[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024166241A1 - Liquid hydrogen storage equipment, floating structure, and inter-tank gas supply method for multi-shell tank - Google Patents

Liquid hydrogen storage equipment, floating structure, and inter-tank gas supply method for multi-shell tank Download PDF

Info

Publication number
WO2024166241A1
WO2024166241A1 PCT/JP2023/004137 JP2023004137W WO2024166241A1 WO 2024166241 A1 WO2024166241 A1 WO 2024166241A1 JP 2023004137 W JP2023004137 W JP 2023004137W WO 2024166241 A1 WO2024166241 A1 WO 2024166241A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
tank
boil
liquid hydrogen
inter
Prior art date
Application number
PCT/JP2023/004137
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 武田
貴志 下垣
晴彦 冨永
祐紀 木村
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to PCT/JP2023/004137 priority Critical patent/WO2024166241A1/en
Publication of WO2024166241A1 publication Critical patent/WO2024166241A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels

Definitions

  • This disclosure relates to a liquid hydrogen storage facility equipped with a multi-shell tank for storing liquid hydrogen.
  • Liquid hydrogen carriers equipped with liquid hydrogen storage equipment are known.
  • the liquid hydrogen storage equipment includes a liquid hydrogen tank that contains liquid hydrogen, and loading and unloading equipment for lifting and unloading liquid hydrogen into the liquid hydrogen tank.
  • Liquid hydrogen tanks are required to have high thermal insulation properties, and a multi-shell tank that has an inner tank, an outer tank surrounding the inner tank, and a thermal insulation layer disposed between the inner tank and the outer tank is known as such a liquid hydrogen tank.
  • Patent Document 1 discloses this type of multi-shell tank.
  • the multi-shell tank of Patent Document 1 comprises an inner tank that contains liquefied gas, and an outer tank that contains the inner tank. Between the inner and outer tanks, a heat insulating material is placed to cover the outer surface of the inner tank. In addition, boil-off gas discharged from the top of the inner tank is supplied between the inner and outer tanks, and the space between the tanks is filled with boil-off gas produced by vaporization of the liquefied gas.
  • the minimum gas temperature that can be stored inside the inner tank is different from that between the inner and outer tanks.
  • the inner tank has the low-temperature resistance to store low-temperature liquefied gas and its boil-off gas.
  • the low-temperature resistance of the insulation material placed between the inner and outer tanks is lower than that of the inner tank. Therefore, if the boil-off gas generated in the inner tank is directly supplied between the inner and outer tanks and the low-temperature boil-off gas comes into contact with the insulation material, there is a risk that the insulation material will freeze and be altered.
  • This disclosure has been made in consideration of the above circumstances, and its purpose is to supply boil-off gas of liquid hydrogen between the inner and outer vessels in a multi-shell tank having an inner vessel that contains liquid hydrogen, an outer vessel that surrounds the inner vessel, and a thermal insulation layer disposed between the inner and outer vessels without damaging the thermal insulation layer.
  • a liquid hydrogen storage facility comprises: a multi-shell tank having an inner vessel for accommodating liquid hydrogen, an outer vessel surrounding the inner vessel, and a thermal barrier disposed between the inner vessel and the outer vessel; a BOG line connected to the inner vessel through which boil-off gas of the liquid hydrogen generated in the inner vessel flows; A heat exchanger for heating the boil-off gas; an inter-tank gas supply line for supplying the heated boil-off gas between the inner and outer tanks of the multi-shell tank; and a compressor that pressure-transfers the heated boil-off gas to the inter-tank gas supply line.
  • a floating structure comprises a hull and the liquid hydrogen storage facility mounted on the hull.
  • a method for supplying gas between tanks in a multi-shell tank includes the steps of: 1.
  • boil-off gas of liquid hydrogen can be supplied between the inner and outer tanks without damaging the thermal insulation layer.
  • FIG. 1 is a diagram showing a schematic configuration of a liquid hydrogen storage facility according to one embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a liquid hydrogen storage facility according to the first modification.
  • FIG. 3 is a diagram showing a liquid hydrogen storage facility according to the second modification.
  • FIG. 1 is a diagram showing a schematic configuration of a liquid hydrogen storage facility 1 according to one embodiment of the present disclosure.
  • the liquid hydrogen storage facility 1 according to one embodiment of the present disclosure includes a multi-shell tank 2 for storing liquid hydrogen, and piping and equipment for receiving liquid hydrogen supplied from outside the liquid hydrogen storage facility 1 into the multi-shell tank 2, storing liquid hydrogen in the multi-shell tank 2, and supplying liquid hydrogen stored in the multi-shell tank 2 to the outside of the liquid hydrogen storage facility 1.
  • the liquid hydrogen storage facility 1 according to this embodiment is installed in the hull 11 of a floating structure 100.
  • the floating structure 100 may include a ship or a floating structure floating on the sea.
  • the liquid hydrogen storage facility 1 is not limited to the floating structure 100, and may be installed on land.
  • the multi-shell tank 2 is connected to a BOG line 3, an inter-tank gas supply line 6, and a cargo liquid line 7.
  • the BOG line 3 is connected in parallel to a cargo gas line 4 and a fuel supply line 5.
  • the cargo gas line 4 and the fuel supply line 5 are gas transport lines that transport boil-off gas B to the outside of the liquid hydrogen storage facility 1.
  • the inter-tank gas supply line 6 is connected in parallel to the cargo gas line 4 and the fuel supply line 5.
  • the multi-shell tank 2 comprises an inner tank 21 and an outer tank 22 surrounding the inner tank 21.
  • the inner tank 21 and the outer tank 22 are spaced apart in the radial direction of the multi-shell tank 2, and a thermal barrier layer 24 is provided between the inner and outer tanks 23.
  • the thermal barrier layer 24 is not particularly limited, but may be composed of an insulating panel that covers the surface of the inner tank 21, or a thermal insulating material filled between the inner and outer tanks 23.
  • the inner tank 21 contains cryogenic liquid hydrogen.
  • the space between the inner and outer tanks 23 is filled with boil-off gas of the liquid hydrogen generated in the inner tank 21.
  • the multi-shell tank 2 is equipped with a pressure sensor 25 that detects the pressure between the inner and outer tanks 23.
  • the loading liquid line 7 is composed of piping that connects the inside of the inner tank 21 to the manifold 8. Liquid hydrogen L flows through the loading liquid line 7, which is supplied to the inner tank 21 from outside the liquid hydrogen storage facility 1 during loading and unloading, and is discharged from the inner tank 21 to the outside.
  • the manifold 8 is the connection between the loading liquid line 7 equipped in the liquid hydrogen storage facility 1 and the piping outside the liquid hydrogen storage facility 1.
  • the BOG line 3 is connected to the gas phase portion of the inner tank 21 (e.g., the top of the inner tank 21) and is composed of piping extending from the inner tank 21 to the outside of the multi-shell tank 2.
  • Boil-off gas B of liquid hydrogen generated in the inner tank 21 of the multi-shell tank 2 flows out of the BOG line 3.
  • the BOG line 3 is not limited to boil-off gas B, and purge gas or cooling gas may also flow.
  • the piping may be configured so that the BOG lines 3 connected to each multi-shell tank 2 merge into a single BOG line 3.
  • the loading gas line 4 is composed of piping etc. connecting the BOG line 3 and the manifold 8.
  • the loading gas line 4 forcibly sends a part of the boil-off gas B flowing through the BOG line 3 to the outside of the liquid hydrogen storage facility 1 via the manifold 8 during loading etc.
  • the loading gas line 4 may be used to discharge gas from the inner tank 21 for forced cooling or purging of the inner tank 21.
  • the loading gas line 4 is provided with a flow control valve 41 for controlling the flow rate of the boil-off gas B passing through the loading gas line 4, a heat exchanger 42 arranged downstream of the flow control valve 41, and a compressor 43 arranged downstream of the heat exchanger 42.
  • the boil-off gas B flows from the BOG line 3 into the loading gas line 4.
  • the boil-off gas B that flows into the cargo gas line 4 is heated in the heat exchanger 42 and then flows into the compressor 43, which then pressurizes and sends it to the outside via the manifold 8.
  • the boil-off gas B that flows into the cargo gas line 4 may also flow into the compressor 43 without passing through the heat exchanger 42 or without being heated by the heat exchanger 42, and then pressurized and sent to the outside via the manifold 8.
  • the fuel supply line 5 is composed of piping etc. that connects the BOG line 3 and the fuel consuming equipment 9.
  • the fuel supply line 5 sends a portion of the boil-off gas B flowing through the BOG line 3 to the fuel consuming equipment 9 arranged outside the liquid hydrogen storage facility 1.
  • the fuel supply line 5 is provided with a flow control valve 51 that adjusts the flow rate of the boil-off gas B flowing through the fuel supply line 5, a heat exchanger 52 arranged downstream of the flow control valve 51, and a compressor 53 arranged downstream of the heat exchanger 52. When the heat exchanger 52 and the compressor 53 are operating and the flow control valve 51 is opened, the boil-off gas B flows from the BOG line 3 into the fuel supply line 5.
  • the boil-off gas B that flows into the fuel supply line 5 is heated by the heat exchanger 52 and then flows into the compressor 53, where it is pumped to the fuel consuming equipment 9 by the compressor 53.
  • the boil-off gas B that flows into the fuel supply line 5 may flow into the compressor 53 without passing through the heat exchanger 52 or being heated by the heat exchanger 52, and may be pumped to the fuel consuming device 9.
  • a branch pipe is provided that branches from the main pipe 60 to the inner and outer tank gaps 23 of the multiple multi-shell tanks 2, and the inter-tank gas G is supplied to the inner and outer tank gaps 23 of each multi-shell tank 2 through the main pipe 60 and the branch pipe.
  • the first pipe 61 is provided with a first flow control valve 63 for controlling the flow rate of the boil-off gas B flowing from the cargo handling gas line 4 into the first pipe 61.
  • the first flow control valve 63 is normally closed, and when the first flow control valve 63 is opened, a part of the boil-off gas B flowing through the cargo handling gas line 4 flows into the first pipe 61 (i.e., the inter-tank gas supply line 6).
  • the connection part 47 to which the first pipe 61 is connected is arranged downstream of the heat exchanger 42 of the cargo handling gas line 4, so that the boil-off gas B heated by the heat exchanger 42 flows into the first pipe 61.
  • the cargo handling gas line 4 may be provided with a plurality of heat exchangers 42 and compressors 43.
  • the connection part 47 may be arranged downstream of at least one heat exchanger 42 or downstream of at least one compressor 43.
  • a temperature regulator 48 may be disposed downstream of the first flow control valve 63 in the first pipe 61.
  • the intertank gas set temperature which is a suitable temperature for the intertank gas G
  • the boil-off gas B is heated by this temperature regulator 48 until it reaches the intertank gas set temperature.
  • the intertank gas set temperature is the lowest temperature at which the thermal insulation layer 24 disposed between the inner and outer tanks 23 of the multi-shell tank 2 does not deteriorate.
  • the intertank gas set temperature varies depending on the structure of the multi-shell tank 2 and the type of insulation material constituting the thermal insulation layer 24.
  • the second pipe 62 is provided with a second flow control valve 64 for controlling the flow rate of the boil-off gas B flowing from the fuel supply line 5 into the second pipe 62.
  • the second flow control valve 64 is normally closed, and when the second flow control valve 64 is opened, a part of the boil-off gas B flowing through the fuel supply line 5 flows into the second pipe 62 (i.e., the inter-tank gas supply line 6).
  • the connection part 57 to which the second pipe 62 is connected is disposed downstream of the heat exchanger 52 of the fuel supply line 5, so that the boil-off gas B heated by the heat exchanger 52 flows into the second pipe 62.
  • the fuel supply line 5 may be provided with a plurality of heat exchangers 52 and compressors 53.
  • the connection part 57 may be disposed downstream of at least one heat exchanger 52 or downstream of at least one compressor 53.
  • a temperature regulator 58 may be disposed downstream of the second flow control valve 64 in the second piping 62.
  • the temperature regulator 58 heats the boil-off gas B until it reaches the inter-tank gas set temperature.
  • the flow control valve 41, heat exchanger 42, and compressor 43 of the cargo gas line 4, the flow control valve 51, heat exchanger 52, and compressor 53 of the fuel supply line 5, and the first flow control valve 63 and second flow control valve 64 of the inter-tank gas supply line 6 are arranged in an equipment room 10 provided in the hull 11.
  • the equipment room 10 is a space called the "cargo machinery space" in the classification regulations, and mainly contains cargo equipment.
  • the equipment room 10 is isolated from the living area and work area, and the electrical equipment arranged therein is explosion-proof.
  • the inter-vessel gas G is supplied to the inner and outer vessel gap 23 mainly during initial cooling of the multi-shell tank 2, during loading and unloading, and during the voyage. It is preferable that the inter-vessel pressure between the inner and outer vessels 23 of the multi-shell tank 2 is maintained at a predetermined set inter-vessel pressure while liquid hydrogen is stored in the inner vessel 21.
  • the set inter-vessel pressure differs depending on the configuration of the multi-shell tank 2.
  • the flow control valve 51 and the second flow control valve 64 are opened, the heat exchanger 52 and the compressor 53 are operated, and the remaining boil-off gas B is heated by the heat exchanger 52 of the fuel supply line 5 and then supplied to the space between the inner and outer tanks 23 of the multi-shell tank 2 through the inter-tank gas supply line 6. In this way, the pressure between the inner and outer tanks 23 is restored by the boil-off gas B (i.e., the inter-tank gas G) supplied to the space between the inner and outer tanks 23.
  • the boil-off gas B i.e., the inter-tank gas G
  • the inner and outer tank space 23 is cooled, and the intertank pressure detected by the pressure sensor 25 falls below the set intertank pressure, the flow rate control valve 51 and the second flow rate control valve 64 are opened, and the heat exchanger 52 and the compressor 53 are operated.
  • the intertank gas G which is a part of the boil-off gas B heated through the fuel supply line 5 and the intertank gas supply line 6, is supplied to the inner and outer tank space 23 of the multi-shell tank 2, and the intertank pressure between the inner and outer tanks 23 of the multi-shell tank 2 is restored to the set intertank pressure.
  • the first flow control valve 63 and the second flow control valve 64 of the inter-vessel gas supply line 6 are usually closed.
  • the flow control valve 41 and the first flow control valve 63 are opened, and the heat exchanger 42 and the compressor 43 are operated, so that a part of the boil-off gas B is heated through the loading gas line 4 and the intertank gas supply line 6, and the heated intertank gas G is supplied to the inner and outer tank gap 23 of the multi-shell tank 2.
  • the intertank pressure between the inner and outer tanks 23 of the multi-shell tank 2 is restored to the set intertank pressure.
  • the inter-tank gas G supplied between the inner and outer tanks 23 is heated by the heat exchangers 42, 52 and is therefore at a higher temperature than the boil-off gas B in the inner tank 21.
  • the inter-tank gas G supplied between the inner and outer tanks 23 only needs to be at a higher temperature than the boil-off gas B in the inner tank 21 of the multi-shell tank 2, but it is preferable that the boil-off gas B be heated by the heat exchangers 42, 52 and an additional heat exchanger to a level at which freezing and deterioration of the thermal insulation layer 24 can be suppressed. This makes it possible to suppress freezing and deterioration of the thermal insulation layer 24 arranged between the inner and outer tanks 23.
  • the one of the loading gas line 4 and the fuel supply line 5, which is not in operation is selectively connected to the inter-tank gas supply line 6.
  • This allows the boil-off gas B to be supplied to the space between the inner and outer tanks 23 without impeding the flow of the boil-off gas B in the operating line.
  • the boil-off gas B can be supplied to the space between the inner and outer tanks 23 at a temperature different from that of the operating line.
  • the one of the loading gas line 4 and the fuel supply line 5, which is in operation may be selectively connected to the inter-tank gas supply line 6. This eliminates the need to start up the heat exchangers 42, 52 and compressors 43, 53 just to supply the inter-tank gas G to the space between the inner and outer tanks 23, improving work efficiency.
  • the opening/closing and opening adjustment of the heat exchangers 42, 52, compressors 43, 53, and each valve 41, 51, 63, 64 may be performed manually or automatically.
  • the opening/closing and opening adjustment of the first flow control valve 63 and the second flow control valve 64 are performed automatically, as shown in FIG. 3, the liquid hydrogen storage facility 1 is provided with a controller 26 electrically connected to the pressure sensor 25, the first flow control valve 63, and the second flow control valve 64.
  • the controller 26 opens/closes and adjusts the opening of the first flow control valve 63 and the second flow control valve 64 so that the boil-off gas B is supplied to the inner and outer tanks 23 until the pressure between the inner and outer tanks 23 reaches the set inter-tank pressure.
  • the liquid hydrogen storage facility 1 comprises: a multi-shell tank 2 having an inner vessel 21 for accommodating liquid hydrogen, an outer vessel 22 surrounding the inner vessel 21, and a thermal barrier layer 24 disposed in an inner/outer vessel gap 23 between the inner vessel 21 and the outer vessel 22; a BOG line 3 connected to the inner vessel 21, through which the boil-off gas B of the liquid hydrogen generated in the inner vessel 21 flows; a heat exchanger 42, 52 for heating the boil-off gas B; an inter-vessel gas supply line 6 for supplying the heated boil-off gas B to the space between the inner and outer vessels 23 of the multi-shell tank 2; and compressors 43, 53 for compressing and sending the heated boil-off gas B to the inter-tank gas supply line 6.
  • the boil-off gas B of liquid hydrogen generated in the inner tank 21 of the multi-shell tank 2 is not directly supplied to the space between the inner and outer tanks 23, but is heated in the heat exchangers 42, 52 and then supplied to the space between the inner and outer tanks 23.
  • the boil-off gas B flowing into the space between the inner and outer tanks 23 is at a higher temperature than the boil-off gas B in the inner tank 21, which prevents the heat insulation layer 24 arranged between the inner and outer tanks 23 from freezing or deteriorating.
  • the liquid hydrogen storage facility 1 according to the second aspect of the present disclosure is the liquid hydrogen storage facility 1 according to the first aspect, A gas transport line 4; 5 having a heat exchanger 42; 52 and a compressor 43: 53, and sending the boil-off gas B to the outside of the liquid hydrogen storage facility 1, A BOG line 3 is connected to the gas transport line 4; 5 upstream of the heat exchanger 42; 52 and the compressor 43: 53, An inter-tank gas supply line 6 is connected to the gas transport lines 4; 5 downstream of the heat exchangers 42; 52 and compressors 43: 53.
  • the outside of the liquid hydrogen storage equipment 1 may be equipment other than the liquid hydrogen storage equipment 1 on the ship, for example, in the case where the liquid hydrogen storage equipment 1 is installed on a ship.
  • the gas transport lines 4 and 5 used to send the boil-off gas B to the outside of the liquid hydrogen storage equipment 1 are also used to supply the inter-tank gas G to the space between the inner and outer tanks 23. Therefore, a dedicated compressor or heat exchanger can be omitted for supplying the inter-tank gas G to the space between the inner and outer tanks 23.
  • the liquid hydrogen storage equipment 1 according to the third item of the present disclosure is the liquid hydrogen storage equipment 1 according to the second item, in which the gas transport lines 4;5 include a first gas transport line 4 and a second gas transport line 5 connected in parallel to the BOG line 3 and the inter-tank gas supply line 6, and are configured such that when the first gas transport line 4 is connected to the outside and boil-off gas B is sent to the outside through the first gas transport line 4, the second gas transport line 5 is connected to the space between the inner and outer tanks 23 and boil-off gas B is sent to the space between the inner and outer tanks 23 through the second gas transport line 5 and the inter-tank gas supply line 6.
  • the gas transport lines 4;5 include a first gas transport line 4 and a second gas transport line 5 connected in parallel to the BOG line 3 and the inter-tank gas supply line 6, and are configured such that when the first gas transport line 4 is connected to the outside and boil-off gas B is sent to the outside through the first gas transport line 4, the second gas transport line 5 is connected to the space between the inner and
  • the boil-off gas B can be heated and sent to the space between the inner and outer tanks 23 using the second gas transfer line 5.
  • the boil-off gas B can be heated to a first temperature and sent to the outside using the first gas transfer line 4 while the boil-off gas B is being heated to a first temperature and sent to the outside using the first gas transfer line 4, the boil-off gas B can be heated to a second temperature and sent to the space between the inner and outer tanks 23 using the second gas transfer line 5.
  • the heat exchanger 42 and compressor 43 of the loading gas line 4 can be used to supply boil-off gas B to the space between the inner and outer tanks 23 of the multi-shell tank 2.
  • the heat exchanger 52 and compressor 53 of the fuel supply line 5 can be used to supply the boil-off gas B to the space between the inner and outer tanks 23 of the multi-shell tank 2.
  • the pressure between the inner and outer tanks 23 of the multi-shell tank 2 is automatically maintained at the set inter-tank pressure.
  • the liquid hydrogen storage equipment 1 according to the eighth item of the present disclosure is a liquid hydrogen storage equipment 1 according to any one of the first to seventh items, which has a plurality of multi-shell tanks 2, and the inter-tank gas supply line 6 branches out and is connected to each of the inner and outer tanks 23 of the plurality of multi-shell tanks 2.
  • inter-tank gas G is supplied from a single inter-tank gas supply line 6 to the inner and outer tanks 23 of multiple multi-shell tanks 2, which reduces the amount of piping and equipment compared to when an inter-tank gas supply line 6 is provided for each of the multi-shell tanks 2.
  • the floating structure 100 according to the ninth item of the present disclosure comprises a hull 11 and a liquid hydrogen storage facility 1 according to any one of the first to eighth items mounted on the hull 11.
  • the liquid hydrogen storage facility 1 configured as described above is suitable as a liquid hydrogen storage facility 1 to be mounted on a floating structure 100.
  • the boil-off gas B of liquid hydrogen generated in the inner tank 21 of the multi-shell tank 2 is not directly supplied to the tank between the inner and outer tanks 23, but is heated in the heat exchangers 42, 52 and then supplied to the tank between the inner and outer tanks 23.
  • the boil-off gas B flowing into the tank between the inner and outer tanks 23 has a higher temperature than the boil-off gas B in the inner tank 21, which prevents the heat insulation layer 24 arranged between the inner and outer tanks 23 from freezing or deteriorating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Liquid hydrogen storage equipment comprising: a multi-shell tank having an inner tank containing liquid hydrogen, an outer tank surrounding the inner tank, and a heat insulation layer disposed between the inner and outer tanks; a BOG line which is connected to the inner tank and from which boil-off gas of liquid hydrogen generated in the inner tank flows out; a heat exchanger that heats the boil-off gas; an inter-tank gas supply line for supplying the heated boil-off gas between the inner and outer tanks of the multi-shell tank; and a compressor that pressure-feeds the heated boil-off gas to the inter-tank gas supply line.

Description

液体水素貯蔵設備、浮体構造物、及び多重殻タンクの槽間ガス供給方法Liquid hydrogen storage facility, floating structure, and method for supplying gas between tanks of multi-shell tank
 本開示は、液体水素を貯蔵する多重殻タンクを備えた液体水素貯蔵設備に関する。 This disclosure relates to a liquid hydrogen storage facility equipped with a multi-shell tank for storing liquid hydrogen.
 液体水素貯蔵設備を搭載した液体水素運搬船が知られている。液体水素貯蔵設備は、液体水素を収容する液体水素タンクや、液体水素タンクへ液体水素を揚げ下ろしするための荷役機器などを含む。液体水素タンクには高い防熱性が要求され、このような液体水素タンクとして、内槽と、内槽を囲む外槽と、内槽と外槽の槽間に配置された防熱層を備える多重殻タンクが知られている。例えば、特許文献1は、この種の多重殻タンクを開示する。 Liquid hydrogen carriers equipped with liquid hydrogen storage equipment are known. The liquid hydrogen storage equipment includes a liquid hydrogen tank that contains liquid hydrogen, and loading and unloading equipment for lifting and unloading liquid hydrogen into the liquid hydrogen tank. Liquid hydrogen tanks are required to have high thermal insulation properties, and a multi-shell tank that has an inner tank, an outer tank surrounding the inner tank, and a thermal insulation layer disposed between the inner tank and the outer tank is known as such a liquid hydrogen tank. For example, Patent Document 1 discloses this type of multi-shell tank.
 特許文献1の多重殻タンクは、液化ガスを収容する内槽と、内槽を収容する外槽とを備える。内槽と外槽の槽間には、内槽の外表面を覆う断熱材が配置されている。また、内槽の頂部から排出されたボイルオフガスが内槽と外槽の槽間へ供給され、槽間は液化ガスの気化により生じたボイルオフガスで満たされている。 The multi-shell tank of Patent Document 1 comprises an inner tank that contains liquefied gas, and an outer tank that contains the inner tank. Between the inner and outer tanks, a heat insulating material is placed to cover the outer surface of the inner tank. In addition, boil-off gas discharged from the top of the inner tank is supplied between the inner and outer tanks, and the space between the tanks is filled with boil-off gas produced by vaporization of the liquefied gas.
国際公開WO2020/202578号International Publication No. WO2020/202578
 上記のような多重殻タンクでは、内槽内と内外槽間では貯留可能な最低ガス温度が異なる。内槽は、低温の液化ガス及びそのボイルオフガスを貯溜可能な耐低温性を備える。一方、内外槽間に配置された断熱材が備える耐低温性は、内槽が備える耐低温性よりも低い。よって、内槽で生じたボイルオフガスが直接的に内外槽間へ供給されて、低温のボイルオフガスと断熱材が接触すると断熱材が凍って変質するおそれがある。 In a multi-shell tank like the one described above, the minimum gas temperature that can be stored inside the inner tank is different from that between the inner and outer tanks. The inner tank has the low-temperature resistance to store low-temperature liquefied gas and its boil-off gas. On the other hand, the low-temperature resistance of the insulation material placed between the inner and outer tanks is lower than that of the inner tank. Therefore, if the boil-off gas generated in the inner tank is directly supplied between the inner and outer tanks and the low-temperature boil-off gas comes into contact with the insulation material, there is a risk that the insulation material will freeze and be altered.
 本開示は以上の事情に鑑みてなされたものであり、その目的は、液体水素を収容する内槽と、内槽を囲む外槽と、内槽と外槽の間の内外槽間に配置された防熱層とを備える多重殻タンクにおいて、防熱層を損なうことなく内槽と外槽の間の内外槽間へ液体水素のボイルオフガスを供給することにある。 This disclosure has been made in consideration of the above circumstances, and its purpose is to supply boil-off gas of liquid hydrogen between the inner and outer vessels in a multi-shell tank having an inner vessel that contains liquid hydrogen, an outer vessel that surrounds the inner vessel, and a thermal insulation layer disposed between the inner and outer vessels without damaging the thermal insulation layer.
 上記課題を解決するために、本開示の一態様に係る液体水素貯蔵設備は、
液体水素を収容する内槽、前記内槽を囲む外槽、及び、前記内槽と前記外槽の間の内外槽間に配置された防熱層とを有する多重殻タンクと、
前記内槽と接続されて、前記内槽内で生じた前記液体水素のボイルオフガスが流れ出るBOGラインと、
前記ボイルオフガスを加温する熱交換器と、
加温された前記ボイルオフガスを前記多重殻タンクの前記内外槽間へ供給する槽間ガス供給ラインと、
加温された前記ボイルオフガスを前記槽間ガス供給ラインへ圧送する圧縮機と、を備えるものである。
In order to solve the above problems, a liquid hydrogen storage facility according to one embodiment of the present disclosure comprises:
a multi-shell tank having an inner vessel for accommodating liquid hydrogen, an outer vessel surrounding the inner vessel, and a thermal barrier disposed between the inner vessel and the outer vessel;
a BOG line connected to the inner vessel through which boil-off gas of the liquid hydrogen generated in the inner vessel flows;
A heat exchanger for heating the boil-off gas;
an inter-tank gas supply line for supplying the heated boil-off gas between the inner and outer tanks of the multi-shell tank;
and a compressor that pressure-transfers the heated boil-off gas to the inter-tank gas supply line.
 本開示の一態様に係る浮体構造物は、船体と、前記船体に搭載された前記液体水素貯蔵設備とを備えるものである。 A floating structure according to one embodiment of the present disclosure comprises a hull and the liquid hydrogen storage facility mounted on the hull.
 また、本開示の一態様に係る多重殻タンクの槽間ガス供給方法は、
液体水素を収容する内槽、前記内槽を囲む外槽、及び、前記内槽と前記外槽の間の内外槽間に配置された防熱層とを有する多重殻タンクにおいて、前記内外槽間へ槽間ガスを供給する方法であって、
前記内槽で生じた前記液体水素のボイルオフガスを前記内槽から取り出し、
取り出した前記ボイルオフガスを熱交換器で加温し、
加温された前記ボイルオフガスを前記内外槽間へ圧縮機で圧送するものである。
In addition, a method for supplying gas between tanks in a multi-shell tank according to an embodiment of the present disclosure includes the steps of:
1. A method for supplying an inter-vessel gas between an inner and outer vessel in a multi-shell tank having an inner vessel for accommodating liquid hydrogen, an outer vessel surrounding the inner vessel, and a thermal insulation layer disposed between the inner vessel and the outer vessel, comprising:
The boil-off gas of the liquid hydrogen produced in the inner vessel is removed from the inner vessel;
The extracted boil-off gas is heated in a heat exchanger,
The heated boil-off gas is pressure-transported between the inner and outer vessels by a compressor.
 本開示によれば、液体水素を収容する内槽と、内槽を囲む外槽と、内槽と外槽の間の内外槽間に配置された防熱層とを備える多重殻タンクにおいて、防熱層を損なうことなく内槽と外槽の間の内外槽間へ液体水素のボイルオフガスを供給できる。 According to the present disclosure, in a multi-shell tank having an inner tank that contains liquid hydrogen, an outer tank that surrounds the inner tank, and a thermal insulation layer disposed between the inner and outer tanks, boil-off gas of liquid hydrogen can be supplied between the inner and outer tanks without damaging the thermal insulation layer.
図1は、本開示の一態様に係る液体水素貯蔵設備の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a liquid hydrogen storage facility according to one embodiment of the present disclosure. 図2は、変形例1に係る液体水素貯蔵設備を示す図である。FIG. 2 is a diagram showing a liquid hydrogen storage facility according to the first modification. 図3は、変形例2に係る液体水素貯蔵設備を示す図である。FIG. 3 is a diagram showing a liquid hydrogen storage facility according to the second modification.
 次に、図面を参照して本開示の実施の形態を説明する。図1は本開示の一態様に係る液体水素貯蔵設備1の概略構成を示す図である。図1に示すように、本開示の一態様に係る液体水素貯蔵設備1は、液体水素を貯蔵する多重殻タンク2と、液体水素貯蔵設備1の外部から供給される液体水素を多重殻タンク2へ受け入れたり、多重殻タンク2に液体水素を貯蔵したり、多重殻タンク2に貯蔵されている液体水素を液体水素貯蔵設備1の外部へ供給したりするための配管及び機器とを備える。本実施形態に係る液体水素貯蔵設備1は、浮体構造物100の船体11に設置されている。浮体構造物100には、船舶や、海上に浮遊する浮遊構造物が含まれ得る。但し、液体水素貯蔵設備1は、浮体構造物100に限定されず、陸上に設置されてもよい。 Next, an embodiment of the present disclosure will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a liquid hydrogen storage facility 1 according to one embodiment of the present disclosure. As shown in FIG. 1, the liquid hydrogen storage facility 1 according to one embodiment of the present disclosure includes a multi-shell tank 2 for storing liquid hydrogen, and piping and equipment for receiving liquid hydrogen supplied from outside the liquid hydrogen storage facility 1 into the multi-shell tank 2, storing liquid hydrogen in the multi-shell tank 2, and supplying liquid hydrogen stored in the multi-shell tank 2 to the outside of the liquid hydrogen storage facility 1. The liquid hydrogen storage facility 1 according to this embodiment is installed in the hull 11 of a floating structure 100. The floating structure 100 may include a ship or a floating structure floating on the sea. However, the liquid hydrogen storage facility 1 is not limited to the floating structure 100, and may be installed on land.
 多重殻タンク2には、BOGライン3、槽間ガス供給ライン6及び荷役用液ライン7の各々が接続されている。また、BOGライン3には、荷役用ガスライン4及び燃料供給ライン5が並列に接続されている。荷役用ガスライン4及び燃料供給ライン5は、液体水素貯蔵設備1の外部へボイルオフガスBを搬送するガス搬送ラインである。槽間ガス供給ライン6には、荷役用ガスライン4及び燃料供給ライン5が並列に接続されている。 The multi-shell tank 2 is connected to a BOG line 3, an inter-tank gas supply line 6, and a cargo liquid line 7. The BOG line 3 is connected in parallel to a cargo gas line 4 and a fuel supply line 5. The cargo gas line 4 and the fuel supply line 5 are gas transport lines that transport boil-off gas B to the outside of the liquid hydrogen storage facility 1. The inter-tank gas supply line 6 is connected in parallel to the cargo gas line 4 and the fuel supply line 5.
 多重殻タンク2は、内槽21と、内槽21を囲む外槽22とを備える。内槽21と外槽22は、多重殻タンク2の径方向に離間しており、内槽21と外槽22の内外槽間23には防熱層24が設けられている。防熱層24は、特に限定されないが、内槽21の表面を被覆する断熱パネルや、内外槽間23に充填された断熱材で構成されていてよい。 The multi-shell tank 2 comprises an inner tank 21 and an outer tank 22 surrounding the inner tank 21. The inner tank 21 and the outer tank 22 are spaced apart in the radial direction of the multi-shell tank 2, and a thermal barrier layer 24 is provided between the inner and outer tanks 23. The thermal barrier layer 24 is not particularly limited, but may be composed of an insulating panel that covers the surface of the inner tank 21, or a thermal insulating material filled between the inner and outer tanks 23.
 内槽21には極低温の液体水素が収容される。内外槽間23には、内槽21において発生した液体水素のボイルオフガスが充填されている。多重殻タンク2には、内外槽間23の槽間圧力を検出する圧力センサ25が設けられている。 The inner tank 21 contains cryogenic liquid hydrogen. The space between the inner and outer tanks 23 is filled with boil-off gas of the liquid hydrogen generated in the inner tank 21. The multi-shell tank 2 is equipped with a pressure sensor 25 that detects the pressure between the inner and outer tanks 23.
 荷役用液ライン7は、内槽21の内部とマニホールド8とを接続する配管で構成されている。荷役用液ライン7には、荷役時に液体水素貯蔵設備1の外部から内槽21へ供給されたり、内槽21から外部へ送出されたりする液体水素Lが流れる。マニホールド8は、液体水素貯蔵設備1が具備する荷役用液ライン7と、液体水素貯蔵設備1の外部の配管との接続部である。 The loading liquid line 7 is composed of piping that connects the inside of the inner tank 21 to the manifold 8. Liquid hydrogen L flows through the loading liquid line 7, which is supplied to the inner tank 21 from outside the liquid hydrogen storage facility 1 during loading and unloading, and is discharged from the inner tank 21 to the outside. The manifold 8 is the connection between the loading liquid line 7 equipped in the liquid hydrogen storage facility 1 and the piping outside the liquid hydrogen storage facility 1.
 BOGライン3は、内槽21の気相部分(例えば、内槽21の頂部)と接続され、内槽21から多重殻タンク2の外部へ延びる配管で構成されている。BOGライン3には、多重殻タンク2の内槽21で発生した液体水素のボイルオフガスBが流れ出る。但し、BOGライン3には、ボイルオフガスBに限定されずパージ用ガスや冷却用ガスが流れてもよい。液体水素貯蔵設備1が複数の多重殻タンク2を備える場合には、各多重殻タンク2に接続されたBOGライン3が一本のBOGライン3へ合流するように配管が構成されていてよい。 The BOG line 3 is connected to the gas phase portion of the inner tank 21 (e.g., the top of the inner tank 21) and is composed of piping extending from the inner tank 21 to the outside of the multi-shell tank 2. Boil-off gas B of liquid hydrogen generated in the inner tank 21 of the multi-shell tank 2 flows out of the BOG line 3. However, the BOG line 3 is not limited to boil-off gas B, and purge gas or cooling gas may also flow. When the liquid hydrogen storage facility 1 is equipped with multiple multi-shell tanks 2, the piping may be configured so that the BOG lines 3 connected to each multi-shell tank 2 merge into a single BOG line 3.
 荷役用ガスライン4は、BOGライン3とマニホールド8とを接続する配管等で構成されている。荷役用ガスライン4は、荷役時等にBOGライン3を流れるボイルオフガスBの一部を強制的にマニホールド8を介して液体水素貯蔵設備1の外部へ送る。荷役用ガスライン4は、内槽21の強制冷却やパージのために内槽21からガスを排出するために用いられてもよい。荷役用ガスライン4には、荷役用ガスライン4を通過するボイルオフガスBの流量を調整する流量調整弁41と、流量調整弁41よりも下流側に配置された熱交換器42と、熱交換器42よりも下流側に配置された圧縮機43とが設けられている。熱交換器42及び圧縮機43が稼働し、流量調整弁41が開放されると、BOGライン3から荷役用ガスライン4へボイルオフガスBが流入する。荷役用ガスライン4へ流入したボイルオフガスBは、熱交換器42で加温されてから圧縮機43へ流入し、圧縮機43によってマニホールド8を介して外部へ圧送される。但し、荷役用ガスライン4へ流入したボイルオフガスBは、熱交換器42を経ずに或いは熱交換器42で加温されずに圧縮機43へ流入し、マニホールド8を介して外部へ圧送されてもよい。 The loading gas line 4 is composed of piping etc. connecting the BOG line 3 and the manifold 8. The loading gas line 4 forcibly sends a part of the boil-off gas B flowing through the BOG line 3 to the outside of the liquid hydrogen storage facility 1 via the manifold 8 during loading etc. The loading gas line 4 may be used to discharge gas from the inner tank 21 for forced cooling or purging of the inner tank 21. The loading gas line 4 is provided with a flow control valve 41 for controlling the flow rate of the boil-off gas B passing through the loading gas line 4, a heat exchanger 42 arranged downstream of the flow control valve 41, and a compressor 43 arranged downstream of the heat exchanger 42. When the heat exchanger 42 and the compressor 43 are operated and the flow control valve 41 is opened, the boil-off gas B flows from the BOG line 3 into the loading gas line 4. The boil-off gas B that flows into the cargo gas line 4 is heated in the heat exchanger 42 and then flows into the compressor 43, which then pressurizes and sends it to the outside via the manifold 8. However, the boil-off gas B that flows into the cargo gas line 4 may also flow into the compressor 43 without passing through the heat exchanger 42 or without being heated by the heat exchanger 42, and then pressurized and sent to the outside via the manifold 8.
 燃料供給ライン5は、BOGライン3と燃料消費機器9とを接続する配管等で構成されている。燃料供給ライン5は、BOGライン3を流れるボイルオフガスBの一部を、液体水素貯蔵設備1の外部に配置された燃料消費機器9へ送る。燃料供給ライン5には、燃料供給ライン5を流れるボイルオフガスBの流量を調整する流量調整弁51と、流量調整弁51よりも下流側に配置された熱交換器52と、熱交換器52よりも下流側に配置された圧縮機53とが設けられている。熱交換器52及び圧縮機53が稼働し、流量調整弁51が開放されると、BOGライン3から燃料供給ライン5へボイルオフガスBが流入する。燃料供給ライン5へ流入したボイルオフガスBは、熱交換器52で加温されてから圧縮機53へ流入し、圧縮機53によって燃料消費機器9へ圧送される。但し、燃料供給ライン5へ流入したボイルオフガスBは、熱交換器52を経ずに或いは熱交換器52で加温されずに圧縮機53へ流入し、燃料消費機器9へ圧送されてもよい。 The fuel supply line 5 is composed of piping etc. that connects the BOG line 3 and the fuel consuming equipment 9. The fuel supply line 5 sends a portion of the boil-off gas B flowing through the BOG line 3 to the fuel consuming equipment 9 arranged outside the liquid hydrogen storage facility 1. The fuel supply line 5 is provided with a flow control valve 51 that adjusts the flow rate of the boil-off gas B flowing through the fuel supply line 5, a heat exchanger 52 arranged downstream of the flow control valve 51, and a compressor 53 arranged downstream of the heat exchanger 52. When the heat exchanger 52 and the compressor 53 are operating and the flow control valve 51 is opened, the boil-off gas B flows from the BOG line 3 into the fuel supply line 5. The boil-off gas B that flows into the fuel supply line 5 is heated by the heat exchanger 52 and then flows into the compressor 53, where it is pumped to the fuel consuming equipment 9 by the compressor 53. However, the boil-off gas B that flows into the fuel supply line 5 may flow into the compressor 53 without passing through the heat exchanger 52 or being heated by the heat exchanger 52, and may be pumped to the fuel consuming device 9.
 槽間ガス供給ライン6は、多重殻タンク2の内外槽間23と荷役用ガスライン4又は燃料供給ライン5とを接続する配管等で構成されている。槽間ガス供給ライン6は、荷役用ガスライン4を流れるボイルオフガスBの一部、及び/又は、燃料供給ライン5を流れるボイルオフガスBの一部を、槽間ガスGとして槽間ガス供給ライン6の内外槽間23へ供給する。但し、槽間ガス供給ライン6は内外槽間23へのボイルオフガスBの供給に限定されず、内外槽間23へのパージガスや置換用ガスなどの供給に利用されてもよい。 The intertank gas supply line 6 is composed of piping etc. that connects the space between the inner and outer tanks 23 of the multi-shell tank 2 to the loading gas line 4 or the fuel supply line 5. The intertank gas supply line 6 supplies a portion of the boil-off gas B flowing through the loading gas line 4 and/or a portion of the boil-off gas B flowing through the fuel supply line 5 to the space between the inner and outer tanks 23 of the intertank gas supply line 6 as intertank gas G. However, the intertank gas supply line 6 is not limited to supplying boil-off gas B to the space between the inner and outer tanks 23, but may also be used to supply purge gas, replacement gas, etc. to the space between the inner and outer tanks 23.
 槽間ガス供給ライン6は、多重殻タンク2の内外槽間23と接続された主配管60と、主配管60に対し、荷役用ガスライン4と燃料供給ライン5とを並列に接続する第1配管61及び第2配管62を含む。第1配管61は、主配管60と荷役用ガスライン4の圧縮機43よりも下流側の接続部47とを接続している。第2配管62は、主配管60と燃料供給ライン5の圧縮機53よりも下流側の接続部57とを接続している。液体水素貯蔵設備1が複数の多重殻タンク2を備える場合は、主配管60から複数の多重殻タンク2の内外槽間23へ分岐する分岐管が設けられ、各多重殻タンク2の内外槽間23へ主配管60及び分岐管を通じて槽間ガスGが供給される。 The inter-tank gas supply line 6 includes a main pipe 60 connected to the inner and outer tank gap 23 of the multi-shell tank 2, and a first pipe 61 and a second pipe 62 that connect the loading gas line 4 and the fuel supply line 5 in parallel to the main pipe 60. The first pipe 61 connects the main pipe 60 to the connection part 47 downstream of the compressor 43 of the loading gas line 4. The second pipe 62 connects the main pipe 60 to the connection part 57 downstream of the compressor 53 of the fuel supply line 5. When the liquid hydrogen storage facility 1 has multiple multi-shell tanks 2, a branch pipe is provided that branches from the main pipe 60 to the inner and outer tank gaps 23 of the multiple multi-shell tanks 2, and the inter-tank gas G is supplied to the inner and outer tank gaps 23 of each multi-shell tank 2 through the main pipe 60 and the branch pipe.
 第1配管61には、荷役用ガスライン4から第1配管61へ流入するボイルオフガスBの流量を調整する第1流量調整弁63が設けられている。第1流量調整弁63はノーマルクローズであって、第1流量調整弁63が開放されると荷役用ガスライン4を流れるボイルオフガスBの一部が第1配管61(即ち、槽間ガス供給ライン6)へ流入する。ここで、第1配管61が接続される接続部47は、荷役用ガスライン4の熱交換器42よりも下流側に配置されていることから、熱交換器42で加温されたボイルオフガスBが第1配管61へ流入する。なお、図1に例示する荷役用ガスライン4には一組の熱交換器42及び圧縮機43が示されているが、荷役用ガスライン4には複数の熱交換器42及び圧縮機43が設けられていてもよい。この場合、接続部47は、少なくとも1つの熱交換器42の下流側もしくは少なくとも1つの圧縮機43の下流側に配置されていればよい。 The first pipe 61 is provided with a first flow control valve 63 for controlling the flow rate of the boil-off gas B flowing from the cargo handling gas line 4 into the first pipe 61. The first flow control valve 63 is normally closed, and when the first flow control valve 63 is opened, a part of the boil-off gas B flowing through the cargo handling gas line 4 flows into the first pipe 61 (i.e., the inter-tank gas supply line 6). Here, the connection part 47 to which the first pipe 61 is connected is arranged downstream of the heat exchanger 42 of the cargo handling gas line 4, so that the boil-off gas B heated by the heat exchanger 42 flows into the first pipe 61. Note that, although one set of the heat exchanger 42 and the compressor 43 is shown in the cargo handling gas line 4 illustrated in FIG. 1, the cargo handling gas line 4 may be provided with a plurality of heat exchangers 42 and compressors 43. In this case, the connection part 47 may be arranged downstream of at least one heat exchanger 42 or downstream of at least one compressor 43.
 図2に示すように、第1配管61において第1流量調整弁63の下流側には、調温器48が配置されていてもよい。荷役用ガスライン4の熱交換器42による加温ではボイルオフガスBの温度が槽間ガスGとして好適な温度である槽間ガス設定温度に満たない場合に、この調温器48でボイルオフガスBが槽間ガス設定温度となるまで加温される。なお、槽間ガス設定温度とは、多重殻タンク2の内外槽間23に配置された防熱層24が変質しない温度のうち低い温度である。槽間ガス設定温度は、多重殻タンク2の構造及び防熱層24を構成する断熱材の種類によって異なる。 As shown in FIG. 2, a temperature regulator 48 may be disposed downstream of the first flow control valve 63 in the first pipe 61. When the temperature of the boil-off gas B does not reach the intertank gas set temperature, which is a suitable temperature for the intertank gas G, when heated by the heat exchanger 42 in the loading gas line 4, the boil-off gas B is heated by this temperature regulator 48 until it reaches the intertank gas set temperature. The intertank gas set temperature is the lowest temperature at which the thermal insulation layer 24 disposed between the inner and outer tanks 23 of the multi-shell tank 2 does not deteriorate. The intertank gas set temperature varies depending on the structure of the multi-shell tank 2 and the type of insulation material constituting the thermal insulation layer 24.
 図1に戻って、第2配管62には、燃料供給ライン5から第2配管62へ流入するボイルオフガスBの流量を調整する第2流量調整弁64が設けられている。第2流量調整弁64はノーマルクローズであって、第2流量調整弁64が開放されると燃料供給ライン5を流れるボイルオフガスBの一部が第2配管62(即ち、槽間ガス供給ライン6)へ流入する。ここで、第2配管62が接続される接続部57は、燃料供給ライン5の熱交換器52よりも下流側に配置されていることから、熱交換器52で加温されたボイルオフガスBが第2配管62へ流入する。なお、図1に例示する燃料供給ライン5には一組の熱交換器52及び圧縮機53が示されているが、燃料供給ライン5には複数の熱交換器52及び圧縮機53が設けられていてもよい。この場合、接続部57は、少なくとも1つの熱交換器52の下流側もしくは少なくとも1つの圧縮機53の下流側に配置されていればよい。 Returning to FIG. 1, the second pipe 62 is provided with a second flow control valve 64 for controlling the flow rate of the boil-off gas B flowing from the fuel supply line 5 into the second pipe 62. The second flow control valve 64 is normally closed, and when the second flow control valve 64 is opened, a part of the boil-off gas B flowing through the fuel supply line 5 flows into the second pipe 62 (i.e., the inter-tank gas supply line 6). Here, the connection part 57 to which the second pipe 62 is connected is disposed downstream of the heat exchanger 52 of the fuel supply line 5, so that the boil-off gas B heated by the heat exchanger 52 flows into the second pipe 62. Note that, although one set of the heat exchanger 52 and the compressor 53 is shown in the fuel supply line 5 illustrated in FIG. 1, the fuel supply line 5 may be provided with a plurality of heat exchangers 52 and compressors 53. In this case, the connection part 57 may be disposed downstream of at least one heat exchanger 52 or downstream of at least one compressor 53.
 図2に示すように、第2配管62において第2流量調整弁64の下流側には、調温器58が配置されていてもよい。燃料供給ライン5の熱交換器52による加温ではボイルオフガスBの温度が槽間ガス設定温度に満たない場合に、この調温器58でボイルオフガスBが槽間ガス設定温度となるまで加温される。 As shown in FIG. 2, a temperature regulator 58 may be disposed downstream of the second flow control valve 64 in the second piping 62. When the temperature of the boil-off gas B does not reach the inter-tank gas set temperature when heated by the heat exchanger 52 in the fuel supply line 5, the temperature regulator 58 heats the boil-off gas B until it reaches the inter-tank gas set temperature.
 図1に戻って、荷役用ガスライン4の流量調整弁41、熱交換器42及び圧縮機43と、燃料供給ライン5の流量調整弁51、熱交換器52、及び圧縮機53と、槽間ガス供給ライン6の第1流量調整弁63及び第2流量調整弁64は、船体11に設けられた機器室10に配置される。機器室10は、船級規則では「貨物機関区域」と称される空間であって、主に貨物用の機器が置かれている。機器室10は、居住区域及び業務区域から隔離されており、配置される電気機器は防爆仕様とされている。 Returning to FIG. 1, the flow control valve 41, heat exchanger 42, and compressor 43 of the cargo gas line 4, the flow control valve 51, heat exchanger 52, and compressor 53 of the fuel supply line 5, and the first flow control valve 63 and second flow control valve 64 of the inter-tank gas supply line 6 are arranged in an equipment room 10 provided in the hull 11. The equipment room 10 is a space called the "cargo machinery space" in the classification regulations, and mainly contains cargo equipment. The equipment room 10 is isolated from the living area and work area, and the electrical equipment arranged therein is explosion-proof.
〔槽間ガスGの供給方法〕
 ここで、多重殻タンク2の内外槽間23への槽間ガスGの供給方法について説明する。内外槽間23への槽間ガスGの供給は、主に、多重殻タンク2の初期冷却時と、荷役時と、航海中に行われる。多重殻タンク2の内外槽間23の槽間圧力は、内槽21に液体水素が収容されている間は、所定の設定槽間圧力に維持されることが好ましい。槽間圧力が設定槽間圧力を大幅に下回ると、内槽21に作用する圧力又は外槽22に作用する圧力が過剰となって内槽21や外槽22の破損に繋がる恐れがある。なお、設定槽間圧力は、多重殻タンク2の構成によって異なる。
[Method of Supplying Inter-Tank Gas G]
Here, a method of supplying the inter-vessel gas G to the inner and outer vessel gap 23 of the multi-shell tank 2 will be described. The inter-vessel gas G is supplied to the inner and outer vessel gap 23 mainly during initial cooling of the multi-shell tank 2, during loading and unloading, and during the voyage. It is preferable that the inter-vessel pressure between the inner and outer vessels 23 of the multi-shell tank 2 is maintained at a predetermined set inter-vessel pressure while liquid hydrogen is stored in the inner vessel 21. If the inter-vessel pressure falls significantly below the set inter-vessel pressure, the pressure acting on the inner vessel 21 or the pressure acting on the outer vessel 22 becomes excessive, which may lead to damage to the inner vessel 21 or the outer vessel 22. The set inter-vessel pressure differs depending on the configuration of the multi-shell tank 2.
<初期冷却時>
 多重殻タンク2の初期冷却時には、内槽21の冷却と、内外槽間23の冷却及び加圧が行われる。初期冷却時には、荷役用ガスライン4の熱交換器42及び圧縮機43が稼働され、荷役用ガスライン4の流量調整弁41が開放され、槽間ガス供給ライン6の第1流量調整弁63が開放され、燃料供給ライン5の流量調整弁51及び槽間ガス供給ライン6の第2流量調整弁64は閉止されている。第1流量調整弁63の開度は、内外槽間23へ適量の冷却及び調圧用の槽間ガスGが供給されるように調整されている。
<Initial cooling>
During initial cooling of the multi-shell tank 2, cooling of the inner tank 21 and cooling and pressurization of the space between the inner and outer tanks 23 are performed. During initial cooling, the heat exchanger 42 and compressor 43 of the cargo gas line 4 are operated, the flow control valve 41 of the cargo gas line 4 is opened, the first flow control valve 63 of the intertank gas supply line 6 is opened, and the flow control valve 51 of the fuel supply line 5 and the second flow control valve 64 of the intertank gas supply line 6 are closed. The opening of the first flow control valve 63 is adjusted so that an appropriate amount of intertank gas G for cooling and pressure adjustment is supplied to the space between the inner and outer tanks 23.
 内槽21へ荷役用液ライン7を通じて外部から冷却用の液体水素Lが供給されると、液体水素Lの一部は内槽21内で気化してボイルオフガスBとなる。内槽21で生じたボイルオフガスBはBOGライン3へ流出する。流量調整弁41は開放され、第1流量調整弁63、流量調整弁51、及び第2流量調整弁64は閉止されて、圧縮機43の稼働によってボイルオフガスBの一部は荷役用ガスライン4を通りマニホールド8を通じて外部へ返送される。内槽21へ液体水素Lが供給されると、内外槽間23のガスが冷却されて、内外槽間23の圧力が低下する。そこで、流量調整弁51及び第2流量調整弁64が開放され、熱交換器52及び圧縮機53が稼働されて、ボイルオフガスBの残部は燃料供給ライン5の熱交換器52で加温されてから槽間ガス供給ライン6を通じて多重殻タンク2の内外槽間23へ供給される。このように、内外槽間23へ供給されるボイルオフガスB(即ち、槽間ガスG)によって内外槽間23の圧力が回復する。 When liquid hydrogen L for cooling is supplied to the inner tank 21 from the outside through the loading liquid line 7, part of the liquid hydrogen L vaporizes in the inner tank 21 and becomes boil-off gas B. The boil-off gas B generated in the inner tank 21 flows out to the BOG line 3. The flow control valve 41 is opened, the first flow control valve 63, the flow control valve 51, and the second flow control valve 64 are closed, and as the compressor 43 operates, part of the boil-off gas B is returned to the outside through the loading gas line 4 and the manifold 8. When liquid hydrogen L is supplied to the inner tank 21, the gas between the inner and outer tanks 23 is cooled and the pressure between the inner and outer tanks 23 decreases. Then, the flow control valve 51 and the second flow control valve 64 are opened, the heat exchanger 52 and the compressor 53 are operated, and the remaining boil-off gas B is heated by the heat exchanger 52 of the fuel supply line 5 and then supplied to the space between the inner and outer tanks 23 of the multi-shell tank 2 through the inter-tank gas supply line 6. In this way, the pressure between the inner and outer tanks 23 is restored by the boil-off gas B (i.e., the inter-tank gas G) supplied to the space between the inner and outer tanks 23.
<荷役準備時およびタンク冷却時>
 多重殻タンク2へ液体水素を積む前の荷役準備時または液体水素を噴霧してタンクを冷却する時に、内槽21へ液体水素Lが供給されると、内槽21、外槽22及び内外槽間23の槽間ガスGが冷却されて、内外槽間23の圧力が低下する。そこで、内外槽間23の槽間圧力が所定の設定槽間圧力に維持されるように、多重殻タンク2の内外槽間23へ槽間ガスGが供給される。多重殻タンク2へ液体水素Lを積む時には、荷役用ガスライン4の圧縮機43が稼働され、荷役用ガスライン4の流量調整弁41が開放されて、内槽21のボイルオフガスBがBOGライン3及び荷役用ガスライン4を通じて強制的に外部へ排出されることによって、内槽21へ液体水素Lが速やかに充填される。内槽21へ液体水素Lが供給されると、内外槽間23のガスが冷却されて、内外槽間23の圧力が低下する。燃料供給ライン5の流量調整弁51、槽間ガス供給ライン6の第1流量調整弁63及び第2流量調整弁64は通常閉止されている。内槽21へ液体水素Lが供給されることによって内外槽間23が冷却され、圧力センサ25で検出される槽間圧力が設定槽間圧力より低下すると、流量調整弁51及び第2流量調整弁64が開放されるとともに、熱交換器52及び圧縮機53が稼働される。これにより、ボイルオフガスBの一部が燃料供給ライン5及び槽間ガス供給ライン6を通じて加温された槽間ガスGが多重殻タンク2の内外槽間23へ供給され、多重殻タンク2の内外槽間23の槽間圧力は設定槽間圧力へ回復する。槽間圧力が設定槽間圧力に回復すると、流量調整弁51及び第2流量調整弁64は閉止され、熱交換器52及び圧縮機53は停止されて、内外槽間23への槽間ガスGの供給が停止される。
<When preparing for loading and cooling the tank>
When liquid hydrogen L is supplied to the inner tank 21 during preparation for loading liquid hydrogen into the multi-shell tank 2 or when liquid hydrogen is sprayed to cool the tank, the inter-tank gas G in the inner tank 21, the outer tank 22, and the space between the inner and outer tanks 23 is cooled, and the pressure between the inner and outer tanks 23 is reduced. Therefore, the inter-tank gas G is supplied to the space between the inner and outer tanks 23 of the multi-shell tank 2 so that the inter-tank pressure between the inner and outer tanks 23 is maintained at a predetermined set inter-tank pressure. When liquid hydrogen L is loaded into the multi-shell tank 2, the compressor 43 of the loading gas line 4 is operated, the flow control valve 41 of the loading gas line 4 is opened, and the boil-off gas B in the inner tank 21 is forcibly discharged to the outside through the BOG line 3 and the loading gas line 4, so that the inner tank 21 is quickly filled with liquid hydrogen L. When liquid hydrogen L is supplied to the inner tank 21, the gas in the space between the inner and outer tanks 23 is cooled, and the pressure between the inner and outer tanks 23 is reduced. The flow rate control valve 51 of the fuel supply line 5, and the first flow rate control valve 63 and the second flow rate control valve 64 of the intertank gas supply line 6 are normally closed. When the liquid hydrogen L is supplied to the inner tank 21, the inner and outer tank space 23 is cooled, and the intertank pressure detected by the pressure sensor 25 falls below the set intertank pressure, the flow rate control valve 51 and the second flow rate control valve 64 are opened, and the heat exchanger 52 and the compressor 53 are operated. As a result, the intertank gas G, which is a part of the boil-off gas B heated through the fuel supply line 5 and the intertank gas supply line 6, is supplied to the inner and outer tank space 23 of the multi-shell tank 2, and the intertank pressure between the inner and outer tanks 23 of the multi-shell tank 2 is restored to the set intertank pressure. When the intertank pressure is restored to the set intertank pressure, the flow rate control valve 51 and the second flow rate control valve 64 are closed, the heat exchanger 52 and the compressor 53 are stopped, and the supply of the intertank gas G to the inner and outer tank space 23 is stopped.
<航海中>
 航海中に、多重殻タンク2の内外槽間23の槽間圧力が僅かに減少することがある。そこで、航海中に稼働している燃料供給ライン5を流れるボイルオフガスBの一部が槽間ガス供給ライン6を通じて多重殻タンク2の内外槽間23へ供給されて、槽間圧力が設定槽間圧力に維持される。航海中は、燃料供給ライン5の熱交換器52及び圧縮機53が稼働され、流量調整弁51が開放されて、内槽21のボイルオフガスBがBOGライン3及び燃料供給ライン5を通じて強制的に燃料消費機器9へ送られる。荷役用ガスライン4の流量調整弁41は閉止されている。槽間ガス供給ライン6の第1流量調整弁63及び第2流量調整弁64は通常閉止されている。圧力センサ25で検出される槽間圧力が設定槽間圧力より低下すると、流量調整弁41及び第1流量調整弁63が開放されるとともに熱交換器42及び圧縮機43が稼働されて、ボイルオフガスBの一部が荷役用ガスライン4及び槽間ガス供給ライン6を通じて加温された槽間ガスGが多重殻タンク2の内外槽間23へ供給される。これにより、多重殻タンク2の内外槽間23の槽間圧力は設定槽間圧力へ回復する。槽間圧力が設定槽間圧力へ回復すると、再び流量調整弁41及び第1流量調整弁63は閉止され、熱交換器42及び圧縮機43は停止されて、内外槽間23への槽間ガスGの供給が停止される。
<On the voyage>
During the voyage, the inter-vessel pressure between the inner and outer vessels 23 of the multi-shell tank 2 may slightly decrease. Therefore, a part of the boil-off gas B flowing through the fuel supply line 5 operating during the voyage is supplied to the inner and outer vessels 23 of the multi-shell tank 2 through the inter-vessel gas supply line 6, so that the inter-vessel pressure is maintained at the set inter-vessel pressure. During the voyage, the heat exchanger 52 and the compressor 53 of the fuel supply line 5 are operated, the flow control valve 51 is opened, and the boil-off gas B of the inner vessel 21 is forcibly sent to the fuel consuming equipment 9 through the BOG line 3 and the fuel supply line 5. The flow control valve 41 of the cargo gas line 4 is closed. The first flow control valve 63 and the second flow control valve 64 of the inter-vessel gas supply line 6 are usually closed. When the intertank pressure detected by the pressure sensor 25 falls below the set intertank pressure, the flow control valve 41 and the first flow control valve 63 are opened, and the heat exchanger 42 and the compressor 43 are operated, so that a part of the boil-off gas B is heated through the loading gas line 4 and the intertank gas supply line 6, and the heated intertank gas G is supplied to the inner and outer tank gap 23 of the multi-shell tank 2. As a result, the intertank pressure between the inner and outer tanks 23 of the multi-shell tank 2 is restored to the set intertank pressure. When the intertank pressure is restored to the set intertank pressure, the flow control valve 41 and the first flow control valve 63 are closed again, the heat exchanger 42 and the compressor 43 are stopped, and the supply of the intertank gas G to the inner and outer tank gap 23 is stopped.
 上記のように、内外槽間23へ供給される槽間ガスGは、熱交換器42,52で加温されることから内槽21内のボイルオフガスBよりも高温である。ここで、内外槽間23へ供給される槽間ガスGは、多重殻タンク2の内槽21内のボイルオフガスBよりも高温であればよいが、熱交換器42,52及び追加の熱交換器によってボイルオフガスBが防熱層24の凍結や変質が抑制できる程度まで加温されることが好ましい。これにより、内外槽間23に配置された防熱層24の凍結や変質を抑制できる。 As described above, the inter-tank gas G supplied between the inner and outer tanks 23 is heated by the heat exchangers 42, 52 and is therefore at a higher temperature than the boil-off gas B in the inner tank 21. Here, the inter-tank gas G supplied between the inner and outer tanks 23 only needs to be at a higher temperature than the boil-off gas B in the inner tank 21 of the multi-shell tank 2, but it is preferable that the boil-off gas B be heated by the heat exchangers 42, 52 and an additional heat exchanger to a level at which freezing and deterioration of the thermal insulation layer 24 can be suppressed. This makes it possible to suppress freezing and deterioration of the thermal insulation layer 24 arranged between the inner and outer tanks 23.
 なお、上記の槽間ガスGの供給方法では、荷役用ガスライン4と燃料供給ライン5のうち稼働していない一方が選択的に槽間ガス供給ライン6と連通される。これにより、稼働しているラインのボイルオフガスBの流れを阻害せずに、ボイルオフガスBを内外槽間23へ供給できる。また、稼働しているラインと異なる温度で、ボイルオフガスBを内外槽間23へ供給できる。但し、荷役用ガスライン4と燃料供給ライン5のうち稼働している一方が選択的に槽間ガス供給ライン6と連通されてもよい。このことによれば、内外槽間23への槽間ガスGの供給のためだけに熱交換器42,52や圧縮機43,53の立ち上げが不要であり、作業効率化が図れる。 In the above-mentioned method for supplying inter-tank gas G, the one of the loading gas line 4 and the fuel supply line 5, which is not in operation, is selectively connected to the inter-tank gas supply line 6. This allows the boil-off gas B to be supplied to the space between the inner and outer tanks 23 without impeding the flow of the boil-off gas B in the operating line. In addition, the boil-off gas B can be supplied to the space between the inner and outer tanks 23 at a temperature different from that of the operating line. However, the one of the loading gas line 4 and the fuel supply line 5, which is in operation, may be selectively connected to the inter-tank gas supply line 6. This eliminates the need to start up the heat exchangers 42, 52 and compressors 43, 53 just to supply the inter-tank gas G to the space between the inner and outer tanks 23, improving work efficiency.
 上記の槽間ガスGの供給方法において、熱交換器42,52、圧縮機43,53、及び各弁41,51,63,64の開閉や開度調整は手動で行われてもよいが、自動で行われてもよい。例えば、第1流量調整弁63及び第2流量調整弁64の開閉及び開度調整が自動で行われる場合、図3に示すように、液体水素貯蔵設備1は圧力センサ25、第1流量調整弁63及び第2流量調整弁64と電気的に接続されたコントローラ26を備える。このコントローラ26は、圧力センサ25で検出された内外槽間23の圧力が所定の設定槽間圧力を下回るときに、内外槽間23の圧力が設定槽間圧力となるまでボイルオフガスBが内外槽間23へ供給されるように第1流量調整弁63及び第2流量調整弁64の開閉及び開度調整を行う。 In the above-mentioned method for supplying inter-tank gas G, the opening/closing and opening adjustment of the heat exchangers 42, 52, compressors 43, 53, and each valve 41, 51, 63, 64 may be performed manually or automatically. For example, when the opening/closing and opening adjustment of the first flow control valve 63 and the second flow control valve 64 are performed automatically, as shown in FIG. 3, the liquid hydrogen storage facility 1 is provided with a controller 26 electrically connected to the pressure sensor 25, the first flow control valve 63, and the second flow control valve 64. When the pressure between the inner and outer tanks 23 detected by the pressure sensor 25 falls below a predetermined set inter-tank pressure, the controller 26 opens/closes and adjusts the opening of the first flow control valve 63 and the second flow control valve 64 so that the boil-off gas B is supplied to the inner and outer tanks 23 until the pressure between the inner and outer tanks 23 reaches the set inter-tank pressure.
〔総括〕
 本開示の第1の項目に係る液体水素貯蔵設備1は、
液体水素を収容する内槽21、内槽21を囲む外槽22、及び、内槽21と外槽22の間の内外槽間23に配置された防熱層24とを有する多重殻タンク2と、
内槽21と接続されて、内槽21内で生じた前記液体水素のボイルオフガスBが流れ出るBOGライン3と、
ボイルオフガスBを加温する熱交換器42,52と、
加温されたボイルオフガスBを多重殻タンク2の内外槽間23へ供給する槽間ガス供給ライン6と、
加温されたボイルオフガスBを槽間ガス供給ライン6へ圧送する圧縮機43,53と、を備えるものである。
[Summary]
The liquid hydrogen storage facility 1 according to the first aspect of the present disclosure comprises:
a multi-shell tank 2 having an inner vessel 21 for accommodating liquid hydrogen, an outer vessel 22 surrounding the inner vessel 21, and a thermal barrier layer 24 disposed in an inner/outer vessel gap 23 between the inner vessel 21 and the outer vessel 22;
a BOG line 3 connected to the inner vessel 21, through which the boil-off gas B of the liquid hydrogen generated in the inner vessel 21 flows;
a heat exchanger 42, 52 for heating the boil-off gas B;
an inter-vessel gas supply line 6 for supplying the heated boil-off gas B to the space between the inner and outer vessels 23 of the multi-shell tank 2;
and compressors 43, 53 for compressing and sending the heated boil-off gas B to the inter-tank gas supply line 6.
 上記構成の液体水素貯蔵設備1によれば、多重殻タンク2の内槽21で生じた液体水素のボイルオフガスBは直接に内外槽間23へ供給されるのではなく、熱交換器42,52で加温されてから、内外槽間23へ供給される。このように、内外槽間23へ流入するボイルオフガスBは、内槽21内のボイルオフガスBよりも高温となっており、内外槽間23に配置された防熱層24の凍結や変質を防止できる。 In the liquid hydrogen storage equipment 1 configured as above, the boil-off gas B of liquid hydrogen generated in the inner tank 21 of the multi-shell tank 2 is not directly supplied to the space between the inner and outer tanks 23, but is heated in the heat exchangers 42, 52 and then supplied to the space between the inner and outer tanks 23. In this way, the boil-off gas B flowing into the space between the inner and outer tanks 23 is at a higher temperature than the boil-off gas B in the inner tank 21, which prevents the heat insulation layer 24 arranged between the inner and outer tanks 23 from freezing or deteriorating.
 本開示の第2の項目に係る液体水素貯蔵設備1は、第1の項目に係る液体水素貯蔵設備1において、
熱交換器42;52と、圧縮機43:53とを有し、ボイルオフガスBを液体水素貯蔵設備1の外部へ送るガス搬送ライン4;5を、備え、
ガス搬送ライン4;5の熱交換器42;52及び圧縮機43:53より上流側にBOGライン3が接続されており、
 ガス搬送ライン4;5の熱交換器42;52及び圧縮機43:53より下流側に槽間ガス供給ライン6が接続されているものである。上記において液体水素貯蔵設備1の外部は、液体水素貯蔵設備1が例えば船舶に搭載されている場合には船舶内の液体水素貯蔵設備1以外の設備であってもよい。
The liquid hydrogen storage facility 1 according to the second aspect of the present disclosure is the liquid hydrogen storage facility 1 according to the first aspect,
A gas transport line 4; 5 having a heat exchanger 42; 52 and a compressor 43: 53, and sending the boil-off gas B to the outside of the liquid hydrogen storage facility 1,
A BOG line 3 is connected to the gas transport line 4; 5 upstream of the heat exchanger 42; 52 and the compressor 43: 53,
An inter-tank gas supply line 6 is connected to the gas transport lines 4; 5 downstream of the heat exchangers 42; 52 and compressors 43: 53. In the above, the outside of the liquid hydrogen storage equipment 1 may be equipment other than the liquid hydrogen storage equipment 1 on the ship, for example, in the case where the liquid hydrogen storage equipment 1 is installed on a ship.
 上記構成の液体水素貯蔵設備1では、ボイルオフガスBを液体水素貯蔵設備1の外部へ送るために使用されるガス搬送ライン4;5を、内外槽間23への槽間ガスGの供給に共用している。よって、内外槽間23への槽間ガスGの供給のために専用の圧縮機や熱交換器を省略できる。 In the liquid hydrogen storage equipment 1 configured as above, the gas transport lines 4 and 5 used to send the boil-off gas B to the outside of the liquid hydrogen storage equipment 1 are also used to supply the inter-tank gas G to the space between the inner and outer tanks 23. Therefore, a dedicated compressor or heat exchanger can be omitted for supplying the inter-tank gas G to the space between the inner and outer tanks 23.
 本開示の第3の項目に係る液体水素貯蔵設備1は、第2の項目に係る液体水素貯蔵設備1において、ガス搬送ライン4;5は、BOGライン3及び槽間ガス供給ライン6に対し並列に接続された第1ガス搬送ライン4及び第2ガス搬送ライン5を含み、第1ガス搬送ライン4が外部と連通されて第1ガス搬送ライン4を通じてボイルオフガスBが外部へ送られている際に、第2ガス搬送ライン5が内外槽間23と連通されて第2ガス搬送ライン5及び槽間ガス供給ライン6を通じてボイルオフガスBが内外槽間23へ送られるように構成されたものである。 The liquid hydrogen storage equipment 1 according to the third item of the present disclosure is the liquid hydrogen storage equipment 1 according to the second item, in which the gas transport lines 4;5 include a first gas transport line 4 and a second gas transport line 5 connected in parallel to the BOG line 3 and the inter-tank gas supply line 6, and are configured such that when the first gas transport line 4 is connected to the outside and boil-off gas B is sent to the outside through the first gas transport line 4, the second gas transport line 5 is connected to the space between the inner and outer tanks 23 and boil-off gas B is sent to the space between the inner and outer tanks 23 through the second gas transport line 5 and the inter-tank gas supply line 6.
 上記構成の液体水素貯蔵設備1では、第1ガス搬送ライン4を使ってボイルオフガスBを加温せずに外部へ送給している最中に、第2ガス搬送ライン5を使ってボイルオフガスBを加温して内外槽間23へ送ることができる。或いは、上記構成の液体水素貯蔵設備1では、第1ガス搬送ライン4を使ってボイルオフガスBを第1の温度に加温して外部へ送給している最中に、第2ガス搬送ライン5を使ってボイルオフガスBを第2の温度に加温して内外槽間23へ送ることができる。 In the liquid hydrogen storage equipment 1 configured as above, while the boil-off gas B is being sent to the outside using the first gas transfer line 4 without being heated, the boil-off gas B can be heated and sent to the space between the inner and outer tanks 23 using the second gas transfer line 5. Alternatively, in the liquid hydrogen storage equipment 1 configured as above, while the boil-off gas B is being heated to a first temperature and sent to the outside using the first gas transfer line 4, the boil-off gas B can be heated to a second temperature and sent to the space between the inner and outer tanks 23 using the second gas transfer line 5.
 本開示の第4の項目に係る液体水素貯蔵設備1は、第2又は3の項目に係る液体水素貯蔵設備1において、ガス搬送ラインが、ボイルオフガスBを外部へ送る荷役用ガスライン4を含むものである。 The liquid hydrogen storage facility 1 according to the fourth item of the present disclosure is the liquid hydrogen storage facility 1 according to the second or third item, in which the gas transport line includes a loading gas line 4 that sends the boil-off gas B to the outside.
 上記構成の液体水素貯蔵設備1では、荷役用ガスライン4の熱交換器42及び圧縮機43を利用してボイルオフガスBを多重殻タンク2の内外槽間23へ供給できる。 In the liquid hydrogen storage facility 1 configured as above, the heat exchanger 42 and compressor 43 of the loading gas line 4 can be used to supply boil-off gas B to the space between the inner and outer tanks 23 of the multi-shell tank 2.
 本開示の第5の項目に係る液体水素貯蔵設備1は、第2乃至4のいずれかの項目に係る液体水素貯蔵設備1において、ガス搬送ラインが、ボイルオフガスBを燃料消費機器9へ送る燃料供給ライン5を含むものである。 The liquid hydrogen storage equipment 1 according to the fifth item of the present disclosure is the liquid hydrogen storage equipment 1 according to any one of the second to fourth items, in which the gas transport line includes a fuel supply line 5 that sends the boil-off gas B to a fuel consuming device 9.
 上記構成の液体水素貯蔵設備1では、燃料供給ライン5の熱交換器52及び圧縮機53を利用してボイルオフガスBを多重殻タンク2の内外槽間23へ供給できる。 In the liquid hydrogen storage facility 1 configured as above, the heat exchanger 52 and compressor 53 of the fuel supply line 5 can be used to supply the boil-off gas B to the space between the inner and outer tanks 23 of the multi-shell tank 2.
 本開示の第6の項目に係る液体水素貯蔵設備1は、第1乃至5のいずれかの項目に係る液体水素貯蔵設備1において、槽間ガス供給ライン6は、ボイルオフガスBの内外槽間23への供給と停止を切り替える弁63,64を有し、
多重殻タンク2の内外槽間23の圧力を検出する圧力センサ25と、
圧力センサ25で検出された内外槽間23の圧力が所定の設定槽間圧力を下回るときに、内外槽間23の圧力が設定槽間圧力となるまでボイルオフガスBが内外槽間23へ供給されるように弁63,64を動作させるコントローラ26と、を備えるものである。
A liquid hydrogen storage facility 1 according to a sixth aspect of the present disclosure is the liquid hydrogen storage facility 1 according to any one of the first to fifth aspects, wherein the inter-tank gas supply line 6 has valves 63, 64 for switching between supplying and stopping the boil-off gas B to the space between the inner and outer tanks 23;
a pressure sensor 25 for detecting a pressure between the inner and outer tanks 23 of the multi-shell tank 2;
and a controller 26 which operates the valves 63, 64 so that the boil-off gas B is supplied to the space between the inner and outer tanks 23 until the pressure between the inner and outer tanks 23 reaches the set inter-tank pressure when the pressure between the inner and outer tanks 23 detected by the pressure sensor 25 falls below a predetermined set inter-tank pressure.
 上記構成の液体水素貯蔵設備1によれば、多重殻タンク2の内外槽間23が自動的に設定槽間圧力に維持される。 With the liquid hydrogen storage equipment 1 configured as above, the pressure between the inner and outer tanks 23 of the multi-shell tank 2 is automatically maintained at the set inter-tank pressure.
 本開示の第7の項目に係る液体水素貯蔵設備1は、第1乃至6のいずれかの項目に係る液体水素貯蔵設備1において、槽間ガス供給ライン6は、ボイルオフガスBを所定の槽間ガス設定温度に調温する調温器48,58を有するものである。 The liquid hydrogen storage equipment 1 according to the seventh item of the present disclosure is a liquid hydrogen storage equipment 1 according to any one of the first to sixth items, in which the inter-tank gas supply line 6 has a thermostat 48, 58 that adjusts the temperature of the boil-off gas B to a predetermined inter-tank gas set temperature.
 上記構成の液体水素貯蔵設備1によれば、槽間ガス設定温度が槽間ガス設定温度に調温されたうえで内外槽間23へ供給される。 With the liquid hydrogen storage equipment 1 configured as above, the inter-tank gas set temperature is adjusted to the inter-tank gas set temperature before being supplied to the space between the inner and outer tanks 23.
 本開示の第8の項目に係る液体水素貯蔵設備1は、第1乃至7のいずれかの項目に係る液体水素貯蔵設備1において、複数の多重殻タンク2を有し、槽間ガス供給ライン6は分岐して複数の多重殻タンク2の内外槽間23の各々と接続されているものである。 The liquid hydrogen storage equipment 1 according to the eighth item of the present disclosure is a liquid hydrogen storage equipment 1 according to any one of the first to seventh items, which has a plurality of multi-shell tanks 2, and the inter-tank gas supply line 6 branches out and is connected to each of the inner and outer tanks 23 of the plurality of multi-shell tanks 2.
 上記構成の液体水素貯蔵設備1によれば、一本の槽間ガス供給ライン6から複数の多重殻タンク2の内外槽間23へ槽間ガスGが供給されるので、多重殻タンク2の各々に槽間ガス供給ライン6を備える場合と比較して配管や機器を削減できる。 With the liquid hydrogen storage equipment 1 configured as described above, inter-tank gas G is supplied from a single inter-tank gas supply line 6 to the inner and outer tanks 23 of multiple multi-shell tanks 2, which reduces the amount of piping and equipment compared to when an inter-tank gas supply line 6 is provided for each of the multi-shell tanks 2.
 本開示の第9の項目に係る浮体構造物100は、船体11と、船体11に搭載された、第1乃至8のいずれかの項目に係る液体水素貯蔵設備1とを、備えるものである。 The floating structure 100 according to the ninth item of the present disclosure comprises a hull 11 and a liquid hydrogen storage facility 1 according to any one of the first to eighth items mounted on the hull 11.
 上記構成の液体水素貯蔵設備1は、浮体構造物100に搭載される液体水素貯蔵設備1として好適である。 The liquid hydrogen storage facility 1 configured as described above is suitable as a liquid hydrogen storage facility 1 to be mounted on a floating structure 100.
 本開示の第10の項目に係る多重殻タンク2の槽間ガス供給方法は、液体水素Lを収容する内槽21、内槽21を囲む外槽22、及び、内槽21と外槽22の間の内外槽間23に配置された防熱層24とを有する多重殻タンク2において、内外槽間23へ槽間ガスGを供給する方法であって、
内槽21で生じた液体水素LのボイルオフガスBを内槽21から取り出し、
取り出したボイルオフガスBを熱交換器42,52で加温し、
加温されたボイルオフガスBを内外槽間23へ圧縮機43,53で圧送するものである。   
A method for supplying inter-tank gas in a multi-shell tank 2 according to a tenth aspect of the present disclosure is a method for supplying inter-tank gas G to a space between the inner and outer tanks 23 in a multi-shell tank 2 having an inner tank 21 for accommodating liquid hydrogen L, an outer tank 22 surrounding the inner tank 21, and a thermal barrier layer 24 disposed in the space between the inner and outer tanks 23 between the inner tank 21 and the outer tank 22, comprising:
The boil-off gas B of the liquid hydrogen L produced in the inner vessel 21 is taken out from the inner vessel 21,
The extracted boil-off gas B is heated in the heat exchangers 42 and 52.
The heated boil-off gas B is compressed and fed to the space between the inner and outer vessels 23 by compressors 43 and 53 .
 多重殻タンク2の槽間ガス供給方法によれば、多重殻タンク2の内槽21で生じた液体水素のボイルオフガスBは直接に内外槽間23へ供給されるのではなく、熱交換器42,52で加温されてから、内外槽間23へ供給される。このように、内外槽間23へ流入するボイルオフガスBは、内槽21内のボイルオフガスBよりも高温となっており、内外槽間23に配置された防熱層24の凍結や変質を防止できる。 According to the gas supply method between tanks of the multi-shell tank 2, the boil-off gas B of liquid hydrogen generated in the inner tank 21 of the multi-shell tank 2 is not directly supplied to the tank between the inner and outer tanks 23, but is heated in the heat exchangers 42, 52 and then supplied to the tank between the inner and outer tanks 23. In this way, the boil-off gas B flowing into the tank between the inner and outer tanks 23 has a higher temperature than the boil-off gas B in the inner tank 21, which prevents the heat insulation layer 24 arranged between the inner and outer tanks 23 from freezing or deteriorating.
 本明細書で開示するコントローラ26の機能は、開示された機能を実行するように構成又はプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、及び/又は、それらの組み合わせを含む回路、又は、処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路又は回路と見做される。本開示において、回路、ユニット、又は手段は、列挙された機能を実行するハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、或いは、列挙された機能を実行するようにプログラム又は構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットは、ハードウェアとソフトウェアの組み合わせであり、ソフトウェアはハードウェア及び/又はプロセッサの構成に使用される。 The functions of the controller 26 disclosed herein can be performed using circuits or processing circuits including general purpose processors, special purpose processors, integrated circuits, ASICs (Application Specific Integrated Circuits), conventional circuits, and/or combinations thereof configured or programmed to perform the disclosed functions. Processors are considered processing circuits or circuits because they include transistors and other circuitry. In this disclosure, a circuit, unit, or means is hardware that performs the recited functions. The hardware may be hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. Where the hardware is a processor, which is considered a type of circuit, the circuit, means, or unit is a combination of hardware and software, and the software is used to configure the hardware and/or the processor.
 以上の本開示の議論は、例示及び説明の目的で提示されたものであり、本開示を本明細書に開示される形態に限定することを意図するものではない。例えば、前述の詳細な説明では、本開示の様々な特徴は、本開示を合理化する目的で1つの実施形態に纏められているが、複数の特徴のうち幾つかが組み合わされてもよい。また、本開示に含まれる複数の特徴は、上記で論じたもの以外の代替の実施形態、構成、又は態様に組み合わされてもよい。 The foregoing discussion of the present disclosure has been presented for purposes of illustration and description, and is not intended to limit the present disclosure to the form disclosed herein. For example, in the foregoing detailed description, various features of the present disclosure are grouped together in a single embodiment for purposes of streamlining the disclosure, but some of the features may be combined. Additionally, the features included in the present disclosure may be combined into alternative embodiments, configurations, or aspects other than those discussed above.

Claims (10)

  1.  液体水素を収容する内槽、前記内槽を囲む外槽、及び、前記内槽と前記外槽の間の内外槽間に配置された防熱層とを有する多重殻タンクと、
     前記内槽と接続されて、前記内槽内で生じた前記液体水素のボイルオフガスが流れ出るBOGラインと、
     前記ボイルオフガスを加温する熱交換器と、
     加温された前記ボイルオフガスを前記多重殻タンクの前記内外槽間へ供給する槽間ガス供給ラインと、
     加温された前記ボイルオフガスを前記槽間ガス供給ラインへ圧送する圧縮機と、を備える、
    液体水素貯蔵設備。
    a multi-shell tank having an inner vessel for accommodating liquid hydrogen, an outer vessel surrounding the inner vessel, and a thermal barrier layer disposed between the inner vessel and the outer vessel;
    a BOG line connected to the inner vessel through which boil-off gas of the liquid hydrogen generated in the inner vessel flows;
    A heat exchanger for heating the boil-off gas;
    an inter-vessel gas supply line for supplying the heated boil-off gas between the inner and outer vessels of the multi-shell tank;
    A compressor that pressure-transmits the heated boil-off gas to the inter-tank gas supply line.
    Liquid hydrogen storage facility.
  2.  前記熱交換器と、前記圧縮機とを有し、前記ボイルオフガスを外部へ送るガス搬送ラインを、備え、
     前記ガス搬送ラインの前記熱交換器及び前記圧縮機より上流側に前記BOGラインが接続されており、
     前記ガス搬送ラインの前記熱交換器及び前記圧縮機より下流側に前記槽間ガス供給ラインが接続されている、
    請求項1に記載の液体水素貯蔵設備。
    a gas transport line having the heat exchanger and the compressor and for sending the boil-off gas to the outside;
    The BOG line is connected to the gas transport line upstream of the heat exchanger and the compressor,
    The inter-tank gas supply line is connected to the gas transport line downstream of the heat exchanger and the compressor.
    2. The liquid hydrogen storage facility according to claim 1.
  3.  前記ガス搬送ラインは、前記BOGライン及び前記槽間ガス供給ラインに対し並列に接続された第1ガス搬送ライン及び第2ガス搬送ラインを含み、
     前記第1ガス搬送ラインが前記外部と連通されて前記第1ガス搬送ラインを通じて前記ボイルオフガスが前記外部へ送られている際に、前記第2ガス搬送ラインが前記内外槽間と連通されて前記第2ガス搬送ライン及び前記槽間ガス供給ラインを通じて前記ボイルオフガスが前記内外槽間へ送られる、
    請求項2に記載の液体水素貯蔵設備。
    the gas transport line includes a first gas transport line and a second gas transport line connected in parallel to the BOG line and the inter-tank gas supply line,
    when the first gas transport line is connected to the outside and the boil-off gas is sent to the outside through the first gas transport line, the second gas transport line is connected between the inner and outer tanks and the boil-off gas is sent between the inner and outer tanks through the second gas transport line and the inter-tank gas supply line;
    3. The liquid hydrogen storage facility according to claim 2.
  4.  前記ガス搬送ラインが、前記ボイルオフガスを外部へ送る荷役用ガスラインを含む、
    請求項2又は3に記載の液体水素貯蔵設備。
    The gas transport line includes a loading gas line that sends the boil-off gas to the outside.
    4. The liquid hydrogen storage facility according to claim 2 or 3.
  5.  前記ガス搬送ラインが、前記ボイルオフガスを燃料消費機器へ送る燃料供給ラインを含む、
    請求項2乃至4のいずれかに記載の液体水素貯蔵設備。 
    The gas transport line includes a fuel supply line that delivers the boil-off gas to a fuel consuming device.
    5. The liquid hydrogen storage facility according to claim 2.
  6.  前記槽間ガス供給ラインは、前記ボイルオフガスの前記内外槽間への供給と停止を切り替える弁を有し、
     前記多重殻タンクの前記内外槽間の圧力を検出する圧力センサと、
     前記圧力センサで検出された前記内外槽間の圧力が所定の設定槽間圧力を下回るときに、前記内外槽間の圧力が前記設定槽間圧力となるまで前記ボイルオフガスが前記内外槽間へ供給されるように前記弁を動作させるコントローラと、を備える、
    請求項1乃至5のいずれかに記載の液体水素貯蔵設備。
    the inter-tank gas supply line has a valve for switching between supply and stop of the boil-off gas between the inner and outer tanks,
    a pressure sensor for detecting a pressure between the inner and outer tanks of the multi-shell tank;
    and a controller which operates the valve so that the boil-off gas is supplied between the inner and outer tanks until the pressure between the inner and outer tanks reaches the set inter-tank pressure when the pressure between the inner and outer tanks detected by the pressure sensor falls below a predetermined set inter-tank pressure.
    6. The liquid hydrogen storage facility according to claim 1.
  7.  前記槽間ガス供給ラインは、前記ボイルオフガスを所定の槽間ガス設定温度に調温する調温器を有する、
    請求項1乃至6のいずれか一項に記載の液体水素貯蔵設備。
    The inter-tank gas supply line has a temperature regulator that regulates the temperature of the boil-off gas to a predetermined inter-tank gas set temperature.
    7. A liquid hydrogen storage facility according to claim 1.
  8.  複数の前記多重殻タンクを有し、
     前記槽間ガス供給ラインは分岐して複数の前記多重殻タンクの前記内外槽間の各々と接続されている、
    請求項1乃至7のいずれか一項に記載の液体水素貯蔵設備。
    A plurality of the multi-shell tanks,
    The inter-chamber gas supply line is branched and connected to each of the inner and outer chambers of the plurality of multi-shell tanks.
    8. A liquid hydrogen storage facility according to any one of claims 1 to 7.
  9.  船体と、
     前記船体に搭載された、請求項1乃至8のいずれか一項に記載の液体水素貯蔵設備とを、備える、
    浮体構造物。
    The hull and
    and the liquid hydrogen storage facility according to any one of claims 1 to 8, which is mounted on the hull.
    Floating structures.
  10.  液体水素を収容する内槽、前記内槽を囲む外槽、及び、前記内槽と前記外槽の間の内外槽間に配置された防熱層とを有する多重殻タンクにおいて、前記内外槽間へ槽間ガスを供給する方法であって、
     前記内槽で生じた前記液体水素のボイルオフガスを前記内槽から取り出し、
     取り出した前記ボイルオフガスを熱交換器で加温し、
     加温された前記ボイルオフガスを前記内外槽間へ圧縮機で圧送する、
    多重殻タンクの槽間ガス供給方法。
    1. A method for supplying an inter-vessel gas between an inner and outer vessel in a multi-shell tank having an inner vessel for accommodating liquid hydrogen, an outer vessel surrounding the inner vessel, and a thermal insulation layer disposed between the inner vessel and the outer vessel, comprising:
    The boil-off gas of the liquid hydrogen produced in the inner vessel is removed from the inner vessel;
    The extracted boil-off gas is heated in a heat exchanger,
    The heated boil-off gas is pressure-transferred between the inner and outer tanks by a compressor.
    A method for supplying gas between tanks in a multi-shell tank.
PCT/JP2023/004137 2023-02-08 2023-02-08 Liquid hydrogen storage equipment, floating structure, and inter-tank gas supply method for multi-shell tank WO2024166241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/004137 WO2024166241A1 (en) 2023-02-08 2023-02-08 Liquid hydrogen storage equipment, floating structure, and inter-tank gas supply method for multi-shell tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/004137 WO2024166241A1 (en) 2023-02-08 2023-02-08 Liquid hydrogen storage equipment, floating structure, and inter-tank gas supply method for multi-shell tank

Publications (1)

Publication Number Publication Date
WO2024166241A1 true WO2024166241A1 (en) 2024-08-15

Family

ID=92262179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004137 WO2024166241A1 (en) 2023-02-08 2023-02-08 Liquid hydrogen storage equipment, floating structure, and inter-tank gas supply method for multi-shell tank

Country Status (1)

Country Link
WO (1) WO2024166241A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323498A (en) * 1993-05-14 1994-11-25 Ishikawajima Harima Heavy Ind Co Ltd Liquid gas storage device and carrying vessel thereof
WO2020202578A1 (en) * 2019-04-05 2020-10-08 川崎重工業株式会社 Double-shell tank and liquefied gas carrier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323498A (en) * 1993-05-14 1994-11-25 Ishikawajima Harima Heavy Ind Co Ltd Liquid gas storage device and carrying vessel thereof
WO2020202578A1 (en) * 2019-04-05 2020-10-08 川崎重工業株式会社 Double-shell tank and liquefied gas carrier

Similar Documents

Publication Publication Date Title
US20110179810A1 (en) Method for operating a lng fuelled marine vessel
KR101788750B1 (en) Offshore structure and it&#39;s loading/unloading method, and cool down method of lng storage tank
KR101505796B1 (en) Venting apparatus for engine and fuel gas supply system in ships
CN110475713B (en) Ship with a detachable cover
WO2024166241A1 (en) Liquid hydrogen storage equipment, floating structure, and inter-tank gas supply method for multi-shell tank
JP7569683B2 (en) Portable loading and unloading equipment for liquid hydrogen
WO2021200962A1 (en) Ship
KR20120126411A (en) Vaporization type unloading apparatus and method for low temperature liquefied gas carriage ship
KR20190060743A (en) method and Apparatus for transferring liquid cargo
KR100952669B1 (en) Pressure regulating apparatus and lng carrier with the pressure regulating apparatus
JP5173890B2 (en) Ship
JP7220706B2 (en) Apparatus and method for transferring pressurized liquid cargo
KR20220074933A (en) Systems for processing gas contained in tanks for storage and/or transport of gases in liquid and gaseous phases
KR100868856B1 (en) Apparatus and method for maintaining lng cargo tank of lng carrier
JP2024503496A (en) Gas supply systems for high-pressure and low-pressure gas consumers
KR101875089B1 (en) Abnormal pressure protection apparatus for flng storage
KR20180113019A (en) Liquefied Gas Transferring Pipeline System and Gas Transferring Method for a Ship
WO2023182367A1 (en) Cooling-down method for liquefied gas storage tank
CN114423691A (en) System installed on board a ship for treating gas contained in tanks for storing and/or transporting liquid and gaseous gases
WO2023182363A1 (en) Method for cooling down liquefied gas storage tank
RU2816277C2 (en) System for treating gas contained inside tank for storing and/or transporting gas in liquefied state and gaseous state which is installed on ship
KR102262123B1 (en) Transportation system for Liquefied Natural Gas
KR102542464B1 (en) Boil-Off Gas Treatment System and Method for Electric Propulsion Ship
WO2024018768A1 (en) Floating structure
WO2023162325A1 (en) Floating body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23921073

Country of ref document: EP

Kind code of ref document: A1