[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024166389A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2024166389A1
WO2024166389A1 PCT/JP2023/004625 JP2023004625W WO2024166389A1 WO 2024166389 A1 WO2024166389 A1 WO 2024166389A1 JP 2023004625 W JP2023004625 W JP 2023004625W WO 2024166389 A1 WO2024166389 A1 WO 2024166389A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
display device
tft
semiconductor
Prior art date
Application number
PCT/JP2023/004625
Other languages
French (fr)
Japanese (ja)
Inventor
忠芳 宮本
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2023/004625 priority Critical patent/WO2024166389A1/en
Publication of WO2024166389A1 publication Critical patent/WO2024166389A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a display device.
  • TFTs thin film transistors
  • semiconductor layers that make up the TFTs include semiconductor layers made of polysilicon with high mobility and semiconductor layers made of oxide semiconductors such as In-Ga-Zn-O with low leakage current.
  • Patent Document 1 discloses a display device having a hybrid structure in which a first TFT using a polysilicon semiconductor and a second TFT using an oxide semiconductor are formed on a substrate.
  • the semiconductor layer made of an oxide semiconductor is electrically connected via a metal layer that contacts the semiconductor layer, so that contact holes for electrically connecting to the semiconductor layer made of a polysilicon semiconductor and the semiconductor layer made of an oxide semiconductor can be formed at the same time, and electrical connection to the semiconductor layer made of an oxide semiconductor can be easily made.
  • the wiring cross capacitance at the intersection of the wiring (e.g., gate line) formed in the same layer and made of the same material as the gate electrode of the second TFT using an oxide semiconductor and the wiring (e.g., source line) formed in the same layer and made of the same material as the source electrode and drain electrode of the second TFT tends to be large, so there is room for improvement.
  • the present invention was made in consideration of these points, and its purpose is to facilitate electrical connection with a semiconductor layer made of an oxide semiconductor and to reduce the wiring cross capacitance.
  • the display device is a display device comprising a base substrate, and a thin film transistor layer provided on the base substrate, in which a first metal film, a first inorganic insulating film, a first semiconductor film made of polysilicon, a second inorganic insulating film, a second metal film, a third inorganic insulating film, a third metal film, a second semiconductor film made of an oxide semiconductor, a fourth inorganic insulating film, and a fourth metal film are laminated in this order, and the thin film transistor layer is provided with a first thin film transistor having a first semiconductor layer formed by the first semiconductor film, and a second thin film transistor having a second semiconductor layer formed by the second semiconductor film, for each sub-pixel constituting a display area, and the first thin film transistor is provided with a first semiconductor layer having a first conductor region and a second conductor region spaced apart from each other and a first channel region defined between the first conductor region and the second conductor region, and
  • the second thin film transistor includes a first gate electrode formed of the second metal film and provided through an inorganic insulating film, a first terminal electrode and a second terminal electrode provided by the third metal film so as to be spaced apart from each other and electrically connected to the first conductor region and the second conductor region, respectively.
  • the second thin film transistor includes the second semiconductor layer in which the third conductor region and the fourth conductor region are defined so as to be spaced apart from each other and a second channel region is defined between the third conductor region and the fourth conductor region, a second gate electrode provided on the second semiconductor layer through the fourth inorganic insulating film and formed of the fourth metal film, and a third terminal electrode and a fourth terminal electrode provided by the third metal film so as to be spaced apart from each other and electrically connected to the third conductor region and the fourth conductor region, respectively.
  • the display region is characterized in that a plurality of wirings extending parallel to each other are provided by the first metal film.
  • the present invention makes it easy to establish electrical connection with a semiconductor layer made of an oxide semiconductor and reduces the wiring cross capacitance.
  • FIG. 1 is a plan view showing a schematic configuration of an organic EL display device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of a display region of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a display region of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 4 is an equivalent circuit diagram of a TFT layer constituting the organic EL display device according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a light emission control TFT 9f and an anode discharge TFT 9g that constitute the TFT layer of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 1 is a plan view showing a schematic configuration of an organic EL display device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of a display region of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a writing TFT 9c constituting a TFT layer of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a power supply TFT 9e that constitutes a TFT layer of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of an initialization TFT 9a constituting a TFT layer of the organic EL display device according to the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing an organic EL layer constituting the organic EL display device according to the first embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a display region of an organic EL display device according to a second embodiment of the present invention.
  • First Embodiment 1 to 9 show a first embodiment of a display device according to the present invention.
  • an organic EL display device having an organic EL element layer is exemplified as a display device having a light emitting element layer.
  • FIG. 1 is a plan view showing a schematic configuration of an organic EL display device 50a of this embodiment.
  • FIGS. 2 and 3 are a plan view and a cross-sectional view of a display region D of the organic EL display device 50a.
  • FIG. 4 is an equivalent circuit diagram of a TFT layer 30a constituting the organic EL display device 50a.
  • FIG. 5 is a cross-sectional view of a light emission control TFT 9f and an anode discharge TFT 9g constituting the TFT layer 30a.
  • FIG. 6 is a cross-sectional view of a write TFT 9c constituting the TFT layer 30a.
  • FIG. 7 is a cross-sectional view of a power supply TFT 9e constituting the TFT layer 30a.
  • FIG. 8 is a cross-sectional view of an initialization TFT 9a constituting the TFT layer 30a.
  • FIG. 9 is a cross-sectional view showing an organic EL layer 33 constituting the organic EL display device 50a.
  • the organic EL display device 50a includes, for example, a rectangular display area D for displaying images, and a frame area F provided around the periphery of the display area D.
  • a rectangular display area D is illustrated, but this rectangular shape also includes, for example, an approximately rectangular shape with arc-shaped sides, arc-shaped corners, or a shape with a notch in one of the sides.
  • a plurality of sub-pixels P are arranged in a matrix.
  • a sub-pixel P having a red light-emitting region Er for displaying red a sub-pixel P having a green light-emitting region Eg for displaying green
  • a sub-pixel P having a blue light-emitting region Eb for displaying blue are arranged adjacent to each other.
  • one pixel is composed of three adjacent sub-pixels P having a red light-emitting region Er, a green light-emitting region Eg, and a blue light-emitting region Eb.
  • a terminal portion T is provided at the end of the frame region F on the positive side in the X direction in FIG. 1 so as to extend in one direction (the Y direction in FIG. 1).
  • a folding portion B is provided in the frame region F, between the display region D and the terminal portion T, extending in one direction (the Y direction in FIG. 1) that can be folded, for example, 180° (in a U-shape) with the Y direction in FIG. as the folding axis.
  • the organic EL display device 50a includes a resin substrate 10 provided as a base substrate, a TFT layer 30a provided on the resin substrate 10, an organic EL element layer 40 provided as a light emitting element layer on the TFT layer 30a, and a sealing film 45 provided on the organic EL element layer 40.
  • the resin substrate 10 is made of an organic resin material such as polyimide resin.
  • the TFT layer 30a includes a first base coat film 11 and a second base coat film 13 provided in order on the resin substrate 10, four first TFTs 9A, three second TFTs 9B, and one capacitor 9h (see FIG. 4) provided for each subpixel P on the second base coat film 13, and a second interlayer insulating film 22 and a planarization film 23 provided in order on each of the first TFTs 9A, each of the second TFTs 9B, and each of the capacitors 9h.
  • the TFT layer 30a is provided with a plurality of gate lines 21g extending parallel to each other in the X direction in the figure. Also, as shown in FIG.
  • the TFT layer 30a is provided with a plurality of light emission control lines 21e extending parallel to each other in the X direction in the figure. Also, as shown in FIG. 2, the TFT layer 30a is provided with a plurality of second initialization power lines 16i extending parallel to each other in the X direction in the figure. As shown in FIG. 2, each light emission control line 21e is provided adjacent to each gate line 21g and each second initialization power line 16i. As shown in FIG. 2, the TFT layer 30a is provided with a plurality of source lines 12f as a plurality of wirings that extend parallel to each other in the Y direction in the figure. As shown in FIG. 2, the TFT layer 30a is provided with a plurality of power lines 12g as a plurality of wirings that extend parallel to each other in the Y direction in the figure. As shown in FIG. 2, each power line 12g is provided adjacent to each source line 12f.
  • a first base coat film 11, a first metal film, a second base coat film (first inorganic insulating film) 13, a first semiconductor film, a first gate insulating film (second inorganic insulating film) 15, a second metal film, a first interlayer insulating film (third inorganic insulating film) 17, a third metal film, a second semiconductor film, a second gate insulating film (fourth inorganic insulating film) 20, a fourth metal film, a second interlayer insulating film (fifth inorganic insulating film) 22, and a planarization film 23 are laminated in this order on a resin substrate 10.
  • the source line 12f and the power line 12g are formed of the first metal film.
  • the second initialization power line 16i is formed of the second metal film.
  • the gate line 21g and the light emission control line 21e are formed of the fourth metal film.
  • the second initialization power line 16i is formed from the second metal film.
  • the second initialization power line may be formed from the third metal film. In this case, the second initialization power line is spaced apart from the source line 12f and the power line 12g in the thickness direction more than when the second initialization power line is formed from the second metal film. This makes it possible to reduce the wiring cross capacitance between the second initialization power line and the source line 12f and the power line 12g.
  • the first base coat film 11, the second base coat film 13, the first gate insulating film 15, the first interlayer insulating film 17, the second gate insulating film 20 and the second interlayer insulating film 22 are each composed of a single layer or a laminated film of an inorganic insulating film such as silicon nitride, silicon oxide, silicon oxynitride, etc.
  • the side of the first interlayer insulating film 17 facing the second semiconductor layer 19a (described later) and the side of the second gate insulating film 20 facing the second semiconductor layer 19a are each composed of, for example, a silicon oxide film.
  • the first TFT 9A includes a first semiconductor layer 14a provided on the second base coat film 13, a first gate electrode 16a provided on the first semiconductor layer 14a via a first gate insulating film 15, and a first terminal electrode 18a and a second terminal electrode 18b provided on the first interlayer insulating film 17 so as to be spaced apart from each other.
  • the first semiconductor layer 14a is formed by the first semiconductor film made of polysilicon such as LTPS (low temperature polysilicon), and as shown in FIG. 3, includes a first conductor region 14aa and a second conductor region 14ab that are spaced apart from each other, and a first channel region 14ac that is defined between the first conductor region 14aa and the second conductor region 14ab.
  • LTPS low temperature polysilicon
  • the first gate electrode 16a is provided so as to overlap the first channel region 14ac of the first semiconductor layer 14a, and is configured to control the conduction between the first conductor region 14aa and the second conductor region 14ab of the first semiconductor layer 14a.
  • the first gate electrode 16a is formed of the second metal film, similar to the second initialization power line 16i.
  • the first terminal electrode 18a and the second terminal electrode 18b are electrically connected to the first conductor region 14aa and the second conductor region 14ab of the first semiconductor layer 14a, respectively, through contact holes formed in the laminated film of the first gate insulating film 15 and the first interlayer insulating film 17.
  • the first terminal electrode 18a and the second terminal electrode 18b are formed from the third metal film.
  • the second TFT 9B includes a second semiconductor layer 19a provided on the first interlayer insulating film 17, a second gate electrode 21a provided on the second semiconductor layer 19a via a second gate insulating film 20, and a third terminal electrode 18c and a fourth terminal electrode 18d provided on the first interlayer insulating film 17 so as to be spaced apart from each other via the second semiconductor layer 19a.
  • the second semiconductor layer 19a is formed of a second semiconductor film made of an oxide semiconductor such as In-Ga-Zn-O, and includes a third conductor region 19aa and a fourth conductor region 19ab that are defined to be spaced apart from each other, and a second channel region 19ac that is defined between the third conductor region 19aa and the fourth conductor region 19ab, as shown in FIG. 3. Also, on the resin substrate 10 side of the second semiconductor layer 19a, a lower light-shielding layer 12a formed of the first metal film is provided, as shown in FIG. 3. The lower light-shielding layer 12a is provided so as to overlap the second semiconductor layer 19a of the second TFT 9B in a plan view.
  • oxide semiconductor such as In-Ga-Zn-O
  • the In-Ga-Zn-O semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc), and the ratio (composition ratio) of In, Ga, and Zn is not particularly limited.
  • the In-Ga-Zn-O-based semiconductor may be amorphous or crystalline.
  • As the crystalline In-Ga-Zn-O-based semiconductor a crystalline In-Ga-Zn-O-based semiconductor in which the c-axis is oriented approximately perpendicular to the layer surface is preferable.
  • another oxide semiconductor may be included.
  • an In-Sn-Zn-O-based semiconductor for example, In 2 O 3 -SnO 2 -ZnO; InSnZnO
  • the In-Sn-Zn-O-based semiconductor is a ternary oxide of In (indium), Sn (tin) and Zn (zinc).
  • oxide semiconductors may include In-Al-Zn-O based semiconductors, In-Al-Sn-Zn-O based semiconductors, Zn-O based semiconductors, In-Zn-O based semiconductors, Zn-Ti-O based semiconductors, Cd-Ge-O based semiconductors, Cd-Pb-O based semiconductors, CdO (cadmium oxide), Mg-Zn-O based semiconductors, In-Ga-Sn-O based semiconductors, In-Ga-O based semiconductors, Zr-In-Zn-O based semiconductors, Hf-In-Zn-O based semiconductors, Al-Ga-Zn-O based semiconductors, Ga-Zn-O based semiconductors, In-Ga-Zn-Sn-O based semiconductors, InGaO 3 (ZnO) 5 , magnesium zinc oxide (Mg x Zn 1-x O), cadmium zinc oxide (Cd x Zn 1-x O), and the
  • ZnO in an amorphous state, a polycrystalline state, a microcrystalline state in which the amorphous state and the polycrystalline state are mixed, or a semiconductor in which no impurity element is added may be used, to which one or more impurity elements selected from among group 1 elements, group 13 elements, group 14 elements, group 15 elements, group 17 elements, and the like are added.
  • the second gate electrode 21a is provided so as to overlap the second channel region 19ac of the second semiconductor layer 19a, and is configured to control the conduction between the third conductor region 19aa and the fourth conductor region 19ab of the second semiconductor layer 19a.
  • the second gate electrode 21a is formed of the fourth metal film, similar to the gate line 21g and the light emission control line 21e.
  • the third terminal electrode 18c and the fourth terminal electrode 18d are in contact with the first interlayer insulating film 17 side of the third conductor region 19aa of the second semiconductor layer 19a and the first interlayer insulating film 17 side of the fourth conductor region 19ab, respectively, and are electrically connected to the third conductor region 19aa and the fourth conductor region 19ab of the second semiconductor layer 19a, respectively.
  • the third terminal electrode 18c and the fourth terminal electrode 18d are formed of the third metal film, similar to the first terminal electrode 18a and the second terminal electrode 18b.
  • the four first TFTs 9A having a first semiconductor layer 14a formed of polysilicon are exemplified by a writing TFT 9c, a driving TFT 9d, a power supply TFT 9e, and a light emission control TFT 9f, which will be described later, and the three second TFTs 9B having a second semiconductor layer 19a formed of an oxide semiconductor are exemplified by an initialization TFT 9a, a compensation TFT 9b, and an anode discharge TFT 9g, which will be described later (see FIG. 4).
  • a writing TFT 9c exemplified by a writing TFT 9c, a driving TFT 9d, a power supply TFT 9e, and a light emission control TFT 9f, which will be described later
  • the three second TFTs 9B having a second semiconductor layer 19a formed of an oxide semiconductor are exemplified by an initialization TFT 9a, a compensation TFT 9b, and an anode discharge TFT 9g, which will be described
  • the equivalent circuit diagram of FIG. 4 shows the pixel circuit of the sub-pixel P in the nth row and mth column, but also includes a part of the pixel circuit of the sub-pixel P in the (n-1)th row and mth column.
  • the equivalent circuit diagram of FIG. 4 shows the pixel circuit of the sub-pixel P in the nth row and mth column, but also includes a part of the pixel circuit of the sub-pixel P in the (n-1)th row and mth column.
  • the power supply line 12g that supplies the high power supply voltage ELVDD also serves as the first initialization power supply line, but the power supply line 12g and the first initialization power supply line may be provided separately.
  • the same voltage as the low power supply voltage ELVSS is input to the second initialization power supply line 16i, but this is not limited thereto, and a voltage different from the low power supply voltage ELVSS that turns off the organic EL element 35 described later may be input.
  • the initialization TFT 9a has its second gate electrode 21a electrically connected to the gate line 21g (n-1) of the previous stage (n-1 stage), its third terminal electrode 18c electrically connected to the lower conductive layer of the capacitor 9h described below, the third terminal electrode (18c) of the compensation TFT 9b, and the first gate electrode (16a) of the drive TFT 9d, and its fourth terminal electrode 18d electrically connected to the power line 12g.
  • the compensation TFT 9b has its second gate electrode (21a) electrically connected to the gate line 21g(n) of its own stage (nth stage), its third terminal electrode (18c) electrically connected to the lower conductive layer of the capacitor 9h described below, the third terminal electrode (18c) of the initialization TFT 9a, and the first gate electrode (16a) of the driving TFT 9d, and its fourth terminal electrode (18d) electrically connected to the second terminal electrode (18b) of the power supply TFT 9e and the first terminal electrode (18a) of the driving TFT 9d.
  • the first gate electrode 16a of the write TFT 9c is electrically connected to the gate line 21g(n) of its own stage (nth stage), its first terminal electrode 18a is electrically connected to the corresponding source line 12f, and its second terminal electrode 18b is electrically connected to the second terminal electrode (18b) of the drive TFT 9d and the first terminal electrode (18a) of the emission control TFT 9f.
  • the driving TFT 9d has its first gate electrode (16a) electrically connected to the third terminal electrodes (18c) of the initialization TFT 9a and the compensation TFT 9b, and to the lower conductive layer of the capacitor 9h described later, its first terminal electrode (18a) electrically connected to the fourth terminal electrode (18d) of the compensation TFT 9b and the second terminal electrode (18b) of the power supply TFT 9e, and its second terminal electrode (18b) electrically connected to the second terminal electrode (18b) of the writing TFT 9c and the first terminal electrode (18a) of the emission control TFT 9f.
  • the driving TFT 9d is configured to control the drive current of the organic EL element 35.
  • the power supply TFT 9e has its first gate electrode 16a electrically connected to the emission control line 21e of its own stage (nth stage), its first terminal electrode 18a electrically connected to the power supply line 12g, and its second terminal electrode 18b electrically connected to the first terminal electrode (18a) of the driving TFT 9d and the fourth terminal electrode (18d) of the compensation TFT 9b.
  • the first gate electrode 16a of the emission control TFT 9f is electrically connected to the emission control line 21e of its own row (nth row)
  • the first terminal electrode 18a is electrically connected to the second terminal electrodes (18b) of the drive TFT 9d and the write TFT 9c
  • the second terminal electrode 18b is electrically connected via the connection electrode 18j to the third terminal electrode 18c of the anode discharge TFT 9g, the upper conductive layer of the capacitor 9h described later, and the first electrode 31 of the organic EL element 35 described later.
  • the anode discharge TFT 9g has its second gate electrode 21a electrically connected to the gate line 21g(n) of its own stage (nth stage), its third terminal electrode 18c electrically connected via a connection electrode 18j to the second terminal electrode 18b of the emission control TFT 9f, the upper conductive layer of the capacitor 9h described later, and the first electrode 31 of the organic EL element 35 described later, and its fourth terminal electrode 18d electrically connected to the second initialization power line 16i.
  • the capacitor 9h includes, for example, a lower conductive layer (not shown) formed of the second metal film, a first interlayer insulating film 17 provided to cover the lower conductive layer, and an upper conductive layer (not shown) provided on the first interlayer insulating film 17 to overlap the lower conductive layer and formed of the third metal film. As shown in FIG.
  • the lower conductive layer of the capacitor 9h is electrically connected to the first gate electrode (16a) of the driving TFT 9d and the third terminal electrodes (18c) of the initialization TFT 9a and compensation TFT 9b, and the upper conductive layer is electrically connected to the third terminal electrode (18c) of the anode discharge TFT 9g, the second terminal electrode (18b) of the light emission control TFT 9f, and the first electrode 31 of the organic EL element 35 described later.
  • the planarization film 23 has a flat surface in the display area D and is made of, for example, an organic resin material such as polyimide resin or acrylic resin, or a polysiloxane-based SOG (spin on glass) material.
  • the organic EL element layer 40 includes a plurality of organic EL elements 35 arranged as a plurality of light-emitting elements in a matrix pattern corresponding to a plurality of sub-pixels P, and edge covers 32 arranged in a lattice pattern common to all the sub-pixels P so as to cover the peripheral edge of the first electrode 31 of each organic EL element 35, which will be described later.
  • the organic EL element 35 includes a first electrode 31 provided on the planarization film 23 of the TFT layer 30a, an organic EL layer 33 provided on the first electrode 31, and a second electrode 34 provided on the organic EL layer 33.
  • the first electrode 31 is electrically connected to the second terminal electrode 18b of the light emission control TFT 9f of each sub-pixel P through a contact hole formed in the laminated film of the second interlayer insulating film 22 and the planarization film 23.
  • the first electrode 31 has a function of injecting holes (positive holes) into the organic EL layer 33.
  • the first electrode 31 is more preferably formed of a material having a large work function in order to improve the efficiency of hole injection into the organic EL layer 33.
  • examples of materials constituting the first electrode 31 include metal materials such as silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au), titanium (Ti), ruthenium (Ru), manganese (Mn), indium (In), ytterbium (Yb), lithium fluoride (LiF), platinum (Pt), palladium (Pd), molybdenum (Mo), iridium (Ir), and tin (Sn).
  • the material constituting the first electrode 31 may be, for example, an alloy such as astatine (At)/astatine oxide (AtO 2 ).
  • the material constituting the first electrode 31 may be, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), or indium zinc oxide (IZO).
  • the first electrode 31 may be formed by stacking a plurality of layers made of the above materials. Examples of compound materials having a large work function include indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the organic EL layer 33 includes a hole injection layer 1, a hole transport layer 2, a light-emitting layer 3, an electron transport layer 4, and an electron injection layer 5, which are arranged in this order on the first electrode 31.
  • the hole injection layer 1 is also called an anode buffer layer, and has the function of bringing the energy levels of the first electrode 31 and the organic EL layer 33 closer together and improving the efficiency of hole injection from the first electrode 31 to the organic EL layer 33.
  • materials constituting the hole injection layer 1 include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, phenylenediamine derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, and stilbene derivatives.
  • the hole transport layer 2 has the function of improving the efficiency of transporting holes from the first electrode 31 to the organic EL layer 33.
  • materials constituting the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylenevinylene, polysilane, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, hydrogenated amorphous silicon, hydrogenated amorphous silicon carbide, zinc sulfide, zinc selenide, etc.
  • the light-emitting layer 3 is a region where holes and electrons are injected from the first electrode 31 and the second electrode 34, respectively, and where the holes and electrons recombine when a voltage is applied by the first electrode 31 and the second electrode 34.
  • the light-emitting layer 3 is formed from a material with high luminous efficiency.
  • Examples of materials constituting the light-emitting layer 3 include metal oxinoid compounds [8-hydroxyquinoline metal complexes], naphthalene derivatives, anthracene derivatives, diphenylethylene derivatives, vinylacetone derivatives, triphenylamine derivatives, butadiene derivatives, coumarin derivatives, benzoxazole derivatives, oxadiazole derivatives, oxazole derivatives, benzimidazole derivatives, thiadiazole derivatives, benzothiazole derivatives, styryl derivatives, styrylamine derivatives, bisstyrylbenzene derivatives, tristyrylbenzene derivatives, perylene derivatives, perinone derivatives, aminopyrene derivatives, pyridine derivatives, rhodamine derivatives, aquidine derivatives, phenoxazone, quinacridone derivatives, rubrene, poly-p-phenylenevinylene, polysilane, and the like.
  • the electron transport layer 4 has the function of efficiently transferring electrons to the light-emitting layer 3.
  • materials constituting the electron transport layer 4 include organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, fluorenone derivatives, silole derivatives, and metal oxinoid compounds.
  • the electron injection layer 5 has a function of bringing the energy levels of the second electrode 34 and the organic EL layer 33 closer to each other and improving the efficiency of electron injection from the second electrode 34 to the organic EL layer 33, and this function makes it possible to reduce the driving voltage of the organic EL element 35.
  • the electron injection layer 5 is also called a cathode buffer layer.
  • examples of materials constituting the electron injection layer 5 include inorganic alkali compounds such as lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), and barium fluoride (BaF 2 ), aluminum oxide (Al 2 O 3 ), and strontium oxide (SrO).
  • the second electrode 34 is provided in common to all the sub-pixels P so as to cover each organic EL layer 33 and the edge cover 32.
  • the second electrode 34 has a function of injecting electrons into the organic EL layer 33.
  • the second electrode 34 is more preferably made of a material having a small work function in order to improve the efficiency of electron injection into the organic EL layer 33.
  • materials constituting the second electrode 34 include silver (Ag), aluminum (Al), vanadium (V), calcium (Ca), titanium (Ti), yttrium (Y), sodium (Na), manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb), and lithium fluoride (LiF).
  • the second electrode 34 may be formed of an alloy such as magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), astatine (At)/astatine oxide (AtO 2 ), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), or lithium fluoride (LiF)/calcium (Ca)/aluminum (Al).
  • the second electrode 34 may be formed of a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), or indium zinc oxide (IZO).
  • the second electrode 34 may be formed by stacking a plurality of layers made of the above materials.
  • materials with a small work function include magnesium (Mg), lithium (Li), lithium fluoride (LiF), magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), and lithium fluoride (LiF)/calcium (Ca)/aluminum (Al).
  • the edge cover 32 is made of, for example, an organic resin material such as polyimide resin or acrylic resin, or a polysiloxane-based SOG material.
  • the sealing film 45 is provided to cover the second electrode 34, and includes a first inorganic sealing film 41, an organic sealing film 42, and a second inorganic sealing film 43 laminated in that order on the second electrode 34, and has the function of protecting the organic EL layer 33 of the organic EL element 35 from moisture and oxygen.
  • the first inorganic sealing film 41 and the second inorganic sealing film 43 are composed of an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film.
  • the organic sealing film 42 is made of an organic resin material such as, for example, acrylic resin, epoxy resin, silicone resin, polyurea resin, parylene resin, polyimide resin, or polyamide resin.
  • the light-emitting control line 21e is selected and deactivated, causing the organic EL element 35 to enter a non-light-emitting state.
  • the preceding gate line 21g(n-1) is selected, and a gate signal is input to the initialization TFT 9a via that gate line 21g(n-1), causing the initialization TFT 9a to enter an ON state, the high power supply voltage ELVDD of the power supply line 12g is applied to the capacitor 9h, and the driving TFT 9d enters an ON state.
  • the gate line 21g(n) of the current stage is selected and activated, so that the compensation TFT 9b and the writing TFT 9c are turned on, and a predetermined voltage corresponding to the source signal transmitted through the corresponding source line 12f is written into the capacitor 9h through the driving TFT 9d in a diode-connected state, and the anode discharge TFT 9g is turned on, and an initialization signal is applied to the first electrode 31 of the organic EL element 35 through the second initialization power line 19i, resetting the charge accumulated in the first electrode 31.
  • the light emission control line 21e is selected, the power supply TFT 9e and the light emission control TFT 9f are turned on, and a drive current corresponding to the voltage applied to the gate electrode of the driving TFT 9d is supplied from the power line 12g to the organic EL element 35.
  • the organic EL element 35 emits light at a luminance corresponding to the drive current in each sub-pixel P, and an image is displayed.
  • the method for manufacturing the organic EL display device 50a includes a TFT layer forming process, an organic EL element layer forming process, and a sealing film forming process.
  • a silicon oxide film (thickness: about 150 nm) or the like is formed on a resin substrate 10 formed on a glass substrate by, for example, a plasma CVD (Chemical Vapor Deposition) method to form a first base coat film 11. Form.
  • a plasma CVD Chemical Vapor Deposition
  • a molybdenum film (about 250 nm thick) or the like is formed by, for example, sputtering on the substrate surface on which the first base coat film 11 has been formed, and the first metal film is then patterned to form the lower light-shielding layer 12a, source line 12f, power line 12g, etc.
  • a silicon oxide film (thickness: about 300 nm) is formed by, for example, plasma CVD on the substrate surface on which the lower light-shielding layer 12a etc. are formed, thereby forming a second base coat film 13.
  • an amorphous silicon film (about 50 nm thick) is formed on the substrate surface on which the second base coat film 13 has been formed, for example, by plasma CVD, and the amorphous silicon film is crystallized by laser annealing or the like to form a first semiconductor film made of polysilicon, and then the first semiconductor film is patterned to form the first semiconductor layer 14a.
  • a silicon oxide film (about 125 nm thick) is formed by, for example, plasma CVD on the substrate surface on which the first semiconductor layer 14a is formed to form the first gate insulating film 15, and then a molybdenum film (about 200 nm thick) is formed by, for example, sputtering to form a second metal film, which is then patterned to form the first gate electrode 16a, the second initialization power line 16i, etc.
  • a portion of the first semiconductor layer 14a is made conductive, thereby forming a first conductor region 14aa, a second conductor region 14ab, and a first channel region 14ac in the first semiconductor layer 14a.
  • a silicon nitride film (about 150 nm) and a silicon oxide film (about 50 nm thick) are sequentially formed, for example, by plasma CVD, and then contact holes are formed in the laminated film of the silicon nitride film and the silicon oxide film to form the first interlayer insulating film 17.
  • a titanium film (approximately 50 nm thick), a copper film (approximately 400 nm thick), an ITO film (approximately 50 nm thick), etc. are sequentially formed by, for example, a sputtering method on the substrate surface on which the first interlayer insulating film 17 has been formed, and after forming a third metal film, the third metal film is patterned to form the first terminal electrode 18a, the second terminal electrode 18b, the third terminal electrode 18c, the fourth terminal electrode 18d, etc.
  • an oxide semiconductor film (with a thickness of about 30 nm) such as InGaZnO4 is formed by, for example, a sputtering method to form a second semiconductor film, and then the second semiconductor film is patterned to form the second semiconductor layer 19a.
  • a silicon oxide film (about 100 nm thick) is formed on the substrate surface on which the second semiconductor layer 19a is formed, for example, by plasma CVD, and then a molybdenum film (about 200 nm thick) is formed by sputtering to form a fourth metal film, and the silicon oxide film and the fourth metal film are patterned to form the second gate insulating film 20 from the silicon oxide film, and the second gate electrode 21a, gate line 21g, light emission control line 21e, etc. from the fourth metal film.
  • a silicon oxide film (about 500 nm thick) is formed by, for example, plasma CVD on the substrate surface on which the second gate insulating film 20 and other layers are formed, to form the second interlayer insulating film 22.
  • a portion of the second semiconductor layer 19a is made conductive by heat treatment after the formation of the second interlayer insulating film 22, and a third conductor region 19aa, a fourth conductor region 19ab, and a second channel region 19ac are formed in the second semiconductor layer 19a.
  • an acrylic photosensitive resin film (about 2 ⁇ m thick) is applied to the substrate surface on which the second interlayer insulating film 22 is formed, for example, by spin coating or slit coating, and then the applied film is pre-baked, exposed, developed, and post-baked to form a planarization film 23 with contact holes.
  • the TFT layer 30a can be formed.
  • a first electrode 31 On the planarization film 23 of the TFT layer 30a formed in the TFT layer formation process, a first electrode 31, an edge cover 32, an organic EL layer 33 (a hole injection layer 1, a hole transport layer 24, a hole transport layer 26, a hole transport layer 28, a hole transport layer 29, a hole transport layer 30a, a hole transport layer 31, a hole transport layer 32, a hole transport layer 33, a hole transport layer 34, a hole transport layer 35, a hole transport layer 36, a hole transport layer 37, a hole transport layer 38, a hole transport layer 39 ...
  • the organic EL element layer 40 is formed by forming the layer 2, the light-emitting layer 3, the electron transport layer 4, the electron injection layer 5, and the second electrode 34.
  • an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film is deposited by plasma CVD using a mask on the substrate surface on which the organic EL element layer 40 formed in the organic EL element layer formation process is formed, thereby forming a first inorganic sealing film 41.
  • an organic resin material such as an acrylic resin is deposited on the substrate surface on which the first inorganic sealing film 41 is formed, for example by an inkjet method, to form an organic sealing film 42.
  • an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film is deposited by plasma CVD using a mask on the substrate surface on which the organic sealing film 42 has been formed, forming a second inorganic sealing film 43, thereby forming a sealing film 45.
  • a protective sheet (not shown) is attached to the substrate surface on which the sealing film 45 has been formed, and then laser light is applied from the glass substrate side of the resin substrate 10 to peel the glass substrate from the underside of the resin substrate 10, and a protective sheet (not shown) is attached to the underside of the resin substrate 10 from which the glass substrate has been peeled off.
  • the organic EL display device 50a of this embodiment can be manufactured.
  • the third terminal electrode 18c and the fourth terminal electrode 18d are in contact with the third conductor region 19aa and the fourth conductor region 19ab of the second semiconductor layer 19a from the resin substrate 10 side and are electrically connected, respectively.
  • the first base coat film 11, the first metal film, the second base coat film 13, the first semiconductor film made of polysilicon, the first gate insulating film 15, the second metal film, the first interlayer insulating film 17, the third metal film, the second semiconductor film made of an oxide semiconductor, the second gate insulating film 20, and the fourth metal film are laminated in this order on the resin substrate 10, and in the display region (D), a plurality of source lines 12f and a plurality of power lines 12g formed by the first metal film are provided to extend parallel to each other.
  • the gate lines 21g and the light emission control lines 21e formed by the fourth metal film are spaced apart from the source lines 12f and the power lines 12g in the thickness direction, so that the wiring cross capacitance between the gate lines 21g and the light emission control lines 21e and the source lines 12f and the power lines 12g can be reduced. Therefore, it is possible to facilitate electrical connection with the semiconductor layer made of an oxide semiconductor and reduce the wiring cross capacitance.
  • the source line 12f and the power line 12g are formed of the first metal film
  • the first terminal electrode 18a and the second terminal electrode 18b of the first TFT 9A and the third terminal electrode 18c and the fourth terminal electrode 18d of the second TFT 9B are formed of the third metal film, so that the source line 12f and the power line 12g and the first terminal electrode 18a, the second terminal electrode 18b, the third terminal electrode 18c and the fourth terminal electrode 18d are provided on different layers.
  • the wiring extending to the display area D and the electrodes of the first TFT 9A and the second TFT 9B in each subpixel P of the display area D are formed on different layers, so that even with a high-definition pixel size for mobile applications, for example, wiring leakage between adjacent source lines 12f and power lines 12g can be suppressed.
  • a lower light-shielding layer 12a formed of a first metal film is provided on the resin substrate 10 side of the second semiconductor layer 19a, so that it is possible to prevent light from entering the second channel region 19ac of the second semiconductor layer 19a and prevent impurity ions contained in the resin substrate 10 from reaching the second channel region 19ac.
  • Fig. 10 shows a second embodiment of a display device according to the present invention.
  • Fig. 10 is a cross-sectional view of a display region D of an organic EL display device 50b of this embodiment. Note that in the following embodiments, the same parts as those in Figs. 1 to 9 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • an organic EL display device 50a is illustrated having a TFT layer 30a provided with a lower light-shielding layer 12a, but in this embodiment, an organic EL display device 50b is illustrated having a TFT layer 30b provided with a lower light-shielding layer 12a and an upper light-shielding layer 24.
  • the organic EL display device 50b like the organic EL display device 50a of the first embodiment, includes, for example, a rectangular display area D for displaying images, and a frame area F arranged around the periphery of the display area D.
  • the organic EL display device 50b includes a resin substrate 10 provided as a base substrate, a TFT layer 30b provided on the resin substrate 10, an organic EL element layer 40 provided as a light emitting element layer on the TFT layer 30b, and a sealing film 45 provided on the organic EL element layer 40.
  • the TFT layer 30b like the TFT layer 30a of the first embodiment, includes a first base coat film 11 and a second base coat film 13 provided in order on a resin substrate 10, four first TFTs 9A, three second TFTs 9B, and one capacitor 9h (see FIG. 4) provided for each subpixel P on the second base coat film 13, and a second interlayer insulating film 22 and a planarization film 23 provided in order on each of the first TFTs 9A, each of the second TFTs 9B, and each of the capacitors 9h.
  • the TFT layer 30b includes a plurality of gate lines 21g, a plurality of light emission control lines 21e, a plurality of second initialization power lines 16i, a plurality of source lines 12f, and a plurality of power lines 12g.
  • a first base coat film 11, a first metal film, a second base coat film (first inorganic insulating film) 13, a first semiconductor film, a first gate insulating film (second inorganic insulating film) 15, a second metal film, a first interlayer insulating film (third inorganic insulating film) 17, a third metal film, a second semiconductor film, a second gate insulating film (fourth inorganic insulating film) 20, a fourth metal film, a second interlayer insulating film (fifth inorganic insulating film) 22, a fifth metal film, and a planarization film 23 are laminated in this order on a resin substrate 10.
  • a first base coat film 11 a first metal film, a second base coat film (first inorganic insulating film) 13, a first semiconductor film, a first gate insulating film (second inorganic insulating film) 15, a second metal film, a first interlayer insulating film (third inorganic insulating film) 17, a third metal
  • an upper light-shielding layer 24 formed of the fifth metal film is provided on the organic EL element layer 40 side of the first TFT 9A and the second TFT 9B.
  • the upper light-shielding layer 24 is arranged to overlap the first semiconductor layer 14a of the first TFT 9A and the second semiconductor layer 19a of the second TFT 9B in a plan view.
  • the organic EL element 35 in each subpixel P emits light with a luminance according to the drive current, thereby displaying an image.
  • the organic EL display device 50b of this embodiment can be manufactured by forming a molybdenum film (about 250 nm thick) or the like by sputtering, for example, on the substrate surface on which the second interlayer insulating film 22 is formed in the TFT layer formation step of the manufacturing method for the organic EL display device 50a of the first embodiment described above, forming a fifth metal film, and then patterning the fifth metal film to form the upper light-shielding layer 24, and further forming a planarization film 23 in the same manner as in the first embodiment described above to form the TFT layer 30b.
  • the third terminal electrode 18c and the fourth terminal electrode 18d are in contact with the third conductor region 19aa and the fourth conductor region 19ab of the second semiconductor layer 19a from the resin substrate 10 side and are electrically connected, respectively.
  • the first base coat film 11, the first metal film, the second base coat film 13, the first semiconductor film made of polysilicon, the first gate insulating film 15, the second metal film, the first interlayer insulating film 17, the third metal film, the second semiconductor film made of an oxide semiconductor, the second gate insulating film 20, and the fourth metal film are laminated in this order on the resin substrate 10, and in the display region (D), a plurality of source lines 12f and a plurality of power lines 12g formed of the first metal film are provided to extend parallel to each other.
  • the gate lines 21g and the light emission control lines 21e formed of the fourth metal film are spaced apart from the source lines 12f and the power lines 12g in the thickness direction, so that the wiring cross capacitance between the gate lines 21g and the light emission control lines 21e and the source lines 12f and the power lines 12g can be reduced. Therefore, it is possible to facilitate electrical connection with the semiconductor layer made of an oxide semiconductor and reduce the wiring cross capacitance.
  • the source line 12f and the power line 12g are formed of the first metal film
  • the first terminal electrode 18a and the second terminal electrode 18b of the first TFT 9A and the third terminal electrode 18c and the fourth terminal electrode 18d of the second TFT 9B are formed of the third metal film, so that the source line 12f and the power line 12g and the first terminal electrode 18a, the second terminal electrode 18b, the third terminal electrode 18c and the fourth terminal electrode 18d are provided on different layers.
  • the wiring extending to the display area D and the electrodes of the first TFT 9A and the second TFT 9B in each subpixel P of the display area D are formed on different layers, so that even with a high-definition pixel size for mobile applications, for example, wiring leakage between adjacent source lines 12f and power lines 12g can be suppressed.
  • a lower light-shielding layer 12a formed of a first metal film is provided on the resin substrate 10 side of the second semiconductor layer 19a, so that it is possible to prevent light from entering the second channel region 19ac of the second semiconductor layer 19a and prevent impurity ions contained in the resin substrate 10 from reaching the second channel region 19ac.
  • an upper light-shielding layer 24 is provided on the organic EL element layer 30 side of the first TFT 9A and the second TFT 9B. Therefore, even if stray light is generated from the light emitted by the organic EL element 35, it is difficult for the light to enter the first semiconductor layer 14a of the first TFT 9A and the second semiconductor layer 19a of the second TFT 9B, thereby improving the stability of the operation of the first TFT 9A and the second TFT 9B.
  • an organic EL display device is exemplified in which a first TFT having a first semiconductor layer formed of polysilicon and a second TFT having a second semiconductor layer formed of an oxide semiconductor are provided in each sub-pixel of the display region, but the first TFT may be provided in the frame region to configure a driving circuit such as a gate driver.
  • an organic EL layer having a five-layer laminate structure of a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer is exemplified, but the organic EL layer may have a three-layer laminate structure of, for example, a hole injection layer/hole transport layer, a light-emitting layer, and an electron transport layer/electron injection layer.
  • an organic EL display device in which the first electrode is an anode and the second electrode is a cathode is exemplified, but the present invention can also be applied to an organic EL display device in which the layered structure of the organic EL layer is inverted, and the first electrode is a cathode and the second electrode is an anode.
  • an organic EL display device has been described as an example of a display device, but the present invention can be applied to a display device having a plurality of light-emitting elements driven by electric current, for example, a display device having QLEDs (Quantum-dot light emitting diodes), which are light-emitting elements that use a quantum dot-containing layer.
  • QLEDs Quantum-dot light emitting diodes
  • the present invention is useful for flexible display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

According to the present invention, a first metal film, a first inorganic insulating film (13), a first semiconductor film that is formed of a polysilicon, a second inorganic insulating film (15), a second metal film, a third inorganic insulating film (17), a third metal film, a second semiconductor film that is formed of an oxide semiconductor, a fourth inorganic insulating film (19) and a fourth metal film are sequentially stacked. A second TFT (9B) of each subpixel is provided with a third terminal electrode (18c) and a fourth terminal electrode (18d), which are formed of the third metal film and are electrically connected respectively to a third conductor region (19aa) and a fourth conductor region (19ab) of a second semiconductor layer (19a) that is formed of the second semiconductor film. In a display area (D), a plurality of wiring lines that extend parallel to one another are formed of the first metal film.

Description

表示装置Display device

 本発明は、表示装置に関するものである。 The present invention relates to a display device.

 近年、液晶表示装置に代わる表示装置として、有機エレクトロルミネッセンス(electroluminescence、以下、「EL」とも称する)素子を用いた自発光型の有機EL表示装置が注目されている。この有機EL表示装置では、画像の最小単位であるサブ画素毎に複数の薄膜トランジスタ(thin film transistor、以下「TFT」とも称する)が設けられている。ここで、TFTを構成する半導体層としては、例えば、移動度が高いポリシリコンからなる半導体層、リーク電流が小さいIn-Ga-Zn-O等の酸化物半導体からなる半導体層等がよく知られている。 In recent years, as an alternative to liquid crystal display devices, self-emitting organic electroluminescence (EL) display devices using organic EL elements have been attracting attention. In these organic EL display devices, multiple thin film transistors (TFTs) are provided for each subpixel, which is the smallest unit of an image. Well-known examples of the semiconductor layers that make up the TFTs include semiconductor layers made of polysilicon with high mobility and semiconductor layers made of oxide semiconductors such as In-Ga-Zn-O with low leakage current.

 例えば、特許文献1には、ポリシリコン半導体を用いた第1のTFT、及び酸化物半導体を用いた第2のTFTが基板上にそれぞれ形成されたハイブリッド構造を有する表示装置が開示されている。 For example, Patent Document 1 discloses a display device having a hybrid structure in which a first TFT using a polysilicon semiconductor and a second TFT using an oxide semiconductor are formed on a substrate.

特開2020-17558号公報JP 2020-17558 A

 ところで、上記特許文献1に開示されたハイブリッド構造を有する表示装置では、酸化物半導体からなる半導体層に対して、その半導体層に接触する金属層を介して電気的な接続を行うので、ポリシリコン半導体からなる半導体層、及び酸化物半導体からなる半導体層に電気的にそれぞれ接続するためのコンタクトホールを一括で形成することができ、酸化物半導体からなる半導体層との電気的な接続を容易にすることができる。しかしながら、上記特許文献1に開示されたハイブリッド構造を有する表示装置では、酸化物半導体を用いた第2のTFTのゲート電極と同一材料により同一層に形成された配線(例えば、ゲート線)と、その第2のTFTのソース電極及びドレイン電極と同一材料により同一層に形成された配線(例えば、ソース線)とが交差する配線クロス容量が大きくなり易いので、改善の余地がある。 In the display device having the hybrid structure disclosed in the above Patent Document 1, the semiconductor layer made of an oxide semiconductor is electrically connected via a metal layer that contacts the semiconductor layer, so that contact holes for electrically connecting to the semiconductor layer made of a polysilicon semiconductor and the semiconductor layer made of an oxide semiconductor can be formed at the same time, and electrical connection to the semiconductor layer made of an oxide semiconductor can be easily made. However, in the display device having the hybrid structure disclosed in the above Patent Document 1, the wiring cross capacitance at the intersection of the wiring (e.g., gate line) formed in the same layer and made of the same material as the gate electrode of the second TFT using an oxide semiconductor and the wiring (e.g., source line) formed in the same layer and made of the same material as the source electrode and drain electrode of the second TFT tends to be large, so there is room for improvement.

 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、酸化物半導体からなる半導体層との電気的な接続を容易にすると共に、配線クロス容量を小さくすることにある。 The present invention was made in consideration of these points, and its purpose is to facilitate electrical connection with a semiconductor layer made of an oxide semiconductor and to reduce the wiring cross capacitance.

 上記目的を達成するために、本発明に係る表示装置は、ベース基板と、上記ベース基板上に設けられ、第1金属膜、第1無機絶縁膜、ポリシリコンからなる第1半導体膜、第2無機絶縁膜、第2金属膜、第3無機絶縁膜、第3金属膜、酸化物半導体からなる第2半導体膜、第4無機絶縁膜及び第4金属膜が順に積層された薄膜トランジスタ層とを備え、上記薄膜トランジスタ層には、上記第1半導体膜により形成された第1半導体層を有する第1薄膜トランジスタ、及び上記第2半導体膜により形成された第2半導体層を有する第2薄膜トランジスタが表示領域を構成するサブ画素毎に設けられた表示装置であって、上記第1薄膜トランジスタは、互いに離間するように第1導体領域及び第2導体領域が規定されて該第1導体領域及び該第2導体領域の間に第1チャネル領域が規定された上記第1半導体層と、該第1半導体層上に上記第2無機絶縁膜を介して設けられ、上記第2金属膜により形成された第1ゲート電極と、互いに離間するように上記第3金属膜により設けられ、上記第1導体領域及び上記第2導体領域に電気的にそれぞれ接続された第1端子電極及び第2端子電極とを備え、上記第2薄膜トランジスタは、互いに離間するように第3導体領域及び第4導体領域が規定されて該第3導体領域及び該第4導体領域の間に第2チャネル領域が規定された上記第2半導体層と、該第2半導体層上に上記第4無機絶縁膜を介して設けられ、上記第4金属膜により形成された第2ゲート電極と、互いに離間するように上記第3金属膜により設けられ、上記第3導体領域及び上記第4導体領域に電気的にそれぞれ接続された第3端子電極及び第4端子電極とを備え、上記表示領域には、互いに平行に延びる複数の配線が上記第1金属膜により設けられていることを特徴とする。 In order to achieve the above object, the display device according to the present invention is a display device comprising a base substrate, and a thin film transistor layer provided on the base substrate, in which a first metal film, a first inorganic insulating film, a first semiconductor film made of polysilicon, a second inorganic insulating film, a second metal film, a third inorganic insulating film, a third metal film, a second semiconductor film made of an oxide semiconductor, a fourth inorganic insulating film, and a fourth metal film are laminated in this order, and the thin film transistor layer is provided with a first thin film transistor having a first semiconductor layer formed by the first semiconductor film, and a second thin film transistor having a second semiconductor layer formed by the second semiconductor film, for each sub-pixel constituting a display area, and the first thin film transistor is provided with a first semiconductor layer having a first conductor region and a second conductor region spaced apart from each other and a first channel region defined between the first conductor region and the second conductor region, and a second thin film transistor having a second semiconductor layer formed by the second semiconductor film, and a first channel region defined between the first conductor region and the second conductor region and a second thin film transistor having a second semiconductor layer formed by the second semiconductor film. The second thin film transistor includes a first gate electrode formed of the second metal film and provided through an inorganic insulating film, a first terminal electrode and a second terminal electrode provided by the third metal film so as to be spaced apart from each other and electrically connected to the first conductor region and the second conductor region, respectively. The second thin film transistor includes the second semiconductor layer in which the third conductor region and the fourth conductor region are defined so as to be spaced apart from each other and a second channel region is defined between the third conductor region and the fourth conductor region, a second gate electrode provided on the second semiconductor layer through the fourth inorganic insulating film and formed of the fourth metal film, and a third terminal electrode and a fourth terminal electrode provided by the third metal film so as to be spaced apart from each other and electrically connected to the third conductor region and the fourth conductor region, respectively. The display region is characterized in that a plurality of wirings extending parallel to each other are provided by the first metal film.

 本発明によれば、酸化物半導体からなる半導体層との電気的な接続を容易にすると共に、配線クロス容量を小さくすることができる。 The present invention makes it easy to establish electrical connection with a semiconductor layer made of an oxide semiconductor and reduces the wiring cross capacitance.

図1は、本発明の第1の実施形態に係る有機EL表示装置の概略構成を示す平面図である。FIG. 1 is a plan view showing a schematic configuration of an organic EL display device according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る有機EL表示装置の表示領域の平面図である。FIG. 2 is a plan view of a display region of the organic EL display device according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係る有機EL表示装置の表示領域の断面図である。FIG. 3 is a cross-sectional view of a display region of the organic EL display device according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態に係る有機EL表示装置を構成するTFT層の等価回路図である。FIG. 4 is an equivalent circuit diagram of a TFT layer constituting the organic EL display device according to the first embodiment of the present invention. 図5は、本発明の第1の実施形態に係る有機EL表示装置のTFT層を構成する発光制御用TFT9f及び陽極放電用TFT9gの断面図である。FIG. 5 is a cross-sectional view of a light emission control TFT 9f and an anode discharge TFT 9g that constitute the TFT layer of the organic EL display device according to the first embodiment of the present invention. 図6は、本発明の第1の実施形態に係る有機EL表示装置のTFT層を構成する書込用TFT9cの断面図である。FIG. 6 is a cross-sectional view of a writing TFT 9c constituting a TFT layer of the organic EL display device according to the first embodiment of the present invention. 図7は、本発明の第1の実施形態に係る有機EL表示装置のTFT層を構成する電源供給用TFT9eの断面図である。FIG. 7 is a cross-sectional view of a power supply TFT 9e that constitutes a TFT layer of the organic EL display device according to the first embodiment of the present invention. 図8は、本発明の第1の実施形態に係る有機EL表示装置のTFT層を構成する初期化用TFT9aの断面図である。FIG. 8 is a cross-sectional view of an initialization TFT 9a constituting a TFT layer of the organic EL display device according to the first embodiment of the present invention. 図9は、本発明の第1の実施形態に係る有機EL表示装置を構成する有機EL層を示す断面図である。FIG. 9 is a cross-sectional view showing an organic EL layer constituting the organic EL display device according to the first embodiment of the present invention. 図10は、本発明の第2の実施形態に係る有機EL表示装置の表示領域の断面図である。FIG. 10 is a cross-sectional view of a display region of an organic EL display device according to a second embodiment of the present invention.

 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。 The following describes in detail the embodiments of the present invention with reference to the drawings. Note that the present invention is not limited to the following embodiments.

 《第1の実施形態》
 図1~図9は、本発明に係る表示装置の第1の実施形態を示している。なお、以下の各実施形態では、発光素子層を備えた表示装置として、有機EL素子層を備えた有機EL表示装置を例示する。ここで、図1は、本実施形態の有機EL表示装置50aの概略構成を示す平面図である。また、図2及び図3は、有機EL表示装置50aの表示領域Dの平面図及び断面図である。また、図4は、有機EL表示装置50aを構成するTFT層30aの等価回路図である。また、図5は、TFT層30aを構成する発光制御用TFT9f及び陽極放電用TFT9gの断面図である。また、図6は、TFT層30aを構成する書込用TFT9cの断面図である。また、図7は、TFT層30aを構成する電源供給用TFT9eの断面図である。また、図8は、TFT層30aを構成する初期化用TFT9aの断面図である。また、図9は、有機EL表示装置50aを構成する有機EL層33を示す断面図である。
First Embodiment
1 to 9 show a first embodiment of a display device according to the present invention. In the following embodiments, an organic EL display device having an organic EL element layer is exemplified as a display device having a light emitting element layer. Here, FIG. 1 is a plan view showing a schematic configuration of an organic EL display device 50a of this embodiment. Also, FIGS. 2 and 3 are a plan view and a cross-sectional view of a display region D of the organic EL display device 50a. Also, FIG. 4 is an equivalent circuit diagram of a TFT layer 30a constituting the organic EL display device 50a. Also, FIG. 5 is a cross-sectional view of a light emission control TFT 9f and an anode discharge TFT 9g constituting the TFT layer 30a. Also, FIG. 6 is a cross-sectional view of a write TFT 9c constituting the TFT layer 30a. Also, FIG. 7 is a cross-sectional view of a power supply TFT 9e constituting the TFT layer 30a. Also, FIG. 8 is a cross-sectional view of an initialization TFT 9a constituting the TFT layer 30a. Also, FIG. 9 is a cross-sectional view showing an organic EL layer 33 constituting the organic EL display device 50a.

 有機EL表示装置50aは、図1に示すように、例えば、矩形状に設けられた画像表示を行う表示領域Dと、表示領域Dの周囲に設けられた額縁領域Fとを備えている。なお、本実施形態では、矩形状の表示領域Dを例示したが、この矩形状には、例えば、辺が円弧状になった形状、角部が円弧状になった形状、辺の一部に切り欠きがある形状等の略矩形状も含まれる。 As shown in FIG. 1, the organic EL display device 50a includes, for example, a rectangular display area D for displaying images, and a frame area F provided around the periphery of the display area D. Note that in this embodiment, a rectangular display area D is illustrated, but this rectangular shape also includes, for example, an approximately rectangular shape with arc-shaped sides, arc-shaped corners, or a shape with a notch in one of the sides.

 表示領域Dには、図2に示すように、複数のサブ画素Pがマトリクス状に配列されている。また、表示領域Dでは、図2に示すように、例えば、赤色の表示を行うための赤色発光領域Erを有するサブ画素P、緑色の表示を行うための緑色発光領域Egを有するサブ画素P、及び青色の表示を行うための青色発光領域Ebを有するサブ画素Pが互いに隣り合うように設けられている。なお、表示領域Dでは、例えば、赤色発光領域Er、緑色発光領域Eg及び青色発光領域Ebを有する隣り合う3つのサブ画素Pにより、1つの画素が構成されている。 In the display region D, as shown in FIG. 2, a plurality of sub-pixels P are arranged in a matrix. In addition, in the display region D, as shown in FIG. 2, for example, a sub-pixel P having a red light-emitting region Er for displaying red, a sub-pixel P having a green light-emitting region Eg for displaying green, and a sub-pixel P having a blue light-emitting region Eb for displaying blue are arranged adjacent to each other. In the display region D, for example, one pixel is composed of three adjacent sub-pixels P having a red light-emitting region Er, a green light-emitting region Eg, and a blue light-emitting region Eb.

 額縁領域Fの図1中におけるX方向の正側の端部には、端子部Tが一方向(図1中のY方向)に延びるように設けられている。また、額縁領域Fにおいて、図1に示すように、表示領域D及び端子部Tの間には、図中のY方向を折り曲げの軸として、例えば、180°に(U字状に)折り曲げ可能な折り曲げ部Bが一方向(図中のY方向)に延びるように設けられている。 A terminal portion T is provided at the end of the frame region F on the positive side in the X direction in FIG. 1 so as to extend in one direction (the Y direction in FIG. 1). In addition, as shown in FIG. 1, in the frame region F, between the display region D and the terminal portion T, a folding portion B is provided extending in one direction (the Y direction in FIG. 1) that can be folded, for example, 180° (in a U-shape) with the Y direction in FIG. as the folding axis.

 有機EL表示装置50aは、図3に示すように、ベース基板として設けられた樹脂基板10と、樹脂基板10上に設けられたTFT層30aと、TFT層30a上に発光素子層として設けられた有機EL素子層40と、有機EL素子層40上に設けられた封止膜45とを備えている。 As shown in FIG. 3, the organic EL display device 50a includes a resin substrate 10 provided as a base substrate, a TFT layer 30a provided on the resin substrate 10, an organic EL element layer 40 provided as a light emitting element layer on the TFT layer 30a, and a sealing film 45 provided on the organic EL element layer 40.

 樹脂基板10は、例えば、ポリイミド樹脂等の有機樹脂材料により構成されている。 The resin substrate 10 is made of an organic resin material such as polyimide resin.

 TFT層30aは、図3に示すように、樹脂基板10上に順に設けられた第1ベースコート膜11及び第2ベースコート膜13と、第2ベースコート膜13上にサブ画素P毎に設けられた4つの第1TFT9A、3つの第2TFT9B及び1つのキャパシタ9h(図4参照)と、各第1TFT9A及び各第2TFT9B及び各キャパシタ9h上に順に設けられた第2層間絶縁膜22及び平坦化膜23とを備えている。ここで、TFT層30aには、図2に示すように、図中のX方向に互いに平行に延びるように複数のゲート線21gが設けられている。また、TFT層30aには、図2に示すように、図中のX方向に互いに平行に延びるように複数の発光制御線21eが設けられている。また、TFT層30aには、図2に示すように、図中のX方向に互いに平行に延びるように複数の第2初期化電源線16iが設けられている。なお、各発光制御線21eは、図2に示すように、各ゲート線21g及び各第2初期化電源線16iと隣り合うように設けられている。また、TFT層30aには、図2に示すように、図中のY方向に互いに平行に延びるように複数のソース線12fが複数の配線として設けられている。また、TFT層30aには、図2に示すように、図中のY方向に互いに平行に延びるように複数の電源線12gが複数の配線として設けられている。なお、各電源線12gは、図2に示すように、各ソース線12fと隣り合うように設けられている。 3, the TFT layer 30a includes a first base coat film 11 and a second base coat film 13 provided in order on the resin substrate 10, four first TFTs 9A, three second TFTs 9B, and one capacitor 9h (see FIG. 4) provided for each subpixel P on the second base coat film 13, and a second interlayer insulating film 22 and a planarization film 23 provided in order on each of the first TFTs 9A, each of the second TFTs 9B, and each of the capacitors 9h. Here, as shown in FIG. 2, the TFT layer 30a is provided with a plurality of gate lines 21g extending parallel to each other in the X direction in the figure. Also, as shown in FIG. 2, the TFT layer 30a is provided with a plurality of light emission control lines 21e extending parallel to each other in the X direction in the figure. Also, as shown in FIG. 2, the TFT layer 30a is provided with a plurality of second initialization power lines 16i extending parallel to each other in the X direction in the figure. As shown in FIG. 2, each light emission control line 21e is provided adjacent to each gate line 21g and each second initialization power line 16i. As shown in FIG. 2, the TFT layer 30a is provided with a plurality of source lines 12f as a plurality of wirings that extend parallel to each other in the Y direction in the figure. As shown in FIG. 2, the TFT layer 30a is provided with a plurality of power lines 12g as a plurality of wirings that extend parallel to each other in the Y direction in the figure. As shown in FIG. 2, each power line 12g is provided adjacent to each source line 12f.

 TFT層30aでは、図3に示すように、樹脂基板10上に、第1ベースコート膜11、第1金属膜、第2ベースコート膜(第1無機絶縁膜)13、第1半導体膜、第1ゲート絶縁膜(第2無機絶縁膜)15、第2金属膜、第1層間絶縁膜(第3無機絶縁膜)17、第3金属膜、第2半導体膜、第2ゲート絶縁膜(第4無機絶縁膜)20、第4金属膜、第2層間絶縁膜(第5無機絶縁膜)22及び平坦化膜23が順に積層されている。ここで、ソース線12f及び電源線12gは、上記第1金属膜により形成されている。また、第2初期化電源線16iは、上記第2金属膜により形成されている。また、ゲート線21g及び発光制御線21eは、上記第4金属膜により形成されている。なお、本実施形態では、第2初期化電源線16iが上記第2金属膜により形成された構成を例示したが、第2初期化電源線は、上記第3金属膜により形成されていてもよく、この場合、上記第2金属膜により形成された場合よりも、第2初期化電源線とソース線12f及び電源線12gとが厚さ方向に離間するので、第2初期化電源線とソース線12f及び電源線12gとの配線クロス容量を小さくすることができる。 In the TFT layer 30a, as shown in FIG. 3, a first base coat film 11, a first metal film, a second base coat film (first inorganic insulating film) 13, a first semiconductor film, a first gate insulating film (second inorganic insulating film) 15, a second metal film, a first interlayer insulating film (third inorganic insulating film) 17, a third metal film, a second semiconductor film, a second gate insulating film (fourth inorganic insulating film) 20, a fourth metal film, a second interlayer insulating film (fifth inorganic insulating film) 22, and a planarization film 23 are laminated in this order on a resin substrate 10. Here, the source line 12f and the power line 12g are formed of the first metal film. The second initialization power line 16i is formed of the second metal film. The gate line 21g and the light emission control line 21e are formed of the fourth metal film. In this embodiment, the second initialization power line 16i is formed from the second metal film. However, the second initialization power line may be formed from the third metal film. In this case, the second initialization power line is spaced apart from the source line 12f and the power line 12g in the thickness direction more than when the second initialization power line is formed from the second metal film. This makes it possible to reduce the wiring cross capacitance between the second initialization power line and the source line 12f and the power line 12g.

 第1ベースコート膜11、第2ベースコート膜13、第1ゲート絶縁膜15、第1層間絶縁膜17、第2ゲート絶縁膜20及び第2層間絶縁膜22は、例えば、窒化シリコン、酸化シリコン、酸窒化シリコン等の無機絶縁膜の単層膜又は積層膜により構成されている。ここで、第1層間絶縁膜17の後述する第2半導体層19a側、及び第2ゲート絶縁膜20の第2半導体層19a側は、例えば、酸化シリコン膜により構成されている。 The first base coat film 11, the second base coat film 13, the first gate insulating film 15, the first interlayer insulating film 17, the second gate insulating film 20 and the second interlayer insulating film 22 are each composed of a single layer or a laminated film of an inorganic insulating film such as silicon nitride, silicon oxide, silicon oxynitride, etc. Here, the side of the first interlayer insulating film 17 facing the second semiconductor layer 19a (described later) and the side of the second gate insulating film 20 facing the second semiconductor layer 19a are each composed of, for example, a silicon oxide film.

 第1TFT9Aは、図3に示すように、第2ベースコート膜13上に設けられた第1半導体層14aと、第1半導体層14a上に第1ゲート絶縁膜15を介して設けられた第1ゲート電極16aと、第1層間絶縁膜17上に互いに離間するように設けられた第1端子電極18a及び第2端子電極18bとを備えている。 As shown in FIG. 3, the first TFT 9A includes a first semiconductor layer 14a provided on the second base coat film 13, a first gate electrode 16a provided on the first semiconductor layer 14a via a first gate insulating film 15, and a first terminal electrode 18a and a second terminal electrode 18b provided on the first interlayer insulating film 17 so as to be spaced apart from each other.

 第1半導体層14aは、例えば、LTPS(low temperature polysilicon)等のポリシリコンからなる上記第1半導体膜により形成され、図3に示すように、互いに離間するように規定された第1導体領域14aa及び第2導体領域14abと、第1導体領域14aa及び第2導体領域14abの間に規定された第1チャネル領域14acとを備えている。 The first semiconductor layer 14a is formed by the first semiconductor film made of polysilicon such as LTPS (low temperature polysilicon), and as shown in FIG. 3, includes a first conductor region 14aa and a second conductor region 14ab that are spaced apart from each other, and a first channel region 14ac that is defined between the first conductor region 14aa and the second conductor region 14ab.

 第1ゲート電極16aは、図3に示すように、第1半導体層14aの第1チャネル領域14acに重なるように設けられ、第1半導体層14aの第1導体領域14aa及び第2導体領域14abの間の導通を制御するように構成されている。ここで、第1ゲート電極16aは、第2初期化電源線16iと同様に、上記第2金属膜により形成されている。 As shown in FIG. 3, the first gate electrode 16a is provided so as to overlap the first channel region 14ac of the first semiconductor layer 14a, and is configured to control the conduction between the first conductor region 14aa and the second conductor region 14ab of the first semiconductor layer 14a. Here, the first gate electrode 16a is formed of the second metal film, similar to the second initialization power line 16i.

 第1端子電極18a及び第2端子電極18bは、図3に示すように、第1ゲート絶縁膜15及び第1層間絶縁膜17の積層膜に形成されたコンタクトホールを介して第1半導体層14aの第1導体領域14aa及び第2導体領域14abに電気的にそれぞれ接続されている。ここで、第1端子電極18a及び第2端子電極18bは、上記第3金属膜により形成されている。 As shown in FIG. 3, the first terminal electrode 18a and the second terminal electrode 18b are electrically connected to the first conductor region 14aa and the second conductor region 14ab of the first semiconductor layer 14a, respectively, through contact holes formed in the laminated film of the first gate insulating film 15 and the first interlayer insulating film 17. Here, the first terminal electrode 18a and the second terminal electrode 18b are formed from the third metal film.

 第2TFT9Bは、図3に示すように、第1層間絶縁膜17上に設けられた第2半導体層19aと、第2半導体層19a上に第2ゲート絶縁膜20を介して設けられた第2ゲート電極21aと、第1層間絶縁膜17上に第2半導体層19aを介して互いに離間するように設けられた第3端子電極18c及び第4端子電極18dとを備えている。 As shown in FIG. 3, the second TFT 9B includes a second semiconductor layer 19a provided on the first interlayer insulating film 17, a second gate electrode 21a provided on the second semiconductor layer 19a via a second gate insulating film 20, and a third terminal electrode 18c and a fourth terminal electrode 18d provided on the first interlayer insulating film 17 so as to be spaced apart from each other via the second semiconductor layer 19a.

 第2半導体層19aは、例えば、In-Ga-Zn-O系等の酸化物半導体からなる第2半導体膜により形成され、図3に示すように、互いに離間するように規定された第3導体領域19aa及び第4導体領域19abと、第3導体領域19aa及び第4導体領域19abの間に規定された第2チャネル領域19acとを備えている。また、第2半導体層19aの樹脂基板10側には、図3に示すように、上記第1金属膜により形成された下側遮光層12aが設けられている。なお、下側遮光層12aは、平面視で第2TFT9Bの第2半導体層19aと重なるように設けられている。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、Ga及びZnの割合(組成比)は特に限定されない。また、In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。なお、結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。また、In-Ga-Zn-O系の半導体の代わりに、他の酸化物半導体を含んでいてもよい。他の酸化物半導体としては、例えば、In-Sn-Zn-O系半導体(例えば、In-SnO-ZnO;InSnZnO)を含んでもよい。ここで、In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)及びZn(亜鉛)の三元系酸化物である。また、他の酸化物半導体としては、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体、Al-Ga-Zn-O系半導体、Ga-Zn-O系半導体、In-Ga-Zn-Sn-O系半導体、InGaO(ZnO)、酸化マグネシウム亜鉛(MgZn1-xO)、酸化カドミウム亜鉛(CdZn1-xO)等を含んでいてもよい。なお、Zn-O系半導体としては、1族元素、13族元素、14族元素、15族元素、17族元素等のうち1種又は複数種の不純物元素が添加されたZnOの非晶質(アモルファス)状態のもの、多結晶状態のもの、非晶質状態と多結晶状態が混在する微結晶状態のもの、又は何も不純物元素が添加されていないものを用いることができる。 The second semiconductor layer 19a is formed of a second semiconductor film made of an oxide semiconductor such as In-Ga-Zn-O, and includes a third conductor region 19aa and a fourth conductor region 19ab that are defined to be spaced apart from each other, and a second channel region 19ac that is defined between the third conductor region 19aa and the fourth conductor region 19ab, as shown in FIG. 3. Also, on the resin substrate 10 side of the second semiconductor layer 19a, a lower light-shielding layer 12a formed of the first metal film is provided, as shown in FIG. 3. The lower light-shielding layer 12a is provided so as to overlap the second semiconductor layer 19a of the second TFT 9B in a plan view. Here, the In-Ga-Zn-O semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc), and the ratio (composition ratio) of In, Ga, and Zn is not particularly limited. The In-Ga-Zn-O-based semiconductor may be amorphous or crystalline. As the crystalline In-Ga-Zn-O-based semiconductor, a crystalline In-Ga-Zn-O-based semiconductor in which the c-axis is oriented approximately perpendicular to the layer surface is preferable. In addition, instead of the In-Ga-Zn-O-based semiconductor, another oxide semiconductor may be included. As the other oxide semiconductor, for example, an In-Sn-Zn-O-based semiconductor (for example, In 2 O 3 -SnO 2 -ZnO; InSnZnO) may be included. Here, the In-Sn-Zn-O-based semiconductor is a ternary oxide of In (indium), Sn (tin) and Zn (zinc). Other oxide semiconductors may include In-Al-Zn-O based semiconductors, In-Al-Sn-Zn-O based semiconductors, Zn-O based semiconductors, In-Zn-O based semiconductors, Zn-Ti-O based semiconductors, Cd-Ge-O based semiconductors, Cd-Pb-O based semiconductors, CdO (cadmium oxide), Mg-Zn-O based semiconductors, In-Ga-Sn-O based semiconductors, In-Ga-O based semiconductors, Zr-In-Zn-O based semiconductors, Hf-In-Zn-O based semiconductors, Al-Ga-Zn-O based semiconductors, Ga-Zn-O based semiconductors, In-Ga-Zn-Sn-O based semiconductors, InGaO 3 (ZnO) 5 , magnesium zinc oxide (Mg x Zn 1-x O), cadmium zinc oxide (Cd x Zn 1-x O), and the like. As the Zn—O-based semiconductor, ZnO in an amorphous state, a polycrystalline state, a microcrystalline state in which the amorphous state and the polycrystalline state are mixed, or a semiconductor in which no impurity element is added may be used, to which one or more impurity elements selected from among group 1 elements, group 13 elements, group 14 elements, group 15 elements, group 17 elements, and the like are added.

 第2ゲート電極21aは、図3に示すように、第2半導体層19aの第2チャネル領域19acに重なるように設けられ、第2半導体層19aの第3導体領域19aa及び第4導体領域19abの間の導通を制御するように構成されている。ここで、第2ゲート電極21aは、ゲート線21g及び発光制御線21eと同様に、上記第4金属膜により形成されている。 As shown in FIG. 3, the second gate electrode 21a is provided so as to overlap the second channel region 19ac of the second semiconductor layer 19a, and is configured to control the conduction between the third conductor region 19aa and the fourth conductor region 19ab of the second semiconductor layer 19a. Here, the second gate electrode 21a is formed of the fourth metal film, similar to the gate line 21g and the light emission control line 21e.

 第3端子電極18c及び第4端子電極18dは、図3に示すように、第2半導体層19aの第3導体領域19aaの第1層間絶縁膜17側、及び第4導体領域19abの第1層間絶縁膜17側にそれぞれ接して、第2半導体層19aの第3導体領域19aa及び第4導体領域19abに電気的にそれぞれ接続されている。ここで、第3端子電極18c及び第4端子電極18dは、第1端子電極18a及び第2端子電極18bと同様に、上記第3金属膜により形成されている。 As shown in FIG. 3, the third terminal electrode 18c and the fourth terminal electrode 18d are in contact with the first interlayer insulating film 17 side of the third conductor region 19aa of the second semiconductor layer 19a and the first interlayer insulating film 17 side of the fourth conductor region 19ab, respectively, and are electrically connected to the third conductor region 19aa and the fourth conductor region 19ab of the second semiconductor layer 19a, respectively. Here, the third terminal electrode 18c and the fourth terminal electrode 18d are formed of the third metal film, similar to the first terminal electrode 18a and the second terminal electrode 18b.

 本実施形態では、ポリシリコンにより形成された第1半導体層14aを有する4つの第1TFT9Aとして、後述する書込用TFT9c、駆動用TFT9d、電源供給用TFT9e及び発光制御用TFT9fを例示し、酸化物半導体により形成された第2半導体層19aを有する3つの第2TFT9Bとして、後述する初期化用TFT9a、補償用TFT9b及び陽極放電用TFT9gを例示する(図4参照)。なお、図4の等価回路図では、各TFT9c、9d、9e、9fの第1端子電極18a及び第2端子電極18bを丸数字の1及び2で示し、各TFT9a、9b、9gの第3端子電極18c及び第4端子電極18dを丸数字の3及び4で示している。また、図4の等価回路図では、n行m列目のサブ画素Pの画素回路を示しているが、(n-1)行m列目のサブ画素Pの画素回路の一部も含んでいる。また、図4の等価回路図では、高電源電圧ELVDDを供給する電源線12gが第1初期化電源線を兼ねているが、電源線12g及び第1初期化電源線は、別々に設けられていてもよい。また、第2初期化電源線16iには、低電源電圧ELVSSと同じ電圧を入力するが、これに限定されることなく、低電源電圧ELVSSと異なる電圧で後述する有機EL素子35が消灯するような電圧を入力してもよい。 In this embodiment, the four first TFTs 9A having a first semiconductor layer 14a formed of polysilicon are exemplified by a writing TFT 9c, a driving TFT 9d, a power supply TFT 9e, and a light emission control TFT 9f, which will be described later, and the three second TFTs 9B having a second semiconductor layer 19a formed of an oxide semiconductor are exemplified by an initialization TFT 9a, a compensation TFT 9b, and an anode discharge TFT 9g, which will be described later (see FIG. 4). In the equivalent circuit diagram of FIG. 4, the first terminal electrodes 18a and second terminal electrodes 18b of each of the TFTs 9c, 9d, 9e, and 9f are indicated by circled numbers 1 and 2, and the third terminal electrodes 18c and fourth terminal electrodes 18d of each of the TFTs 9a, 9b, and 9g are indicated by circled numbers 3 and 4. In addition, the equivalent circuit diagram of FIG. 4 shows the pixel circuit of the sub-pixel P in the nth row and mth column, but also includes a part of the pixel circuit of the sub-pixel P in the (n-1)th row and mth column. In addition, in the equivalent circuit diagram of FIG. 4, the power supply line 12g that supplies the high power supply voltage ELVDD also serves as the first initialization power supply line, but the power supply line 12g and the first initialization power supply line may be provided separately. In addition, the same voltage as the low power supply voltage ELVSS is input to the second initialization power supply line 16i, but this is not limited thereto, and a voltage different from the low power supply voltage ELVSS that turns off the organic EL element 35 described later may be input.

 初期化用TFT9aは、図4及び図8に示すように、各サブ画素Pにおいて、その第2ゲート電極21aが前段(n-1段)のゲート線21g(n-1)に電気的に接続され、その第3端子電極18cが後述するキャパシタ9hの下部導電層、補償用TFT9bの第3端子電極(18c)、及び駆動用TFT9dの第1ゲート電極(16a)に電気的に接続され、その第4端子電極18dが電源線12gに電気的に接続されている。 As shown in Figures 4 and 8, in each subpixel P, the initialization TFT 9a has its second gate electrode 21a electrically connected to the gate line 21g (n-1) of the previous stage (n-1 stage), its third terminal electrode 18c electrically connected to the lower conductive layer of the capacitor 9h described below, the third terminal electrode (18c) of the compensation TFT 9b, and the first gate electrode (16a) of the drive TFT 9d, and its fourth terminal electrode 18d electrically connected to the power line 12g.

 補償用TFT9bは、図4に示すように、各サブ画素Pにおいて、その第2ゲート電極(21a)が自段(n段)のゲート線21g(n)に電気的に接続され、その第3端子電極(18c)が後述するキャパシタ9hの下部導電層、初期化用TFT9aの第3端子電極(18c)、及び駆動用TFT9dの第1ゲート電極(16a)に電気的に接続され、その第4端子電極(18d)が電源供給用TFT9eの第2端子電極(18b)、及び駆動用TFT9dの第1端子電極(18a)に電気的に接続されている。 As shown in FIG. 4, in each subpixel P, the compensation TFT 9b has its second gate electrode (21a) electrically connected to the gate line 21g(n) of its own stage (nth stage), its third terminal electrode (18c) electrically connected to the lower conductive layer of the capacitor 9h described below, the third terminal electrode (18c) of the initialization TFT 9a, and the first gate electrode (16a) of the driving TFT 9d, and its fourth terminal electrode (18d) electrically connected to the second terminal electrode (18b) of the power supply TFT 9e and the first terminal electrode (18a) of the driving TFT 9d.

 書込用TFT9cは、図4及び図6に示すように、各サブ画素Pにおいて、その第1ゲート電極16aが自段(n段)のゲート線21g(n)に電気的に接続され、その第1端子電極18aが対応するソース線12fに電気的に接続され、その第2端子電極18bが駆動用TFT9dの第2端子電極(18b)、及び発光制御用TFT9fの第1端子電極(18a)に電気的に接続されている。 As shown in Figures 4 and 6, in each subpixel P, the first gate electrode 16a of the write TFT 9c is electrically connected to the gate line 21g(n) of its own stage (nth stage), its first terminal electrode 18a is electrically connected to the corresponding source line 12f, and its second terminal electrode 18b is electrically connected to the second terminal electrode (18b) of the drive TFT 9d and the first terminal electrode (18a) of the emission control TFT 9f.

 駆動用TFT9dは、図4に示すように、各サブ画素Pにおいて、その第1ゲート電極(16a)が初期化用TFT9a及び補償用TFT9bの各第3端子電極(18c)、並びに後述するキャパシタ9hの下部導電層に電気的に接続され、その第1端子電極(18a)が補償用TFT9bの第4端子電極(18d)、及び電源供給用TFT9eの第2端子電極(18b)に電気的に接続され、その第2端子電極(18b)が書込用TFT9cの第2端子電極(18b)、及び発光制御用TFT9fの第1端子電極(18a)に電気的に接続されている。ここで、駆動用TFT9dは、有機EL素子35の駆動電流を制御するように構成されている。 As shown in FIG. 4, in each subpixel P, the driving TFT 9d has its first gate electrode (16a) electrically connected to the third terminal electrodes (18c) of the initialization TFT 9a and the compensation TFT 9b, and to the lower conductive layer of the capacitor 9h described later, its first terminal electrode (18a) electrically connected to the fourth terminal electrode (18d) of the compensation TFT 9b and the second terminal electrode (18b) of the power supply TFT 9e, and its second terminal electrode (18b) electrically connected to the second terminal electrode (18b) of the writing TFT 9c and the first terminal electrode (18a) of the emission control TFT 9f. Here, the driving TFT 9d is configured to control the drive current of the organic EL element 35.

 電源供給用TFT9eは、図4及び図7に示すように、各サブ画素Pにおいて、その第1ゲート電極16aが自段(n段)の発光制御線21eに電気的に接続され、その第1端子電極18aが電源線12gに電気的に接続され、その第2端子電極18bが駆動用TFT9dの第1端子電極(18a)、及び補償用TFT9bの第4端子電極(18d)に電気的に接続されている。 As shown in Figures 4 and 7, in each subpixel P, the power supply TFT 9e has its first gate electrode 16a electrically connected to the emission control line 21e of its own stage (nth stage), its first terminal electrode 18a electrically connected to the power supply line 12g, and its second terminal electrode 18b electrically connected to the first terminal electrode (18a) of the driving TFT 9d and the fourth terminal electrode (18d) of the compensation TFT 9b.

 発光制御用TFT9fは、図4及び図5に示すように、各サブ画素Pにおいて、その第1ゲート電極16aが自段(n段)の発光制御線21eに電気的に接続され、その第1端子電極18aが駆動用TFT9d及び書込用TFT9cの各第2端子電極(18b)に電気的に接続され、その第2端子電極18bが接続電極18jを介して陽極放電用TFT9gの第3端子電極18c、後述するキャパシタ9hの上部導電層、及び後述する有機EL素子35の後述する第1電極31に電気的に接続されている。 As shown in Figures 4 and 5, in each subpixel P, the first gate electrode 16a of the emission control TFT 9f is electrically connected to the emission control line 21e of its own row (nth row), the first terminal electrode 18a is electrically connected to the second terminal electrodes (18b) of the drive TFT 9d and the write TFT 9c, and the second terminal electrode 18b is electrically connected via the connection electrode 18j to the third terminal electrode 18c of the anode discharge TFT 9g, the upper conductive layer of the capacitor 9h described later, and the first electrode 31 of the organic EL element 35 described later.

 陽極放電用TFT9gは、図4及び図5に示すように、各サブ画素Pにおいて、その第2ゲート電極21aが自段(n段)のゲート線21g(n)に電気的に接続され、その第3端子電極18cが接続電極18jを介して発光制御用TFT9fの第2端子電極18b、後述するキャパシタ9hの上部導電層、及び後述する有機EL素子35の第1電極31に電気的に接続され、その第4端子電極18dが第2初期化電源線16iに電気的に接続されている。 As shown in Figures 4 and 5, in each subpixel P, the anode discharge TFT 9g has its second gate electrode 21a electrically connected to the gate line 21g(n) of its own stage (nth stage), its third terminal electrode 18c electrically connected via a connection electrode 18j to the second terminal electrode 18b of the emission control TFT 9f, the upper conductive layer of the capacitor 9h described later, and the first electrode 31 of the organic EL element 35 described later, and its fourth terminal electrode 18d electrically connected to the second initialization power line 16i.

 キャパシタ9hは、例えば、上記第2金属膜により形成された下部導電層(不図示)と、下部導電層を覆うように設けられた第1層間絶縁膜17と、第1層間絶縁膜17上に下部導電層と重なるように設けられ、上記第3金属膜により形成された上部導電層(不図示)とを備えている。また、キャパシタ9hは、図4に示すように、各サブ画素Pにおいて、その下部導電層が駆動用TFT9dの第1ゲート電極(16a)、初期化用TFT9a及び補償用TFT9bの各第3端子電極(18c)に電気的に接続され、その上部導電層が陽極放電用TFT9gの第3端子電極(18c)、発光制御用TFT9fの第2端子電極(18b)及び後述する有機EL素子35の第1電極31に電気的に接続されている。 The capacitor 9h includes, for example, a lower conductive layer (not shown) formed of the second metal film, a first interlayer insulating film 17 provided to cover the lower conductive layer, and an upper conductive layer (not shown) provided on the first interlayer insulating film 17 to overlap the lower conductive layer and formed of the third metal film. As shown in FIG. 4, in each subpixel P, the lower conductive layer of the capacitor 9h is electrically connected to the first gate electrode (16a) of the driving TFT 9d and the third terminal electrodes (18c) of the initialization TFT 9a and compensation TFT 9b, and the upper conductive layer is electrically connected to the third terminal electrode (18c) of the anode discharge TFT 9g, the second terminal electrode (18b) of the light emission control TFT 9f, and the first electrode 31 of the organic EL element 35 described later.

 平坦化膜23は、表示領域Dにおいて、平坦な表面を有し、例えば、ポリイミド樹脂、アクリル樹脂等の有機樹脂材料、又はポリシロキサン系のSOG(spin on glass)材料等により構成されている。 The planarization film 23 has a flat surface in the display area D and is made of, for example, an organic resin material such as polyimide resin or acrylic resin, or a polysiloxane-based SOG (spin on glass) material.

 有機EL素子層40は、図3に示すように、複数のサブ画素Pに対応して、マトリクス状に配列するように複数の発光素子として設けられた複数の有機EL素子35と、後述する各有機EL素子35の第1電極31の周端部を覆うように全てのサブ画素Pに共通して格子状に設けられたエッジカバー32とを備えている。 As shown in FIG. 3, the organic EL element layer 40 includes a plurality of organic EL elements 35 arranged as a plurality of light-emitting elements in a matrix pattern corresponding to a plurality of sub-pixels P, and edge covers 32 arranged in a lattice pattern common to all the sub-pixels P so as to cover the peripheral edge of the first electrode 31 of each organic EL element 35, which will be described later.

 有機EL素子35は、図3に示すように、各サブ画素Pにおいて、TFT層30aの平坦化膜23上に設けられた第1電極31と、第1電極31上に設けられた有機EL層33と、有機EL層33上に設けられた第2電極34とを備えている。 As shown in FIG. 3, in each subpixel P, the organic EL element 35 includes a first electrode 31 provided on the planarization film 23 of the TFT layer 30a, an organic EL layer 33 provided on the first electrode 31, and a second electrode 34 provided on the organic EL layer 33.

 第1電極31は、第2層間絶縁膜22及び平坦化膜23の積層膜に形成されたコンタクトホールを介して、各サブ画素Pの発光制御用TFT9fの第2端子電極18bに電気的に接続されている。また、第1電極31は、有機EL層33にホール(正孔)を注入する機能を有している。また、第1電極31は、有機EL層33への正孔注入効率を向上させるために、仕事関数の大きな材料で形成するのがより好ましい。ここで、第1電極31を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、チタン(Ti)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、イッテルビウム(Yb)、フッ化リチウム(LiF)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、イリジウム(Ir)、スズ(Sn)等の金属材料が挙げられる。また、第1電極31を構成する材料は、例えば、アスタチン(At)/酸化アスタチン(AtO)等の合金であっても構わない。さらに、第1電極31を構成する材料は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)のような導電性酸化物等であってもよい。また、第1電極31は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数の大きな化合物材料としては、例えば、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)等が挙げられる。 The first electrode 31 is electrically connected to the second terminal electrode 18b of the light emission control TFT 9f of each sub-pixel P through a contact hole formed in the laminated film of the second interlayer insulating film 22 and the planarization film 23. The first electrode 31 has a function of injecting holes (positive holes) into the organic EL layer 33. In addition, the first electrode 31 is more preferably formed of a material having a large work function in order to improve the efficiency of hole injection into the organic EL layer 33. Here, examples of materials constituting the first electrode 31 include metal materials such as silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au), titanium (Ti), ruthenium (Ru), manganese (Mn), indium (In), ytterbium (Yb), lithium fluoride (LiF), platinum (Pt), palladium (Pd), molybdenum (Mo), iridium (Ir), and tin (Sn). The material constituting the first electrode 31 may be, for example, an alloy such as astatine (At)/astatine oxide (AtO 2 ). The material constituting the first electrode 31 may be, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), or indium zinc oxide (IZO). The first electrode 31 may be formed by stacking a plurality of layers made of the above materials. Examples of compound materials having a large work function include indium tin oxide (ITO) and indium zinc oxide (IZO).

 有機EL層33は、図9に示すように、第1電極31上に順に設けられた正孔注入層1、正孔輸送層2、発光層3、電子輸送層4及び電子注入層5を備えている。 As shown in FIG. 9, the organic EL layer 33 includes a hole injection layer 1, a hole transport layer 2, a light-emitting layer 3, an electron transport layer 4, and an electron injection layer 5, which are arranged in this order on the first electrode 31.

 正孔注入層1は、陽極バッファ層とも呼ばれ、第1電極31と有機EL層33とのエネルギーレベルを近づけ、第1電極31から有機EL層33への正孔注入効率を改善する機能を有している。ここで、正孔注入層1を構成する材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、フェニレンジアミン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体等が挙げられる。 The hole injection layer 1 is also called an anode buffer layer, and has the function of bringing the energy levels of the first electrode 31 and the organic EL layer 33 closer together and improving the efficiency of hole injection from the first electrode 31 to the organic EL layer 33. Here, examples of materials constituting the hole injection layer 1 include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, phenylenediamine derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, and stilbene derivatives.

 正孔輸送層2は、第1電極31から有機EL層33への正孔の輸送効率を向上させる機能を有している。ここで、正孔輸送層2を構成する材料としては、例えば、ポルフィリン誘導体、芳香族第三級アミン化合物、スチリルアミン誘導体、ポリビニルカルバゾール、ポリ-p-フェニレンビニレン、ポリシラン、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミン置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、水素化アモルファスシリコン、水素化アモルファス炭化シリコン、硫化亜鉛、セレン化亜鉛等が挙げられる。 The hole transport layer 2 has the function of improving the efficiency of transporting holes from the first electrode 31 to the organic EL layer 33. Here, examples of materials constituting the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylenevinylene, polysilane, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, hydrogenated amorphous silicon, hydrogenated amorphous silicon carbide, zinc sulfide, zinc selenide, etc.

 発光層3は、第1電極31及び第2電極34による電圧印加の際に、第1電極31及び第2電極34から正孔及び電子がそれぞれ注入されると共に、正孔及び電子が再結合する領域である。ここで、発光層3は、発光効率が高い材料により形成されている。そして、発光層3を構成する材料としては、例えば、金属オキシノイド化合物[8-ヒドロキシキノリン金属錯体]、ナフタレン誘導体、アントラセン誘導体、ジフェニルエチレン誘導体、ビニルアセトン誘導体、トリフェニルアミン誘導体、ブタジエン誘導体、クマリン誘導体、ベンズオキサゾール誘導体、オキサジアゾール誘導体、オキサゾール誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、ベンゾチアゾール誘導体、スチリル誘導体、スチリルアミン誘導体、ビススチリルベンゼン誘導体、トリススチリルベンゼン誘導体、ペリレン誘導体、ペリノン誘導体、アミノピレン誘導体、ピリジン誘導体、ローダミン誘導体、アクイジン誘導体、フェノキサゾン、キナクリドン誘導体、ルブレン、ポリ-p-フェニレンビニレン、ポリシラン等が挙げられる。 The light-emitting layer 3 is a region where holes and electrons are injected from the first electrode 31 and the second electrode 34, respectively, and where the holes and electrons recombine when a voltage is applied by the first electrode 31 and the second electrode 34. Here, the light-emitting layer 3 is formed from a material with high luminous efficiency. Examples of materials constituting the light-emitting layer 3 include metal oxinoid compounds [8-hydroxyquinoline metal complexes], naphthalene derivatives, anthracene derivatives, diphenylethylene derivatives, vinylacetone derivatives, triphenylamine derivatives, butadiene derivatives, coumarin derivatives, benzoxazole derivatives, oxadiazole derivatives, oxazole derivatives, benzimidazole derivatives, thiadiazole derivatives, benzothiazole derivatives, styryl derivatives, styrylamine derivatives, bisstyrylbenzene derivatives, tristyrylbenzene derivatives, perylene derivatives, perinone derivatives, aminopyrene derivatives, pyridine derivatives, rhodamine derivatives, aquidine derivatives, phenoxazone, quinacridone derivatives, rubrene, poly-p-phenylenevinylene, polysilane, and the like.

 電子輸送層4は、電子を発光層3まで効率良く移動させる機能を有している。ここで、電子輸送層4を構成する材料としては、例えば、有機化合物として、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、テトラシアノアントラキノジメタン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、シロール誘導体、金属オキシノイド化合物等が挙げられる。 The electron transport layer 4 has the function of efficiently transferring electrons to the light-emitting layer 3. Here, examples of materials constituting the electron transport layer 4 include organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, fluorenone derivatives, silole derivatives, and metal oxinoid compounds.

 電子注入層5は、第2電極34と有機EL層33とのエネルギーレベルを近づけ、第2電極34から有機EL層33へ電子が注入される効率を向上させる機能を有し、この機能により、有機EL素子35の駆動電圧を下げることができる。なお、電子注入層5は、陰極バッファ層とも呼ばれる。ここで、電子注入層5を構成する材料としては、例えば、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ストロンチウム(SrF)、フッ化バリウム(BaF)のような無機アルカリ化合物、酸化アルミニウム(Al)、酸化ストロンチウム(SrO)等が挙げられる。 The electron injection layer 5 has a function of bringing the energy levels of the second electrode 34 and the organic EL layer 33 closer to each other and improving the efficiency of electron injection from the second electrode 34 to the organic EL layer 33, and this function makes it possible to reduce the driving voltage of the organic EL element 35. The electron injection layer 5 is also called a cathode buffer layer. Here, examples of materials constituting the electron injection layer 5 include inorganic alkali compounds such as lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), and barium fluoride (BaF 2 ), aluminum oxide (Al 2 O 3 ), and strontium oxide (SrO).

 第2電極34は、図3に示すように、各有機EL層33及びエッジカバー32を覆うように全てのサブ画素Pに共通して設けられている。また、第2電極34は、有機EL層33に電子を注入する機能を有している。また、第2電極34は、有機EL層33への電子注入効率を向上させるために、仕事関数の小さな材料で構成するのがより好ましい。ここで、第2電極34を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)等が挙げられる。また、第2電極34は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金により形成されていてもよい。また、第2電極34は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の導電性酸化物により形成されていてもよい。また、第2電極34は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数が小さい材料としては、例えば、マグネシウム(Mg)、リチウム(Li)、フッ化リチウム(LiF)、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等が挙げられる。 3, the second electrode 34 is provided in common to all the sub-pixels P so as to cover each organic EL layer 33 and the edge cover 32. The second electrode 34 has a function of injecting electrons into the organic EL layer 33. In addition, the second electrode 34 is more preferably made of a material having a small work function in order to improve the efficiency of electron injection into the organic EL layer 33. Here, examples of materials constituting the second electrode 34 include silver (Ag), aluminum (Al), vanadium (V), calcium (Ca), titanium (Ti), yttrium (Y), sodium (Na), manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb), and lithium fluoride (LiF). The second electrode 34 may be formed of an alloy such as magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), astatine (At)/astatine oxide (AtO 2 ), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), or lithium fluoride (LiF)/calcium (Ca)/aluminum (Al). The second electrode 34 may be formed of a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), or indium zinc oxide (IZO). The second electrode 34 may be formed by stacking a plurality of layers made of the above materials. Examples of materials with a small work function include magnesium (Mg), lithium (Li), lithium fluoride (LiF), magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), and lithium fluoride (LiF)/calcium (Ca)/aluminum (Al).

 エッジカバー32は、例えば、ポリイミド樹脂、アクリル樹脂等の有機樹脂材料、又はポリシロキサン系のSOG材料等により構成されている。 The edge cover 32 is made of, for example, an organic resin material such as polyimide resin or acrylic resin, or a polysiloxane-based SOG material.

 封止膜45は、図3に示すように、第2電極34を覆うように設けられ、第2電極34上に順に積層された第1無機封止膜41、有機封止膜42及び第2無機封止膜43を備え、有機EL素子35の有機EL層33を水分や酸素から保護する機能を有している。 As shown in FIG. 3, the sealing film 45 is provided to cover the second electrode 34, and includes a first inorganic sealing film 41, an organic sealing film 42, and a second inorganic sealing film 43 laminated in that order on the second electrode 34, and has the function of protecting the organic EL layer 33 of the organic EL element 35 from moisture and oxygen.

 第1無機封止膜41及び第2無機封止膜43は、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜等の無機絶縁膜により構成されている。 The first inorganic sealing film 41 and the second inorganic sealing film 43 are composed of an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film.

 有機封止膜42は、例えば、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、ポリ尿素樹脂、パリレン樹脂、ポリイミド樹脂、ポリアミド樹脂等の有機樹脂材料により構成されている。 The organic sealing film 42 is made of an organic resin material such as, for example, acrylic resin, epoxy resin, silicone resin, polyurea resin, parylene resin, polyimide resin, or polyamide resin.

 上記構成の有機EL表示装置50aでは、各サブ画素Pにおいて、まず、発光制御線21eが選択されて非活性状態とされると、有機EL素子35が非発光状態となる。その非発光状態で、前段のゲート線21g(n-1)が選択され、そのゲート線21g(n-1)を介してゲート信号が初期化用TFT9aに入力されることにより、初期化用TFT9aがオン状態となり、電源線12gの高電源電圧ELVDDがキャパシタ9hに印加されると共に、駆動用TFT9dがオン状態となる。これにより、キャパシタ9hの電荷が放電されて、駆動用TFT9dのゲート電極にかかる電圧が初期化される。次に、自段のゲート線21g(n)が選択されて活性状態とされることにより、補償用TFT9b及び書込用TFT9cがオン状態となり、対応するソース線12fを介して伝達されるソース信号に対応する所定の電圧がダイオード接続状態の駆動用TFT9dを介してキャパシタ9hに書き込まれると共に、陽極放電用TFT9gがオン状態となり、第2初期化電源線19iを介して初期化信号が有機EL素子35の第1電極31に印加されて第1電極31に蓄積した電荷がリセットされる。その後、発光制御線21eが選択されて、電源供給用TFT9e及び発光制御用TFT9fがオン状態となり、駆動用TFT9dのゲート電極にかかる電圧に応じた駆動電流が電源線12gから有機EL素子35に供給される。このようにして、有機EL表示装置50aでは、各サブ画素Pにおいて、有機EL素子35が駆動電流に応じた輝度で発光して、画像表示が行われる。 In the organic EL display device 50a configured as described above, in each subpixel P, first, the light-emitting control line 21e is selected and deactivated, causing the organic EL element 35 to enter a non-light-emitting state. In this non-light-emitting state, the preceding gate line 21g(n-1) is selected, and a gate signal is input to the initialization TFT 9a via that gate line 21g(n-1), causing the initialization TFT 9a to enter an ON state, the high power supply voltage ELVDD of the power supply line 12g is applied to the capacitor 9h, and the driving TFT 9d enters an ON state. This causes the charge in the capacitor 9h to be discharged, and the voltage applied to the gate electrode of the driving TFT 9d is initialized. Next, the gate line 21g(n) of the current stage is selected and activated, so that the compensation TFT 9b and the writing TFT 9c are turned on, and a predetermined voltage corresponding to the source signal transmitted through the corresponding source line 12f is written into the capacitor 9h through the driving TFT 9d in a diode-connected state, and the anode discharge TFT 9g is turned on, and an initialization signal is applied to the first electrode 31 of the organic EL element 35 through the second initialization power line 19i, resetting the charge accumulated in the first electrode 31. After that, the light emission control line 21e is selected, the power supply TFT 9e and the light emission control TFT 9f are turned on, and a drive current corresponding to the voltage applied to the gate electrode of the driving TFT 9d is supplied from the power line 12g to the organic EL element 35. In this way, in the organic EL display device 50a, the organic EL element 35 emits light at a luminance corresponding to the drive current in each sub-pixel P, and an image is displayed.

 次に、本実施形態の有機EL表示装置50aの製造方法について説明する。なお、有機EL表示装置50aの製造方法は、TFT層形成工程、有機EL素子層形成工程及び封止膜形成工程を備える。 Next, a method for manufacturing the organic EL display device 50a of this embodiment will be described. The method for manufacturing the organic EL display device 50a includes a TFT layer forming process, an organic EL element layer forming process, and a sealing film forming process.

 <TFT層形成工程>
 まず、例えば、ガラス基板上に形成した樹脂基板10上に、例えば、プラズマCVD(Chemical Vapor Deposition)法により、酸化シリコン膜(厚さ150nm程度)等を成膜することにより、第1ベースコート膜11を形成する。
<TFT layer formation process>
First, for example, a silicon oxide film (thickness: about 150 nm) or the like is formed on a resin substrate 10 formed on a glass substrate by, for example, a plasma CVD (Chemical Vapor Deposition) method to form a first base coat film 11. Form.

 続いて、第1ベースコート膜11が形成された基板表面に、例えば、スパッタリング法により、モリブデン膜(厚さ250nm程度)等を成膜して、第1金属膜を形成した後に、その第1金属膜をパターニングすることにより、下側遮光層12a、ソース線12f、電源線12g等を形成する。 Next, a molybdenum film (about 250 nm thick) or the like is formed by, for example, sputtering on the substrate surface on which the first base coat film 11 has been formed, and the first metal film is then patterned to form the lower light-shielding layer 12a, source line 12f, power line 12g, etc.

 さらに、下側遮光層12a等が形成された基板表面に、例えば、プラズマCVD法により、酸化シリコン膜(厚さ300nm程度)等を成膜することにより、第2ベースコート膜13を形成する。 Furthermore, a silicon oxide film (thickness: about 300 nm) is formed by, for example, plasma CVD on the substrate surface on which the lower light-shielding layer 12a etc. are formed, thereby forming a second base coat film 13.

 その後、第2ベースコート膜13が形成された基板表面に、例えば、プラズマCVD法により、アモルファスシリコン膜(厚さ50nm程度)を成膜し、そのアモルファスシリコン膜をレーザーアニール等により結晶化して、ポリシリコンからなる第1半導体膜を形成した後に、その第1半導体膜をパターニングして、第1半導体層14aを形成する。 After that, an amorphous silicon film (about 50 nm thick) is formed on the substrate surface on which the second base coat film 13 has been formed, for example, by plasma CVD, and the amorphous silicon film is crystallized by laser annealing or the like to form a first semiconductor film made of polysilicon, and then the first semiconductor film is patterned to form the first semiconductor layer 14a.

 続いて、第1半導体層14aが形成された基板表面に、例えば、プラズマCVD法により、酸化シリコン膜(厚さ125nm程度)等を成膜して、第1ゲート絶縁膜15を形成した後に、例えば、スパッタリング法により、モリブデン膜(厚さ200nm程度)等を成膜して第2金属膜を形成し、その第2金属膜をパターニングすることにより、第1ゲート電極16a、第2初期化電源線16i等を形成する。 Next, a silicon oxide film (about 125 nm thick) is formed by, for example, plasma CVD on the substrate surface on which the first semiconductor layer 14a is formed to form the first gate insulating film 15, and then a molybdenum film (about 200 nm thick) is formed by, for example, sputtering to form a second metal film, which is then patterned to form the first gate electrode 16a, the second initialization power line 16i, etc.

 さらに、第1ゲート電極16aをマスクとして、例えば、リン等の不純物イオンをドーピングすることにより、第1半導体層14aの一部を導体化して、第1半導体層14aに第1導体領域14aa、第2導体領域14ab及び第1チャネル領域14acを形成する。 Furthermore, by doping impurity ions such as phosphorus using the first gate electrode 16a as a mask, a portion of the first semiconductor layer 14a is made conductive, thereby forming a first conductor region 14aa, a second conductor region 14ab, and a first channel region 14ac in the first semiconductor layer 14a.

 その後、第1半導体層14aの一部が導体化された基板表面に、例えば、プラズマCVD法により、窒化シリコン膜(150nm程度)及び酸化シリコン膜(厚さ50nm程度)等を順に成膜した後に、それらの窒化シリコン膜及び酸化シリコン膜の積層膜にコンタクトホールを形成することにより、第1層間絶縁膜17を形成する。 Then, on the substrate surface where a portion of the first semiconductor layer 14a has been made conductive, a silicon nitride film (about 150 nm) and a silicon oxide film (about 50 nm thick) are sequentially formed, for example, by plasma CVD, and then contact holes are formed in the laminated film of the silicon nitride film and the silicon oxide film to form the first interlayer insulating film 17.

 続いて、第1層間絶縁膜17が形成された基板表面に、例えば、スパッタリング法により、チタン膜(厚さ50nm程度)、銅膜(厚さ400nm程度)、ITO膜(厚さ50nm程度)等を順に成膜して、第3金属膜を形成した後に、その第3金属膜をパターニングすることにより、第1端子電極18a、第2端子電極18b、第3端子電極18c及び第4端子電極18d等を形成する。 Next, a titanium film (approximately 50 nm thick), a copper film (approximately 400 nm thick), an ITO film (approximately 50 nm thick), etc. are sequentially formed by, for example, a sputtering method on the substrate surface on which the first interlayer insulating film 17 has been formed, and after forming a third metal film, the third metal film is patterned to form the first terminal electrode 18a, the second terminal electrode 18b, the third terminal electrode 18c, the fourth terminal electrode 18d, etc.

 さらに、第1端子電極18a等が形成された基板表面に、例えば、スパッタリング法により、InGaZnO等の酸化物半導体膜(厚さ30nm程度)を成膜して、第2半導体膜を形成した後に、その第2半導体膜をパターニングして、第2半導体層19aを形成する。 Furthermore, on the substrate surface on which the first terminal electrode 18a etc. are formed, an oxide semiconductor film (with a thickness of about 30 nm) such as InGaZnO4 is formed by, for example, a sputtering method to form a second semiconductor film, and then the second semiconductor film is patterned to form the second semiconductor layer 19a.

 その後、第2半導体層19aが形成された基板表面に、例えば、プラズマCVD法により、酸化シリコン膜(厚さ100nm程度)等を成膜した後に、例えば、スパッタリング法により、モリブデン膜(厚さ200nm程度)等を成膜して第4金属膜を形成した後、その酸化シリコン膜及びその第4金属膜をパターニングして、酸化シリコン膜により第2ゲート絶縁膜20を形成すると共に、第4金属膜により第2ゲート電極21a、ゲート線21g、発光制御線21e等を形成する。 After that, a silicon oxide film (about 100 nm thick) is formed on the substrate surface on which the second semiconductor layer 19a is formed, for example, by plasma CVD, and then a molybdenum film (about 200 nm thick) is formed by sputtering to form a fourth metal film, and the silicon oxide film and the fourth metal film are patterned to form the second gate insulating film 20 from the silicon oxide film, and the second gate electrode 21a, gate line 21g, light emission control line 21e, etc. from the fourth metal film.

 続いて、第2ゲート絶縁膜20等が形成された基板表面に、例えば、プラズマCVD法により、酸化シリコン膜(厚さ500nm程度)等を成膜することにより、第2層間絶縁膜22を形成する。なお、第2層間絶縁膜22を形成した後の熱処理により、第2半導体層19aの一部を導体化して、第2半導体層19aに第3導体領域19aa、第4導体領域19ab及び第2チャネル領域19acが形成される。 Then, a silicon oxide film (about 500 nm thick) is formed by, for example, plasma CVD on the substrate surface on which the second gate insulating film 20 and other layers are formed, to form the second interlayer insulating film 22. Note that a portion of the second semiconductor layer 19a is made conductive by heat treatment after the formation of the second interlayer insulating film 22, and a third conductor region 19aa, a fourth conductor region 19ab, and a second channel region 19ac are formed in the second semiconductor layer 19a.

 さらに、第2層間絶縁膜22が形成された基板表面に、例えば、スピンコート法やスリットコート法により、アクリル系の感光性樹脂膜(厚さ2μm程度)を塗布した後に、その塗布膜に対して、プリベーク、露光、現像及びポストベークを行うことにより、コンタクトホールを有する平坦化膜23を形成する。 Furthermore, an acrylic photosensitive resin film (about 2 μm thick) is applied to the substrate surface on which the second interlayer insulating film 22 is formed, for example, by spin coating or slit coating, and then the applied film is pre-baked, exposed, developed, and post-baked to form a planarization film 23 with contact holes.

 最後に、平坦化膜23のコンタクトホールから露出する第2層間絶縁膜22を除去して、そのコンタクトホールを発光制御用TFT9fの第2端子電極18bに到達させる。 Finally, the second interlayer insulating film 22 exposed from the contact hole in the planarization film 23 is removed, and the contact hole is made to reach the second terminal electrode 18b of the light-emission control TFT 9f.

 以上のようにして、TFT層30aを形成することができる。 In this manner, the TFT layer 30a can be formed.

 <有機EL素子層形成工程>
 上記TFT層形成工程で形成されたTFT層30aの平坦化膜23上に、周知の方法を用いて、第1電極31、エッジカバー32、有機EL層33(正孔注入層1、正孔輸送層2、発光層3、電子輸送層4、電子注入層5)及び第2電極34を形成して、有機EL素子層40を形成する。
<Organic EL element layer formation process>
On the planarization film 23 of the TFT layer 30a formed in the TFT layer formation process, a first electrode 31, an edge cover 32, an organic EL layer 33 (a hole injection layer 1, a hole transport layer 24, a hole transport layer 26, a hole transport layer 28, a hole transport layer 29, a hole transport layer 30a, a hole transport layer 31, a hole transport layer 32, a hole transport layer 33, a hole transport layer 34, a hole transport layer 35, a hole transport layer 36, a hole transport layer 37, a hole transport layer 38, a hole transport layer 39 ... The organic EL element layer 40 is formed by forming the layer 2, the light-emitting layer 3, the electron transport layer 4, the electron injection layer 5, and the second electrode 34.

 <封止膜形成工程>
 まず、上記有機EL素子層形成工程で形成された有機EL素子層40が形成された基板表面に、マスクを用いて、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜等の無機絶縁膜をプラズマCVD法により成膜して、第1無機封止膜41を形成する。
<Sealing film forming process>
First, an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film is deposited by plasma CVD using a mask on the substrate surface on which the organic EL element layer 40 formed in the organic EL element layer formation process is formed, thereby forming a first inorganic sealing film 41.

 続いて、第1無機封止膜41が形成された基板表面に、例えば、インクジェット法により、アクリル樹脂等の有機樹脂材料を成膜して、有機封止膜42を形成する。 Next, an organic resin material such as an acrylic resin is deposited on the substrate surface on which the first inorganic sealing film 41 is formed, for example by an inkjet method, to form an organic sealing film 42.

 その後、有機封止膜42が形成された基板表面に、マスクを用いて、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜等の無機絶縁膜をプラズマCVD法により成膜して、第2無機封止膜43を形成することにより、封止膜45を形成する。 Then, an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film is deposited by plasma CVD using a mask on the substrate surface on which the organic sealing film 42 has been formed, forming a second inorganic sealing film 43, thereby forming a sealing film 45.

 最後に、封止膜45が形成された基板表面に保護シート(不図示)を貼付した後に、樹脂基板10のガラス基板側からレーザー光を照射することにより、樹脂基板10の下面からガラス基板を剥離させ、ガラス基板を剥離させた樹脂基板10の下面に保護シート(不図示)を貼付する。 Finally, a protective sheet (not shown) is attached to the substrate surface on which the sealing film 45 has been formed, and then laser light is applied from the glass substrate side of the resin substrate 10 to peel the glass substrate from the underside of the resin substrate 10, and a protective sheet (not shown) is attached to the underside of the resin substrate 10 from which the glass substrate has been peeled off.

 以上のようにして、本実施形態の有機EL表示装置50aを製造することができる。 In this manner, the organic EL display device 50a of this embodiment can be manufactured.

 以上説明したように、本実施形態の有機EL表示装置50aによれば、各サブ画素Pに設けられた酸化物半導体からなる第2半導体層19aを有する第2TFT9Bでは、第2半導体層19aの第3導体領域19aa及び第4導体領域19abに第3端子電極18c及び第4端子電極18dが樹脂基板10側から接して電気的にそれぞれ接続されている。これにより、第2半導体層19aの第3導体領域19aa及び第4導体領域19abに対して電気的な接続を形成するには、例えば、フッ酸等に対して耐性の低い酸化物半導体からなる第3導体領域19aa及び第4導体領域19abに到達するコンタクトホールを形成せずに、第3端子電極18c及び第4端子電極18dよりも有機EL素子層40側で第3端子電極18c及び第4端子電極18dに到達するコンタクトホールを形成したり、第3端子電極18c及び第4端子電極18dよりも樹脂基板10側で第3端子電極18c及び第4端子電極18dに到達するコンタクトホールを形成したりすればよいので、酸化物半導体からなる第2半導体層19aとの電気的な接続を容易にすることができる。また、TFT層30aでは、樹脂基板10上に、第1ベースコート膜11、第1金属膜、第2ベースコート膜13、ポリシリコンからなる第1半導体膜、第1ゲート絶縁膜15、第2金属膜、第1層間絶縁膜17、第3金属膜、酸化物半導体からなる第2半導体膜、第2ゲート絶縁膜20及び第4金属膜が順に積層され、表示領域(D)には、第1金属膜により形成された複数のソース線12f及び複数の電源線12gが互いに平行に延びる設けられている。これにより、第4金属膜により形成されたゲート線21g及び発光制御線21eとソース線12f及び電源線12gとが厚さ方向に離間するので、ゲート線21g及び発光制御線21eとソース線12f及び電源線12gとの配線クロス容量を小さくすることができる。したがって、酸化物半導体からなる半導体層との電気的な接続を容易にすると共に、配線クロス容量を小さくすることができる。 As described above, in the organic EL display device 50a of this embodiment, in the second TFT 9B having a second semiconductor layer 19a made of an oxide semiconductor provided in each subpixel P, the third terminal electrode 18c and the fourth terminal electrode 18d are in contact with the third conductor region 19aa and the fourth conductor region 19ab of the second semiconductor layer 19a from the resin substrate 10 side and are electrically connected, respectively. As a result, to form an electrical connection with the third conductor region 19aa and the fourth conductor region 19ab of the second semiconductor layer 19a, it is only necessary to form contact holes reaching the third terminal electrode 18c and the fourth terminal electrode 18d on the organic EL element layer 40 side closer to the third terminal electrode 18c and the fourth terminal electrode 18d, or to form contact holes reaching the third terminal electrode 18c and the fourth terminal electrode 18d on the resin substrate 10 side closer to the third terminal electrode 18c and the fourth terminal electrode 18d, without forming contact holes reaching the third conductor region 19aa and the fourth conductor region 19ab made of an oxide semiconductor that has low resistance to hydrofluoric acid, etc., thereby making it possible to easily form an electrical connection with the second semiconductor layer 19a made of an oxide semiconductor. In the TFT layer 30a, the first base coat film 11, the first metal film, the second base coat film 13, the first semiconductor film made of polysilicon, the first gate insulating film 15, the second metal film, the first interlayer insulating film 17, the third metal film, the second semiconductor film made of an oxide semiconductor, the second gate insulating film 20, and the fourth metal film are laminated in this order on the resin substrate 10, and in the display region (D), a plurality of source lines 12f and a plurality of power lines 12g formed by the first metal film are provided to extend parallel to each other. As a result, the gate lines 21g and the light emission control lines 21e formed by the fourth metal film are spaced apart from the source lines 12f and the power lines 12g in the thickness direction, so that the wiring cross capacitance between the gate lines 21g and the light emission control lines 21e and the source lines 12f and the power lines 12g can be reduced. Therefore, it is possible to facilitate electrical connection with the semiconductor layer made of an oxide semiconductor and reduce the wiring cross capacitance.

 また、本実施形態の有機EL表示装置50aによれば、ソース線12f及び電源線12gが第1金属膜により形成され、第1TFT9Aの第1端子電極18a及び第2端子電極18b、並びに第2TFT9Bの第3端子電極18c及び第4端子電極18dが第3金属膜により形成されているので、ソース線12f及び電源線12gと第1端子電極18a、第2端子電極18b、第3端子電極18c及び第4端子電極18dとが互いに異なる層に設けられている。これにより、表示領域Dに延びる配線と表示領域Dの各サブ画素Pに第1TFT9A及び第2TFT9Bの電極とが別々の層に形成されているので、例えば、モバイル用途等の高精細な画素サイズであっても、互いに隣り合うソース線12f及び電源線12gの間の配線リークを抑制することができる。 In addition, according to the organic EL display device 50a of this embodiment, the source line 12f and the power line 12g are formed of the first metal film, and the first terminal electrode 18a and the second terminal electrode 18b of the first TFT 9A and the third terminal electrode 18c and the fourth terminal electrode 18d of the second TFT 9B are formed of the third metal film, so that the source line 12f and the power line 12g and the first terminal electrode 18a, the second terminal electrode 18b, the third terminal electrode 18c and the fourth terminal electrode 18d are provided on different layers. As a result, the wiring extending to the display area D and the electrodes of the first TFT 9A and the second TFT 9B in each subpixel P of the display area D are formed on different layers, so that even with a high-definition pixel size for mobile applications, for example, wiring leakage between adjacent source lines 12f and power lines 12g can be suppressed.

 また、本実施形態の有機EL表示装置50aによれば、第2半導体層19aの樹脂基板10側には、第1金属膜により形成された下側遮光層12aが設けられているので、第2半導体層19aの第2チャネル領域19acに光が入射したり、樹脂基板10に含まれる不純物イオンが第2チャネル領域19acに到達したりすることを抑制することができる。 In addition, according to the organic EL display device 50a of this embodiment, a lower light-shielding layer 12a formed of a first metal film is provided on the resin substrate 10 side of the second semiconductor layer 19a, so that it is possible to prevent light from entering the second channel region 19ac of the second semiconductor layer 19a and prevent impurity ions contained in the resin substrate 10 from reaching the second channel region 19ac.

 《第2の実施形態》
 図10は、本発明に係る表示装置の第2の実施形態を示している。ここで、図10は、本実施形態の有機EL表示装置50bの表示領域Dの断面図である。なお、以下の実施形態において、図1~図9と同じ部分については同じ符号を付して、その詳細な説明を省略する。
Second Embodiment
Fig. 10 shows a second embodiment of a display device according to the present invention. Here, Fig. 10 is a cross-sectional view of a display region D of an organic EL display device 50b of this embodiment. Note that in the following embodiments, the same parts as those in Figs. 1 to 9 are denoted by the same reference numerals, and detailed description thereof will be omitted.

 上記第1の実施形態では、下側遮光層12aが設けられたTFT層30aを備えた有機EL表示装置50aを例示したが、本実施形態では、下側遮光層12a及び上側遮光層24が設けられたTFT層30bを備えた有機EL表示装置50bを例示する。 In the first embodiment, an organic EL display device 50a is illustrated having a TFT layer 30a provided with a lower light-shielding layer 12a, but in this embodiment, an organic EL display device 50b is illustrated having a TFT layer 30b provided with a lower light-shielding layer 12a and an upper light-shielding layer 24.

 有機EL表示装置50bは、上記第1の実施形態の有機EL表示装置50aと同様に、例えば、矩形状に設けられた画像表示を行う表示領域Dと、表示領域Dの周囲に設けられた額縁領域Fとを備えている。 The organic EL display device 50b, like the organic EL display device 50a of the first embodiment, includes, for example, a rectangular display area D for displaying images, and a frame area F arranged around the periphery of the display area D.

 有機EL表示装置50bは、図10に示すように、ベース基板として設けられた樹脂基板10と、樹脂基板10上に設けられたTFT層30bと、TFT層30b上に発光素子層として設けられた有機EL素子層40と、有機EL素子層40上に設けられた封止膜45とを備えている。 As shown in FIG. 10, the organic EL display device 50b includes a resin substrate 10 provided as a base substrate, a TFT layer 30b provided on the resin substrate 10, an organic EL element layer 40 provided as a light emitting element layer on the TFT layer 30b, and a sealing film 45 provided on the organic EL element layer 40.

 TFT層30bは、上記第1の実施形態のTFT層30aと同様に、図10に示すように、樹脂基板10上に順に設けられた第1ベースコート膜11及び第2ベースコート膜13と、第2ベースコート膜13上にサブ画素P毎に設けられた4つの第1TFT9A、3つの第2TFT9B及び1つのキャパシタ9h(図4参照)と、各第1TFT9A及び各第2TFT9B及び各キャパシタ9h上に順に設けられた第2層間絶縁膜22及び平坦化膜23とを備えている。ここで、TFT層30bには、上記第1の実施形態のTFT層30aと同様に、複数のゲート線21g、複数の発光制御線21e、複数の第2初期化電源線16i、複数のソース線12f及び複数の電源線12gが設けられている。 The TFT layer 30b, like the TFT layer 30a of the first embodiment, includes a first base coat film 11 and a second base coat film 13 provided in order on a resin substrate 10, four first TFTs 9A, three second TFTs 9B, and one capacitor 9h (see FIG. 4) provided for each subpixel P on the second base coat film 13, and a second interlayer insulating film 22 and a planarization film 23 provided in order on each of the first TFTs 9A, each of the second TFTs 9B, and each of the capacitors 9h. Here, like the TFT layer 30a of the first embodiment, the TFT layer 30b includes a plurality of gate lines 21g, a plurality of light emission control lines 21e, a plurality of second initialization power lines 16i, a plurality of source lines 12f, and a plurality of power lines 12g.

 TFT層30bでは、図10に示すように、樹脂基板10上に、第1ベースコート膜11、第1金属膜、第2ベースコート膜(第1無機絶縁膜)13、第1半導体膜、第1ゲート絶縁膜(第2無機絶縁膜)15、第2金属膜、第1層間絶縁膜(第3無機絶縁膜)17、第3金属膜、第2半導体膜、第2ゲート絶縁膜(第4無機絶縁膜)20、第4金属膜、第2層間絶縁膜(第5無機絶縁膜)22、第5金属膜及び平坦化膜23が順に積層されている。ここで、TFT層30bでは、図10に示すように、第1TFT9A及び第2TFT9Bの有機EL素子層40側に上記第5金属膜により形成された上側遮光層24が設けられている。なお、上側遮光層24は、平面視で第1TFT9Aの第1半導体層14a及び第2TFT9Bの第2半導体層19aと重なるように設けられている。 10, in the TFT layer 30b, a first base coat film 11, a first metal film, a second base coat film (first inorganic insulating film) 13, a first semiconductor film, a first gate insulating film (second inorganic insulating film) 15, a second metal film, a first interlayer insulating film (third inorganic insulating film) 17, a third metal film, a second semiconductor film, a second gate insulating film (fourth inorganic insulating film) 20, a fourth metal film, a second interlayer insulating film (fifth inorganic insulating film) 22, a fifth metal film, and a planarization film 23 are laminated in this order on a resin substrate 10. Here, in the TFT layer 30b, as shown in FIG. 10, an upper light-shielding layer 24 formed of the fifth metal film is provided on the organic EL element layer 40 side of the first TFT 9A and the second TFT 9B. The upper light-shielding layer 24 is arranged to overlap the first semiconductor layer 14a of the first TFT 9A and the second semiconductor layer 19a of the second TFT 9B in a plan view.

 上記構成の有機EL表示装置50bでは、上記第1の実施形態の有機EL表示装置50aと同様に、各サブ画素Pにおいて、有機EL素子35が駆動電流に応じた輝度で発光して、画像表示が行われる。 In the organic EL display device 50b configured as described above, like the organic EL display device 50a of the first embodiment, the organic EL element 35 in each subpixel P emits light with a luminance according to the drive current, thereby displaying an image.

 本実施形態の有機EL表示装置50bは、上記第1の実施形態の有機EL表示装置50aの製造方法におけるTFT層形成工程において、第2層間絶縁膜22が形成された基板表面に、例えば、スパッタリング法により、モリブデン膜(厚さ250nm程度)等を成膜して、第5金属膜を形成した後に、その第5金属膜をパターニングすることにより、上側遮光層24を形成し、さらに、上記第1の実施形態の同様に、平坦化膜23を形成して、TFT層30bを形成することにより、製造することができる。 The organic EL display device 50b of this embodiment can be manufactured by forming a molybdenum film (about 250 nm thick) or the like by sputtering, for example, on the substrate surface on which the second interlayer insulating film 22 is formed in the TFT layer formation step of the manufacturing method for the organic EL display device 50a of the first embodiment described above, forming a fifth metal film, and then patterning the fifth metal film to form the upper light-shielding layer 24, and further forming a planarization film 23 in the same manner as in the first embodiment described above to form the TFT layer 30b.

 以上説明したように、本実施形態の有機EL表示装置50bによれば、各サブ画素Pに設けられた酸化物半導体からなる第2半導体層19aを有する第2TFT9Bでは、第2半導体層19aの第3導体領域19aa及び第4導体領域19abに第3端子電極18c及び第4端子電極18dが樹脂基板10側から接して電気的にそれぞれ接続されている。これにより、第2半導体層19aの第3導体領域19aa及び第4導体領域19abに対して電気的な接続を形成するには、例えば、フッ酸等に対して耐性の低い酸化物半導体からなる第3導体領域19aa及び第4導体領域19abに到達するコンタクトホールを形成せずに、第3端子電極18c及び第4端子電極18dよりも有機EL素子層40側で第3端子電極18c及び第4端子電極18dに到達するコンタクトホールを形成したり、第3端子電極18c及び第4端子電極18dよりも樹脂基板10側で第3端子電極18c及び第4端子電極18dに到達するコンタクトホールを形成したりすればよいので、酸化物半導体からなる第2半導体層19aとの電気的な接続を容易にすることができる。また、TFT層30bでは、樹脂基板10上に、第1ベースコート膜11、第1金属膜、第2ベースコート膜13、ポリシリコンからなる第1半導体膜、第1ゲート絶縁膜15、第2金属膜、第1層間絶縁膜17、第3金属膜、酸化物半導体からなる第2半導体膜、第2ゲート絶縁膜20及び第4金属膜が順に積層され、表示領域(D)には、第1金属膜により形成された複数のソース線12f及び複数の電源線12gが互いに平行に延びる設けられている。これにより、第4金属膜により形成されたゲート線21g及び発光制御線21eとソース線12f及び電源線12gとが厚さ方向に離間するので、ゲート線21g及び発光制御線21eとソース線12f及び電源線12gとの配線クロス容量を小さくすることができる。したがって、酸化物半導体からなる半導体層との電気的な接続を容易にすると共に、配線クロス容量を小さくすることができる。 As described above, in the organic EL display device 50b of this embodiment, in the second TFT 9B having a second semiconductor layer 19a made of an oxide semiconductor provided in each subpixel P, the third terminal electrode 18c and the fourth terminal electrode 18d are in contact with the third conductor region 19aa and the fourth conductor region 19ab of the second semiconductor layer 19a from the resin substrate 10 side and are electrically connected, respectively. As a result, to form an electrical connection with the third conductor region 19aa and the fourth conductor region 19ab of the second semiconductor layer 19a, it is only necessary to form contact holes reaching the third terminal electrode 18c and the fourth terminal electrode 18d on the organic EL element layer 40 side closer to the third terminal electrode 18c and the fourth terminal electrode 18d, or to form contact holes reaching the third terminal electrode 18c and the fourth terminal electrode 18d on the resin substrate 10 side closer to the third terminal electrode 18c and the fourth terminal electrode 18d, without forming contact holes reaching the third conductor region 19aa and the fourth conductor region 19ab made of an oxide semiconductor that has low resistance to hydrofluoric acid, etc., thereby making it possible to easily form an electrical connection with the second semiconductor layer 19a made of an oxide semiconductor. In the TFT layer 30b, the first base coat film 11, the first metal film, the second base coat film 13, the first semiconductor film made of polysilicon, the first gate insulating film 15, the second metal film, the first interlayer insulating film 17, the third metal film, the second semiconductor film made of an oxide semiconductor, the second gate insulating film 20, and the fourth metal film are laminated in this order on the resin substrate 10, and in the display region (D), a plurality of source lines 12f and a plurality of power lines 12g formed of the first metal film are provided to extend parallel to each other. As a result, the gate lines 21g and the light emission control lines 21e formed of the fourth metal film are spaced apart from the source lines 12f and the power lines 12g in the thickness direction, so that the wiring cross capacitance between the gate lines 21g and the light emission control lines 21e and the source lines 12f and the power lines 12g can be reduced. Therefore, it is possible to facilitate electrical connection with the semiconductor layer made of an oxide semiconductor and reduce the wiring cross capacitance.

 また、本実施形態の有機EL表示装置50bによれば、ソース線12f及び電源線12gが第1金属膜により形成され、第1TFT9Aの第1端子電極18a及び第2端子電極18b、並びに第2TFT9Bの第3端子電極18c及び第4端子電極18dが第3金属膜により形成されているので、ソース線12f及び電源線12gと第1端子電極18a、第2端子電極18b、第3端子電極18c及び第4端子電極18dとが互いに異なる層に設けられている。これにより、表示領域Dに延びる配線と表示領域Dの各サブ画素Pに第1TFT9A及び第2TFT9Bの電極とが別々の層に形成されているので、例えば、モバイル用途等の高精細な画素サイズであっても、互いに隣り合うソース線12f及び電源線12gの間の配線リークを抑制することができる。 In addition, according to the organic EL display device 50b of this embodiment, the source line 12f and the power line 12g are formed of the first metal film, and the first terminal electrode 18a and the second terminal electrode 18b of the first TFT 9A and the third terminal electrode 18c and the fourth terminal electrode 18d of the second TFT 9B are formed of the third metal film, so that the source line 12f and the power line 12g and the first terminal electrode 18a, the second terminal electrode 18b, the third terminal electrode 18c and the fourth terminal electrode 18d are provided on different layers. As a result, the wiring extending to the display area D and the electrodes of the first TFT 9A and the second TFT 9B in each subpixel P of the display area D are formed on different layers, so that even with a high-definition pixel size for mobile applications, for example, wiring leakage between adjacent source lines 12f and power lines 12g can be suppressed.

 また、本実施形態の有機EL表示装置50bによれば、第2半導体層19aの樹脂基板10側には、第1金属膜により形成された下側遮光層12aが設けられているので、第2半導体層19aの第2チャネル領域19acに光が入射したり、樹脂基板10に含まれる不純物イオンが第2チャネル領域19acに到達したりすることを抑制することができる。 In addition, according to the organic EL display device 50b of this embodiment, a lower light-shielding layer 12a formed of a first metal film is provided on the resin substrate 10 side of the second semiconductor layer 19a, so that it is possible to prevent light from entering the second channel region 19ac of the second semiconductor layer 19a and prevent impurity ions contained in the resin substrate 10 from reaching the second channel region 19ac.

 また、本実施形態の有機EL表示装置50bによれば、第1TFT9A及び第2TFT9Bの有機EL素子層30側に上側遮光層24が設けられているので、有機EL素子35で発光した光の迷光が発生しても、第1TFT9Aの第1半導体層14a及び第2TFT9Bの第2半導体層19aに入射し難くなり、第1TFT9A及び第2TFT9Bの動作の安定性を向上させることができる。 In addition, according to the organic EL display device 50b of this embodiment, an upper light-shielding layer 24 is provided on the organic EL element layer 30 side of the first TFT 9A and the second TFT 9B. Therefore, even if stray light is generated from the light emitted by the organic EL element 35, it is difficult for the light to enter the first semiconductor layer 14a of the first TFT 9A and the second semiconductor layer 19a of the second TFT 9B, thereby improving the stability of the operation of the first TFT 9A and the second TFT 9B.

 《その他の実施形態》
 上記各実施形態では、表示領域のサブ画素にポリシリコンにより形成された第1半導体層を有する第1TFT、及び酸化物半導体により形成されたからなる第2半導体層を備えた第2TFTがそれぞれ設けられた有機EL表示装置を例示したが、額縁領域に第1TFTを設けて、ゲートドライバ等の駆動回路を構成してもよい。
Other Embodiments
In each of the above embodiments, an organic EL display device is exemplified in which a first TFT having a first semiconductor layer formed of polysilicon and a second TFT having a second semiconductor layer formed of an oxide semiconductor are provided in each sub-pixel of the display region, but the first TFT may be provided in the frame region to configure a driving circuit such as a gate driver.

 また、上記各実施形態では、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層の5層積層構造の有機EL層を例示したが、有機EL層は、例えば、正孔注入層兼正孔輸送層、発光層、及び電子輸送層兼電子注入層の3層積層構造であってもよい。 In addition, in each of the above embodiments, an organic EL layer having a five-layer laminate structure of a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer is exemplified, but the organic EL layer may have a three-layer laminate structure of, for example, a hole injection layer/hole transport layer, a light-emitting layer, and an electron transport layer/electron injection layer.

 また、上記各実施形態では、第1電極を陽極とし、第2電極を陰極とした有機EL表示装置を例示したが、本発明は、有機EL層の積層構造を反転させ、第1電極を陰極とし、第2電極を陽極とした有機EL表示装置にも適用することができる。 In addition, in each of the above embodiments, an organic EL display device in which the first electrode is an anode and the second electrode is a cathode is exemplified, but the present invention can also be applied to an organic EL display device in which the layered structure of the organic EL layer is inverted, and the first electrode is a cathode and the second electrode is an anode.

 また、上記各実施形態では、表示装置として有機EL表示装置を例に挙げて説明したが、本発明は、電流によって駆動される複数の発光素子を備えた表示装置に適用することができ、例えば、量子ドット含有層を用いた発光素子であるQLED(Quantum-dot light emitting diode)を備えた表示装置に適用することができる。 In addition, in each of the above embodiments, an organic EL display device has been described as an example of a display device, but the present invention can be applied to a display device having a plurality of light-emitting elements driven by electric current, for example, a display device having QLEDs (Quantum-dot light emitting diodes), which are light-emitting elements that use a quantum dot-containing layer.

 以上説明したように、本発明は、フレキシブルな表示装置について有用である。 As described above, the present invention is useful for flexible display devices.

D     表示領域
P     サブ画素
9A    第1TFT(第1薄膜トランジスタ)
9B    第2TFT(第2薄膜トランジスタ)
9a    初期化TFT(第2薄膜トランジスタ)
9b    補償用TFT(第2薄膜トランジスタ)
9c    書込用TFT(第1薄膜トランジスタ)
9d    駆動用TFT(第1薄膜トランジスタ)
9e    電源供給用TFT(第1薄膜トランジスタ)
9f    発光制御用TFT(第1薄膜トランジスタ)
9g    陽極放電用TFT(第2薄膜トランジスタ)
10    樹脂基板(ベース基板)
12a   下側遮光層
12f   ソース線(配線)
12g   電源線(配線)
13    第2ベースコート膜(第1無機絶縁膜)
14a   第1半導体層
14aa  第1導体領域
14ab  第2導体領域
14ac  第1チャネル領域
15    第1ゲート絶縁膜(第2無機絶縁膜)
16a   第1ゲート電極
17    第1層間絶縁膜(第3無機絶縁膜)
18a   第1端子電極
18b   第2端子電極
18c   第3端子電極
18d   第4端子電極
19a   第2半導体層
19aa  第3導体領域
19ab  第4導体領域
19ac  第2チャネル領域
20    第2ゲート絶縁膜(第4無機絶縁膜)
21a   第2ゲート電極
22    第2層間絶縁膜(第5無機絶縁膜)
23    平坦化膜
24    上側遮光層
30a,30b  TFT層(薄膜トランジスタ層)
35    有機EL素子(有機エレクトロルミネッセンス素子、発光素子)
40    有機EL素子層(発光素子層)
45    封止膜
50a,50b  有機EL表示装置
D Display area P Sub-pixel 9A First TFT (first thin film transistor)
9B Second TFT (second thin film transistor)
9a Initialization TFT (second thin film transistor)
9b Compensation TFT (second thin film transistor)
9c Writing TFT (first thin film transistor)
9d Driving TFT (first thin film transistor)
9e Power supply TFT (first thin film transistor)
9f Light Emission Control TFT (First Thin Film Transistor)
9g Anode discharge TFT (second thin film transistor)
10 Resin substrate (base substrate)
12a: Lower light shielding layer 12f: Source line (wiring)
12g power line (wiring)
13 Second base coat film (first inorganic insulating film)
14a: first semiconductor layer 14aa; first conductor region 14ab; second conductor region 14ac; first channel region 15: first gate insulating film (second inorganic insulating film)
16a: First gate electrode 17: First interlayer insulating film (third inorganic insulating film)
18a: First terminal electrode 18b: Second terminal electrode 18c: Third terminal electrode 18d: Fourth terminal electrode 19a: Second semiconductor layer 19aa: Third conductor region 19ab: Fourth conductor region 19ac: Second channel region 20: Second gate insulating film (fourth inorganic insulating film)
21a: second gate electrode 22: second interlayer insulating film (fifth inorganic insulating film)
23 Planarization film 24 Upper light-shielding layer 30a, 30b TFT layer (thin film transistor layer)
35 Organic EL element (organic electroluminescence element, light-emitting element)
40 Organic EL element layer (light emitting element layer)
45 Sealing film 50a, 50b Organic EL display device

Claims (7)

 ベース基板と、
 上記ベース基板上に設けられ、第1金属膜、第1無機絶縁膜、ポリシリコンからなる第1半導体膜、第2無機絶縁膜、第2金属膜、第3無機絶縁膜、第3金属膜、酸化物半導体からなる第2半導体膜、第4無機絶縁膜及び第4金属膜が順に積層された薄膜トランジスタ層とを備え、
 上記薄膜トランジスタ層には、上記第1半導体膜により形成された第1半導体層を有する第1薄膜トランジスタ、及び上記第2半導体膜により形成された第2半導体層を有する第2薄膜トランジスタが表示領域を構成するサブ画素毎に設けられた表示装置であって、
 上記第1薄膜トランジスタは、互いに離間するように第1導体領域及び第2導体領域が規定されて該第1導体領域及び該第2導体領域の間に第1チャネル領域が規定された上記第1半導体層と、該第1半導体層上に上記第2無機絶縁膜を介して設けられ、上記第2金属膜により形成された第1ゲート電極と、互いに離間するように上記第3金属膜により設けられ、上記第1導体領域及び上記第2導体領域に電気的にそれぞれ接続された第1端子電極及び第2端子電極とを備え、
 上記第2薄膜トランジスタは、互いに離間するように第3導体領域及び第4導体領域が規定されて該第3導体領域及び該第4導体領域の間に第2チャネル領域が規定された上記第2半導体層と、該第2半導体層上に上記第4無機絶縁膜を介して設けられ、上記第4金属膜により形成された第2ゲート電極と、互いに離間するように上記第3金属膜により設けられ、上記第3導体領域及び上記第4導体領域に電気的にそれぞれ接続された第3端子電極及び第4端子電極とを備え、
 上記表示領域には、互いに平行に延びる複数の配線が上記第1金属膜により設けられていることを特徴とする表示装置。
A base substrate;
a thin film transistor layer provided on the base substrate, the thin film transistor layer being formed by sequentially stacking a first metal film, a first inorganic insulating film, a first semiconductor film made of polysilicon, a second inorganic insulating film, a second metal film, a third inorganic insulating film, a third metal film, a second semiconductor film made of an oxide semiconductor, a fourth inorganic insulating film, and a fourth metal film;
a display device in which a first thin film transistor having a first semiconductor layer formed by the first semiconductor film and a second thin film transistor having a second semiconductor layer formed by the second semiconductor film are provided for each sub-pixel constituting a display area,
the first thin film transistor comprises: the first semiconductor layer in which a first conductor region and a second conductor region are defined so as to be spaced apart from each other and a first channel region is defined between the first conductor region and the second conductor region; a first gate electrode provided on the first semiconductor layer via the second inorganic insulating film and formed of the second metal film; and a first terminal electrode and a second terminal electrode provided by the third metal film so as to be spaced apart from each other and electrically connected to the first conductor region and the second conductor region, respectively;
the second thin film transistor comprises: the second semiconductor layer in which a third conductor region and a fourth conductor region are defined so as to be spaced apart from each other and a second channel region is defined between the third conductor region and the fourth conductor region; a second gate electrode provided on the second semiconductor layer via the fourth inorganic insulating film and formed of the fourth metal film; and a third terminal electrode and a fourth terminal electrode provided by the third metal film so as to be spaced apart from each other and electrically connected to the third conductor region and the fourth conductor region, respectively;
A display device, wherein a plurality of wirings extending parallel to each other are provided in the display area and made of the first metal film.
 請求項1に記載された表示装置において、
 上記配線は、ソース線又は電源線であることを特徴とする表示装置。
2. The display device according to claim 1,
The display device is characterized in that the wiring is a source line or a power supply line.
 請求項1又は2に記載された表示装置において、
 上記第2半導体層の上記ベース基板側には、上記第1金属膜により形成された下側遮光層が設けられていることを特徴とする表示装置。
3. The display device according to claim 1,
A display device comprising: a lower light-shielding layer formed of the first metal film, provided on the base substrate side of the second semiconductor layer.
 請求項1~3の何れか1つに記載された表示装置において、
 上記薄膜トランジスタ層には、上記第4金属膜上に第5無機絶縁膜、及び有機樹脂材料からなる平坦化膜が順に積層されていることを特徴とする表示装置。
The display device according to any one of claims 1 to 3,
The display device according to the present invention, wherein the thin film transistor layer includes a fifth inorganic insulating film and a planarizing film made of an organic resin material, which are laminated in this order on the fourth metal film.
 請求項4に記載された表示装置において、
 上記薄膜トランジスタ層上に設けられ、上記表示領域を構成する複数のサブ画素に対応して複数の発光素子が配列された発光素子層と、
 上記発光素子層上に設けられた封止膜とを備えていることを特徴とする表示装置。
5. The display device according to claim 4,
a light emitting element layer provided on the thin film transistor layer, in which a plurality of light emitting elements are arranged corresponding to a plurality of sub-pixels constituting the display region;
and a sealing film provided on the light-emitting element layer.
 請求項5に記載された表示装置において、
 上記第5無機絶縁膜及び上記平坦化膜の間には、第5金属膜が設けられ、
 上記第1薄膜トランジスタ及び上記第2薄膜トランジスタの上記発光素子層側には、上記第5金属膜により形成された上側遮光層が設けられていることを特徴とする表示装置。
6. The display device according to claim 5,
a fifth metal film is provided between the fifth inorganic insulating film and the planarization film;
a fifth metal film formed on the first thin film transistor and the second thin film transistor on the light emitting element layer side, the fifth metal film being formed on the first thin film transistor and the second thin film transistor on the light emitting element layer side;
 請求項5又は6に記載された表示装置において、
 上記発光素子は、有機エレクトロルミネッセンス素子であることを特徴とする表示装置。
7. The display device according to claim 5,
The display device is characterized in that the light-emitting element is an organic electroluminescence element.
PCT/JP2023/004625 2023-02-10 2023-02-10 Display device WO2024166389A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/004625 WO2024166389A1 (en) 2023-02-10 2023-02-10 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/004625 WO2024166389A1 (en) 2023-02-10 2023-02-10 Display device

Publications (1)

Publication Number Publication Date
WO2024166389A1 true WO2024166389A1 (en) 2024-08-15

Family

ID=92262754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004625 WO2024166389A1 (en) 2023-02-10 2023-02-10 Display device

Country Status (1)

Country Link
WO (1) WO2024166389A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182223A1 (en) * 2009-01-22 2010-07-22 Samsung Mobile Display Co., Ltd. Organic light emitting display device
WO2012176422A1 (en) * 2011-06-24 2012-12-27 シャープ株式会社 Display device and method for manufacturing same
US20160064421A1 (en) * 2014-08-29 2016-03-03 Lg Display Co., Ltd. Thin film transistor substrate and display device using the same
KR20160103492A (en) * 2015-10-07 2016-09-01 엘지디스플레이 주식회사 Thin Film Transistor Substrate And Display Using The Same
JP2017536646A (en) * 2014-09-24 2017-12-07 アップル インコーポレイテッド Silicon and semiconductor oxide thin film transistor displays
WO2018180617A1 (en) * 2017-03-27 2018-10-04 シャープ株式会社 Active matrix substrate, liquid crystal display device, and organic el display device
US20190006521A1 (en) * 2017-06-30 2019-01-03 Lg Display Co., Ltd. Display Device and Method for Manufacturing the Same
JP2019109505A (en) * 2017-12-19 2019-07-04 エルジー ディスプレイ カンパニー リミテッド Display device
US20190220644A1 (en) * 2018-01-12 2019-07-18 Boe Technology Group Co., Ltd. Light emitting display panel and manufacture method thereof, display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182223A1 (en) * 2009-01-22 2010-07-22 Samsung Mobile Display Co., Ltd. Organic light emitting display device
WO2012176422A1 (en) * 2011-06-24 2012-12-27 シャープ株式会社 Display device and method for manufacturing same
US20160064421A1 (en) * 2014-08-29 2016-03-03 Lg Display Co., Ltd. Thin film transistor substrate and display device using the same
JP2017536646A (en) * 2014-09-24 2017-12-07 アップル インコーポレイテッド Silicon and semiconductor oxide thin film transistor displays
KR20160103492A (en) * 2015-10-07 2016-09-01 엘지디스플레이 주식회사 Thin Film Transistor Substrate And Display Using The Same
WO2018180617A1 (en) * 2017-03-27 2018-10-04 シャープ株式会社 Active matrix substrate, liquid crystal display device, and organic el display device
US20190006521A1 (en) * 2017-06-30 2019-01-03 Lg Display Co., Ltd. Display Device and Method for Manufacturing the Same
JP2019109505A (en) * 2017-12-19 2019-07-04 エルジー ディスプレイ カンパニー リミテッド Display device
US20190220644A1 (en) * 2018-01-12 2019-07-18 Boe Technology Group Co., Ltd. Light emitting display panel and manufacture method thereof, display device

Similar Documents

Publication Publication Date Title
CN115176299B (en) display device
JP7543568B2 (en) Display device manufacturing method
WO2024166389A1 (en) Display device
WO2022215196A1 (en) Display device
WO2022230060A1 (en) Display device
WO2023286168A1 (en) Display device
US20240365604A1 (en) Display device
WO2024142278A1 (en) Display device
JP7494383B2 (en) Display device
WO2024154202A1 (en) Display device
WO2024154255A1 (en) Display device
WO2024127448A1 (en) Display device
WO2024154256A1 (en) Display device
WO2024176379A1 (en) Display device, and method for manufacturing same
US20240414940A1 (en) Display device
US20240040836A1 (en) Display device and method for manufacturing same
US20240334741A1 (en) Display device
WO2023013039A1 (en) Display device and method for manufacturing same
JP7599056B2 (en) Display device
US20250048836A1 (en) Display device
US20250056883A1 (en) Display device and method for manufacturing same
WO2024236797A1 (en) Display device
US20240357887A1 (en) Display device
WO2024029037A1 (en) Display device
WO2023021623A1 (en) Display device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23921218

Country of ref document: EP

Kind code of ref document: A1