has a touch panel (21a). A first storage unit (13) of the welding power supply (10) stores a plurality of welding condition tables for each of a plurality of types of workpieces (W). A second calculation unit (22a) of the remote controller (20): measures and calculates a first speed which is the moving speed of a welder's hand; and when the difference between a first welding speed and the first speed in a first welding condition table read from the first storage unit (13) exceeds a predetermined range, corrects each welding parameter of the first welding condition table according to the difference.
Description
本開示は、アーク溶接装置及びそれを用いた溶接条件補正方法、溶接条件補正プログラムに関する。
This disclosure relates to an arc welding device, a welding condition correction method using the same, and a welding condition correction program.
従来、溶接作業者が溶接トーチ等を手に持ってワークに対して溶接を行う、いわゆる手溶接が広く行われている。
Traditionally, so-called manual welding, in which a welding worker holds a welding torch or the like in his or her hand and welds the workpiece, has been widely used.
一方で、手溶接の出来栄えは、溶接作業者の技能に大きく左右されるため、溶接作業者に対して十分に溶接作業の訓練を行う必要があり、訓練方法に関して種々提案されている。
On the other hand, the quality of manual welding depends heavily on the skill of the welder, so it is necessary to provide the welder with sufficient training in welding work, and various training methods have been proposed.
例えば、特許文献1には、溶接作業者による溶接トーチの操作をシミュレートするシミュレーションシステムが開示されている。具体的には、このシミュレーションシステムは、3次元表示装置とコンピュータ装置とトラッキングコントローラとを備えている。3次元表示装置は、3次元形状の溶接部位に対する溶接作業をシミュレートする。コンピュータ装置は、作業内容と作業条件とを設定する。トラッキングコントローラは、溶接作業者が溶接トーチを手に持って操作する場合において、3次元表示装置に対する溶接トーチの先端の位置と姿勢と移動軌跡とをリアルタイムでかつ3次元で検出する。シミュレーションシステムは、コンピュータ装置で設定した作業内容と作業条件及びトラッキングコントローラで検出した溶接トーチの先端の位置と姿勢と移動軌跡とに基づいて、溶接作業者が溶接トーチを用いて溶接作業を行っている場合と視覚的に同一の作業状況を、溶接トーチの先端の位置を基準としてリアルタイムで疑似表示する。
For example, Patent Document 1 discloses a simulation system that simulates the operation of a welding torch by a welding worker. Specifically, this simulation system includes a three-dimensional display device, a computer device, and a tracking controller. The three-dimensional display device simulates welding work on a three-dimensional welded area. The computer device sets the work content and work conditions. The tracking controller detects the position, posture, and movement trajectory of the tip of the welding torch relative to the three-dimensional display device in real time and in three dimensions when the welding worker holds and operates the welding torch in his or her hand. Based on the work content and work conditions set by the computer device and the position, posture, and movement trajectory of the tip of the welding torch detected by the tracking controller, the simulation system simulates in real time a work situation that is visually identical to that when a welding worker is performing welding work using a welding torch, with the position of the tip of the welding torch as the reference.
このようにすることで、溶接作業の結果の良否を溶接作業中における複数条件の見掛けを含めて判断することを要求される複雑な作業に適合したシミュレーションを行うことができる。
In this way, it is possible to perform simulations suited to complex work that requires judging the quality of the welding results, including the appearance of multiple conditions during the welding work.
ところで、手溶接において、溶接速度は、ワークにおける溶接予定箇所に沿って、溶接作業者が溶接トーチを移動させる速度に相当する。
In manual welding, the welding speed corresponds to the speed at which the welder moves the welding torch along the intended welding location on the workpiece.
しかし、当該溶接予定箇所に沿って、溶接トーチを一定の速度で移動させることは、初心者には難しい作業である。このため、初心者が手溶接を行った場合、溶接トーチの移動速度がばらついたり、目標値からずれたりすることがある。
However, moving the welding torch at a constant speed along the intended welding area is a difficult task for beginners. For this reason, when a beginner performs manual welding, the speed at which the welding torch moves can vary or deviate from the target value.
しかし、溶接速度の変動は、溶接電流や溶接電圧の実際の値に影響する。このため、溶接中に溶接電流や溶接電圧の実際の値が、溶接開始前に設定した、所望の溶接を行うための値からずれてしまうことがある。また、このことにより、ワークに形成される溶接ビードの形状が所望の形状と異なってしまうことがある。また、溶接ビードの外観が悪化するおそれがある。
However, fluctuations in the welding speed affect the actual values of the welding current and welding voltage. As a result, the actual values of the welding current and welding voltage during welding may deviate from the values set before welding begins for performing the desired weld. This may also cause the shape of the weld bead formed on the workpiece to differ from the desired shape. There is also a risk of the appearance of the weld bead deteriorating.
本開示はかかる点に鑑みてなされたもので、その目的は、溶接作業者の熟度に応じて、溶接条件、具体的には溶接パラメータを適切に補正することができるアーク溶接装置及びそれを用いた溶接条件補正方法、溶接条件補正プログラムを提供することにある。
This disclosure has been made in consideration of these points, and its purpose is to provide an arc welding device that can appropriately correct welding conditions, specifically welding parameters, according to the proficiency of the welding operator, as well as a welding condition correction method and welding condition correction program using the same.
上記目的を達成するため、本開示に係るアーク溶接装置は、入力部と記憶部と演算部と溶接電源と溶接トーチとを少なくとも備えたアーク溶接装置であって、前記入力部は、タッチパネルを含み、前記記憶部は、複数の溶接条件テーブルを複数種類のワークのそれぞれに関して保存しており、前記演算部は、溶接作業者が自身の手を前記タッチパネルの表面に沿って動かすことで、第1速度を前記タッチパネルで検出された前記手の移動距離に基づいて算出し、溶接対象となる前記ワークに対応する前記複数の溶接条件テーブルのうち、第1溶接条件テーブルを前記記憶部から読み出し、前記第1溶接条件テーブルに記述された第1溶接速度と前記第1速度との差分が所定の範囲を超えた場合、前記演算部は、前記第1溶接条件テーブルに記述された溶接パラメータを前記差分に応じて補正することを特徴とする。
In order to achieve the above object, the arc welding device according to the present disclosure is an arc welding device including at least an input unit, a memory unit, a calculation unit, a welding power source, and a welding torch, the input unit including a touch panel, the memory unit storing a plurality of welding condition tables for each of a plurality of types of workpieces, the calculation unit calculating a first speed based on the distance of movement of the hand detected by the touch panel when a welding operator moves his/her hand along the surface of the touch panel, reading out from the memory unit a first welding condition table out of the plurality of welding condition tables corresponding to the workpiece to be welded, and when the difference between the first welding speed described in the first welding condition table and the first speed exceeds a predetermined range, the calculation unit corrects the welding parameters described in the first welding condition table in accordance with the difference.
本開示に係る溶接条件補正方法は、前記アーク溶接装置を用いた溶接条件補正方法であって、第1ステップは、前記溶接作業者が前記自身の手を前記タッチパネルの表面に沿って移動させたときの前記第1速度を算出し、第2ステップは、前記第1溶接速度と前記第1速度との前記差分が前記所定の範囲を超えた場合、前記第1溶接条件テーブルに記述された溶接パラメータを前記差分に応じて補正することを特徴とする。
The welding condition correction method disclosed herein is a welding condition correction method using the arc welding device, and is characterized in that a first step calculates the first speed when the welding operator moves his/her hand along the surface of the touch panel, and a second step corrects the welding parameters described in the first welding condition table in accordance with the difference when the difference between the first welding speed and the first speed exceeds the predetermined range.
本開示に係る溶接条件補正プログラムは、前記溶接条件補正方法における各ステップを、1または複数のプロセッサを有するコンピュータシステムに実行させることを特徴とする。
The welding condition correction program disclosed herein is characterized in that each step in the welding condition correction method is executed by a computer system having one or more processors.
本開示によれば、溶接パラメータを溶接作業者の熟度に応じて適切に補正することができる。また、溶接トーチの操作に関する溶接作業者の熟度を定量的に把握できる。
According to the present disclosure, welding parameters can be appropriately corrected according to the proficiency of the welding operator. In addition, the proficiency of the welding operator in operating the welding torch can be quantitatively understood.
以下、本開示の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。
Below, an embodiment of the present disclosure will be described with reference to the drawings. Note that the following description of the preferred embodiment is essentially merely exemplary and is not intended to limit the present disclosure, its applications, or its uses.
(実施形態)
[アーク溶接装置の構成]
図1は、実施形態に係るアーク溶接装置の概略構成図を示し、アーク溶接装置70は、溶接電源10とリモートコントローラ20とワイヤ送給装置30と溶接トーチ50とを有する。 (Embodiment)
[Configuration of Arc Welding Equipment]
FIG. 1 is a schematic diagram of an arc welding apparatus according to an embodiment of the present invention. Anarc welding apparatus 70 includes a welding power source 10, a remote controller 20, a wire feeder 30, and a welding torch 50.
[アーク溶接装置の構成]
図1は、実施形態に係るアーク溶接装置の概略構成図を示し、アーク溶接装置70は、溶接電源10とリモートコントローラ20とワイヤ送給装置30と溶接トーチ50とを有する。 (Embodiment)
[Configuration of Arc Welding Equipment]
FIG. 1 is a schematic diagram of an arc welding apparatus according to an embodiment of the present invention. An
溶接電源10は、溶接電力を発生させる主回路11と第1制御部12と第1記憶部13と第1表示部14とを少なくとも有している。主回路11は、溶接トーチ50に保持された溶接ワイヤ60に溶接電力を供給する。主回路11は、図示しないトランスやパワースイッチ等を有しており、本実施形態に示す例では、プラス端子がワイヤ送給装置30を介して溶接ワイヤ60に接続され、マイナス端子がアース線41を介して母材Wに接続されている。
The welding power source 10 has at least a main circuit 11 that generates welding power, a first control unit 12, a first memory unit 13, and a first display unit 14. The main circuit 11 supplies welding power to a welding wire 60 held by a welding torch 50. The main circuit 11 has a transformer and a power switch (not shown), and in the example shown in this embodiment, the positive terminal is connected to the welding wire 60 via the wire feeder 30, and the negative terminal is connected to the base material W via an earth wire 41.
第1制御部12は、CPU(Central Processing Unit)またはMCU(Micro Controller Unit)あるいはこれらの組み合わせで構成される。なお、複数個のCPUまたはMCUあるいはこれらの組み合わせで第1制御部12が構成されてもよい。
The first control unit 12 is configured with a CPU (Central Processing Unit) or an MCU (Micro Controller Unit), or a combination of these. Note that the first control unit 12 may be configured with multiple CPUs or MCUs, or a combination of these.
第1制御部12は、第1表示部14またはリモートコントローラ20からの入力内容に基づいて、第1記憶部13に予め保存された溶接プログラムを読み出して、主回路11の動作を制御する。さらに、第1制御部12は、第1表示部14またはリモートコントローラ20からの入力内容に基づいて、溶接条件の変更やワイヤ送給装置30に対するワイヤ送給指令等の送信を行う。
The first control unit 12 reads out a welding program stored in advance in the first storage unit 13 based on the input from the first display unit 14 or the remote controller 20, and controls the operation of the main circuit 11. Furthermore, the first control unit 12 changes the welding conditions and sends wire feeding commands to the wire feeder 30 based on the input from the first display unit 14 or the remote controller 20.
第1記憶部13は、半導体メモリ、例えば、RAM(Random Access Memory)やSSD(Solid State Drive)等で構成される。第1記憶部13は、溶接プログラムや当該プログラムを実行するために必要な溶接条件テーブルを保存する。なお、第1記憶部13には、溶接対象であるワークWの種類に応じた複数の溶接パラメータの組がテーブル形式で保存されており、当該溶接パラメータの組を溶接条件テーブルと言う。また、第1記憶部13は、リモートコントローラ20からの入力内容、また第1表示部14が入力部として機能する場合は、第1表示部14からの入力内容を一時的に保存してもよい。
The first memory unit 13 is composed of a semiconductor memory, such as a RAM (Random Access Memory) or SSD (Solid State Drive). The first memory unit 13 stores a welding program and a welding condition table required to execute the program. The first memory unit 13 stores a set of multiple welding parameters in table format according to the type of workpiece W to be welded, and the set of welding parameters is called a welding condition table. The first memory unit 13 may also temporarily store the input contents from the remote controller 20, and, if the first display unit 14 functions as an input unit, the input contents from the first display unit 14.
ワークWの種類は、ワークWの材質や溶接方式(直流またはパルス)や溶接ワイヤ60の直径(以下、ワイヤ径と呼ぶことがある。)に応じて分類される。また、ワークWの種類は、ワークWの形状やワークWの板厚によっても分類される。また、溶接ケーブル40に設けられたガス供給管(図示せず)から溶接箇所にシールドガスが吹き付けられる場合は、シールドガスの種類に応じてもワークWの種類が分類される。
The type of workpiece W is classified according to the material of the workpiece W, the welding method (DC or pulse), and the diameter of the welding wire 60 (hereinafter sometimes referred to as the wire diameter). The type of workpiece W is also classified according to the shape of the workpiece W and the plate thickness of the workpiece W. In addition, when a shielding gas is sprayed onto the welding point from a gas supply pipe (not shown) provided on the welding cable 40, the type of workpiece W is also classified according to the type of shielding gas.
本実施形態における主な溶接パラメータは、主回路11から溶接ワイヤ60に流す溶接電流と、溶接ワイヤ60とワークWとの間に加わる溶接電圧と、ワイヤ送給装置30による溶接ワイヤ60の送給速度と、溶接速度とである。なお、シールドガスの使用時は、シールドガスの流量も溶接パラメータに含まれる。
The main welding parameters in this embodiment are the welding current flowing from the main circuit 11 to the welding wire 60, the welding voltage applied between the welding wire 60 and the workpiece W, the feeding speed of the welding wire 60 by the wire feeder 30, and the welding speed. When a shielding gas is used, the flow rate of the shielding gas is also included in the welding parameters.
ここで、溶接速度とは、溶接作業者が溶接トーチ50をワークWにおける溶接線に沿って移動させるときの移動速度を言う。なお、溶接線とは、ワークWの表面における仮想線であり、手溶接を行った後は、溶接線に沿ってワークWの表面に溶接ビード(図示せず)が形成される。
Here, the welding speed refers to the speed at which the welding operator moves the welding torch 50 along the weld line on the workpiece W. Note that the weld line is an imaginary line on the surface of the workpiece W, and after manual welding, a weld bead (not shown) is formed on the surface of the workpiece W along the weld line.
第1表示部14は、液晶ディスプレイ等の表示デバイスで構成される。第1表示部14は、第1記憶部13から呼び出した溶接条件や新たに生成した溶接条件、また、溶接中の各パラメータ等を表示する。なお、後で述べるように、第1表示部14を入力部として機能させることがある。このことを踏まえると、第1表示部14は、タッチパネル14aで構成されるのが好ましい。また、第1表示部14を入力部として機能させるために、図示しない操作ボタンやジョグダイヤル等をさらに設けてもよい。
The first display unit 14 is composed of a display device such as a liquid crystal display. The first display unit 14 displays the welding conditions called up from the first storage unit 13, newly generated welding conditions, and various parameters during welding. As will be described later, the first display unit 14 may function as an input unit. In light of this, it is preferable that the first display unit 14 is composed of a touch panel 14a. Furthermore, in order to make the first display unit 14 function as an input unit, operation buttons, a jog dial, etc. (not shown) may be further provided.
リモートコントローラ20は、第2入力部21と第2制御部22とを少なくとも有している。通常、溶接作業者がリモートコントローラ20を手に持って、手動で操作する。
The remote controller 20 has at least a second input unit 21 and a second control unit 22. Typically, a welding operator holds the remote controller 20 in his/her hand and operates it manually.
第2入力部21は、タッチパネル21aを含んでいる。後で述べるように、このタッチパネル21aは、表示部としても機能する。また、第2入力部21には、図示しない操作ボタンやジョグダイヤル等が設けられている。
The second input unit 21 includes a touch panel 21a. As described later, this touch panel 21a also functions as a display unit. The second input unit 21 is also provided with operation buttons, a jog dial, etc., which are not shown.
溶接作業者が第2入力部21を操作することで、第1記憶部13に保存された複数の溶接条件テーブルの中から所望の溶接条件テーブルを選択する。選択された溶接条件テーブルは第1制御部12に呼び出される。また、第2入力部21から新たに各溶接パラメータを入力して、新たに溶接条件テーブルが生成される。生成後の溶接条件テーブルは第1記憶部13に保存される。また、後で述べるように、第1記憶部13からワークWの種類に応じた1つの溶接条件テーブル(以下、第1溶接条件テーブルと言う。)を呼び出した後、第1溶接条件テーブルに記述された各溶接パラメータを補正する場合にも、溶接作業者が第2入力部21を操作する。
The welding operator operates the second input unit 21 to select a desired welding condition table from among the multiple welding condition tables stored in the first memory unit 13. The selected welding condition table is called up to the first control unit 12. Furthermore, new welding parameters are input from the second input unit 21 to generate a new welding condition table. The generated welding condition table is stored in the first memory unit 13. Furthermore, as will be described later, the welding operator also operates the second input unit 21 when correcting each welding parameter described in the first welding condition table after calling up one welding condition table (hereinafter referred to as the first welding condition table) corresponding to the type of workpiece W from the first memory unit 13.
また、第2入力部21を操作して選択した溶接条件テーブルの各溶接パラメータの値や第2入力部21を操作して入力した各溶接パラメータの値は、リアルタイムで表示されるように構成されている。このようにすることで、溶接作業者が入力内容を確認しながら、溶接条件の変更等を行うことができる。なお、前述したように、第2入力部21のタッチパネル21aが表示部として機能し、溶接パラメータの値が表示されるのが好ましい。
The values of each welding parameter in the welding condition table selected by operating the second input unit 21 and the values of each welding parameter entered by operating the second input unit 21 are configured to be displayed in real time. This allows the welding operator to change the welding conditions while checking the input contents. As described above, it is preferable that the touch panel 21a of the second input unit 21 functions as a display unit and displays the values of the welding parameters.
第2制御部22は、第1制御部12と同様に、CPUまたはMCUあるいはこれらの組み合わせで構成される。第2制御部22は、溶接作業者が第2入力部21を操作して入力した内容、例えば、溶接電圧や溶接電流の変更値等を溶接電源10の第1制御部12に送信する。また、リモートコントローラ20は、溶接電源10の第1制御部12から、使用中の溶接条件等を受信し、この内容を第2入力部21のタッチパネル21aに表示させる。また、第2制御部22が、第2入力部21への入力内容を溶接電源10の第1記憶部13に送信し、第1制御部12が、入力された内容を第1記憶部13から呼び出す。
The second control unit 22, like the first control unit 12, is configured with a CPU or MCU or a combination of these. The second control unit 22 transmits the contents input by the welding operator by operating the second input unit 21, such as changes to the welding voltage and welding current, to the first control unit 12 of the welding power source 10. The remote controller 20 also receives the welding conditions being used, etc. from the first control unit 12 of the welding power source 10, and displays these contents on the touch panel 21a of the second input unit 21. The second control unit 22 also transmits the contents input to the second input unit 21 to the first memory unit 13 of the welding power source 10, and the first control unit 12 calls up the input contents from the first memory unit 13.
なお、図1に示す例では、リモートコントローラ20は、第1信号線31,第2信号線32とワイヤ送給装置30とを介して溶接電源10に接続されているが、特にこの例に限定されない。例えば、溶接ケーブル40と第1信号線31とが一体化され、途中から第1信号線31が分岐してリモートコントローラ20に接続されていてもよい。または、第1信号線31が直接、溶接電源10に接続されていてもよい。あるいは、リモートコントローラ20の第2制御部22と溶接電源10の第1制御部12とが相互に無線通信可能に構成されていてもよい。その場合、第1信号線31,第2信号線32は省略される。また、相互通信用に溶接電源10とリモートコントローラ20のそれぞれに通信部(図示せず)が設けられていてもよい。
1, the remote controller 20 is connected to the welding power source 10 via the first signal line 31, the second signal line 32, and the wire feeder 30, but is not limited to this example. For example, the welding cable 40 and the first signal line 31 may be integrated, and the first signal line 31 may branch off from the middle and be connected to the remote controller 20. Alternatively, the first signal line 31 may be directly connected to the welding power source 10. Alternatively, the second control unit 22 of the remote controller 20 and the first control unit 12 of the welding power source 10 may be configured to be able to wirelessly communicate with each other. In that case, the first signal line 31 and the second signal line 32 are omitted. In addition, a communication unit (not shown) may be provided in each of the welding power source 10 and the remote controller 20 for mutual communication.
以上説明したように、溶接電源10または溶接電源10とリモートコントローラ20との組み合わせは、CPUまたはMCU等と第1記憶部13とを含んでおり、一種のコンピュータシステムとして捉えることもできる。また、以降の説明において、第1制御部12及び第2制御部22がそれぞれ有する機能ブロックのうち、数値演算機能及び後で示す数値補正機能を実行する機能ブロックをそれぞれ第1演算部12a及び第2演算部22aと呼ぶことがある。
As explained above, the welding power source 10 or the combination of the welding power source 10 and the remote controller 20 includes a CPU or MCU, etc., and the first memory unit 13, and can be considered as a type of computer system. Furthermore, in the following explanation, among the functional blocks possessed by the first control unit 12 and the second control unit 22, the functional blocks that execute the numerical calculation function and the numerical correction function described later may be referred to as the first calculation unit 12a and the second calculation unit 22a, respectively.
ワイヤ送給装置30は、溶接電源10またはリモートコントローラ20からのワイヤ送給指令に基づいて、溶接ワイヤ60を母材Wに向けて送給する。なお、母材Wから離れるように溶接ワイヤ60を送給する、いわゆる逆送動作を行うようにしてもよい。
The wire feeder 30 feeds the welding wire 60 toward the base material W based on a wire feed command from the welding power source 10 or the remote controller 20. Note that the wire feeder 30 may also perform a so-called reverse feed operation, which feeds the welding wire 60 away from the base material W.
溶接ケーブル40は、溶接ワイヤ60の送給管(図示せず)とシールドガスの供給管(図示せず)とが一体化された複合ケーブルである。
The welding cable 40 is a composite cable that integrates a supply pipe (not shown) for the welding wire 60 and a supply pipe for the shielding gas (not shown).
溶接トーチ50は、溶接作業者が手動で操作し、溶接トーチ50に保持された溶接ワイヤ60がワークWに向けて送給される。溶接ワイヤ60には所定の溶接電力が供給されており、溶融した溶接ワイヤ60の先端がワークWに移行して、溶接が順次進行する。なお、溶接箇所には溶接ケーブル40からシールドガスが吹き付けられる。
The welding torch 50 is manually operated by the welding operator, and the welding wire 60 held by the welding torch 50 is fed toward the workpiece W. A predetermined welding power is supplied to the welding wire 60, and the tip of the molten welding wire 60 is transferred to the workpiece W, and the welding progresses sequentially.
In addition, shielding gas is sprayed from the welding cable 40 onto the welding point.
なお、本実施形態では、溶接ワイヤ60を溶融させてワークWに移行させる、いわゆる消耗電極式のアーク溶接装置について述べたが、アーク溶接装置70が、非消耗電極式のアーク溶接装置であってもよい。
In this embodiment, a so-called consumable electrode type arc welding device is described, in which the welding wire 60 is melted and transferred to the workpiece W, but the arc welding device 70 may also be a non-consumable electrode type arc welding device.
[溶接条件補正手順]
図2は、溶接条件補正手順を示すフローチャートであり、図3は、第1速度計測処理時のリモートコントローラの表示画面を示す模式図である。なお、説明の便宜上、図3に示すリモートコントローラ20において、タッチパネル21a以外の部品の図示を省略している。 [Welding condition correction procedure]
Fig. 2 is a flow chart showing the welding condition correction procedure, and Fig. 3 is a schematic diagram showing a display screen of the remote controller during the first speed measurement process. For convenience of explanation, in theremote controller 20 shown in Fig. 3, components other than the touch panel 21a are omitted from the illustration.
図2は、溶接条件補正手順を示すフローチャートであり、図3は、第1速度計測処理時のリモートコントローラの表示画面を示す模式図である。なお、説明の便宜上、図3に示すリモートコントローラ20において、タッチパネル21a以外の部品の図示を省略している。 [Welding condition correction procedure]
Fig. 2 is a flow chart showing the welding condition correction procedure, and Fig. 3 is a schematic diagram showing a display screen of the remote controller during the first speed measurement process. For convenience of explanation, in the
前述したように、溶接作業者の熟度、特に、溶接トーチ50を操作する技能の熟度によっては、ワークWを溶接するのに適切な溶接条件テーブルを選択したとしても、所望の溶接速度が得られず、その結果、所望の形状の溶接ビードが得られないことがある。
As mentioned above, depending on the skill of the welding operator, particularly the skill in operating the welding torch 50, even if an appropriate welding condition table is selected for welding the workpiece W, the desired welding speed may not be obtained, and as a result, a weld bead of the desired shape may not be obtained.
そこで、本実施形態では、まず、溶接作業者の技能を評価し、その評価結果に応じて、溶接条件の補正が必要である場合は、補正を行って、ワークWを溶接するための溶接条件テールとするという方法を提案する。以下、図面を用いて詳細を説明する。
In this embodiment, we propose a method in which the skill of the welding worker is first evaluated, and if the welding conditions need to be corrected based on the results of the evaluation, the corrections are made and the welding conditions are set as the tail for welding the workpiece W. Details are explained below with reference to the drawings.
まず、溶接作業者は、第2入力部21を操作して、第1記憶部13に保存された溶接条件補正プログラムを呼び出して、これを起動する(ステップS1)。さらに、ワークWの種類に応じた適切な溶接条件テーブルとして第1溶接条件テーブルを呼び出す。また、第1溶接条件テーブルに記述された溶接速度、つまり、第1溶接速度を確認する(ステップS2)。この場合、第1溶接速度を含む第1溶接条件テーブルの各溶接パラメータは、第2入力部21のタッチパネル21aに表示される。
First, the welding operator operates the second input unit 21 to call up and start the welding condition correction program stored in the first storage unit 13 (step S1). Furthermore, the welding operator calls up the first welding condition table as an appropriate welding condition table according to the type of workpiece W. In addition, the welding speed described in the first welding condition table, that is, the first welding speed, is confirmed (step S2). In this case, each welding parameter of the first welding condition table, including the first welding speed, is displayed on the touch panel 21a of the second input unit 21.
次に、第1速度計測処理を行う。この処理はループ処理であり、以下に示すステップS3とステップS4とをm回(mは1以上の整数)繰り返すまで行われる。
Next, the first speed measurement process is performed. This process is a loop process, and steps S3 and S4 shown below are repeated m times (m is an integer equal to or greater than 1).
溶接作業者は、タッチパネル21aの表面に沿って自身の指を移動させる(ステップS3)。この場合、タッチパネル21aにより、指の移動軌跡が検出され、当該軌跡に基づいて指の移動距離を求めることができる。よって、第2演算部22aにおいて、移動に要した時間で移動距離を除することで、指の移動速度である第1速度が算出される(ステップS4;第1ステップ)。なお、ステップS4において、指の移動距離と移動時間とをリモートコントローラ20から溶接電源10に送信し、第1演算部12aで第1速度を算出してもよい。
The welding operator moves his/her finger along the surface of the touch panel 21a (step S3). In this case, the trajectory of the finger movement is detected by the touch panel 21a, and the finger movement distance can be calculated based on the trajectory. Therefore, in the second calculation unit 22a, the first speed, which is the finger movement speed, is calculated by dividing the movement distance by the time required for the movement (step S4; first step). Note that in step S4, the finger movement distance and movement time may be transmitted from the remote controller 20 to the welding power source 10, and the first calculation unit 12a may calculate the first speed.
なお、mの値は、溶接作業者の熟度に応じて適宜変更されうる。例えば、溶接作業者が初心者であれば、mの値が10以上となることもある。一方、溶接作業者がある程度の経験者であれば、mの値は1ないし3程度としてもよい。mの値は、溶接条件補正プログラムで予め設定してもよいし、溶接作業者がその場で決めてもよい。
The value of m can be changed as appropriate depending on the skill level of the welding operator. For example, if the welding operator is a beginner, the value of m may be 10 or more. On the other hand, if the welding operator has some experience, the value of m may be about 1 to 3. The value of m may be preset in the welding condition correction program, or may be determined on the spot by the welding operator.
第1速度計測処理の実行前、また実行後には、タッチパネル21aには、図3に示すメッセージが表示される。
Before and after the first speed measurement process is executed, the message shown in Figure 3 is displayed on the touch panel 21a.
まず、ステップS3の実行前には、図3の左側に示すように、「タッチパネルをなぞって下さい。」とのメッセージがタッチパネル21aに表示される。また、第1速度計測処理の実行後には、図3の右側に示すように、「測定結果:〇〇cm/min、 測定内容で溶接条件を補正しますか?」とのメッセージがタッチパネル21aに表示される。後者のメッセージは、ステップS3とステップS4とをm回繰り返した後にタッチパネル21aに表示される。ただし、これに限定されず、ステップS4を実行する毎にタッチパネル21aに表示されてもよい。
First, before step S3 is executed, as shown on the left side of Fig. 3, a message saying "Please trace the touch panel" is displayed on the touch panel 21a. After the first speed measurement process is executed, as shown on the right side of Fig. 3, a message saying "Measurement result: xx cm/min. Would you like to correct the welding conditions based on the measurement?" is displayed on the touch panel 21a. The latter message is displayed on the touch panel 21a after steps S3 and S4 are repeated m times. However, this is not limited to the above, and the message may be displayed on the touch panel 21a every time step S4 is executed.
第1速度計測処理の実行後、ステップS5に進み、第1溶接速度と第1速度との差分が所定の範囲以下であるか否かを判断する。ステップS5の判断は、第2演算部22aまたは第1演算部12aで行われる。ただし、溶接作業者が自身で計算してステップS5の判断作業を実行してもよい。
After the first speed measurement process is performed, the process proceeds to step S5, where it is determined whether the difference between the first welding speed and the first speed is within a predetermined range. The determination in step S5 is performed by the second calculation unit 22a or the first calculation unit 12a. However, the welding operator may perform the calculations and perform the determination task in step S5 by himself.
なお、ステップS4を実行する毎に第1速度を算出すると、m個の第1速度が得られる。この場合、m個の第1速度の平均値と第1溶接速度との差分をステップS5で評価するようにしてもよいし、m個の第1速度のうち、第1溶接速度との差分が最も大きい値をステップS5の評価対象としてもよい。
Note that by calculating the first speed each time step S4 is performed, m first speeds are obtained. In this case, the difference between the average value of the m first speeds and the first welding speed may be evaluated in step S5, or the value of the m first speeds that has the largest difference from the first welding speed may be evaluated in step S5.
また、本実施形態において、第1溶接速度をVとし、第1速度をV1とするとき、これらの差分が所定の範囲以下である場合、例えば、式(1)に示す関係を満足する。
In addition, in this embodiment, when the first welding speed is V and the first speed is V1, if the difference between them is within a predetermined range, for example, the relationship shown in formula (1) is satisfied.
0≦100×(|V-V1|/V)≦A ・・・(1)
ここで、0≦A≦3であるが、Aの範囲は特にこれに限定されず、適宜変更されうる。 0≦100×(|V-V1|/V)≦A...(1)
Here, 0≦A≦3, but the range of A is not particularly limited to this and can be changed as appropriate.
ここで、0≦A≦3であるが、Aの範囲は特にこれに限定されず、適宜変更されうる。 0≦100×(|V-V1|/V)≦A...(1)
Here, 0≦A≦3, but the range of A is not particularly limited to this and can be changed as appropriate.
ステップS5の判断結果が否定的な場合、つまり、第1溶接速度と第1速度との差分が所定の範囲を超えた場合は、第1演算部12aまたは第2演算部22aは、第1条件テーブルに記述された各溶接パラメータを当該差分に応じて補正し、新たな溶接条件テーブルを生成する(ステップS6;第2ステップ)。生成された新たな溶接条件テーブルを用いて、ワークWの溶接が行われる。
If the result of the determination in step S5 is negative, that is, if the difference between the first welding speed and the first speed exceeds a predetermined range, the first calculation unit 12a or the second calculation unit 22a corrects each welding parameter described in the first condition table according to the difference and generates a new welding condition table (step S6; second step). The workpiece W is welded using the new welding condition table that has been generated.
具体的には、ステップS6において、第1記憶部13に保存された複数の溶接条件テーブルのうち、第1溶接条件テーブルと同じ種類のワークWに関する溶接条件テーブルを複数用いて、新たな溶接条件テーブルを生成する。
Specifically, in step S6, a new welding condition table is generated using multiple welding condition tables related to the same type of workpiece W as the first welding condition table, from among the multiple welding condition tables stored in the first storage unit 13.
また、新たな溶接条件テーブルにおいて、溶接速度は、第1溶接速度との差分が所定の範囲内となるように複数の溶接条件テーブルにおける溶接速度を補間処理して生成される。
In addition, in the new welding condition table, the welding speed is generated by interpolating the welding speeds in multiple welding condition tables so that the difference from the first welding speed is within a predetermined range.
溶接速度以外の溶接パラメータである他の溶接パラメータは、前述した補間処理で得られた補間係数に基づいて、複数の溶接条件テーブルにおける他の溶接パラメータに対して補間処理を行うことで生成される。
Other welding parameters, which are welding parameters other than the welding speed, are generated by performing an interpolation process on the other welding parameters in multiple welding condition tables based on the interpolation coefficients obtained by the above-mentioned interpolation process.
なお、この場合の補間方法は線形補間である。ただし、これに限定されず、高次の補間処理で生成してもよい。
In this case, the interpolation method is linear. However, it is not limited to this and may be generated using higher-order interpolation processing.
一方、ステップS5の判断結果が肯定的な場合、つまり、第1溶接速度と第1速度との差分が所定の範囲以下である場合は、溶接速度を補正することなく作業を終了してもよい。この場合、他の溶接パラメータも変更されず、第1溶接条件テーブルをそのまま用いてワークWの溶接が行われる。
On the other hand, if the determination result in step S5 is positive, that is, if the difference between the first welding speed and the first speed is within the predetermined range, the work may be ended without correcting the welding speed. In this case, other welding parameters are not changed, and the workpiece W is welded using the first welding condition table as is.
ただし、同じ種類のワークWに関する溶接条件であって、第1溶接速度との差分が所定の範囲以下である溶接速度が記述された第2溶接条件テーブルが、第1記憶部13に保存されていることがある。この場合は、第1演算部12aまたは第2演算部22aは、第2溶接条件テーブルを第1溶接条件テーブルに置き換える(ステップS7;第3ステップ)。置き換えられた第2溶接条件テーブルを用いて、ワークWの溶接が行われる。
However, a second welding condition table may be stored in the first storage unit 13, which describes welding conditions for the same type of workpiece W and a welding speed whose difference from the first welding speed is within a predetermined range. In this case, the first calculation unit 12a or the second calculation unit 22a replaces the second welding condition table with the first welding condition table (step S7; third step). The workpiece W is welded using the replaced second welding condition table.
なお、本実施形態では、タッチパネル21aの表面を溶接作業者が指でなぞることで第1速度を算出したが、溶接トーチ50または溶接トーチ50に擬した訓練用器具を用いて、これらの先端でタッチパネル21aの表面をなぞることで第1速度を算出してもよい。つまり、タッチパネル21aで検出されるのは、溶接作業者が第1溶接速度に合わせるように自身の手を移動させた場合の手の移動軌跡である。当該移動軌跡に基づいて、第1演算部12aまたは第2演算部22aは、手の移動距離を算出する。また、移動に要した時間と手の移動距離とに基づいて、第1演算部12aまたは第2演算部22aは、第1速度を算出する。この場合、タッチパネル21aの表面に傷が付かないように、先端部分に保護具が装着されるのが好ましい。
In this embodiment, the first speed is calculated by the welding operator tracing the surface of the touch panel 21a with his/her finger. However, the first speed may be calculated by tracing the surface of the touch panel 21a with the tip of a welding torch 50 or a training tool simulating a welding torch 50. In other words, what is detected by the touch panel 21a is the movement trajectory of the hand when the welding operator moves his/her hand to match the first welding speed. Based on the movement trajectory, the first calculation unit 12a or the second calculation unit 22a calculates the movement distance of the hand. Also, based on the time required for the movement and the movement distance of the hand, the first calculation unit 12a or the second calculation unit 22a calculates the first speed. In this case, it is preferable to wear a protective gear on the tip to prevent the surface of the touch panel 21a from being scratched.
また、タッチパネル21aは、例えば、感圧式等の接触型タッチパネルに限られず、静電容量方式や光学検出方式等の非接触型タッチパネルであってもよい。この場合、溶接トーチ50や訓練用器具の先端に保護具を装着することは省略されうる。
Furthermore, the touch panel 21a is not limited to a contact-type touch panel such as a pressure-sensitive type, but may be a non-contact type touch panel such as a capacitance type or an optical detection type. In this case, it may be unnecessary to attach protective equipment to the tip of the welding torch 50 or the training equipment.
[効果等]
以上説明したように、本実施形態に係るアーク溶接装置70は、溶接電源10とリモートコントローラ20と溶接トーチ50とを少なくとも備えている。 [Effects, etc.]
As described above, thearc welding device 70 according to this embodiment includes at least the welding power source 10 , the remote controller 20 , and the welding torch 50 .
以上説明したように、本実施形態に係るアーク溶接装置70は、溶接電源10とリモートコントローラ20と溶接トーチ50とを少なくとも備えている。 [Effects, etc.]
As described above, the
溶接電源10は、主回路11と第1制御部12と第1記憶部13と第1表示部14とを少なくとも有している。第1制御部12は、第1演算部12aを有している。
The welding power source 10 has at least a main circuit 11, a first control unit 12, a first memory unit 13, and a first display unit 14. The first control unit 12 has a first calculation unit 12a.
リモートコントローラ20は、第2入力部21と第2制御部22とを少なくとも有している。第2制御部22は、第2演算部22aを有している。第2入力部21は、タッチパネル21aを含んでいる。
The remote controller 20 has at least a second input unit 21 and a second control unit 22. The second control unit 22 has a second calculation unit 22a. The second input unit 21 includes a touch panel 21a.
第1記憶部13は、複数種類のワークWのそれぞれに関して、複数の溶接条件テーブルを保存している。
The first memory unit 13 stores multiple welding condition tables for each of multiple types of workpieces W.
第1演算部12aまたは第2演算部22aは、溶接作業者がタッチパネルの表面21aに沿って自身の手を動かすことで、タッチパネルで検出された手の移動距離に基づいて第1速度を算出する。第1演算部12aまたは第2演算部22aは、溶接対象となるワークWに対応する複数の溶接条件テーブルのうち、第1記憶部13から第1溶接条件テーブルを読み出す。
The first calculation unit 12a or the second calculation unit 22a calculates a first speed based on the distance of movement of the hand detected by the touch panel when the welding operator moves his/her hand along the surface 21a of the touch panel. The first calculation unit 12a or the second calculation unit 22a reads out a first welding condition table from the first storage unit 13 out of multiple welding condition tables corresponding to the workpiece W to be welded.
第1溶接条件テーブルに記述された第1溶接速度と第1速度との差分が所定の範囲を超えた場合、第1演算部12aまたは第2演算部22aは、第1溶接条件テーブルに記述された溶接パラメータを差分に応じて補正する。
If the difference between the first welding speed and the first speed described in the first welding condition table exceeds a predetermined range, the first calculation unit 12a or the second calculation unit 22a corrects the welding parameters described in the first welding condition table according to the difference.
実際の溶接作業を行う際に、溶接速度が目標値通りになるように溶接トーチ50を移動させることができるか否かは、溶接作業者の技能や経験に応じて異なってくる。このため、初心者や作業経験が十分とは言えない溶接作業者は、目標値通りになるように溶接トーチ50を移動させたとしても、実際には当該移動速度が目標値から大きく外れてしまうことがある。
When performing actual welding work, whether or not the welding torch 50 can be moved so that the welding speed matches the target value varies depending on the skill and experience of the welding worker. For this reason, even if a beginner or a welding worker with insufficient work experience moves the welding torch 50 so that the welding speed matches the target value, the actual movement speed may deviate significantly from the target value.
しかし、従来の構成のアーク溶接装置では、目標値と実際の溶接トーチ50の移動速度とのずれ量を把握することが難しく、両者の間に大きなずれがあったとしても、これを修正することは困難であった。
However, with conventional arc welding devices, it is difficult to grasp the deviation between the target value and the actual movement speed of the welding torch 50, and even if there is a large deviation between the two, it is difficult to correct this.
一方、本実施形態によれば、タッチパネル21aの表面に沿って、溶接作業者が自身の指や溶接トーチ50等を移動させることで、溶接作業者が溶接トーチ50を目標値通りの速度で移動させることができるか否かを定量的に評価できる。また、当該速度はワークWの溶接速度に相当するため、目標値である第1溶接速度と溶接作業者の実動作速度である第1速度との間の差分がどの程度であるかを溶接作業者は実地で感じ取ることができる。
On the other hand, according to this embodiment, by having the welding operator move his/her finger, the welding torch 50, etc. along the surface of the touch panel 21a, it is possible to quantitatively evaluate whether the welding operator can move the welding torch 50 at a target speed. In addition, since this speed corresponds to the welding speed of the workpiece W, the welding operator can actually feel the extent of the difference between the first welding speed, which is the target value, and the first speed, which is the welding operator's actual operating speed.
さらに、本実施形態によれば、第1溶接速度と第1速度との差分を定量化して把握することで、当該差分に応じて溶接速度及びその他の溶接パラメータを適切に補正することができる。このことにより、溶接作業者が溶接トーチ50を目標値と異なる速度で移動させてワークWを溶接した場合も、所望の形状、または、それに近い形状の溶接ビードを得ることができる。また溶接ビードの外観が悪化するのを抑制できる。
Furthermore, according to this embodiment, by quantifying and understanding the difference between the first welding speed and the first speed, the welding speed and other welding parameters can be appropriately corrected in accordance with the difference. As a result, even if the welding operator moves the welding torch 50 at a speed different from the target value to weld the workpiece W, a weld bead having the desired shape or a shape close to the desired shape can be obtained. In addition, deterioration of the appearance of the weld bead can be suppressed.
なお、第1速度は、溶接作業者がタッチパネル21aの表面に沿って自身の指を移動させたときの指の移動速度であってもよい。また、溶接作業者がタッチパネル21aの表面に沿って溶接トーチ50またはこれに模した訓練用器具の先端を移動させたときの当該先端の移動速度が第1速度であってもよい。
The first speed may be the speed at which a welding operator moves his/her finger along the surface of the touch panel 21a. The first speed may also be the speed at which the tip of a welding torch 50 or a training tool simulating the same moves along the surface of the touch panel 21a.
また、溶接パラメータの補正方法として、前述した補間処理を用いるのが好ましい。
In addition, it is preferable to use the interpolation process described above as a method for correcting welding parameters.
つまり、第1記憶部13に保存された溶接条件テーブルであって、同じ種類のワークWに関する複数の溶接条件テーブルの中に、第1溶接速度との差分が所定の範囲以下である溶接速度が記述された溶接条件テーブルが存在しない場合、第1演算部12aまたは第2演算部22aは、以下に示す処理を実行する。
In other words, if there is no welding condition table stored in the first memory unit 13 that describes a welding speed whose difference from the first welding speed is within a predetermined range or less among multiple welding condition tables related to the same type of workpiece W, the first calculation unit 12a or the second calculation unit 22a executes the process shown below.
第1演算部12aまたは第2演算部22aは、第1記憶部13に保存された複数の溶接条件テーブルを用いて、ワークWを溶接するための新たな溶接条件テーブルを生成する。
The first calculation unit 12a or the second calculation unit 22a generates a new welding condition table for welding the workpiece W using multiple welding condition tables stored in the first storage unit 13.
この新たな溶接条件テーブルにおいて、溶接速度は、第1溶接速度との差分が所定の範囲以下となるように複数の溶接条件テーブルにおける溶接速度を補間処理して生成される。
In this new welding condition table, the welding speed is generated by interpolating the welding speeds in multiple welding condition tables so that the difference from the first welding speed is within a predetermined range.
また、溶接速度以外の溶接パラメータである他の溶接パラメータは、前述の補間処理で得られた補間係数に基づいて、複数の溶接条件テーブルにおける他の溶接パラメータに対して補間処理を行うことで生成される。
Furthermore, other welding parameters other than the welding speed are generated by performing an interpolation process on the other welding parameters in the multiple welding condition tables based on the interpolation coefficients obtained by the above-mentioned interpolation process.
このように、同じ種類のワークWに関して既に取得済の複数の溶接条件テーブルを用いて、各溶接パラメータを補正することで、補正のための演算処理を簡素化できる。また、溶接速度の補正時に用いた補間係数に基づいて、他の溶接パラメータも補正するため、補正後の新たな溶接条件テーブルの各溶接パラメータが、実使用条件から大きく外れた値になるおそれが少ない。つまり、溶接作業者の実動作速度に合わせて溶接パラメータを補正した場合も、各溶接パラメータを実際に使用可能な適切な数値とすることができる。
In this way, by correcting each welding parameter using multiple welding condition tables that have already been acquired for the same type of workpiece W, the calculation process for correction can be simplified. Furthermore, because other welding parameters are also corrected based on the interpolation coefficient used when correcting the welding speed, there is little risk that each welding parameter in the new corrected welding condition table will have a value that deviates significantly from the actual use conditions. In other words, even when the welding parameters are corrected to match the actual operating speed of the welding operator, each welding parameter can be made to an appropriate value that can actually be used.
なお、第1記憶部13に保存された溶接条件テーブルであって、同じ種類のワークWに関する複数の溶接条件テーブルの中に、第2溶接条件テーブルが存在する場合、第1演算部12aまたは第2演算部22aは、以下に示す処理を実行するのが好ましい。
In addition, if a second welding condition table exists among multiple welding condition tables related to the same type of workpiece W stored in the first memory unit 13, it is preferable that the first calculation unit 12a or the second calculation unit 22a executes the process shown below.
つまり、第1演算部12aまたは第2演算部22aは、第2溶接条件テーブルを第1記憶部13から読み出し、ワークWを溶接するための新たな溶接条件テーブルに設定する。なお、第2溶接条件テーブルには、第1溶接速度との差分が所定の範囲以下である溶接速度が記述されている。
In other words, the first calculation unit 12a or the second calculation unit 22a reads the second welding condition table from the first storage unit 13 and sets it as a new welding condition table for welding the workpiece W. The second welding condition table describes a welding speed whose difference from the first welding speed is within a predetermined range.
このようにすることで、補正のための演算処理を省略でき、第1演算部12aまたは第2演算部22aの演算負荷を低減できる。また、既に取得済の第2溶接条件テーブルを用いるため、溶接ビードの形状等を悪化させること無く適切な溶接を行うことができる。
By doing this, the calculation process for correction can be omitted, and the calculation load on the first calculation unit 12a or the second calculation unit 22a can be reduced. In addition, since the second welding condition table that has already been acquired is used, appropriate welding can be performed without deteriorating the shape of the weld bead, etc.
なお、本実施形態によれば、複数の溶接作業者に図2に示す各ステップを行わせることで、溶接作業者毎の第1速度のばらつき度合い、言い換えると、作業のばらつき度合いを定量的にできる。このことにより、溶接作業者毎に作業の熟度を適切に把握できる。
In addition, according to this embodiment, by having multiple welding operators perform each step shown in FIG. 2, the degree of variation in the first speed for each welding operator, in other words, the degree of variation in the work, can be quantified. This makes it possible to appropriately grasp the level of work proficiency for each welding operator.
本実施形態に係る溶接条件補正方法は、第1速度を算出する第1ステップ(図2のステップS4)と、溶接対象となるワークWに対応する第1溶接条件テーブルに記述された第1溶接速度と第1速度との差分が所定の範囲を超えた場合、第1溶接条件テーブルに記述された溶接パラメータを当該差分に応じて補正する第2ステップ(図2のステップS6)と、を少なくとも備えている。
The welding condition correction method according to this embodiment includes at least a first step (step S4 in FIG. 2) of calculating a first speed, and a second step (step S6 in FIG. 2) of correcting the welding parameters described in the first welding condition table in accordance with the difference between the first welding speed and the first speed described in the first welding condition table corresponding to the workpiece W to be welded if the difference exceeds a predetermined range.
本実施形態によれば、第1溶接速度と第1速度との差分を定量化して把握することで、溶接作業者の作業の熟度を適切に把握できる。
According to this embodiment, the difference between the first welding speed and the first speed is quantified and understood, making it possible to appropriately grasp the skill level of the welding operator.
また、本実施形態によれば、第1溶接速度と第1速度との差分を定量化して把握することで、当該差分に応じて溶接速度及びその他の溶接パラメータを適切に補正することができる。このことにより、溶接作業者が溶接トーチ50を目標値と異なる速度で移動させてワークWを溶接した場合も、所望の形状、または、それに近い形状の溶接ビードを得ることができる。また溶接ビードの外観が悪化するのを抑制できる。
Furthermore, according to this embodiment, by quantifying and understanding the difference between the first welding speed and the first speed, the welding speed and other welding parameters can be appropriately corrected in accordance with the difference. As a result, even if the welding operator moves the welding torch 50 at a speed different from the target value to weld the workpiece W, a weld bead having the desired shape or a shape close to the desired shape can be obtained. In addition, deterioration of the appearance of the weld bead can be suppressed.
また、本実施形態によれば、図2に示すフローチャートにおける第1速度計測処理(図2のステップS3,S4)をm回(mは1以上の整数)実行することで、溶接作業者に目標値にあわせた速度で溶接トーチ50を移動させる感覚を養わせるという訓練効果も奏することができる。特に、溶接作業者の熟度に応じてmの値を設定することで、より適切な訓練となりうる。
In addition, according to this embodiment, by executing the first speed measurement process (steps S3 and S4 in FIG. 2) in the flowchart shown in FIG. 2 m times (m is an integer equal to or greater than 1), a training effect can be achieved in that the welding operator is trained to move the welding torch 50 at a speed that matches the target value. In particular, by setting the value of m according to the proficiency of the welding operator, more appropriate training can be achieved.
第1記憶部13に保存された溶接条件テーブルであって、同じ種類のワークWに関する複数の溶接条件テーブルの中に、第1溶接速度との差分が所定の範囲以下である溶接速度が記述された溶接条件テーブルが存在しない場合、第2ステップでは、第1記憶部13に保存された複数の溶接条件テーブルを用いて、ワークWを溶接するための新たな溶接条件テーブルを生成する。
If there is no welding condition table stored in the first memory unit 13 that describes a welding speed whose difference from the first welding speed is within a predetermined range among the multiple welding condition tables related to the same type of workpiece W, in the second step, a new welding condition table for welding the workpiece W is generated using the multiple welding condition tables stored in the first memory unit 13.
この新たな溶接条件テーブルにおいて、溶接速度は、第1溶接速度との差分が所定の範囲内となるように複数の溶接条件テーブルにおける溶接速度を補間処理して生成される。
In this new welding condition table, the welding speed is generated by interpolating the welding speeds in multiple welding condition tables so that the difference from the first welding speed is within a predetermined range.
また、溶接速度以外の溶接パラメータである他の溶接パラメータは、前述の補間処理で得られた補間係数に基づいて、複数の溶接条件テーブルにおける他の溶接パラメータに対して補間処理を行うことで生成される。
Furthermore, other welding parameters other than the welding speed are generated by performing an interpolation process on the other welding parameters in the multiple welding condition tables based on the interpolation coefficients obtained by the above-mentioned interpolation process.
このようにすることで、補正処理を簡素化できる。また、溶接作業者の実動作速度である第1速度に合わせて溶接パラメータを補正した場合も、各溶接パラメータを実際に使用可能な適切な数値とすることができる。
In this way, the correction process can be simplified. Furthermore, even when the welding parameters are corrected to match the first speed, which is the actual working speed of the welding operator, each welding parameter can be set to an appropriate value that can actually be used.
また、第1記憶部13に保存された溶接条件テーブルであって、同じ種類のワークWに関する複数の溶接条件テーブルの中に、第2溶接条件テーブルが存在する場合、第2ステップに代えて、第2溶接条件テーブルをワークWを溶接するための新たな溶接条件テーブルに設定する第3ステップ(図2のステップS7)をさらに備えるのが好ましい。なお、第2溶接条件テーブルには、第1溶接速度との差分が所定の範囲以下である溶接速度が記述されている。
Furthermore, if a second welding condition table exists among the multiple welding condition tables stored in the first storage unit 13 and related to the same type of workpiece W, it is preferable to further provide a third step (step S7 in FIG. 2) in place of the second step, of setting the second welding condition table as a new welding condition table for welding the workpiece W. Note that the second welding condition table describes a welding speed whose difference from the first welding speed is within a predetermined range.
このようにすることで、補正のための演算処理を省略できる。また、既に取得済の第2溶接条件テーブルを用いるため、溶接ビードの形状等を悪化させること無く適切な溶接を行うことができる。
By doing this, calculation processing for correction can be omitted. Also, since the second welding condition table that has already been acquired is used, appropriate welding can be performed without deteriorating the shape of the weld bead, etc.
本実施形態に係る溶接作業訓練プログラムは、1または複数のプロセッサを有するコンピュータシステムに、前述の溶接条件補正方法における第1ステップ及び第2ステップ(図2のステップS4及びステップS6)または第1ステップ及び第3テップ(図2のステップS4及びステップS7を少なくとも実行させる。なお、本実施形態におけるコンピュータシステムは、第1演算部12aまたは第2演算部22aあるいはその両方と第1記憶部13とを少なくとも含み、第1表示部14及び第2入力部21を含むのがより好ましい。
The welding work training program according to this embodiment causes a computer system having one or more processors to execute at least the first and second steps (steps S4 and S6 in FIG. 2) or the first and third steps (steps S4 and S7 in FIG. 2) in the above-mentioned welding condition correction method. Note that the computer system in this embodiment includes at least the first calculation unit 12a or the second calculation unit 22a or both and the first storage unit 13, and more preferably includes the first display unit 14 and the second input unit 21.
このように溶接条件補正方法の実行手順をプログラムにしておくことで、溶接作業者が簡便かつ効率良く溶接パラメータを補正することができる。
By programming the procedure for executing the welding condition correction method in this way, welding operators can correct welding parameters easily and efficiently.
(その他の実施形態)
実施形態では、溶接作業者が、リモートコントローラ20のタッチパネル21aの表面に沿って自身の指や溶接トーチ50等を動かすことで、第1速度を算出する例を示した。 Other Embodiments
In the embodiment, an example has been shown in which the welding operator calculates the first speed by moving his/her finger, thewelding torch 50, or the like along the surface of the touch panel 21a of the remote controller 20.
実施形態では、溶接作業者が、リモートコントローラ20のタッチパネル21aの表面に沿って自身の指や溶接トーチ50等を動かすことで、第1速度を算出する例を示した。 Other Embodiments
In the embodiment, an example has been shown in which the welding operator calculates the first speed by moving his/her finger, the
しかし、特にこれに限定されず、図4に示すように、溶接電源10に設けられた第1表示部14のタッチパネル14aの表面に沿って自身の指や溶接トーチ50等を動かすことで、第1速度を算出してもよい。この場合、第1表示部14は入力部としても機能する。また、タッチパネル14aは接触型または非接触型のいずれであってもよい。
However, this is not particularly limited, and the first speed may be calculated by moving a finger, the welding torch 50, or the like along the surface of the touch panel 14a of the first display unit 14 provided on the welding power source 10, as shown in FIG. 4. In this case, the first display unit 14 also functions as an input unit. Furthermore, the touch panel 14a may be either a contact type or a non-contact type.
なお、図4に示す場合であっても、リモートコントローラ20が第1速度計測機能を有していてもよい。つまり、溶接作業者の選択に応じて、第1速度を計測するのに、第1表示部(入力部)14のタッチパネル14aを用いてもよいし、第2入力部21のタッチパネル21aを用いてもよい。
Even in the case shown in FIG. 4, the remote controller 20 may have a first speed measurement function. In other words, depending on the selection of the welding operator, the touch panel 14a of the first display unit (input unit) 14 or the touch panel 21a of the second input unit 21 may be used to measure the first speed.
また、実施形態では、溶接電源10に第1記憶部13を設けたが、溶接条件補正プログラムや溶接条件テーブルの保存先は、特にこれに限定されない。例えば、溶接電源10に第1記憶部13を設ける代わりに、外部メモリを溶接電源10に接続し、当該外部メモリを溶接条件補正プログラムや溶接条件テーブル等の保存先としてもよい。外部メモリは、例えば、SD(登録商標)カードやUSB(商標)メモリでもよいし、溶接電源10と相互通信可能に構成されたサーバーであってもよい。
In addition, in the embodiment, the welding power source 10 is provided with the first storage unit 13, but the storage destination of the welding condition correction program and the welding condition table is not particularly limited to this. For example, instead of providing the welding power source 10 with the first storage unit 13, an external memory may be connected to the welding power source 10, and the external memory may be used as the storage destination of the welding condition correction program, the welding condition table, etc. The external memory may be, for example, an SD (registered trademark) card or a USB (trademark) memory, or may be a server configured to be capable of communicating with the welding power source 10.
本開示のアーク溶接装置は、溶接パラメータを溶接作業者の熟度に応じて適切に補正することができるため、有用である。
The arc welding device disclosed herein is useful because it can appropriately correct welding parameters according to the skill level of the welding operator.
10 溶接電源
11 主回路
12 第1制御部
12a 第1演算部(演算部)
13 第1記憶部(記憶部)
14 第1表示部(入力部)
14a タッチパネル
20 リモートコントローラ
21 第2入力部
21a タッチパネル
22 第2制御部
22a 第2演算部(演算部)
30 ワイヤ送給装置
31 第1信号線
32 第2信号線
40 溶接ケーブル
41 アース線
50 溶接トーチ
60 溶接ワイヤ
70 アーク溶接装置
W ワーク 10: Welding power source 11: Main circuit 12:First control unit 12a: First calculation unit (calculation unit)
13 First storage section (storage section)
14 First display unit (input unit)
14a touch panel 20 remote controller 21 second input unit 21a touch panel 22 second control unit 22a second calculation unit (calculation unit)
30Wire feeder 31 First signal line 32 Second signal line 40 Welding cable 41 Ground wire 50 Welding torch 60 Welding wire 70 Arc welding device W Workpiece
11 主回路
12 第1制御部
12a 第1演算部(演算部)
13 第1記憶部(記憶部)
14 第1表示部(入力部)
14a タッチパネル
20 リモートコントローラ
21 第2入力部
21a タッチパネル
22 第2制御部
22a 第2演算部(演算部)
30 ワイヤ送給装置
31 第1信号線
32 第2信号線
40 溶接ケーブル
41 アース線
50 溶接トーチ
60 溶接ワイヤ
70 アーク溶接装置
W ワーク 10: Welding power source 11: Main circuit 12:
13 First storage section (storage section)
14 First display unit (input unit)
30
Claims (9)
- 入力部と記憶部と演算部と溶接電源と溶接トーチとを少なくとも備えたアーク溶接装置であって、
前記入力部は、タッチパネルを含み、
前記記憶部は、複数の溶接条件テーブルを複数種類のワークのそれぞれに関して保存しており、
前記演算部は、
溶接作業者が自身の手を前記タッチパネルの表面に沿って動かすことで、第1速度を前記タッチパネルで検出された前記手の移動距離に基づいて算出し、
溶接対象となる前記ワークに対応する前記複数の溶接条件テーブルのうち、第1溶接条件テーブルを前記記憶部から読み出し、
前記第1溶接条件テーブルに記述された第1溶接速度と前記第1速度との差分が所定の範囲を超えた場合、
前記演算部は、前記第1溶接条件テーブルに記述された溶接パラメータを前記差分に応じて補正することを特徴とするアーク溶接装置。 An arc welding apparatus including at least an input unit, a memory unit, a calculation unit, a welding power source, and a welding torch,
the input unit includes a touch panel,
the memory unit stores a plurality of welding condition tables for each of a plurality of types of workpieces,
The calculation unit is
a welding operator moves his/her hand along a surface of the touch panel, and a first speed is calculated based on a moving distance of the hand detected by the touch panel;
reading out from the storage unit a first welding condition table from among the plurality of welding condition tables corresponding to the workpiece to be welded;
When a difference between a first welding speed described in the first welding condition table and the first speed exceeds a predetermined range,
The arc welding device is characterized in that the calculation unit corrects the welding parameters described in the first welding condition table in accordance with the difference. - 請求項1に記載のアーク溶接装置において、
前記記憶部に保存された前記溶接条件テーブルであって、前記第1溶接速度との前記差分が前記所定の範囲以下である溶接速度が記述された前記溶接条件テーブルが同じ種類の前記ワークに関する複数の前記溶接条件テーブルの中に存在しない場合、
前記演算部は、前記ワークを溶接するための新たな溶接条件テーブルを前記記憶部に保存された複数の前記溶接条件テーブルを用いて生成し、
前記新たな溶接条件テーブルにおいて、
前記溶接速度は、前記複数の溶接条件テーブルにおける前記溶接速度が、前記第1溶接速度との前記差分が前記所定の範囲内となるように補間処理して生成され、
前記溶接速度以外の溶接パラメータである他の溶接パラメータは、複数の前記溶接条件テーブルにおける前記他の溶接パラメータに対して、前記補間処理で得られた補間係数に基づいて補間処理を行うことで生成されることを特徴とするアーク溶接装置。 2. The arc welding apparatus according to claim 1,
If the welding condition table stored in the storage unit does not include a welding speed in which the difference from the first welding speed is within the predetermined range, among the multiple welding condition tables related to the workpiece of the same type,
the calculation unit generates a new welding condition table for welding the workpiece using the plurality of welding condition tables stored in the storage unit;
In the new welding condition table,
the welding speed is generated by performing an interpolation process on the welding speeds in the plurality of welding condition tables so that the difference between the welding speeds and the first welding speed falls within the predetermined range;
The other welding parameters, which are welding parameters other than the welding speed, are generated by performing an interpolation process on the other welding parameters in a plurality of the welding condition tables based on an interpolation coefficient obtained by the interpolation process. - 請求項1に記載のアーク溶接装置において、
前記記憶部に保存された前記溶接条件テーブルであって、前記第1溶接速度との前記差分が前記所定の範囲以下である溶接速度が記述された第2溶接条件テーブルが、同じ種類の前記ワークに関する複数の前記溶接条件テーブルの中に存在する場合、
前記演算部は、前記第2溶接条件テーブルを前記記憶部から読み出し、前記ワークを溶接するための新たな溶接条件テーブルに設定することを特徴とするアーク溶接装置。 2. The arc welding apparatus according to claim 1,
a second welding condition table stored in the storage unit, in which a welding speed whose difference from the first welding speed is within the predetermined range is described, is present among a plurality of welding condition tables related to the workpiece of the same type;
The arc welding device is characterized in that the calculation unit reads out the second welding condition table from the storage unit and sets it as a new welding condition table for welding the workpiece. - 請求項1に記載のアーク溶接装置において、
前記第1速度は、前記溶接作業者が自身の指を前記タッチパネルの表面に沿って移動させたときの前記指の移動速度であることを特徴とするアーク溶接装置。 2. The arc welding apparatus according to claim 1,
The arc welding device according to claim 1, wherein the first speed is a moving speed of the welding operator's finger when the welding operator moves the finger along a surface of the touch panel. - 請求項1に記載のアーク溶接装置において、
前記第1速度は、前記溶接作業者が前記溶接トーチの先端を前記タッチパネルの表面に沿って移動させたときの前記先端の移動速度であることを特徴とするアーク溶接装置。 2. The arc welding apparatus according to claim 1,
The arc welding device according to claim 1, wherein the first speed is a moving speed of the tip of the welding torch when the welding operator moves the tip along a surface of the touch panel. - 請求項1に記載のアーク溶接装置を用いた溶接条件補正方法であって、
第1ステップは、前記溶接作業者が前記自身の手を前記タッチパネルの表面に沿って移動させたときの前記第1速度を算出し、
第2ステップは、前記第1溶接速度と前記第1速度との前記差分が前記所定の範囲を超えた場合、
前記第1溶接条件テーブルに記述された溶接パラメータを前記差分に応じて補正することを特徴とする溶接条件補正方法。 A welding condition correction method using the arc welding apparatus according to claim 1,
The first step calculates the first speed when the welding operator moves his/her hand along a surface of the touch panel;
The second step includes, when the difference between the first welding speed and the first speed exceeds the predetermined range,
A welding condition correction method comprising: correcting welding parameters described in the first welding condition table in accordance with the difference. - 請求項6に記載の溶接条件補正方法において、
前記記憶部に保存された前記溶接条件テーブルであって、前記第1溶接速度との前記差分が前記所定の範囲以下である溶接速度が記述された前記溶接条件テーブルが、同じ種類の前記ワークに関する複数の前記溶接条件テーブルの中に存在しない場合、
前記第2ステップは、前記ワークを溶接するための新たな溶接条件テーブルを、前記記憶部に保存された複数の前記溶接条件テーブルを用いて生成し、
前記新たな溶接条件テーブルにおいて、
前記溶接速度は、前記複数の溶接条件テーブルにおける前記溶接速度を、前記第1溶接速度との前記差分が前記所定の範囲内となるように補間処理して生成され、
前記溶接速度以外の溶接パラメータである他の溶接パラメータは、複数の前記溶接条件テーブルにおける前記他の溶接パラメータに対して、前記補間処理で得られた補間係数に基づいて補間処理を行うことで生成されることを特徴とする溶接条件補正方法。 7. The welding condition correction method according to claim 6,
If the welding condition table stored in the storage unit does not include a welding speed in which the difference from the first welding speed is within the predetermined range, among the multiple welding condition tables related to the workpiece of the same type,
The second step generates a new welding condition table for welding the workpiece by using a plurality of the welding condition tables stored in the storage unit,
In the new welding condition table,
the welding speed is generated by performing an interpolation process on the welding speeds in the plurality of welding condition tables so that the difference between the welding speeds and the first welding speed falls within the predetermined range;
a welding condition correction method for correcting a welding condition, the other welding parameters being welding parameters other than the welding speed, being generated by performing an interpolation process on the other welding parameters in a plurality of the welding condition tables based on an interpolation coefficient obtained by the interpolation process. - 請求項6に記載の溶接条件補正方法において、
前記記憶部に保存された前記溶接条件テーブルであって、前記第1溶接速度との前記差分が前記所定の範囲以下である溶接速度が記述された第2溶接条件テーブルが、同じ種類の前記ワークに関する複数の前記溶接条件テーブルの中に存在する場合、
前記第2ステップに代えて、前記第2溶接条件テーブルを、前記ワークを溶接するための新たな溶接条件テーブルに設定する第3ステップをさらに備えることを特徴とする溶接条件補正方法。 7. The welding condition correction method according to claim 6,
a second welding condition table stored in the storage unit, in which a welding speed whose difference from the first welding speed is within the predetermined range is described, is present among a plurality of welding condition tables related to the workpiece of the same type;
A welding condition correction method, comprising: instead of the second step, a third step of setting the second welding condition table as a new welding condition table for welding the workpiece. - 請求項6ないし8のいずれか1項に記載の溶接条件補正方法における各ステップを、1または複数のプロセッサを有するコンピュータシステムに実行させるための溶接条件補正プログラム。 A welding condition correction program for causing a computer system having one or more processors to execute each step of the welding condition correction method according to any one of claims 6 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024510414A JP7489592B1 (en) | 2023-02-17 | 2023-12-05 | ARC WELDING APPARATUS, WELDING CONDITION CORRECTION METHOD USING THE APPARATUS, AND WELDING CONDITION CORRECTION PROGRAM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-023255 | 2023-02-17 | ||
JP2023023255 | 2023-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024171561A1 true WO2024171561A1 (en) | 2024-08-22 |
Family
ID=92421222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/043422 WO2024171561A1 (en) | 2023-02-17 | 2023-12-05 | Arc welding device and welding condition correction method using same, and welding condition correction program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024171561A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997010919A1 (en) * | 1995-09-19 | 1997-03-27 | Kabushiki Kaisha Yaskawa Denki | Automatic welding condition setting device |
JP2019181488A (en) * | 2018-04-03 | 2019-10-24 | 株式会社ダイヘン | Computer program, welding information calculation device, welding torch, welding electric power source, and welding system |
JP2020203308A (en) * | 2019-06-19 | 2020-12-24 | 株式会社ダイヘン | Control device, program, and robot control system |
-
2023
- 2023-12-05 WO PCT/JP2023/043422 patent/WO2024171561A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997010919A1 (en) * | 1995-09-19 | 1997-03-27 | Kabushiki Kaisha Yaskawa Denki | Automatic welding condition setting device |
JP2019181488A (en) * | 2018-04-03 | 2019-10-24 | 株式会社ダイヘン | Computer program, welding information calculation device, welding torch, welding electric power source, and welding system |
JP2020203308A (en) * | 2019-06-19 | 2020-12-24 | 株式会社ダイヘン | Control device, program, and robot control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10500668B2 (en) | Machine learning device, arc welding control device, arc welding robot system, and welding system | |
KR102344904B1 (en) | User interface with real time pictograph representation of parameter settings | |
US20210158718A1 (en) | Systems and Methods to Provide Weld Training | |
CN108701427B (en) | System and method for providing welding training | |
JPH05329645A (en) | Arc sensor monitoring device and its using method | |
JP7045243B2 (en) | Computer program, welding information calculator, welding torch, welding power supply, welding system | |
US20230241703A1 (en) | Welding-information learning-model generation method, learning model, program, and welding system | |
CN106457468A (en) | Hybrid laser welding system and method using two robots | |
US20190184577A1 (en) | Robot system | |
WO2016136209A1 (en) | Offline teaching device | |
KR20190117592A (en) | Welding state determination system and welding state determination method | |
WO2024171561A1 (en) | Arc welding device and welding condition correction method using same, and welding condition correction program | |
JP7489592B1 (en) | ARC WELDING APPARATUS, WELDING CONDITION CORRECTION METHOD USING THE APPARATUS, AND WELDING CONDITION CORRECTION PROGRAM | |
JP2009066612A (en) | Spot welding device with spatter-detecting means | |
JP2023001642A (en) | Method for generating learnt model, learning device, control device of welding robot, system, learnt model, and program | |
KR102167563B1 (en) | Display device and display method of arc welding | |
US20160372006A1 (en) | Methods for welding training | |
WO2022163669A1 (en) | Program evaluation device and teaching device | |
JPS63256281A (en) | Teaching system for welding torch position | |
CN114728362A (en) | Output control method for gas-shielded arc welding, welding system, welding power supply, and welding control device | |
JPH07106454B2 (en) | Welding line copying control method | |
JP2018171634A (en) | Welding quality determination device, welding system, welding quality determination method, and welding quality determination program | |
JP2011251289A (en) | Method for correcting target position in arc sensor, and robot control system | |
WO2024214385A1 (en) | Welding control method, welding system, and welding control program | |
WO2024157608A1 (en) | Weaving control method, welding control device, welding system, program, and welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23922894 Country of ref document: EP Kind code of ref document: A1 |