[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024166299A1 - Plasma processing device - Google Patents

Plasma processing device Download PDF

Info

Publication number
WO2024166299A1
WO2024166299A1 PCT/JP2023/004383 JP2023004383W WO2024166299A1 WO 2024166299 A1 WO2024166299 A1 WO 2024166299A1 JP 2023004383 W JP2023004383 W JP 2023004383W WO 2024166299 A1 WO2024166299 A1 WO 2024166299A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma processing
workpiece
vacuum vessel
turntable
processing apparatus
Prior art date
Application number
PCT/JP2023/004383
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 松尾
靖典 安東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to PCT/JP2023/004383 priority Critical patent/WO2024166299A1/en
Publication of WO2024166299A1 publication Critical patent/WO2024166299A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • This disclosure relates to a plasma processing apparatus.
  • Plasma processing apparatuses are known that use an antenna to generate plasma inside a vacuum chamber. Depending on the type of plasma processing apparatus, the apparatus performs a specific plasma processing on the workpiece using the generated plasma. Specifically, plasma processing apparatuses are known that perform, for example, a film removal process to remove a coating from the surface of the workpiece.
  • Patent Document 1 discloses a coating removal device that irradiates an ion flow onto a coating material to remove the coating from the coating material.
  • This conventional coating removal device places the coated coating material in an ion flow concentration area where two or more ion flows overlap, and removes the coating from the coating material by irradiating the ion flow onto the coating material.
  • This disclosure has been made in consideration of the above problems, and aims to provide a plasma processing device that can efficiently process objects to be processed.
  • a plasma processing apparatus includes a vacuum vessel that houses an object to be processed therein, a high-frequency window that introduces into the vacuum vessel a high-frequency magnetic field that generates plasma inside the vacuum vessel, an antenna that is provided outside the vacuum vessel facing the high-frequency window and generates the high-frequency magnetic field, a turntable on which the object to be processed is placed and that rotates inside the vacuum vessel, and a shielding plate that is provided inside the vacuum vessel above the turntable and facing the high-frequency window, shielding the plasma and dividing the interior of the vacuum vessel into a plasma processing region and a cooling region, the shielding plate having a passage hole that allows the object to be processed placed on the turntable to pass through.
  • FIG. 1 is a diagram illustrating a configuration of a main part of a plasma processing apparatus according to a first embodiment of the present disclosure.
  • 2 is a top view showing a configuration of a main part of the plasma processing apparatus.
  • FIG. 2A to 2C are diagrams illustrating an example of the configuration of a holder shown in FIG. 1 .
  • 4 is a graph showing an example of the relationship between plasma electron density and sheath thickness in the plasma processing apparatus.
  • 1A and 1B are diagrams illustrating an example of a relationship between a workpiece and a sheath in a film removal process.
  • 2 is a diagram for explaining the shielding plate shown in FIG. 1 and the plasma processing region and cooling region formed thereby in the plasma processing apparatus.
  • FIG. 1 is a diagram illustrating a configuration of a main part of a plasma processing apparatus according to a first embodiment of the present disclosure.
  • FIG. 2 is a top view showing a configuration of a main part of the plasma processing apparatus.
  • FIG. 11 is a top view showing a configuration of a main part of a plasma processing apparatus according to a second embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating a configuration of a main part of a plasma processing apparatus according to a third embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating a configuration of a main part of a plasma processing apparatus according to a fourth embodiment of the present disclosure.
  • Fig. 1 is a diagram illustrating the configuration of the main parts of a plasma processing apparatus 1 according to the first embodiment of the present disclosure.
  • Fig. 2 is a top view illustrating the configuration of the main parts of the plasma processing apparatus 1.
  • Fig. 3 is a diagram illustrating an example of the configuration of a holder H shown in Fig. 1.
  • a plasma processing device 1 that uses inductively coupled plasma as a specific plasma treatment to perform a film removal process that removes a coating from the surface of a workpiece W as a processing object in order to regenerate the surface of the workpiece W.
  • the present disclosure can be applied to a plasma processing apparatus that performs, as a specified plasma treatment, a metal surface treatment such as carburizing, nitriding, ashing, or etching on the surface of the workpiece W.
  • a plasma processing apparatus that performs, as a specified plasma treatment, a film formation treatment in which a specified coating is formed on the surface of the workpiece W by a plasma CVD (Chemical Vapor Deposition) method or a sputtering method.
  • a plasma CVD Chemical Vapor Deposition
  • the plasma processing apparatus 1 of the present embodiment 1 includes a vacuum vessel 2, a turntable 3, a shielding plate 4, a high-frequency window WR, and an antenna 7.
  • the plasma processing apparatus 1 also includes a cooling mechanism CM and an application mechanism SM.
  • the workpiece W is carried in and out of the vacuum vessel 2 through a door provided in the vacuum vessel 2 by a transport mechanism (not shown).
  • the vacuum vessel 2 may be opened and the workpieces W may be replaced one by one or for each turntable 3.
  • the workpiece W may be, for example, a drill for metal processing made of a metal material such as tungsten carbide or high-speed tool steel.
  • the workpiece W may also be a tool other than a drill, for example, an end mill, a mold, or a special tool, or a special part for an automobile or an aircraft.
  • the plasma processing device 1 removes a coating, such as a diamond-like carbon film, that has been formed on the surface of the workpiece W by the above-mentioned specified plasma processing.
  • the vacuum vessel 2 is made of, for example, a metal material, and includes a vessel body 2a for forming a processing chamber in which the above-mentioned predetermined plasma processing is performed on the workpiece W.
  • the vessel body 2a is, for example, cylindrical in shape, as shown in Figures 1 and 2.
  • An upper lid and a lower lid (not shown) are airtightly attached to the upper and lower openings of the vessel body 2a, and the vacuum vessel 2 is configured to be brought to a predetermined vacuum level by a vacuum pump (not shown) with the workpiece W accommodated therein.
  • the vacuum vessel 2 is grounded via a grounding wire (not shown), and a predetermined processing gas such as argon can be introduced into the vacuum vessel 2 as appropriate.
  • the turntable 3 is made of, for example, a metal material, and includes a disk-shaped table body 3a and a rotating shaft 3b provided at the center of the table body 3a.
  • the turntable 3 also forms a path for applying a predetermined bias voltage by an application mechanism SM, and applies the bias voltage to the workpiece W.
  • the rotating shaft 3b is rotatably and airtightly attached to the lower lid of the vacuum vessel 2, and a driving mechanism (not shown) is connected to the rotating shaft 3b.
  • the rotating shaft 3b rotates in the R1 direction shown in FIG. 1, so that the table body 3a revolves (rotates) in the R1 direction inside the vacuum vessel 2.
  • the table body 3a is provided with, for example, multiple holders H that support the workpieces W, and a predetermined plasma treatment is sequentially performed on the workpieces W inside the plasma treatment area PA described below.
  • the table body 3a rotates at a predetermined rotation speed (for example, 10 rpm), and the film removal treatment on each workpiece W is completed, for example, by the table body 3a rotating several times.
  • the diameter of the table body 3a is as close as possible to the inner diameter of the container body 2a, in order to make effective use of the high-density plasma inside the plasma treatment area PA.
  • the shielding plate 4 is made of a conductive material such as a metal material, and is provided inside the vacuum vessel 2 above the turntable 3 and facing the high frequency window WR. As shown in FIG. 2, the shielding plate 4 has a shielding plate body 4a formed in a V-shape when viewed from above. As shown in FIG. 6, the shielding plate body 4a is provided inside the vessel body 2a of the vacuum vessel 2 symmetrically with respect to the center and with each end of the shielding plate body 4a opening at a predetermined angle with respect to the center.
  • the shielding plate body 4a shields the space between the high frequency window WR and the shielding plate 4, and the space functions as a plasma processing area PA where the above-mentioned predetermined plasma processing is performed on the workpiece W.
  • the shielding plate 4 is configured to confine the plasma generated by the high frequency magnetic field from the high frequency window WR to the inside of the plasma processing area PA as much as possible by the shielding plate body 4a. That is, the shielding plate 4 has the function of shielding the plasma and dividing the inside of the vacuum chamber 2 into a plasma processing area PA and a cooling area CA, which will be described later.
  • the shielding plate body 4a has through holes 4b1 and 4b2 that allow the workpiece W placed on the turntable 3 and the holder H supporting it to pass through. As a result, when the table body 3a revolves, the workpiece W and the holder H can pass through the through holes 4b1 and 4b2 to enter and exit the plasma processing area PA.
  • the potential of the shielding plate body 4a is floating. Specifically, the left and right ends of the shielding plate body 4a are attached to the inner wall surface 2b of the container body 2a via insulators 4c ( Figure 2) made of a dielectric material. As a result, even when the shielding plate 4 confines plasma in the plasma processing area PA, the shielding plate body 4a can be charged to the plasma potential because the shielding plate 4 is not grounded. As a result, the shielding plate 4 can efficiently confine plasma in the plasma processing area PA while suppressing loss of plasma in the shielding plate body 4a, and the electron density of the plasma can be increased.
  • the shielding plate body 4a may be attached to the upper lid of the vacuum vessel 2.
  • the shielding plate 4 may also be made of a dielectric material such as glass. In this case, the installation of the insulator 4c may be omitted.
  • the high frequency window WR includes a metal plate 5 and a dielectric plate 6, and is configured to introduce a high frequency magnetic field for generating plasma inside the vessel body 2a of the vacuum vessel 2 into the vessel body 2a.
  • the metal plate 5 is provided with a plurality of slits, and the metal plate 5 is attached to the vessel body 2a so as to close the opening 2b1 provided in the inner wall surface 2b of the vessel body 2a.
  • the dielectric plate 6 is attached to the metal plate 5 so as to cover at least the slits.
  • the antenna 7 is, for example, linear and made of a metal material such as copper.
  • the antenna 7 is provided vertically outside the container body 2a so as to face the high-frequency window WR.
  • the antenna 7 generates a high-frequency magnetic field using high-frequency power from a power source 8, and introduces the high-frequency magnetic field into the container body 2a through the high-frequency window WR.
  • one end of the antenna 7 is electrically connected to the power supply 8 via an impedance adjustment unit (not shown) having a matching circuit.
  • the other end of the antenna 7 is electrically grounded via a variable capacitor (not shown).
  • the power supply 8 supplies high-frequency power of, for example, 13.56 MHz to one end of the antenna 7 via the impedance adjustment unit.
  • a control unit (not shown) changes the capacitance of the variable capacitor to control the efficient supply of high-frequency power to the antenna 7.
  • the cooling mechanism CM is installed in a cooling area CA provided inside the container body 2a.
  • the cooling area CA is the space inside the container body 2a separated by the shielding plate 4, excluding the plasma processing area PA.
  • the cooling area CA is the area inside the container body 2a on the opposite side of the shielding plate 4 from the antenna 7.
  • the cooling mechanism CM also includes a cooling plate CM1 arranged in the cooling area CA, and is configured to cool the workpiece W using the cooling plate CM1.
  • the cooling mechanism CM includes a cooling plate CM1 formed in an arc shape using a metal material, and a pipe CM2 provided on the inner wall surface 2b side of the container body 2a of the cooling plate CM1 for circulating a cooling medium such as water.
  • the surface of the cooling plate CM1 is provided inside the container body 2a so as to contact the holder H.
  • the cooling plate CM1 cools the workpiece W by contacting the holder H without directly contacting the workpiece W, so that the workpiece W can be reliably cooled without being damaged.
  • the application mechanism SM includes a power source SM1 provided outside the container body 2a, and applies a predetermined bias voltage from the power source SM1 to the workpiece W via the turntable 3.
  • the workpiece W is subjected to a predetermined plasma processing in the plasma processing area PA while the bias voltage from the application mechanism SM is applied to the workpiece W.
  • the power source SM1 is configured using, for example, a DC power source, a pulse power source, or an AC power source.
  • the control unit is configured to change the bias voltage from the power source SM1 depending on the content of the plasma processing on the workpiece W and the electron density of the plasma in the plasma processing area PA, so that the plasma processing is performed appropriately.
  • the application mechanism SM also has a number of holders H that are provided at predetermined intervals along the circumference of the table body 3a of the turntable 3.
  • Each of the multiple holders H is for holding a workpiece W on the table body 3a, and in this embodiment 1, as described above, the table body 3a revolves, allowing the predetermined plasma processing to be performed sequentially on the multiple workpieces W.
  • the holder H includes cylindrical support members H1 and H2 and a columnar application member H3.
  • the support members H1 and H2 are made of, for example, a dielectric material.
  • the support member H2 and application member H3 are provided on the table body 3a of the turntable 3.
  • the support member H1 is supported rotatably by the support member H2, application member H3, and table body 3a.
  • the application member H3 is electrically connected to the table body 3a and the workpiece W supported by the support member H1, and applies the bias voltage to the workpiece W supported by the support member H1.
  • the support member H1 is configured to come into contact with the cooling plate CM1.
  • the support member H1 comes into contact with the cooling plate CM1 as the table body 3a revolves, and the support member H1 (holder H) rotates (spins) in the R2 direction shown in FIG. 2.
  • the support member H1 holder H
  • spins spins
  • the opposing surface of the workpiece W with respect to the high-frequency window WR can be changed in accordance with the spin. Therefore, in this embodiment 1, it is possible to reliably perform more uniform processing on the workpiece W.
  • the plasma processing apparatus 1 of the present embodiment 1 configured as described above includes a vacuum vessel 2 that houses a workpiece W therein, a high-frequency window WR that introduces a high-frequency magnetic field into the vacuum vessel 2, and an antenna 7 that is disposed opposite the high-frequency window WR and generates a high-frequency magnetic field.
  • the plasma processing apparatus 1 also includes a turntable 3 on which the workpiece W is placed and rotates, and an application mechanism SM that applies a predetermined bias voltage from a power source SM1 to the workpiece W via the turntable 3.
  • the plasma processing apparatus 1 includes a shielding plate 4 that is disposed above the turntable 3 and inside the vacuum vessel 2 opposite the high-frequency window WR, shielding the space between the turntable 3 and the high-frequency window WR, and has through holes 4b1 and 4b2 formed in the shielding plate 4 that allow the workpiece W placed on the turntable 3 to pass through.
  • a plasma processing apparatus 1 capable of efficiently processing the workpieces W can be configured.
  • the inside of the vacuum vessel 2 is divided into plasma processing areas PA by the shielding plate 4, so that the electron density of the plasma in the plasma processing area PA can be increased, and the film removal rate (processing rate) for the workpieces W can be increased.
  • the workpieces W can be efficiently processed.
  • a single plasma source having one antenna 7 and one high-frequency window WR can be used to sequentially perform a predetermined plasma processing on multiple workpieces W.
  • a low-cost plasma processing apparatus 1 capable of performing plasma processing on multiple workpieces W can be configured.
  • Fig. 4 is a graph showing an example of the relationship between plasma electron density and sheath thickness in the plasma processing apparatus 1.
  • Fig. 5 is a diagram explaining an example of the relationship between the workpiece W and the sheath SA in a film removal process.
  • Fig. 6 is a diagram explaining the shielding plate 4 shown in Fig. 1, and the plasma processing area PA and cooling area CA formed thereby in the plasma processing apparatus 1.
  • Fig. 7 is a graph showing an example of the relationship between the rotation angle of the turntable 3 shown in Fig. 1 and the plasma electron density. Note that the power supply 8, power supply SM1, and piping CM2 are not shown in Fig. 6.
  • the sheath thickness of the sheath SA (FIG. 5) generated around the workpiece W in the plasma processing area PA changes according to the plasma electron density for each bias voltage.
  • the sheath SA is a shielding layer that is generated to surround the workpiece W by the bias voltage and prevents the plasma ions from approaching the workpiece W.
  • the sheath thickness changes according to the plasma electron density, as shown by curve 71 in FIG. 4.
  • the bias voltage is, for example, -250V
  • the sheath thickness changes according to the plasma electron density, as shown by curve 72 in FIG. 4.
  • the bias voltage is, for example, -500V
  • the sheath thickness changes according to the plasma electron density, as shown by curve 73 in FIG. 4.
  • the sheath thickness around the workpiece W in a cross-sectional view of the workpiece W varies depending on the plasma electron density, as shown in 502 and 503 in FIG. 5.
  • the plasma electron density is low
  • the thickness of the sheath SA becomes large, as shown in 502 in FIG. 5. Therefore, the plasma ions P1 are prevented from approaching the surface of the workpiece W by the relatively thick sheath SA.
  • the plasma electron density is low and the sheath thickness is large, it becomes difficult to perform a uniform film removal process on the workpiece W.
  • the thickness of the sheath SA can be made smaller, as shown in 503 in FIG. 5, than that shown in 502 in FIG. 5. Therefore, in the plasma processing apparatus 1 of this embodiment 1, the relatively thin sheath SA prevents the plasma ions P1 from approaching the surface of the workpiece W. In other words, in the plasma processing apparatus 1 of this embodiment 1, the plasma ions P1 can more easily approach the surface of the workpiece W, allowing for uniform film removal processing.
  • the inside of the vessel body 2a of the vacuum vessel 2 is divided by the shielding plate 4 into a plasma processing area PA on the plasma source side and a cooling area CA on the opposite side of the plasma source.
  • the shielding plate 4 is installed inside the vessel body 2a so that the center of the shielding plate body 4a is, for example, on the center C1 of the rotation axis 3b of the turntable 3.
  • the shielding plate body 4a has an opening angle of its left and right ends, and the above-mentioned predetermined angle ⁇ is set to, for example, 120°.
  • the plasma processing area PA in which the electron density of the plasma is increased by the shielding plate 4 and the cooling area CA in which the plasma processing on the workpiece W is temporarily stopped and the temperature rise in the workpiece W due to the execution of the plasma processing can be appropriately formed by substantially shielding the plasma source with the shielding plate 4 and suppressing the spread of the plasma.
  • the above-mentioned predetermined plasma processing can be performed more efficiently in the plasma processing area PA.
  • the plasma electron density in the plasma processing area PA can be set to a value greater than the reference electron density, as shown by the upward arrow in Fig. 7.
  • the rotation angle on the horizontal axis in Fig. 7 is the rotation angle of the turntable 3 with respect to the center C1, and is set to 0° when any reference position of the turntable 3 faces the antenna 7.
  • the plasma electron density can be set to a value smaller than the reference electron density.
  • the execution of plasma processing is suppressed, so that the temperature rise in the workpiece W due to the plasma processing can be suppressed, and the temperature of the workpiece W can be easily lowered.
  • the temperature rise in the workpiece W can be significantly suppressed.
  • the occurrence of damage, etc., in the workpiece W can be significantly reduced.
  • the shielding plate 4 is arranged inside the container body 2a so that the center of the shielding plate body 4a is located on the center C1 of the rotation axis 3b of the turntable 3.
  • this embodiment is not limited to this, and for example, the center of the shielding plate body 4a may be arranged closer to the high frequency window WR than the center C1. This is preferable because it allows the electron density of the plasma to be increased.
  • Fig. 8 is a top view showing a main configuration of a plasma processing apparatus 1 according to the second embodiment of the present disclosure.
  • the same reference numerals are used for members having the same functions as those described in the first embodiment, and the explanations thereof will not be repeated.
  • the power source 8 the power source SM1, and the piping CM2 are not shown.
  • a contact member 2c is provided on the inner wall surface 2b of the vacuum vessel 2.
  • This contact member 2c is, for example, made of a metal material and has a rod-like shape.
  • One end of the contact member 2c is attached to the inner wall surface 2b so as to protrude from the inner wall surface 2b into the inside of the vessel body 2a.
  • the other end (protruding end) of the contact member 2c is configured so as to be able to come into contact with the support member H1 of the holder H.
  • the plasma processing apparatus 1 of this embodiment 2 achieves the same effects as that of embodiment 1.
  • the support member H1 of the holder H is rotated by contact with the contact member 2c, so that more uniform processing of the workpiece W can be performed more reliably.
  • the support member H1 may be rotated only by contact with the contact member 2c.
  • the support member H1 of the holder H is rotated by contact with the cooling plate CM1 and/or the contact member 2c.
  • this embodiment is not limited to this, and for example, a rotation mechanism such as a gear may be provided that is connected to the holder H and rotates the support member H1 of the holder H using a rotational force from a drive mechanism that drives the rotation shaft 3b of the turntable 3.
  • Fig. 9 is a diagram for explaining the main configuration of a plasma processing apparatus 1 according to the third embodiment of the present disclosure.
  • the same reference numerals are given to members having the same functions as those described in the first embodiment, and the explanations thereof will not be repeated.
  • the cooling mechanism CM is omitted.
  • multiple groups of holders H for example, two rows, are provided, each arranged in an arc along the extension direction of the antenna 7.
  • the lower vertical group of holders H is attached to the table body 3a of the turntable 3, as in the embodiment 1.
  • the upper vertical group of holders H is attached to the table body 3a via a support rod 15, one end of which is provided on the table body 3a.
  • the support rod 15 is adapted to rotatably support a support member H1 that supports the workpiece W.
  • the inside of the vessel body 2a is divided into a plasma processing area PA and a cooling area CA by a shielding plate 14 having a shielding plate body 14a.
  • the shielding plate 14 is provided with a passing hole 14b1 that allows the vertically upper and lower groups of holders H to pass through.
  • the plasma processing apparatus 1 of this embodiment 3 achieves the same effects as that of embodiment 1.
  • the workpieces W are supported by two rows of holders H along the extension direction of the antenna 7, so the number of workpieces W processed per unit time can be easily increased.
  • Fig. 10 is a diagram for explaining the configuration of the main parts of a plasma processing apparatus 1 according to the fourth embodiment of the present disclosure.
  • Fig. 10 is a diagram for explaining the configuration of the main parts of a plasma processing apparatus 1 according to the fourth embodiment of the present disclosure.
  • the same reference numerals are given to members having the same functions as those explained in the first embodiment, and the explanations thereof will not be repeated.
  • a cylindrical workpiece W0 is placed on the table body 3a of the turntable 3.
  • the workpiece W0 is placed above the rotation axis 3b, which is the center of rotation of the turntable 3.
  • the inside of the container body 2a is divided into a plasma processing area PA and a cooling area CA by a shielding plate 24 having a shielding plate body 24a.
  • the shielding plate 24 is provided with a through hole 24b that allows the workpiece W0, which rotates with the rotation of the turntable 3, to pass through.
  • the opposing surface of the workpiece W0 with respect to the high-frequency window WR can be changed according to the rotation of the turntable 3.
  • a part of the workpiece W0 can be moved sequentially between the plasma processing area PA and the cooling area CA.
  • the plasma processing apparatus 1 of this embodiment 4 achieves the same effects as that of embodiment 1.
  • the plasma processing apparatus of the first aspect of the present disclosure comprises a vacuum vessel for accommodating a workpiece therein, a high-frequency window for introducing a high-frequency magnetic field into the vacuum vessel to generate plasma inside the vacuum vessel, an antenna arranged outside the vacuum vessel facing the high-frequency window and generating the high-frequency magnetic field, a turntable on which the workpiece is placed and which rotates inside the vacuum vessel, and a shielding plate arranged inside the vacuum vessel above the turntable and facing the high-frequency window, shielding from plasma and dividing the inside of the vacuum vessel into a plasma processing region and a cooling region, the shielding plate having a passage hole formed therein to allow the workpiece placed on the turntable to pass through.
  • the above configuration makes it possible to provide a plasma processing apparatus that can efficiently process the workpiece.
  • the shielding plate when viewed from the top of the vacuum vessel, may be provided inside the vacuum vessel so that it is symmetrical with respect to its center and that each of the left and right ends opens at a predetermined angle with respect to the center.
  • the shielding plate can appropriately form a plasma processing area inside the vacuum vessel, allowing plasma processing to be performed more efficiently.
  • the potential of the shielding plate may be floating.
  • the above configuration makes it possible to prevent plasma loss and maintain a higher plasma density.
  • a fourth aspect of the present disclosure is a plasma processing apparatus according to any one of the first to third aspects, further comprising an application mechanism that includes a power source provided outside the vacuum vessel and applies a predetermined bias voltage from the power source to the workpiece via the turntable, and the application mechanism has a holder provided on the turntable to hold the workpiece, the holder being provided on the turntable and including a support member that rotatably supports the workpiece, and an application member that is electrically connected to the turntable and the workpiece supported by the support member and applies the bias voltage to the workpiece supported by the support member.
  • a fifth aspect of the present disclosure is the plasma processing apparatus of the fourth aspect, in which a contact member may be provided inside the vacuum vessel to come into contact with the support member of the holder and rotate the support member in response to the rotation of the turntable.
  • the above configuration makes it possible to more reliably perform more uniform processing on the workpiece.
  • a sixth aspect of the present disclosure is a plasma processing apparatus according to either the fourth or fifth aspect, which may include a cooling plate disposed inside the vacuum vessel in an area of the shielding plate opposite the antenna, and a cooling mechanism that uses the cooling plate to cool the workpiece.
  • the above configuration allows the workpiece to be cooled more quickly, resulting in a faster processing rate.
  • the cooling plate may be in contact with the holder.
  • the above configuration ensures that the workpiece can be cooled without damaging it.
  • a plurality of the objects to be processed may be provided inside the vacuum vessel along the extension direction of the antenna.
  • the above configuration makes it easy to increase the number of objects processed per unit time.
  • Plasma processing apparatus Vacuum vessel 2c Contact member 3 Turntable 3b Rotating shaft 4, 14, 24 Shielding plate 4b1, 4b2, 14b1, 24b Passing hole 5 Metal plate (high frequency window) 6. Dielectric plate (high frequency window) 7 Antenna W, W0 Work (processing object)
  • SM Voltage application mechanism SM1: Power supply H: Holder H1, H2: Support member H3: Voltage application member CM: Cooling mechanism CM1: Cooling plate WR: High frequency window PA: Plasma processing area CA: Cooling area

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

A plasma processing device (1) comprises: a vacuum vessel (2) that contains a workpiece (W) in an interior of said vacuum vessel; a high-frequency window (WR) that introduces a high-frequency magnetic field into the interior of the vacuum vessel (2); an antenna (7) that is provided so as to face the high-frequency window (WR) and generates the high-frequency magnetic field; and a turntable (3) on which the workpiece (W) is placed, said turntable rotating. The plasma processing device (1) further comprises a blocking plate (4) that is provided in the interior of the vacuum vessel (2) so as to be above the turntable (3) and to face the high-frequency window (WR), said blocking plate blocking a plasma and dividing the interior of the vacuum vessel (2) into a plasma processing area (PA) and a cooling area (CA), wherein the blocking plate (4) has formed therein a passage hole (4b1) that allows passage therethrough of the workpiece (W) that is placed on the turntable (3).

Description

プラズマ処理装置Plasma Processing Equipment
 本開示は、プラズマ処理装置に関する。 This disclosure relates to a plasma processing apparatus.
 アンテナを用いて真空容器の内部にプラズマを発生させるプラズマ処理装置が知られている。プラズマ処理装置は、その種別に応じて、発生させたプラズマを用いた所定のプラズマ処理を被処理物に施す。具体的には、プラズマ処理装置には、プラズマ処理として、例えば、被処理物の表面から被膜を除膜(脱膜)する除膜処理を実行するものが知られている。 Plasma processing apparatuses are known that use an antenna to generate plasma inside a vacuum chamber. Depending on the type of plasma processing apparatus, the apparatus performs a specific plasma processing on the workpiece using the generated plasma. Specifically, plasma processing apparatuses are known that perform, for example, a film removal process to remove a coating from the surface of the workpiece.
 また、例えば、特許文献1には、被膜が付いた被覆材にイオン流を照射して、被覆材から被膜を脱膜する脱膜装置が開示されている。この従来の脱膜装置は、被覆された被覆材を2以上のイオン流が重なるイオン流集中部に設置し、被覆材にイオン流を照射することで被覆材の脱膜を行う。 For example, Patent Document 1 discloses a coating removal device that irradiates an ion flow onto a coating material to remove the coating from the coating material. This conventional coating removal device places the coated coating material in an ion flow concentration area where two or more ion flows overlap, and removes the coating from the coating material by irradiating the ion flow onto the coating material.
国際公開2016/163278号International Publication No. 2016/163278
 しかしながら、上記のような従来技術では、効率よく被処理物の除膜処理を行うことができないという問題点があった。 However, the above-mentioned conventional techniques have the problem that they are unable to efficiently remove the film from the object being treated.
 本開示は上記の問題点を鑑みてなされたものであり、被処理物を効率よく処理することができるプラズマ処理装置を提供することを目的とする。 This disclosure has been made in consideration of the above problems, and aims to provide a plasma processing device that can efficiently process objects to be processed.
 上記の課題を解決するために、本開示の一側面に係るプラズマ処理装置は、被処理物を内部に収容する真空容器と、前記真空容器の内部にプラズマを発生させる高周波磁場を、前記真空容器の内部に導入させる高周波窓と、前記真空容器の外側で前記高周波窓に対向するように設けられて、前記高周波磁場を発生するアンテナと、前記被処理物が載置されるとともに、前記真空容器の内部で回転するターンテーブルと、前記ターンテーブルの上方、かつ、前記高周波窓に対向するように前記真空容器の内部に設けられて、プラズマを遮蔽して、前記真空容器の内部をプラズマ処理領域と冷却領域とに分割する遮蔽板であって、前記ターンテーブル上に載置された前記被処理物が通過するのを許容する通過穴が形成されている遮蔽板と、を備えている。 In order to solve the above problems, a plasma processing apparatus according to one aspect of the present disclosure includes a vacuum vessel that houses an object to be processed therein, a high-frequency window that introduces into the vacuum vessel a high-frequency magnetic field that generates plasma inside the vacuum vessel, an antenna that is provided outside the vacuum vessel facing the high-frequency window and generates the high-frequency magnetic field, a turntable on which the object to be processed is placed and that rotates inside the vacuum vessel, and a shielding plate that is provided inside the vacuum vessel above the turntable and facing the high-frequency window, shielding the plasma and dividing the interior of the vacuum vessel into a plasma processing region and a cooling region, the shielding plate having a passage hole that allows the object to be processed placed on the turntable to pass through.
 本開示の一態様によれば、被処理物を効率よく処理することができるプラズマ処理装置を提供することができる。 According to one aspect of the present disclosure, it is possible to provide a plasma processing apparatus capable of efficiently processing a workpiece.
本開示の実施形態1に係るプラズマ処理装置の要部構成を説明する図である。1 is a diagram illustrating a configuration of a main part of a plasma processing apparatus according to a first embodiment of the present disclosure. 上記プラズマ処理装置の要部構成を示す上面図である。2 is a top view showing a configuration of a main part of the plasma processing apparatus. FIG. 図1に示したホルダーの構成例を説明する図である。2A to 2C are diagrams illustrating an example of the configuration of a holder shown in FIG. 1 . 上記プラズマ処理装置でのプラズマの電子密度とシース厚みとの関係の一例を示すグラフである。4 is a graph showing an example of the relationship between plasma electron density and sheath thickness in the plasma processing apparatus. 除膜処理における、ワークとシースとの関係の一例を説明する図である。1A and 1B are diagrams illustrating an example of a relationship between a workpiece and a sheath in a film removal process. 図1に示した遮蔽板、及びこれによって形成される、上記プラズマ処理装置でのプラズマ処理領域と冷却領域とを説明する図である。2 is a diagram for explaining the shielding plate shown in FIG. 1 and the plasma processing region and cooling region formed thereby in the plasma processing apparatus. FIG. 図1に示したターンテーブルの回転角度とプラズマの電子密度との関係の一例を示すグラフである。2 is a graph showing an example of a relationship between the rotation angle of the turntable shown in FIG. 1 and the electron density of plasma. 本開示の実施形態2に係るプラズマ処理装置の要部構成を示す上面図である。FIG. 11 is a top view showing a configuration of a main part of a plasma processing apparatus according to a second embodiment of the present disclosure. 本開示の実施形態3に係るプラズマ処理装置の要部構成を説明する図である。FIG. 11 is a diagram illustrating a configuration of a main part of a plasma processing apparatus according to a third embodiment of the present disclosure. 本開示の実施形態4に係るプラズマ処理装置の要部構成を説明する図である。FIG. 13 is a diagram illustrating a configuration of a main part of a plasma processing apparatus according to a fourth embodiment of the present disclosure.
 〔実施形態1〕
 以下、本開示の実施形態1について、図1乃至図3を用いて詳細に説明する。図1は、本開示の実施形態1に係るプラズマ処理装置1の要部構成を説明する図である。図2は、上記プラズマ処理装置1の要部構成を示す上面図である。図3は、図1に示したホルダーHの構成例を説明する図である。
[Embodiment 1]
Hereinafter, the first embodiment of the present disclosure will be described in detail with reference to Fig. 1 to Fig. 3. Fig. 1 is a diagram illustrating the configuration of the main parts of a plasma processing apparatus 1 according to the first embodiment of the present disclosure. Fig. 2 is a top view illustrating the configuration of the main parts of the plasma processing apparatus 1. Fig. 3 is a diagram illustrating an example of the configuration of a holder H shown in Fig. 1.
 なお、以下の説明では、所定のプラズマ処理として、誘導結合性のプラズマを使用して、被処理物としてのワークWの表面を再生させるために、ワークWの表面から被膜を取り除く除膜処理を行うプラズマ処理装置1を例示して説明する。 In the following explanation, we will use as an example a plasma processing device 1 that uses inductively coupled plasma as a specific plasma treatment to perform a film removal process that removes a coating from the surface of a workpiece W as a processing object in order to regenerate the surface of the workpiece W.
 しかしながら、本開示は、所定のプラズマ処理として、例えば、ワークWの表面に対する浸炭処理、窒化処理、アッシング処理、またはエッチング処理等の金属表面処理を行うプラズマ処理装置に適用することができる。また、本開示は、所定のプラズマ処理として、プラズマCVD(Chemical Vapor Deposition;化学気相堆積)法またはスパッタ法によってワークWの表面に所定の被膜を成膜する成膜処理を行うプラズマ処理装置に適用することができる。 However, the present disclosure can be applied to a plasma processing apparatus that performs, as a specified plasma treatment, a metal surface treatment such as carburizing, nitriding, ashing, or etching on the surface of the workpiece W. The present disclosure can also be applied to a plasma processing apparatus that performs, as a specified plasma treatment, a film formation treatment in which a specified coating is formed on the surface of the workpiece W by a plasma CVD (Chemical Vapor Deposition) method or a sputtering method.
 <プラズマ処理装置1の構成>
 図1に示すように、本実施形態1のプラズマ処理装置1は、真空容器2と、ターンテーブル3と、遮蔽板4と、高周波窓WRと、アンテナ7と、を備えている。また、プラズマ処理装置1は、冷却機構CMと、印加機構SMと、を備えている。さらに、プラズマ処理装置1では、ワークWは、例えば、搬送機構によって真空容器2に設けられた扉を通して真空容器2の内部に搬入出される(図示せず)。なお、この説明以外に、真空容器2を開放して、ワークWを1個ずつ、あるいはターンテーブル3ごとにワークWを交換する構成でもよい。
<Configuration of Plasma Processing Apparatus 1>
As shown in Fig. 1, the plasma processing apparatus 1 of the present embodiment 1 includes a vacuum vessel 2, a turntable 3, a shielding plate 4, a high-frequency window WR, and an antenna 7. The plasma processing apparatus 1 also includes a cooling mechanism CM and an application mechanism SM. In addition, in the plasma processing apparatus 1, the workpiece W is carried in and out of the vacuum vessel 2 through a door provided in the vacuum vessel 2 by a transport mechanism (not shown). In addition to this description, the vacuum vessel 2 may be opened and the workpieces W may be replaced one by one or for each turntable 3.
 ワークWは、例えば、タングステンカーバイドまたは高速度工具鋼などの金属材料を用いて構成された、金属加工用のドリルであり得る。また、ワークWは、ドリル以外の工具、例えば、エンドミル、金型、あるいは特殊工具、または自動車用あるいは航空機用の特殊部品であり得る。プラズマ処理装置1は、上記所定のプラズマ処理によってワークWの表面に成膜された、例えば、ダイヤモンドライクカーボン膜などの被膜を除膜する。 The workpiece W may be, for example, a drill for metal processing made of a metal material such as tungsten carbide or high-speed tool steel. The workpiece W may also be a tool other than a drill, for example, an end mill, a mold, or a special tool, or a special part for an automobile or an aircraft. The plasma processing device 1 removes a coating, such as a diamond-like carbon film, that has been formed on the surface of the workpiece W by the above-mentioned specified plasma processing.
 <真空容器2>
 真空容器2は、例えば、金属材料を用いて構成されており、ワークWに対して上記所定のプラズマ処理を行う処理室を構成するための容器本体2aを備えている。また、容器本体2aは、図1及び図2に示すように、例えば、円筒形の形状に構成されている。さらに、容器本体2aの上側開口及び下側開口には、図示しない上蓋及び下蓋が気密に取り付けられるようになっており、真空容器2はワークWを内部に収容した状態で、図示しない真空ポンプによって所定の真空度とされるように構成されている。また、真空容器2は、図示しない接地線を介して接地されるとともに、真空容器2の内部には、アルゴンなどの所定の処理ガスが適宜導入され得る。
<Vacuum vessel 2>
The vacuum vessel 2 is made of, for example, a metal material, and includes a vessel body 2a for forming a processing chamber in which the above-mentioned predetermined plasma processing is performed on the workpiece W. The vessel body 2a is, for example, cylindrical in shape, as shown in Figures 1 and 2. An upper lid and a lower lid (not shown) are airtightly attached to the upper and lower openings of the vessel body 2a, and the vacuum vessel 2 is configured to be brought to a predetermined vacuum level by a vacuum pump (not shown) with the workpiece W accommodated therein. The vacuum vessel 2 is grounded via a grounding wire (not shown), and a predetermined processing gas such as argon can be introduced into the vacuum vessel 2 as appropriate.
 <ターンテーブル3>
 ターンテーブル3は、例えば、金属材料を用いて構成されており、円板状のテーブル本体3aと、テーブル本体3aの中央部に設けられた回転軸3bと、を備えている。また、ターンテーブル3は、印加機構SMによる所定のバイアス電圧の印加経路を構成しており、当該バイアス電圧をワークWに印加するようになっている。また、ターンテーブル3では、回転軸3bは回動可能に真空容器2の上記下蓋に気密に取り付けられ、かつ、回転軸3bには図示しない駆動機構が連結されている。そして、ターンテーブル3では、回転軸3bが図1に示すR1方向に回動することにより、テーブル本体3aは、真空容器2の内部でR1方向に公転(回転)するよう構成されている。
<Turntable 3>
The turntable 3 is made of, for example, a metal material, and includes a disk-shaped table body 3a and a rotating shaft 3b provided at the center of the table body 3a. The turntable 3 also forms a path for applying a predetermined bias voltage by an application mechanism SM, and applies the bias voltage to the workpiece W. In the turntable 3, the rotating shaft 3b is rotatably and airtightly attached to the lower lid of the vacuum vessel 2, and a driving mechanism (not shown) is connected to the rotating shaft 3b. In the turntable 3, the rotating shaft 3b rotates in the R1 direction shown in FIG. 1, so that the table body 3a revolves (rotates) in the R1 direction inside the vacuum vessel 2.
 テーブル本体3aには、ワークWを支持したホルダーHが、例えば、複数、設けられており、後述のプラズマ処理領域PAの内部でワークWに対する所定のプラズマ処理を順次行うようになっている。換言すれば、テーブル本体3aは、所定の回転数(例えば、10rpm)で回転するようになっており、各ワークWに対する除膜処理は、例えば、数回転の回転をテーブル本体3aが行うことにより、完了される。なお、テーブル本体3aの直径は、容器本体2aの内径に極力近い方が、プラズマ処理領域PAの内部での高密度なプラズマを有効利用することができる点で好ましい。 The table body 3a is provided with, for example, multiple holders H that support the workpieces W, and a predetermined plasma treatment is sequentially performed on the workpieces W inside the plasma treatment area PA described below. In other words, the table body 3a rotates at a predetermined rotation speed (for example, 10 rpm), and the film removal treatment on each workpiece W is completed, for example, by the table body 3a rotating several times. Note that it is preferable that the diameter of the table body 3a is as close as possible to the inner diameter of the container body 2a, in order to make effective use of the high-density plasma inside the plasma treatment area PA.
 <遮蔽板4>
 遮蔽板4は、例えば、金属材料などの導電性材料を用いて構成されており、ターンテーブル3の上方、かつ、高周波窓WRに対向するように真空容器2の内部に設けられている。遮蔽板4は、図2に示すように、上面視でV字状に形成された遮蔽板本体4aを備えている。遮蔽板本体4aには、後掲の図6に示すように、その中央部に対して左右対称に、かつ、当該中央部を中心にして左右の各端部が所定の角度で開くように真空容器2の容器本体2aの内部に設けられている。そして、遮蔽板4では、遮蔽板本体4aが高周波窓WRとの間の空間を遮蔽して、当該空間をワークWに対する上記所定のプラズマ処理が実行されるプラズマ処理領域PAとして機能させるようになっている。換言すれば、遮蔽板4は、遮蔽板本体4aによって高周波窓WRからの高周波磁場によって発生するプラズマをプラズマ処理領域PAの内部に極力閉じ込めるように構成されている。すなわち、遮蔽板4は、プラズマを遮蔽して、真空容器2の内部をプラズマ処理領域PAと後述の冷却領域CAとに分割する機能を有する。
<Shielding plate 4>
The shielding plate 4 is made of a conductive material such as a metal material, and is provided inside the vacuum vessel 2 above the turntable 3 and facing the high frequency window WR. As shown in FIG. 2, the shielding plate 4 has a shielding plate body 4a formed in a V-shape when viewed from above. As shown in FIG. 6, the shielding plate body 4a is provided inside the vessel body 2a of the vacuum vessel 2 symmetrically with respect to the center and with each end of the shielding plate body 4a opening at a predetermined angle with respect to the center. In the shielding plate 4, the shielding plate body 4a shields the space between the high frequency window WR and the shielding plate 4, and the space functions as a plasma processing area PA where the above-mentioned predetermined plasma processing is performed on the workpiece W. In other words, the shielding plate 4 is configured to confine the plasma generated by the high frequency magnetic field from the high frequency window WR to the inside of the plasma processing area PA as much as possible by the shielding plate body 4a. That is, the shielding plate 4 has the function of shielding the plasma and dividing the inside of the vacuum chamber 2 into a plasma processing area PA and a cooling area CA, which will be described later.
 遮蔽板本体4aには、ターンテーブル3上に載置されたワークW及びこれを支持したホルダーHが通過するのを許容する通過穴4b1、4b2が形成されている。これにより、テーブル本体3aが公転したときに、ワークW及びホルダーHが通過穴4b1、4b2を通ってプラズマ処理領域PAに対して出入することができる。 The shielding plate body 4a has through holes 4b1 and 4b2 that allow the workpiece W placed on the turntable 3 and the holder H supporting it to pass through. As a result, when the table body 3a revolves, the workpiece W and the holder H can pass through the through holes 4b1 and 4b2 to enter and exit the plasma processing area PA.
 また、遮蔽板4では、遮蔽板本体4aの電位がフローティング(浮遊電位)とされている。具体的にいえば、遮蔽板本体4aは、誘電体材料からなる、碍子4c(図2)を介して左右の各端部が容器本体2aの内壁面2bに取り付けられている。これにより、遮蔽板4がプラズマ処理領域PAにプラズマを閉じ込めたときでも、遮蔽板4が接地されていないことにより、遮蔽板本体4aをプラズマ電位に帯電することができる。この結果、遮蔽板4では、遮蔽板本体4aでのプラズマの消失を抑制しつつ、プラズマ処理領域PAにおいて、プラズマを効率よく閉じ込めることができて、プラズマの電子密度を高めることができる。 Furthermore, in the shielding plate 4, the potential of the shielding plate body 4a is floating. Specifically, the left and right ends of the shielding plate body 4a are attached to the inner wall surface 2b of the container body 2a via insulators 4c (Figure 2) made of a dielectric material. As a result, even when the shielding plate 4 confines plasma in the plasma processing area PA, the shielding plate body 4a can be charged to the plasma potential because the shielding plate 4 is not grounded. As a result, the shielding plate 4 can efficiently confine plasma in the plasma processing area PA while suppressing loss of plasma in the shielding plate body 4a, and the electron density of the plasma can be increased.
 なお、上記の説明以外に、例えば、真空容器2の上記上蓋に対して遮蔽板本体4aを取り付ける構成でもよい。また、例えば、ガラスなどの誘電体材料を用いて遮蔽板4を構成することもできる。この場合には、碍子4cの設置を省略することができる。 In addition to the above description, the shielding plate body 4a may be attached to the upper lid of the vacuum vessel 2. The shielding plate 4 may also be made of a dielectric material such as glass. In this case, the installation of the insulator 4c may be omitted.
 <高周波窓WR>
 高周波窓WRは、金属板5と、誘電体板6と、を備えており、真空容器2の容器本体2aの内部にプラズマを発生させる高周波磁場を、容器本体2aの内部に導入させるように構成されている。具体的にいえば、金属板5には、複数のスリットが設けられており、金属板5は、容器本体2aの内壁面2bに設けられた開口部2b1を塞ぐように容器本体2aに取り付けられている。また、誘電体板6は、少なくとも上記スリットを覆うように金属板5に取り付けられている。
<High frequency window WR>
The high frequency window WR includes a metal plate 5 and a dielectric plate 6, and is configured to introduce a high frequency magnetic field for generating plasma inside the vessel body 2a of the vacuum vessel 2 into the vessel body 2a. Specifically, the metal plate 5 is provided with a plurality of slits, and the metal plate 5 is attached to the vessel body 2a so as to close the opening 2b1 provided in the inner wall surface 2b of the vessel body 2a. The dielectric plate 6 is attached to the metal plate 5 so as to cover at least the slits.
 <アンテナ7>
 アンテナ7は、例えば、直線状に構成されるとともに、銅などの金属材料を用いて構成されている。また、アンテナ7は、鉛直方向に沿って容器本体2aの外側で高周波窓WRに対向するように設けられている。さらに、アンテナ7は、電源8からの高周波電力により、高周波磁場を発生して、高周波窓WRを介して容器本体2aの内部に高周波磁場を導入する。
<Antenna 7>
The antenna 7 is, for example, linear and made of a metal material such as copper. The antenna 7 is provided vertically outside the container body 2a so as to face the high-frequency window WR. The antenna 7 generates a high-frequency magnetic field using high-frequency power from a power source 8, and introduces the high-frequency magnetic field into the container body 2a through the high-frequency window WR.
 具体的にいえば、アンテナ7の一方の端部には、整合回路を有するインピーダンス調整部(図示せず)を介して電源8が電気的に接続されている。また、アンテナ7の他方の端部には、可変コンデンサ(図示せず)を介して電気的に接地されている。電源8は、例えば、13.56MHzの高周波電力を、上記インピーダンス調整部を介してアンテナ7の一方の端部に供給する。プラズマ処理装置1では、図示しない制御部が上記可変コンデンサの容量を変更することにより、アンテナ7に高周波電力が効率的に供給されるように制御する。 Specifically, one end of the antenna 7 is electrically connected to the power supply 8 via an impedance adjustment unit (not shown) having a matching circuit. The other end of the antenna 7 is electrically grounded via a variable capacitor (not shown). The power supply 8 supplies high-frequency power of, for example, 13.56 MHz to one end of the antenna 7 via the impedance adjustment unit. In the plasma processing apparatus 1, a control unit (not shown) changes the capacitance of the variable capacitor to control the efficient supply of high-frequency power to the antenna 7.
 <冷却機構CM>
 冷却機構CMは、容器本体2aの内部に設けられた冷却領域CAに設置されている。冷却領域CAは、遮蔽板4によって区切られた容器本体2aの内部の空間のうち、プラズマ処理領域PAを除いた空間にて構成される。換言すれば、冷却領域CAは、容器本体2aの内部において、遮蔽板4のアンテナ7とは反対側の領域である。また、冷却機構CMは、冷却領域CAに配置された冷却板CM1を具備しており、冷却板CM1を用いてワークWを冷却するようになっている。
<Cooling mechanism CM>
The cooling mechanism CM is installed in a cooling area CA provided inside the container body 2a. The cooling area CA is the space inside the container body 2a separated by the shielding plate 4, excluding the plasma processing area PA. In other words, the cooling area CA is the area inside the container body 2a on the opposite side of the shielding plate 4 from the antenna 7. The cooling mechanism CM also includes a cooling plate CM1 arranged in the cooling area CA, and is configured to cool the workpiece W using the cooling plate CM1.
 具体的にいえば、冷却機構CMは、例えば、金属材料を用いて円弧状に形成された冷却板CM1と、冷却板CM1の容器本体2aの内壁面2b側に設けられ、水などの冷却媒体を循環させるための配管CM2と、を備えている。また、冷却機構CMでは、冷却板CM1の表面がホルダーHと接触するように容器本体2aの内部に設けられている。これにより、本実施形態1では、より高速にワークWを冷却することができ、ワークWの処理レートより早くすることができる。また、このように本実施形態1では、ワークWを冷却することができるので、プラズマ処理に伴うワークWでの温度上昇を抑えて、ワークWが温度上昇に起因する熱負荷によって損傷を生じるのを大幅に抑制することができる。さらに、本実施形態1では、冷却板CM1が、ワークWに直接的に接触することなく、ホルダーHと接触してワークWを冷却するので、ワークWを傷つけることなく、確実に冷却することができる。 Specifically, the cooling mechanism CM includes a cooling plate CM1 formed in an arc shape using a metal material, and a pipe CM2 provided on the inner wall surface 2b side of the container body 2a of the cooling plate CM1 for circulating a cooling medium such as water. In addition, in the cooling mechanism CM, the surface of the cooling plate CM1 is provided inside the container body 2a so as to contact the holder H. As a result, in this embodiment 1, the workpiece W can be cooled at a higher speed, and the processing rate of the workpiece W can be made faster. In addition, since the workpiece W can be cooled in this manner in this embodiment 1, the temperature rise in the workpiece W due to plasma processing can be suppressed, and damage to the workpiece W caused by the heat load due to the temperature rise can be significantly suppressed. Furthermore, in this embodiment 1, the cooling plate CM1 cools the workpiece W by contacting the holder H without directly contacting the workpiece W, so that the workpiece W can be reliably cooled without being damaged.
 <印加機構SM>
 印加機構SMは、容器本体2aの外部に設けられた電源SM1を具備し、所定のバイアス電圧を電源SM1からターンテーブル3を介してワークWに印加する。換言すれば、プラズマ処理装置1では、ワークWは印加機構SMからのバイアス電圧が印加された状態でプラズマ処理領域PAの内部で所定のプラズマ処理が施される。また、電源SM1は、例えば、直流電源、パルス電源、または交流電源を用いて構成されている。印加機構SMでは、ワークWに対するプラズマ処理の内容及びプラズマ処理領域PAでのプラズマの電子密度などに応じて、上記制御部が電源SM1からのバイアス電圧を変更するよう構成されており、プラズマ処理を適切に行うようになっている。
<Application mechanism SM>
The application mechanism SM includes a power source SM1 provided outside the container body 2a, and applies a predetermined bias voltage from the power source SM1 to the workpiece W via the turntable 3. In other words, in the plasma processing apparatus 1, the workpiece W is subjected to a predetermined plasma processing in the plasma processing area PA while the bias voltage from the application mechanism SM is applied to the workpiece W. The power source SM1 is configured using, for example, a DC power source, a pulse power source, or an AC power source. In the application mechanism SM, the control unit is configured to change the bias voltage from the power source SM1 depending on the content of the plasma processing on the workpiece W and the electron density of the plasma in the plasma processing area PA, so that the plasma processing is performed appropriately.
 また、印加機構SMは、ターンテーブル3のテーブル本体3aに対して、テーブル本体3aの円周に沿って、所定の間隔をおいて設けられた複数の上記ホルダーHを有している。複数の各ホルダーHは、ワークWをテーブル本体3aに保持するためのものであり、本実施形態1では、上述したように、テーブル本体3aが公転することにより、複数のワークWに対して、所定のプラズマ処理を順次行えるようになっている。 The application mechanism SM also has a number of holders H that are provided at predetermined intervals along the circumference of the table body 3a of the turntable 3. Each of the multiple holders H is for holding a workpiece W on the table body 3a, and in this embodiment 1, as described above, the table body 3a revolves, allowing the predetermined plasma processing to be performed sequentially on the multiple workpieces W.
 また、ホルダーHは、図3に示すように、円筒状に構成された支持部材H1、H2と、円柱状に構成された印加部材H3と、を備えている。支持部材H1、H2は、例えば、誘電体材料を用いて構成されている。支持部材H2及び印加部材H3は、ターンテーブル3のテーブル本体3aに設けられている。支持部材H1は、支持部材H2、印加部材H3、及びテーブル本体3aに回転自在に支持されている。印加部材H3は、テーブル本体3aと支持部材H1に支持されたワークWとに電気的に接続されて、支持部材H1に支持されたワークWに上記バイアス電圧を印加する。 As shown in FIG. 3, the holder H includes cylindrical support members H1 and H2 and a columnar application member H3. The support members H1 and H2 are made of, for example, a dielectric material. The support member H2 and application member H3 are provided on the table body 3a of the turntable 3. The support member H1 is supported rotatably by the support member H2, application member H3, and table body 3a. The application member H3 is electrically connected to the table body 3a and the workpiece W supported by the support member H1, and applies the bias voltage to the workpiece W supported by the support member H1.
 また、ホルダーHでは、支持部材H1は冷却板CM1に接触するように構成されている。これにより、本実施形態1では、支持部材H1がテーブル本体3aの公転に伴って冷却板CM1と接触することにより、支持部材H1(ホルダーH)が図2に示すR2方向に回転(自転)する。この結果、本実施形態1では、プラズマ処理領域PAにおいて、ワークWがホルダーHとともに自転することから、高周波窓WRに対するワークWの対向面を自転に応じて変化させることができる。したがって、本実施形態1では、ワークWについてより均一な処理を確実に行うことができる。 Furthermore, in the holder H, the support member H1 is configured to come into contact with the cooling plate CM1. As a result, in this embodiment 1, the support member H1 comes into contact with the cooling plate CM1 as the table body 3a revolves, and the support member H1 (holder H) rotates (spins) in the R2 direction shown in FIG. 2. As a result, in this embodiment 1, since the workpiece W rotates together with the holder H in the plasma processing area PA, the opposing surface of the workpiece W with respect to the high-frequency window WR can be changed in accordance with the spin. Therefore, in this embodiment 1, it is possible to reliably perform more uniform processing on the workpiece W.
 以上のように構成された本実施形態1のプラズマ処理装置1は、ワークWを内部に収容する真空容器2と、真空容器2の内部に高周波磁場を導入させる高周波窓WRと、高周波窓WRに対向するように設けられて、高周波磁場を発生するアンテナ7と、を備えている。また、プラズマ処理装置1は、ワークWが載置されて回転するターンテーブル3と、所定のバイアス電圧を電源SM1からターンテーブル3を介してワークWに印加する印加機構SMと、を備えている。プラズマ処理装置1は、ターンテーブル3の上方、かつ、高周波窓WRに対向するように真空容器2の内部に設けられて、高周波窓WRとの間の空間を遮蔽する遮蔽板4であって、ターンテーブル3上に載置されたワークWが通過するのを許容する通過穴4b1、4b2が形成されている遮蔽板4を備えている。 The plasma processing apparatus 1 of the present embodiment 1 configured as described above includes a vacuum vessel 2 that houses a workpiece W therein, a high-frequency window WR that introduces a high-frequency magnetic field into the vacuum vessel 2, and an antenna 7 that is disposed opposite the high-frequency window WR and generates a high-frequency magnetic field. The plasma processing apparatus 1 also includes a turntable 3 on which the workpiece W is placed and rotates, and an application mechanism SM that applies a predetermined bias voltage from a power source SM1 to the workpiece W via the turntable 3. The plasma processing apparatus 1 includes a shielding plate 4 that is disposed above the turntable 3 and inside the vacuum vessel 2 opposite the high-frequency window WR, shielding the space between the turntable 3 and the high-frequency window WR, and has through holes 4b1 and 4b2 formed in the shielding plate 4 that allow the workpiece W placed on the turntable 3 to pass through.
 以上の構成により、本実施形態1では、ワークWを効率よく処理することができるプラズマ処理装置1を構成することができる。具体的にいえば、本実施形態1では、遮蔽板4によって真空容器2の内部をプラズマ処理領域PAに区切っているので、当該プラズマ処理領域PAでのプラズマの電子密度を高くすることができ、ワークWに対する除膜レート(処理レート)を大きくすることができる。これにより、本実施形態1では、ワークWを効率よく処理することができる。また、本実施形態1では、図1及び図2に示したように、1つのアンテナ7及び1つの高周波窓WRを有する1つのプラズマ源を用いて、複数のワークWに対して、所定のプラズマ処理を順次行うことができる。これにより、本実施形態1では、複数のワークWに対しても、プラズマ処理を行うことができるコストが安価なプラズマ処理装置1を構成することができる。 With the above configuration, in this embodiment 1, a plasma processing apparatus 1 capable of efficiently processing the workpieces W can be configured. Specifically, in this embodiment 1, the inside of the vacuum vessel 2 is divided into plasma processing areas PA by the shielding plate 4, so that the electron density of the plasma in the plasma processing area PA can be increased, and the film removal rate (processing rate) for the workpieces W can be increased. As a result, in this embodiment 1, the workpieces W can be efficiently processed. Also, in this embodiment 1, as shown in Figures 1 and 2, a single plasma source having one antenna 7 and one high-frequency window WR can be used to sequentially perform a predetermined plasma processing on multiple workpieces W. As a result, in this embodiment 1, a low-cost plasma processing apparatus 1 capable of performing plasma processing on multiple workpieces W can be configured.
 以下、図4乃至図7も参照して、本実施形態1のプラズマ処理装置1の効果について具体的に説明する。図4は、上記プラズマ処理装置1でのプラズマの電子密度とシース厚みとの関係の一例を示すグラフである。図5は、除膜処理における、ワークWとシースSAとの関係の一例を説明する図である。図6は、図1に示した遮蔽板4、及びこれによって形成される、上記プラズマ処理装置1でのプラズマ処理領域PAと冷却領域CAとを説明する図である。図7は、図1に示したターンテーブル3の回転角度とプラズマの電子密度との関係の一例を示すグラフである。なお、図6では、電源8、電源SM1、及び配管CM2の図示は省略している。 Below, the effect of the plasma processing apparatus 1 of this embodiment 1 will be specifically described with reference to Figs. 4 to 7. Fig. 4 is a graph showing an example of the relationship between plasma electron density and sheath thickness in the plasma processing apparatus 1. Fig. 5 is a diagram explaining an example of the relationship between the workpiece W and the sheath SA in a film removal process. Fig. 6 is a diagram explaining the shielding plate 4 shown in Fig. 1, and the plasma processing area PA and cooling area CA formed thereby in the plasma processing apparatus 1. Fig. 7 is a graph showing an example of the relationship between the rotation angle of the turntable 3 shown in Fig. 1 and the plasma electron density. Note that the power supply 8, power supply SM1, and piping CM2 are not shown in Fig. 6.
 図4に示すように、本実施形態1のプラズマ処理装置1では、例えば、上記制御部が電源8を制御することにより、アンテナ7への供給電力(高周波電力)を変更させると、プラズマ処理領域PAで生成されるプラズマの電子密度が図4の横軸のように変化する。また、本実施形態1のプラズマ処理装置1では、例えば、上記制御部が電源SM1を制御することにより、上記バイアス電圧を変更させた場合、プラズマ処理領域PA内のワークWの周囲に生じるシースSA(図5)のシース厚みはバイアス電圧ごとにプラズマの電子密度に応じて変化する。ここで、シースSAとは、周知のように、バイアス電圧によってワークWを取り囲むように発生するとともに、プラズマのイオンのワークWへの接近を阻害する遮蔽層である。 As shown in FIG. 4, in the plasma processing apparatus 1 of this embodiment 1, for example, when the control unit controls the power supply 8 to change the power (high frequency power) supplied to the antenna 7, the electron density of the plasma generated in the plasma processing area PA changes as shown on the horizontal axis of FIG. 4. Also, in the plasma processing apparatus 1 of this embodiment 1, for example, when the control unit controls the power supply SM1 to change the bias voltage, the sheath thickness of the sheath SA (FIG. 5) generated around the workpiece W in the plasma processing area PA changes according to the plasma electron density for each bias voltage. Here, the sheath SA, as is well known, is a shielding layer that is generated to surround the workpiece W by the bias voltage and prevents the plasma ions from approaching the workpiece W.
 具体的にいえば、上記バイアス電圧が、例えば、-100Vである場合、シース厚みは、図4の曲線71に示すように、プラズマの電子密度に応じて変化する。また、上記バイアス電圧が、例えば、-250Vである場合、シース厚みは、図4の曲線72に示すように、プラズマの電子密度に応じて変化する。また、上記バイアス電圧が、例えば、-500Vである場合、シース厚みは、図4の曲線73に示すように、プラズマの電子密度に応じて変化する。換言すれば、図4の曲線71~73から明らかなように、プラズマ処理領域PAでのプラズマの電子密度が大きいほど、またワークWに印加するバイアス電圧の絶対値が小さいほど、シース厚みを小さくして、ワークWに対するプラズマ処理を精度よく行うことができる。 Specifically, when the bias voltage is, for example, -100V, the sheath thickness changes according to the plasma electron density, as shown by curve 71 in FIG. 4. When the bias voltage is, for example, -250V, the sheath thickness changes according to the plasma electron density, as shown by curve 72 in FIG. 4. When the bias voltage is, for example, -500V, the sheath thickness changes according to the plasma electron density, as shown by curve 73 in FIG. 4. In other words, as is clear from curves 71 to 73 in FIG. 4, the higher the plasma electron density in the plasma processing area PA and the smaller the absolute value of the bias voltage applied to the workpiece W, the smaller the sheath thickness can be, and the more accurately the plasma processing of the workpiece W can be performed.
 また、図5の501に示すように、ワークWが上記ドリルである場合において、図5の502及び503に示すように、ワークWの断面視では、ワークWの周囲のシース厚みがプラズマの電子密度によって異なる。具体的にいえば、プラズマの電子密度が小さい場合、図5の502に示すように、シースSAの厚みは大きくなる。このため、プラズマのイオンP1は、比較的厚いシースSAによってワークWの表面に接近するのを阻害される。この結果、プラズマの電子密度が小さくシース厚みが大きい場合では、ワークWでの除膜処理を均一に行うことが困難となる。 Furthermore, as shown in 501 in FIG. 5, when the workpiece W is the above-mentioned drill, the sheath thickness around the workpiece W in a cross-sectional view of the workpiece W varies depending on the plasma electron density, as shown in 502 and 503 in FIG. 5. Specifically, when the plasma electron density is low, the thickness of the sheath SA becomes large, as shown in 502 in FIG. 5. Therefore, the plasma ions P1 are prevented from approaching the surface of the workpiece W by the relatively thick sheath SA. As a result, when the plasma electron density is low and the sheath thickness is large, it becomes difficult to perform a uniform film removal process on the workpiece W.
 一方、本実施形態1のプラズマ処理装置1のように、プラズマの電子密度を大きくすることができる場合、図5の503に示すように、シースSAの厚みは図5の502に示したものに比べて小さくすることができる。このため、本実施形態1のプラズマ処理装置1では、プラズマのイオンP1は、比較的薄いシースSAによってワークWの表面に接近するのを阻害されることとなる。換言すれば、本実施形態1のプラズマ処理装置1では、プラズマのイオンP1がワークWの表面に接近し易くなり、均一な除膜処理を行うことができる。 On the other hand, when the plasma electron density can be increased, as in the plasma processing apparatus 1 of this embodiment 1, the thickness of the sheath SA can be made smaller, as shown in 503 in FIG. 5, than that shown in 502 in FIG. 5. Therefore, in the plasma processing apparatus 1 of this embodiment 1, the relatively thin sheath SA prevents the plasma ions P1 from approaching the surface of the workpiece W. In other words, in the plasma processing apparatus 1 of this embodiment 1, the plasma ions P1 can more easily approach the surface of the workpiece W, allowing for uniform film removal processing.
 図6に示すように、本実施形態1のプラズマ処理装置1では、真空容器2の容器本体2aの内部は、遮蔽板4により、上記プラズマ源側のプラズマ処理領域PAと、当該プラズマ源とは反対側の冷却領域CAとに区画されている。具体的にいえば、遮蔽板4は、遮蔽板本体4aの中央部が、例えば、ターンテーブル3の回転軸3bの中心C1上となるように容器本体2aの内部に設置されている。また、遮蔽板本体4aでは、その左右の端部の開き角度である、上記所定の角度θとして、例えば、120°の角度が設定されている。そして、プラズマ処理装置1では、遮蔽板4によってプラズマの電子密度が濃くされたプラズマ処理領域PAと、上記プラズマ源を遮蔽板4によって実質的に遮蔽して、プラズマが広がるのを抑えることによって、ワークWに対するプラズマ処理の実行を一旦停止して、当該プラズマ処理の実行によるワークWでの温度上昇を抑制する冷却領域CAとを適切に形成することができる。また、プラズマ処理装置1では、プラズマ処理領域PAにおいて、上記所定のプラズマ処理をより効率よく行うことができる。 6, in the plasma processing apparatus 1 of the present embodiment 1, the inside of the vessel body 2a of the vacuum vessel 2 is divided by the shielding plate 4 into a plasma processing area PA on the plasma source side and a cooling area CA on the opposite side of the plasma source. Specifically, the shielding plate 4 is installed inside the vessel body 2a so that the center of the shielding plate body 4a is, for example, on the center C1 of the rotation axis 3b of the turntable 3. In addition, the shielding plate body 4a has an opening angle of its left and right ends, and the above-mentioned predetermined angle θ is set to, for example, 120°. In the plasma processing apparatus 1, the plasma processing area PA in which the electron density of the plasma is increased by the shielding plate 4 and the cooling area CA in which the plasma processing on the workpiece W is temporarily stopped and the temperature rise in the workpiece W due to the execution of the plasma processing can be appropriately formed by substantially shielding the plasma source with the shielding plate 4 and suppressing the spread of the plasma. In addition, in the plasma processing apparatus 1, the above-mentioned predetermined plasma processing can be performed more efficiently in the plasma processing area PA.
 より具体的にいえば、本実施形態1のプラズマ処理装置1において、基準電子密度として、例えば、1E+17乗/m3の電子密度を有するプラズマを発生させた場合、プラズマ処理領域PAにおいては、図7に上向きの矢印に示すように、プラズマの電子密度を上記基準電子密度よりも大きい値とすることができる。この結果、プラズマ処理装置1では、プラズマ処理領域PAにおいては、ワークWに対するプラズマ処理を効率よく行うことができる。なお、図7の横軸の回転角度とは、中心C1に対するターンテーブル3の回転角度であって、当該ターンテーブル3の任意の基準位置がアンテナ7に対向している場合を0°としている。 More specifically, in the plasma processing apparatus 1 of the present embodiment 1, when a plasma having an electron density of, for example, 1E+17/ m3 is generated as a reference electron density, the plasma electron density in the plasma processing area PA can be set to a value greater than the reference electron density, as shown by the upward arrow in Fig. 7. As a result, in the plasma processing apparatus 1, the plasma processing of the workpiece W can be efficiently performed in the plasma processing area PA. The rotation angle on the horizontal axis in Fig. 7 is the rotation angle of the turntable 3 with respect to the center C1, and is set to 0° when any reference position of the turntable 3 faces the antenna 7.
 また、冷却領域CAにおいては、図7に下向きの矢印に示すように、プラズマの電子密度を上記基準電子密度よりも小さい値とすることができる。この結果、冷却領域CAでは、プラズマ処理の実行が抑えられるために、ワークWでは、当該プラズマ処理によるワークWでの温度上昇を抑制することができ、ワークWの温度を容易に下げることができる。さらに、プラズマ処理装置1では、冷却機構CMの冷却板CM1によってワークWを冷却しているので、ワークWの温度上昇を大幅に抑えることができる。この結果、プラズマ処理装置1では、ワークWにおいて、損傷等の発生を大幅に低減することができる。 Furthermore, in the cooling area CA, as shown by the downward arrow in FIG. 7, the plasma electron density can be set to a value smaller than the reference electron density. As a result, in the cooling area CA, the execution of plasma processing is suppressed, so that the temperature rise in the workpiece W due to the plasma processing can be suppressed, and the temperature of the workpiece W can be easily lowered. Furthermore, in the plasma processing apparatus 1, since the workpiece W is cooled by the cooling plate CM1 of the cooling mechanism CM, the temperature rise in the workpiece W can be significantly suppressed. As a result, in the plasma processing apparatus 1, the occurrence of damage, etc., in the workpiece W can be significantly reduced.
 なお、上記の説明では、遮蔽板本体4aの中央部がターンテーブル3の回転軸3bの中心C1上となるように容器本体2aの内部に遮蔽板4を配置した場合について説明した。しかしながら、本実施形態はこれに限定されるものではなく、例えば、中心C1よりも高周波窓WR側に遮蔽板本体4aの中央部を配置する構成でもよい。この場合は、プラズマの電子密度をより大きい値にすることができる点で好ましい。 In the above description, the shielding plate 4 is arranged inside the container body 2a so that the center of the shielding plate body 4a is located on the center C1 of the rotation axis 3b of the turntable 3. However, this embodiment is not limited to this, and for example, the center of the shielding plate body 4a may be arranged closer to the high frequency window WR than the center C1. This is preferable because it allows the electron density of the plasma to be increased.
 〔実施形態2〕
 本開示の実施形態2について、図8を用いて具体的に説明する。図8は、本開示の実施形態2に係るプラズマ処理装置1の要部構成を示す上面図である。なお、説明の便宜上、上記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。また、図8では、電源8、電源SM1、及び配管CM2の図示は省略している。
[Embodiment 2]
The second embodiment of the present disclosure will be specifically described with reference to Fig. 8. Fig. 8 is a top view showing a main configuration of a plasma processing apparatus 1 according to the second embodiment of the present disclosure. For convenience of explanation, the same reference numerals are used for members having the same functions as those described in the first embodiment, and the explanations thereof will not be repeated. Also, in Fig. 8, the power source 8, the power source SM1, and the piping CM2 are not shown.
 本実施形態2と上記実施形態1との主な相違点は、ターンテーブル3の回転に応じて、支持部材H1を回転させる接触部材2cを設けた点である。 The main difference between this embodiment 2 and the above embodiment 1 is that a contact member 2c is provided that rotates the support member H1 in response to the rotation of the turntable 3.
 図8に示すように、本実施形態2のプラズマ処理装置1では、接触部材2cが真空容器2の内壁面2bに設けられている。この接触部材2cは、例えば、金属材料を用いて棒状に構成されている。接触部材2cでは、その一端部が内壁面2bから容器本体2aの内部側に突出するように当該内壁面2bに取り付けられている。また、接触部材2cでは、その他端部(突出端部)がホルダーHの支持部材H1に接触可能に構成されている。 As shown in FIG. 8, in the plasma processing apparatus 1 of this embodiment 2, a contact member 2c is provided on the inner wall surface 2b of the vacuum vessel 2. This contact member 2c is, for example, made of a metal material and has a rod-like shape. One end of the contact member 2c is attached to the inner wall surface 2b so as to protrude from the inner wall surface 2b into the inside of the vessel body 2a. The other end (protruding end) of the contact member 2c is configured so as to be able to come into contact with the support member H1 of the holder H.
 そして、本実施形態2のプラズマ処理装置1では、ターンテーブル3の回転に応じて、ホルダーHの支持部材H1が接触部材2cの他端部が接触すると、当該回転に応じて、支持部材H1は接触部材2cの他端部に押圧(キック)される。これにより、ホルダーHでは、支持部材H1がターンテーブル3の回転に応じてワークWを支持した状態で回転(自転)する。 In the plasma processing apparatus 1 of this embodiment 2, when the support member H1 of the holder H comes into contact with the other end of the contact member 2c in response to the rotation of the turntable 3, the support member H1 is pressed (kicked) against the other end of the contact member 2c in response to the rotation. As a result, in the holder H, the support member H1 rotates (spins) while supporting the workpiece W in response to the rotation of the turntable 3.
 以上の構成により、本実施形態2のプラズマ処理装置1は、実施形態1のものと同様な効果を奏する。 With the above configuration, the plasma processing apparatus 1 of this embodiment 2 achieves the same effects as that of embodiment 1.
 また、本実施形態2のプラズマ処理装置1では、冷却板CM1との接触による自転に加えて、接触部材2cとの接触によってホルダーHの支持部材H1を自転させているので、ワークWについてより均一な処理をより確実に行うことができる。但し、例えば、冷却機構CMの設置を省略した場合では、接触部材2cとの接触によってのみ支持部材H1を自転させてもよい。 Furthermore, in the plasma processing apparatus 1 of this embodiment 2, in addition to rotation due to contact with the cooling plate CM1, the support member H1 of the holder H is rotated by contact with the contact member 2c, so that more uniform processing of the workpiece W can be performed more reliably. However, for example, in a case where the installation of the cooling mechanism CM is omitted, the support member H1 may be rotated only by contact with the contact member 2c.
 なお、上記実施形態1及び実施形態2の説明では、冷却板CM1及び/または接触部材2cとの接触により、ホルダーHの支持部材H1を回転させる構成について説明した。しかしながら、本実施形態は、これに限定されるものではなく、例えば、ホルダーHに連結されるとともに、ターンテーブル3の回転軸3bを駆動する駆動機構からの回転力を用いて、当該ホルダーHの支持部材H1を回転させる歯車等の回転機構を設けてもよい。 In the above description of the first and second embodiments, the support member H1 of the holder H is rotated by contact with the cooling plate CM1 and/or the contact member 2c. However, this embodiment is not limited to this, and for example, a rotation mechanism such as a gear may be provided that is connected to the holder H and rotates the support member H1 of the holder H using a rotational force from a drive mechanism that drives the rotation shaft 3b of the turntable 3.
 〔実施形態3〕
 本開示の実施形態3について、図9を用いて具体的に説明する。図9は、本開示の実施形態3に係るプラズマ処理装置1の要部構成を説明する図である。なお、説明の便宜上、上記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。なお、図9では、冷却機構CMの図示は省略している。
[Embodiment 3]
The third embodiment of the present disclosure will be specifically described with reference to Fig. 9. Fig. 9 is a diagram for explaining the main configuration of a plasma processing apparatus 1 according to the third embodiment of the present disclosure. For convenience of explanation, the same reference numerals are given to members having the same functions as those described in the first embodiment, and the explanations thereof will not be repeated. In Fig. 9, the cooling mechanism CM is omitted.
 本実施形態3と上記実施形態1との主な相違点は、アンテナ7が延伸する延伸方向に沿って複数のワークWを設けた点である。 The main difference between this embodiment 3 and the above embodiment 1 is that multiple workpieces W are provided along the extension direction of the antenna 7.
 図9に示すように、本実施形態3のプラズマ処理装置1では、アンテナ7の延伸方向に沿って、各々円弧状に配置された複数、例えば、2列のホルダーHの群が設けられている。具体的にいえば、ホルダーHの鉛直方向の下方の群は、実施形態1のものと同様に、ターンテーブル3のテーブル本体3aに取り付けられている。また、ホルダーHの鉛直方向の上方の群は、一端部がテーブル本体3aに設けられた支持棒15を介してテーブル本体3aに取り付けられている。また、支持棒15は、ワークWを支持する支持部材H1を回転自在に支持するようになっている。 As shown in FIG. 9, in the plasma processing apparatus 1 of this embodiment 3, multiple groups of holders H, for example, two rows, are provided, each arranged in an arc along the extension direction of the antenna 7. Specifically, the lower vertical group of holders H is attached to the table body 3a of the turntable 3, as in the embodiment 1. The upper vertical group of holders H is attached to the table body 3a via a support rod 15, one end of which is provided on the table body 3a. The support rod 15 is adapted to rotatably support a support member H1 that supports the workpiece W.
 また、本実施形態3のプラズマ処理装置1では、容器本体2aの内部は遮蔽板本体14aを有する遮蔽板14によってプラズマ処理領域PAと冷却領域CAとに区分けされている。遮蔽板14は、図9に例示するように、ホルダーHの鉛直方向の上方の群及び下方の群が通過するのを許容する通過穴14b1が設けられている。これにより、本実施形態3では、ターンテーブル3の回転に応じて、上記上方の群の各ホルダーHに保持されたワークW及び上記下方の群の各ホルダーHに保持されたワークWをプラズマ処理領域PAと冷却領域CAとの間を移動させることができる。 Furthermore, in the plasma processing apparatus 1 of this embodiment 3, the inside of the vessel body 2a is divided into a plasma processing area PA and a cooling area CA by a shielding plate 14 having a shielding plate body 14a. As illustrated in FIG. 9, the shielding plate 14 is provided with a passing hole 14b1 that allows the vertically upper and lower groups of holders H to pass through. As a result, in this embodiment 3, the workpieces W held by each holder H of the upper group and the workpieces W held by each holder H of the lower group can be moved between the plasma processing area PA and the cooling area CA in accordance with the rotation of the turntable 3.
 以上の構成により、本実施形態3のプラズマ処理装置1は、実施形態1のものと同様な効果を奏する。 With the above configuration, the plasma processing apparatus 1 of this embodiment 3 achieves the same effects as that of embodiment 1.
 また、本実施形態3のプラズマ処理装置1では、アンテナ7の延伸方向に沿って、2列のホルダーHの群に各々支持されたワークWが設けられているので、単位時間当たりのワークWの処理件数を容易に増加することができる。 In addition, in the plasma processing apparatus 1 of this embodiment 3, the workpieces W are supported by two rows of holders H along the extension direction of the antenna 7, so the number of workpieces W processed per unit time can be easily increased.
 なお、上記の説明では、支持棒15を用いてアンテナ7の延伸方向に沿って複数のワークWを設けた場合について説明した。しかしながら、本実施形態はこれに限定されるものではなく、例えば、互いに対向する2つのターンテーブルを容器本体2aの内部に設置して、各ターンテーブルに複数のホルダーHを設ける構成でもよい。 In the above explanation, a case has been described in which multiple workpieces W are arranged along the extension direction of the antenna 7 using the support rod 15. However, this embodiment is not limited to this, and for example, two mutually opposing turntables may be installed inside the container body 2a, and multiple holders H may be provided on each turntable.
 〔実施形態4〕
 本開示の実施形態4について、図10を用いて具体的に説明する。図10は、本開示の実施形態4に係るプラズマ処理装置1の要部構成を説明する図である。なお、説明の便宜上、上記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 4]
The fourth embodiment of the present disclosure will be specifically described with reference to Fig. 10. Fig. 10 is a diagram for explaining the configuration of the main parts of a plasma processing apparatus 1 according to the fourth embodiment of the present disclosure. For convenience of explanation, the same reference numerals are given to members having the same functions as those explained in the first embodiment, and the explanations thereof will not be repeated.
 本実施形態4と上記実施形態1との主な相違点は、比較的大型のワークW0に対して、所定のプラズマ処理を行う点である。 The main difference between this embodiment 4 and the above embodiment 1 is that a predetermined plasma treatment is performed on a relatively large workpiece W0.
 図10に示すように、本実施形態4のプラズマ処理装置1では、例えば、円柱状に構成されたワークW0がターンテーブル3のテーブル本体3a上に載置されている。また、ワークW0は、ターンテーブル3の回転中心である、回転軸3bの上方に設置されている。また、本実施形態4のプラズマ処理装置1では、容器本体2aの内部は遮蔽板本体24aを有する遮蔽板24によってプラズマ処理領域PAと冷却領域CAとに区分けされている。遮蔽板24は、図10に示すように、ターンテーブル3の回転に伴って回転するワークW0が通過するのを許容する通過穴24bが設けられている。これにより、本実施形態4では、ターンテーブル3の回転に応じて、高周波窓WRに対する、ワークW0の対向面を変化させることができる。この結果、本実施形態4では、ワークW0の一部がプラズマ処理領域PAと冷却領域CAとに順次移動することができる。 As shown in FIG. 10, in the plasma processing apparatus 1 of the present embodiment 4, for example, a cylindrical workpiece W0 is placed on the table body 3a of the turntable 3. The workpiece W0 is placed above the rotation axis 3b, which is the center of rotation of the turntable 3. In the plasma processing apparatus 1 of the present embodiment 4, the inside of the container body 2a is divided into a plasma processing area PA and a cooling area CA by a shielding plate 24 having a shielding plate body 24a. As shown in FIG. 10, the shielding plate 24 is provided with a through hole 24b that allows the workpiece W0, which rotates with the rotation of the turntable 3, to pass through. As a result, in the present embodiment 4, the opposing surface of the workpiece W0 with respect to the high-frequency window WR can be changed according to the rotation of the turntable 3. As a result, in the present embodiment 4, a part of the workpiece W0 can be moved sequentially between the plasma processing area PA and the cooling area CA.
 以上の構成により、本実施形態4のプラズマ処理装置1は、実施形態1のものと同様な効果を奏する。 With the above configuration, the plasma processing apparatus 1 of this embodiment 4 achieves the same effects as that of embodiment 1.
 〔まとめ〕
 上記の課題を解決するために、本開示の第1態様のプラズマ処理装置は、被処理物を内部に収容する真空容器と、前記真空容器の内部にプラズマを発生させる高周波磁場を、前記真空容器の内部に導入させる高周波窓と、前記真空容器の外側で前記高周波窓に対向するように設けられて、前記高周波磁場を発生するアンテナと、前記被処理物が載置されるとともに、前記真空容器の内部で回転するターンテーブルと、前記ターンテーブルの上方、かつ、前記高周波窓に対向するように前記真空容器の内部に設けられて、プラズマを遮蔽して、前記真空容器の内部をプラズマ処理領域と冷却領域とに分割する遮蔽板であって、前記ターンテーブル上に載置された前記被処理物が通過するのを許容する通過穴が形成されている遮蔽板と、を備えている。
〔summary〕
In order to solve the above problems, the plasma processing apparatus of the first aspect of the present disclosure comprises a vacuum vessel for accommodating a workpiece therein, a high-frequency window for introducing a high-frequency magnetic field into the vacuum vessel to generate plasma inside the vacuum vessel, an antenna arranged outside the vacuum vessel facing the high-frequency window and generating the high-frequency magnetic field, a turntable on which the workpiece is placed and which rotates inside the vacuum vessel, and a shielding plate arranged inside the vacuum vessel above the turntable and facing the high-frequency window, shielding from plasma and dividing the inside of the vacuum vessel into a plasma processing region and a cooling region, the shielding plate having a passage hole formed therein to allow the workpiece placed on the turntable to pass through.
 上記構成によれば、被処理物を効率よく処理することができるプラズマ処理装置を提供することができる。 The above configuration makes it possible to provide a plasma processing apparatus that can efficiently process the workpiece.
 本開示の第2態様は、第1態様のプラズマ処理装置において、前記真空容器の上面から視認した場合、前記遮蔽板は、その中央部に対して左右対称に、かつ、当該中央部を中心にして左右の各端部が所定の角度で開くように前記真空容器の内部に設けられてもよい。 In a second aspect of the present disclosure, in the plasma processing apparatus of the first aspect, when viewed from the top of the vacuum vessel, the shielding plate may be provided inside the vacuum vessel so that it is symmetrical with respect to its center and that each of the left and right ends opens at a predetermined angle with respect to the center.
 上記構成によれば、真空容器の内部において、遮蔽板によりプラズマ処理領域を適切に形成することができ、プラズマ処理をより効率よく行うことができる。 With the above configuration, the shielding plate can appropriately form a plasma processing area inside the vacuum vessel, allowing plasma processing to be performed more efficiently.
 本開示の第3態様は、第1態様または第2態様のプラズマ処理装置において、前記遮蔽板の電位は、フローティングであってもよい。 In a third aspect of the present disclosure, in the plasma processing apparatus of the first or second aspect, the potential of the shielding plate may be floating.
 上記構成によれば、プラズマの消失を抑制することができ、よりプラズマ密度を高く保つことができる。 The above configuration makes it possible to prevent plasma loss and maintain a higher plasma density.
 本開示の第4態様は、第1態様から第3態様のいずれかの態様のプラズマ処理装置において、前記真空容器の外部に設けられた電源を具備し、所定のバイアス電圧を当該電源から前記ターンテーブルを介して前記被処理物に印加する印加機構を、さらに備え、前記印加機構は、前記被処理物を保持するために前記ターンテーブルに設けられたホルダーを有し、前記ホルダーは、前記ターンテーブルに設けられるとともに、前記被処理物を回転自在に支持する支持部材と、前記ターンテーブルと前記支持部材に支持された前記被処理物とに電気的に接続されて、前記支持部材に支持された前記被処理物に前記バイアス電圧を印加する印加部材と、を含んでもよい。 A fourth aspect of the present disclosure is a plasma processing apparatus according to any one of the first to third aspects, further comprising an application mechanism that includes a power source provided outside the vacuum vessel and applies a predetermined bias voltage from the power source to the workpiece via the turntable, and the application mechanism has a holder provided on the turntable to hold the workpiece, the holder being provided on the turntable and including a support member that rotatably supports the workpiece, and an application member that is electrically connected to the turntable and the workpiece supported by the support member and applies the bias voltage to the workpiece supported by the support member.
 上記構成によれば、被処理物についてより均一な処理を確実に行うことができる。 The above configuration ensures that the workpiece is treated more uniformly.
 本開示の第5態様は、第4態様のプラズマ処理装置において、前記真空容器の内部には、前記ホルダーの前記支持部材に接触して、前記ターンテーブルの回転に応じて、前記支持部材を回転させる接触部材が設けられてもよい。 A fifth aspect of the present disclosure is the plasma processing apparatus of the fourth aspect, in which a contact member may be provided inside the vacuum vessel to come into contact with the support member of the holder and rotate the support member in response to the rotation of the turntable.
 上記構成によれば、被処理物についてより均一な処理をより確実に行うことができる。 The above configuration makes it possible to more reliably perform more uniform processing on the workpiece.
 本開示の第6態様は、第4態様または第5態様のいずれかの態様のプラズマ処理装置における、前記真空容器の内部において、前記遮蔽板の前記アンテナとは反対側の領域に配置された冷却板を具備し、当該冷却板を用いて前記被処理物を冷却する冷却機構が設けられてもよい。 A sixth aspect of the present disclosure is a plasma processing apparatus according to either the fourth or fifth aspect, which may include a cooling plate disposed inside the vacuum vessel in an area of the shielding plate opposite the antenna, and a cooling mechanism that uses the cooling plate to cool the workpiece.
 上記構成によれば、より高速に被処理物を冷却することができるため、処理レートをより早くすることができる。 The above configuration allows the workpiece to be cooled more quickly, resulting in a faster processing rate.
 本開示の第7態様は、第6態様のプラズマ処理装置において、前記冷却板は、前記ホルダーと接触してもよい。 In a seventh aspect of the present disclosure, in the plasma processing apparatus of the sixth aspect, the cooling plate may be in contact with the holder.
 上記構成によれば、被処理物を傷つけることなく、確実に冷却することができる。 The above configuration ensures that the workpiece can be cooled without damaging it.
 本開示の第8態様は、第1態様から第7態様のいずれかの態様のプラズマ処理装置において、前記真空容器の内部には、複数の前記被処理物が、前記アンテナが延伸する延伸方向に沿って設けられてもよい。 In an eighth aspect of the present disclosure, in the plasma processing apparatus of any one of the first to seventh aspects, a plurality of the objects to be processed may be provided inside the vacuum vessel along the extension direction of the antenna.
 上記構成によれば、単位時間当たりの被処理物の処理件数を容易に増加することができる。 The above configuration makes it easy to increase the number of objects processed per unit time.
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。 This disclosure is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. Embodiments obtained by appropriately combining the technical means disclosed in different embodiments are also included in the technical scope of this disclosure.
 1 プラズマ処理装置
 2 真空容器
 2c 接触部材
 3 ターンテーブル
 3b 回転軸
 4、14、24 遮蔽板
 4b1、4b2、14b1、24b 通過穴
 5 金属板(高周波窓)
 6 誘電体板(高周波窓)
 7 アンテナ
 W、W0 ワーク(被処理物)
 SM 印加機構
 SM1 電源
 H ホルダー
 H1、H2 支持部材
 H3 印加部材
 CM 冷却機構
 CM1 冷却板
 WR 高周波窓
 PA プラズマ処理領域
 CA 冷却領域

 
REFERENCE SIGNS LIST 1 Plasma processing apparatus 2 Vacuum vessel 2c Contact member 3 Turntable 3b Rotating shaft 4, 14, 24 Shielding plate 4b1, 4b2, 14b1, 24b Passing hole 5 Metal plate (high frequency window)
6. Dielectric plate (high frequency window)
7 Antenna W, W0 Work (processing object)
SM: Voltage application mechanism SM1: Power supply H: Holder H1, H2: Support member H3: Voltage application member CM: Cooling mechanism CM1: Cooling plate WR: High frequency window PA: Plasma processing area CA: Cooling area

Claims (8)

  1.  被処理物を内部に収容する真空容器と、
     前記真空容器の内部にプラズマを発生させる高周波磁場を、前記真空容器の内部に導入させる高周波窓と、
     前記真空容器の外側で前記高周波窓に対向するように設けられて、前記高周波磁場を発生するアンテナと、
     前記被処理物が載置されるとともに、前記真空容器の内部で回転するターンテーブルと、
     前記ターンテーブルの上方、かつ、前記高周波窓に対向するように前記真空容器の内部に設けられて、プラズマを遮蔽して、前記真空容器の内部をプラズマ処理領域と冷却領域とに分割する遮蔽板であって、前記ターンテーブル上に載置された前記被処理物が通過するのを許容する通過穴が形成されている遮蔽板と、を備えている、プラズマ処理装置。
    a vacuum vessel for accommodating an object to be treated therein;
    a high frequency window for introducing a high frequency magnetic field into the vacuum vessel to generate plasma therein;
    an antenna that is provided outside the vacuum vessel so as to face the high frequency window and that generates the high frequency magnetic field;
    a turntable on which the object to be processed is placed and which rotates within the vacuum vessel;
    a shielding plate provided inside the vacuum vessel above the turntable and facing the high-frequency window, shielding the plasma and dividing the inside of the vacuum vessel into a plasma processing region and a cooling region, the shielding plate having a passage hole formed therein to allow the workpiece placed on the turntable to pass through.
  2.  前記真空容器の上面から視認した場合、前記遮蔽板は、その中央部に対して左右対称に、かつ、当該中央部を中心にして左右の各端部が所定の角度で開くように前記真空容器の内部に設けられている、請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the shielding plate is provided inside the vacuum vessel so that, when viewed from above the vacuum vessel, it is symmetrical with respect to its center and each of the left and right ends opens at a predetermined angle with respect to the center.
  3.  前記遮蔽板の電位は、フローティングである、請求項1に記載のプラズマ処理装置。 The plasma processing apparatus of claim 1, wherein the potential of the shielding plate is floating.
  4.  前記真空容器の外部に設けられた電源を具備し、所定のバイアス電圧を当該電源から前記ターンテーブルを介して前記被処理物に印加する印加機構を、さらに備え、
     前記印加機構は、
     前記被処理物を保持するために前記ターンテーブルに設けられたホルダーを有し、
     前記ホルダーは、
      前記ターンテーブルに設けられるとともに、前記被処理物を回転自在に支持する支持部材と、
      前記ターンテーブルと前記支持部材に支持された前記被処理物とに電気的に接続されて、前記支持部材に支持された前記被処理物に前記バイアス電圧を印加する印加部材と、を含む、請求項1に記載のプラズマ処理装置。
    The vacuum chamber further includes a power supply provided outside the vacuum chamber, and an application mechanism for applying a predetermined bias voltage from the power supply to the workpiece via the turntable;
    The application mechanism includes:
    a holder provided on the turntable for holding the workpiece;
    The holder is
    A support member that is provided on the turntable and rotatably supports the object to be processed;
    2. The plasma processing apparatus according to claim 1, further comprising: an application member electrically connected to said turntable and said workpiece supported by said support member, and applying said bias voltage to said workpiece supported by said support member.
  5.  前記真空容器の内部には、前記ホルダーの前記支持部材に接触して、前記ターンテーブルの回転に応じて、前記支持部材を回転させる接触部材が設けられている、請求項4に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 4, wherein a contact member is provided inside the vacuum vessel, the contact member being in contact with the support member of the holder and rotating the support member in response to the rotation of the turntable.
  6.  前記真空容器の内部において、前記遮蔽板の前記アンテナとは反対側の領域に配置された冷却板を具備し、当該冷却板を用いて前記被処理物を冷却する冷却機構が設けられている、請求項4に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 4, further comprising a cooling plate disposed inside the vacuum vessel in an area of the shielding plate opposite the antenna, and a cooling mechanism for cooling the workpiece using the cooling plate.
  7.  前記冷却板は、前記ホルダーと接触する、請求項6に記載のプラズマ処理装置。 The plasma processing apparatus of claim 6, wherein the cooling plate is in contact with the holder.
  8.  前記真空容器の内部には、複数の前記被処理物が、前記アンテナが延伸する延伸方向に沿って設けられている、請求項1から7のいずれか1項に記載のプラズマ処理装置。

     
    The plasma processing apparatus according to claim 1 , wherein a plurality of the objects to be processed are provided inside the vacuum vessel along an extending direction of the antenna.

PCT/JP2023/004383 2023-02-09 2023-02-09 Plasma processing device WO2024166299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/004383 WO2024166299A1 (en) 2023-02-09 2023-02-09 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/004383 WO2024166299A1 (en) 2023-02-09 2023-02-09 Plasma processing device

Publications (1)

Publication Number Publication Date
WO2024166299A1 true WO2024166299A1 (en) 2024-08-15

Family

ID=92262234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004383 WO2024166299A1 (en) 2023-02-09 2023-02-09 Plasma processing device

Country Status (1)

Country Link
WO (1) WO2024166299A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372077A (en) * 1989-08-10 1991-03-27 Anelva Corp Cvd device and cvd method
JPH06204147A (en) * 1992-08-29 1994-07-22 Tokyo Electron Ltd Processing equipment
JP2006093543A (en) * 2004-09-27 2006-04-06 Tokyo Electron Ltd Thermal processing apparatus
JP2009205845A (en) * 2008-02-26 2009-09-10 Nissin Ion Equipment Co Ltd Ion source and ion implanting device
JP2015074792A (en) * 2013-10-07 2015-04-20 株式会社Screenホールディングス Plasma cvd device
JP2020132906A (en) * 2019-02-14 2020-08-31 Towa株式会社 Manufacturing method of film-formed product, and sputtering device
JP2022180370A (en) * 2017-03-31 2022-12-06 芝浦メカトロニクス株式会社 Plasma processing apparatus
JP2023004296A (en) * 2021-06-25 2023-01-17 日新電機株式会社 Film removal device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372077A (en) * 1989-08-10 1991-03-27 Anelva Corp Cvd device and cvd method
JPH06204147A (en) * 1992-08-29 1994-07-22 Tokyo Electron Ltd Processing equipment
JP2006093543A (en) * 2004-09-27 2006-04-06 Tokyo Electron Ltd Thermal processing apparatus
JP2009205845A (en) * 2008-02-26 2009-09-10 Nissin Ion Equipment Co Ltd Ion source and ion implanting device
JP2015074792A (en) * 2013-10-07 2015-04-20 株式会社Screenホールディングス Plasma cvd device
JP2022180370A (en) * 2017-03-31 2022-12-06 芝浦メカトロニクス株式会社 Plasma processing apparatus
JP2020132906A (en) * 2019-02-14 2020-08-31 Towa株式会社 Manufacturing method of film-formed product, and sputtering device
JP2023004296A (en) * 2021-06-25 2023-01-17 日新電機株式会社 Film removal device

Similar Documents

Publication Publication Date Title
JP4812991B2 (en) Plasma processing equipment
US5431769A (en) Method and system for plasma treatment
US20110232846A1 (en) Magnetic field generator for magnetron plasma
KR100754370B1 (en) Neutral particle beam generating apparatus with increased neutral particle flux
JPH11340149A (en) System and method for plasma treatment
WO2017183506A1 (en) Plasma treatment device
WO2024166299A1 (en) Plasma processing device
KR102050631B1 (en) Method and processing apparatus for performing pre-treatment to form copper wiring in recess formed in substrate
JP6126302B2 (en) Deposition equipment
US3707452A (en) Elongated electrode and target arrangement for an re sputtering apparatus and method of sputtering
KR102371334B1 (en) Film-forming method and film-forming apparatus
WO2024180578A1 (en) Plasma processing device
JP2023004296A (en) Film removal device
JP6955983B2 (en) Board processing equipment
US6490993B2 (en) Rotating device for plasma immersion supported treatment of substrates
WO2022030189A1 (en) Surface treatment apparatus and surface treatment method
KR102079595B1 (en) Multi rotation type plasma generating apparatus
JP2000150487A (en) Plasma treatment method
TWI844252B (en) Plasma treatment equipment
WO2016009779A1 (en) Plasma processing device and plasma processing method using said plasma processing device
KR20180019201A (en) Vacuum arc deposition apparatus and deposition method
JP4437347B2 (en) Pretreatment etching apparatus and thin film forming apparatus
US10541142B2 (en) Maintenance method of plasma processing apparatus
WO2024166297A1 (en) Plasma treatment device
KR102217160B1 (en) Apparatus and method for treating substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23921130

Country of ref document: EP

Kind code of ref document: A1