[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024166542A1 - Gas circulation system and transportation machine - Google Patents

Gas circulation system and transportation machine Download PDF

Info

Publication number
WO2024166542A1
WO2024166542A1 PCT/JP2023/045507 JP2023045507W WO2024166542A1 WO 2024166542 A1 WO2024166542 A1 WO 2024166542A1 JP 2023045507 W JP2023045507 W JP 2023045507W WO 2024166542 A1 WO2024166542 A1 WO 2024166542A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
natural gas
carbon dioxide
facility
working fluid
Prior art date
Application number
PCT/JP2023/045507
Other languages
French (fr)
Japanese (ja)
Inventor
丈巳 加茂川
ロスラン・ビン・ヤハヤ
康之 池上
Original Assignee
Global FCNG株式会社
国立大学法人佐賀大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global FCNG株式会社, 国立大学法人佐賀大学 filed Critical Global FCNG株式会社
Publication of WO2024166542A1 publication Critical patent/WO2024166542A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells

Definitions

  • the present invention relates to a gas circulation system and transport machinery that can suppress the release of carbon dioxide gas into the atmosphere from power plants, industrial plants, etc., and can transport the gas without the need for special facilities for liquefying natural gas or carbon dioxide gas.
  • thermal power plants natural gas buried underground is extracted and liquefied to produce liquefied natural gas (LNG) and other fuels, which are burned in a combustor to generate gas, which is then used to drive a turbine to generate electricity.
  • LNG liquefied natural gas
  • thermal power plants emit exhaust gases containing large amounts of carbon dioxide gas.
  • the carbon dioxide gas contained in the exhaust gases is separated from the exhaust gases and then released into the atmosphere.
  • Industrial plants also use natural gas in the manufacturing process, resulting in the release of carbon dioxide gas.
  • methane gas recovered from a mining site is liquefied at a mining base and then transported to a heat utilization system by a methane gas transport ship, and carbon dioxide gas generated in the heat utilization system is liquefied and then transported to the mining base by a carbon dioxide gas transport ship.
  • the carbon dioxide gas transported to the mining base is heated to high temperature and pressure in a boiler and sent to a methane hydrate layer, where methane hydrate is decomposed into water and methane gas, of which only the methane gas is recovered.
  • the recovered methane gas is transported again to the heat utilization system by a methane gas transport ship, and this series of steps is repeated.
  • this system sends carbon dioxide gas into the methane hydrate layer as a heat source for decomposing the methane hydrate, and causes the water produced by the decomposition of the methane hydrate to react with the carbon dioxide gas, thereby fixing it in the methane hydrate layer as carbon dioxide gas hydrate, thereby reducing the release of carbon dioxide into the atmosphere and curbing the progress of global warming.
  • natural gas has generally been liquefied and transported as liquefied natural gas when it is transported to thermal power plants, etc.
  • natural gas When natural gas is liquefied, its density increases significantly, making it possible to transport large amounts of natural gas over long distances using a relatively small number of ships.
  • Patent Document 1 requires the installation of equipment for liquefying natural gas, etc., as well as equipment for liquefying carbon dioxide gas and equipment for gasifying carbon dioxide gas at high temperature and pressure, and considering the maintenance costs of the equipment, this is not realistic.
  • the present invention has been made to solve the above problems, and aims to provide a gas circulation system that can reduce the release of carbon dioxide gas emitted at power plants into the atmosphere and transport natural gas or carbon dioxide gas without the need for liquefaction equipment, and transport machinery for use in this system.
  • the gas circulation system comprises a first transport means for transporting the natural gas collected by a collection facility from the collection facility where the natural gas is collected at a collection point to a natural gas utilization facility that utilizes the natural gas, and a second transport means for transporting carbon dioxide gas emitted during the utilization process of the natural gas utilization facility from the natural gas utilization facility to the collection facility or the carbon dioxide utilization facility, the first transport means transporting the natural gas in a compressed state from the collection facility to the natural gas utilization facility, the second transport means transporting the carbon dioxide gas in a compressed state from the natural gas utilization facility to the collection facility or the carbon dioxide utilization facility, and supplying the carbon dioxide gas transported by the second transport means as a supply gas by the collection facility to the collection point or the carbon dioxide utilization facility.
  • the first transportation means transports natural gas from the extraction facility to the natural gas utilization facility
  • the second transportation means transports carbon dioxide gas from the natural gas utilization facility to the extraction facility
  • the carbon dioxide gas transported by the second transportation means is supplied to the extraction point by the extraction facility or as supply gas to the carbon dioxide utilization facility.
  • the extraction point is a small or medium-sized gas field, an abandoned gas field, or an oil field
  • the internal pressure at the extraction point that decreases as natural gas or crude oil is extracted can be compensated for by carbon dioxide gas, making it possible to improve or regenerate the production capacity of natural gas or crude oil, and to fully recover natural gas, etc.
  • the first transport means transports the natural gas in a supercritical state from the extraction facility to the natural gas utilization facility
  • the second transport means transports the carbon dioxide gas in a supercritical state from the natural gas utilization facility to the extraction facility or the carbon dioxide utilization facility, as necessary.
  • the natural gas and carbon dioxide gas are transported in a compressed supercritical state, so that the density can be made the same as in a liquefied state, and the natural gas and carbon dioxide gas can be transported with a transport efficiency comparable to that of the liquefied state.
  • the gas circulation system according to the present invention is, as necessary, provided with a heat exchange means for exchanging heat between the natural gas extracted at the extraction facility and the carbon dioxide gas transported from the natural gas utilization facility by the second transport means.
  • the heat exchange means exchanges heat between the natural gas extracted at the extraction facility and the carbon dioxide gas transported from the natural gas utilization facility, so that the natural gas is cooled by the lower temperature carbon dioxide gas.
  • the gas circulation system according to the present invention is, as necessary, equipped with an evaporation means for performing heat exchange between the working fluid and the natural gas and evaporating the working fluid to obtain a gaseous working fluid, a power conversion means which is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power, and a condensation means for condensing the working fluid into a liquid phase by performing heat exchange between the gaseous working fluid discharged from the power conversion means and the carbon dioxide gas.
  • an evaporation means for performing heat exchange between the working fluid and the natural gas and evaporating the working fluid to obtain a gaseous working fluid
  • a power conversion means which is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power
  • a condensation means for condensing the working fluid into a liquid phase by performing heat exchange between the gaseous working fluid discharged from the power conversion means and the carbon dioxide gas.
  • the gas circulation system according to the present invention is provided, as necessary, with a heat exchange means for exchanging heat between the carbon dioxide gas generated in the natural gas utilization facility and the natural gas transported from the extraction facility by the first transport means.
  • the heat exchange means exchanges heat between the carbon dioxide gas generated at the natural gas utilization facility and the natural gas transported from the extraction facility, so that the carbon dioxide gas is cooled by the lower temperature natural gas.
  • the gas circulation system according to the present invention is, as necessary, equipped with an evaporation means for performing heat exchange between the working fluid and the carbon dioxide gas and evaporating the working fluid to obtain a gaseous working fluid, a power conversion means which is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power, and a condensation means for performing heat exchange between the gaseous working fluid discharged from the power conversion means and the natural gas to condense it into a liquid phase.
  • the first transport means or the second transport means transports the natural gas and/or the carbon dioxide gas in a pressure vessel formed of at least fiber-reinforced plastic, as necessary.
  • natural gas and/or carbon dioxide gas is stored in a pressure vessel formed at least of fiber-reinforced plastic and transported by the first transport means or the second transport means, so that the gas can be stored at a higher pressure than conventionally, and natural gas and carbon dioxide gas can be transported with a high efficiency comparable to that of conventional liquefied natural gas transportation.
  • these pressure vessels are a fraction of the weight of conventional steel vessels, which allows for significant weight reduction in transport equipment, contributing to reduced fuel consumption, shorter transport times, and longer transport distances.
  • the transport machine of the present invention transports natural gas extracted at a extraction facility in a compressed state from the extraction facility to a natural gas utilization facility, and/or transports carbon dioxide gas emitted during the utilization process of the natural gas utilization facility in a compressed state from the natural gas utilization facility to the extraction facility or carbon dioxide utilization facility.
  • the transport machine transports the natural gas extracted at the extraction facility in a supercritical state from the extraction facility to the natural gas utilization facility, and/or transports the carbon dioxide gas emitted during the utilization process of the natural gas utilization facility in a supercritical state from the natural gas utilization facility to the extraction facility or the carbon dioxide utilization facility, as necessary.
  • the transport machine according to the present invention is provided with a heat exchange section for exchanging heat between the natural gas extracted at the extraction facility and the carbon dioxide gas transported from the natural gas utilization facility, as necessary.
  • the transport machine according to the present invention is equipped, as necessary, with an evaporator in which the heat exchange section exchanges heat between the working fluid and the natural gas and evaporates the working fluid to obtain a gaseous working fluid, a turbine that is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power, and a condenser that condenses the working fluid into a liquid phase by exchanging heat between the gaseous working fluid discharged from the turbine and the carbon dioxide gas.
  • an evaporator in which the heat exchange section exchanges heat between the working fluid and the natural gas and evaporates the working fluid to obtain a gaseous working fluid
  • a turbine that is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power
  • a condenser that condenses the working fluid into a liquid phase by exchanging heat between the gaseous working fluid discharged from the turbine and the carbon dioxide gas.
  • the transport machine according to the present invention is provided with a heat exchange section for exchanging heat between the carbon dioxide gas generated at the natural gas utilization facility and the natural gas transported from the extraction facility, as necessary.
  • the transport machine according to the present invention is equipped, as necessary, with an evaporator in which the heat exchange section exchanges heat between the working fluid and the carbon dioxide gas to evaporate the working fluid and obtain a gaseous working fluid, a turbine that is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power, and a condenser that exchanges heat between the gaseous working fluid discharged from the turbine and the natural gas to condense it into a liquid phase.
  • the transport machine transports the natural gas and/or carbon dioxide gas, as necessary, by storing them in a pressure vessel made of at least fiber-reinforced plastic.
  • FIG. 1 is a schematic diagram of a gas circulation system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a collection facility in the gas circulation system according to the first embodiment of the present invention.
  • 1 is a schematic diagram of a power plant in a gas circulation system according to a first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a gas circulation system according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a collection facility in a gas circulation system according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a power plant in a gas circulation system according to a second embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a gas circulation system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a collection facility in the gas circulation system according to the first embodiment of the present invention.
  • 1 is a schematic diagram of a power plant in a gas circulation system according to
  • FIG. 5 is a schematic diagram of a transport machine in a gas circulation system according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a gas circulation system according to a third embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a transport machine in a gas circulation system according to a third embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a collection facility in a gas circulation system according to a fourth embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a power plant in a gas circulation system according to a fourth embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a collection facility in a gas circulation system according to a fifth embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a power plant in a gas circulation system according to a fifth embodiment of the present invention.
  • the gas circulation system 1 includes a transport machine 2a as the first transport means for transporting natural gas collected by a collection facility 70, which collects natural gas at a collection point 90 such as an unused small-to-medium-sized gas field or an abandoned gas field, to a natural gas utilization facility that utilizes the natural gas, and a transport machine 2b as the second transport means for transporting carbon dioxide gas emitted during the utilization process of the natural gas utilization facility from the natural gas utilization facility to the collection facility 70 or the carbon dioxide utilization facility.
  • a transport machine 2a as the first transport means for transporting natural gas collected by a collection facility 70, which collects natural gas at a collection point 90 such as an unused small-to-medium-sized gas field or an abandoned gas field, to a natural gas utilization facility that utilizes the natural gas
  • a transport machine 2b as the second transport means for transporting carbon dioxide gas emitted during the utilization process of the natural gas utilization facility from the natural gas utilization facility to the collection facility 70 or the carbon dioxide utilization facility.
  • the collection facility 70 may also be a facility for collecting natural gas from associated gas or flare gas generated in an oil field serving as a collection site. Furthermore, the collection facility 70 may be installed either at sea or on land.
  • the natural gas utilization facility is a power plant 80 that generates electricity using natural gas, or may be an industrial plant that uses natural gas and emits carbon dioxide gas.
  • the power plant 80 will be described as an example of the natural gas utilization facility. If the power plant 80 and the CO2 gas recovery unit 82 described below cannot be constructed on land, they can be installed on a ship or barge, and the ship or barge can be moored at sea.
  • the carbon dioxide gas generated at the power plant 80 may be transported by the transport machine 2b to the collection facility 70 or to other collection facilities serving as carbon dioxide utilization facilities.
  • the other extraction facilities like the extraction facility 70, may be facilities that currently extract natural gas, or may be facilities that have been used as natural gas extraction facilities in the past.
  • the carbon dioxide gas transported by the transport machine 2b to the extraction facility 70 or another extraction facility is supplied as a supply gas.
  • the supply gas is gas for injection into the extraction site 90 by the extraction facility 70 or into an extraction site by another extraction facility, or gas for underground storage at an extraction site by another extraction facility.
  • the supply gas may also be an industrial raw material used in another carbon dioxide utilization facility.
  • the transport machine 2a transports the natural gas in a compressed state from the extraction facility 70 to the power plant 80
  • the transport machine 2b transports the carbon dioxide gas in a compressed state from the power plant 80 to the extraction facility 70.
  • the transport machines 2a and 2b are ships such as tankers.
  • the transport machines 2a and 2b may be transport vehicles, airplanes, etc., in addition to ships.
  • the extraction facility 70 mainly comprises a natural gas extraction unit 72 that extracts natural gas from the extraction site 90 through a production well 71, a natural gas refining unit 73 that removes acid gas and moisture contained in the extracted natural gas, and a natural gas compression unit 74 that compresses the extracted natural gas.
  • the collection facility 70 also includes a CO2 gas injection section 75 that injects carbon dioxide gas transported from the power plant 80 by the transport machine 2b into the collection site 90 via an injection well 76.
  • the natural gas collection unit 72 pumps natural gas from the collection point 90 to the collection facility 70 using pressure or a pumping pump via the production well 71 that has reached the collection point 90.
  • the natural gas pumped up by the natural gas collection section 72 is sent to the natural gas purification section 73.
  • the natural gas sent to the natural gas purification section 73 has acidic gases such as carbon dioxide gas and hydrogen sulfide and moisture removed.
  • the devices for removing acidic gas and moisture are well known in the art, so details thereof will be omitted.
  • the refined natural gas is compressed to a predetermined pressure in the natural gas compression section 74, and the compressed natural gas is stored in an empty pressure vessel 3a loaded onto the transportation machine 2a through a distribution pipe.
  • the compressed natural gas may be stored in a pressure vessel 3a at the extraction facility 70 and then loaded onto the transport machine 2a.
  • the natural gas compressed in the natural gas compression section 74 is cooled appropriately or kept at an appropriate temperature depending on the transport temperature.
  • carbon dioxide gas transported from the power plant 80 by the transport machine 2b and stored in the pressure vessel 3b is sent from the transport machine 2b to the CO2 gas injection section 75 through a distribution pipe, and is injected into the collection point 90 through the injection well 76 by means of self-pressure or an injection pump.
  • the materials constituting the pressure vessels 3a, 3b that contain the compressed natural gas and compressed carbon dioxide gas are not particularly limited as long as they have sufficient pressure resistance and corrosion resistance against the corrosive impurities contained in natural gas and carbon dioxide gas, but examples include fiber-reinforced plastics such as carbon fiber reinforced plastic (hereinafter also referred to as CFRP) and glass fiber reinforced plastic.
  • CFRP carbon fiber reinforced plastic
  • CFRP containers can be made compact through a high-pressure resistant design that takes advantage of the fiber strength of CFRP.
  • a 300 L container with a design pressure of 100 MPa can have an outer diameter of 560 mm and a length of 2,865 mm. This makes it possible for the CFRP container to transport compressed natural gas and compressed carbon dioxide gas using transport machines 2a and 2b.
  • the weight of a fiber-reinforced plastic container is about one-tenth of that of an iron container having the same pressure resistance, and the fiber-reinforced plastic container is also excellent in fuel efficiency in the transport machines 2a, 2b. Furthermore, fiber-reinforced plastic containers are resistant to corrosion caused by water, hydrogen sulfide, carbon dioxide gas, etc., and are airtight enough to prevent hydrogen molecules from passing through.
  • natural gas and/or carbon dioxide gas is stored in pressure vessels 3a, 3b made of at least fiber-reinforced plastic and transported by transport machine 2a or transport machine 2b, so the gas can be stored at a higher pressure than in the past, and natural gas and carbon dioxide gas can be transported with a high efficiency comparable to the conventional transport of liquefied natural gas.
  • these pressure vessels 3a, 3b are a fraction of the weight of conventional steel vessels, which allows for a significant reduction in the weight of the transport machinery 2a, 2b, contributing to reduced fuel consumption, shorter transport times, and longer transport distances.
  • natural gas and carbon dioxide gas can be kept airtight at room temperature in a high-pressure supercritical state during transportation, eliminating the need for measures to prevent boil-off (loss of gas due to evaporation), which is an issue when transporting liquefied natural gas.
  • Table 1 below shows the transport efficiency of methane gas, the main component of natural gas, depending on the pressure and temperature.
  • Table 1 also shows the transport efficiency of methane gas compressed at 20 MPa, which is a pressure that can be withstood by conventional iron containers.
  • Table 2 below shows the transport efficiency according to the pressure and temperature of carbon dioxide gas.
  • Table 2 also shows the transport efficiency of carbon dioxide gas compressed at 20 MPa, which is a pressure that a conventional iron container can withstand.
  • the transport efficiency of methane gas compressed at 20 MPa which is the pressure that conventional iron containers can withstand, is 37%, which is far below the transport capacity of liquefied methane.
  • the transport efficiency of methane gas compressed at 50 MPa exceeds 60%, and it is found to have nearly double the transport capacity compared to when compressed at 20 MPa.
  • the transport efficiency of methane gas compressed at 100 MPa exceeds 80%, and even at low temperatures (-30°C), the transport efficiency exceeds 90%, demonstrating a transport capacity comparable to that of liquefied methane.
  • Carbon dioxide gas has a density of 880 kg/ m3 at 20 MPa and 31.1°C (supercritical state), and when the pressure is increased to 30 MPa, the density increases to 900 kg/ m3 at 40°C, 990 kg/ m3 at 20°C, and 1110 kg/ m3 at -20°C.
  • natural gas and carbon dioxide gas can be transported in a compressed supercritical state, making it possible to achieve a density similar to that of a liquefied state, and natural gas and carbon dioxide gas can be transported with a transport efficiency comparable to that of a liquefied state.
  • the power plant 80 mainly comprises a gas turbine 81 fueled by natural gas, a CO2 gas recovery unit 82 that recovers carbon dioxide gas from the combustion gas discharged from the gas turbine 81, and a CO2 gas compression unit 83 that compresses the carbon dioxide gas recovered in the CO2 gas recovery unit 82.
  • the gas turbine 81 includes a combustor 81a that burns natural gas as fuel, an air compressor 81b that compresses and supplies air to the combustor 81a, and a turbine 81c that is driven by the combustion gas generated in the combustor 81a.
  • the combustor 81a combusts natural gas supplied via a delivery pipe from a pressure vessel 3a transported from the extraction facility 70 by a transport machine 2a with air compressed by an air compressor 81b through a reaction between the gas and the air.
  • the combustion gas generated by the combustor 81a is sent to a turbine 81c.
  • the turbine 81c is driven by the combustion gas supplied from the combustor 81a.
  • the turbine 81c rotates with the combustion gas to generate rotational kinetic energy, which is then converted by the generator 84 into electric power, generating electric power.
  • the combustion gas that has passed through the turbine 81c is sent to a CO2 gas recovery section 82.
  • the power plant 80 is described as using a gas turbine 81 to generate electricity, but the power plant 80 may use other power generation methods.
  • the combustion gas sent to the CO2 gas recovery section 82 has carbon dioxide gas recovered by a conventionally known method, for example, a chemical absorption method, and the carbon dioxide gas vaporized by heating is sent to a CO2 gas compression section 83.
  • the combustion gas from which the carbon dioxide gas has been recovered is released into the atmosphere.
  • the carbon dioxide gas supplied to the CO2 gas compression section 83 is compressed to a predetermined pressure, and this compressed carbon dioxide gas is stored in an empty pressure vessel 3b loaded onto the transport machine 2b through a delivery pipe.
  • the compressed carbon dioxide gas may be stored in a pressure vessel 3b at the power plant 80 and then loaded onto the transport machine 2b.
  • the carbon dioxide gas compressed in the CO2 gas compression section 83 is appropriately cooled or kept at an appropriate temperature depending on the transportation temperature.
  • the electricity generated by the generator 84 is transmitted to various locations via a power transmission cable (not shown).
  • the transport machine 2a transports natural gas from the extraction facility 70 to the power plant 80
  • the transport machine 2b transports carbon dioxide gas from the power plant 80 to the extraction facility 70
  • the carbon dioxide gas transported by the transport machine 2b is supplied to the extraction point 90 by the extraction facility 70 or as supply gas to the carbon dioxide utilization facility.
  • the carbon dioxide gas discharged from the power plant 80 can be reused at the extraction facility 70 or the carbon dioxide utilization facility, and carbon dioxide gas discharged from the power plant 80 is not released into the atmosphere, thereby contributing to the prevention of global warming.
  • the carbon dioxide gas transported from the power plant 80 is supplied to the collection site 90, if the collection site 90 is a small or medium-sized gas field, an abandoned gas field, or an oil field, the internal pressure at the collection site 90 that decreases as natural gas or crude oil is collected can be compensated for by the carbon dioxide gas, making it possible to improve or regenerate the production capacity of natural gas or crude oil, and to fully recover natural gas, etc.
  • the transportation of natural gas is described as being performed by the transport machine 2a, and the transportation of carbon dioxide gas is described as being performed by the transport machine 2b.
  • a single transport machine e.g., transport machine 2a
  • the collection facility 70 after the transport machine 2a supplies carbon dioxide gas to the CO2 gas injection section 75, natural gas is sequentially stored in the emptied pressure vessel 3a from the natural gas compression section 74.
  • the power plant 80 after the transport machine 2a supplies natural gas to the gas turbine 81, carbon dioxide gas is sequentially stored in the emptied pressure vessel 3a from the CO2 gas compression section 83.
  • the natural gas generated at the collection facility and the carbon dioxide gas generated at the power plant are simply transported by transport machinery to the power plant and the collection facility, respectively.
  • the natural gas collected at the collection facility can be heat exchanged with the carbon dioxide gas transported from the power plant, and the carbon dioxide gas generated at the power plant can be heat exchanged with the natural gas transported from the collection facility.
  • the description of the configuration that overlaps with the first embodiment will be omitted.
  • the gas circulation system 1 includes a heat exchange unit 4 as heat exchange means that exchanges heat between the natural gas collected by the collection facility 70 and the carbon dioxide gas transported from the power plant 80 by the transport machine 2b, and a heat exchange unit 5 as heat exchange means that exchanges heat between the carbon dioxide gas generated at the power plant 80 and the natural gas transported from the collection facility 70 by the transport machine 2a.
  • the heat exchange unit 4 includes a first heat exchanger 40 that exchanges heat between the heat medium and natural gas, a second heat exchanger 41 that exchanges heat between the heat medium and carbon dioxide gas, and a pump 42 that sends the heat medium discharged from the second heat exchanger 41 to the first heat exchanger 40.
  • the natural gas collected from the collection point 90 is compressed through the natural gas compression section 74 and then sent to the first heat exchanger 40, where it is heat exchanged with the heat medium introduced into the first heat exchanger 40.
  • the natural gas that has been heat exchanged with the heat medium and has a lower temperature is stored in the pressure vessel 3a of the transportation machine 2a through a delivery pipe.
  • the heat medium that has been heat exchanged with the natural gas is sent to the second heat exchanger 41 .
  • the second heat exchanger 41 is supplied with carbon dioxide gas transported from the power plant 80 by the transport machine 2b.
  • the heat medium that has been heat exchanged with the natural gas is introduced into the second heat exchanger 41 and is subjected to heat exchange with lower temperature carbon dioxide gas.
  • the heat-exchanged carbon dioxide gas is discharged from the second heat exchanger 41 and sent to the CO2 gas injection section 75, and is injected into the collection point 90 via the injection well 76.
  • the heat exchange unit 5 includes a first heat exchanger 50 that exchanges heat between the heat medium and carbon dioxide gas, a second heat exchanger 51 that exchanges heat between the heat medium and natural gas, and a pump 52 that sends the heat medium discharged from the second heat exchanger 51 to the first heat exchanger 50.
  • the carbon dioxide gas compressed in the CO2 gas compression section 83 is sent to the first heat exchanger 50, and is heat exchanged with the heat medium introduced into the first heat exchanger 50.
  • the carbon dioxide gas, which has been heat exchanged with the heat medium and has a lower temperature, is accommodated in the pressure vessel 3b of the transport machine 2b via a delivery pipe.
  • the heat medium that has been exchanged with the carbon dioxide gas is sent to the second heat exchanger 51 .
  • the second heat exchanger 51 is supplied with natural gas transported from the extraction facility 70 by the transport machine 2a.
  • the heat medium that has exchanged heat with the carbon dioxide gas is introduced into the second heat exchanger 51 and is exchanged heat with lower temperature natural gas.
  • the heat-exchanged natural gas is discharged from the second heat exchanger 51 and sent to the gas turbine 81 .
  • the natural gas and carbon dioxide gas may be further cooled according to the transport temperature after the heat exchange between them.
  • heat exchange between the natural gas and the carbon dioxide gas may be performed directly, without the use of a heat transfer medium, via a heat transfer medium such as metal.
  • the heat exchange section 4 exchanges heat between the natural gas extracted at the extraction facility 70 and the carbon dioxide gas transported from the power plant 80, so that the natural gas is cooled by the lower temperature carbon dioxide gas. This makes it possible to cool the natural gas without installing cooling equipment that requires a certain amount of energy supply, thereby significantly reducing production costs and improving the transport efficiency of the natural gas.
  • the heat exchange unit 5 exchanges heat between the carbon dioxide gas generated at the power plant 80 and the natural gas transported from the collection facility 70, the carbon dioxide gas is cooled by the lower temperature natural gas, and the carbon dioxide gas can be cooled without installing cooling equipment that requires a certain amount of energy supply, making the transportation of carbon dioxide gas more efficient and less costly.
  • the heat exchange units 4 and 5 may be installed in the extraction facility 70 and the power plant 80, respectively, or may be installed in the transport machines 2a and 2b.
  • the heat exchange unit 4 installed in the transport machine 2a can also be used as a heat exchange unit in the extraction facility 70 and the power plant 80.
  • the carbon dioxide gas stored in the pressure vessel 3a is sent to the heat exchanger 4 in the transport machine 2a and heat-exchanged with the natural gas collected in the collection facility 70, and then sent to the CO2 gas injection section 75 via the connection section 61.
  • the natural gas compressed through the natural gas compression section 74 is sent to the heat exchanger 4 in the transport machine 2a via the connection section 60 and heat-exchanged with the carbon dioxide gas transported from the power plant 80 by the transport machine 2a, and then stored in the pressure vessel 3a, which has been emptied by discharging the carbon dioxide gas.
  • the power plant 80 as shown in Fig.
  • the natural gas stored in the pressure vessel 3a is sent to the heat exchanger 4 in the transport machine 2a, where it is heat exchanged with the carbon dioxide gas generated in the power plant 80, and then sent to the gas turbine 81 via the connection part 62.
  • the carbon dioxide gas compressed through the CO2 gas compression part 83 is sent to the heat exchanger 4 in the transport machine 2a via the connection part 63, where it is heat exchanged with the natural gas transported from the extraction facility 70 by the transport machine 2a, and then stored in the pressure vessel 3a, which has been emptied by discharging the natural gas.
  • the natural gas and carbon dioxide gas may be further cooled according to the transport temperature after the heat exchange between them.
  • the gas circulation system 1 includes an expander 6 between the transport machine 2b, which transports carbon dioxide gas generated at the power plant 80 to the collection facility 70, and the heat exchange unit 4, and an expander 7 between the transport machine 2a, which transports natural gas collected at the collection facility 70 to the power plant 80, and the heat exchange unit 5.
  • the natural gas collected at the collection facility 70 is compressed in the natural gas compression section 74, becoming a higher temperature gas and being introduced into the heat exchange section 4, and at the same time, the carbon dioxide gas transported from the power plant 80 is depressurized by the expander 6, becoming a lower temperature gas (Joule-Thomson effect), and being introduced into the heat exchange section 4.
  • the pressure energy of the compressed carbon dioxide gas is converted into rotational energy when the carbon dioxide gas is decompressed. This rotational energy is utilized to generate electricity in a generator (not shown).
  • the carbon dioxide gas generated in the power plant 80 is compressed in the CO2 gas compression section 83, becoming a higher temperature gas and being introduced into the heat exchange section 5, and the natural gas transported from the extraction facility 70 is decompressed by the expander 7, becoming a lower temperature gas (Joule-Thomson effect), and being introduced into the heat exchange section 5.
  • the expander 7 similarly to the expander 6, the pressure energy of the compressed natural gas is converted into rotational energy when the natural gas is decompressed. This rotational energy is utilized to generate electricity in a generator (not shown).
  • expansion devices 6 and 7 may be expansion valves that simply reduce the temperature by reducing the pressure.
  • the natural gas passes through a natural gas compression section 74 and is supplied to the heat exchange section 4 at 70 MPa and 60°C.
  • the natural gas introduced into the heat exchange section 4 is heat exchanged with carbon dioxide gas transported from the power plant 80 by the transport machine 2b, and is cooled to 70 MPa and 40°C. It is further cooled in a cooler (not shown) to 70 MPa and -3°C, stored in the pressure vessel 3a, and transported to the power plant 80 by the transport machine 2a.
  • carbon dioxide gas transported from the power plant 80 by the transport machine 2b at 30 MPa and 33°C passes through an expansion valve (expander 6) to be heated to 10 MPa and 25°C, and is supplied to the heat exchange section 4.
  • the carbon dioxide gas introduced into the heat exchange section 4 is heat exchanged with natural gas to be heated to 10 MPa and 38°C, and is supplied to the CO2 gas injection section 75.
  • the carbon dioxide gas is supplied to the heat exchanger 5 at 30 MPa and 72°C through the CO2 gas compressor 83.
  • the carbon dioxide gas introduced into the heat exchanger 5 is heat exchanged with the natural gas transported from the extraction facility 70 by the transport machine 2a to be heated to 30 MPa and 33°C, stored in the pressure vessel 3b, and then transported to the extraction facility 70 by the transport machine 2b.
  • the natural gas transported from the extraction facility 70 by the transport machine 2a at 70 MPa and -3°C is passed through an expansion valve (expander 7) to be heated to 10 MPa and -30°C, and is supplied to the heat exchanger 5.
  • the natural gas introduced into the heat exchanger 5 is heat exchanged with carbon dioxide gas to be heated to 10 MPa and 27°C, and is supplied to the gas turbine 81.
  • the efficiency of heat exchange can be improved by the temperature drop that accompanies the reduction in pressure.
  • the pressure energy of the compressed natural gas and carbon dioxide gas during the reduction in pressure can be used to obtain power for power generation. This makes it possible to generate power and supply it to various facilities, thereby reducing production costs.
  • the expanders 6 and 7 may be installed together with the heat exchangers 4 and 5 in the extraction facility 70 and the power plant 80, respectively, or may be installed in the transport machines 2a and 2b.
  • the natural gas compression unit 74 and the CO2 gas compression unit 83 may not be installed in the extraction facility 70 and the power plant 80, but may be installed in the transport machines 2a and 2b together with the heat exchange units 4 and 5 and the expanders 6 and 7.
  • the gas compression unit, heat exchange unit 4, and expander 6 installed in the transport machine 2a can also be used in combination as the gas compression unit, heat exchange unit, and expander in the extraction facility 70 and the power plant 80.
  • the carbon dioxide gas stored in the pressure vessel 3a is sent to the expander 6 in the transport machine 2a to be decompressed, then introduced into the heat exchanger 4, where it is heat exchanged with the natural gas collected in the collection facility 70, and sent to the CO2 gas injection section 75 via the connection section 61.
  • the natural gas refined through the natural gas refining section 73 is sent to the gas compression section 8 in the transport machine 2a via the connection section 60 to be pressurized, then introduced into the heat exchanger 4, where it is heat exchanged with the carbon dioxide gas transported from the power plant 80, and stored in the pressure vessel 3a that has been emptied after discharging the carbon dioxide gas.
  • the power plant 80 as shown in Fig.
  • the natural gas stored in the pressure vessel 3a is sent to the expander 6 in the transport machine 2a to be decompressed, then introduced into the heat exchanger 4, where it is heat exchanged with the carbon dioxide gas generated in the power plant 80, and sent to the gas turbine 81 via the connection part 62.
  • the carbon dioxide gas recovered via the CO2 gas recovery part 82 is sent to the gas compression part 8 in the transport machine 2a via the connection part 63 to be pressurized, then introduced into the heat exchanger 4, where it is heat exchanged with the natural gas transported from the extraction facility 70, and stored in the pressure vessel 3a, which has been emptied after the natural gas has been discharged.
  • the gas circulation system 1 includes a heat exchange unit 4 that performs heat exchange between the natural gas collected by the collection facility 70 and the carbon dioxide gas transported from the power plant 80 by the transport machine 2b, and a heat exchange unit 5 that performs heat exchange between the carbon dioxide gas generated at the power plant 80 and the natural gas transported from the collection facility 70 by the transport machine 2a.
  • the heat exchange unit 4 includes an evaporator 43 as the evaporation means for performing heat exchange between a working fluid consisting of a low boiling point medium and natural gas, and evaporating the working fluid to obtain a gas-phase working fluid, a turbine 44 as the power conversion means that is operated by receiving the gas-phase working fluid and converts the thermal energy contained in the working fluid into power, a condenser 45 as the condensation means that condenses the working fluid into a liquid phase by performing heat exchange between the gas-phase working fluid discharged from the turbine 44 and carbon dioxide gas, and a pump 46 that sends the liquid-phase working fluid discharged from the condenser 45 to the evaporator 43.
  • the evaporator 43, the turbine 44, the condenser 45 and the pump 46 are well-known devices similar to those used in a general power cycle, and therefore a description thereof will be omitted.
  • the natural gas collected from the collection point 90 is compressed through the natural gas compression section 74 and then sent to the evaporator 43, where it is heat exchanged with the liquid-phase working fluid introduced into the evaporator 43.
  • the natural gas, which has been heat exchanged with the liquid-phase working fluid and has a lower temperature, is stored in the pressure vessel 3a of the transportation machine 2a through a delivery pipe.
  • at least a portion of the liquid-phase working fluid that has been heat exchanged with the natural gas is converted to a gas phase and sent to the turbine 44 .
  • the turbine 44 is rotated by the gas-phase working fluid supplied from the evaporator 43, and generates rotational kinetic energy.
  • the generator 47 converts this rotational kinetic energy into electric power, thereby generating electricity.
  • the gas-phase working fluid that has passed through the turbine 44 is supplied to a condenser 45 .
  • the condenser 45 is supplied with carbon dioxide gas transported from the power plant 80 by the transport machine 2b.
  • the gas-phase working fluid discharged from the turbine 44 is introduced into the condenser 45 and undergoes heat exchange with the lower temperature carbon dioxide gas, thereby becoming a liquid-phase working fluid.
  • the heat-exchanged carbon dioxide gas is discharged from the condenser 45 and sent to a CO2 gas injection section 75, and is injected into a collection point 90 via an injection well 76.
  • the heat exchange unit 5 includes an evaporator 53 as the evaporation means for performing heat exchange between a working fluid consisting of a low boiling point medium and carbon dioxide gas, evaporating the working fluid to obtain a gas-phase working fluid, a turbine 54 as the power conversion means which is operated by receiving the gas-phase working fluid and converts the thermal energy contained in the working fluid into power, a condenser 55 as the condensation means which condenses the gas-phase working fluid discharged from the turbine 54 into liquid phase by heat exchange between the gas-phase working fluid and natural gas, and a pump 56 which sends the liquid-phase working fluid discharged from the condenser 55 to the evaporator 53.
  • a working fluid consisting of a low boiling point medium and carbon dioxide gas
  • a turbine 54 as the power conversion means which is operated by receiving the gas-phase working fluid and converts the thermal energy contained in the working fluid into power
  • a condenser 55 as the condensation means which condenses the gas-phase working fluid discharged from the turbine 54 into liquid phase
  • the carbon dioxide gas compressed in the CO2 gas compression unit 83 is sent to the evaporator 53 and is heat exchanged with the liquid-phase working fluid introduced into the evaporator 53.
  • the carbon dioxide gas which has been heat exchanged with the liquid-phase working fluid and has a lower temperature, is accommodated in the pressure vessel 3b of the transport machine 2b via a delivery pipe.
  • at least a part of the working fluid that has exchanged heat with the carbon dioxide gas is turned into a gas phase and sent to the turbine 54 .
  • the turbine 54 is rotated by the gas-phase working fluid supplied from the evaporator 53, and generates rotational kinetic energy.
  • the generator 57 converts this rotational kinetic energy into electric power, thereby generating electricity.
  • the gas-phase working fluid that has passed through the turbine 54 is supplied to a condenser 55 .
  • the condenser 55 is supplied with natural gas transported from the extraction facility 70 by the transport machine 2a.
  • the gaseous working fluid leaving the turbine 54 is introduced into the condenser 55 where it is subjected to heat exchange with lower temperature natural gas, thereby becoming a liquid-phase working fluid.
  • the heat-exchanged natural gas is discharged from the condenser 55 and sent to a gas turbine 81 .
  • the heat exchange units 4 and 5 according to this embodiment can be used in combination with the expanders 6 and 7 according to the third embodiment described above. By combining the expanders 6 and 7, more power can be extracted and electricity can be generated, which is expected to further reduce production costs.
  • the gas circulation system 1 exchanges heat between the working fluid and natural gas or carbon dioxide gas, and has a turbine 44 driven by gas-phase working fluid between the evaporator 43 and the condenser 45. Therefore, by using the flow of the gas-phase working fluid to generate power using the power obtained by the turbine 44, it is possible to supply electricity to the collection facility 70 and the transport machines 2a and 2b, etc., thereby reducing production costs.
  • the natural gas generated at the collection facility and the carbon dioxide gas generated at the power plant are simply transported by transport machinery to the power plant and the collection facility, respectively.
  • the system can also be configured to produce hydrogen using the natural gas generated at the collection facility and the carbon dioxide gas generated at the power plant.
  • the description of configurations that overlap with the above-described embodiments will be omitted.
  • the gas circulation system 1 includes a heat exchange unit 100 that performs heat exchange between the natural gas collected by the collection facility 70 and seawater taken from the sea in the collection facility 70, an evaporation unit 110 that introduces the seawater discharged from the heat exchange unit 100 into a predetermined evaporation space that has been decompressed to a pressure lower than the saturated vapor pressure of the seawater to perform flash evaporation, a heat exchange unit 120 that performs heat exchange between the water vapor discharged from the evaporation unit 110 and carbon dioxide gas transported from the power plant 80 by the transport machine 2b, and a hydrogen production unit 130 that produces hydrogen gas using the desalinated water discharged from the heat exchange unit 120.
  • a heat exchange unit 100 that performs heat exchange between the natural gas collected by the collection facility 70 and seawater taken from the sea in the collection facility 70
  • an evaporation unit 110 that introduces the seawater discharged from the heat exchange unit 100 into a predetermined evaporation space that has been decompressed to a pressure lower than the saturated vapor
  • the heat exchange section 100 exchanges heat between the natural gas extracted by the extraction facility 70 and seawater taken from the sea through an intake pipe 101, cooling the natural gas with the seawater while heating the seawater with the natural gas.
  • the cooled natural gas is stored in a pressure vessel 3a of a transportation machine 2a via a distribution pipe.
  • the natural gas may be compressed after being cooled in the heat exchange unit 100. That is, the natural gas compression unit 74 may be disposed between the heat exchange unit 100 and the transportation machine 2a.
  • the heated seawater is then sent to the evaporator section 110 .
  • the seawater introduced into the heat exchange section 100 is, for example, warm seawater from the ocean surface.
  • the seawater may be supplied to the heat exchange section 100 after air and the like contained in the seawater is removed by a deaeration device (not shown).
  • the evaporation section 110 has an evaporation space therein that communicates with the heat exchange section 120, and is equipped with a hollow reduced pressure vessel 111 in which this evaporation space is kept at a reduced pressure lower than the saturated vapor pressure, and an injection section 112 that is disposed within the reduced pressure vessel 111 and injects seawater introduced from the outside into the evaporation space of the reduced pressure vessel 111 in the form of a mist, water droplets, a water film, a water column, etc.
  • the evaporation section 110 obtains water vapor by flash evaporating the seawater injected from the injection section 112 in an evaporation space within the reduced pressure vessel 111 .
  • a pressure reduction exhaust device (not shown) is connected to the reduced pressure container 111 of the evaporation section 110, and the evaporation space in the reduced pressure container 111 is adjusted to a pressure lower than the saturated vapor pressure of water at the same temperature as the seawater to be evaporated in the reduced pressure container 111, and the temperature at which the water in the seawater changes from the liquid phase to the gas phase (evaporates) in the reduced pressure container 111 is maintained lower than the temperature at atmospheric pressure.
  • a portion of the seawater introduced into the reduced pressure vessel 111 changes from liquid phase to gas phase and is desalinated.
  • the heat exchange section 120 directly or indirectly condenses the water vapor discharged from the evaporator section 110 with carbon dioxide gas transported from the power plant 80 by the transport machine 2b, while directly or indirectly heating the carbon dioxide gas transported from the power plant 80 with the water vapor discharged from the evaporator section 110.
  • the heated carbon dioxide gas is discharged from the heat exchange section 120 and sent to the CO2 gas injection section 75, and is injected into the collection site 90 via the injection well 76.
  • the condensed water fresh water is discharged from the heat exchange section 120 and sent to the hydrogen production section 130 .
  • the hydrogen production unit 130 includes a confluence unit 131 where the water discharged from the heat exchange unit 120 is temporarily stored, an electrolysis unit 132 that electrolyzes water to obtain hydrogen, a first gas-liquid separator 133 that separates water from the hydrogen gas generated in the electrolysis unit 132, a hydrogen gas recovery unit 134 that recovers the hydrogen gas discharged from the first gas-liquid separator 133, and a second gas-liquid separator 135 that separates water from the oxygen gas generated in the electrolysis unit 132.
  • the electrolysis unit 132 can be a known PEM (Polymer Electrolyte Membrane) type water electrolysis hydrogen production device, so details will be omitted, but it can be a series-arranged multiple cells in which a proton-conductive polymer membrane such as a perfluorosulfonic acid-based polymer electrolyte membrane or a fluorine-based polymer electrolyte membrane is bonded to both sides with iridium oxide or platinum-based metal as an electrode catalyst. Hydrogen gas is generated from the electrode catalyst that serves as the cathode, and oxygen gas is generated from the electrode catalyst that serves as the anode.
  • PEM Polymer Electrolyte Membrane
  • the hydrogen gas discharged from the electrolysis section 132 is sent to the first gas-liquid separator 133 .
  • the first gas-liquid separator 133 separates the hydrogen gas discharged from the electrolysis section 132 into hydrogen gas and water, and the separated hydrogen gas is sent to the hydrogen gas recovery section 134, while the separated water is returned to the circulation line and sent to the junction section 131, where it is mixed with the water supplied from the heat exchange section 120.
  • the oxygen gas discharged from the electrolysis section 132 is sent to the second gas-liquid separator 135 .
  • the second gas-liquid separator 135 separates the oxygen gas discharged from the electrolysis unit 132 into oxygen gas and water, and the separated oxygen gas is recovered in an oxygen gas recovery unit (not shown) or released into the atmosphere.
  • the separated water is returned to the circulation line again and sent to the junction unit 131, where it is mixed with the water supplied from the heat exchange unit 120.
  • the hydrogen production section 130 may also include a heat exchanger, a non-regenerative polisher, a final filter, etc., not shown, between the second gas-liquid separator 135 and the junction section 131.
  • the gas circulation system 1 also includes a heat exchanger 140 in the power plant 80 that exchanges heat between carbon dioxide gas discharged from the power plant 80 and seawater taken from the sea, an evaporation unit 110 that introduces the seawater discharged from the heat exchanger 140 into a predetermined evaporation space that has been decompressed to a pressure lower than the saturated vapor pressure of the seawater to perform flash evaporation, a heat exchanger 150 that exchanges heat between the water vapor discharged from the evaporation unit 110 and natural gas transported from the extraction facility 70 by the transport machine 2a, and a hydrogen production unit 130 that produces hydrogen gas using the desalinated water discharged from the heat exchanger 150.
  • a heat exchanger 140 in the power plant 80 that exchanges heat between carbon dioxide gas discharged from the power plant 80 and seawater taken from the sea
  • an evaporation unit 110 that introduces the seawater discharged from the heat exchanger 140 into a predetermined evaporation space that has been decompressed to a pressure lower than the saturated vapor pressure
  • the heat exchange section 140 directly or indirectly cools the carbon dioxide gas discharged from the power plant 80 with seawater taken from the sea through a water intake pipe 141, while directly or indirectly heating the seawater taken from the sea with the carbon dioxide gas discharged from the power plant 80.
  • the cooled carbon dioxide gas is stored in the pressure vessel 3b of the transport machine 2b via a delivery pipe.
  • the carbon dioxide gas may be compressed after being cooled in the heat exchanger 140. That is, the CO2 gas compressor 83 may be disposed between the heat exchanger 140 and the transport machine 2b.
  • the heated seawater is then sent to the evaporator section 110 .
  • the heat exchange section 150 directly or indirectly condenses the water vapor discharged from the evaporation section 110 with the natural gas transported from the collection facility 70 by the transport machine 2a, while directly or indirectly heating the natural gas transported from the collection facility 70 with the water vapor discharged from the evaporation section 110.
  • the heated natural gas exits the heat exchange section 150 and is sent to the gas turbine 81 .
  • the condensed water (fresh water) is discharged from the heat exchange section 150 and sent to the hydrogen production section 130 .
  • the system is equipped with an evaporation section 110 that desalinates seawater using thermal energy from natural gas and carbon dioxide gas, and a hydrogen production section 130 that produces hydrogen gas from fresh water, so the produced hydrogen gas can be used as fuel and can be used as an energy source for cooling pressure vessels 3a, 3b that contain natural gas or carbon dioxide gas during transportation by transport machines 2a, 2b.
  • the hydrogen gas may be converted into electrical energy at the extraction facility 70 or power plant 80 and loaded onto the transport machines 2a and 2b, or may be loaded into the transport machines 2a and 2b in a gaseous state together with a fuel cell.
  • the energy extracted from the hydrogen gas can be used for cooling the pressure vessels 3a and 3b, etc.
  • natural gas and carbon dioxide gas are directly supplied and received between the transport machines 2a, 2b and the collection facility 70 or power plant 80, but they may be supplied and received between the transport machines 2a, 2b and the collection facility 70 or power plant 80 via storage tanks for various gases.
  • a ship or barge equipped with a storage tank for natural gas or carbon dioxide gas may be moored at sea between the heat exchange units 4, 5 and the transport machines 2a, 2b, and natural gas and carbon dioxide gas may be supplied and received between the heat exchange units 4, 5 and the transport machines 2a, 2b via the storage tank. This allows natural gas and carbon dioxide gas to be continuously and stably supplied and received.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Provided is a gas circulation system in which carbon dioxide gas discharged in a power station or an industrial plant, etc., is utilized for collection of natural gas without being released into the atmosphere, and in which there is no particular need for, inter alia, a liquefaction equipment for natural gas and/or carbon dioxide gas. The gas circulation system 1 is provided with: a transportation machine 2a for transporting, from a collection facility 70 for collecting natural gas at a collection site 90 to a power station 80 at which the natural gas is utilized, the natural gas collected by the collection facility 70; and a transportation machine 2b for transporting, from the power station 80 to the collection facility 70 or a carbon-dioxide-utilizing facility, carbon dioxide gas discharged in the course of power generation at the power station 80. The transportation machine 2a transports the natural gas in a compressed state from the collection facility 70 to the power station 80. The transportation machine 2b transports the carbon dioxide gas in a compressed state from the power station 80 to the collection facility 70 or the carbon-dioxide-utilizing facility. The carbon dioxide gas transported by the transportation machine 2b is supplied as supply gas to the carbon-dioxide-utilizing facility or the collection site 90 at which the collection facility 70 carries out collection.

Description

ガス循環システム及び輸送機械Gas circulation systems and transport machinery
 本発明は、発電所や産業プラント等にて排出される二酸化炭素ガスの大気中への放出を抑えるとともに、天然ガスや二酸化炭素ガスの液化設備等を特に必要とせずに輸送を行えるガス循環システム及び輸送機械に関する。 The present invention relates to a gas circulation system and transport machinery that can suppress the release of carbon dioxide gas into the atmosphere from power plants, industrial plants, etc., and can transport the gas without the need for special facilities for liquefying natural gas or carbon dioxide gas.
 火力発電所では、地中に埋蔵された天然ガスを採取して液化した液化天然ガス(LNG)等を燃料として燃焼器で燃焼させてガスを生成させ、この燃焼ガスでタービンを駆動して発電を行う。その過程において、火力発電所では、大量の二酸化炭素ガスを含む排ガスを排出する。この排ガスに含まれる二酸化炭素ガスは、排ガスから分離された後、大気中に放出されている。
 また、産業プラントにおいても、製品製造過程にて天然ガスを利用し、その結果として二酸化炭素ガスが放出されている。
In thermal power plants, natural gas buried underground is extracted and liquefied to produce liquefied natural gas (LNG) and other fuels, which are burned in a combustor to generate gas, which is then used to drive a turbine to generate electricity. In the process, thermal power plants emit exhaust gases containing large amounts of carbon dioxide gas. The carbon dioxide gas contained in the exhaust gases is separated from the exhaust gases and then released into the atmosphere.
Industrial plants also use natural gas in the manufacturing process, resulting in the release of carbon dioxide gas.
 しかし、二酸化炭素ガスが地球温暖化の原因物質であるとの懸念から、近年、大気中への二酸化炭素ガスの放出量を低減する試みが各分野にてなされおり、世界的にも二酸化炭素ガスの排出を抑制する動きが活発化している。 However, due to concerns that carbon dioxide gas is a cause of global warming, efforts have been made in various fields in recent years to reduce the amount of carbon dioxide gas released into the atmosphere, and efforts to curb carbon dioxide gas emissions are becoming more active worldwide.
 このような状況の中、海底下又は地下に存在するメタンハイドレートから得られたメタンガスを燃料として利用するシステムで、メタンガスの燃焼で生じた二酸化炭素ガスをメタンハイドレート層に注入し、二酸化炭素ガスハイドレートとして固定化することで、二酸化炭素の大気中への排出を抑制可能とするものが提案されている(特許文献1参照)。 In light of this situation, a system has been proposed that uses methane gas obtained from methane hydrates present under the seabed or underground as fuel, in which carbon dioxide gas produced by the combustion of methane gas is injected into the methane hydrate layer and immobilized as carbon dioxide gas hydrate, thereby making it possible to reduce carbon dioxide emissions into the atmosphere (see Patent Document 1).
特開2000-61293号公報JP 2000-61293 A
 特許文献1に開示されているメタンハイドレートを燃料として利用するシステムは、採掘地点から回収したメタンガスを採掘基地で液化後にメタンガス輸送船で熱利用システムに運搬するとともに、熱利用システムで発生した二酸化炭素ガスを液化した後、二酸化炭素ガス用輸送船で採掘基地に運搬する。採掘基地に運搬された二酸化炭素ガスは、ボイラで高温高圧とされてメタンハイドレート層に送られ、メタンハイドレートを水とメタンガスとに分解し、このうち、メタンガスのみが回収される。回収されたメタンガスは、再度メタンガス輸送船にて熱利用システムに運搬され、この一連の流れが繰り返される。
 このように、当該システムは、二酸化炭素ガスをメタンハイドレートを分解する熱源としてメタンハイドレート層に送り込み、メタンハイドレートの分解により生成した水と二酸化炭素ガスとを反応させて二酸化炭素ガスハイドレートとしてメタンハイドレート層に固定化することで、二酸化炭素の大気放出を減らし、地球温暖化の進行を抑制するものである。
In the system using methane hydrate as fuel disclosed in Patent Document 1, methane gas recovered from a mining site is liquefied at a mining base and then transported to a heat utilization system by a methane gas transport ship, and carbon dioxide gas generated in the heat utilization system is liquefied and then transported to the mining base by a carbon dioxide gas transport ship. The carbon dioxide gas transported to the mining base is heated to high temperature and pressure in a boiler and sent to a methane hydrate layer, where methane hydrate is decomposed into water and methane gas, of which only the methane gas is recovered. The recovered methane gas is transported again to the heat utilization system by a methane gas transport ship, and this series of steps is repeated.
In this way, this system sends carbon dioxide gas into the methane hydrate layer as a heat source for decomposing the methane hydrate, and causes the water produced by the decomposition of the methane hydrate to react with the carbon dioxide gas, thereby fixing it in the methane hydrate layer as carbon dioxide gas hydrate, thereby reducing the release of carbon dioxide into the atmosphere and curbing the progress of global warming.
 ところで、火力発電所等への天然ガスの輸送にあたっては、天然ガスを液化した液化天然ガスとして輸送することが一般的であった。天然ガスを液化すると、その密度が大きく増加し、大量の天然ガスを長距離にわたって比較的僅かの船舶数で輸送することができる。
 その一方で、採掘基地における天然ガスの液化設備の設置や火力発電所における液化天然ガスの再ガス化設備の設置が必要となり、莫大な費用がかかってしまうという課題がある。
Incidentally, natural gas has generally been liquefied and transported as liquefied natural gas when it is transported to thermal power plants, etc. When natural gas is liquefied, its density increases significantly, making it possible to transport large amounts of natural gas over long distances using a relatively small number of ships.
On the other hand, there is a problem in that it would require the installation of natural gas liquefaction facilities at mining bases and liquefied natural gas regasification facilities at thermal power plants, which would incur enormous costs.
 また、上記特許文献1に開示のシステムでは、天然ガス等の液化設備等に加え、二酸化炭素ガスの液化設備や二酸化炭素ガスを高温高圧とするガス化設備の設置が必要となり、設備の維持コストも考慮すると、現実的ではない。 In addition, the system disclosed in Patent Document 1 requires the installation of equipment for liquefying natural gas, etc., as well as equipment for liquefying carbon dioxide gas and equipment for gasifying carbon dioxide gas at high temperature and pressure, and considering the maintenance costs of the equipment, this is not realistic.
 本発明は、上記課題を解消するためになされたものであり、発電所にて排出される二酸化炭素ガスの大気中への放出を抑えるとともに、天然ガスや二酸化炭素ガスの液化設備等を特に必要とせずに輸送を行えるガス循環システム及び本システムに使用される輸送機械を提供することを目的とする。 The present invention has been made to solve the above problems, and aims to provide a gas circulation system that can reduce the release of carbon dioxide gas emitted at power plants into the atmosphere and transport natural gas or carbon dioxide gas without the need for liquefaction equipment, and transport machinery for use in this system.
 本発明に係るガス循環システムは、採取地点で天然ガスを採取する採取施設から、天然ガスを利用する天然ガス利用施設まで、前記採取施設により採取された前記天然ガスを輸送する第1の輸送手段と、前記天然ガス利用施設の利用過程において排出される二酸化炭素ガスを前記天然ガス利用施設から前記採取施設又は二酸化炭素利用施設まで輸送する第2の輸送手段とを備え、前記第1の輸送手段が、前記天然ガスを圧縮した状態で前記採取施設から前記天然ガス利用施設まで輸送し、前記第2の輸送手段が、前記二酸化炭素ガスを圧縮した状態で前記天然ガス利用施設から前記採取施設又は前記二酸化炭素利用施設まで輸送し、前記採取施設による前記採取地点、又は前記二酸化炭素利用施設への供給用ガスとして、前記第2の輸送手段にて輸送された前記二酸化炭素ガスを供給するものである。 The gas circulation system according to the present invention comprises a first transport means for transporting the natural gas collected by a collection facility from the collection facility where the natural gas is collected at a collection point to a natural gas utilization facility that utilizes the natural gas, and a second transport means for transporting carbon dioxide gas emitted during the utilization process of the natural gas utilization facility from the natural gas utilization facility to the collection facility or the carbon dioxide utilization facility, the first transport means transporting the natural gas in a compressed state from the collection facility to the natural gas utilization facility, the second transport means transporting the carbon dioxide gas in a compressed state from the natural gas utilization facility to the collection facility or the carbon dioxide utilization facility, and supplying the carbon dioxide gas transported by the second transport means as a supply gas by the collection facility to the collection point or the carbon dioxide utilization facility.
 このように本発明においては、第1の輸送手段が天然ガスを採取施設から天然ガス利用施設まで輸送するとともに、第2の輸送手段が二酸化炭素ガスを天然ガス利用施設から採取施設まで輸送し、第2の輸送手段にて輸送された二酸化炭素ガスを採取施設による採取地点、又は二酸化炭素利用施設への供給用ガスとして供給することから、天然ガス利用施設から排出された二酸化炭素ガスを採取施設又は二酸化炭素利用施設で再利用できることとなり、天然ガス利用施設で排出される二酸化炭素ガスを大気中に放出することなく、地球温暖化の抑制に資することができる。 In this way, in the present invention, the first transportation means transports natural gas from the extraction facility to the natural gas utilization facility, and the second transportation means transports carbon dioxide gas from the natural gas utilization facility to the extraction facility, and the carbon dioxide gas transported by the second transportation means is supplied to the extraction point by the extraction facility or as supply gas to the carbon dioxide utilization facility. This means that the carbon dioxide gas discharged from the natural gas utilization facility can be reused at the extraction facility or carbon dioxide utilization facility, and carbon dioxide gas discharged from the natural gas utilization facility is not released into the atmosphere, thereby contributing to the prevention of global warming.
 また、天然ガス利用施設から輸送された二酸化炭素ガスを採取地点に供給することから、採取地点が中小ガス田や放棄されたガス田、あるいは油田である場合には、天然ガスや原油の採取にともない減少する採取地点の内部圧力を二酸化炭素ガスで補うことができることとなり、天然ガスや原油の生産能力を改善又は再生することが可能となり、天然ガス等を十分に回収することができる。 In addition, because carbon dioxide gas transported from the natural gas utilization facility is supplied to the extraction point, if the extraction point is a small or medium-sized gas field, an abandoned gas field, or an oil field, the internal pressure at the extraction point that decreases as natural gas or crude oil is extracted can be compensated for by carbon dioxide gas, making it possible to improve or regenerate the production capacity of natural gas or crude oil, and to fully recover natural gas, etc.
 さらに、輸送中の液体揺動対策が必要となるLNG輸送船などと比較して、天然ガスや二酸化炭素ガスを圧縮した超臨界状態又はガス状態で輸送することから、輸送手段の揺動対策が不要となり、造船設計等が容易となることに加え、輸送上の制約も小さくすることができる。 Furthermore, compared to LNG carriers, which require measures to prevent liquid swaying during transport, natural gas and carbon dioxide gas are transported in a compressed supercritical or gaseous state, so measures to prevent swaying of the transport means are not necessary, making shipbuilding design easier and reducing transport constraints.
 本発明に係るガス循環システムは、必要に応じて、前記第1の輸送手段が、前記天然ガスを超臨界状態で前記採取施設から前記天然ガス利用施設まで輸送し、前記第2の輸送手段が、前記二酸化炭素ガスを超臨界状態で前記天然ガス利用施設から前記採取施設又は前記二酸化炭素利用施設まで輸送するものである。 In the gas circulation system according to the present invention, the first transport means transports the natural gas in a supercritical state from the extraction facility to the natural gas utilization facility, and the second transport means transports the carbon dioxide gas in a supercritical state from the natural gas utilization facility to the extraction facility or the carbon dioxide utilization facility, as necessary.
 このように本発明においては、前記天然ガス及び前記二酸化炭素ガスを圧縮した超臨界状態で輸送することから、液化状態と同程度の密度とすることができ、液化状態に匹敵する輸送効率で前記天然ガス及び前記二酸化炭素ガスを輸送することができる。 In this way, in the present invention, the natural gas and carbon dioxide gas are transported in a compressed supercritical state, so that the density can be made the same as in a liquefied state, and the natural gas and carbon dioxide gas can be transported with a transport efficiency comparable to that of the liquefied state.
 本発明に係るガス循環システムは、必要に応じて、前記採取施設で採取された前記天然ガスと、前記天然ガス利用施設から前記第2の輸送手段で輸送された前記二酸化炭素ガスとの間で熱交換させる熱交換手段を備えるものである。 The gas circulation system according to the present invention is, as necessary, provided with a heat exchange means for exchanging heat between the natural gas extracted at the extraction facility and the carbon dioxide gas transported from the natural gas utilization facility by the second transport means.
 このように本発明においては、熱交換手段が、採取施設で採取された天然ガスと天然ガス利用施設から輸送された二酸化炭素ガスとの間で熱交換させることから、天然ガスは、より低温の二酸化炭素ガスによって冷却されることとなり、所定のエネルギー供給を要する冷却設備等を設置することなく、あるいは冷却設備にかかる負荷を小さくして、天然ガスを冷却することができ、生産コストを大幅に抑えるとともに、天然ガスの輸送効率を向上させることができる。 In this way, in the present invention, the heat exchange means exchanges heat between the natural gas extracted at the extraction facility and the carbon dioxide gas transported from the natural gas utilization facility, so that the natural gas is cooled by the lower temperature carbon dioxide gas. This makes it possible to cool the natural gas without installing cooling equipment that requires a certain amount of energy supply, or by reducing the load on the cooling equipment, thereby significantly reducing production costs and improving the efficiency of natural gas transportation.
 本発明に係るガス循環システムは、必要に応じて、前記熱交換手段が、作動流体と前記天然ガスとの間で熱交換させ、作動流体を蒸発させて気相の作動流体を得る蒸発手段と、気相の作動流体を導入されて作動し、作動流体の保有する熱エネルギーを動力に変換する動力変換手段と、前記動力変換手段から排出された気相の作動流体と前記二酸化炭素ガスとの間で熱交換させることで作動流体を凝縮させて液相とする凝縮手段とを備えるものである。 The gas circulation system according to the present invention is, as necessary, equipped with an evaporation means for performing heat exchange between the working fluid and the natural gas and evaporating the working fluid to obtain a gaseous working fluid, a power conversion means which is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power, and a condensation means for condensing the working fluid into a liquid phase by performing heat exchange between the gaseous working fluid discharged from the power conversion means and the carbon dioxide gas.
 このように本発明においては、作動流体と、天然ガス又は二酸化炭素ガスとの間で熱交換させるとともに、蒸発手段と凝縮手段との間に、気相の作動流体で駆動される動力変換手段を備えることから、気相の作動流体の流通を利用して動力変換手段により得られる動力で発電を行えば、採取施設や第1及び第2の輸送手段の設備等に電力を供給できることとなり、生産コストを抑えることができる。 In this way, in the present invention, heat is exchanged between the working fluid and natural gas or carbon dioxide gas, and a power conversion means driven by the gas phase working fluid is provided between the evaporation means and the condensation means. Therefore, by using the flow of the gas phase working fluid to generate power using the power obtained by the power conversion means, it is possible to supply electricity to the collection facility and the equipment of the first and second transportation means, etc., and production costs can be reduced.
 本発明に係るガス循環システムは、必要に応じて、前記天然ガス利用施設で生じた前記二酸化炭素ガスと、前記採取施設から前記第1の輸送手段で輸送された前記天然ガスとの間で熱交換させる熱交換手段を備えるものである。 The gas circulation system according to the present invention is provided, as necessary, with a heat exchange means for exchanging heat between the carbon dioxide gas generated in the natural gas utilization facility and the natural gas transported from the extraction facility by the first transport means.
 このように本発明においては、熱交換手段が、天然ガス利用施設で生じた二酸化炭素ガスと、採取施設から輸送された天然ガスとの間で熱交換させることから、二酸化炭素ガスは、より低温の天然ガスによって冷却されることとなり、所定のエネルギー供給を要する冷却設備等を設置することなく、あるいは冷却設備にかかる負荷を小さくして、二酸化炭素ガスを冷却することができ、二酸化炭素ガスの輸送を効率化、かつ、低コスト化できる。 In this way, in the present invention, the heat exchange means exchanges heat between the carbon dioxide gas generated at the natural gas utilization facility and the natural gas transported from the extraction facility, so that the carbon dioxide gas is cooled by the lower temperature natural gas. This makes it possible to cool the carbon dioxide gas without installing cooling equipment that requires a certain amount of energy supply, or by reducing the load on the cooling equipment, thereby making it possible to transport the carbon dioxide gas more efficient and at lower cost.
 本発明に係るガス循環システムは、必要に応じて、前記熱交換手段が、作動流体と前記二酸化炭素ガスとの間で熱交換させ、作動流体を蒸発させて気相の作動流体を得る蒸発手段と、気相の作動流体を導入されて作動し、作動流体の保有する熱エネルギーを動力に変換する動力変換手段と、前記動力変換手段から排出された気相の作動流体と前記天然ガスとの間で熱交換させることで凝縮させて液相とする凝縮手段とを備えるものである。 The gas circulation system according to the present invention is, as necessary, equipped with an evaporation means for performing heat exchange between the working fluid and the carbon dioxide gas and evaporating the working fluid to obtain a gaseous working fluid, a power conversion means which is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power, and a condensation means for performing heat exchange between the gaseous working fluid discharged from the power conversion means and the natural gas to condense it into a liquid phase.
 このように本発明においては、作動流体と、天然ガス又は二酸化炭素ガスとの間で熱交換させるとともに、蒸発手段と凝縮手段との間に、気相の作動流体で駆動される動力変換手段を備えることから、気相の作動流体の流通を利用して動力変換手段により得られる動力で発電を行えば、天然ガス利用施設や第1及び第2の輸送手段の設備等に電力を供給できることとなり、生産コストを抑えることができる。 In this way, in the present invention, heat is exchanged between the working fluid and natural gas or carbon dioxide gas, and a power conversion means driven by the gas-phase working fluid is provided between the evaporation means and the condensation means. Therefore, by generating electricity using the power obtained by the power conversion means by utilizing the flow of the gas-phase working fluid, it becomes possible to supply electricity to natural gas utilization facilities and the equipment of the first and second transportation means, and production costs can be reduced.
 本発明に係るガス循環システムは、必要に応じて、前記第1の輸送手段又は前記第2の輸送手段が、前記天然ガス及び/又は前記二酸化炭素ガスを少なくとも繊維強化プラスチックで形成される圧力容器に収容して輸送するものである。 In the gas circulation system according to the present invention, the first transport means or the second transport means transports the natural gas and/or the carbon dioxide gas in a pressure vessel formed of at least fiber-reinforced plastic, as necessary.
 このように本発明においては、少なくとも繊維強化プラスチックで形成される圧力容器に天然ガス及び/又は二酸化炭素ガスを収容して第1の輸送手段又は第2の輸送手段が輸送することから、ガスを従来のものより高圧で収容できることとなり、天然ガス、二酸化炭素ガスを従来の液化した天然ガスの輸送に匹敵するほど高い効率で輸送することができる。 In this way, in the present invention, natural gas and/or carbon dioxide gas is stored in a pressure vessel formed at least of fiber-reinforced plastic and transported by the first transport means or the second transport means, so that the gas can be stored at a higher pressure than conventionally, and natural gas and carbon dioxide gas can be transported with a high efficiency comparable to that of conventional liquefied natural gas transportation.
 また、こうした圧力容器は、従来の鉄製容器との比較において数分の1程度の重量であるため、輸送機械を大幅に軽量化できることとなり、消費燃料の削減、輸送時間の短縮、輸送距離の延長に貢献することができる。 In addition, these pressure vessels are a fraction of the weight of conventional steel vessels, which allows for significant weight reduction in transport equipment, contributing to reduced fuel consumption, shorter transport times, and longer transport distances.
 本発明に係る輸送機械は、採取施設で採取された天然ガスを圧縮した状態で前記採取施設から天然ガス利用施設まで輸送する、及び/又は、前記天然ガス利用施設の利用過程において排出される二酸化炭素ガスを圧縮した状態で前記天然ガス利用施設から前記採取施設又は二酸化炭素利用施設まで輸送するものである。 The transport machine of the present invention transports natural gas extracted at a extraction facility in a compressed state from the extraction facility to a natural gas utilization facility, and/or transports carbon dioxide gas emitted during the utilization process of the natural gas utilization facility in a compressed state from the natural gas utilization facility to the extraction facility or carbon dioxide utilization facility.
 本発明に係る輸送機械は、必要に応じて、前記採取施設で採取された前記天然ガスを超臨界状態で前記採取施設から前記天然ガス利用施設まで輸送する、及び/又は、前記天然ガス利用施設の利用過程において排出される前記二酸化炭素ガスを超臨界状態で前記天然ガス利用施設から前記採取施設又は前記二酸化炭素利用施設まで輸送するものである。 The transport machine according to the present invention transports the natural gas extracted at the extraction facility in a supercritical state from the extraction facility to the natural gas utilization facility, and/or transports the carbon dioxide gas emitted during the utilization process of the natural gas utilization facility in a supercritical state from the natural gas utilization facility to the extraction facility or the carbon dioxide utilization facility, as necessary.
 本発明に係る輸送機械は、必要に応じて、前記採取施設で採取された前記天然ガスと前記天然ガス利用施設から輸送された前記二酸化炭素ガスとの間で熱交換させる熱交換部を備えるものである。 The transport machine according to the present invention is provided with a heat exchange section for exchanging heat between the natural gas extracted at the extraction facility and the carbon dioxide gas transported from the natural gas utilization facility, as necessary.
 本発明に係る輸送機械は、必要に応じて、前記熱交換部が、作動流体と前記天然ガスとの間で熱交換させ、作動流体を蒸発させて気相の作動流体を得る蒸発器と、気相の作動流体を導入されて作動し、作動流体の保有する熱エネルギーを動力に変換するタービンと、前記タービンから排出された気相の作動流体と前記二酸化炭素ガスとの間で熱交換させることで作動流体を凝縮させて液相とする凝縮器とを備えるものである。 The transport machine according to the present invention is equipped, as necessary, with an evaporator in which the heat exchange section exchanges heat between the working fluid and the natural gas and evaporates the working fluid to obtain a gaseous working fluid, a turbine that is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power, and a condenser that condenses the working fluid into a liquid phase by exchanging heat between the gaseous working fluid discharged from the turbine and the carbon dioxide gas.
 本発明に係る輸送機械は、必要に応じて、前記天然ガス利用施設で生じた前記二酸化炭素ガスと前記採取施設から輸送された前記天然ガスとの間で熱交換させる熱交換部を備えるものである。 The transport machine according to the present invention is provided with a heat exchange section for exchanging heat between the carbon dioxide gas generated at the natural gas utilization facility and the natural gas transported from the extraction facility, as necessary.
 本発明に係る輸送機械は、必要に応じて、前記熱交換部が、作動流体と前記二酸化炭素ガスとの間で熱交換させ、作動流体を蒸発させて気相の作動流体を得る蒸発器と、気相の作動流体を導入されて作動し、作動流体の保有する熱エネルギーを動力に変換するタービンと、前記タービンから排出された気相の作動流体と前記天然ガスとの間で熱交換させることで凝縮させて液相とする凝縮器とを備えるものである。 The transport machine according to the present invention is equipped, as necessary, with an evaporator in which the heat exchange section exchanges heat between the working fluid and the carbon dioxide gas to evaporate the working fluid and obtain a gaseous working fluid, a turbine that is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power, and a condenser that exchanges heat between the gaseous working fluid discharged from the turbine and the natural gas to condense it into a liquid phase.
 本発明に係る輸送機械は、必要に応じて、前記天然ガス及び/又は前記二酸化炭素ガスを少なくとも繊維強化プラスチックで形成される圧力容器に収容して輸送するものである。 The transport machine according to the present invention transports the natural gas and/or carbon dioxide gas, as necessary, by storing them in a pressure vessel made of at least fiber-reinforced plastic.
本発明の第1の実施形態に係るガス循環システムの模式図である。1 is a schematic diagram of a gas circulation system according to a first embodiment of the present invention. 本発明の第1の実施形態に係るガス循環システムにおける採取施設の模式図である。FIG. 2 is a schematic diagram of a collection facility in the gas circulation system according to the first embodiment of the present invention. 本発明の第1の実施形態に係るガス循環システムにおける発電所の模式図である。1 is a schematic diagram of a power plant in a gas circulation system according to a first embodiment of the present invention. 本発明の第2の実施形態に係るガス循環システムの模式図である。FIG. 4 is a schematic diagram of a gas circulation system according to a second embodiment of the present invention. 本発明の第2の実施形態に係るガス循環システムにおける採取施設の模式図である。FIG. 5 is a schematic diagram of a collection facility in a gas circulation system according to a second embodiment of the present invention. 本発明の第2の実施形態に係るガス循環システムにおける発電所の模式図である。FIG. 5 is a schematic diagram of a power plant in a gas circulation system according to a second embodiment of the present invention. 本発明の第2の実施形態に係るガス循環システムにおける輸送機械の模式図である。FIG. 5 is a schematic diagram of a transport machine in a gas circulation system according to a second embodiment of the present invention. 本発明の第3の実施形態に係るガス循環システムの模式図である。FIG. 5 is a schematic diagram of a gas circulation system according to a third embodiment of the present invention. 本発明の第3の実施形態に係るガス循環システムにおける輸送機械の模式図である。FIG. 11 is a schematic diagram of a transport machine in a gas circulation system according to a third embodiment of the present invention. 本発明の第4の実施形態に係るガス循環システムにおける採取施設の模式図である。FIG. 13 is a schematic diagram of a collection facility in a gas circulation system according to a fourth embodiment of the present invention. 本発明の第4の実施形態に係るガス循環システムにおける発電所の模式図である。FIG. 11 is a schematic diagram of a power plant in a gas circulation system according to a fourth embodiment of the present invention. 本発明の第5の実施形態に係るガス循環システムにおける採取施設の模式図である。FIG. 13 is a schematic diagram of a collection facility in a gas circulation system according to a fifth embodiment of the present invention. 本発明の第5の実施形態に係るガス循環システムにおける発電所の模式図である。FIG. 13 is a schematic diagram of a power plant in a gas circulation system according to a fifth embodiment of the present invention.
(本発明の第1の実施形態)
 以下、本発明の第1の実施形態に係るガス循環システムについて、図1ないし図3を用いて説明する。本実施形態の全体を通して、同じ要素には同じ符号を付している。
(First embodiment of the present invention)
A gas circulation system according to a first embodiment of the present invention will be described below with reference to Figures 1 to 3. Throughout this embodiment, the same elements are designated by the same reference numerals.
 本実施形態に係るガス循環システム1は、未利用の中小ガス田や放棄されたガス田などの採取地点90で天然ガスを採取する採取施設70から、天然ガスを利用する天然ガス利用施設まで、採取施設70により採取された天然ガスを輸送する前記第1の輸送手段としての輸送機械2aと、天然ガス利用施設の利用過程において排出される二酸化炭素ガスを天然ガス利用施設から採取施設70又は二酸化炭素利用施設まで輸送する前記第2の輸送手段としての輸送機械2bとを備える。 The gas circulation system 1 according to this embodiment includes a transport machine 2a as the first transport means for transporting natural gas collected by a collection facility 70, which collects natural gas at a collection point 90 such as an unused small-to-medium-sized gas field or an abandoned gas field, to a natural gas utilization facility that utilizes the natural gas, and a transport machine 2b as the second transport means for transporting carbon dioxide gas emitted during the utilization process of the natural gas utilization facility from the natural gas utilization facility to the collection facility 70 or the carbon dioxide utilization facility.
 採取施設70は、採取地点としての油田で生じる随伴ガスやフレアガス中の天然ガスを採取する施設とすることもできる。
 また、採取施設70は、海上に設置されたものでも、陸上に設置されたものであってもよい。
The collection facility 70 may also be a facility for collecting natural gas from associated gas or flare gas generated in an oil field serving as a collection site.
Furthermore, the collection facility 70 may be installed either at sea or on land.
 天然ガス利用施設は、天然ガスを利用して発電する発電所80であり、その他、天然ガスを利用して二酸化炭素ガスを排出する産業プラント等であってもよい。以下では、天然ガス利用施設として、発電所80を例にとって説明する。
 なお、発電所80や後述するCOガス回収部82が陸上に建設できない場合には、船やはしけ上に設置し、こうした船等を海上に係留しておくこともできる。
The natural gas utilization facility is a power plant 80 that generates electricity using natural gas, or may be an industrial plant that uses natural gas and emits carbon dioxide gas. In the following, the power plant 80 will be described as an example of the natural gas utilization facility.
If the power plant 80 and the CO2 gas recovery unit 82 described below cannot be constructed on land, they can be installed on a ship or barge, and the ship or barge can be moored at sea.
 発電所80で生じた二酸化炭素ガスは、輸送機械2bにより、採取施設70の他、二酸化炭素利用施設としての他の採取施設に輸送されてもよい。
 他の採取施設は、採取施設70同様に、現に天然ガスを採取している施設であってもよいし、過去に天然ガスの採取施設として活用されていた施設であってもよい。
 輸送機械2bにより採取施設70又は他の採取施設に輸送された二酸化炭素ガスは、供給用ガスとして供給される。供給用ガスは、具体的には、採取施設70による採取地点90又は他の採取施設による採取地点への圧入用ガスや、他の採取施設による採取地点への地下貯蔵用ガスなどである。また、供給用ガスは、他の二酸化炭素利用施設で使用される産業用原料であってもよい。
The carbon dioxide gas generated at the power plant 80 may be transported by the transport machine 2b to the collection facility 70 or to other collection facilities serving as carbon dioxide utilization facilities.
The other extraction facilities, like the extraction facility 70, may be facilities that currently extract natural gas, or may be facilities that have been used as natural gas extraction facilities in the past.
The carbon dioxide gas transported by the transport machine 2b to the extraction facility 70 or another extraction facility is supplied as a supply gas. Specifically, the supply gas is gas for injection into the extraction site 90 by the extraction facility 70 or into an extraction site by another extraction facility, or gas for underground storage at an extraction site by another extraction facility. The supply gas may also be an industrial raw material used in another carbon dioxide utilization facility.
 輸送機械2aは、天然ガスを圧縮した状態で採取施設70から発電所80まで輸送し、輸送機械2bは、二酸化炭素ガスを圧縮した状態で発電所80から採取施設70まで輸送する。
 輸送機械2a、2bは、天然ガス及び二酸化炭素ガスを海上輸送とする場合、タンカー等の船舶とされる。また、輸送機械2a、2bは、船舶のほか、運搬車両や飛行機などであってもよい。
The transport machine 2a transports the natural gas in a compressed state from the extraction facility 70 to the power plant 80, and the transport machine 2b transports the carbon dioxide gas in a compressed state from the power plant 80 to the extraction facility 70.
When natural gas and carbon dioxide gas are transported by sea, the transport machines 2a and 2b are ships such as tankers. The transport machines 2a and 2b may be transport vehicles, airplanes, etc., in addition to ships.
 採取施設70は、主に、採取地点90から生産井71を介して天然ガスを採取する天然ガス採取部72と、採取した天然ガス中に含まれる酸性ガスや水分を除去する天然ガス精製部73と、採取された天然ガスを圧縮する天然ガス圧縮部74とを備える。
 また、採取施設70は、輸送機械2bにて発電所80から輸送された二酸化炭素ガスを圧入井76を介して採取地点90に圧入するCOガス圧入部75とを備える。
The extraction facility 70 mainly comprises a natural gas extraction unit 72 that extracts natural gas from the extraction site 90 through a production well 71, a natural gas refining unit 73 that removes acid gas and moisture contained in the extracted natural gas, and a natural gas compression unit 74 that compresses the extracted natural gas.
The collection facility 70 also includes a CO2 gas injection section 75 that injects carbon dioxide gas transported from the power plant 80 by the transport machine 2b into the collection site 90 via an injection well 76.
 天然ガス採取部72は、採取地点90内に到達した生産井71を介して、自圧又は汲上げポンプにより天然ガスを採取地点90から採取施設70へ汲み上げる。 The natural gas collection unit 72 pumps natural gas from the collection point 90 to the collection facility 70 using pressure or a pumping pump via the production well 71 that has reached the collection point 90.
 天然ガス採取部72で汲み上げられた天然ガスは、天然ガス精製部73に送られる。天然ガス精製部73へ送られた天然ガスは、二酸化炭素ガスや硫化水素等の酸性ガスや水分を除去される。酸性ガスや水分の除去装置については、従来公知のため、その詳細を省略する。 The natural gas pumped up by the natural gas collection section 72 is sent to the natural gas purification section 73. The natural gas sent to the natural gas purification section 73 has acidic gases such as carbon dioxide gas and hydrogen sulfide and moisture removed. The devices for removing acidic gas and moisture are well known in the art, so details thereof will be omitted.
 精製された天然ガスは、天然ガス圧縮部74にて所定の圧力まで圧縮され、この圧縮した天然ガスを配送管を通して輸送機械2aに積み込まれている空の圧力容器3aに収容される。
 なお、圧縮天然ガスは、採取施設70にて圧力容器3aに収容された後、輸送機械2aに積み込むようにしてもよい。
The refined natural gas is compressed to a predetermined pressure in the natural gas compression section 74, and the compressed natural gas is stored in an empty pressure vessel 3a loaded onto the transportation machine 2a through a distribution pipe.
The compressed natural gas may be stored in a pressure vessel 3a at the extraction facility 70 and then loaded onto the transport machine 2a.
 天然ガス圧縮部74にて圧縮された天然ガスは、輸送温度に応じて、適宜冷却され、又は適温に保たれる。 The natural gas compressed in the natural gas compression section 74 is cooled appropriately or kept at an appropriate temperature depending on the transport temperature.
 一方で、輸送機械2bにて発電所80から輸送され、圧力容器3bに収容された二酸化炭素ガスは、配送管を通して輸送機械2bからCOガス圧入部75に送られ、自圧又は圧入ポンプにより、圧入井76を介して採取地点90へ圧入される。 On the other hand, carbon dioxide gas transported from the power plant 80 by the transport machine 2b and stored in the pressure vessel 3b is sent from the transport machine 2b to the CO2 gas injection section 75 through a distribution pipe, and is injected into the collection point 90 through the injection well 76 by means of self-pressure or an injection pump.
 圧縮天然ガス及び圧縮二酸化炭素ガスを収容する圧力容器3a、3bを構成する材料としては、耐圧性、及び天然ガス中に含まれる腐食性不純物や二酸化炭素ガスに対して十分な耐腐食性を有するものであれば特に制限されないが、例えば、炭素繊維強化プラスチック(以下、CFRPとも称する)やガラス繊維強化プラスチックなどの繊維強化プラスチックが挙げられる。 The materials constituting the pressure vessels 3a, 3b that contain the compressed natural gas and compressed carbon dioxide gas are not particularly limited as long as they have sufficient pressure resistance and corrosion resistance against the corrosive impurities contained in natural gas and carbon dioxide gas, but examples include fiber-reinforced plastics such as carbon fiber reinforced plastic (hereinafter also referred to as CFRP) and glass fiber reinforced plastic.
 例えば、CFRP製容器は、CFRPのファイバー強度を利用した耐高圧設計によるコンパクト化が可能であり、例えば、設計圧力100MPaの300L容器であれば、外径560mm、長さ2865mmのものを使用することができる。これにより、CFRP製容器は、輸送機械2a、2bによる圧縮天然ガス及び圧縮二酸化炭素ガスの輸送を可能としている。 For example, CFRP containers can be made compact through a high-pressure resistant design that takes advantage of the fiber strength of CFRP. For example, a 300 L container with a design pressure of 100 MPa can have an outer diameter of 560 mm and a length of 2,865 mm. This makes it possible for the CFRP container to transport compressed natural gas and compressed carbon dioxide gas using transport machines 2a and 2b.
 繊維強化プラスチック製容器の重量は、同等の耐圧性を有する鉄製容器と比較して、10分の1程度であり、輸送機械2a、2bにおける燃料効率にも優れている。
 さらには、繊維強化プラスチック製容器は、水、硫化水素、二酸化炭素ガス等に対する耐腐食性や、水素分子を透過しない程度の気密性も備えている。
The weight of a fiber-reinforced plastic container is about one-tenth of that of an iron container having the same pressure resistance, and the fiber-reinforced plastic container is also excellent in fuel efficiency in the transport machines 2a, 2b.
Furthermore, fiber-reinforced plastic containers are resistant to corrosion caused by water, hydrogen sulfide, carbon dioxide gas, etc., and are airtight enough to prevent hydrogen molecules from passing through.
 以上のように、少なくとも繊維強化プラスチックで形成される圧力容器3a、3bに天然ガス及び/又は二酸化炭素ガスを収容して輸送機械2a又は輸送機械2bが輸送することから、ガスを従来のものより高圧で収容できることとなり、天然ガス、二酸化炭素ガスを従来の液化した天然ガスの輸送に匹敵するほど高い効率で輸送することができる。 As described above, natural gas and/or carbon dioxide gas is stored in pressure vessels 3a, 3b made of at least fiber-reinforced plastic and transported by transport machine 2a or transport machine 2b, so the gas can be stored at a higher pressure than in the past, and natural gas and carbon dioxide gas can be transported with a high efficiency comparable to the conventional transport of liquefied natural gas.
 また、こうした圧力容器3a、3bは、従来の鉄製容器との比較において数分の1程度の重量であるため、輸送機械2a、2bを大幅に軽量化できることとなり、消費燃料の削減、輸送時間の短縮、輸送距離の延長に貢献することができる。 In addition, these pressure vessels 3a, 3b are a fraction of the weight of conventional steel vessels, which allows for a significant reduction in the weight of the transport machinery 2a, 2b, contributing to reduced fuel consumption, shorter transport times, and longer transport distances.
 さらに、輸送中は天然ガス、二酸化炭素ガスを常温、高圧の超臨界状態で気密保持することができるため、液化天然ガスの輸送時に問題となるボイルオフ(蒸発によるガスの消失)対策が不要となる。 Furthermore, natural gas and carbon dioxide gas can be kept airtight at room temperature in a high-pressure supercritical state during transportation, eliminating the need for measures to prevent boil-off (loss of gas due to evaporation), which is an issue when transporting liquefied natural gas.
 下記表1には、天然ガスの主成分であるメタンガスの圧力及び温度に応じた輸送効率を示している。また、表1には、従来の鉄製容器に耐え得る圧力である20MPaで圧縮したメタンガスの輸送効率も示している。
 ここで、輸送効率とは、温度25℃又は-30℃の条件下で、液化メタン(温度-162℃、圧力0.1MPa(大気圧))の密度に対する圧縮メタンガスの密度の割合(=(圧縮メタンガスの密度/液化メタンの密度)×100(%))である。
Table 1 below shows the transport efficiency of methane gas, the main component of natural gas, depending on the pressure and temperature. Table 1 also shows the transport efficiency of methane gas compressed at 20 MPa, which is a pressure that can be withstood by conventional iron containers.
Here, the transport efficiency is the ratio of the density of compressed methane gas to the density of liquefied methane (temperature -162°C, pressure 0.1 MPa (atmospheric pressure)) under conditions of a temperature of 25°C or -30°C (= (density of compressed methane gas/density of liquefied methane) x 100 (%)).
 また、下記表2には、二酸化炭素ガスの圧力及び温度に応じた輸送効率を示している。また、表2には、従来の鉄製容器に耐え得る圧力である20MPaで圧縮した二酸化炭素ガスの輸送効率も示している。
 ここで、輸送効率とは、温度31.1℃(臨界温度)又は0℃の条件下で、液化二酸化炭素(温度-20℃、圧力2MPa)の密度に対する圧縮二酸化炭素ガスの密度の割合(=(圧縮二酸化炭素ガスの密度/液化二酸化炭素の密度)×100(%))である。
Table 2 below shows the transport efficiency according to the pressure and temperature of carbon dioxide gas. Table 2 also shows the transport efficiency of carbon dioxide gas compressed at 20 MPa, which is a pressure that a conventional iron container can withstand.
Here, the transport efficiency is the ratio of the density of compressed carbon dioxide gas to the density of liquefied carbon dioxide (temperature -20°C, pressure 2 MPa) under conditions of a temperature of 31.1°C (critical temperature) or 0°C (= (density of compressed carbon dioxide gas/density of liquefied carbon dioxide) x 100 (%)).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1からもわかるように、従来の鉄製容器に耐え得る圧力である20MPaで圧縮したメタンガスの輸送効率は37%であり、液化メタンの輸送能力には遠く及ばない。これに対し、50MPaで圧縮したメタンガスの輸送効率は60%を超えており、20MPaで圧縮した場合と比較して2倍近くの輸送能力を有していることがわかる。
 また、100MPaで圧縮したメタンガスの輸送効率は80%を超えており、さらには、低温下(-30℃)での輸送効率は90%を超え、液化メタンに匹敵する輸送能力を十分に発揮できていることがわかる。
As can be seen from Table 1, the transport efficiency of methane gas compressed at 20 MPa, which is the pressure that conventional iron containers can withstand, is 37%, which is far below the transport capacity of liquefied methane. In contrast, the transport efficiency of methane gas compressed at 50 MPa exceeds 60%, and it is found to have nearly double the transport capacity compared to when compressed at 20 MPa.
In addition, the transport efficiency of methane gas compressed at 100 MPa exceeds 80%, and even at low temperatures (-30°C), the transport efficiency exceeds 90%, demonstrating a transport capacity comparable to that of liquefied methane.
 また、表2からもわかるように、0℃、31.1℃(臨界温度)において、従来の鉄製容器に耐え得る圧力である20MPa、及び50MPaで圧縮した二酸化炭素ガスの輸送効率は85%を超えており、特に、50MPa、0℃における輸送効率は107%であり、液化二酸化炭素に匹敵する輸送能力を有していることがわかる。 As can also be seen from Table 2, at 0°C and 31.1°C (critical temperature), the transport efficiency of carbon dioxide gas compressed to 20 MPa and 50 MPa, which are pressures that conventional iron containers can withstand, exceeds 85%, and in particular, the transport efficiency at 50 MPa and 0°C is 107%, demonstrating that it has a transport capacity comparable to that of liquefied carbon dioxide.
 ここで、天然ガス及び二酸化炭素ガスの輸送量について考察する。 Here, we consider the volume of natural gas and carbon dioxide gas transported.
 メタンが燃焼する際の化学反応式は、以下で表される。
 CH+2O→2HO+CO
 上記式で示されるように、1mol(16g)のメタンガスから1mol(44g)の二酸化炭素ガスが生成され、質量比で2.75倍の二酸化炭素ガスが生じる。
The chemical reaction equation for methane combustion is given below:
CH4 + 2O22H2O + CO2
As shown in the above formula, 1 mol (44 g) of carbon dioxide gas is produced from 1 mol (16 g) of methane gas, resulting in 2.75 times the amount of carbon dioxide gas produced by mass.
 例えば、メタンガス(天然ガス)を70MPa、-3℃(密度323kg/m)で天然ガス利用施設(発電所80)まで輸送機械2aで輸送して利用し、排出された二酸化炭素ガスを同じ輸送能力を有する輸送機械2bで採取施設70又は二酸化炭素利用施設まで輸送する場合、二酸化炭素ガスを密度888.3kg/m(=323kg/m×44g/16g)まで圧縮する必要がある。 For example, when methane gas (natural gas) is transported at 70 MPa and -3°C (density 323 kg/ m3 ) by transport machine 2a to a natural gas utilization facility (power plant 80) for utilization, and the discharged carbon dioxide gas is transported to a collection facility 70 or carbon dioxide utilization facility by transport machine 2b having the same transportation capacity, the carbon dioxide gas needs to be compressed to a density of 888.3 kg/ m3 (= 323 kg/ m3 × 44 g/16 g).
 二酸化炭素ガスは、20MPa、31.1℃(超臨界状態)で密度880kg/mであり、圧力を30MPaまで上昇させると、40℃で900kg/m、20℃で990kg/m、-20℃で1110kg/mまで密度が上昇する。
 このことから、輸送能力の同じ輸送機械でメタンガス(天然ガス)及び二酸化炭素ガスを輸送する場合には、往路では70MPa、-3℃の超臨界状態でメタンガス(天然ガス)を輸送し、復路では30MPa、40℃以下の超臨界状態で二酸化炭素ガスを輸送すれば、液化メタンに対し約80%の輸送効率で天然ガスを採取施設70から天然ガス利用施設(発電所80)まで輸送し、輸送された天然ガスの利用により生じた二酸化炭素ガスのすべてを採取施設70又は二酸化炭素利用施設まで輸送することが可能となる。
Carbon dioxide gas has a density of 880 kg/ m3 at 20 MPa and 31.1°C (supercritical state), and when the pressure is increased to 30 MPa, the density increases to 900 kg/ m3 at 40°C, 990 kg/ m3 at 20°C, and 1110 kg/ m3 at -20°C.
For this reason, when transporting methane gas (natural gas) and carbon dioxide gas using transportation machinery with the same transportation capacity, by transporting methane gas (natural gas) in a supercritical state of 70 MPa and -3°C on the outbound journey and transporting carbon dioxide gas in a supercritical state of 30 MPa and 40°C or less on the return journey, it becomes possible to transport natural gas from the extraction facility 70 to the natural gas utilization facility (power plant 80) with a transportation efficiency of approximately 80% compared to liquefied methane, and to transport all of the carbon dioxide gas produced by the utilization of the transported natural gas to the extraction facility 70 or the carbon dioxide utilization facility.
 以上のように、天然ガス及び二酸化炭素ガスを圧縮した超臨界状態で輸送できることから、液化状態と同程度の密度とすることができ、液化状態に匹敵する輸送効率で天然ガス及び二酸化炭素ガスを輸送することができる。 As described above, natural gas and carbon dioxide gas can be transported in a compressed supercritical state, making it possible to achieve a density similar to that of a liquefied state, and natural gas and carbon dioxide gas can be transported with a transport efficiency comparable to that of a liquefied state.
 発電所80は、主に、天然ガスを燃料とするガスタービン81と、ガスタービン81から排出される燃焼ガスから二酸化炭素ガスを回収するCOガス回収部82と、COガス回収部82で回収された二酸化炭素ガスを圧縮するCOガス圧縮部83とを備える。 The power plant 80 mainly comprises a gas turbine 81 fueled by natural gas, a CO2 gas recovery unit 82 that recovers carbon dioxide gas from the combustion gas discharged from the gas turbine 81, and a CO2 gas compression unit 83 that compresses the carbon dioxide gas recovered in the CO2 gas recovery unit 82.
 ガスタービン81は、天然ガスを燃料として燃焼させる燃焼器81aと、燃焼器81aに空気を圧縮して供給する空気圧縮機81bと、燃焼器81aで生成された燃焼ガスで駆動されるタービン81cとを備える。 The gas turbine 81 includes a combustor 81a that burns natural gas as fuel, an air compressor 81b that compresses and supplies air to the combustor 81a, and a turbine 81c that is driven by the combustion gas generated in the combustor 81a.
 燃焼器81aは、輸送機械2aにて採取施設70から輸送された圧力容器3aから配送管を介して供給された天然ガスと、空気圧縮機81bで圧縮された空気とを反応させて燃焼させる。燃焼器81aで生成された燃焼ガスは、タービン81cに送られる。 The combustor 81a combusts natural gas supplied via a delivery pipe from a pressure vessel 3a transported from the extraction facility 70 by a transport machine 2a with air compressed by an air compressor 81b through a reaction between the gas and the air. The combustion gas generated by the combustor 81a is sent to a turbine 81c.
 タービン81cは、燃焼器81aから供給された燃焼ガスで駆動される。タービン81cは、燃焼ガスで回転して回転運動エネルギーを生み出し、この回転運動エネルギーを発電機84が電力に変換することにより、発電が行われる。
 タービン81cを通過した燃焼ガスは、COガス回収部82に送られる。
The turbine 81c is driven by the combustion gas supplied from the combustor 81a. The turbine 81c rotates with the combustion gas to generate rotational kinetic energy, which is then converted by the generator 84 into electric power, generating electric power.
The combustion gas that has passed through the turbine 81c is sent to a CO2 gas recovery section 82.
 なお、上記では、発電所80として、ガスタービン81による発電方式を説明しているが、これに限らず、発電所80での発電は他の発電方式であってもよい。 In the above, the power plant 80 is described as using a gas turbine 81 to generate electricity, but the power plant 80 may use other power generation methods.
 COガス回収部82に送られた燃焼ガスは、従来公知の手法、例えば、化学吸収法により二酸化炭素ガスが回収され、加熱により気化した二酸化炭素ガスがCOガス圧縮部83に送られる。
 二酸化炭素ガスが回収された燃焼ガスは、大気中に放出される。
The combustion gas sent to the CO2 gas recovery section 82 has carbon dioxide gas recovered by a conventionally known method, for example, a chemical absorption method, and the carbon dioxide gas vaporized by heating is sent to a CO2 gas compression section 83.
The combustion gas from which the carbon dioxide gas has been recovered is released into the atmosphere.
 COガス圧縮部83に供給された二酸化炭素ガスは、所定の圧力まで圧縮され、この圧縮二酸化炭素ガスを配送管を通して輸送機械2bに積み込まれている空の圧力容器3bに収容する。
 なお、圧縮二酸化炭素ガスは、発電所80にて圧力容器3bに収容した後、輸送機械2bに積み込むようにしてもよい。
The carbon dioxide gas supplied to the CO2 gas compression section 83 is compressed to a predetermined pressure, and this compressed carbon dioxide gas is stored in an empty pressure vessel 3b loaded onto the transport machine 2b through a delivery pipe.
The compressed carbon dioxide gas may be stored in a pressure vessel 3b at the power plant 80 and then loaded onto the transport machine 2b.
 COガス圧縮部83にて圧縮された二酸化炭素ガスは、輸送温度に応じて、適宜冷却され、又は適温に保たれる。 The carbon dioxide gas compressed in the CO2 gas compression section 83 is appropriately cooled or kept at an appropriate temperature depending on the transportation temperature.
 発電機84で発電された電力は、図示しない送電ケーブルを介して、各所へ送電されることとなる。 The electricity generated by the generator 84 is transmitted to various locations via a power transmission cable (not shown).
 このように、本実施形態に係るガス循環システム1は、輸送機械2aが天然ガスを採取施設70から発電所80まで輸送するとともに、輸送機械2bが二酸化炭素ガスを発電所80から採取施設70まで輸送し、輸送機械2bにて輸送された二酸化炭素ガスを採取施設70による採取地点90、又は二酸化炭素利用施設への供給用ガスとして供給することから、発電所80から排出された二酸化炭素ガスを採取施設70又は二酸化炭素利用施設で再利用できることとなり、発電所80で排出される二酸化炭素ガスを大気中に放出することなく、地球温暖化の抑制に資することができる。 In this way, in the gas circulation system 1 according to this embodiment, the transport machine 2a transports natural gas from the extraction facility 70 to the power plant 80, and the transport machine 2b transports carbon dioxide gas from the power plant 80 to the extraction facility 70, and the carbon dioxide gas transported by the transport machine 2b is supplied to the extraction point 90 by the extraction facility 70 or as supply gas to the carbon dioxide utilization facility. This means that the carbon dioxide gas discharged from the power plant 80 can be reused at the extraction facility 70 or the carbon dioxide utilization facility, and carbon dioxide gas discharged from the power plant 80 is not released into the atmosphere, thereby contributing to the prevention of global warming.
 また、発電所80から輸送された二酸化炭素ガスを採取地点90に供給することから、採取地点90が中小ガス田や放棄されたガス田、あるいは油田である場合には、天然ガスや原油の採取にともない減少する採取地点90の内部圧力を二酸化炭素ガスで補うことができることとなり、天然ガスや原油の生産能力を改善又は再生することが可能となり、天然ガス等を十分に回収することができる。 In addition, because the carbon dioxide gas transported from the power plant 80 is supplied to the collection site 90, if the collection site 90 is a small or medium-sized gas field, an abandoned gas field, or an oil field, the internal pressure at the collection site 90 that decreases as natural gas or crude oil is collected can be compensated for by the carbon dioxide gas, making it possible to improve or regenerate the production capacity of natural gas or crude oil, and to fully recover natural gas, etc.
 また、輸送中の液体揺動対策が必要となるLNG輸送船などと比較して、天然ガスや二酸化炭素ガスを圧縮した超臨界状態又はガス状態で輸送することから、輸送機械2a、2bの揺動対策が不要となり、造船設計等が容易となることに加え、輸送上の制約も小さくすることができる。 In addition, compared to LNG transport ships and the like, which require measures to prevent liquid swaying during transport, natural gas and carbon dioxide gas are transported in a compressed supercritical or gaseous state, so measures to prevent swaying of the transport machinery 2a and 2b are not necessary, making shipbuilding design easier and reducing transport constraints.
 さらに、液化天然ガスの場合、製造、輸送過程で-162度という極低温域の液体を取り扱うことから大量のエネルギーを消費する、すなわち、二酸化炭素の排出を余儀なくされるが、天然ガスを圧縮した超臨界状態又はガス状態で輸送することから、二酸化炭素の発生を抑制することができる。 Furthermore, in the case of liquefied natural gas, a large amount of energy is consumed during the production and transportation process because liquids at an extremely low temperature of -162 degrees are handled, which means that carbon dioxide emissions are unavoidable. However, because natural gas is transported in a compressed supercritical or gaseous state, the generation of carbon dioxide can be reduced.
 なお、上記では、天然ガスの輸送を輸送機械2a、二酸化炭素ガスの輸送を輸送機械2bとしてそれぞれ分けて説明したが、一つの輸送機械(例えば、輸送機械2a)にて採取施設70又は他の採取施設と、発電所80との間を往復し、天然ガス及び二酸化炭素ガスを輸送するようにしてもよい。
 この場合、採取施設70では、輸送機械2aからCOガス圧入部75に二酸化炭素ガスを供給後、空となった圧力容器3aに天然ガス圧縮部74から天然ガスを順次収容する。発電所80では、輸送機械2aからガスタービン81に天然ガスを供給後、空となった圧力容器3aに、COガス圧縮部83から二酸化炭素ガスを順次収容することとなる。
In the above, the transportation of natural gas is described as being performed by the transport machine 2a, and the transportation of carbon dioxide gas is described as being performed by the transport machine 2b. However, a single transport machine (e.g., transport machine 2a) may travel between the extraction facility 70 or another extraction facility and the power plant 80 to transport natural gas and carbon dioxide gas.
In this case, in the collection facility 70, after the transport machine 2a supplies carbon dioxide gas to the CO2 gas injection section 75, natural gas is sequentially stored in the emptied pressure vessel 3a from the natural gas compression section 74. In the power plant 80, after the transport machine 2a supplies natural gas to the gas turbine 81, carbon dioxide gas is sequentially stored in the emptied pressure vessel 3a from the CO2 gas compression section 83.
(本発明の第2の実施形態)
 上記第1の実施形態に係るガス循環システムにおいては、採取施設で発生した天然ガス、発電所で発生した二酸化炭素ガスを、それぞれ発電所、採取施設に輸送機械にて輸送するのみとしていたが、これに限らず、図4ないし図6に示すように、採取施設にて採取した天然ガスを発電所から輸送された二酸化炭素ガスとの間で熱交換させるとともに、発電所で生じた二酸化炭素ガスを採取施設から輸送された天然ガスとの間で熱交換させる構成とすることもできる。
 なお、以下の説明では、上記第1の実施形態と重複する構成については、その説明を省略する。
Second Embodiment of the Invention
In the gas circulation system according to the first embodiment described above, the natural gas generated at the collection facility and the carbon dioxide gas generated at the power plant are simply transported by transport machinery to the power plant and the collection facility, respectively. However, without being limited to this, as shown in Figures 4 to 6, the natural gas collected at the collection facility can be heat exchanged with the carbon dioxide gas transported from the power plant, and the carbon dioxide gas generated at the power plant can be heat exchanged with the natural gas transported from the collection facility.
In the following description, the description of the configuration that overlaps with the first embodiment will be omitted.
 本実施形態に係るガス循環システム1は、採取施設70により採取された天然ガスと、輸送機械2bにて発電所80から輸送された二酸化炭素ガスとの間で熱交換を行う、前記熱交換手段としての熱交換部4と、発電所80で生じた二酸化炭素ガスと、輸送機械2aにて採取施設70から輸送された天然ガスとの間で熱交換を行う、前記熱交換手段としての熱交換部5とを備える。 The gas circulation system 1 according to this embodiment includes a heat exchange unit 4 as heat exchange means that exchanges heat between the natural gas collected by the collection facility 70 and the carbon dioxide gas transported from the power plant 80 by the transport machine 2b, and a heat exchange unit 5 as heat exchange means that exchanges heat between the carbon dioxide gas generated at the power plant 80 and the natural gas transported from the collection facility 70 by the transport machine 2a.
 熱交換部4は、熱媒体と天然ガスとの間で熱交換させる第1の熱交換器40と、熱媒体と二酸化炭素ガスとの間で熱交換させる第2の熱交換器41と、第2の熱交換器41から排出された熱媒体を第1の熱交換器40に送り込むポンプ42とを備える。 The heat exchange unit 4 includes a first heat exchanger 40 that exchanges heat between the heat medium and natural gas, a second heat exchanger 41 that exchanges heat between the heat medium and carbon dioxide gas, and a pump 42 that sends the heat medium discharged from the second heat exchanger 41 to the first heat exchanger 40.
 採取地点90から採取された天然ガスは、天然ガス圧縮部74を経て圧縮された後、第1の熱交換器40に送られ、この第1の熱交換器40に導入された熱媒体との間で熱交換される。熱媒体との間で熱交換されてより低温となった天然ガスは、配送管を介して輸送機械2aの圧力容器3aに収容される。
 一方で、天然ガスとの間で熱交換された熱媒体は、第2の熱交換器41に送られる。
The natural gas collected from the collection point 90 is compressed through the natural gas compression section 74 and then sent to the first heat exchanger 40, where it is heat exchanged with the heat medium introduced into the first heat exchanger 40. The natural gas that has been heat exchanged with the heat medium and has a lower temperature is stored in the pressure vessel 3a of the transportation machine 2a through a delivery pipe.
On the other hand, the heat medium that has been heat exchanged with the natural gas is sent to the second heat exchanger 41 .
 第2の熱交換器41には、発電所80から輸送機械2bにて輸送された二酸化炭素ガスが供給される。
 天然ガスとの間で熱交換された熱媒体は、第2の熱交換器41に導入されて、より低温の二酸化炭素ガスとの間で熱交換される。
 熱交換された二酸化炭素ガスは、第2の熱交換器41から排出されてCOガス圧入部75へ送られ、圧入井76を介して採取地点90に圧入される。
The second heat exchanger 41 is supplied with carbon dioxide gas transported from the power plant 80 by the transport machine 2b.
The heat medium that has been heat exchanged with the natural gas is introduced into the second heat exchanger 41 and is subjected to heat exchange with lower temperature carbon dioxide gas.
The heat-exchanged carbon dioxide gas is discharged from the second heat exchanger 41 and sent to the CO2 gas injection section 75, and is injected into the collection point 90 via the injection well 76.
 熱交換部5は、熱媒体と二酸化炭素ガスとの間で熱交換させる第1の熱交換器50と、熱媒体と天然ガスとの間で熱交換させる第2の熱交換器51と、第2の熱交換器51から排出された熱媒体を第1の熱交換器50に送り込むポンプ52とを備える。 The heat exchange unit 5 includes a first heat exchanger 50 that exchanges heat between the heat medium and carbon dioxide gas, a second heat exchanger 51 that exchanges heat between the heat medium and natural gas, and a pump 52 that sends the heat medium discharged from the second heat exchanger 51 to the first heat exchanger 50.
 COガス圧縮部83にて圧縮された二酸化炭素ガスは、第1の熱交換器50に送られ、この第1の熱交換器50に導入された熱媒体との間で熱交換される。熱媒体との間で熱交換されてより低温となった二酸化炭素ガスは、配送管を介して輸送機械2bの圧力容器3bに収容される。
 一方で、二酸化炭素ガスとの間で熱交換された熱媒体は、第2の熱交換器51に送られる。
The carbon dioxide gas compressed in the CO2 gas compression section 83 is sent to the first heat exchanger 50, and is heat exchanged with the heat medium introduced into the first heat exchanger 50. The carbon dioxide gas, which has been heat exchanged with the heat medium and has a lower temperature, is accommodated in the pressure vessel 3b of the transport machine 2b via a delivery pipe.
On the other hand, the heat medium that has been exchanged with the carbon dioxide gas is sent to the second heat exchanger 51 .
 第2の熱交換器51には、採取施設70から輸送機械2aにて輸送された天然ガスが供給される。
 二酸化炭素ガスとの間で熱交換された熱媒体は、第2の熱交換器51に導入されて、より低温の天然ガスとの間で熱交換される。
 熱交換された天然ガスは、第2の熱交換器51から排出されて、ガスタービン81に送られる。
The second heat exchanger 51 is supplied with natural gas transported from the extraction facility 70 by the transport machine 2a.
The heat medium that has exchanged heat with the carbon dioxide gas is introduced into the second heat exchanger 51 and is exchanged heat with lower temperature natural gas.
The heat-exchanged natural gas is discharged from the second heat exchanger 51 and sent to the gas turbine 81 .
 なお、熱交換部4での天然ガスの冷却、熱交換部5での二酸化炭素ガスの冷却が十分でない場合には、天然ガス及び二酸化炭素ガス間での熱交換後、天然ガス及び二酸化炭素ガスを輸送温度に応じて更に冷却してもよい。 If the cooling of the natural gas in heat exchange section 4 and the cooling of the carbon dioxide gas in heat exchange section 5 are not sufficient, the natural gas and carbon dioxide gas may be further cooled according to the transport temperature after the heat exchange between them.
 また、天然ガスと二酸化炭素ガスとの間における熱交換は、熱媒体を介在させることなく、金属等の伝熱体を隔てて、直接伝熱させるようにしてもよい。 In addition, heat exchange between the natural gas and the carbon dioxide gas may be performed directly, without the use of a heat transfer medium, via a heat transfer medium such as metal.
 このように、本実施形態に係るガス循環システム1は、熱交換部4が、採取施設70で採取された天然ガスと発電所80から輸送された二酸化炭素ガスとの間で熱交換させることから、天然ガスは、より低温の二酸化炭素ガスによって冷却されることとなり、所定のエネルギー供給を要する冷却設備等を設置することなく天然ガスを冷却でき、生産コストを大幅に抑えるとともに、天然ガスの輸送効率を向上させることができる。 In this way, in the gas circulation system 1 according to this embodiment, the heat exchange section 4 exchanges heat between the natural gas extracted at the extraction facility 70 and the carbon dioxide gas transported from the power plant 80, so that the natural gas is cooled by the lower temperature carbon dioxide gas. This makes it possible to cool the natural gas without installing cooling equipment that requires a certain amount of energy supply, thereby significantly reducing production costs and improving the transport efficiency of the natural gas.
 また、熱交換部5が、発電所80で生じた二酸化炭素ガスと、採取施設70から輸送された天然ガスとの間で熱交換させることから、二酸化炭素ガスは、より低温の天然ガスによって冷却されることとなり、所定のエネルギー供給を要する冷却設備等を設置することなく二酸化炭素ガスを冷却でき、二酸化炭素ガスの輸送を効率化、かつ、低コスト化できる。 In addition, because the heat exchange unit 5 exchanges heat between the carbon dioxide gas generated at the power plant 80 and the natural gas transported from the collection facility 70, the carbon dioxide gas is cooled by the lower temperature natural gas, and the carbon dioxide gas can be cooled without installing cooling equipment that requires a certain amount of energy supply, making the transportation of carbon dioxide gas more efficient and less costly.
 なお、熱交換部4、5は、それぞれ採取施設70、発電所80に設置されていてもよいし、輸送機械2a、2b内に設置されていてもよい。
 例えば、輸送機械2aのみにより、採取施設70と発電所80との間を往復して、天然ガス及び二酸化炭素ガスを輸送する場合、輸送機械2a内に設置された熱交換部4を採取施設70及び発電所80における熱交換部として併用することもできる。
The heat exchange units 4 and 5 may be installed in the extraction facility 70 and the power plant 80, respectively, or may be installed in the transport machines 2a and 2b.
For example, when natural gas and carbon dioxide gas are transported back and forth between the extraction facility 70 and the power plant 80 using only the transport machine 2a, the heat exchange unit 4 installed in the transport machine 2a can also be used as a heat exchange unit in the extraction facility 70 and the power plant 80.
 具体的には、採取施設70においては、図7(a)に示すように、圧力容器3aに収容された二酸化炭素ガスは、輸送機械2a内の熱交換部4に送られて採取施設70で採取された天然ガスとの間で熱交換された後、接続部61を介して、COガス圧入部75へ送られる。天然ガス圧縮部74を経て圧縮された天然ガスは、接続部60を介して、輸送機械2a内の熱交換部4に送られて輸送機械2aで発電所80から輸送された二酸化炭素ガスとの間で熱交換された後、二酸化炭素ガスを排出して空となった圧力容器3aに収容される。
 発電所80においては、図7(b)に示すように、圧力容器3aに収容された天然ガスは、輸送機械2a内の熱交換部4に送られて発電所80で生じた二酸化炭素ガスとの間で熱交換された後、接続部62を介して、ガスタービン81へ送られる。COガス圧縮部83を経て圧縮された二酸化炭素ガスは、接続部63を介して、輸送機械2a内の熱交換部4に送られて輸送機械2aで採取施設70から輸送された天然ガスとの間で熱交換された後、天然ガスを排出して空となった圧力容器3aに収容される。
Specifically, in the collection facility 70, as shown in Fig. 7(a), the carbon dioxide gas stored in the pressure vessel 3a is sent to the heat exchanger 4 in the transport machine 2a and heat-exchanged with the natural gas collected in the collection facility 70, and then sent to the CO2 gas injection section 75 via the connection section 61. The natural gas compressed through the natural gas compression section 74 is sent to the heat exchanger 4 in the transport machine 2a via the connection section 60 and heat-exchanged with the carbon dioxide gas transported from the power plant 80 by the transport machine 2a, and then stored in the pressure vessel 3a, which has been emptied by discharging the carbon dioxide gas.
In the power plant 80, as shown in Fig. 7(b), the natural gas stored in the pressure vessel 3a is sent to the heat exchanger 4 in the transport machine 2a, where it is heat exchanged with the carbon dioxide gas generated in the power plant 80, and then sent to the gas turbine 81 via the connection part 62. The carbon dioxide gas compressed through the CO2 gas compression part 83 is sent to the heat exchanger 4 in the transport machine 2a via the connection part 63, where it is heat exchanged with the natural gas transported from the extraction facility 70 by the transport machine 2a, and then stored in the pressure vessel 3a, which has been emptied by discharging the natural gas.
 また、熱交換部4での天然ガスの冷却、熱交換部5での二酸化炭素ガスの冷却が十分でない場合には、天然ガス及び二酸化炭素ガス間での熱交換後、天然ガス及び二酸化炭素ガスを輸送温度に応じて更に冷却してもよい。 In addition, if the cooling of the natural gas in heat exchange section 4 and the cooling of the carbon dioxide gas in heat exchange section 5 are not sufficient, the natural gas and carbon dioxide gas may be further cooled according to the transport temperature after the heat exchange between them.
(本発明の第3の実施形態)
 上記第2の実施形態に係るガス循環システムにおいては、採取施設にて採取した天然ガスを発電所から輸送された二酸化炭素ガスとの間で熱交換させるとともに、発電所で生じた二酸化炭素ガスを採取施設から輸送された天然ガスとの間で熱交換させる構成としたが、これに限らず、図8に示すように、熱交換させる前に、圧縮天然ガス、圧縮二酸化炭素ガスを膨張機に導入して、温度を下げる構成とすることもできる。
 なお、以下の説明では、上記各実施形態と重複する構成については、その説明を省略する。
Third embodiment of the present invention
In the gas circulation system according to the second embodiment described above, heat is exchanged between the natural gas collected at the collection facility and the carbon dioxide gas transported from the power plant, and also between the carbon dioxide gas generated at the power plant and the natural gas transported from the collection facility. However, the present invention is not limited to this, and as shown in FIG. 8, the compressed natural gas and compressed carbon dioxide gas can be introduced into an expander to lower the temperature before the heat exchange.
In the following description, the description of configurations that overlap with the above-described embodiments will be omitted.
 本実施形態に係るガス循環システム1は、発電所80で生じた二酸化炭素ガスを採取施設70まで輸送する輸送機械2bと、熱交換部4との間に、膨張機6を備えるとともに、採取施設70で採取された天然ガスを発電所80まで輸送する輸送機械2aと、熱交換部5との間に、膨張機7を備える。 The gas circulation system 1 according to this embodiment includes an expander 6 between the transport machine 2b, which transports carbon dioxide gas generated at the power plant 80 to the collection facility 70, and the heat exchange unit 4, and an expander 7 between the transport machine 2a, which transports natural gas collected at the collection facility 70 to the power plant 80, and the heat exchange unit 5.
 採取施設70では、採取施設70で採取された天然ガスが、天然ガス圧縮部74で圧縮され、より高温のガスとされて熱交換部4に導入されるとともに、発電所80から輸送された二酸化炭素ガスが、膨張機6により減圧され、より低温のガスとされて(ジュール・トムソン効果)熱交換部4に導入される。
 膨張機6では、二酸化炭素ガスの減圧に際し、圧縮された二酸化炭素ガスが有する圧力エネルギーを回転エネルギーとする。この回転エネルギーを利用して発電機(図示略)で発電する。
At the collection facility 70, the natural gas collected at the collection facility 70 is compressed in the natural gas compression section 74, becoming a higher temperature gas and being introduced into the heat exchange section 4, and at the same time, the carbon dioxide gas transported from the power plant 80 is depressurized by the expander 6, becoming a lower temperature gas (Joule-Thomson effect), and being introduced into the heat exchange section 4.
In the expander 6, the pressure energy of the compressed carbon dioxide gas is converted into rotational energy when the carbon dioxide gas is decompressed. This rotational energy is utilized to generate electricity in a generator (not shown).
 一方で、発電所80では、発電所80で生じた二酸化炭素ガスが、COガス圧縮部83で圧縮され、より高温のガスとされて熱交換部5に導入されるとともに、採取施設70から輸送された天然ガスが、膨張機7により減圧され、より低温のガスとされて(ジュール・トムソン効果)熱交換部5に導入される。
 膨張機7では、膨張機6と同様に、天然ガスの減圧に際し、圧縮された天然ガスが有する圧力エネルギーを回転エネルギーとする。この回転エネルギーを利用して発電機(図示略)で発電する。
On the other hand, in the power plant 80, the carbon dioxide gas generated in the power plant 80 is compressed in the CO2 gas compression section 83, becoming a higher temperature gas and being introduced into the heat exchange section 5, and the natural gas transported from the extraction facility 70 is decompressed by the expander 7, becoming a lower temperature gas (Joule-Thomson effect), and being introduced into the heat exchange section 5.
In the expander 7, similarly to the expander 6, the pressure energy of the compressed natural gas is converted into rotational energy when the natural gas is decompressed. This rotational energy is utilized to generate electricity in a generator (not shown).
 なお、膨張機6、7は、単に減圧により温度を降下させる膨張弁であってもよい。 In addition, the expansion devices 6 and 7 may be expansion valves that simply reduce the temperature by reducing the pressure.
 ここで、本実施形態に係るガス循環システム1の主要部における天然ガス及び二酸化炭素ガスの圧力及び温度の一例を示す。
 前提として、天然ガスは、輸送機械2aで70MPa、-3℃の条件下で輸送され、二酸化炭素ガスは、輸送機械2bで30MPa、33℃の条件下で輸送されるものとする。
Here, an example of the pressure and temperature of the natural gas and carbon dioxide gas in the main part of the gas circulation system 1 according to this embodiment is shown.
As a premise, it is assumed that the natural gas is transported by the transport machine 2a under conditions of 70 MPa and -3°C, and the carbon dioxide gas is transported by the transport machine 2b under conditions of 30 MPa and 33°C.
 採取施設70側では、天然ガスは、天然ガス圧縮部74を経て70MPa、60℃の状態で熱交換部4に供給される。熱交換部4に導入された天然ガスは、輸送機械2bで発電所80から輸送された二酸化炭素ガスとの間で熱交換されて70MPa、40℃とされる。さらに、図示しない冷却器で冷却されて70MPa、-3℃とされて、圧力容器3aに収容されて、輸送機械2aにより発電所80に輸送される。
 一方で、輸送機械2bにより30MPa、33℃の状態で発電所80から輸送されてきた二酸化炭素ガスは、膨張弁(膨張機6)を経て10MPa、25℃とされ、熱交換部4に供給される。熱交換部4に導入された二酸化炭素ガスは、天然ガスとの間で熱交換されて10MPa、38℃とされて、COガス圧入部75に供給されることとなる。
At the extraction facility 70, the natural gas passes through a natural gas compression section 74 and is supplied to the heat exchange section 4 at 70 MPa and 60°C. The natural gas introduced into the heat exchange section 4 is heat exchanged with carbon dioxide gas transported from the power plant 80 by the transport machine 2b, and is cooled to 70 MPa and 40°C. It is further cooled in a cooler (not shown) to 70 MPa and -3°C, stored in the pressure vessel 3a, and transported to the power plant 80 by the transport machine 2a.
On the other hand, carbon dioxide gas transported from the power plant 80 by the transport machine 2b at 30 MPa and 33°C passes through an expansion valve (expander 6) to be heated to 10 MPa and 25°C, and is supplied to the heat exchange section 4. The carbon dioxide gas introduced into the heat exchange section 4 is heat exchanged with natural gas to be heated to 10 MPa and 38°C, and is supplied to the CO2 gas injection section 75.
 発電所80側では、二酸化炭素ガスは、COガス圧縮部83を経て30MPa、72℃の状態で熱交換部5に供給される。熱交換部5に導入された二酸化炭素ガスは、輸送機械2aで採取施設70から輸送された天然ガスとの間で熱交換されて30MPa、33℃とされ、圧力容器3bに収容された後、輸送機械2bにより採取施設70に輸送される。
 一方で、輸送機械2aにより70MPa、-3℃の状態で採取施設70から輸送されてきた天然ガスは、膨張弁(膨張機7)を経て10MPa、-30℃とされ、熱交換部5に供給される。熱交換部5に導入された天然ガスは、二酸化炭素ガスとの間で熱交換されて10MPa、27℃とされて、ガスタービン81に供給されることとなる。
On the power plant 80 side, the carbon dioxide gas is supplied to the heat exchanger 5 at 30 MPa and 72°C through the CO2 gas compressor 83. The carbon dioxide gas introduced into the heat exchanger 5 is heat exchanged with the natural gas transported from the extraction facility 70 by the transport machine 2a to be heated to 30 MPa and 33°C, stored in the pressure vessel 3b, and then transported to the extraction facility 70 by the transport machine 2b.
On the other hand, the natural gas transported from the extraction facility 70 by the transport machine 2a at 70 MPa and -3°C is passed through an expansion valve (expander 7) to be heated to 10 MPa and -30°C, and is supplied to the heat exchanger 5. The natural gas introduced into the heat exchanger 5 is heat exchanged with carbon dioxide gas to be heated to 10 MPa and 27°C, and is supplied to the gas turbine 81.
 このように、輸送機械2a、2bで輸送された天然ガス、二酸化炭素ガスを減圧する膨張機6、7を備えることから、減圧に伴う温度低下で熱交換の効率を高められる。また、減圧に際し、圧縮された天然ガス、二酸化炭素ガスの持つ圧力エネルギーを利用して、発電用の動力を得ることができる。これにより、発電が可能となり、各種設備等に電力を供給して、生産コストを抑えることができる。 In this way, by providing expanders 6 and 7 that reduce the pressure of the natural gas and carbon dioxide gas transported by transport machines 2a and 2b, the efficiency of heat exchange can be improved by the temperature drop that accompanies the reduction in pressure. In addition, the pressure energy of the compressed natural gas and carbon dioxide gas during the reduction in pressure can be used to obtain power for power generation. This makes it possible to generate power and supply it to various facilities, thereby reducing production costs.
 なお、膨張機6、7は、それぞれ熱交換部4、5とともに採取施設70、発電所80に設置されていてもよいし、輸送機械2a、2b内に設置されていてもよい。 The expanders 6 and 7 may be installed together with the heat exchangers 4 and 5 in the extraction facility 70 and the power plant 80, respectively, or may be installed in the transport machines 2a and 2b.
 また、天然ガス圧縮部74、COガス圧縮部83を採取施設70、発電所80に設置せずに、熱交換部4、5及び膨張機6、7とともに、輸送機械2a、2b内に設置してもよい。
 例えば、輸送機械2aのみにより、採取施設70と発電所80との間を往復して、天然ガス及び二酸化炭素ガスを輸送する場合、輸送機械2a内に設置されたガス圧縮部、熱交換部4、膨張機6を採取施設70及び発電所80におけるガス圧縮部、熱交換部、膨張機として併用することもできる。
Furthermore, the natural gas compression unit 74 and the CO2 gas compression unit 83 may not be installed in the extraction facility 70 and the power plant 80, but may be installed in the transport machines 2a and 2b together with the heat exchange units 4 and 5 and the expanders 6 and 7.
For example, when natural gas and carbon dioxide gas are transported back and forth between the extraction facility 70 and the power plant 80 using only the transport machine 2a, the gas compression unit, heat exchange unit 4, and expander 6 installed in the transport machine 2a can also be used in combination as the gas compression unit, heat exchange unit, and expander in the extraction facility 70 and the power plant 80.
 具体的には、採取施設70においては、図9(a)に示すように、圧力容器3aに収容された二酸化炭素ガスは、輸送機械2a内で、膨張機6に送られて減圧された後、熱交換部4に導入されて、採取施設70で採取された天然ガスとの間で熱交換され、接続部61を介して、COガス圧入部75へ送られる。天然ガス精製部73を経て精製された天然ガスは、接続部60を介して、輸送機械2a内のガス圧縮部8に送られて加圧された後、熱交換部4に導入されて、発電所80から輸送された二酸化炭素ガスとの間で熱交換され、二酸化炭素ガスを排出して空となった圧力容器3aに収容される。
 発電所80においては、図9(b)に示すように、圧力容器3aに収容された天然ガスは、輸送機械2a内で、膨張機6に送られて減圧された後、熱交換部4に導入されて、発電所80で生じた二酸化炭素ガスとの間で熱交換され、接続部62を介して、ガスタービン81へ送られる。COガス回収部82を経て回収された二酸化炭素ガスは、接続部63を介して、輸送機械2a内のガス圧縮部8に送られて加圧された後、熱交換部4に導入されて、採取施設70から輸送された天然ガスとの間で熱交換され、天然ガスを排出して空となった圧力容器3aに収容される。
Specifically, in the collection facility 70, as shown in Fig. 9(a), the carbon dioxide gas stored in the pressure vessel 3a is sent to the expander 6 in the transport machine 2a to be decompressed, then introduced into the heat exchanger 4, where it is heat exchanged with the natural gas collected in the collection facility 70, and sent to the CO2 gas injection section 75 via the connection section 61. The natural gas refined through the natural gas refining section 73 is sent to the gas compression section 8 in the transport machine 2a via the connection section 60 to be pressurized, then introduced into the heat exchanger 4, where it is heat exchanged with the carbon dioxide gas transported from the power plant 80, and stored in the pressure vessel 3a that has been emptied after discharging the carbon dioxide gas.
In the power plant 80, as shown in Fig. 9(b), the natural gas stored in the pressure vessel 3a is sent to the expander 6 in the transport machine 2a to be decompressed, then introduced into the heat exchanger 4, where it is heat exchanged with the carbon dioxide gas generated in the power plant 80, and sent to the gas turbine 81 via the connection part 62. The carbon dioxide gas recovered via the CO2 gas recovery part 82 is sent to the gas compression part 8 in the transport machine 2a via the connection part 63 to be pressurized, then introduced into the heat exchanger 4, where it is heat exchanged with the natural gas transported from the extraction facility 70, and stored in the pressure vessel 3a, which has been emptied after the natural gas has been discharged.
(本発明の第4の実施形態)
 上記第2の実施形態に係るガス循環システムにおいては、採取施設にて採取した天然ガスを発電所から輸送された二酸化炭素ガスとの間で熱交換させるとともに、発電所で生じた二酸化炭素ガスを採取施設から輸送された天然ガスとの間で熱交換させる構成としたが、これに限らず、図10及び図11に示すように、天然ガスと二酸化炭素ガスとの間で熱交換する過程において、作動流体が気相状態と液相状態とを繰り返すことを利用し、タービンを駆動して発電する構成とすることもできる。
 なお、以下の説明では、上記各実施形態と重複する構成については、その説明を省略する。
(Fourth embodiment of the present invention)
In the gas circulation system according to the second embodiment, heat is exchanged between the natural gas extracted at the extraction facility and the carbon dioxide gas transported from the power plant, and the carbon dioxide gas generated at the power plant and the natural gas transported from the extraction facility. However, without being limited to this, as shown in Figures 10 and 11, in the process of heat exchange between the natural gas and the carbon dioxide gas, the working fluid alternates between the gas phase and the liquid phase, and this can be utilized to drive a turbine and generate electricity.
In the following description, the description of configurations that overlap with the above-described embodiments will be omitted.
 本実施形態に係るガス循環システム1は、採取施設70により採取された天然ガスと、輸送機械2bにて発電所80から輸送された二酸化炭素ガスとの間で熱交換を行わせる熱交換部4と、発電所80で生じた二酸化炭素ガスと、輸送機械2aにて採取施設70から輸送された天然ガスとの間で熱交換を行わせる熱交換部5とを備える。 The gas circulation system 1 according to this embodiment includes a heat exchange unit 4 that performs heat exchange between the natural gas collected by the collection facility 70 and the carbon dioxide gas transported from the power plant 80 by the transport machine 2b, and a heat exchange unit 5 that performs heat exchange between the carbon dioxide gas generated at the power plant 80 and the natural gas transported from the collection facility 70 by the transport machine 2a.
 熱交換部4は、低沸点媒体からなる作動流体と天然ガスとの間で熱交換させ、作動流体を蒸発させて気相の作動流体を得る前記蒸発手段としての蒸発器43と、気相の作動流体を導入されて作動し、作動流体の保有する熱エネルギーを動力に変換する前記動力変換手段としてのタービン44と、タービン44から排出された気相の作動流体と二酸化炭素ガスとの間で熱交換させることで作動流体を凝縮させて液相とする前記凝縮手段としての凝縮器45と、凝縮器45から排出された液相作動流体を蒸発器43に送り込むポンプ46とを備える。
 このうち、蒸発器43、タービン44、凝縮器45及びポンプ46については、一般的な動力サイクルで用いられるのと同様の公知の装置であり、説明を省略する。
The heat exchange unit 4 includes an evaporator 43 as the evaporation means for performing heat exchange between a working fluid consisting of a low boiling point medium and natural gas, and evaporating the working fluid to obtain a gas-phase working fluid, a turbine 44 as the power conversion means that is operated by receiving the gas-phase working fluid and converts the thermal energy contained in the working fluid into power, a condenser 45 as the condensation means that condenses the working fluid into a liquid phase by performing heat exchange between the gas-phase working fluid discharged from the turbine 44 and carbon dioxide gas, and a pump 46 that sends the liquid-phase working fluid discharged from the condenser 45 to the evaporator 43.
Of these, the evaporator 43, the turbine 44, the condenser 45 and the pump 46 are well-known devices similar to those used in a general power cycle, and therefore a description thereof will be omitted.
 採取地点90から採取された天然ガスは、天然ガス圧縮部74を経て圧縮された後、蒸発器43に送られ、この蒸発器43に導入された液相の作動流体との間で熱交換される。液相作動流体との間で熱交換されて、より低温となった天然ガスは、配送管を介して輸送機械2aの圧力容器3aに収容される。
 一方で、天然ガスとの間で熱交換された液相作動流体は、その少なくとも一部が気相とされ、タービン44に送られる。
The natural gas collected from the collection point 90 is compressed through the natural gas compression section 74 and then sent to the evaporator 43, where it is heat exchanged with the liquid-phase working fluid introduced into the evaporator 43. The natural gas, which has been heat exchanged with the liquid-phase working fluid and has a lower temperature, is stored in the pressure vessel 3a of the transportation machine 2a through a delivery pipe.
On the other hand, at least a portion of the liquid-phase working fluid that has been heat exchanged with the natural gas is converted to a gas phase and sent to the turbine 44 .
 タービン44は、蒸発器43から供給された気相の作動流体により回転し、回転運動エネルギーを生み出す。この回転運動エネルギーを発電機47が電力に変換することにより、発電が行われる。
 タービン44を通過した気相の作動流体は、凝縮器45に供給される。
The turbine 44 is rotated by the gas-phase working fluid supplied from the evaporator 43, and generates rotational kinetic energy. The generator 47 converts this rotational kinetic energy into electric power, thereby generating electricity.
The gas-phase working fluid that has passed through the turbine 44 is supplied to a condenser 45 .
 凝縮器45には、発電所80から輸送機械2bにて輸送された二酸化炭素ガスが供給さる。
 タービン44から排出された気相の作動流体は、凝縮器45に導入されて、より低温の二酸化炭素ガスとの間で熱交換され、液相の作動流体とされる。
 熱交換された二酸化炭素ガスは、凝縮器45から排出されてCOガス圧入部75へ送られ、圧入井76を介して採取地点90に圧入される。
The condenser 45 is supplied with carbon dioxide gas transported from the power plant 80 by the transport machine 2b.
The gas-phase working fluid discharged from the turbine 44 is introduced into the condenser 45 and undergoes heat exchange with the lower temperature carbon dioxide gas, thereby becoming a liquid-phase working fluid.
The heat-exchanged carbon dioxide gas is discharged from the condenser 45 and sent to a CO2 gas injection section 75, and is injected into a collection point 90 via an injection well 76.
 熱交換部5は、低沸点媒体からなる作動流体と二酸化炭素ガスとの間で熱交換させ、作動流体を蒸発させて気相の作動流体を得る前記蒸発手段としての蒸発器53と、気相の作動流体を導入されて作動し、作動流体の保有する熱エネルギーを動力に変換する前記動力変換手段としてのタービン54と、タービン54から排出された気相の作動流体と天然ガスとの間で熱交換させることで凝縮させて液相とする前記凝縮手段としての凝縮器55と、凝縮器55から排出された液相作動流体を蒸発器53に送り込むポンプ56とを備える。 The heat exchange unit 5 includes an evaporator 53 as the evaporation means for performing heat exchange between a working fluid consisting of a low boiling point medium and carbon dioxide gas, evaporating the working fluid to obtain a gas-phase working fluid, a turbine 54 as the power conversion means which is operated by receiving the gas-phase working fluid and converts the thermal energy contained in the working fluid into power, a condenser 55 as the condensation means which condenses the gas-phase working fluid discharged from the turbine 54 into liquid phase by heat exchange between the gas-phase working fluid and natural gas, and a pump 56 which sends the liquid-phase working fluid discharged from the condenser 55 to the evaporator 53.
 COガス圧縮部83にて圧縮された二酸化炭素ガスは、蒸発器53に送られ、この蒸発器53に導入された液相の作動流体との間で熱交換される。液相作動流体との間で熱交換されて、より低温となった二酸化炭素ガスは、配送管を介して輸送機械2bの圧力容器3bに収容される。
 一方で、二酸化炭素ガスとの間で熱交換された作動流体は、その少なくとも一部が気相とされ、タービン54に送られる。
The carbon dioxide gas compressed in the CO2 gas compression unit 83 is sent to the evaporator 53 and is heat exchanged with the liquid-phase working fluid introduced into the evaporator 53. The carbon dioxide gas, which has been heat exchanged with the liquid-phase working fluid and has a lower temperature, is accommodated in the pressure vessel 3b of the transport machine 2b via a delivery pipe.
On the other hand, at least a part of the working fluid that has exchanged heat with the carbon dioxide gas is turned into a gas phase and sent to the turbine 54 .
 タービン54は、蒸発器53から供給された気相の作動流体により回転し、回転運動エネルギーを生み出す。この回転運動エネルギーを発電機57が電力に変換することにより、発電が行われる。
 タービン54を通過した気相の作動流体は、凝縮器55に供給される。
The turbine 54 is rotated by the gas-phase working fluid supplied from the evaporator 53, and generates rotational kinetic energy. The generator 57 converts this rotational kinetic energy into electric power, thereby generating electricity.
The gas-phase working fluid that has passed through the turbine 54 is supplied to a condenser 55 .
 凝縮器55には、採取施設70から輸送機械2aにて輸送された天然ガスが供給される。
 タービン54を出た気相の作動流体は、凝縮器55に導入されて、より低温の天然ガスとの間で熱交換され、液相の作動流体とされる。
 熱交換された天然ガスは、凝縮器55から排出されて、ガスタービン81に送られる。
The condenser 55 is supplied with natural gas transported from the extraction facility 70 by the transport machine 2a.
The gaseous working fluid leaving the turbine 54 is introduced into the condenser 55 where it is subjected to heat exchange with lower temperature natural gas, thereby becoming a liquid-phase working fluid.
The heat-exchanged natural gas is discharged from the condenser 55 and sent to a gas turbine 81 .
 なお、本実施形態に係る熱交換部4、5は、上述した第3の実施形態に係る膨張機6、7と組み合わせて使用することができる。膨張機6、7を組み合わせることで、より多くの動力を取り出し、これらによる発電が可能となり、更なる生産コストの抑制を期待できる。 The heat exchange units 4 and 5 according to this embodiment can be used in combination with the expanders 6 and 7 according to the third embodiment described above. By combining the expanders 6 and 7, more power can be extracted and electricity can be generated, which is expected to further reduce production costs.
 このように、本実施形態に係るガス循環システム1は、作動流体と、天然ガス又は二酸化炭素ガスとの間で熱交換させるとともに、蒸発器43と凝縮器45との間に、気相の作動流体で駆動されるタービン44を備えることから、気相の作動流体の流通を利用してタービン44により得られる動力で発電を行えば、採取施設70や輸送機械2a、2bの設備等に電力を供給できることとなり、生産コストを抑えることができる。 In this way, the gas circulation system 1 according to this embodiment exchanges heat between the working fluid and natural gas or carbon dioxide gas, and has a turbine 44 driven by gas-phase working fluid between the evaporator 43 and the condenser 45. Therefore, by using the flow of the gas-phase working fluid to generate power using the power obtained by the turbine 44, it is possible to supply electricity to the collection facility 70 and the transport machines 2a and 2b, etc., thereby reducing production costs.
 また、作動流体と、天然ガス又は二酸化炭素ガスとの間で熱交換させるとともに、蒸発器53と凝縮器55との間に、気相の作動流体で駆動されるタービン54を備えることから、気相の作動流体の流通を利用してタービン54により得られる動力で発電を行えば、発電所80や輸送機械2a、2bの設備等に電力を供給できることとなり、生産コストを抑えることができる。 In addition, heat is exchanged between the working fluid and natural gas or carbon dioxide gas, and a turbine 54 driven by gas-phase working fluid is provided between the evaporator 53 and the condenser 55. By using the flow of gas-phase working fluid to generate power using the power obtained by the turbine 54, it becomes possible to supply electricity to the power plant 80 and the transport machinery 2a, 2b, etc., thereby reducing production costs.
(本発明の第5の実施形態)
 上記第1の実施形態に係るガス循環システムにおいては、採取施設で発生した天然ガス、発電所で発生した二酸化炭素ガスを、それぞれ発電所、採取施設に輸送機械にて輸送するのみとしていたが、これに限らず、図12及び図13に示すように、採取施設で発生した天然ガス、発電所で発生した二酸化炭素ガスを利用して、水素を製造する構成とすることもできる。
 なお、以下の説明では、上記各実施形態と重複する構成については、その説明を省略する。
Fifth embodiment of the present invention
In the gas circulation system according to the first embodiment described above, the natural gas generated at the collection facility and the carbon dioxide gas generated at the power plant are simply transported by transport machinery to the power plant and the collection facility, respectively. However, without being limited to this, as shown in Figures 12 and 13, the system can also be configured to produce hydrogen using the natural gas generated at the collection facility and the carbon dioxide gas generated at the power plant.
In the following description, the description of configurations that overlap with the above-described embodiments will be omitted.
 本実施形態に係るガス循環システム1は、採取施設70において、採取施設70により採取された天然ガスと、海から取水した海水との間で熱交換を行う熱交換部100と、熱交換部100から排出された海水を海水の飽和蒸気圧より低い圧力に減圧された所定の蒸発用空間に導入してフラッシュ蒸発を行わせる蒸発部110と、蒸発部110から排出された水蒸気と、輸送機械2bにて発電所80から輸送された二酸化炭素ガスとの間で熱交換を行う熱交換部120と、熱交換部120から排出され、淡水化された水を利用して水素ガスを製造する水素製造部130とを備える。 The gas circulation system 1 according to this embodiment includes a heat exchange unit 100 that performs heat exchange between the natural gas collected by the collection facility 70 and seawater taken from the sea in the collection facility 70, an evaporation unit 110 that introduces the seawater discharged from the heat exchange unit 100 into a predetermined evaporation space that has been decompressed to a pressure lower than the saturated vapor pressure of the seawater to perform flash evaporation, a heat exchange unit 120 that performs heat exchange between the water vapor discharged from the evaporation unit 110 and carbon dioxide gas transported from the power plant 80 by the transport machine 2b, and a hydrogen production unit 130 that produces hydrogen gas using the desalinated water discharged from the heat exchange unit 120.
 熱交換部100は、採取施設70により採取された天然ガスと、海から取水管101を通して取水した海水を熱交換させ、天然ガスを海水で冷却する一方で、海水を天然ガスで加熱する。
 冷却された天然ガスは、配送管を介して輸送機械2aの圧力容器3aに収容される。
 なお、天然ガスは、熱交換部100で冷却された後、圧縮されるようにしてもよい。すなわち、天然ガス圧縮部74が、熱交換部100と輸送機械2aとの間に配置されるようにすることもできる。
 また、加熱された海水は、蒸発部110に送られる。
The heat exchange section 100 exchanges heat between the natural gas extracted by the extraction facility 70 and seawater taken from the sea through an intake pipe 101, cooling the natural gas with the seawater while heating the seawater with the natural gas.
The cooled natural gas is stored in a pressure vessel 3a of a transportation machine 2a via a distribution pipe.
The natural gas may be compressed after being cooled in the heat exchange unit 100. That is, the natural gas compression unit 74 may be disposed between the heat exchange unit 100 and the transportation machine 2a.
The heated seawater is then sent to the evaporator section 110 .
 熱交換部100に導入される海水は、例えば、海洋表層の温海水とされる。
 なお、海水は、図示しない脱気装置により海水中の空気等を除去した後、熱交換部100に供給されるようにしてもよい。
The seawater introduced into the heat exchange section 100 is, for example, warm seawater from the ocean surface.
The seawater may be supplied to the heat exchange section 100 after air and the like contained in the seawater is removed by a deaeration device (not shown).
 蒸発部110は、熱交換部120に通じる蒸発用空間を内部に有し、この蒸発用空間を飽和蒸気圧より低い減圧状態とされる中空の減圧容器111と、減圧容器111内に配設され、減圧容器111の蒸発用空間に外部から導入された海水を霧状、水滴状、水膜状、水柱状等となるようにして噴射する噴射部112とを備える。
 蒸発部110は、噴射部112から噴射された海水を減圧容器111内の蒸発用空間でフラッシュ蒸発させることにより水蒸気を得る。
The evaporation section 110 has an evaporation space therein that communicates with the heat exchange section 120, and is equipped with a hollow reduced pressure vessel 111 in which this evaporation space is kept at a reduced pressure lower than the saturated vapor pressure, and an injection section 112 that is disposed within the reduced pressure vessel 111 and injects seawater introduced from the outside into the evaporation space of the reduced pressure vessel 111 in the form of a mist, water droplets, a water film, a water column, etc.
The evaporation section 110 obtains water vapor by flash evaporating the seawater injected from the injection section 112 in an evaporation space within the reduced pressure vessel 111 .
 また、蒸発部110の減圧容器111には、図示しない減圧排気装置が接続され、減圧容器111における蒸発用空間を、減圧容器111内で蒸発させようとする海水と同温度における水の飽和蒸気圧より低い圧力に調整し、減圧容器111内で海水中の水分が液相から気相に変化する(蒸発する)温度を大気圧における温度に比べて低くなるよう維持する仕組みとされる。
 これにより、減圧容器111内に導入された海水の一部が液相から気相に変化して淡水化されることとなる。
In addition, a pressure reduction exhaust device (not shown) is connected to the reduced pressure container 111 of the evaporation section 110, and the evaporation space in the reduced pressure container 111 is adjusted to a pressure lower than the saturated vapor pressure of water at the same temperature as the seawater to be evaporated in the reduced pressure container 111, and the temperature at which the water in the seawater changes from the liquid phase to the gas phase (evaporates) in the reduced pressure container 111 is maintained lower than the temperature at atmospheric pressure.
As a result, a portion of the seawater introduced into the reduced pressure vessel 111 changes from liquid phase to gas phase and is desalinated.
 熱交換部120は、蒸発部110から排出された水蒸気を、輸送機械2bにて発電所80から輸送された二酸化炭素ガスで直接的又は間接的に凝縮する一方で、発電所80から輸送された二酸化炭素ガスを、蒸発部110から排出された水蒸気で直接的又は間接的に加熱する。
 加熱された二酸化炭素ガスは、熱交換部120から排出されてCOガス圧入部75へ送られ、圧入井76を介して採取地点90に圧入される。
 凝縮された水(淡水)は、熱交換部120から排出されて、水素製造部130へ送られる。
The heat exchange section 120 directly or indirectly condenses the water vapor discharged from the evaporator section 110 with carbon dioxide gas transported from the power plant 80 by the transport machine 2b, while directly or indirectly heating the carbon dioxide gas transported from the power plant 80 with the water vapor discharged from the evaporator section 110.
The heated carbon dioxide gas is discharged from the heat exchange section 120 and sent to the CO2 gas injection section 75, and is injected into the collection site 90 via the injection well 76.
The condensed water (fresh water) is discharged from the heat exchange section 120 and sent to the hydrogen production section 130 .
 水素製造部130は、熱交換部120から排出された水が一時的に貯留される合流部131と、水を電気分解して水素を得る電解部132と、電解部132で生じた水素ガスから水を分離する第1気液分離器133と、第1気液分離器133から排出された水素ガスを回収する水素ガス回収部134と、電解部132で生じた酸素ガスから水を分離する第2気液分離器135とを備える。 The hydrogen production unit 130 includes a confluence unit 131 where the water discharged from the heat exchange unit 120 is temporarily stored, an electrolysis unit 132 that electrolyzes water to obtain hydrogen, a first gas-liquid separator 133 that separates water from the hydrogen gas generated in the electrolysis unit 132, a hydrogen gas recovery unit 134 that recovers the hydrogen gas discharged from the first gas-liquid separator 133, and a second gas-liquid separator 135 that separates water from the oxygen gas generated in the electrolysis unit 132.
 電解部132としては、公知のPEM(Polymer Electrolyte Membrane:固体高分子電解質膜)型水電解水素製造装置を採用することができるため、その詳細は省略するが、パーフルオロスルホン酸系高分子電解質膜やフッ素系高分子電解質膜のプロトン伝導性高分子膜を両面に、酸化イリジウム、白金系金属を電極触媒として接合したセルを直列に複数並設したものを使用することができる。陰極となる電極触媒からは水素ガスが発生し、陽極となる電極触媒からは酸素ガスが発生する。 The electrolysis unit 132 can be a known PEM (Polymer Electrolyte Membrane) type water electrolysis hydrogen production device, so details will be omitted, but it can be a series-arranged multiple cells in which a proton-conductive polymer membrane such as a perfluorosulfonic acid-based polymer electrolyte membrane or a fluorine-based polymer electrolyte membrane is bonded to both sides with iridium oxide or platinum-based metal as an electrode catalyst. Hydrogen gas is generated from the electrode catalyst that serves as the cathode, and oxygen gas is generated from the electrode catalyst that serves as the anode.
 電解部132から排出された水素ガスは、第1気液分離器133に送られる。
 第1気液分離器133は、電解部132から排出された水素ガスを水素ガスと水とに分離し、分離された水素ガスは水素ガス回収部134へ送られ、分離された水は再度循環ラインに戻されて、合流部131に送られ、熱交換部120から供給された水と混合される。
The hydrogen gas discharged from the electrolysis section 132 is sent to the first gas-liquid separator 133 .
The first gas-liquid separator 133 separates the hydrogen gas discharged from the electrolysis section 132 into hydrogen gas and water, and the separated hydrogen gas is sent to the hydrogen gas recovery section 134, while the separated water is returned to the circulation line and sent to the junction section 131, where it is mixed with the water supplied from the heat exchange section 120.
 電解部132から排出された酸素ガスは、第2気液分離器135に送られる。
 第2気液分離器135は、電解部132から排出された酸素ガスを酸素ガスと水とに分離し、分離された酸素ガスは図示しない酸素ガス回収部で回収される、又は大気中へと放出される。一方で、分離された水は、再度循環ラインに戻されて、合流部131に送られ、熱交換部120から供給された水と混合される。
The oxygen gas discharged from the electrolysis section 132 is sent to the second gas-liquid separator 135 .
The second gas-liquid separator 135 separates the oxygen gas discharged from the electrolysis unit 132 into oxygen gas and water, and the separated oxygen gas is recovered in an oxygen gas recovery unit (not shown) or released into the atmosphere. On the other hand, the separated water is returned to the circulation line again and sent to the junction unit 131, where it is mixed with the water supplied from the heat exchange unit 120.
 なお、水素製造部130は、第2気液分離器135と合流部131との間に、図示しない熱交換器、非再生型ポリッシャー、ファイナルフィルタなどを備えていてもよい。 The hydrogen production section 130 may also include a heat exchanger, a non-regenerative polisher, a final filter, etc., not shown, between the second gas-liquid separator 135 and the junction section 131.
 また、本実施形態に係るガス循環システム1は、発電所80において、発電所80から排出された二酸化炭素ガスと、海から取水した海水との間で熱交換を行う熱交換部140と、熱交換部140から排出された海水を海水の飽和蒸気圧より低い圧力に減圧された所定の蒸発用空間に導入してフラッシュ蒸発を行わせる蒸発部110と、蒸発部110から排出された水蒸気と、輸送機械2aにて採取施設70から輸送された天然ガスとの間で熱交換を行う熱交換部150と、熱交換部150から排出され、淡水化された水を利用して水素ガスを製造する水素製造部130とを備える。 The gas circulation system 1 according to this embodiment also includes a heat exchanger 140 in the power plant 80 that exchanges heat between carbon dioxide gas discharged from the power plant 80 and seawater taken from the sea, an evaporation unit 110 that introduces the seawater discharged from the heat exchanger 140 into a predetermined evaporation space that has been decompressed to a pressure lower than the saturated vapor pressure of the seawater to perform flash evaporation, a heat exchanger 150 that exchanges heat between the water vapor discharged from the evaporation unit 110 and natural gas transported from the extraction facility 70 by the transport machine 2a, and a hydrogen production unit 130 that produces hydrogen gas using the desalinated water discharged from the heat exchanger 150.
 熱交換部140は、発電所80から排出された二酸化炭素ガスを海から取水管141を通して取水した海水で直接的又は間接的に冷却する一方で、海から取水した海水を発電所80から排出された二酸化炭素ガスで直接的又は間接的に加熱する。
 冷却された二酸化炭素ガスは、配送管を介して輸送機械2bの圧力容器3bに収容される。
 なお、二酸化炭素ガスは、熱交換部140で冷却された後、圧縮されるようにしてもよい。すなわち、COガス圧縮部83が、熱交換部140と輸送機械2bとの間に配置されるようにすることもできる。
 また、加熱された海水は、蒸発部110に送られる。
The heat exchange section 140 directly or indirectly cools the carbon dioxide gas discharged from the power plant 80 with seawater taken from the sea through a water intake pipe 141, while directly or indirectly heating the seawater taken from the sea with the carbon dioxide gas discharged from the power plant 80.
The cooled carbon dioxide gas is stored in the pressure vessel 3b of the transport machine 2b via a delivery pipe.
The carbon dioxide gas may be compressed after being cooled in the heat exchanger 140. That is, the CO2 gas compressor 83 may be disposed between the heat exchanger 140 and the transport machine 2b.
The heated seawater is then sent to the evaporator section 110 .
 熱交換部150は、蒸発部110から排出された水蒸気を、輸送機械2aにて採取施設70から輸送された天然ガスで直接的又は間接的に凝縮させる一方で、採取施設70から輸送された天然ガスを、蒸発部110から排出された水蒸気で直接的又は間接的に加熱する。
 加熱された天然ガスは、熱交換部150から排出されてガスタービン81へ送られる。
 凝縮された水(淡水)は、熱交換部150から排出されて、水素製造部130へ送られる。
The heat exchange section 150 directly or indirectly condenses the water vapor discharged from the evaporation section 110 with the natural gas transported from the collection facility 70 by the transport machine 2a, while directly or indirectly heating the natural gas transported from the collection facility 70 with the water vapor discharged from the evaporation section 110.
The heated natural gas exits the heat exchange section 150 and is sent to the gas turbine 81 .
The condensed water (fresh water) is discharged from the heat exchange section 150 and sent to the hydrogen production section 130 .
 以上のように、天然ガス及び二酸化炭素ガスの熱エネルギーを利用して、海水を淡水化する蒸発部110と、淡水から水素ガスを製造する水素製造部130を備えることから、製造された水素ガスを燃料として使用することができることとなり、輸送機械2a、2bによる輸送中において、天然ガス又は二酸化炭素ガスが収容された圧力容器3a、3bを冷却するためのエネルギー源として使用することができる。 As described above, the system is equipped with an evaporation section 110 that desalinates seawater using thermal energy from natural gas and carbon dioxide gas, and a hydrogen production section 130 that produces hydrogen gas from fresh water, so the produced hydrogen gas can be used as fuel and can be used as an energy source for cooling pressure vessels 3a, 3b that contain natural gas or carbon dioxide gas during transportation by transport machines 2a, 2b.
 水素ガスは、採取施設70又は発電所80において電気エネルギーに変換し、輸送機械2a、2bに積み込んでもよいし、燃料電池とともにガス状態で輸送機械2a、2bに積み込むようにしてもよい。水素ガスから取り出したエネルギーは、圧力容器3a、3bの冷却等に使用することができる。 The hydrogen gas may be converted into electrical energy at the extraction facility 70 or power plant 80 and loaded onto the transport machines 2a and 2b, or may be loaded into the transport machines 2a and 2b in a gaseous state together with a fuel cell. The energy extracted from the hydrogen gas can be used for cooling the pressure vessels 3a and 3b, etc.
 なお、上記各実施形態では、天然ガスや二酸化炭素ガスを輸送機械2a、2bと採取施設70、発電所80との間で直接供給、受給するようにしていたが、各種ガスの貯留槽を経由して、輸送機械2a、2bと採取施設70、発電所80との間で供給、受給するようにしてもよい。例えば、天然ガスや二酸化炭素ガスを海上輸送とする場合、上記第2の実施形態においては、熱交換部4、5と輸送機械2a、2bとの間に天然ガス、二酸化炭素ガスの貯留槽を備えた船やはしけ等を海上に係留させ、この貯留槽を経由して熱交換部4、5と輸送機械2a、2bとの間で天然ガス、二酸化炭素ガスを供給、受給するようにしてもよい。これにより、連続して安定的に、天然ガスや二酸化炭素ガスの供給、受給を行うことができる。 In the above embodiments, natural gas and carbon dioxide gas are directly supplied and received between the transport machines 2a, 2b and the collection facility 70 or power plant 80, but they may be supplied and received between the transport machines 2a, 2b and the collection facility 70 or power plant 80 via storage tanks for various gases. For example, when natural gas or carbon dioxide gas is transported by sea, in the above second embodiment, a ship or barge equipped with a storage tank for natural gas or carbon dioxide gas may be moored at sea between the heat exchange units 4, 5 and the transport machines 2a, 2b, and natural gas and carbon dioxide gas may be supplied and received between the heat exchange units 4, 5 and the transport machines 2a, 2b via the storage tank. This allows natural gas and carbon dioxide gas to be continuously and stably supplied and received.
 また、上記各実施形態は、適宜組み合わせて使用することができる。 Furthermore, the above embodiments can be used in appropriate combinations.
1 ガス循環システム
2a、2b 輸送機械
3a、3b 圧力容器
4、5 熱交換部
6、7 膨張機
8 ガス圧縮部
40、50 第1の熱交換器
41、51 第2の熱交換器
42、52 ポンプ
43、53 蒸発器
44、54 タービン
45、55 凝縮器
46、56 ポンプ
47、57 発電機
60~63 接続部
70 採取施設
71 生産井
72 天然ガス採取部
73 天然ガス精製部
74 天然ガス圧縮部
75 COガス圧入部
76 圧入井
80 発電所
81 ガスタービン
81a 燃焼器
81b 空気圧縮機
81c タービン
82 COガス回収部
83 COガス圧縮部
84 発電機
90 採取地点
100、120、140、150 熱交換部
101、141 取水管
110 蒸発部
111 減圧容器
112 噴射部
130 水素製造部
131 合流部
132電解部
133 第1気液分離器
134 水素ガス回収部
135 第2気液分離器

 
1 Gas circulation system 2a, 2b Transport machinery 3a, 3b Pressure vessel 4, 5 Heat exchange section 6, 7 Expander 8 Gas compression section 40, 50 First heat exchanger 41, 51 Second heat exchanger 42, 52 Pump 43, 53 Evaporator 44, 54 Turbine 45, 55 Condenser 46, 56 Pump 47, 57 Generator 60-63 Connection section 70 Collection facility 71 Production well 72 Natural gas collection section 73 Natural gas refining section 74 Natural gas compression section 75 CO 2 gas injection section 76 Injection well 80 Power plant 81 Gas turbine 81a Combustor 81b Air compressor 81c Turbine 82 CO 2 gas recovery section 83 CO 2 gas compression section 84 Generator 90 Collection point 100, 120, 140, 150 Heat exchange section 101, 141 Water intake pipe 110, evaporation section 111, reduced pressure vessel 112, injection section 130, hydrogen production section 131, junction section 132, electrolysis section 133, first gas-liquid separator 134, hydrogen gas recovery section 135, second gas-liquid separator

Claims (14)

  1.  採取地点で天然ガスを採取する採取施設から、天然ガスを利用する天然ガス利用施設まで、前記採取施設により採取された前記天然ガスを輸送する第1の輸送手段と、
     前記天然ガス利用施設の利用過程において排出される二酸化炭素ガスを前記天然ガス利用施設から前記採取施設又は二酸化炭素利用施設まで輸送する第2の輸送手段とを備え、
     前記第1の輸送手段が、前記天然ガスを圧縮した状態で前記採取施設から前記天然ガス利用施設まで輸送し、
     前記第2の輸送手段が、前記二酸化炭素ガスを圧縮した状態で前記天然ガス利用施設から前記採取施設又は前記二酸化炭素利用施設まで輸送し、
     前記採取施設による前記採取地点、又は前記二酸化炭素利用施設への供給用ガスとして、前記第2の輸送手段にて輸送された前記二酸化炭素ガスを供給することを
     特徴とするガス循環システム。
    a first transport means for transporting the natural gas collected by a collection facility from the collection facility that collects the natural gas at a collection point to a natural gas utilization facility that utilizes the natural gas;
    and a second transport means for transporting carbon dioxide gas discharged during the utilization process of the natural gas utilization facility from the natural gas utilization facility to the collection facility or the carbon dioxide utilization facility;
    the first transport means transports the natural gas in a compressed state from the extraction facility to the natural gas utilization facility;
    The second transportation means transports the carbon dioxide gas in a compressed state from the natural gas utilization facility to the collection facility or the carbon dioxide utilization facility;
    A gas circulation system, comprising: a carbon dioxide gas transported by the second transport means as a supply gas to the collection site by the collection facility or to the carbon dioxide utilization facility.
  2.  請求項1に記載のガス循環システムにおいて、
     前記第1の輸送手段が、前記天然ガスを超臨界状態で前記採取施設から前記天然ガス利用施設まで輸送し、
     前記第2の輸送手段が、前記二酸化炭素ガスを超臨界状態で前記天然ガス利用施設から前記採取施設又は前記二酸化炭素利用施設まで輸送することを
     特徴とするガス循環システム。
    2. The gas circulation system according to claim 1,
    the first transport means transports the natural gas in a supercritical state from the extraction facility to the natural gas utilization facility;
    The gas circulation system, wherein the second transport means transports the carbon dioxide gas in a supercritical state from the natural gas utilization facility to the extraction facility or the carbon dioxide utilization facility.
  3.  請求項1に記載のガス循環システムにおいて、
     前記採取施設で採取された前記天然ガスと、前記天然ガス利用施設から前記第2の輸送手段で輸送された前記二酸化炭素ガスとの間で熱交換させる熱交換手段を備えることを
     特徴とするガス循環システム。
    2. The gas circulation system according to claim 1,
    A gas circulation system comprising a heat exchange means for exchanging heat between the natural gas extracted at the extraction facility and the carbon dioxide gas transported from the natural gas utilization facility by the second transport means.
  4.  請求項3に記載のガス循環システムにおいて、
     前記熱交換手段が、作動流体と前記天然ガスとの間で熱交換させ、作動流体を蒸発させて気相の作動流体を得る蒸発手段と、気相の作動流体を導入されて作動し、作動流体の保有する熱エネルギーを動力に変換する動力変換手段と、前記動力変換手段から排出された気相の作動流体と前記二酸化炭素ガスとの間で熱交換させることで作動流体を凝縮させて液相とする凝縮手段とを備えることを
     特徴とするガス循環システム。
    4. The gas circulation system according to claim 3,
    the heat exchange means comprising: evaporation means for effecting heat exchange between the working fluid and the natural gas and evaporating the working fluid to obtain a gaseous working fluid; power conversion means which is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power; and condensation means for effecting heat exchange between the gaseous working fluid discharged from the power conversion means and the carbon dioxide gas to condense the working fluid into a liquid phase.
  5.  請求項1に記載のガス循環システムにおいて、
     前記天然ガス利用施設で生じた前記二酸化炭素ガスと、前記採取施設から前記第1の輸送手段で輸送された前記天然ガスとの間で熱交換させる熱交換手段を備えることを
     特徴とするガス循環システム。
    2. The gas circulation system according to claim 1,
    A gas circulation system comprising a heat exchange means for exchanging heat between the carbon dioxide gas generated in the natural gas utilization facility and the natural gas transported from the collection facility by the first transport means.
  6.  請求項5に記載のガス循環システムにおいて、
     前記熱交換手段が、作動流体と前記二酸化炭素ガスとの間で熱交換させ、作動流体を蒸発させて気相の作動流体を得る蒸発手段と、気相の作動流体を導入されて作動し、作動流体の保有する熱エネルギーを動力に変換する動力変換手段と、前記動力変換手段から排出された気相の作動流体と前記天然ガスとの間で熱交換させることで凝縮させて液相とする凝縮手段とを備えることを
     特徴とするガス循環システム。
    6. The gas circulation system according to claim 5,
    the heat exchange means comprising: evaporation means for effecting heat exchange between the working fluid and the carbon dioxide gas and evaporating the working fluid to obtain a gaseous working fluid; power conversion means which is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power; and condensation means for effecting heat exchange between the gaseous working fluid discharged from the power conversion means and the natural gas, thereby condensing it into a liquid phase.
  7.  請求項1に記載のガス循環システムにおいて、
     前記第1の輸送手段又は前記第2の輸送手段が、前記天然ガス及び/又は前記二酸化炭素ガスを少なくとも繊維強化プラスチックで形成される圧力容器に収容して輸送することを
     特徴とするガス循環システム。
    2. The gas circulation system according to claim 1,
    A gas circulation system, characterized in that the first transportation means or the second transportation means transports the natural gas and/or the carbon dioxide gas in a pressure vessel formed of at least fiber reinforced plastic.
  8.  採取施設で採取された天然ガスを圧縮した状態で前記採取施設から天然ガス利用施設まで輸送する、及び/又は、前記天然ガス利用施設の利用過程において排出される二酸化炭素ガスを圧縮した状態で前記天然ガス利用施設から前記採取施設又は二酸化炭素利用施設まで輸送することを
     特徴とする輸送機械。
    A transport machine characterized by transporting natural gas extracted at an extraction facility from the extraction facility to a natural gas utilization facility in a compressed state, and/or transporting carbon dioxide gas emitted in the process of utilizing the natural gas utilization facility from the natural gas utilization facility to the extraction facility or the carbon dioxide utilization facility in a compressed state.
  9.  請求項8に記載の輸送機械において、
     前記採取施設で採取された前記天然ガスを超臨界状態で前記採取施設から前記天然ガス利用施設まで輸送する、及び/又は、前記天然ガス利用施設の利用過程において排出される前記二酸化炭素ガスを超臨界状態で前記天然ガス利用施設から前記採取施設又は前記二酸化炭素利用施設まで輸送することを
     特徴とする輸送機械。
    9. The transport machine according to claim 8,
    A transportation machine that transports the natural gas collected at the collection facility from the collection facility to the natural gas utilization facility in a supercritical state, and/or transports the carbon dioxide gas discharged during the utilization process of the natural gas utilization facility from the natural gas utilization facility to the collection facility or the carbon dioxide utilization facility in a supercritical state.
  10.  請求項8に記載の輸送機械において、
     前記採取施設で採取された前記天然ガスと前記天然ガス利用施設から輸送された前記二酸化炭素ガスとの間で熱交換させる熱交換部を備えることを
     特徴とする輸送機械。
    9. The transport machine according to claim 8,
    a heat exchange unit that exchanges heat between the natural gas extracted at the extraction facility and the carbon dioxide gas transported from the natural gas utilization facility.
  11.  請求項10に記載の輸送機械において、
     前記熱交換部が、作動流体と前記天然ガスとの間で熱交換させ、作動流体を蒸発させて気相の作動流体を得る蒸発器と、気相の作動流体を導入されて作動し、作動流体の保有する熱エネルギーを動力に変換するタービンと、前記タービンから排出された気相の作動流体と前記二酸化炭素ガスとの間で熱交換させることで作動流体を凝縮させて液相とする凝縮器とを備えることを
     特徴とする輸送機械。
    The transport machine according to claim 10,
    the heat exchange unit comprises an evaporator that performs heat exchange between the working fluid and the natural gas and evaporates the working fluid to obtain a gaseous working fluid, a turbine that is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power, and a condenser that performs heat exchange between the gaseous working fluid discharged from the turbine and the carbon dioxide gas to condense the working fluid into a liquid phase.
  12.  請求項8に記載の輸送機械において、
     前記天然ガス利用施設で生じた前記二酸化炭素ガスと前記採取施設から輸送された前記天然ガスとの間で熱交換させる熱交換部を備えることを
     特徴とする輸送機械。
    9. The transport machine according to claim 8,
    A transportation machine comprising: a heat exchange unit for exchanging heat between the carbon dioxide gas generated in the natural gas utilization facility and the natural gas transported from the natural gas extraction facility.
  13.  請求項12に記載の輸送機械において、
     前記熱交換部が、作動流体と前記二酸化炭素ガスとの間で熱交換させ、作動流体を蒸発させて気相の作動流体を得る蒸発器と、気相の作動流体を導入されて作動し、作動流体の保有する熱エネルギーを動力に変換するタービンと、前記タービンから排出された気相の作動流体と前記天然ガスとの間で熱交換させることで凝縮させて液相とする凝縮器とを備えることを
     特徴とする輸送機械。
    13. The transport machine according to claim 12,
    the heat exchange unit comprises an evaporator that performs heat exchange between the working fluid and the carbon dioxide gas and evaporates the working fluid to obtain a gaseous working fluid, a turbine that is operated by receiving the gaseous working fluid and converts the thermal energy contained in the working fluid into power, and a condenser that performs heat exchange between the gaseous working fluid discharged from the turbine and the natural gas, thereby condensing it into a liquid phase.
  14.  請求項8に記載の輸送機械において、
     前記天然ガス及び/又は前記二酸化炭素ガスを少なくとも繊維強化プラスチックで形成される圧力容器に収容して輸送することを
     特徴とする輸送機械。

     
    9. The transport machine according to claim 8,
    A transportation machine, characterized in that the natural gas and/or the carbon dioxide gas is accommodated in a pressure vessel formed at least of fiber reinforced plastic and transported.

PCT/JP2023/045507 2023-02-08 2023-12-19 Gas circulation system and transportation machine WO2024166542A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-017417 2023-02-08
JP2023017417 2023-02-08

Publications (1)

Publication Number Publication Date
WO2024166542A1 true WO2024166542A1 (en) 2024-08-15

Family

ID=92262266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/045507 WO2024166542A1 (en) 2023-02-08 2023-12-19 Gas circulation system and transportation machine

Country Status (1)

Country Link
WO (1) WO2024166542A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061293A (en) * 1998-08-18 2000-02-29 Toshiba Corp System utilizing methane hydrate as fuel
JP2010209591A (en) * 2009-03-10 2010-09-24 Tohoku Univ Method and system for power generation with low exhaustion of carbon dioxide
JP2016504516A (en) * 2012-11-12 2016-02-12 テラコー インコーポレイテッド Carbon dioxide based enhanced geothermal energy power generation system and method
JP2016223064A (en) * 2015-05-27 2016-12-28 国立大学法人東北大学 Carbon dioxide low emission power generating method and carbon dioxide low emission power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061293A (en) * 1998-08-18 2000-02-29 Toshiba Corp System utilizing methane hydrate as fuel
JP2010209591A (en) * 2009-03-10 2010-09-24 Tohoku Univ Method and system for power generation with low exhaustion of carbon dioxide
JP2016504516A (en) * 2012-11-12 2016-02-12 テラコー インコーポレイテッド Carbon dioxide based enhanced geothermal energy power generation system and method
JP2016223064A (en) * 2015-05-27 2016-12-28 国立大学法人東北大学 Carbon dioxide low emission power generating method and carbon dioxide low emission power generation system

Similar Documents

Publication Publication Date Title
CN113195961B (en) For transporting liquid hydrocarbons and CO 2 To pass through CO 2 Process and method for capturing hydrogen gas
US6907735B2 (en) Hydrogen fueled electrical generator system and method thereof
KR101826678B1 (en) Combined floating marine structure
CN109386316B (en) LNG cold energy and BOG combustion energy combined utilization system and method
KR100743904B1 (en) Lng regasification plant in lngc and method thereof
KR20200121934A (en) Hydrogen and Liquefied Gas Carrier
MX2008015857A (en) Process and plant for the vaporization of liquefied natural gas and storage thereof.
NO345882B1 (en) Thermal power plant without CO2 emissions
US20240372370A1 (en) Green Energy Transportation System and Energy Transportation Method
KR20180043525A (en) Power generating and desalination composite plant
KR101577803B1 (en) Combined floating marine structure
KR101911119B1 (en) Fuel Cell Combination Hybrid System
JP3231535U (en) LNG Evaporative Gas Reliquefaction System for Small and Medium-sized LNG Fuel Propulsion Ships
WO2024166542A1 (en) Gas circulation system and transportation machine
US20140260253A1 (en) Thermal energy conversion system for regasification of cryogenic liquids
KR101637372B1 (en) Combined floating marine structure
KR102436053B1 (en) Gas treatment system and ship having the same
KR101616333B1 (en) Lng regasification device
KR100976599B1 (en) Fuel gas supply system of lng carrier
KR20220081754A (en) Boil-Off Gas Eco-Fuelizating System and Method
KR20220052382A (en) Hydrogen-floating production and treatment system
KR102685158B1 (en) Waste Heat Recovery System For Ship
DK181364B1 (en) Device for supplying electricity to a unit in a vessel
JP7134450B1 (en) Buoyancy power generation device using air bubbles and buoyancy power generation method using air bubbles
JP2010062192A (en) Liquefaction and storage of natural energy utilizing dimethylether (dme)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23921361

Country of ref document: EP

Kind code of ref document: A1