WO2024162201A1 - Composition, article, and battery - Google Patents
Composition, article, and battery Download PDFInfo
- Publication number
- WO2024162201A1 WO2024162201A1 PCT/JP2024/002376 JP2024002376W WO2024162201A1 WO 2024162201 A1 WO2024162201 A1 WO 2024162201A1 JP 2024002376 W JP2024002376 W JP 2024002376W WO 2024162201 A1 WO2024162201 A1 WO 2024162201A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- mass
- acrylate
- parts
- composition
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 66
- 238000012360 testing method Methods 0.000 claims abstract description 50
- 239000000853 adhesive Substances 0.000 claims abstract description 42
- 230000001070 adhesive effect Effects 0.000 claims abstract description 42
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 15
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 117
- 239000011342 resin composition Substances 0.000 claims description 104
- 229920001971 elastomer Polymers 0.000 claims description 44
- 239000000178 monomer Substances 0.000 claims description 39
- 239000000806 elastomer Substances 0.000 claims description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 238000010521 absorption reaction Methods 0.000 claims description 12
- 125000003368 amide group Chemical group 0.000 claims description 12
- 238000007654 immersion Methods 0.000 claims description 12
- 238000002360 preparation method Methods 0.000 claims description 12
- 230000001681 protective effect Effects 0.000 claims description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 10
- 239000005060 rubber Substances 0.000 claims description 9
- 229920000459 Nitrile rubber Polymers 0.000 claims description 8
- 230000009477 glass transition Effects 0.000 claims description 8
- 230000020169 heat generation Effects 0.000 claims description 8
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 7
- 125000004122 cyclic group Chemical group 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 7
- 229920001893 acrylonitrile styrene Polymers 0.000 claims description 6
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 4
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- -1 acrylic compound Chemical class 0.000 description 37
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 16
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 15
- 238000002156 mixing Methods 0.000 description 15
- 239000003638 chemical reducing agent Substances 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 239000003505 polymerization initiator Substances 0.000 description 9
- 229910019142 PO4 Inorganic materials 0.000 description 8
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000010452 phosphate Substances 0.000 description 8
- 229920002799 BoPET Polymers 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 4
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 4
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- FSJSYDFBTIVUFD-SUKNRPLKSA-N (z)-4-hydroxypent-3-en-2-one;oxovanadium Chemical compound [V]=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O FSJSYDFBTIVUFD-SUKNRPLKSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 2
- HZRPIZSSEMKEEW-UHFFFAOYSA-N C1CO1.O=C1NC(=O)NC(=O)N1 Chemical compound C1CO1.O=C1NC(=O)NC(=O)N1 HZRPIZSSEMKEEW-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 125000002897 diene group Chemical group 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- HRDXJKGNWSUIBT-UHFFFAOYSA-N methoxybenzene Chemical group [CH2]OC1=CC=CC=C1 HRDXJKGNWSUIBT-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 150000003585 thioureas Chemical class 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- OVRQXQSDQWOJIL-UHFFFAOYSA-N 1,1-dibutylthiourea Chemical compound CCCCN(C(N)=S)CCCC OVRQXQSDQWOJIL-UHFFFAOYSA-N 0.000 description 1
- CNLHIRFQKMVKPX-UHFFFAOYSA-N 1,1-diethylthiourea Chemical compound CCN(CC)C(N)=S CNLHIRFQKMVKPX-UHFFFAOYSA-N 0.000 description 1
- FPZXQVCYHDMIIA-UHFFFAOYSA-N 1,1-diphenylthiourea Chemical compound C=1C=CC=CC=1N(C(=S)N)C1=CC=CC=C1 FPZXQVCYHDMIIA-UHFFFAOYSA-N 0.000 description 1
- JWTGRKUQJXIWCV-UHFFFAOYSA-N 1,2,3-trihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(O)C(O)CO JWTGRKUQJXIWCV-UHFFFAOYSA-N 0.000 description 1
- SBUBPFHJZHQNNT-UHFFFAOYSA-N 1,2-di(propan-2-yl)benzene hydrogen peroxide Chemical compound OO.OO.CC(C)C1=CC=CC=C1C(C)C SBUBPFHJZHQNNT-UHFFFAOYSA-N 0.000 description 1
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-UHFFFAOYSA-N Dicyclopentadiene Chemical compound C1C2C3CC=CC3C1C=C2 HECLRDQVFMWTQS-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- PDQAZBWRQCGBEV-UHFFFAOYSA-N Ethylenethiourea Chemical compound S=C1NCCN1 PDQAZBWRQCGBEV-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical group CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- KFFQABQEJATQAT-UHFFFAOYSA-N N,N'-dibutylthiourea Chemical compound CCCCNC(=S)NCCCC KFFQABQEJATQAT-UHFFFAOYSA-N 0.000 description 1
- KQJQICVXLJTWQD-UHFFFAOYSA-N N-Methylthiourea Chemical compound CNC(N)=S KQJQICVXLJTWQD-UHFFFAOYSA-N 0.000 description 1
- IPCRBOOJBPETMF-UHFFFAOYSA-N N-acetylthiourea Chemical compound CC(=O)NC(N)=S IPCRBOOJBPETMF-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical group CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- MNOILHPDHOHILI-UHFFFAOYSA-N Tetramethylthiourea Chemical compound CN(C)C(=S)N(C)C MNOILHPDHOHILI-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- RABVYVVNRHVXPJ-UHFFFAOYSA-N [3-(hydroxymethyl)-1-adamantyl]methanol Chemical compound C1C(C2)CC3CC1(CO)CC2(CO)C3 RABVYVVNRHVXPJ-UHFFFAOYSA-N 0.000 description 1
- ATMLPEJAVWINOF-UHFFFAOYSA-N acrylic acid acrylic acid Chemical compound OC(=O)C=C.OC(=O)C=C ATMLPEJAVWINOF-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- UPIWXMRIPODGLE-UHFFFAOYSA-N butyl benzenecarboperoxoate Chemical group CCCCOOC(=O)C1=CC=CC=C1 UPIWXMRIPODGLE-UHFFFAOYSA-N 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical group ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229940120693 copper naphthenate Drugs 0.000 description 1
- SEVNKWFHTNVOLD-UHFFFAOYSA-L copper;3-(4-ethylcyclohexyl)propanoate;3-(3-ethylcyclopentyl)propanoate Chemical compound [Cu+2].CCC1CCC(CCC([O-])=O)C1.CCC1CCC(CCC([O-])=O)CC1 SEVNKWFHTNVOLD-UHFFFAOYSA-L 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- GYVGXEWAOAAJEU-UHFFFAOYSA-N n,n,4-trimethylaniline Chemical compound CN(C)C1=CC=C(C)C=C1 GYVGXEWAOAAJEU-UHFFFAOYSA-N 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- DQMWMUMCNOJLSI-UHFFFAOYSA-N n-carbamothioylbenzamide Chemical compound NC(=S)NC(=O)C1=CC=CC=C1 DQMWMUMCNOJLSI-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- QUPCNWFFTANZPX-UHFFFAOYSA-M paramenthane hydroperoxide Chemical compound [O-]O.CC(C)C1CCC(C)CC1 QUPCNWFFTANZPX-UHFFFAOYSA-M 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F279/00—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
- C08F279/02—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/04—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J201/00—Adhesives based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J4/00—Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/571—Methods or arrangements for affording protection against corrosion; Selection of materials therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a composition, an article and a battery.
- Structural adhesives intended for application in automobile manufacturing include, for example, those described in the following Patent Documents 1 and 2.
- Patent Document 1 describes a composition containing the following (A) to (D), which is intended for use as an adhesive in the manufacture of automobiles.
- A a urethane (meth)acrylate having a number average molecular weight of 5,000 or more, in an amount of 40 to 75 parts by mass per 100 parts by mass of the total of (A) and (B);
- B-1) a (meth)acrylate having no urethane bond, and
- B-2) a (meth)acrylic compound containing 15 to 25 parts by mass of (meth)acrylic acid per 100 parts by mass of the total of (A) and (B);
- C a polymerization initiator; and
- D a reducing agent.
- Patent Document 2 describes a two-component adhesive consisting of a first part containing a free radical initiator and a second part containing a reducing agent, with the aim of providing a two-component adhesive having high heat resistance and moisture resistance that can be used as a structural adhesive.
- This two-component adhesive contains a first monomer which is methyl methacrylate and a second monomer selected from the group consisting of methacrylic acid, polyfunctional (meth)acrylic acid adducts of aromatic polyols or derivatives thereof, and combinations thereof.
- the overlap shear strength of the cured product of this two-component adhesive is 20 MPa or more at 25°C and 7 MPa or more at 120°C, the adhesive strength in a T-peel test at 25°C is 2 kN/m or more, and the glass transition temperature is 130°C or more.
- battery terminal protective materials used for example, as protective materials for battery terminals are required to have improved durability in high-temperature, high-humidity environments. According to the research of the present inventors, it has become clear that if the Tg of the resin composition is increased and water resistance is improved by using a low-polarity raw material in order to improve the durability of a battery terminal protection material, the surface curability is deteriorated. That is, conventional battery terminal protective materials have room for improvement in terms of improving the balance of performance between adhesive durability and surface hardening properties.
- the present invention was made in consideration of the above circumstances, and provides a composition with an improved balance of adhesive durability and surface curing properties, as well as an article and a battery using the composition.
- the inventors conducted extensive research to achieve the above object. As a result, they discovered that the performance balance between the adhesive durability and surface curing properties of the composition can be improved by setting the ratio of tensile shear adhesive strengths measured under specific conditions within a specific range, and thus completed the present invention.
- the present invention provides the following compositions, articles, and batteries.
- the tensile shear adhesive strength of the test piece obtained under the following ⁇ Preparation Condition 1> measured under the conditions of 23° C. and a tensile speed of 10 mm/min is designated as F 0 .
- a test piece obtained by the following ⁇ Preparation Condition 1> is exposed to an environment of 95°C x 95% RH for 500 hours, and then the tensile shear adhesive strength of the test piece measured under conditions of 23°C and a tensile speed of 10 mm/min is defined as F500 .
- ⁇ Preparation Condition 1> (1) The composition is applied to one side of an aluminum alloy plate (A5052P) to form a film having a thickness of 0.1 mm. (2) Another aluminum alloy plate (A5052P) is placed on the surface of the film, and the resulting laminate is left at 23° C. for 24 hours to harden the film and obtain a test piece. [2] The composition according to [1], wherein the F500 is 7.0 MPa or more. [3] The composition according to [1] or [2], wherein the F0 is 10.0 MPa or more. [4] The composition according to any one of the above [1] to [3], wherein a cured product of the composition has a glass transition temperature of 80° C. or higher, as determined by dynamic viscoelasticity measurement.
- Method 2 A K thermocouple connected to a thermologger is fixed to the bottom of a paper cup, the composition is discharged into the paper cup, and the heat generation temperature as the composition hardens is measured with the thermologger. The highest temperature is recorded as the peak heat generation temperature.
- Method 7 The composition according to any one of the above [1] to [6], comprising an amide group-containing monomer (A), a monofunctional (meth)acrylate (B), and an elastomer (C).
- monofunctional (meth)acrylate (B) contains a monofunctional (meth)acrylate (B2) having a cyclic structure.
- the composition according to any one of the above [1] to [10] which is a curable resin composition.
- An article comprising a cured product of the composition according to any one of [1] to [13] above.
- a battery comprising a cured product of the composition according to any one of [1] to [13].
- the present invention provides a composition with an improved balance of adhesive durability and surface curing properties, as well as an article and a battery using the composition.
- the expression "X to Y" in the description of a numerical range means from X to Y.
- “1 to 5% by mass” means "1% by mass to 5% by mass.”
- the content of each component preferably represents the content relative to the total content of the first agent and the second agent.
- groups atomic groups
- the notation includes both groups having no substituents and groups having a substituent.
- an "alkyl group” includes not only an alkyl group having no substituents (an unsubstituted alkyl group) but also an alkyl group having a substituent (a substituted alkyl group).
- (meth)acrylic refers to a concept that includes both acrylic and methacrylic. The same applies to similar terms such as "(meth)acrylate.”
- organic group refers to an atomic group obtained by removing one or more hydrogen atoms from an organic compound.
- a “monovalent organic group” refers to an atomic group obtained by removing one hydrogen atom from any organic compound.
- the curable resin composition of the present embodiment has a tensile shear adhesive strength of a test piece obtained under the following ⁇ Preparation Condition 1>, which is measured at 23° C. and a tensile speed of 10 mm/min, defined as F 0 , and the following ⁇
- the test piece obtained by the preparation condition 1> is exposed to an environment of 95°C x 95% RH for 500 hours, and then the tensile shear adhesive strength of the test piece is measured under the conditions of 23°C and a tensile speed of 10 mm/min.
- F is 500
- F500 / F0 is 0.70 or more.
- Preparation Condition 1 (1) The composition is applied to one side of an aluminum alloy plate (A5052P) to form a film having a thickness of 0.1 mm. (2) Another aluminum alloy plate (A5052P) is placed on the surface of the film to obtain The laminate was left to stand at 23° C. for 24 hours to harden the film and obtain a test specimen.
- A5052P aluminum alloy plate
- the curable resin composition of the present embodiment is controlled so that F500 / F0 is 0.70 or more. This allows the performance balance of adhesion durability and surface curability in the curable resin composition of the present embodiment to be improved. The reason for this is not clear, but the following reasons are thought to be the cause.
- F500 / F0 is considered to be an index related to the resistance of the cured product of the curable resin composition to changes in properties due to moisture absorption and the cured state of the cured product.
- F500 / F0 be equal to or greater than the lower limit, the cured product of the curable resin composition is prevented from changing in properties due to moisture absorption, and the cured state of the cured product is improved, so that the performance balance of adhesion durability and surface curability can be improved.
- F500 / F0 in order to adjust F500 / F0 to be within the above range, for example, the type and content ratio of each component contained in the curable resin composition of this embodiment, the order of mixing each component, the mixing method, etc. can be adjusted.
- the curable resin composition of the present embodiment has a F500 / F0 ratio of 0.70 or more, and from the viewpoint of further improving the balance of adhesive durability and surface curing properties, it is preferably 0.75 or more, more preferably 0.80 or more, and even more preferably 0.83 or more.
- the upper limit of the F500 / F0 ratio is not particularly limited, and is, for example, 1.5 or less, may be 1.2 or less, may be 1.0 or less, or may be 0.98 or less.
- the tensile shear adhesive strength (F 0 ) of the test piece obtained under the ⁇ Preparation Condition 1> described above, measured under conditions of 23° C. and a tensile speed of 10 mm/min is, from the viewpoint of further improving the performance balance of heat resistance, adhesive durability, and surface curability, preferably 10.0 MPa or more, more preferably 13.0 MPa or more, even more preferably 15.0 MPa or more, even more preferably 17.0 MPa or more, even more preferably 18.0 MPa or more, and is preferably 50.0 MPa or less, more preferably 30.0 MPa or less, even more preferably 25.0 MPa or less, even more preferably 23.0 MPa or less, even more preferably 21.0 MPa or less, even more preferably 20.0 MPa or less, even more preferably 19.0 MPa or less.
- the tensile shear adhesive strength (F 0 ) of the curable resin composition of the present embodiment can be adjusted, for example, by adjusting the type and content ratio of each component contained in the curable resin composition of the present embodiment, the mixing order and mixing method of each component, etc.
- the test piece obtained by the ⁇ Preparation Condition 1> is exposed to an environment of 95°C x 95% RH for 500 hours, and then the tensile shear adhesive strength ( F500 ) of the test piece measured under conditions of 23°C and a tensile speed of 10 mm/min is preferably 7.0 MPa or more, more preferably 8.0 MPa or more, more preferably 10.0 MPa or more, even more preferably 12.0 MPa or more, even more preferably 14.0 MPa or more, even more preferably 15.0 MPa or more, even more preferably 15.5 MPa or more, and is preferably 45.0 MPa or less, more preferably 25.0 MPa or less, even more preferably 23.0 MPa or less, even more preferably 20.0 MPa or less, even more preferably 18.0 MPa or less, even more preferably 17.5 MPa or less, from the viewpoint of further improving the performance balance of heat resistance, adhesive durability, and surface curability.
- F500 tensile shear adhesive strength
- the tensile shear adhesive strength ( F500 ) of the curable resin composition of the present embodiment can be adjusted, for example, by adjusting the type and content ratio of each component contained in the curable resin composition of the present embodiment, the mixing order and mixing method of each component, etc.
- the curable resin composition of this embodiment contains an amide group-containing monomer (A), a monofunctional (meth)acrylate (B), and an elastomer (C) from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
- the curable resin composition of the present embodiment preferably contains, as monomer components, an amide group-containing monomer (A) and a monofunctional (meth)acrylate (B).
- the monomer component refers to a compound having one or more carbon-carbon double bonds, such as a (meth)acryloyl group, a vinyl group, or an allyl group.
- the monomer component of this embodiment does not include the elastomer (C).
- the curable resin composition of the present embodiment preferably contains an amide group-containing monomer (A) from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
- the amide group-containing monomer (A) refers to a compound having an amide group and a carbon-carbon double bond such as a (meth)acryloyl group, a vinyl group, or an allyl group.
- Examples of the amide group-containing monomer (A) include (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, hydroxymethyl(meth)acrylamide, hydroxyethyl(meth)acrylamide, isopropyl(meth)acrylamide, N,N'-methylenebis(meth)acrylamide, N,N-dimethylaminopropyl(meth)acrylamide, N,N-diethylaminopropyl(meth)acrylamide, diacetone(meth)acrylamide, 4-(meth)acryloyl mol It contains one or more selected from the group consisting of N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, and 4-(meth)acryloylmorpholine, and preferably contains one or more selected from the group consisting of N,N-diethyl(meth)acrylamide and 4-(meth)acryloyl
- the content of the amide group-containing monomer (A) in the curable resin composition of this embodiment when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, is preferably 1 part by mass or more, more preferably 2 parts by mass or more, even more preferably 3 parts by mass or more, even more preferably 4 parts by mass or more, and is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, even more preferably 25 parts by mass or less, even more preferably 20 parts by mass or less, even more preferably 15 parts by mass or less, even more preferably 12 parts by mass or less.
- the curable resin composition of the present embodiment preferably contains a monofunctional (meth)acrylate (B) from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
- the monofunctional (meth)acrylate (B) refers to a compound having one (meth)acryloyl group, except that the monofunctional (meth)acrylate (B) does not include the amide group-containing monomer (A) and a phosphoric acid ester compound having a (meth)acryloyl group, which will be described later.
- the monofunctional (meth)acrylate (B) of the present embodiment does not include the elastomer (C).
- the monofunctional (meth)acrylate (B) of the present embodiment preferably contains a hydroxyl group-containing (meth)acrylate (B1).
- the hydroxyl group-containing (meth)acrylate (B1) refers to a monofunctional (meth)acrylate having one or more hydroxyl groups in the molecule.
- the hydroxyl group-containing (meth)acrylate (B1) of this embodiment does not include a phosphate compound having a (meth)acryloyl group represented by the formula (1) described below.
- the hydroxyl group-containing (meth)acrylate (B1) may be, for example, selected from the group consisting of 2-hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, glycerol mono(meth)acrylate, 1,6-hexanediol mono(meth)acrylate, neopentyl glycol mono(meth)acrylate, 4-hydroxycyclohexyl (meth)acrylate, and 1,4-butanediol mono(meth)acrylate.
- the acrylate acrylate or acrylate copolymer may include one or more selected from the group consisting of 2-hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate, preferably one or more selected from the group consisting of 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate, more preferably one or more selected from the group consisting of 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate, and even more preferably 2-hydroxyethyl (meth)acrylate.
- the content of the hydroxyl group-containing (meth)acrylate (B1) in the curable resin composition of this embodiment is, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, preferably 1 part by mass or more, more preferably 2 parts by mass or more, even more preferably 3 parts by mass or more, even more preferably 4 parts by mass or more, and is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, even more preferably 25 parts by mass or less, even more preferably 20 parts by mass or less, even more preferably 15 parts by mass or less, even more preferably 12 parts by mass or less.
- the total content of the amide group-containing monomer (A) and the hydroxyl group-containing (meth)acrylate (B1) in the curable resin composition of this embodiment is, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, preferably 5 parts by mass or more, more preferably 8 parts by mass or more, even more preferably 10 parts by mass or more, even more preferably 13 parts by mass or more, even more preferably 15 parts by mass or more, even more preferably 18 parts by mass or more, and is preferably 40 parts by mass or less, more preferably 35 parts by mass or less, even more preferably 30 parts by mass or less, even more preferably 25 parts by mass or less.
- the monofunctional (meth)acrylate (B) of the present embodiment preferably contains a monofunctional (meth)acrylate (B2) having a cyclic structure.
- the monofunctional (meth)acrylate (B2) having a cyclic structure preferably contains a monomer represented by the following general formula (I).
- R1 is a hydrogen atom or a methyl group
- R2 is a group containing a cyclic hydrocarbon skeleton, preferably a group containing a polycyclic cyclic hydrocarbon skeleton.
- the cyclic hydrocarbon skeleton contained in R2 is preferably an alicyclic skeleton not containing an aromatic ring.
- the monofunctional (meth)acrylate (B2) having a cyclic structure preferably includes one or more selected from the group consisting of dicyclopentenyloxyethyl (meth)acrylate, norbornene (meth)acrylate, dicyclopentanyl (meth)acrylate, isobornyl (meth)acrylate, phenoxymethyl (meth)acrylate, phenoxyethyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, and cyclohexyl (meth)acrylate, more preferably includes one or more selected from the group consisting of phenoxymethyl (meth)acrylate, phenoxyethyl (meth)acrylate, isobornyl (meth)acrylate, and dicyclopentanyl (meth)acrylate, even more preferably includes one or more selected from the group consisting of phenoxyethyl (meth)acrylate and isobornyl (meth)acrylate, and even more preferably
- the content of the monofunctional (meth)acrylate (B2) having a cyclic structure in the curable resin composition of this embodiment is, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, preferably 20 parts by mass or more, more preferably 25 parts by mass or more, even more preferably 30 parts by mass or more, even more preferably 35 parts by mass or more, and is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, even more preferably 60 parts by mass or less, even more preferably 55 parts by mass or less.
- the content of the monofunctional (meth)acrylate (B) in the curable resin composition of this embodiment is, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, preferably 30 parts by mass or more, more preferably 35 parts by mass or more, even more preferably 40 parts by mass or more, even more preferably 45 parts by mass or more, and is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, even more preferably 60 parts by mass or less, even more preferably 55 parts by mass or less.
- the curable resin composition of the present embodiment may contain a polyfunctional (meth)acrylate (D) as a monomer component from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
- the polyfunctional (meth)acrylate (D) refers to a compound having two or more (meth)acryloyl groups, except that the polyfunctional (meth)acrylate (D) does not include the amide group-containing monomer (A) and a phosphoric acid ester compound having a (meth)acryloyl group, which will be described later.
- the polyfunctional (meth)acrylate (D) of the present embodiment does not include the elastomer (C).
- the polyfunctional (meth)acrylate (D) preferably contains 2 to 6 (meth)acryloyl groups, more preferably contains 2 to 4 (meth)acryloyl groups, even more preferably contains 2 to 3 (meth)acryloyl groups, and still more preferably contains 2 (meth)acryloyl groups.
- the polyfunctional (meth)acrylate (D) preferably includes one or more selected from the group consisting of polyfunctional (meth)acrylates having an alicyclic structure, polyfunctional (meth)acrylates having an aromatic ring structure, and polyfunctional (meth)acrylates having an aliphatic chain structure.
- polyfunctional (meth)acrylates having an alicyclic structure include one or more selected from the group consisting of dicyclopentanyl di(meth)acrylate, 1,3-adamantanedimethanol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, dimethylol-tricyclodecane di(meth)acrylate, and dimethylol-cyclohexane di(meth)acrylate, etc.
- dicyclopentanyl di(meth)acrylate is preferred.
- polyfunctional (meth)acrylates having an aromatic ring structure include one or more selected from the group consisting of 2,2-bis(4-(meth)acryloxydiethoxyphenyl)propane, 2,2-bis(4-(meth)acryloxypropoxyphenyl)propane, 2,2-bis(4-(meth)acryloxytetraethoxyphenyl)propane, ethylene oxide-added bisphenol A di(meth)acrylate (EO-modified BPA di(meth)acrylate), ethylene oxide-added bisphenol F di(meth)acrylate, propylene oxide-added bisphenol A di(meth)acrylate, and propylene oxide-added bisphenol F di(meth)acrylate.
- EO-modified BPA di(meth)acrylate ethylene oxide-added bisphenol F di(meth)acrylate
- propylene oxide-added bisphenol A di(meth)acrylate propylene oxide
- ethylene oxide-added bisphenol A di(meth)acrylate is preferred.
- polyfunctional (meth)acrylates having an aliphatic chain structure include 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexadiol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, neopentyl glycol modified trimethylolpropane di(meth)acrylate, stearic acid modified pentaerythritol di(meth)acrylate, tripropylene glycol di(meth)acrylate, and isocyanuric acid ethylene oxide modified di(meth)acrylate.
- the polyfunctional (meth)acrylate (D) more preferably includes one or more selected from the group consisting of dicyclopentanyl di(meth)acrylate, ethylene oxide-added bisphenol A di(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate, and even more preferably includes dicyclopentanyl di(meth)acrylate.
- the content of the polyfunctional (meth)acrylate (D) in the curable resin composition of this embodiment is, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, preferably 1 part by mass or more, more preferably 2 parts by mass or more, even more preferably 3 parts by mass or more, even more preferably 4 parts by mass or more, and is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, even more preferably 20 parts by mass or less, even more preferably 15 parts by mass or less, even more preferably 10 parts by mass or less, even more preferably 8 parts by mass or less.
- the content of the monomer component in the curable resin composition of this embodiment when the total content of the monomer component and the elastomer (C) is taken as 100 parts by mass, is preferably 40 parts by mass or more, more preferably 50 parts by mass or more, even more preferably 55 parts by mass or more, even more preferably 60 parts by mass or more, and is preferably 90 parts by mass or less, more preferably 85 parts by mass or less, even more preferably 80 parts by mass or less, even more preferably 75 parts by mass or less, even more preferably 70 parts by mass or less.
- the curable resin composition of the present embodiment preferably contains an elastomer (C) from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
- the elastomer (C) preferably has a soft segment unit.
- the soft segment unit preferably contains one or more selected from the group consisting of a diene structure, an ethylene structure, a propylene structure, an isoprene structure, a urethane structure, an ethylene glycol structure, a propylene glycol structure, a silicone structure, and a chloroprene structure, and more preferably contains a diene structure such as a butadiene structure.
- the elastomer (C) may have a hard segment in addition to the soft segment unit.
- the "soft segment” refers to a flexible portion exhibiting rubber elasticity.
- the "hard segment” refers to a molecular restraint portion that serves as a crosslinking point of a crosslinked rubber that prevents plastic deformation.
- the content of the soft segment units in the elastomer (C) is preferably 15% by mass or more and 90% by mass or less, more preferably 25% by mass or more and 85% by mass or less, based on the entire elastomer (C) of this embodiment.
- the elastomer (C) preferably contains one or more selected from the group consisting of (meth)acrylonitrile-butadiene rubber, methyl (meth)acrylate-butadiene-styrene rubber, and methyl (meth)acrylate-butadiene-(meth)acrylonitrile-styrene rubber, more preferably contains one or two selected from the group consisting of (meth)acrylonitrile-butadiene rubber and methyl (meth)acrylate-butadiene-(meth)acrylonitrile-styrene rubber, and even more preferably contains both (meth)acrylonitrile-butadiene rubber and methyl (meth)acrylate-butadiene-(meth)acrylonitrile-styrene rubber.
- the curable resin composition of this embodiment may contain only one elastomer, or may contain two or more elastomers.
- one or two selected from the group consisting of the above-mentioned methyl (meth)acrylate-butadiene-styrene rubber and methyl (meth)acrylate-butadiene-(meth)acrylonitrile-styrene rubber may be used in combination with (meth)acrylonitrile-butadiene rubber.
- the content of elastomer (C) in the curable resin composition of this embodiment when the total content of the monomer components and elastomer (C) is 100 parts by mass, is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, even more preferably 20 parts by mass or more, even more preferably 25 parts by mass or more, even more preferably 30 parts by mass or more, and is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, even more preferably 45 parts by mass or less, even more preferably 40 parts by mass or less.
- the total content of the monomer components and elastomer (C) in the curable resin composition of this embodiment is preferably 50 mass% or more, more preferably 60 mass% or more, even more preferably 70 mass% or more, even more preferably 80 mass% or more, even more preferably 90 mass% or more, even more preferably 93 mass% or more, and may be, for example, 100 mass% or less, or may be 98 mass% or less, or 97 mass% or less.
- the curable resin composition of the present embodiment preferably contains a polymerization initiator, which polymerizes the carbon-carbon double bonds of the monomer components, thereby improving the adhesiveness.
- the polymerization initiator preferably contains a thermal radical polymerization initiator.
- the thermal radical polymerization initiator preferably contains an organic peroxide, more preferably contains one or more selected from the group consisting of cumene hydroperoxide, paramenthane hydroperoxide, tertiary butyl hydroperoxide, diisopropylbenzene dihydroperoxide, methyl ethyl ketone peroxide, and tertiary butyl peroxybenzoate, and further preferably contains cumene hydroperoxide.
- the content of the polymerization initiator in the curable resin composition of this embodiment when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, even more preferably 1.0 parts by mass or more, even more preferably 1.5 parts by mass or more, even more preferably 2.0 parts by mass or more, and is preferably 20.0 parts by mass or less, more preferably 15.0 parts by mass or less, even more preferably 12.0 parts by mass or less, even more preferably 10.0 parts by mass or less, even more preferably 8.0 parts by mass or less, even more preferably 6.0 parts by mass or less, even more preferably 4.0 parts by mass or less, even more preferably 3.0 parts by mass or less.
- the curable resin composition of the present embodiment preferably contains a reducing agent.
- the curable resin composition of the present embodiment can further improve the curability by using a polymerization initiator and a reducing agent in combination.
- the reducing agent may be any reducing agent that reacts with the polymerization initiator to generate radicals.
- the reducing agent preferably includes one or more selected from the group consisting of a tertiary amine, a thiourea derivative, and a transition metal salt, and more preferably includes a transition metal salt.
- Examples of the tertiary amine include one or more selected from the group consisting of triethylamine, tripropylamine, tributylamine, and N,N-dimethyl-p-toluidine.
- Examples of the thiourea derivative include one or more selected from the group consisting of 2-mercaptobenzimidazole, methylthiourea, dibutylthiourea, ethylenethiourea, acetyl-2-thiourea, benzoylthiourea, N,N-diphenylthiourea, N,N-diethylthiourea, N,N-dibutylthiourea, and tetramethylthiourea.
- transition metal salt examples include one or more selected from the group consisting of cobalt naphthenate, copper naphthenate, vanadyl acetylacetonate, etc. More preferably, the transition metal salt includes vanadyl acetylacetonate.
- the content of the reducing agent in the curable resin composition of this embodiment when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, even more preferably 0.10 parts by mass or more, even more preferably 0.15 parts by mass or more, even more preferably 0.20 parts by mass or more, and is preferably 10.0 parts by mass or less, more preferably 5.0 parts by mass or less, even more preferably 3.0 parts by mass or less, even more preferably 2.0 parts by mass or less, even more preferably 1.0 parts by mass or less, even more preferably 0.50 parts by mass or less.
- the curable resin composition of the present embodiment may or may not contain other components in addition to the above.
- examples of other components include a phosphate ester compound having a (meth)acryloyl group, paraffin, a stabilizer, and the like.
- the curable resin composition of the present embodiment may contain various stabilizers from the viewpoint of further improving storage stability.
- Examples of types of stabilizers include (i) phenol-based antioxidants (e.g., 2,2'-methylenebis(4-methyl-6-t-butylphenol) and the like), (ii) quinone-based compounds (e.g., p-benzoquinone, hydroquinone monomethyl ether and the like), (iii) compounds known as polymerization inhibitors (e.g., amine-based polymerization inhibitors such as phenothiazine, citric acid and the like), and (iv) stable radical-type compounds having a stable radical.
- a phosphate ester compound having a (meth)acryloyl group is preferred from the viewpoint of improving surface curability.
- the phosphate ester compound having a (meth)acryloyl group may be used alone or in combination of two or more kinds.
- the phosphate compound having a (meth)acryloyl group is preferably a compound represented by formula (1).
- R is CH 2 ⁇ CR 1 CO(OR 2 ) m — (R 1 and R 2 are hydrocarbon groups, m is 1 to 10), and n is 1 or 2.
- R 1 is preferably —H or —CH 3.
- R 2 is preferably an alkylene group.
- R 2 is preferably —C 2 H 4 —, —C 3 H 6 —, —CH 2 CH(CH 3 )—, —C 4 H 8 —, —C 5 H 10 —, —C 6 H 12 — or —C 2 H 4 —O—CO—C 5 H 10 —.
- the total content of the other components in the curable resin composition of this embodiment when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, is, for example, 0.001 parts by mass or more, preferably 0.005 parts by mass or more, more preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, more preferably 0.10 parts by mass or more, more preferably 0.5 parts by mass or more, even more preferably 1.0 parts by mass or more, and is preferably 30.0 parts by mass or less, more preferably 20.0 parts by mass or less, more preferably 15.0 parts by mass or less, even more preferably 10.0 parts by mass or less, even more preferably 5.0 parts by mass or less.
- the glass transition temperature of the cured product obtained by curing the composition at 23° C. for 24 hours is preferably 80° C. or higher, more preferably 90° C. or higher, even more preferably 95° C. or higher, even more preferably 100° C. or higher, even more preferably 106° C. or higher, and even more preferably 108° C. or higher, from the viewpoint of further improving the performance balance of heat resistance, adhesion durability, and surface curability.
- the upper limit of the glass transition temperature is not particularly limited, and is, for example, 200° C. or lower, 150° C. or lower, 130° C.
- the glass transition temperature of the cured product of the curable resin composition of the present embodiment can be adjusted, for example, by adjusting the type and content ratio of each component contained in the curable resin composition of the present embodiment, the mixing order and mixing method of each component, etc.
- the water absorption measured by the following method 1 is preferably 5.0% or less, more preferably 3.0% or less, even more preferably 2.5% or less, even more preferably 2.0% or less, and even more preferably 1.8% or less, from the viewpoint of further improving the performance balance between adhesion durability and surface curability.
- the lower limit of the water absorption is not particularly limited, and is, for example, 0.1% or more, 0.5% or more, 0.8% or more, 1.0% or more, or 1.2% or more.
- Method 1 The curable resin composition is treated at 23°C for 24 hours to prepare a cured sample of 5 mm x 40 mm x 0.5 mm. The obtained cured sample is then immersed in water at 70°C for 24 hours.
- the water absorption (%) is calculated from the change in mass before and after immersion in water based on the formula ( W2 - W1 )/ W1 x 100.
- the exothermic peak temperature measured by the following method 2 is preferably 50° C. or higher, more preferably 60° C. or higher, even more preferably 70° C. or higher, even more preferably 80° C. or higher, even more preferably 90° C. or higher, even more preferably 100° C. or higher, and even more preferably 110° C. or higher, from the viewpoint of further improving the performance balance between adhesion durability and surface curability.
- the upper limit of the exothermic peak temperature is not particularly limited, and is, for example, 200° C. or lower, 150° C. or lower, 130° C. or lower, 125° C. or lower, or 120° C. or lower.
- Method 2 A K thermocouple connected to a thermologger is fixed to the bottom of a paper cup, the curable resin composition is discharged into the paper cup, and the heat generation temperature when the curable resin composition cures is measured with the thermologger. The highest temperature is taken as the heat generation peak temperature.
- the curable resin composition of the present embodiment may be a one-component type or a two-component type (two components filled in separate containers are mixed together immediately before use).
- the polymerization initiator is preferably contained in the first component
- the reducing agent is preferably contained in the second component.
- the curable resin composition of the present embodiment is a two-part type, it is preferable to adjust the amount of each component in the first and second parts so that the curable resin composition after mixing the first and second parts contains each component in the preferred content range described above.
- various properties of the curable resin composition described in this specification relate to the curable resin composition after mixing the first and second parts.
- ⁇ Method for producing curable resin composition> In producing the curable resin composition of the present embodiment, it is preferable to appropriately adjust the mixing order, mixing method, etc. of the components, rather than simply mixing the components described above. In the production of the curable resin composition of this embodiment, it is particularly preferable that the monomer components and the elastomer (C) are mixed sufficiently. For this reason, it is preferable to (i) first mix at least a part of the monomer components and at least a part of the elastomer (C) sufficiently uniformly at 50 to 80° C. to obtain a mixture, and (ii) then add other components to the mixture and stir it. By doing so, it is considered that the monomer components and the elastomer (C) are mixed sufficiently uniformly.
- the curable resin composition produced in this way tends to easily satisfy, for example, the characteristics of the curable resin composition described above (glass transition temperature, tensile shear adhesive strength, etc.) compared to curable resin compositions obtained by other production methods.
- the curable resin composition of the present embodiment has an improved performance balance between adhesion durability and surface curability, and therefore can be suitably used as a material for batteries that are exposed to high temperature and high humidity environments such as engine rooms for long periods of time, and can be more suitably used as a protective material for battery terminals, and can be even more suitably used as a protective material for vehicle-mounted battery terminals.
- the protective material for the battery terminals is a coating applied to the battery terminals for the purpose of preventing corrosion of the battery terminals.
- the battery terminals are made of a metal material such as aluminum.
- the article of the present embodiment includes a cured product made of the curable resin composition of the present embodiment.
- a cured product of the curable resin composition of the present embodiment By applying the curable resin composition of the present embodiment to an article and curing it, an article including a cured product of the curable resin composition can be obtained.
- the curable resin composition of the present embodiment can be cured (at room temperature) without heating and can bond articles (particularly when it contains a polymerization initiator and a reducing agent). Of course, heating is not excluded when bonding articles.
- the battery of the present embodiment includes a cured product made of the curable resin composition of the present embodiment.
- the battery of the present embodiment includes, for example, a battery main body and a battery terminal, and a protective material for protecting the battery terminal includes a cured product made of the curable resin composition of the present embodiment. In this case, it is preferable that the battery terminal in the battery of the present embodiment is covered with the cured product made of the curable resin composition of the present embodiment.
- the battery of the present embodiment includes a cured product made of the curable resin composition of the present embodiment, and therefore has improved durability in high-temperature and high-humidity environments.
- the curable resin composition has been mainly described.
- the curable resin composition described in this specification can also be used in fields other than protective materials, such as adhesives, coating materials, and injection agents.
- the curable resin composition described in this specification can also be used as a composition with no limited use, a coating agent, or an adhesive composition.
- the composition of this embodiment can also be used, for example, as a so-called adhesive, sealant, photosensitive resin layer, insulating resin layer, thermally conductive resin layer, coating material, etc.
- Examples 1 to 6 and Comparative Examples 1 to 2 The first and second agents were prepared by thoroughly mixing each component in the ratio (unit: parts by mass) shown in Table 1 using a stirring device equipped with a stirring blade. Next, equal amounts of the first and second agents were mixed to prepare a curable resin composition. The following evaluations were performed using the obtained curable resin composition. The obtained results are shown in Table 1. Note that the units of the ratios of each component in Table 1 are all parts by mass. In the preparation of the first and second agents, the monomer components and the elastomer (C) were mixed thoroughly and uniformly at 50 to 80° C. to prepare a mixture, and then other components were added to the mixture and stirred, followed by degassing treatment to prepare the first and second agents, respectively.
- the monomer components and the elastomer (C) were mixed thoroughly and uniformly at 50 to 80° C. to prepare a mixture, and then other components were added to the mixture and stirred, followed by degassing treatment to prepare the first and second agents, respectively.
- BL-20 methyl methacrylate, butadiene, acrylonitrile, styrene rubber (methyl methacrylate content 15% by mass, butadiene content 46% by mass, acrylonitrile content 3% by mass, styrene content 36% by mass, soft segment unit content 46% by mass)
- 1300X33VTBNX LC acrylonitrile butadiene rubber having methacryloyl groups at both ends (acrylonitrile content 18% by mass, soft segment unit content 82% by mass)
- N250SL acrylonitrile-butadiene rubber (acrylonitrile content 19.5% by mass, soft segment unit content 81% by mass)
- DCPD type dimethacrylate dicyclopentanyl dimethacrylate
- SIPOMER PAM 4000 phosphate ester of 2-hydroxyethyl methacrylate (in the above formula (1), R is CH 2 ⁇ CR 1 CO(OR 2 ) m — (R 1
- test piece was aged at room temperature (23 ° C.) for 24 hours. In this way, a test piece for measuring tensile shear bond strength was obtained.
- a polyethylene filler having a particle size of 100 ⁇ m manufactured by Prime Polymer Co., Ltd., product name: Hi-Zex 2100JPD
- the amount of the polyethylene filler used was 0.5 parts by mass with respect to 100 parts by mass of the monomer component.
- a tensile shear bond test was performed using an Instron universal testing machine Model 5967 under conditions of a temperature of 23° C., a relative humidity of 50%, and a tensile speed of 10 mm/min, to measure the tensile shear bond strength F0 .
- the test pieces for measuring the tensile shear adhesive strength were placed in a thermohygrostat (GPL-3, manufactured by ESPEC) and exposed to an environment of 95° C. ⁇ 95% RH for 500 hours.
- a tensile shear bond test was performed using an Instron universal testing machine Model 5967 under conditions of a temperature of 23°C, a relative humidity of 50%, and a tensile speed of 10 mm/min, to measure the tensile shear bond strength F 500 .
- F 500 /F 0 was calculated from the obtained tensile shear adhesive strength F 0 and tensile shear adhesive strength F 500 .
- test piece a cured product (test piece) of the curable resin composition for measuring dynamic viscoelasticity was prepared. Specifically, the test piece was prepared as follows (1) to (3).
- a 0.5 mm thick silicone sheet with a 5 mm x 40 mm hole was placed on a PET film.
- a curable resin composition was applied to the hole to form a coating film.
- Another PET film was laminated on the coating film. Then, both sides were sandwiched between 1 cm thick glass plates, and a weight was placed on top to press the film. In this state, the film was aged for 24 hours in a room at a temperature of 23°C and a relative humidity of 50 RH%.
- the dynamic viscoelastic properties of the obtained test specimens were measured using a dynamic viscoelasticity measuring device (DMS7100, manufactured by SII) under the following conditions: frequency: 1.0 Hz, mode: tensile mode, measurement temperature range: 0°C to 250°C, heating rate: 5°C/min, and data was obtained. Based on the obtained data, the peak top temperature of the loss tangent (tan ⁇ ) (tan ⁇ peak value, i.e., glass transition temperature) was obtained from the temperature-loss tangent (tan ⁇ ) curve.
- DMS7100 dynamic viscoelasticity measuring device
- test piece a cured product (test piece) of the curable resin composition for measuring water absorption was prepared. Specifically, the test piece was prepared as follows (1) to (3).
- a 0.5 mm thick silicone sheet with a 5 mm x 40 mm hole was placed on a PET film.
- a curable resin composition was applied to the hole to form a coating film.
- Another PET film was laminated on the coating film. Then, both sides were sandwiched between 1 cm thick glass plates, and a weight was placed on top to press the film. In this state, the film was aged for 24 hours in a room at a temperature of 23°C and a relative humidity of 50 RH%. Then, the pressure was released and the PET film was peeled off.
- thermologger connected to a thermologger was fixed to the bottom of a paper cup, and 10 g of a curable resin composition was discharged into the paper cup. The heat generation temperature when the curable resin composition cured was measured with the thermologger, and the highest temperature was recorded as the peak heat generation temperature.
- test piece a cured product (test piece) of the curable resin composition for evaluating surface curability was prepared. Specifically, the test piece was prepared as follows (1) and (2).
- a 0.5 mm thick silicone sheet with a 5 mm x 40 mm hole was placed on a PET film. A curable resin composition was applied to the hole to form a coating film.
- the sheet was cured for 5 hours in a room at a temperature of 23° C. and a relative humidity of 50 RH%, thereby obtaining a sheet-like cured product (test piece).
- AA was used for no tackiness
- A for almost no tackiness (slightly tacky)
- B for sufficient tackiness
- C for sticky.
- A was used when the curable resin composition underwent full-surface cohesive failure
- B was used when 50% or more of the adhesive area was the cohesive failure of the curable resin composition, and the remainder peeled off at the interface between the aluminum alloy plate and the curable resin composition
- C was used when less than 50% of the adhesive area was the cohesive failure of the curable resin composition, and the remainder peeled off at the interface between the aluminum alloy plate and the curable resin composition
- D was used when the entire surface peeled off at the interface between the aluminum alloy plate and the curable resin composition.
- the ratio of the area of the cohesive failure portion to the entire adhesive area is large.
- the composition of the curable resin composition and the measurement and evaluation results are shown in Table 1.
- Table 1 the amount of each component of the curable resin composition is expressed in parts by mass.
- the curable resin compositions of Examples 1 to 6 had an improved balance of adhesive durability and surface curability compared to the curable resin compositions of Comparative Examples 1 and 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
A composition in which F500/F0 is 0.70 or more, where F0 is the tensile shear adhesive strength as measured under the conditions of 23°C and a tension rate of 10 mm/min of a test piece obtained by fabrication condition 1, and F500 is the tensile shear adhesive strength as measured under the conditions of 23°C and a tension rate of 10 mm/min of the test piece after the test piece obtained by fabrication condition 1 is exposed to an environment of 95°C and 95% RH for 500 hours. Fabrication condition 1: (1) said composition is applied to one surface of an aluminum alloy sheet (A5052P) to form a film having a thickness of 0.1 mm, and (2) another aluminum alloy sheet (A5052P) is superposed on the surface of the film, and the obtained laminate is allowed to stand at 23°C for 24 hours to cure the film and thus obtain a test piece.
Description
本発明は、組成物、物品およびバッテリーに関する。
The present invention relates to a composition, an article and a battery.
自動車の製造には様々な構造用接着剤が用いられている。
自動車の製造に適用することが意図された構造用接着剤として、例えば、以下の特許文献1および2に記載のものが挙げられる。 A variety of structural adhesives are used in the manufacture of automobiles.
Structural adhesives intended for application in automobile manufacturing include, for example, those described in the following Patent Documents 1 and 2.
自動車の製造に適用することが意図された構造用接着剤として、例えば、以下の特許文献1および2に記載のものが挙げられる。 A variety of structural adhesives are used in the manufacture of automobiles.
Structural adhesives intended for application in automobile manufacturing include, for example, those described in the following Patent Documents 1 and 2.
特許文献1には、自動車の製造に用いられる接着剤としての利用を意図した、以下(A)~(D)を含有する組成物が記載されている。
(A)数平均分子量が5000以上のウレタン(メタ)アクリレートを、(A)と(B)の合計100質量部に対して40~75質量部
(B-1)ウレタン結合を有さない(メタ)アクリレートおよび(B-2)(メタ)アクリル酸を(A)と(B)の合計100質量部に対して15~25質量部を含有する(B)(メタ)アクリル化合物
(C)重合開始剤
(D)還元剤 Patent Document 1 describes a composition containing the following (A) to (D), which is intended for use as an adhesive in the manufacture of automobiles.
(A) a urethane (meth)acrylate having a number average molecular weight of 5,000 or more, in an amount of 40 to 75 parts by mass per 100 parts by mass of the total of (A) and (B); (B-1) a (meth)acrylate having no urethane bond, and (B-2) a (meth)acrylic compound containing 15 to 25 parts by mass of (meth)acrylic acid per 100 parts by mass of the total of (A) and (B); (C) a polymerization initiator; and (D) a reducing agent.
(A)数平均分子量が5000以上のウレタン(メタ)アクリレートを、(A)と(B)の合計100質量部に対して40~75質量部
(B-1)ウレタン結合を有さない(メタ)アクリレートおよび(B-2)(メタ)アクリル酸を(A)と(B)の合計100質量部に対して15~25質量部を含有する(B)(メタ)アクリル化合物
(C)重合開始剤
(D)還元剤 Patent Document 1 describes a composition containing the following (A) to (D), which is intended for use as an adhesive in the manufacture of automobiles.
(A) a urethane (meth)acrylate having a number average molecular weight of 5,000 or more, in an amount of 40 to 75 parts by mass per 100 parts by mass of the total of (A) and (B); (B-1) a (meth)acrylate having no urethane bond, and (B-2) a (meth)acrylic compound containing 15 to 25 parts by mass of (meth)acrylic acid per 100 parts by mass of the total of (A) and (B); (C) a polymerization initiator; and (D) a reducing agent.
特許文献2には、構造用接着剤として使用することが可能な、高い耐熱性と耐湿性を有する2液型接着剤を提供することを目的として、フリーラジカル開始剤を含む第一剤と、還元剤を含む第二剤とからなる2液型接着剤が記載されている。この2液型接着剤は、メチルメタクリレートである第1モノマーと、メタクリル酸、芳香族ポリオール又はその誘導体の多官能(メタ)アクリル酸付加物、およびこれらの組み合わせからなる群より選択される第2モノマーとを含む。この2液型接着剤の硬化物の重ね合わせ剪断強度は、25℃で20MPa以上、120℃で7MPa以上であり、25℃でのT型剥離試験による接着力は、2kN/m以上であり、ガラス転移温度は130℃以上である。
Patent Document 2 describes a two-component adhesive consisting of a first part containing a free radical initiator and a second part containing a reducing agent, with the aim of providing a two-component adhesive having high heat resistance and moisture resistance that can be used as a structural adhesive. This two-component adhesive contains a first monomer which is methyl methacrylate and a second monomer selected from the group consisting of methacrylic acid, polyfunctional (meth)acrylic acid adducts of aromatic polyols or derivatives thereof, and combinations thereof. The overlap shear strength of the cured product of this two-component adhesive is 20 MPa or more at 25°C and 7 MPa or more at 120°C, the adhesive strength in a T-peel test at 25°C is 2 kN/m or more, and the glass transition temperature is 130°C or more.
バッテリーは、エンジンルーム等の高温多湿環境下に長期間曝されるため、例えばバッテリー端子部の保護材等に用いられるバッテリー用端子保護材には、高温多湿環境下における耐久性の向上が求められている。
本発明者らの検討によれば、バッテリー用端子保護材の耐久性を向上させるために樹脂組成物を高Tg化し、低極性の原材料を用いることで耐水性を向上させると、表面硬化性が悪化してしまうことが明らかになった。
すなわち、従来のバッテリー用端子保護材には、接着耐久性および表面硬化性の性能バランスを向上させるという観点において改善の余地があった。 Since batteries are exposed to high-temperature, high-humidity environments such as engine compartments for long periods of time, battery terminal protective materials used, for example, as protective materials for battery terminals are required to have improved durability in high-temperature, high-humidity environments.
According to the research of the present inventors, it has become clear that if the Tg of the resin composition is increased and water resistance is improved by using a low-polarity raw material in order to improve the durability of a battery terminal protection material, the surface curability is deteriorated.
That is, conventional battery terminal protective materials have room for improvement in terms of improving the balance of performance between adhesive durability and surface hardening properties.
本発明者らの検討によれば、バッテリー用端子保護材の耐久性を向上させるために樹脂組成物を高Tg化し、低極性の原材料を用いることで耐水性を向上させると、表面硬化性が悪化してしまうことが明らかになった。
すなわち、従来のバッテリー用端子保護材には、接着耐久性および表面硬化性の性能バランスを向上させるという観点において改善の余地があった。 Since batteries are exposed to high-temperature, high-humidity environments such as engine compartments for long periods of time, battery terminal protective materials used, for example, as protective materials for battery terminals are required to have improved durability in high-temperature, high-humidity environments.
According to the research of the present inventors, it has become clear that if the Tg of the resin composition is increased and water resistance is improved by using a low-polarity raw material in order to improve the durability of a battery terminal protection material, the surface curability is deteriorated.
That is, conventional battery terminal protective materials have room for improvement in terms of improving the balance of performance between adhesive durability and surface hardening properties.
本発明は上記事情に鑑みてなされたものであり、接着耐久性および表面硬化性の性能バランスが向上した組成物、並びに、その組成物を用いた物品およびバッテリーを提供するものである。
The present invention was made in consideration of the above circumstances, and provides a composition with an improved balance of adhesive durability and surface curing properties, as well as an article and a battery using the composition.
本発明者らは、上記課題を達成するために鋭意検討を重ねた。その結果、特定の条件で測定される引張せん断接着強さの比が特定の範囲であることにより、組成物の接着耐久性および表面硬化性の性能バランスを向上できることを見出して、本発明を完成させた。
The inventors conducted extensive research to achieve the above object. As a result, they discovered that the performance balance between the adhesive durability and surface curing properties of the composition can be improved by setting the ratio of tensile shear adhesive strengths measured under specific conditions within a specific range, and thus completed the present invention.
本発明によれば、以下に示す組成物、物品およびバッテリーが提供される。
The present invention provides the following compositions, articles, and batteries.
[1]
23℃および引張速度10mm/分の条件で測定される、下記<作製条件1>により得られる試験片の引張せん断接着強さをF0とし、
下記<作製条件1>により得られる試験片を95℃×95%RHの環境下に500時間暴露した後、23℃および引張速度10mm/分の条件で測定される、前記試験片の引張せん断接着強さをF500としたとき、
F500/F0が0.70以上である組成物。
<作製条件1>
(1)アルミニウム合金板(A5052P)の片面に前記組成物を塗布して厚み0.1mmの膜を形成する
(2)前記膜の表面に別のアルミニウム合金板(A5052P)を重ねて、得られた積層体を23℃で24時間静置することにより前記膜を硬化させて試験片を得る
[2]
前記F500が7.0MPa以上である、前記[1]に記載の組成物。
[3]
前記F0が10.0MPa以上である、前記[1]または[2]に記載の組成物。
[4]
動的粘弾性測定により求められる、前記組成物からなる硬化物のガラス転移温度が80℃以上である、前記[1]~[3]のいずれかに記載の組成物。
[5]
下記方法1により測定される吸水率が5.0%以下である、前記[1]~[4]のいずれかに記載の組成物。
(方法1)
前記組成物を23℃、24時間処理することにより、5mm×40mm×0.5mmの硬化物サンプルを作製し、次いで、得られた前記硬化物サンプルを70℃の水中に24時間浸漬し、水中に浸漬する前の前記硬化物サンプルの質量をW1(g)とし、水中に浸漬した後の前記硬化物サンプルの質量をW2(g)としたとき、(W2-W1)/W1×100の式に基づいて、水浸漬前後における質量変化から吸水率(%)を算定する。
[6]
下記方法2により測定される発熱ピーク温度が50℃以上である、前記[1]~[5]のいずれかに記載の組成物。
(方法2)
サーモロガーに接続したK熱電対を紙コップ底面に固定し、その紙コップ内に前記組成物を吐出し、前記組成物が硬化する際の発熱温度をサーモロガーにて測定し、最も高温となった温度を発熱ピーク温度とする。
[7]
アミド基含有モノマー(A)と、単官能(メタ)アクリレート(B)と、エラストマー(C)と、を含む、前記[1]~[6]のいずれかに記載の組成物。
[8]
前記単官能(メタ)アクリレート(B)が水酸基含有(メタ)アクリレート(B1)を含む、前記[7]のいずれかに記載の組成物。
[9]
前記単官能(メタ)アクリレート(B)が環状構造を有する単官能(メタ)アクリレート(B2)を含む、前記[7]または[8]に記載の組成物。
[10]
前記エラストマー(C)が、(メタ)アクリロニトリル・ブタジエンゴム、メチル(メタ)アクリレート・ブタジエン・スチレンゴム、および、メチル(メタ)アクリレート・ブタジエン・(メタ)アクリロニトリル・スチレンゴムからなる群から選択される一種または二種以上を含む、前記[7]~[9]のいずれかに記載の組成物。
[11]
硬化性樹脂組成物である、前記[1]~[10]のいずれかに記載の組成物。
[12]
バッテリーに用いられる、前記[1]~[11]のいずれかに記載の組成物。
[13]
バッテリー端子部の保護材に用いられる、前記[12]に記載の組成物。
[14]
前記[1]~[13]のいずれかに記載の組成物からなる硬化物を含む物品。
[15]
前記[1]~[13]のいずれかに記載の組成物からなる硬化物を含むバッテリー。 [1]
The tensile shear adhesive strength of the test piece obtained under the following <Preparation Condition 1> measured under the conditions of 23° C. and a tensile speed of 10 mm/min is designated as F 0 .
A test piece obtained by the following <Preparation Condition 1> is exposed to an environment of 95°C x 95% RH for 500 hours, and then the tensile shear adhesive strength of the test piece measured under conditions of 23°C and a tensile speed of 10 mm/min is defined as F500 .
A composition having F500 / F0 of 0.70 or more.
<Preparation Condition 1>
(1) The composition is applied to one side of an aluminum alloy plate (A5052P) to form a film having a thickness of 0.1 mm. (2) Another aluminum alloy plate (A5052P) is placed on the surface of the film, and the resulting laminate is left at 23° C. for 24 hours to harden the film and obtain a test piece. [2]
The composition according to [1], wherein the F500 is 7.0 MPa or more.
[3]
The composition according to [1] or [2], wherein the F0 is 10.0 MPa or more.
[4]
The composition according to any one of the above [1] to [3], wherein a cured product of the composition has a glass transition temperature of 80° C. or higher, as determined by dynamic viscoelasticity measurement.
[5]
The composition according to any one of the above [1] to [4], which has a water absorption rate of 5.0% or less as measured by the following method 1.
(Method 1)
The composition is treated at 23°C for 24 hours to prepare a cured sample of 5 mm x 40 mm x 0.5 mm. The obtained cured sample is then immersed in water at 70°C for 24 hours. When the mass of the cured sample before immersion in water is W1 (g) and the mass of the cured sample after immersion in water is W2 (g), the water absorption (%) is calculated from the change in mass before and after immersion in water based on the formula ( W2 - W1 )/ W1 x 100.
[6]
The composition according to any one of the above [1] to [5], which has an exothermic peak temperature of 50° C. or higher as measured by the following method 2.
(Method 2)
A K thermocouple connected to a thermologger is fixed to the bottom of a paper cup, the composition is discharged into the paper cup, and the heat generation temperature as the composition hardens is measured with the thermologger. The highest temperature is recorded as the peak heat generation temperature.
[7]
The composition according to any one of the above [1] to [6], comprising an amide group-containing monomer (A), a monofunctional (meth)acrylate (B), and an elastomer (C).
[8]
The composition according to any one of the above [7], wherein the monofunctional (meth)acrylate (B) includes a hydroxyl group-containing (meth)acrylate (B1).
[9]
The composition according to the above [7] or [8], wherein the monofunctional (meth)acrylate (B) contains a monofunctional (meth)acrylate (B2) having a cyclic structure.
[10]
The composition according to any one of the above [7] to [9], wherein the elastomer (C) contains one or more selected from the group consisting of (meth)acrylonitrile-butadiene rubber, methyl(meth)acrylate-butadiene-styrene rubber, and methyl(meth)acrylate-butadiene-(meth)acrylonitrile-styrene rubber.
[11]
The composition according to any one of the above [1] to [10], which is a curable resin composition.
[12]
The composition according to any one of [1] to [11] above, which is used in a battery.
[13]
The composition according to [12] above, which is used as a protective material for a battery terminal.
[14]
An article comprising a cured product of the composition according to any one of [1] to [13] above.
[15]
A battery comprising a cured product of the composition according to any one of [1] to [13].
23℃および引張速度10mm/分の条件で測定される、下記<作製条件1>により得られる試験片の引張せん断接着強さをF0とし、
下記<作製条件1>により得られる試験片を95℃×95%RHの環境下に500時間暴露した後、23℃および引張速度10mm/分の条件で測定される、前記試験片の引張せん断接着強さをF500としたとき、
F500/F0が0.70以上である組成物。
<作製条件1>
(1)アルミニウム合金板(A5052P)の片面に前記組成物を塗布して厚み0.1mmの膜を形成する
(2)前記膜の表面に別のアルミニウム合金板(A5052P)を重ねて、得られた積層体を23℃で24時間静置することにより前記膜を硬化させて試験片を得る
[2]
前記F500が7.0MPa以上である、前記[1]に記載の組成物。
[3]
前記F0が10.0MPa以上である、前記[1]または[2]に記載の組成物。
[4]
動的粘弾性測定により求められる、前記組成物からなる硬化物のガラス転移温度が80℃以上である、前記[1]~[3]のいずれかに記載の組成物。
[5]
下記方法1により測定される吸水率が5.0%以下である、前記[1]~[4]のいずれかに記載の組成物。
(方法1)
前記組成物を23℃、24時間処理することにより、5mm×40mm×0.5mmの硬化物サンプルを作製し、次いで、得られた前記硬化物サンプルを70℃の水中に24時間浸漬し、水中に浸漬する前の前記硬化物サンプルの質量をW1(g)とし、水中に浸漬した後の前記硬化物サンプルの質量をW2(g)としたとき、(W2-W1)/W1×100の式に基づいて、水浸漬前後における質量変化から吸水率(%)を算定する。
[6]
下記方法2により測定される発熱ピーク温度が50℃以上である、前記[1]~[5]のいずれかに記載の組成物。
(方法2)
サーモロガーに接続したK熱電対を紙コップ底面に固定し、その紙コップ内に前記組成物を吐出し、前記組成物が硬化する際の発熱温度をサーモロガーにて測定し、最も高温となった温度を発熱ピーク温度とする。
[7]
アミド基含有モノマー(A)と、単官能(メタ)アクリレート(B)と、エラストマー(C)と、を含む、前記[1]~[6]のいずれかに記載の組成物。
[8]
前記単官能(メタ)アクリレート(B)が水酸基含有(メタ)アクリレート(B1)を含む、前記[7]のいずれかに記載の組成物。
[9]
前記単官能(メタ)アクリレート(B)が環状構造を有する単官能(メタ)アクリレート(B2)を含む、前記[7]または[8]に記載の組成物。
[10]
前記エラストマー(C)が、(メタ)アクリロニトリル・ブタジエンゴム、メチル(メタ)アクリレート・ブタジエン・スチレンゴム、および、メチル(メタ)アクリレート・ブタジエン・(メタ)アクリロニトリル・スチレンゴムからなる群から選択される一種または二種以上を含む、前記[7]~[9]のいずれかに記載の組成物。
[11]
硬化性樹脂組成物である、前記[1]~[10]のいずれかに記載の組成物。
[12]
バッテリーに用いられる、前記[1]~[11]のいずれかに記載の組成物。
[13]
バッテリー端子部の保護材に用いられる、前記[12]に記載の組成物。
[14]
前記[1]~[13]のいずれかに記載の組成物からなる硬化物を含む物品。
[15]
前記[1]~[13]のいずれかに記載の組成物からなる硬化物を含むバッテリー。 [1]
The tensile shear adhesive strength of the test piece obtained under the following <Preparation Condition 1> measured under the conditions of 23° C. and a tensile speed of 10 mm/min is designated as F 0 .
A test piece obtained by the following <Preparation Condition 1> is exposed to an environment of 95°C x 95% RH for 500 hours, and then the tensile shear adhesive strength of the test piece measured under conditions of 23°C and a tensile speed of 10 mm/min is defined as F500 .
A composition having F500 / F0 of 0.70 or more.
<Preparation Condition 1>
(1) The composition is applied to one side of an aluminum alloy plate (A5052P) to form a film having a thickness of 0.1 mm. (2) Another aluminum alloy plate (A5052P) is placed on the surface of the film, and the resulting laminate is left at 23° C. for 24 hours to harden the film and obtain a test piece. [2]
The composition according to [1], wherein the F500 is 7.0 MPa or more.
[3]
The composition according to [1] or [2], wherein the F0 is 10.0 MPa or more.
[4]
The composition according to any one of the above [1] to [3], wherein a cured product of the composition has a glass transition temperature of 80° C. or higher, as determined by dynamic viscoelasticity measurement.
[5]
The composition according to any one of the above [1] to [4], which has a water absorption rate of 5.0% or less as measured by the following method 1.
(Method 1)
The composition is treated at 23°C for 24 hours to prepare a cured sample of 5 mm x 40 mm x 0.5 mm. The obtained cured sample is then immersed in water at 70°C for 24 hours. When the mass of the cured sample before immersion in water is W1 (g) and the mass of the cured sample after immersion in water is W2 (g), the water absorption (%) is calculated from the change in mass before and after immersion in water based on the formula ( W2 - W1 )/ W1 x 100.
[6]
The composition according to any one of the above [1] to [5], which has an exothermic peak temperature of 50° C. or higher as measured by the following method 2.
(Method 2)
A K thermocouple connected to a thermologger is fixed to the bottom of a paper cup, the composition is discharged into the paper cup, and the heat generation temperature as the composition hardens is measured with the thermologger. The highest temperature is recorded as the peak heat generation temperature.
[7]
The composition according to any one of the above [1] to [6], comprising an amide group-containing monomer (A), a monofunctional (meth)acrylate (B), and an elastomer (C).
[8]
The composition according to any one of the above [7], wherein the monofunctional (meth)acrylate (B) includes a hydroxyl group-containing (meth)acrylate (B1).
[9]
The composition according to the above [7] or [8], wherein the monofunctional (meth)acrylate (B) contains a monofunctional (meth)acrylate (B2) having a cyclic structure.
[10]
The composition according to any one of the above [7] to [9], wherein the elastomer (C) contains one or more selected from the group consisting of (meth)acrylonitrile-butadiene rubber, methyl(meth)acrylate-butadiene-styrene rubber, and methyl(meth)acrylate-butadiene-(meth)acrylonitrile-styrene rubber.
[11]
The composition according to any one of the above [1] to [10], which is a curable resin composition.
[12]
The composition according to any one of [1] to [11] above, which is used in a battery.
[13]
The composition according to [12] above, which is used as a protective material for a battery terminal.
[14]
An article comprising a cured product of the composition according to any one of [1] to [13] above.
[15]
A battery comprising a cured product of the composition according to any one of [1] to [13].
本発明によれば、接着耐久性および表面硬化性の性能バランスが向上した組成物、並びに、その組成物を用いた物品およびバッテリーを提供することができる。
The present invention provides a composition with an improved balance of adhesive durability and surface curing properties, as well as an article and a battery using the composition.
以下、本発明の実施形態について、詳細に説明する。
The following describes in detail an embodiment of the present invention.
本明細書中、数値範囲の説明における「X~Y」の表記は、特に断らない限り、X以上Y以下を表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
本明細書中、組成物が第一剤と第二剤の二剤型である場合、各成分の含有量は、第一剤と第二剤の合計に対する含有量を表すことが好ましい。
本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
本明細書における「(メタ)アクリル」との表記は、アクリルとメタクリルの両方を包含する概念を表す。「(メタ)アクリレート」等の類似の表記についても同様である。
本明細書における「有機基」の語は、特に断りが無い限り、有機化合物から1つ以上の水素原子を除いた原子団のことを意味する。例えば、「1価の有機基」とは、任意の有機化合物から1つの水素原子を除いた原子団のことを表す。 In this specification, unless otherwise specified, the expression "X to Y" in the description of a numerical range means from X to Y. For example, "1 to 5% by mass" means "1% by mass to 5% by mass."
In the present specification, when the composition is a two-part type consisting of a first agent and a second agent, the content of each component preferably represents the content relative to the total content of the first agent and the second agent.
In the description of groups (atomic groups) in this specification, when a notation does not specify whether the group is substituted or unsubstituted, the notation includes both groups having no substituents and groups having a substituent. For example, an "alkyl group" includes not only an alkyl group having no substituents (an unsubstituted alkyl group) but also an alkyl group having a substituent (a substituted alkyl group).
In this specification, the term "(meth)acrylic" refers to a concept that includes both acrylic and methacrylic. The same applies to similar terms such as "(meth)acrylate."
In this specification, unless otherwise specified, the term "organic group" refers to an atomic group obtained by removing one or more hydrogen atoms from an organic compound. For example, a "monovalent organic group" refers to an atomic group obtained by removing one hydrogen atom from any organic compound.
本明細書中、組成物が第一剤と第二剤の二剤型である場合、各成分の含有量は、第一剤と第二剤の合計に対する含有量を表すことが好ましい。
本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
本明細書における「(メタ)アクリル」との表記は、アクリルとメタクリルの両方を包含する概念を表す。「(メタ)アクリレート」等の類似の表記についても同様である。
本明細書における「有機基」の語は、特に断りが無い限り、有機化合物から1つ以上の水素原子を除いた原子団のことを意味する。例えば、「1価の有機基」とは、任意の有機化合物から1つの水素原子を除いた原子団のことを表す。 In this specification, unless otherwise specified, the expression "X to Y" in the description of a numerical range means from X to Y. For example, "1 to 5% by mass" means "1% by mass to 5% by mass."
In the present specification, when the composition is a two-part type consisting of a first agent and a second agent, the content of each component preferably represents the content relative to the total content of the first agent and the second agent.
In the description of groups (atomic groups) in this specification, when a notation does not specify whether the group is substituted or unsubstituted, the notation includes both groups having no substituents and groups having a substituent. For example, an "alkyl group" includes not only an alkyl group having no substituents (an unsubstituted alkyl group) but also an alkyl group having a substituent (a substituted alkyl group).
In this specification, the term "(meth)acrylic" refers to a concept that includes both acrylic and methacrylic. The same applies to similar terms such as "(meth)acrylate."
In this specification, unless otherwise specified, the term "organic group" refers to an atomic group obtained by removing one or more hydrogen atoms from an organic compound. For example, a "monovalent organic group" refers to an atomic group obtained by removing one hydrogen atom from any organic compound.
[硬化性樹脂組成物]
以下、本実施形態の組成物のうち、「硬化性樹脂組成物」について詳細に説明する。
本実施形態の硬化性樹脂組成物は、23℃および引張速度10mm/分の条件で測定される、下記<作製条件1>により得られる試験片の引張せん断接着強さをF0とし、下記<作製条件1>により得られる試験片を95℃×95%RHの環境下に500時間暴露した後、23℃および引張速度10mm/分の条件で測定される、前記試験片の引張せん断接着強さをF500としたとき、
F500/F0が0.70以上である。
<作製条件1>
(1)アルミニウム合金板(A5052P)の片面に前記組成物を塗布して厚み0.1mmの膜を形成する
(2)前記膜の表面に別のアルミニウム合金板(A5052P)を重ねて、得られた積層体を23℃で24時間静置することにより前記膜を硬化させて試験片を得る [Curable resin composition]
Hereinafter, of the compositions of this embodiment, the "curable resin composition" will be described in detail.
The curable resin composition of the present embodiment has a tensile shear adhesive strength of a test piece obtained under the following <Preparation Condition 1>, which is measured at 23° C. and a tensile speed of 10 mm/min, defined as F 0 , and the following < The test piece obtained by the preparation condition 1> is exposed to an environment of 95°C x 95% RH for 500 hours, and then the tensile shear adhesive strength of the test piece is measured under the conditions of 23°C and a tensile speed of 10 mm/min. When F is 500 ,
F500 / F0 is 0.70 or more.
<Preparation Condition 1>
(1) The composition is applied to one side of an aluminum alloy plate (A5052P) to form a film having a thickness of 0.1 mm. (2) Another aluminum alloy plate (A5052P) is placed on the surface of the film to obtain The laminate was left to stand at 23° C. for 24 hours to harden the film and obtain a test specimen.
以下、本実施形態の組成物のうち、「硬化性樹脂組成物」について詳細に説明する。
本実施形態の硬化性樹脂組成物は、23℃および引張速度10mm/分の条件で測定される、下記<作製条件1>により得られる試験片の引張せん断接着強さをF0とし、下記<作製条件1>により得られる試験片を95℃×95%RHの環境下に500時間暴露した後、23℃および引張速度10mm/分の条件で測定される、前記試験片の引張せん断接着強さをF500としたとき、
F500/F0が0.70以上である。
<作製条件1>
(1)アルミニウム合金板(A5052P)の片面に前記組成物を塗布して厚み0.1mmの膜を形成する
(2)前記膜の表面に別のアルミニウム合金板(A5052P)を重ねて、得られた積層体を23℃で24時間静置することにより前記膜を硬化させて試験片を得る [Curable resin composition]
Hereinafter, of the compositions of this embodiment, the "curable resin composition" will be described in detail.
The curable resin composition of the present embodiment has a tensile shear adhesive strength of a test piece obtained under the following <Preparation Condition 1>, which is measured at 23° C. and a tensile speed of 10 mm/min, defined as F 0 , and the following < The test piece obtained by the preparation condition 1> is exposed to an environment of 95°C x 95% RH for 500 hours, and then the tensile shear adhesive strength of the test piece is measured under the conditions of 23°C and a tensile speed of 10 mm/min. When F is 500 ,
F500 / F0 is 0.70 or more.
<Preparation Condition 1>
(1) The composition is applied to one side of an aluminum alloy plate (A5052P) to form a film having a thickness of 0.1 mm. (2) Another aluminum alloy plate (A5052P) is placed on the surface of the film to obtain The laminate was left to stand at 23° C. for 24 hours to harden the film and obtain a test specimen.
バッテリーは、エンジンルーム等の高温多湿環境下に長期間曝されるため、例えばバッテリー端子部の保護材等に用いられるバッテリー用端子保護材には、高温多湿環境下における耐久性の向上が求められている。
本発明者らの検討によれば、バッテリー用端子保護材の耐久性を向上させるために樹脂組成物を高Tg化し、低極性の原材料を用いることで耐水性を向上させると、表面硬化性が悪化してしまうことが明らかになった。
本発明者らは、接着耐久性および表面硬化性の性能バランスが向上した組成物を提供するために鋭意検討を重ねた。その結果、F500/F0と接着耐久性および表面硬化性の性能バランスとの間に関連性があることを知見した。
本発明者らは、上記知見を基にさらに鋭意検討を重ねた結果、F500/F0が上記範囲内であることにより、接着耐久性および表面硬化性の性能バランスが向上した硬化性樹脂組成物、並びに、その硬化性樹脂組成物を用いた物品およびバッテリーが得られることを見出した。
すなわち、本実施形態の硬化性樹脂組成物によれば、F500/F0が上記範囲にあることにより、接着耐久性および表面硬化性の性能バランスが向上した物品およびバッテリーを実現できる。 Since batteries are exposed to high-temperature, high-humidity environments such as engine compartments for long periods of time, battery terminal protective materials used, for example, as protective materials for battery terminals are required to have improved durability in high-temperature, high-humidity environments.
According to the research of the present inventors, it has become clear that if the Tg of the resin composition is increased and water resistance is improved by using a low-polarity raw material in order to improve the durability of a battery terminal protection material, the surface curability is deteriorated.
The present inventors have conducted extensive research in order to provide a composition having an improved balance of adhesion durability and surface curability. As a result, they have found that there is a relationship between F 500 /F 0 and the balance of adhesion durability and surface curability.
As a result of further intensive research based on the above findings, the present inventors have found that, when F500 / F0 is within the above range, a curable resin composition having an improved performance balance between adhesion durability and surface curability, as well as an article and a battery using the curable resin composition, can be obtained.
That is, according to the curable resin composition of the present embodiment, since F 500 /F 0 is in the above range, it is possible to realize an article and a battery with an improved performance balance between adhesion durability and surface curability.
本発明者らの検討によれば、バッテリー用端子保護材の耐久性を向上させるために樹脂組成物を高Tg化し、低極性の原材料を用いることで耐水性を向上させると、表面硬化性が悪化してしまうことが明らかになった。
本発明者らは、接着耐久性および表面硬化性の性能バランスが向上した組成物を提供するために鋭意検討を重ねた。その結果、F500/F0と接着耐久性および表面硬化性の性能バランスとの間に関連性があることを知見した。
本発明者らは、上記知見を基にさらに鋭意検討を重ねた結果、F500/F0が上記範囲内であることにより、接着耐久性および表面硬化性の性能バランスが向上した硬化性樹脂組成物、並びに、その硬化性樹脂組成物を用いた物品およびバッテリーが得られることを見出した。
すなわち、本実施形態の硬化性樹脂組成物によれば、F500/F0が上記範囲にあることにより、接着耐久性および表面硬化性の性能バランスが向上した物品およびバッテリーを実現できる。 Since batteries are exposed to high-temperature, high-humidity environments such as engine compartments for long periods of time, battery terminal protective materials used, for example, as protective materials for battery terminals are required to have improved durability in high-temperature, high-humidity environments.
According to the research of the present inventors, it has become clear that if the Tg of the resin composition is increased and water resistance is improved by using a low-polarity raw material in order to improve the durability of a battery terminal protection material, the surface curability is deteriorated.
The present inventors have conducted extensive research in order to provide a composition having an improved balance of adhesion durability and surface curability. As a result, they have found that there is a relationship between F 500 /F 0 and the balance of adhesion durability and surface curability.
As a result of further intensive research based on the above findings, the present inventors have found that, when F500 / F0 is within the above range, a curable resin composition having an improved performance balance between adhesion durability and surface curability, as well as an article and a battery using the curable resin composition, can be obtained.
That is, according to the curable resin composition of the present embodiment, since F 500 /F 0 is in the above range, it is possible to realize an article and a battery with an improved performance balance between adhesion durability and surface curability.
本実施形態の硬化性樹脂組成物は、F500/F0が0.70以上であるように制御されたものである。これにより、本実施形態の硬化性樹脂組成物における接着耐久性および表面硬化性の性能バランスを向上させることができる。この理由は明らかではないが以下の理由が考えられる。
まず、F500/F0は、硬化性樹脂組成物からなる硬化物の、吸湿による特性の変化のし難さや、硬化物の硬化状態に関連した指標であると考えられる。そして、F500/F0が上記下限値以上であることにより、硬化性樹脂組成物からなる硬化物の、吸湿による特性の変化が抑制され、さらに硬化物の硬化状態が良好となるため、接着耐久性および表面硬化性の性能バランスを向上できると考えられる。
ここで、F500/F0を上記範囲内に調整するためには、例えば、本実施形態の硬化性樹脂組成物に含まれる各成分の種類や含有割合、各成分の混合の順序や混合方法等を調整することにより調整できる。 The curable resin composition of the present embodiment is controlled so that F500 / F0 is 0.70 or more. This allows the performance balance of adhesion durability and surface curability in the curable resin composition of the present embodiment to be improved. The reason for this is not clear, but the following reasons are thought to be the cause.
First, F500 / F0 is considered to be an index related to the resistance of the cured product of the curable resin composition to changes in properties due to moisture absorption and the cured state of the cured product. And, by having F500 / F0 be equal to or greater than the lower limit, the cured product of the curable resin composition is prevented from changing in properties due to moisture absorption, and the cured state of the cured product is improved, so that the performance balance of adhesion durability and surface curability can be improved.
Here, in order to adjust F500 / F0 to be within the above range, for example, the type and content ratio of each component contained in the curable resin composition of this embodiment, the order of mixing each component, the mixing method, etc. can be adjusted.
まず、F500/F0は、硬化性樹脂組成物からなる硬化物の、吸湿による特性の変化のし難さや、硬化物の硬化状態に関連した指標であると考えられる。そして、F500/F0が上記下限値以上であることにより、硬化性樹脂組成物からなる硬化物の、吸湿による特性の変化が抑制され、さらに硬化物の硬化状態が良好となるため、接着耐久性および表面硬化性の性能バランスを向上できると考えられる。
ここで、F500/F0を上記範囲内に調整するためには、例えば、本実施形態の硬化性樹脂組成物に含まれる各成分の種類や含有割合、各成分の混合の順序や混合方法等を調整することにより調整できる。 The curable resin composition of the present embodiment is controlled so that F500 / F0 is 0.70 or more. This allows the performance balance of adhesion durability and surface curability in the curable resin composition of the present embodiment to be improved. The reason for this is not clear, but the following reasons are thought to be the cause.
First, F500 / F0 is considered to be an index related to the resistance of the cured product of the curable resin composition to changes in properties due to moisture absorption and the cured state of the cured product. And, by having F500 / F0 be equal to or greater than the lower limit, the cured product of the curable resin composition is prevented from changing in properties due to moisture absorption, and the cured state of the cured product is improved, so that the performance balance of adhesion durability and surface curability can be improved.
Here, in order to adjust F500 / F0 to be within the above range, for example, the type and content ratio of each component contained in the curable resin composition of this embodiment, the order of mixing each component, the mixing method, etc. can be adjusted.
本実施形態の硬化性樹脂組成物のF500/F0は0.70以上であるが、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは0.75以上、より好ましくは0.80以上、さらに好ましくは0.83以上である。前記F500/F0の上限は特に限定されないが、例えば1.5以下であり、1.2以下であってもよく、1.0以下であってもよく、0.98以下であってもよい。
The curable resin composition of the present embodiment has a F500 / F0 ratio of 0.70 or more, and from the viewpoint of further improving the balance of adhesive durability and surface curing properties, it is preferably 0.75 or more, more preferably 0.80 or more, and even more preferably 0.83 or more. The upper limit of the F500 / F0 ratio is not particularly limited, and is, for example, 1.5 or less, may be 1.2 or less, may be 1.0 or less, or may be 0.98 or less.
本実施形態の硬化性樹脂組成物において、23℃および引張速度10mm/分の条件で測定される、前記<作製条件1>により得られる試験片の引張せん断接着強さ(F0)は、耐熱性、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは10.0MPa以上、より好ましくは13.0MPa以上、さらに好ましくは15.0MPa以上、さらに好ましくは17.0MPa以上、さらに好ましくは18.0MPa以上であり、そして、好ましくは50.0MPa以下、より好ましくは30.0MPa以下、さらに好ましくは25.0MPa以下、さらに好ましくは23.0MPa以下、さらに好ましくは21.0MPa以下、さらに好ましくは20.0MPa以下、さらに好ましくは19.0MPa以下である。
In the curable resin composition of the present embodiment, the tensile shear adhesive strength (F 0 ) of the test piece obtained under the <Preparation Condition 1> described above, measured under conditions of 23° C. and a tensile speed of 10 mm/min, is, from the viewpoint of further improving the performance balance of heat resistance, adhesive durability, and surface curability, preferably 10.0 MPa or more, more preferably 13.0 MPa or more, even more preferably 15.0 MPa or more, even more preferably 17.0 MPa or more, even more preferably 18.0 MPa or more, and is preferably 50.0 MPa or less, more preferably 30.0 MPa or less, even more preferably 25.0 MPa or less, even more preferably 23.0 MPa or less, even more preferably 21.0 MPa or less, even more preferably 20.0 MPa or less, even more preferably 19.0 MPa or less.
本実施形態の硬化性樹脂組成物の前記引張せん断接着強さ(F0)は、例えば、本実施形態の硬化性樹脂組成物に含まれる各成分の種類や含有割合、各成分の混合の順序や混合方法等を調整することにより調整できる。
The tensile shear adhesive strength (F 0 ) of the curable resin composition of the present embodiment can be adjusted, for example, by adjusting the type and content ratio of each component contained in the curable resin composition of the present embodiment, the mixing order and mixing method of each component, etc.
本実施形態の硬化性樹脂組成物において、前記<作製条件1>により得られる試験片を95℃×95%RHの環境下に500時間暴露した後、23℃および引張速度10mm/分の条件で測定される、前記試験片の引張せん断接着強さ(F500)は、耐熱性、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは7.0MPa以上、より好ましくは8.0MPa以上、より好ましくは10.0MPa以上、さらに好ましくは12.0MPa以上、さらに好ましくは14.0MPa以上、さらに好ましくは15.0MPa以上、さらに好ましくは15.5MPa以上であり、そして、好ましくは45.0MPa以下、より好ましくは25.0MPa以下、さらに好ましくは23.0MPa以下、さらに好ましくは20.0MPa以下、さらに好ましくは18.0MPa以下、さらに好ましくは17.5MPa以下である。
本実施形態の硬化性樹脂組成物の前記引張せん断接着強さ(F500)は、例えば、本実施形態の硬化性樹脂組成物に含まれる各成分の種類や含有割合、各成分の混合の順序や混合方法等を調整することにより調整できる。 In the curable resin composition of the present embodiment, the test piece obtained by the <Preparation Condition 1> is exposed to an environment of 95°C x 95% RH for 500 hours, and then the tensile shear adhesive strength ( F500 ) of the test piece measured under conditions of 23°C and a tensile speed of 10 mm/min is preferably 7.0 MPa or more, more preferably 8.0 MPa or more, more preferably 10.0 MPa or more, even more preferably 12.0 MPa or more, even more preferably 14.0 MPa or more, even more preferably 15.0 MPa or more, even more preferably 15.5 MPa or more, and is preferably 45.0 MPa or less, more preferably 25.0 MPa or less, even more preferably 23.0 MPa or less, even more preferably 20.0 MPa or less, even more preferably 18.0 MPa or less, even more preferably 17.5 MPa or less, from the viewpoint of further improving the performance balance of heat resistance, adhesive durability, and surface curability.
The tensile shear adhesive strength ( F500 ) of the curable resin composition of the present embodiment can be adjusted, for example, by adjusting the type and content ratio of each component contained in the curable resin composition of the present embodiment, the mixing order and mixing method of each component, etc.
本実施形態の硬化性樹脂組成物の前記引張せん断接着強さ(F500)は、例えば、本実施形態の硬化性樹脂組成物に含まれる各成分の種類や含有割合、各成分の混合の順序や混合方法等を調整することにより調整できる。 In the curable resin composition of the present embodiment, the test piece obtained by the <Preparation Condition 1> is exposed to an environment of 95°C x 95% RH for 500 hours, and then the tensile shear adhesive strength ( F500 ) of the test piece measured under conditions of 23°C and a tensile speed of 10 mm/min is preferably 7.0 MPa or more, more preferably 8.0 MPa or more, more preferably 10.0 MPa or more, even more preferably 12.0 MPa or more, even more preferably 14.0 MPa or more, even more preferably 15.0 MPa or more, even more preferably 15.5 MPa or more, and is preferably 45.0 MPa or less, more preferably 25.0 MPa or less, even more preferably 23.0 MPa or less, even more preferably 20.0 MPa or less, even more preferably 18.0 MPa or less, even more preferably 17.5 MPa or less, from the viewpoint of further improving the performance balance of heat resistance, adhesive durability, and surface curability.
The tensile shear adhesive strength ( F500 ) of the curable resin composition of the present embodiment can be adjusted, for example, by adjusting the type and content ratio of each component contained in the curable resin composition of the present embodiment, the mixing order and mixing method of each component, etc.
以下、本実施形態の硬化性樹脂組成物の各成分について説明する。
The components of the curable resin composition of this embodiment are described below.
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、アミド基含有モノマー(A)と、単官能(メタ)アクリレート(B)と、エラストマー(C)と、を含む。
The curable resin composition of this embodiment contains an amide group-containing monomer (A), a monofunctional (meth)acrylate (B), and an elastomer (C) from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
<モノマー成分>
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、モノマー成分として、アミド基含有モノマー(A)と、単官能(メタ)アクリレート(B)と、を含むことが好ましい。
本明細書において、モノマー成分とは、(メタ)アクリロイル基、ビニル基、アリル基等の炭素-炭素二重結合を1個以上有する化合物をいう。
本実施形態のモノマー成分はエラストマー(C)を含まない。 <Monomer Component>
From the viewpoint of further improving the performance balance of adhesion durability and surface curability, the curable resin composition of the present embodiment preferably contains, as monomer components, an amide group-containing monomer (A) and a monofunctional (meth)acrylate (B).
In this specification, the monomer component refers to a compound having one or more carbon-carbon double bonds, such as a (meth)acryloyl group, a vinyl group, or an allyl group.
The monomer component of this embodiment does not include the elastomer (C).
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、モノマー成分として、アミド基含有モノマー(A)と、単官能(メタ)アクリレート(B)と、を含むことが好ましい。
本明細書において、モノマー成分とは、(メタ)アクリロイル基、ビニル基、アリル基等の炭素-炭素二重結合を1個以上有する化合物をいう。
本実施形態のモノマー成分はエラストマー(C)を含まない。 <Monomer Component>
From the viewpoint of further improving the performance balance of adhesion durability and surface curability, the curable resin composition of the present embodiment preferably contains, as monomer components, an amide group-containing monomer (A) and a monofunctional (meth)acrylate (B).
In this specification, the monomer component refers to a compound having one or more carbon-carbon double bonds, such as a (meth)acryloyl group, a vinyl group, or an allyl group.
The monomer component of this embodiment does not include the elastomer (C).
(アミド基含有モノマー(A))
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくはアミド基含有モノマー(A)を含む。
アミド基含有モノマー(A)は、アミド基と、(メタ)アクリロイル基、ビニル基、アリル基等の炭素-炭素二重結合とを有する化合物をいう。 (Amide Group-Containing Monomer (A))
The curable resin composition of the present embodiment preferably contains an amide group-containing monomer (A) from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
The amide group-containing monomer (A) refers to a compound having an amide group and a carbon-carbon double bond such as a (meth)acryloyl group, a vinyl group, or an allyl group.
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくはアミド基含有モノマー(A)を含む。
アミド基含有モノマー(A)は、アミド基と、(メタ)アクリロイル基、ビニル基、アリル基等の炭素-炭素二重結合とを有する化合物をいう。 (Amide Group-Containing Monomer (A))
The curable resin composition of the present embodiment preferably contains an amide group-containing monomer (A) from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
The amide group-containing monomer (A) refers to a compound having an amide group and a carbon-carbon double bond such as a (meth)acryloyl group, a vinyl group, or an allyl group.
アミド基含有モノマー(A)は、例えば、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、ヒドロキシメチル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、N,N’-メチレンビス(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノプロピル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、4-(メタ)アクリロイルモルフォリンおよびN-ビニルピロリドン等からなる群から選択される一種または二種以上を含み、好ましくは、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミドおよび4-(メタ)アクリロイルモルフォリンからなる群から選択される一種または二種以上を含み、より好ましくは、N,N-ジエチル(メタ)アクリルアミドおよび4-(メタ)アクリロイルモルフォリンからなる群から選択される一種または二種以上を含み、さらに好ましくはN,N-ジエチル(メタ)アクリルアミドを含む。
Examples of the amide group-containing monomer (A) include (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, hydroxymethyl(meth)acrylamide, hydroxyethyl(meth)acrylamide, isopropyl(meth)acrylamide, N,N'-methylenebis(meth)acrylamide, N,N-dimethylaminopropyl(meth)acrylamide, N,N-diethylaminopropyl(meth)acrylamide, diacetone(meth)acrylamide, 4-(meth)acryloyl mol It contains one or more selected from the group consisting of N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, and 4-(meth)acryloylmorpholine, and preferably contains one or more selected from the group consisting of N,N-diethyl(meth)acrylamide and 4-(meth)acryloylmorpholine, more preferably contains one or more selected from the group consisting of N,N-diethyl(meth)acrylamide and 4-(meth)acryloylmorpholine, and even more preferably contains N,N-diethyl(meth)acrylamide.
本実施形態の硬化性樹脂組成物中のアミド基含有モノマー(A)の含有量は、モノマー成分およびエラストマー(C)の合計含有量を100質量部としたとき、好ましくは1質量部以上、より好ましくは2質量部以上、さらに好ましくは3質量部以上、さらに好ましくは4質量部以上であり、そして、好ましくは40質量部以下、より好ましくは30質量部以下、さらに好ましくは25質量部以下、さらに好ましくは20質量部以下、さらに好ましくは15質量部以下、さらに好ましくは12質量部以下である。
The content of the amide group-containing monomer (A) in the curable resin composition of this embodiment, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, is preferably 1 part by mass or more, more preferably 2 parts by mass or more, even more preferably 3 parts by mass or more, even more preferably 4 parts by mass or more, and is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, even more preferably 25 parts by mass or less, even more preferably 20 parts by mass or less, even more preferably 15 parts by mass or less, even more preferably 12 parts by mass or less.
(単官能(メタ)アクリレート(B))
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは単官能(メタ)アクリレート(B)を含む。
単官能(メタ)アクリレート(B)は(メタ)アクリロイル基を1個有する化合物をいう。ただし、単官能(メタ)アクリレート(B)から、アミド基含有モノマー(A)および後述の(メタ)アクリロイル基を有するリン酸エステル化合物に該当するものは除かれる。
本実施形態の単官能(メタ)アクリレート(B)はエラストマー(C)を含まない。 (Monofunctional (meth)acrylate (B))
The curable resin composition of the present embodiment preferably contains a monofunctional (meth)acrylate (B) from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
The monofunctional (meth)acrylate (B) refers to a compound having one (meth)acryloyl group, except that the monofunctional (meth)acrylate (B) does not include the amide group-containing monomer (A) and a phosphoric acid ester compound having a (meth)acryloyl group, which will be described later.
The monofunctional (meth)acrylate (B) of the present embodiment does not include the elastomer (C).
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは単官能(メタ)アクリレート(B)を含む。
単官能(メタ)アクリレート(B)は(メタ)アクリロイル基を1個有する化合物をいう。ただし、単官能(メタ)アクリレート(B)から、アミド基含有モノマー(A)および後述の(メタ)アクリロイル基を有するリン酸エステル化合物に該当するものは除かれる。
本実施形態の単官能(メタ)アクリレート(B)はエラストマー(C)を含まない。 (Monofunctional (meth)acrylate (B))
The curable resin composition of the present embodiment preferably contains a monofunctional (meth)acrylate (B) from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
The monofunctional (meth)acrylate (B) refers to a compound having one (meth)acryloyl group, except that the monofunctional (meth)acrylate (B) does not include the amide group-containing monomer (A) and a phosphoric acid ester compound having a (meth)acryloyl group, which will be described later.
The monofunctional (meth)acrylate (B) of the present embodiment does not include the elastomer (C).
・水酸基含有(メタ)アクリレート(B1)
本実施形態の単官能(メタ)アクリレート(B)は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは水酸基含有(メタ)アクリレート(B1)を含む。水酸基含有(メタ)アクリレート(B1)は、分子内に水酸基を1個以上有する単官能(メタ)アクリレートをいう。
本実施形態の水酸基含有(メタ)アクリレート(B1)は、後述の式(1)で表される、(メタ)アクリロイル基を有するリン酸エステル化合物を含まない。
水酸基含有(メタ)アクリレート(B1)は、例えば、2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、1,6-へキサンジオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、4-ヒドロキシシクロへキシル(メタ)アクリレートおよび1,4-ブタンジオールモノ(メタ)アクリレート等からなる群から選択される一種または二種以上を含み、好ましくは、2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートおよび2-ヒドロキシブチル(メタ)アクリレートからなる群から選択される一種または二種以上を含み、より好ましくは、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートおよび2-ヒドロキシブチル(メタ)アクリレートからなる群から選択される一種または二種以上を含み、さらに好ましくは2-ヒドロキシエチル(メタ)アクリレートを含む。 Hydroxyl-containing (meth)acrylate (B1)
From the viewpoint of further improving the balance of performance between adhesion durability and surface curability, the monofunctional (meth)acrylate (B) of the present embodiment preferably contains a hydroxyl group-containing (meth)acrylate (B1). The hydroxyl group-containing (meth)acrylate (B1) refers to a monofunctional (meth)acrylate having one or more hydroxyl groups in the molecule.
The hydroxyl group-containing (meth)acrylate (B1) of this embodiment does not include a phosphate compound having a (meth)acryloyl group represented by the formula (1) described below.
The hydroxyl group-containing (meth)acrylate (B1) may be, for example, selected from the group consisting of 2-hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, glycerol mono(meth)acrylate, 1,6-hexanediol mono(meth)acrylate, neopentyl glycol mono(meth)acrylate, 4-hydroxycyclohexyl (meth)acrylate, and 1,4-butanediol mono(meth)acrylate. The acrylate acrylate or acrylate copolymer may include one or more selected from the group consisting of 2-hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate, preferably one or more selected from the group consisting of 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate, more preferably one or more selected from the group consisting of 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate, and even more preferably 2-hydroxyethyl (meth)acrylate.
本実施形態の単官能(メタ)アクリレート(B)は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは水酸基含有(メタ)アクリレート(B1)を含む。水酸基含有(メタ)アクリレート(B1)は、分子内に水酸基を1個以上有する単官能(メタ)アクリレートをいう。
本実施形態の水酸基含有(メタ)アクリレート(B1)は、後述の式(1)で表される、(メタ)アクリロイル基を有するリン酸エステル化合物を含まない。
水酸基含有(メタ)アクリレート(B1)は、例えば、2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、1,6-へキサンジオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、4-ヒドロキシシクロへキシル(メタ)アクリレートおよび1,4-ブタンジオールモノ(メタ)アクリレート等からなる群から選択される一種または二種以上を含み、好ましくは、2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートおよび2-ヒドロキシブチル(メタ)アクリレートからなる群から選択される一種または二種以上を含み、より好ましくは、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートおよび2-ヒドロキシブチル(メタ)アクリレートからなる群から選択される一種または二種以上を含み、さらに好ましくは2-ヒドロキシエチル(メタ)アクリレートを含む。 Hydroxyl-containing (meth)acrylate (B1)
From the viewpoint of further improving the balance of performance between adhesion durability and surface curability, the monofunctional (meth)acrylate (B) of the present embodiment preferably contains a hydroxyl group-containing (meth)acrylate (B1). The hydroxyl group-containing (meth)acrylate (B1) refers to a monofunctional (meth)acrylate having one or more hydroxyl groups in the molecule.
The hydroxyl group-containing (meth)acrylate (B1) of this embodiment does not include a phosphate compound having a (meth)acryloyl group represented by the formula (1) described below.
The hydroxyl group-containing (meth)acrylate (B1) may be, for example, selected from the group consisting of 2-hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, glycerol mono(meth)acrylate, 1,6-hexanediol mono(meth)acrylate, neopentyl glycol mono(meth)acrylate, 4-hydroxycyclohexyl (meth)acrylate, and 1,4-butanediol mono(meth)acrylate. The acrylate acrylate or acrylate copolymer may include one or more selected from the group consisting of 2-hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate, preferably one or more selected from the group consisting of 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate, more preferably one or more selected from the group consisting of 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate, and even more preferably 2-hydroxyethyl (meth)acrylate.
本実施形態の硬化性樹脂組成物中の水酸基含有(メタ)アクリレート(B1)の含有量は、モノマー成分およびエラストマー(C)の合計含有量を100質量部としたとき、好ましくは1質量部以上、より好ましくは2質量部以上、さらに好ましくは3質量部以上、さらに好ましくは4質量部以上であり、そして、好ましくは40質量部以下、より好ましくは30質量部以下、さらに好ましくは25質量部以下、さらに好ましくは20質量部以下、さらに好ましくは15質量部以下、さらに好ましくは12質量部以下である。
The content of the hydroxyl group-containing (meth)acrylate (B1) in the curable resin composition of this embodiment is, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, preferably 1 part by mass or more, more preferably 2 parts by mass or more, even more preferably 3 parts by mass or more, even more preferably 4 parts by mass or more, and is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, even more preferably 25 parts by mass or less, even more preferably 20 parts by mass or less, even more preferably 15 parts by mass or less, even more preferably 12 parts by mass or less.
本実施形態の硬化性樹脂組成物中のアミド基含有モノマー(A)および水酸基含有(メタ)アクリレート(B1)の合計含有量は、モノマー成分およびエラストマー(C)の合計含有量を100質量部としたとき、好ましくは5質量部以上、より好ましくは8質量部以上、さらに好ましくは10質量部以上、さらに好ましくは13質量部以上、さらに好ましくは15質量部以上、さらに好ましくは18質量部以上であり、そして、好ましくは40質量部以下、より好ましくは35質量部以下、さらに好ましくは30質量部以下、さらに好ましくは25質量部以下である。
The total content of the amide group-containing monomer (A) and the hydroxyl group-containing (meth)acrylate (B1) in the curable resin composition of this embodiment is, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, preferably 5 parts by mass or more, more preferably 8 parts by mass or more, even more preferably 10 parts by mass or more, even more preferably 13 parts by mass or more, even more preferably 15 parts by mass or more, even more preferably 18 parts by mass or more, and is preferably 40 parts by mass or less, more preferably 35 parts by mass or less, even more preferably 30 parts by mass or less, even more preferably 25 parts by mass or less.
・環状構造を有する単官能(メタ)アクリレート(B2)
本実施形態の単官能(メタ)アクリレート(B)は、耐熱性、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは、環状構造を有する単官能(メタ)アクリレート(B2)を含む。
環状構造を有する単官能(メタ)アクリレート(B2)は、以下一般式(I)で表されるモノマーを含むことが好ましい。
CH2=CHR1-COO-R2 (I)
一般式(I)中、R1は水素原子またはメチル基であり、R2は環状炭化水素骨格を含む基であり、好ましくは多環の環状炭化水素骨格を含む基である。R2が含む環状炭化水素骨格は、好ましくは芳香環を含まない脂環式骨格である。 Monofunctional (meth)acrylate having a cyclic structure (B2)
From the viewpoint of further improving the balance of performance among heat resistance, adhesion durability, and surface curability, the monofunctional (meth)acrylate (B) of the present embodiment preferably contains a monofunctional (meth)acrylate (B2) having a cyclic structure.
The monofunctional (meth)acrylate (B2) having a cyclic structure preferably contains a monomer represented by the following general formula (I).
CH 2 =CHR 1 -COO-R 2 (I)
In general formula (I), R1 is a hydrogen atom or a methyl group, and R2 is a group containing a cyclic hydrocarbon skeleton, preferably a group containing a polycyclic cyclic hydrocarbon skeleton. The cyclic hydrocarbon skeleton contained in R2 is preferably an alicyclic skeleton not containing an aromatic ring.
本実施形態の単官能(メタ)アクリレート(B)は、耐熱性、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは、環状構造を有する単官能(メタ)アクリレート(B2)を含む。
環状構造を有する単官能(メタ)アクリレート(B2)は、以下一般式(I)で表されるモノマーを含むことが好ましい。
CH2=CHR1-COO-R2 (I)
一般式(I)中、R1は水素原子またはメチル基であり、R2は環状炭化水素骨格を含む基であり、好ましくは多環の環状炭化水素骨格を含む基である。R2が含む環状炭化水素骨格は、好ましくは芳香環を含まない脂環式骨格である。 Monofunctional (meth)acrylate having a cyclic structure (B2)
From the viewpoint of further improving the balance of performance among heat resistance, adhesion durability, and surface curability, the monofunctional (meth)acrylate (B) of the present embodiment preferably contains a monofunctional (meth)acrylate (B2) having a cyclic structure.
The monofunctional (meth)acrylate (B2) having a cyclic structure preferably contains a monomer represented by the following general formula (I).
CH 2 =CHR 1 -COO-R 2 (I)
In general formula (I), R1 is a hydrogen atom or a methyl group, and R2 is a group containing a cyclic hydrocarbon skeleton, preferably a group containing a polycyclic cyclic hydrocarbon skeleton. The cyclic hydrocarbon skeleton contained in R2 is preferably an alicyclic skeleton not containing an aromatic ring.
環状構造を有する単官能(メタ)アクリレート(B2)は、好ましくは、ジシクロペンテニルオキシエチル(メタ)アクリレート、ノルボルネン(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェノキシメチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレートおよびシクロヘキシル(メタ)アクリレートからなる群から選択される一種または二種以上を含み、より好ましくは、フェノキシメチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレートおよびジシクロペンタニル(メタ)アクリレートからなる群から選択される一種または二種以上を含み、さらに好ましくはフェノキシエチル(メタ)アクリレートおよびイソボルニル(メタ)アクリレートからなる群から選択される一種または二種以上を含み、さらに好ましくはイソボルニル(メタ)アクリレートを含む。
The monofunctional (meth)acrylate (B2) having a cyclic structure preferably includes one or more selected from the group consisting of dicyclopentenyloxyethyl (meth)acrylate, norbornene (meth)acrylate, dicyclopentanyl (meth)acrylate, isobornyl (meth)acrylate, phenoxymethyl (meth)acrylate, phenoxyethyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, and cyclohexyl (meth)acrylate, more preferably includes one or more selected from the group consisting of phenoxymethyl (meth)acrylate, phenoxyethyl (meth)acrylate, isobornyl (meth)acrylate, and dicyclopentanyl (meth)acrylate, even more preferably includes one or more selected from the group consisting of phenoxyethyl (meth)acrylate and isobornyl (meth)acrylate, and even more preferably includes isobornyl (meth)acrylate.
本実施形態の硬化性樹脂組成物中の、環状構造を有する単官能(メタ)アクリレート(B2)の含有量は、モノマー成分およびエラストマー(C)の合計含有量を100質量部としたとき、好ましくは20質量部以上、より好ましくは25質量部以上、さらに好ましくは30質量部以上、さらに好ましくは35質量部以上であり、そして、好ましくは80質量部以下、より好ましくは70質量部以下、さらに好ましくは60質量部以下、さらに好ましくは55質量部以下である。
The content of the monofunctional (meth)acrylate (B2) having a cyclic structure in the curable resin composition of this embodiment is, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, preferably 20 parts by mass or more, more preferably 25 parts by mass or more, even more preferably 30 parts by mass or more, even more preferably 35 parts by mass or more, and is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, even more preferably 60 parts by mass or less, even more preferably 55 parts by mass or less.
本実施形態の硬化性樹脂組成物中の単官能(メタ)アクリレート(B)の含有量は、モノマー成分およびエラストマー(C)の合計含有量を100質量部としたとき、好ましくは30質量部以上、より好ましくは35質量部以上、さらに好ましくは40質量部以上、さらに好ましくは45質量部以上であり、そして、好ましくは80質量部以下、より好ましくは70質量部以下、さらに好ましくは60質量部以下、さらに好ましくは55質量部以下である。
The content of the monofunctional (meth)acrylate (B) in the curable resin composition of this embodiment is, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, preferably 30 parts by mass or more, more preferably 35 parts by mass or more, even more preferably 40 parts by mass or more, even more preferably 45 parts by mass or more, and is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, even more preferably 60 parts by mass or less, even more preferably 55 parts by mass or less.
(多官能(メタ)アクリレート(D))
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、モノマー成分として、多官能(メタ)アクリレート(D)を含むことができる。
多官能(メタ)アクリレート(D)は、(メタ)アクリロイル基を2個以上有する化合物をいう。ただし、多官能(メタ)アクリレート(D)から、アミド基含有モノマー(A)および後述の(メタ)アクリロイル基を有するリン酸エステル化合物に該当するものは除かれる。
本実施形態の多官能(メタ)アクリレート(D)はエラストマー(C)を含まない。
多官能(メタ)アクリレート(D)は、好ましくは、2個以上6個以下の(メタ)アクリロイル基を含み、より好ましくは2個以上4個以下の(メタ)アクリロイル基を含み、さらに好ましくは2個以上3個以下の(メタ)アクリロイル基を含み、さらに好ましくは2個の(メタ)アクリロイル基を含む。 (Polyfunctional (meth)acrylate (D))
The curable resin composition of the present embodiment may contain a polyfunctional (meth)acrylate (D) as a monomer component from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
The polyfunctional (meth)acrylate (D) refers to a compound having two or more (meth)acryloyl groups, except that the polyfunctional (meth)acrylate (D) does not include the amide group-containing monomer (A) and a phosphoric acid ester compound having a (meth)acryloyl group, which will be described later.
The polyfunctional (meth)acrylate (D) of the present embodiment does not include the elastomer (C).
The polyfunctional (meth)acrylate (D) preferably contains 2 to 6 (meth)acryloyl groups, more preferably contains 2 to 4 (meth)acryloyl groups, even more preferably contains 2 to 3 (meth)acryloyl groups, and still more preferably contains 2 (meth)acryloyl groups.
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、モノマー成分として、多官能(メタ)アクリレート(D)を含むことができる。
多官能(メタ)アクリレート(D)は、(メタ)アクリロイル基を2個以上有する化合物をいう。ただし、多官能(メタ)アクリレート(D)から、アミド基含有モノマー(A)および後述の(メタ)アクリロイル基を有するリン酸エステル化合物に該当するものは除かれる。
本実施形態の多官能(メタ)アクリレート(D)はエラストマー(C)を含まない。
多官能(メタ)アクリレート(D)は、好ましくは、2個以上6個以下の(メタ)アクリロイル基を含み、より好ましくは2個以上4個以下の(メタ)アクリロイル基を含み、さらに好ましくは2個以上3個以下の(メタ)アクリロイル基を含み、さらに好ましくは2個の(メタ)アクリロイル基を含む。 (Polyfunctional (meth)acrylate (D))
The curable resin composition of the present embodiment may contain a polyfunctional (meth)acrylate (D) as a monomer component from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
The polyfunctional (meth)acrylate (D) refers to a compound having two or more (meth)acryloyl groups, except that the polyfunctional (meth)acrylate (D) does not include the amide group-containing monomer (A) and a phosphoric acid ester compound having a (meth)acryloyl group, which will be described later.
The polyfunctional (meth)acrylate (D) of the present embodiment does not include the elastomer (C).
The polyfunctional (meth)acrylate (D) preferably contains 2 to 6 (meth)acryloyl groups, more preferably contains 2 to 4 (meth)acryloyl groups, even more preferably contains 2 to 3 (meth)acryloyl groups, and still more preferably contains 2 (meth)acryloyl groups.
多官能(メタ)アクリレート(D)は、好ましくは、脂環式構造を有する多官能(メタ)アクリレート、芳香族環構造を有する多官能(メタ)アクリレートおよび脂肪族鎖式構造を有する多官能(メタ)アクリレートからなる群から選択される一種または二種以上を含む。
脂環式構造を有する多官能(メタ)アクリレートとしては、例えば、ジシクロペンタニルジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレートおよびジメチロール-シクロヘキサンジ(メタ)アクリレート等からなる群から選択される一種または二種以上が挙げられる。これらの中では、ジシクロペンタニルジ(メタ)アクリレートが好ましい。
芳香族環構造を有する多官能(メタ)アクリレートとしては、例えば、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシプロポキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシテトラエトキシフェニル)プロパン、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート(EO化BPAジ(メタ)アクリレート)、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレートおよびプロピレンオキシド付加ビスフェノールFジ(メタ)アクリレート等からなる群から選択される一種または二種以上が挙げられる。これらの中では、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレートが好ましい。
脂肪族鎖式構造を有する多官能(メタ)アクリレートとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ステアリン酸変性ペンタエリストールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリス[(メタ)アクリロイキシエチル]イソシアヌレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、およびジペンタエリスリトールヘキサ(メタ)アクリレート等からなる群から選択される一種または二種以上が挙げられる。 The polyfunctional (meth)acrylate (D) preferably includes one or more selected from the group consisting of polyfunctional (meth)acrylates having an alicyclic structure, polyfunctional (meth)acrylates having an aromatic ring structure, and polyfunctional (meth)acrylates having an aliphatic chain structure.
Examples of polyfunctional (meth)acrylates having an alicyclic structure include one or more selected from the group consisting of dicyclopentanyl di(meth)acrylate, 1,3-adamantanedimethanol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, dimethylol-tricyclodecane di(meth)acrylate, and dimethylol-cyclohexane di(meth)acrylate, etc. Among these, dicyclopentanyl di(meth)acrylate is preferred.
Examples of polyfunctional (meth)acrylates having an aromatic ring structure include one or more selected from the group consisting of 2,2-bis(4-(meth)acryloxydiethoxyphenyl)propane, 2,2-bis(4-(meth)acryloxypropoxyphenyl)propane, 2,2-bis(4-(meth)acryloxytetraethoxyphenyl)propane, ethylene oxide-added bisphenol A di(meth)acrylate (EO-modified BPA di(meth)acrylate), ethylene oxide-added bisphenol F di(meth)acrylate, propylene oxide-added bisphenol A di(meth)acrylate, and propylene oxide-added bisphenol F di(meth)acrylate. Of these, ethylene oxide-added bisphenol A di(meth)acrylate is preferred.
Examples of polyfunctional (meth)acrylates having an aliphatic chain structure include 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexadiol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, neopentyl glycol modified trimethylolpropane di(meth)acrylate, stearic acid modified pentaerythritol di(meth)acrylate, tripropylene glycol di(meth)acrylate, and isocyanuric acid ethylene oxide modified di(meth)acrylate. , isocyanuric acid ethylene oxide modified tri(meth)acrylate, pentaerythritol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, tris[(meth)acryloyloxyethyl]isocyanurate, ditrimethylolpropane tetra(meth)acrylate, dimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol ethoxy tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate can be mentioned as one or more selected from the group consisting of these.
脂環式構造を有する多官能(メタ)アクリレートとしては、例えば、ジシクロペンタニルジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレートおよびジメチロール-シクロヘキサンジ(メタ)アクリレート等からなる群から選択される一種または二種以上が挙げられる。これらの中では、ジシクロペンタニルジ(メタ)アクリレートが好ましい。
芳香族環構造を有する多官能(メタ)アクリレートとしては、例えば、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシプロポキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシテトラエトキシフェニル)プロパン、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート(EO化BPAジ(メタ)アクリレート)、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレートおよびプロピレンオキシド付加ビスフェノールFジ(メタ)アクリレート等からなる群から選択される一種または二種以上が挙げられる。これらの中では、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレートが好ましい。
脂肪族鎖式構造を有する多官能(メタ)アクリレートとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ステアリン酸変性ペンタエリストールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリス[(メタ)アクリロイキシエチル]イソシアヌレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、およびジペンタエリスリトールヘキサ(メタ)アクリレート等からなる群から選択される一種または二種以上が挙げられる。 The polyfunctional (meth)acrylate (D) preferably includes one or more selected from the group consisting of polyfunctional (meth)acrylates having an alicyclic structure, polyfunctional (meth)acrylates having an aromatic ring structure, and polyfunctional (meth)acrylates having an aliphatic chain structure.
Examples of polyfunctional (meth)acrylates having an alicyclic structure include one or more selected from the group consisting of dicyclopentanyl di(meth)acrylate, 1,3-adamantanedimethanol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, dimethylol-tricyclodecane di(meth)acrylate, and dimethylol-cyclohexane di(meth)acrylate, etc. Among these, dicyclopentanyl di(meth)acrylate is preferred.
Examples of polyfunctional (meth)acrylates having an aromatic ring structure include one or more selected from the group consisting of 2,2-bis(4-(meth)acryloxydiethoxyphenyl)propane, 2,2-bis(4-(meth)acryloxypropoxyphenyl)propane, 2,2-bis(4-(meth)acryloxytetraethoxyphenyl)propane, ethylene oxide-added bisphenol A di(meth)acrylate (EO-modified BPA di(meth)acrylate), ethylene oxide-added bisphenol F di(meth)acrylate, propylene oxide-added bisphenol A di(meth)acrylate, and propylene oxide-added bisphenol F di(meth)acrylate. Of these, ethylene oxide-added bisphenol A di(meth)acrylate is preferred.
Examples of polyfunctional (meth)acrylates having an aliphatic chain structure include 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexadiol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, neopentyl glycol modified trimethylolpropane di(meth)acrylate, stearic acid modified pentaerythritol di(meth)acrylate, tripropylene glycol di(meth)acrylate, and isocyanuric acid ethylene oxide modified di(meth)acrylate. , isocyanuric acid ethylene oxide modified tri(meth)acrylate, pentaerythritol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, tris[(meth)acryloyloxyethyl]isocyanurate, ditrimethylolpropane tetra(meth)acrylate, dimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol ethoxy tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate can be mentioned as one or more selected from the group consisting of these.
多官能(メタ)アクリレート(D)は、より好ましくは、ジシクロペンタニルジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートおよびジペンタエリスリトールヘキサ(メタ)アクリレートからなる群から選択される一種または二種以上を含み、さらに好ましくはジシクロペンタニルジ(メタ)アクリレートを含む。
The polyfunctional (meth)acrylate (D) more preferably includes one or more selected from the group consisting of dicyclopentanyl di(meth)acrylate, ethylene oxide-added bisphenol A di(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate, and even more preferably includes dicyclopentanyl di(meth)acrylate.
本実施形態の硬化性樹脂組成物中の多官能(メタ)アクリレート(D)の含有量は、モノマー成分およびエラストマー(C)の合計含有量を100質量部としたとき、好ましくは1質量部以上、より好ましくは2質量部以上、さらに好ましくは3質量部以上、さらに好ましくは4質量部以上であり、そして、好ましくは30質量部以下、より好ましくは25質量部以下、さらに好ましくは20質量部以下、さらに好ましくは15質量部以下、さらに好ましくは10質量部以下、さらに好ましくは8質量部以下である。
The content of the polyfunctional (meth)acrylate (D) in the curable resin composition of this embodiment is, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, preferably 1 part by mass or more, more preferably 2 parts by mass or more, even more preferably 3 parts by mass or more, even more preferably 4 parts by mass or more, and is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, even more preferably 20 parts by mass or less, even more preferably 15 parts by mass or less, even more preferably 10 parts by mass or less, even more preferably 8 parts by mass or less.
本実施形態の硬化性樹脂組成物中のモノマー成分の含有量は、モノマー成分およびエラストマー(C)の合計含有量を100質量部としたとき、好ましくは40質量部以上、より好ましくは50質量部以上、さらに好ましくは55質量部以上、さらに好ましくは60質量部以上であり、そして、好ましくは90質量部以下、より好ましくは85質量部以下、さらに好ましくは80質量部以下、さらに好ましくは75質量部以下、さらに好ましくは70質量部以下である。
The content of the monomer component in the curable resin composition of this embodiment, when the total content of the monomer component and the elastomer (C) is taken as 100 parts by mass, is preferably 40 parts by mass or more, more preferably 50 parts by mass or more, even more preferably 55 parts by mass or more, even more preferably 60 parts by mass or more, and is preferably 90 parts by mass or less, more preferably 85 parts by mass or less, even more preferably 80 parts by mass or less, even more preferably 75 parts by mass or less, even more preferably 70 parts by mass or less.
<エラストマー(C)>
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくはエラストマー(C)を含む。
エラストマー(C)は、好ましくはソフトセグメントユニットを有する。ソフトセグメントユニットは、好ましくは、ジエン構造、エチレン構造、プロピレン構造、イソプレン構造、ウレタン構造、エチレングリコール構造、プロピレングリコール構造、シリコーン構造およびクロロプレン構造からなる群から選択される一種または二種以上を含み、より好ましくは、ブタジエン構造等のジエン構造を含む。
エラストマー(C)は、ソフトセグメントユニット以外に、ハードセグメントを有してもよい。「ソフトセグメント」は、ゴム弾性を示す柔軟性部分を表す。「ハードセグメント」は、塑性変形を防止する架橋ゴムの架橋点の役目を果たす分子拘束部分を表す。 <Elastomer (C)>
The curable resin composition of the present embodiment preferably contains an elastomer (C) from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
The elastomer (C) preferably has a soft segment unit. The soft segment unit preferably contains one or more selected from the group consisting of a diene structure, an ethylene structure, a propylene structure, an isoprene structure, a urethane structure, an ethylene glycol structure, a propylene glycol structure, a silicone structure, and a chloroprene structure, and more preferably contains a diene structure such as a butadiene structure.
The elastomer (C) may have a hard segment in addition to the soft segment unit. The "soft segment" refers to a flexible portion exhibiting rubber elasticity. The "hard segment" refers to a molecular restraint portion that serves as a crosslinking point of a crosslinked rubber that prevents plastic deformation.
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくはエラストマー(C)を含む。
エラストマー(C)は、好ましくはソフトセグメントユニットを有する。ソフトセグメントユニットは、好ましくは、ジエン構造、エチレン構造、プロピレン構造、イソプレン構造、ウレタン構造、エチレングリコール構造、プロピレングリコール構造、シリコーン構造およびクロロプレン構造からなる群から選択される一種または二種以上を含み、より好ましくは、ブタジエン構造等のジエン構造を含む。
エラストマー(C)は、ソフトセグメントユニット以外に、ハードセグメントを有してもよい。「ソフトセグメント」は、ゴム弾性を示す柔軟性部分を表す。「ハードセグメント」は、塑性変形を防止する架橋ゴムの架橋点の役目を果たす分子拘束部分を表す。 <Elastomer (C)>
The curable resin composition of the present embodiment preferably contains an elastomer (C) from the viewpoint of further improving the balance of performance between adhesion durability and surface curability.
The elastomer (C) preferably has a soft segment unit. The soft segment unit preferably contains one or more selected from the group consisting of a diene structure, an ethylene structure, a propylene structure, an isoprene structure, a urethane structure, an ethylene glycol structure, a propylene glycol structure, a silicone structure, and a chloroprene structure, and more preferably contains a diene structure such as a butadiene structure.
The elastomer (C) may have a hard segment in addition to the soft segment unit. The "soft segment" refers to a flexible portion exhibiting rubber elasticity. The "hard segment" refers to a molecular restraint portion that serves as a crosslinking point of a crosslinked rubber that prevents plastic deformation.
エラストマー(C)中のソフトセグメントユニットの含有量は、本実施形態のエラストマー(C)の全体中、好ましくは15質量%以上90質量%以下、より好ましくは25質量%以上85質量%以下である。
The content of the soft segment units in the elastomer (C) is preferably 15% by mass or more and 90% by mass or less, more preferably 25% by mass or more and 85% by mass or less, based on the entire elastomer (C) of this embodiment.
エラストマー(C)は、好ましくは、(メタ)アクリロニトリル・ブタジエンゴム、メチル(メタ)アクリレート・ブタジエン・スチレンゴムおよびメチル(メタ)アクリレート・ブタジエン・(メタ)アクリロニトリル・スチレンゴムからなる群から選択される一種または二種以上を含み、より好ましくは、(メタ)アクリロニトリル・ブタジエンゴムおよびメチル(メタ)アクリレート・ブタジエン・(メタ)アクリロニトリル・スチレンゴムからなる群から選択される一種または二種を含み、さらに好ましくは、(メタ)アクリロニトリル・ブタジエンゴムおよびメチル(メタ)アクリレート・ブタジエン・(メタ)アクリロニトリル・スチレンゴムの両方を含む。
The elastomer (C) preferably contains one or more selected from the group consisting of (meth)acrylonitrile-butadiene rubber, methyl (meth)acrylate-butadiene-styrene rubber, and methyl (meth)acrylate-butadiene-(meth)acrylonitrile-styrene rubber, more preferably contains one or two selected from the group consisting of (meth)acrylonitrile-butadiene rubber and methyl (meth)acrylate-butadiene-(meth)acrylonitrile-styrene rubber, and even more preferably contains both (meth)acrylonitrile-butadiene rubber and methyl (meth)acrylate-butadiene-(meth)acrylonitrile-styrene rubber.
本実施形態の硬化性樹脂組成物は、1のみのエラストマーを含んでもよいし、2以上のエラストマーを含んでもよい。例えば、上記のメチル(メタ)アクリレート・ブタジエン・スチレンゴム、および、メチル(メタ)アクリレート・ブタジエン・(メタ)アクリロニトリル・スチレンゴムからなる群から選択される一種または二種と、(メタ)アクリロニトリル・ブタジエンゴムとを併用してもよい。併用する場合、併用比率は、質量比で、好ましくは、前者:後者=0.5:9.5~9.5:0.5であり、より好ましくは、前者:後者=0.8:9.2~9.2:0.8であり、さらに好ましくは、前者:後者=1.0:9.0~9.0:1.0である。
The curable resin composition of this embodiment may contain only one elastomer, or may contain two or more elastomers. For example, one or two selected from the group consisting of the above-mentioned methyl (meth)acrylate-butadiene-styrene rubber and methyl (meth)acrylate-butadiene-(meth)acrylonitrile-styrene rubber may be used in combination with (meth)acrylonitrile-butadiene rubber. When used in combination, the ratio of the two elastomers in use is preferably, by mass, the former:latter = 0.5:9.5 to 9.5:0.5, more preferably the former:latter = 0.8:9.2 to 9.2:0.8, and even more preferably the former:latter = 1.0:9.0 to 9.0:1.0.
本実施形態の硬化性樹脂組成物中のエラストマー(C)の含有量は、モノマー成分およびエラストマー(C)の合計含有量を100質量部としたとき、好ましくは10質量部以上、より好ましくは15質量部以上、さらに好ましくは20質量部以上、さらに好ましくは25質量部以上、さらに好ましくは30質量部以上であり、そして、好ましくは60質量部以下、より好ましくは50質量部以下、さらに好ましくは45質量部以下、さらに好ましくは40質量部以下である。
The content of elastomer (C) in the curable resin composition of this embodiment, when the total content of the monomer components and elastomer (C) is 100 parts by mass, is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, even more preferably 20 parts by mass or more, even more preferably 25 parts by mass or more, even more preferably 30 parts by mass or more, and is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, even more preferably 45 parts by mass or less, even more preferably 40 parts by mass or less.
本実施形態の硬化性樹脂組成物中のモノマー成分およびエラストマー(C)の合計含有量は、本実施形態の硬化性樹脂組成物の全体を100質量%としたとき、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは93質量%以上であり、そして、例えば100質量%以下であり、98質量%以下であってもよく、97質量%以下であってもよい。
The total content of the monomer components and elastomer (C) in the curable resin composition of this embodiment, when the entire curable resin composition of this embodiment is taken as 100 mass%, is preferably 50 mass% or more, more preferably 60 mass% or more, even more preferably 70 mass% or more, even more preferably 80 mass% or more, even more preferably 90 mass% or more, even more preferably 93 mass% or more, and may be, for example, 100 mass% or less, or may be 98 mass% or less, or 97 mass% or less.
<重合開始剤>
本実施形態の硬化性樹脂組成物は、好ましくは重合開始剤を含む。重合開始剤によりモノマー成分の炭素-炭素二重結合が重合され、接着性を向上できる。 <Polymerization initiator>
The curable resin composition of the present embodiment preferably contains a polymerization initiator, which polymerizes the carbon-carbon double bonds of the monomer components, thereby improving the adhesiveness.
本実施形態の硬化性樹脂組成物は、好ましくは重合開始剤を含む。重合開始剤によりモノマー成分の炭素-炭素二重結合が重合され、接着性を向上できる。 <Polymerization initiator>
The curable resin composition of the present embodiment preferably contains a polymerization initiator, which polymerizes the carbon-carbon double bonds of the monomer components, thereby improving the adhesiveness.
重合開始剤として、好ましくは熱ラジカル重合開始剤を含む。熱ラジカル重合開始剤として、反応性をより向上させる観点から、好ましくは有機過酸化物を含み、より好ましくは、クメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ターシャリーブチルハイドロパーオキサイド、ジイソプロピルベンゼンジハイドロパーオキサイド、メチルエチルケトンパーオキサイドおよびターシャリーブチルパーオキシベンゾエートからなる群から選択される一種または二種以上を含み、さらに好ましくはクメンハイドロパーオキサイドを含む。
The polymerization initiator preferably contains a thermal radical polymerization initiator. From the viewpoint of further improving reactivity, the thermal radical polymerization initiator preferably contains an organic peroxide, more preferably contains one or more selected from the group consisting of cumene hydroperoxide, paramenthane hydroperoxide, tertiary butyl hydroperoxide, diisopropylbenzene dihydroperoxide, methyl ethyl ketone peroxide, and tertiary butyl peroxybenzoate, and further preferably contains cumene hydroperoxide.
本実施形態の硬化性樹脂組成物中の重合開始剤の含有量は、モノマー成分およびエラストマー(C)の合計含有量を100質量部としたとき、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、さらに好ましくは1.0質量部以上、さらに好ましくは1.5質量部以上、さらに好ましくは2.0質量部以上であり、そして、好ましくは20.0質量部以下、より好ましくは15.0質量部以下、さらに好ましくは12.0質量部以下、さらに好ましくは10.0質量部以下、さらに好ましくは8.0質量部以下、さらに好ましくは6.0質量部以下、さらに好ましくは4.0質量部以下、さらに好ましくは3.0質量部以下である。
The content of the polymerization initiator in the curable resin composition of this embodiment, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, even more preferably 1.0 parts by mass or more, even more preferably 1.5 parts by mass or more, even more preferably 2.0 parts by mass or more, and is preferably 20.0 parts by mass or less, more preferably 15.0 parts by mass or less, even more preferably 12.0 parts by mass or less, even more preferably 10.0 parts by mass or less, even more preferably 8.0 parts by mass or less, even more preferably 6.0 parts by mass or less, even more preferably 4.0 parts by mass or less, even more preferably 3.0 parts by mass or less.
<還元剤>
本実施形態の硬化性樹脂組成物は、好ましくは還元剤を含む。
本実施形態の硬化性樹脂組成物は、重合開始剤と還元剤とを併用することで、硬化性をより一層向上できる。
還元剤は、重合開始剤と反応してラジカルを発生させる還元剤であればよい。
還元剤は、好ましくは、第3級アミン、チオ尿素誘導体および遷移金属塩からなる群から選択される一種または二種以上を含み、より好ましくは遷移金属塩を含む。 <Reducing Agent>
The curable resin composition of the present embodiment preferably contains a reducing agent.
The curable resin composition of the present embodiment can further improve the curability by using a polymerization initiator and a reducing agent in combination.
The reducing agent may be any reducing agent that reacts with the polymerization initiator to generate radicals.
The reducing agent preferably includes one or more selected from the group consisting of a tertiary amine, a thiourea derivative, and a transition metal salt, and more preferably includes a transition metal salt.
本実施形態の硬化性樹脂組成物は、好ましくは還元剤を含む。
本実施形態の硬化性樹脂組成物は、重合開始剤と還元剤とを併用することで、硬化性をより一層向上できる。
還元剤は、重合開始剤と反応してラジカルを発生させる還元剤であればよい。
還元剤は、好ましくは、第3級アミン、チオ尿素誘導体および遷移金属塩からなる群から選択される一種または二種以上を含み、より好ましくは遷移金属塩を含む。 <Reducing Agent>
The curable resin composition of the present embodiment preferably contains a reducing agent.
The curable resin composition of the present embodiment can further improve the curability by using a polymerization initiator and a reducing agent in combination.
The reducing agent may be any reducing agent that reacts with the polymerization initiator to generate radicals.
The reducing agent preferably includes one or more selected from the group consisting of a tertiary amine, a thiourea derivative, and a transition metal salt, and more preferably includes a transition metal salt.
第3級アミンとしては、例えば、トリエチルアミン、トリプロピルアミン、トリブチルアミンおよびN,N-ジメチルパラトルイジン等からなる群から選択される一種または二種以上が挙げられる。
チオ尿素誘導体としては、例えば、2-メルカプトベンズイミダゾール、メチルチオ尿素、ジブチルチオ尿素、エチレンチオ尿素、アセチル-2-チオ尿素、ベンゾイルチオ尿素、N,N-ジフェニルチオ尿素、N,N-ジエチルチオ尿素、N,N-ジブチルチオ尿素およびテトラメチルチオ尿素等からなる群から選択される一種または二種以上が挙げられる。
遷移金属塩としては、例えば、ナフテン酸コバルト、ナフテン酸銅およびバナジルアセチルアセトナート等からなる群から選択される一種または二種以上が挙げられる。遷移金属塩は、より好ましくはバナジルアセチルアセトナートを含む。 Examples of the tertiary amine include one or more selected from the group consisting of triethylamine, tripropylamine, tributylamine, and N,N-dimethyl-p-toluidine.
Examples of the thiourea derivative include one or more selected from the group consisting of 2-mercaptobenzimidazole, methylthiourea, dibutylthiourea, ethylenethiourea, acetyl-2-thiourea, benzoylthiourea, N,N-diphenylthiourea, N,N-diethylthiourea, N,N-dibutylthiourea, and tetramethylthiourea.
Examples of the transition metal salt include one or more selected from the group consisting of cobalt naphthenate, copper naphthenate, vanadyl acetylacetonate, etc. More preferably, the transition metal salt includes vanadyl acetylacetonate.
チオ尿素誘導体としては、例えば、2-メルカプトベンズイミダゾール、メチルチオ尿素、ジブチルチオ尿素、エチレンチオ尿素、アセチル-2-チオ尿素、ベンゾイルチオ尿素、N,N-ジフェニルチオ尿素、N,N-ジエチルチオ尿素、N,N-ジブチルチオ尿素およびテトラメチルチオ尿素等からなる群から選択される一種または二種以上が挙げられる。
遷移金属塩としては、例えば、ナフテン酸コバルト、ナフテン酸銅およびバナジルアセチルアセトナート等からなる群から選択される一種または二種以上が挙げられる。遷移金属塩は、より好ましくはバナジルアセチルアセトナートを含む。 Examples of the tertiary amine include one or more selected from the group consisting of triethylamine, tripropylamine, tributylamine, and N,N-dimethyl-p-toluidine.
Examples of the thiourea derivative include one or more selected from the group consisting of 2-mercaptobenzimidazole, methylthiourea, dibutylthiourea, ethylenethiourea, acetyl-2-thiourea, benzoylthiourea, N,N-diphenylthiourea, N,N-diethylthiourea, N,N-dibutylthiourea, and tetramethylthiourea.
Examples of the transition metal salt include one or more selected from the group consisting of cobalt naphthenate, copper naphthenate, vanadyl acetylacetonate, etc. More preferably, the transition metal salt includes vanadyl acetylacetonate.
本実施形態の硬化性樹脂組成物中の還元剤の含有量は、モノマー成分およびエラストマー(C)の合計含有量を100質量部としたとき、好ましくは0.01質量部以上、より好ましくは0.05質量部以上、さらに好ましくは0.10質量部以上、さらに好ましくは0.15質量部以上、さらに好ましくは0.20質量部以上であり、そして、好ましくは10.0質量部以下、より好ましくは5.0質量部以下、さらに好ましくは3.0質量部以下、さらに好ましくは2.0質量部以下、さらに好ましくは1.0質量部以下、さらに好ましくは0.50質量部以下である。
The content of the reducing agent in the curable resin composition of this embodiment, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, even more preferably 0.10 parts by mass or more, even more preferably 0.15 parts by mass or more, even more preferably 0.20 parts by mass or more, and is preferably 10.0 parts by mass or less, more preferably 5.0 parts by mass or less, even more preferably 3.0 parts by mass or less, even more preferably 2.0 parts by mass or less, even more preferably 1.0 parts by mass or less, even more preferably 0.50 parts by mass or less.
<その他の成分>
本実施形態の硬化性樹脂組成物は、上記以外のその他の成分を含んでもよいし、含まなくてもよい。
その他の成分としては、例えば、(メタ)アクリロイル基を有するリン酸エステル化合物、パラフィン、安定剤等が挙げられる。
本実施形態の硬化性樹脂組成物は、貯蔵安定性をより向上させる観点から、各種の安定剤を含んでもよい。
安定剤の種類としては、(i)フェノール系酸化防止剤(例えば2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)等)、(ii)キノン系化合物(例えばp-ベンゾキノン、ハイドロキノンモノメチルエーテル等)、(iii)重合禁止剤として知られている化合物(例えばフェノチアジン等のアミン系重合禁止剤、クエン酸等)、(iv)安定ラジカルを有する安定ラジカル型化合物等を挙げることができる。
その他の成分の中では、表面硬化性向上の点で、(メタ)アクリロイル基を有するリン酸エステル化合物が好ましい。(メタ)アクリロイル基を有するリン酸エステル化合物は一種または二種以上を混合して用いてもよい。
(メタ)アクリロイル基を有するリン酸エステル化合物は、式(1)で表される化合物が好ましい。 <Other ingredients>
The curable resin composition of the present embodiment may or may not contain other components in addition to the above.
Examples of other components include a phosphate ester compound having a (meth)acryloyl group, paraffin, a stabilizer, and the like.
The curable resin composition of the present embodiment may contain various stabilizers from the viewpoint of further improving storage stability.
Examples of types of stabilizers include (i) phenol-based antioxidants (e.g., 2,2'-methylenebis(4-methyl-6-t-butylphenol) and the like), (ii) quinone-based compounds (e.g., p-benzoquinone, hydroquinone monomethyl ether and the like), (iii) compounds known as polymerization inhibitors (e.g., amine-based polymerization inhibitors such as phenothiazine, citric acid and the like), and (iv) stable radical-type compounds having a stable radical.
Among the other components, a phosphate ester compound having a (meth)acryloyl group is preferred from the viewpoint of improving surface curability. The phosphate ester compound having a (meth)acryloyl group may be used alone or in combination of two or more kinds.
The phosphate compound having a (meth)acryloyl group is preferably a compound represented by formula (1).
本実施形態の硬化性樹脂組成物は、上記以外のその他の成分を含んでもよいし、含まなくてもよい。
その他の成分としては、例えば、(メタ)アクリロイル基を有するリン酸エステル化合物、パラフィン、安定剤等が挙げられる。
本実施形態の硬化性樹脂組成物は、貯蔵安定性をより向上させる観点から、各種の安定剤を含んでもよい。
安定剤の種類としては、(i)フェノール系酸化防止剤(例えば2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)等)、(ii)キノン系化合物(例えばp-ベンゾキノン、ハイドロキノンモノメチルエーテル等)、(iii)重合禁止剤として知られている化合物(例えばフェノチアジン等のアミン系重合禁止剤、クエン酸等)、(iv)安定ラジカルを有する安定ラジカル型化合物等を挙げることができる。
その他の成分の中では、表面硬化性向上の点で、(メタ)アクリロイル基を有するリン酸エステル化合物が好ましい。(メタ)アクリロイル基を有するリン酸エステル化合物は一種または二種以上を混合して用いてもよい。
(メタ)アクリロイル基を有するリン酸エステル化合物は、式(1)で表される化合物が好ましい。 <Other ingredients>
The curable resin composition of the present embodiment may or may not contain other components in addition to the above.
Examples of other components include a phosphate ester compound having a (meth)acryloyl group, paraffin, a stabilizer, and the like.
The curable resin composition of the present embodiment may contain various stabilizers from the viewpoint of further improving storage stability.
Examples of types of stabilizers include (i) phenol-based antioxidants (e.g., 2,2'-methylenebis(4-methyl-6-t-butylphenol) and the like), (ii) quinone-based compounds (e.g., p-benzoquinone, hydroquinone monomethyl ether and the like), (iii) compounds known as polymerization inhibitors (e.g., amine-based polymerization inhibitors such as phenothiazine, citric acid and the like), and (iv) stable radical-type compounds having a stable radical.
Among the other components, a phosphate ester compound having a (meth)acryloyl group is preferred from the viewpoint of improving surface curability. The phosphate ester compound having a (meth)acryloyl group may be used alone or in combination of two or more kinds.
The phosphate compound having a (meth)acryloyl group is preferably a compound represented by formula (1).
本実施形態の硬化性樹脂組成物がその他の成分を含む場合、本実施形態の硬化性樹脂組成物中のその他の成分の合計含有量は、モノマー成分およびエラストマー(C)の合計含有量を100質量部としたとき、例えば0.001質量部以上、好ましくは0.005質量部以上、さらに好ましくは0.01質量部以上、さらに好ましくは0.05質量部以上、さらに好ましくは0.10質量部以上、さらに好ましくは0.5質量部以上、さらに好ましくは1.0質量部以上であり、そして、好ましくは30.0質量部以下、より好ましくは20.0質量部以下、さらに好ましくは15.0質量部以下、さらに好ましくは10.0質量部以下、さらに好ましくは5.0質量部以下である。
When the curable resin composition of this embodiment contains other components, the total content of the other components in the curable resin composition of this embodiment, when the total content of the monomer components and the elastomer (C) is taken as 100 parts by mass, is, for example, 0.001 parts by mass or more, preferably 0.005 parts by mass or more, more preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, more preferably 0.10 parts by mass or more, more preferably 0.5 parts by mass or more, even more preferably 1.0 parts by mass or more, and is preferably 30.0 parts by mass or less, more preferably 20.0 parts by mass or less, more preferably 15.0 parts by mass or less, even more preferably 10.0 parts by mass or less, even more preferably 5.0 parts by mass or less.
<硬化性樹脂組成物の特性>
本実施形態の硬化性樹脂組成物において、動的粘弾性測定により求められる、前記組成物を23℃で24時間硬化させて得られた硬化物のガラス転移温度は、耐熱性、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは80℃以上、より好ましくは90℃以上、さらに好ましくは95℃以上、さらに好ましくは100℃以上、さらに好ましくは106℃以上、さらに好ましくは108℃以上である。前記ガラス転移温度の上限値は特に限定されないが、例えば200℃以下、150℃以下、130℃以下、120℃以下、115℃以下である。
本実施形態の硬化性樹脂組成物の硬化物のガラス転移温度は、例えば、本実施形態の硬化性樹脂組成物に含まれる各成分の種類や含有割合、各成分の混合の順序や混合方法等を調整することにより調整できる。 <Characteristics of Curable Resin Composition>
In the curable resin composition of the present embodiment, the glass transition temperature of the cured product obtained by curing the composition at 23° C. for 24 hours, as determined by dynamic viscoelasticity measurement, is preferably 80° C. or higher, more preferably 90° C. or higher, even more preferably 95° C. or higher, even more preferably 100° C. or higher, even more preferably 106° C. or higher, and even more preferably 108° C. or higher, from the viewpoint of further improving the performance balance of heat resistance, adhesion durability, and surface curability. The upper limit of the glass transition temperature is not particularly limited, and is, for example, 200° C. or lower, 150° C. or lower, 130° C. or lower, 120° C. or lower, or 115° C. or lower.
The glass transition temperature of the cured product of the curable resin composition of the present embodiment can be adjusted, for example, by adjusting the type and content ratio of each component contained in the curable resin composition of the present embodiment, the mixing order and mixing method of each component, etc.
本実施形態の硬化性樹脂組成物において、動的粘弾性測定により求められる、前記組成物を23℃で24時間硬化させて得られた硬化物のガラス転移温度は、耐熱性、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは80℃以上、より好ましくは90℃以上、さらに好ましくは95℃以上、さらに好ましくは100℃以上、さらに好ましくは106℃以上、さらに好ましくは108℃以上である。前記ガラス転移温度の上限値は特に限定されないが、例えば200℃以下、150℃以下、130℃以下、120℃以下、115℃以下である。
本実施形態の硬化性樹脂組成物の硬化物のガラス転移温度は、例えば、本実施形態の硬化性樹脂組成物に含まれる各成分の種類や含有割合、各成分の混合の順序や混合方法等を調整することにより調整できる。 <Characteristics of Curable Resin Composition>
In the curable resin composition of the present embodiment, the glass transition temperature of the cured product obtained by curing the composition at 23° C. for 24 hours, as determined by dynamic viscoelasticity measurement, is preferably 80° C. or higher, more preferably 90° C. or higher, even more preferably 95° C. or higher, even more preferably 100° C. or higher, even more preferably 106° C. or higher, and even more preferably 108° C. or higher, from the viewpoint of further improving the performance balance of heat resistance, adhesion durability, and surface curability. The upper limit of the glass transition temperature is not particularly limited, and is, for example, 200° C. or lower, 150° C. or lower, 130° C. or lower, 120° C. or lower, or 115° C. or lower.
The glass transition temperature of the cured product of the curable resin composition of the present embodiment can be adjusted, for example, by adjusting the type and content ratio of each component contained in the curable resin composition of the present embodiment, the mixing order and mixing method of each component, etc.
本実施形態の硬化性樹脂組成物において、下記方法1により測定される吸水率は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは5.0%以下、より好ましくは3.0%以下、さらに好ましくは2.5%以下、さらに好ましくは2.0%以下、さらに好ましくは1.8%以下である。前記吸水率の下限値は特に限定されないが、例えば0.1%以上、0.5%以上、0.8%以上、1.0%以上、1.2%以上である。
(方法1)
前記硬化性樹脂組成物を23℃、24時間処理することにより、5mm×40mm×0.5mmの硬化物サンプルを作製し、次いで、得られた前記硬化物サンプルを70℃の水中に24時間浸漬し、水中に浸漬する前の前記硬化物サンプルの質量をW1(g)とし、水中に浸漬した後の前記硬化物サンプルの質量をW2(g)としたとき、(W2-W1)/W1×100の式に基づいて、水浸漬前後における質量変化から吸水率(%)を算定する。 In the curable resin composition of the present embodiment, the water absorption measured by the following method 1 is preferably 5.0% or less, more preferably 3.0% or less, even more preferably 2.5% or less, even more preferably 2.0% or less, and even more preferably 1.8% or less, from the viewpoint of further improving the performance balance between adhesion durability and surface curability. The lower limit of the water absorption is not particularly limited, and is, for example, 0.1% or more, 0.5% or more, 0.8% or more, 1.0% or more, or 1.2% or more.
(Method 1)
The curable resin composition is treated at 23°C for 24 hours to prepare a cured sample of 5 mm x 40 mm x 0.5 mm. The obtained cured sample is then immersed in water at 70°C for 24 hours. When the mass of the cured sample before immersion in water is W1 (g) and the mass of the cured sample after immersion in water is W2 (g), the water absorption (%) is calculated from the change in mass before and after immersion in water based on the formula ( W2 - W1 )/ W1 x 100.
(方法1)
前記硬化性樹脂組成物を23℃、24時間処理することにより、5mm×40mm×0.5mmの硬化物サンプルを作製し、次いで、得られた前記硬化物サンプルを70℃の水中に24時間浸漬し、水中に浸漬する前の前記硬化物サンプルの質量をW1(g)とし、水中に浸漬した後の前記硬化物サンプルの質量をW2(g)としたとき、(W2-W1)/W1×100の式に基づいて、水浸漬前後における質量変化から吸水率(%)を算定する。 In the curable resin composition of the present embodiment, the water absorption measured by the following method 1 is preferably 5.0% or less, more preferably 3.0% or less, even more preferably 2.5% or less, even more preferably 2.0% or less, and even more preferably 1.8% or less, from the viewpoint of further improving the performance balance between adhesion durability and surface curability. The lower limit of the water absorption is not particularly limited, and is, for example, 0.1% or more, 0.5% or more, 0.8% or more, 1.0% or more, or 1.2% or more.
(Method 1)
The curable resin composition is treated at 23°C for 24 hours to prepare a cured sample of 5 mm x 40 mm x 0.5 mm. The obtained cured sample is then immersed in water at 70°C for 24 hours. When the mass of the cured sample before immersion in water is W1 (g) and the mass of the cured sample after immersion in water is W2 (g), the water absorption (%) is calculated from the change in mass before and after immersion in water based on the formula ( W2 - W1 )/ W1 x 100.
本実施形態の硬化性樹脂組成物において、下記方法2により測定される発熱ピーク温度は、接着耐久性および表面硬化性の性能バランスをより向上させる観点から、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上、さらに好ましくは80℃以上、さらに好ましくは90℃以上、さらに好ましくは100℃以上、さらに好ましくは110℃以上である。前記発熱ピーク温度の上限値は特に限定されないが、例えば200℃以下、150℃以下、130℃以下、125℃以下、120℃以下である。
(方法2)
サーモロガーに接続したK熱電対を紙コップ底面に固定し、その紙コップ内に前記硬化性樹脂組成物を吐出し、前記硬化性樹脂組成物が硬化する際の発熱温度をサーモロガーにて測定し、最も高温となった温度を発熱ピーク温度とする。 In the curable resin composition of this embodiment, the exothermic peak temperature measured by the following method 2 is preferably 50° C. or higher, more preferably 60° C. or higher, even more preferably 70° C. or higher, even more preferably 80° C. or higher, even more preferably 90° C. or higher, even more preferably 100° C. or higher, and even more preferably 110° C. or higher, from the viewpoint of further improving the performance balance between adhesion durability and surface curability. The upper limit of the exothermic peak temperature is not particularly limited, and is, for example, 200° C. or lower, 150° C. or lower, 130° C. or lower, 125° C. or lower, or 120° C. or lower.
(Method 2)
A K thermocouple connected to a thermologger is fixed to the bottom of a paper cup, the curable resin composition is discharged into the paper cup, and the heat generation temperature when the curable resin composition cures is measured with the thermologger. The highest temperature is taken as the heat generation peak temperature.
(方法2)
サーモロガーに接続したK熱電対を紙コップ底面に固定し、その紙コップ内に前記硬化性樹脂組成物を吐出し、前記硬化性樹脂組成物が硬化する際の発熱温度をサーモロガーにて測定し、最も高温となった温度を発熱ピーク温度とする。 In the curable resin composition of this embodiment, the exothermic peak temperature measured by the following method 2 is preferably 50° C. or higher, more preferably 60° C. or higher, even more preferably 70° C. or higher, even more preferably 80° C. or higher, even more preferably 90° C. or higher, even more preferably 100° C. or higher, and even more preferably 110° C. or higher, from the viewpoint of further improving the performance balance between adhesion durability and surface curability. The upper limit of the exothermic peak temperature is not particularly limited, and is, for example, 200° C. or lower, 150° C. or lower, 130° C. or lower, 125° C. or lower, or 120° C. or lower.
(Method 2)
A K thermocouple connected to a thermologger is fixed to the bottom of a paper cup, the curable resin composition is discharged into the paper cup, and the heat generation temperature when the curable resin composition cures is measured with the thermologger. The highest temperature is taken as the heat generation peak temperature.
<一剤型/二剤型>
本実施形態の硬化性樹脂組成物は、一剤型であってもよいし、二剤型(別々の容器に充填された2つの剤を、使用直前に混合して用いる形態)であってもよい。
二剤型の場合、好ましくは、重合開始剤が第一剤に、還元剤が第二剤に、それぞれ含まれる。
本実施形態の硬化性樹脂組成物が二剤型である場合、第一剤と第二剤とを混合した後の硬化性樹脂組成物が、上述の各成分の好適含有量の範囲で各成分を含むように、第一剤および第二剤中の各成分の量を調整することが好ましい。また、本明細書で記載している硬化性樹脂組成物の各種特性は、第一剤と第二剤とを混合した後の硬化性樹脂組成物に関する。 <One-drug type/two-drug type>
The curable resin composition of the present embodiment may be a one-component type or a two-component type (two components filled in separate containers are mixed together immediately before use).
In the case of the two-component type, the polymerization initiator is preferably contained in the first component, and the reducing agent is preferably contained in the second component.
When the curable resin composition of the present embodiment is a two-part type, it is preferable to adjust the amount of each component in the first and second parts so that the curable resin composition after mixing the first and second parts contains each component in the preferred content range described above. In addition, various properties of the curable resin composition described in this specification relate to the curable resin composition after mixing the first and second parts.
本実施形態の硬化性樹脂組成物は、一剤型であってもよいし、二剤型(別々の容器に充填された2つの剤を、使用直前に混合して用いる形態)であってもよい。
二剤型の場合、好ましくは、重合開始剤が第一剤に、還元剤が第二剤に、それぞれ含まれる。
本実施形態の硬化性樹脂組成物が二剤型である場合、第一剤と第二剤とを混合した後の硬化性樹脂組成物が、上述の各成分の好適含有量の範囲で各成分を含むように、第一剤および第二剤中の各成分の量を調整することが好ましい。また、本明細書で記載している硬化性樹脂組成物の各種特性は、第一剤と第二剤とを混合した後の硬化性樹脂組成物に関する。 <One-drug type/two-drug type>
The curable resin composition of the present embodiment may be a one-component type or a two-component type (two components filled in separate containers are mixed together immediately before use).
In the case of the two-component type, the polymerization initiator is preferably contained in the first component, and the reducing agent is preferably contained in the second component.
When the curable resin composition of the present embodiment is a two-part type, it is preferable to adjust the amount of each component in the first and second parts so that the curable resin composition after mixing the first and second parts contains each component in the preferred content range described above. In addition, various properties of the curable resin composition described in this specification relate to the curable resin composition after mixing the first and second parts.
<硬化性樹脂組成物の製造方法>
本実施形態の硬化性樹脂組成物の製造にあたっては、上述の各成分を単に混合するのではなく、各成分の混合の順序、混合方法等を適切に調整することが好ましい。
本実施形態の硬化性樹脂組成物の製造にあたっては、特に、モノマー成分とエラストマー(C)とが十分に混合することが好ましい。このため、(i)まず、モノマー成分の少なくとも一部とエラストマー(C)の少なくとも一部とを、50~80℃下で十分均一に混合して混合物とし、(ii)その後、その混合物に他の成分を添加して攪拌することが好ましい。こうすることで、モノマー成分とエラストマー(C)とが十分均一に混じり合うと考えられる。このようにして製造された硬化性樹脂組成物は、他の製造方法によって得られた硬化性樹脂組成物と比較して、例えば、上述した硬化性樹脂組成物の特性(ガラス転移温度、引張せん断接着強さ等)を満たしやすい傾向がある。 <Method for producing curable resin composition>
In producing the curable resin composition of the present embodiment, it is preferable to appropriately adjust the mixing order, mixing method, etc. of the components, rather than simply mixing the components described above.
In the production of the curable resin composition of this embodiment, it is particularly preferable that the monomer components and the elastomer (C) are mixed sufficiently. For this reason, it is preferable to (i) first mix at least a part of the monomer components and at least a part of the elastomer (C) sufficiently uniformly at 50 to 80° C. to obtain a mixture, and (ii) then add other components to the mixture and stir it. By doing so, it is considered that the monomer components and the elastomer (C) are mixed sufficiently uniformly. The curable resin composition produced in this way tends to easily satisfy, for example, the characteristics of the curable resin composition described above (glass transition temperature, tensile shear adhesive strength, etc.) compared to curable resin compositions obtained by other production methods.
本実施形態の硬化性樹脂組成物の製造にあたっては、上述の各成分を単に混合するのではなく、各成分の混合の順序、混合方法等を適切に調整することが好ましい。
本実施形態の硬化性樹脂組成物の製造にあたっては、特に、モノマー成分とエラストマー(C)とが十分に混合することが好ましい。このため、(i)まず、モノマー成分の少なくとも一部とエラストマー(C)の少なくとも一部とを、50~80℃下で十分均一に混合して混合物とし、(ii)その後、その混合物に他の成分を添加して攪拌することが好ましい。こうすることで、モノマー成分とエラストマー(C)とが十分均一に混じり合うと考えられる。このようにして製造された硬化性樹脂組成物は、他の製造方法によって得られた硬化性樹脂組成物と比較して、例えば、上述した硬化性樹脂組成物の特性(ガラス転移温度、引張せん断接着強さ等)を満たしやすい傾向がある。 <Method for producing curable resin composition>
In producing the curable resin composition of the present embodiment, it is preferable to appropriately adjust the mixing order, mixing method, etc. of the components, rather than simply mixing the components described above.
In the production of the curable resin composition of this embodiment, it is particularly preferable that the monomer components and the elastomer (C) are mixed sufficiently. For this reason, it is preferable to (i) first mix at least a part of the monomer components and at least a part of the elastomer (C) sufficiently uniformly at 50 to 80° C. to obtain a mixture, and (ii) then add other components to the mixture and stir it. By doing so, it is considered that the monomer components and the elastomer (C) are mixed sufficiently uniformly. The curable resin composition produced in this way tends to easily satisfy, for example, the characteristics of the curable resin composition described above (glass transition temperature, tensile shear adhesive strength, etc.) compared to curable resin compositions obtained by other production methods.
<用途>
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスが向上しているため、エンジンルーム等の高温多湿環境下に長期間曝されるバッテリー用の材料に好適に用いることができ、バッテリー端子部の保護材としてより好適に用いることができ、車載用バッテリー端子部の保護材としてさらに好適に用いることができる。
ここで、バッテリー端子部の保護材とは、バッテリー端子部の腐食防止を目的として、バッテリー端子部にコーティングされるものである。バッテリー端子部は、例えば、アルミ等の金属材料により構成される。 <Applications>
The curable resin composition of the present embodiment has an improved performance balance between adhesion durability and surface curability, and therefore can be suitably used as a material for batteries that are exposed to high temperature and high humidity environments such as engine rooms for long periods of time, and can be more suitably used as a protective material for battery terminals, and can be even more suitably used as a protective material for vehicle-mounted battery terminals.
The protective material for the battery terminals is a coating applied to the battery terminals for the purpose of preventing corrosion of the battery terminals. The battery terminals are made of a metal material such as aluminum.
本実施形態の硬化性樹脂組成物は、接着耐久性および表面硬化性の性能バランスが向上しているため、エンジンルーム等の高温多湿環境下に長期間曝されるバッテリー用の材料に好適に用いることができ、バッテリー端子部の保護材としてより好適に用いることができ、車載用バッテリー端子部の保護材としてさらに好適に用いることができる。
ここで、バッテリー端子部の保護材とは、バッテリー端子部の腐食防止を目的として、バッテリー端子部にコーティングされるものである。バッテリー端子部は、例えば、アルミ等の金属材料により構成される。 <Applications>
The curable resin composition of the present embodiment has an improved performance balance between adhesion durability and surface curability, and therefore can be suitably used as a material for batteries that are exposed to high temperature and high humidity environments such as engine rooms for long periods of time, and can be more suitably used as a protective material for battery terminals, and can be even more suitably used as a protective material for vehicle-mounted battery terminals.
The protective material for the battery terminals is a coating applied to the battery terminals for the purpose of preventing corrosion of the battery terminals. The battery terminals are made of a metal material such as aluminum.
<物品>
本実施形態の物品は、本実施形態の硬化性樹脂組成物からなる硬化物を含む。
本実施形態の硬化性樹脂組成物を物品に塗布して硬化させる等することで、硬化性樹脂組成物の硬化物を含む物品が得られる。
本実施形態の硬化性樹脂組成物は、好ましくは加熱をせずとも(室温で)硬化して、物品を接着することができる(特に、重合開始剤と還元剤とを含む場合)。もちろん、物品の接着に際して加熱を行うことは排除されない。 <Items>
The article of the present embodiment includes a cured product made of the curable resin composition of the present embodiment.
By applying the curable resin composition of the present embodiment to an article and curing it, an article including a cured product of the curable resin composition can be obtained.
The curable resin composition of the present embodiment can be cured (at room temperature) without heating and can bond articles (particularly when it contains a polymerization initiator and a reducing agent). Of course, heating is not excluded when bonding articles.
本実施形態の物品は、本実施形態の硬化性樹脂組成物からなる硬化物を含む。
本実施形態の硬化性樹脂組成物を物品に塗布して硬化させる等することで、硬化性樹脂組成物の硬化物を含む物品が得られる。
本実施形態の硬化性樹脂組成物は、好ましくは加熱をせずとも(室温で)硬化して、物品を接着することができる(特に、重合開始剤と還元剤とを含む場合)。もちろん、物品の接着に際して加熱を行うことは排除されない。 <Items>
The article of the present embodiment includes a cured product made of the curable resin composition of the present embodiment.
By applying the curable resin composition of the present embodiment to an article and curing it, an article including a cured product of the curable resin composition can be obtained.
The curable resin composition of the present embodiment can be cured (at room temperature) without heating and can bond articles (particularly when it contains a polymerization initiator and a reducing agent). Of course, heating is not excluded when bonding articles.
<バッテリー>
本実施形態のバッテリーは、本実施形態の硬化性樹脂組成物からなる硬化物を含む。
本実施形態のバッテリーは、例えば、バッテリー本体部およびバッテリー端子部を備え、バッテリー端子部を保護するための保護材が、本実施形態の硬化性樹脂組成物からなる硬化物を含む。このとき、本実施形態のバッテリーにおけるバッテリー端子部は、本実施形態の硬化性樹脂組成物からなる硬化物により被覆されていることが好ましい。
本実施形態のバッテリーは、本実施形態の硬化性樹脂組成物からなる硬化物を含むため、高温多湿環境下における耐久性が向上している。 <Battery>
The battery of the present embodiment includes a cured product made of the curable resin composition of the present embodiment.
The battery of the present embodiment includes, for example, a battery main body and a battery terminal, and a protective material for protecting the battery terminal includes a cured product made of the curable resin composition of the present embodiment. In this case, it is preferable that the battery terminal in the battery of the present embodiment is covered with the cured product made of the curable resin composition of the present embodiment.
The battery of the present embodiment includes a cured product made of the curable resin composition of the present embodiment, and therefore has improved durability in high-temperature and high-humidity environments.
本実施形態のバッテリーは、本実施形態の硬化性樹脂組成物からなる硬化物を含む。
本実施形態のバッテリーは、例えば、バッテリー本体部およびバッテリー端子部を備え、バッテリー端子部を保護するための保護材が、本実施形態の硬化性樹脂組成物からなる硬化物を含む。このとき、本実施形態のバッテリーにおけるバッテリー端子部は、本実施形態の硬化性樹脂組成物からなる硬化物により被覆されていることが好ましい。
本実施形態のバッテリーは、本実施形態の硬化性樹脂組成物からなる硬化物を含むため、高温多湿環境下における耐久性が向上している。 <Battery>
The battery of the present embodiment includes a cured product made of the curable resin composition of the present embodiment.
The battery of the present embodiment includes, for example, a battery main body and a battery terminal, and a protective material for protecting the battery terminal includes a cured product made of the curable resin composition of the present embodiment. In this case, it is preferable that the battery terminal in the battery of the present embodiment is covered with the cured product made of the curable resin composition of the present embodiment.
The battery of the present embodiment includes a cured product made of the curable resin composition of the present embodiment, and therefore has improved durability in high-temperature and high-humidity environments.
本明細書では、主に「硬化性樹脂組成物」について説明した。しかし、本明細書で説明した硬化性樹脂組成物は、保護材以外の分野、例えば接着剤や被覆材、注入剤としても使用可能である。換言すると、本明細書で説明した硬化性樹脂組成物は、用途が限定されない組成物、コーティング剤、接着性組成物として使用することもできる。本実施形態の組成物は、例えば、いわゆる、接着剤、封止剤、感光性樹脂層、絶縁樹脂層、熱伝導性樹脂層、被覆材等としても用いることができる。
In this specification, the "curable resin composition" has been mainly described. However, the curable resin composition described in this specification can also be used in fields other than protective materials, such as adhesives, coating materials, and injection agents. In other words, the curable resin composition described in this specification can also be used as a composition with no limited use, a coating agent, or an adhesive composition. The composition of this embodiment can also be used, for example, as a so-called adhesive, sealant, photosensitive resin layer, insulating resin layer, thermally conductive resin layer, coating material, etc.
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用できる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
The above describes the embodiments of the present invention, but these are merely examples of the present invention, and various configurations other than those described above can be adopted. Furthermore, the present invention is not limited to the above-described embodiments, and modifications and improvements within the scope of the present invention are included in the present invention.
以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
The present invention will be explained in more detail below using examples, but the present invention is not limited to these examples.
<実施例1~6および比較例1~2>
表1の割合(単位:質量部)で各成分を、攪拌羽根を備えた攪拌装置により十分に混合して第一剤および第二剤を調製した。次に、第一剤と第二剤とを等量混合して硬化性樹脂組成物を調製した。得られた硬化性樹脂組成物を用いて下記評価をそれぞれ行った。得られた結果を表1に示す。なお、表1における各成分の割合の単位は全て質量部である。
ここで、第一剤および第二剤の調製において、モノマー成分とエラストマー(C)とを、50~80℃下で十分均一に混合して混合物とし、次いで、その混合物に他の成分を添加して攪拌し、次いで、脱泡処理することにより、第一剤および第二剤をそれぞれ調製した。 <Examples 1 to 6 and Comparative Examples 1 to 2>
The first and second agents were prepared by thoroughly mixing each component in the ratio (unit: parts by mass) shown in Table 1 using a stirring device equipped with a stirring blade. Next, equal amounts of the first and second agents were mixed to prepare a curable resin composition. The following evaluations were performed using the obtained curable resin composition. The obtained results are shown in Table 1. Note that the units of the ratios of each component in Table 1 are all parts by mass.
In the preparation of the first and second agents, the monomer components and the elastomer (C) were mixed thoroughly and uniformly at 50 to 80° C. to prepare a mixture, and then other components were added to the mixture and stirred, followed by degassing treatment to prepare the first and second agents, respectively.
表1の割合(単位:質量部)で各成分を、攪拌羽根を備えた攪拌装置により十分に混合して第一剤および第二剤を調製した。次に、第一剤と第二剤とを等量混合して硬化性樹脂組成物を調製した。得られた硬化性樹脂組成物を用いて下記評価をそれぞれ行った。得られた結果を表1に示す。なお、表1における各成分の割合の単位は全て質量部である。
ここで、第一剤および第二剤の調製において、モノマー成分とエラストマー(C)とを、50~80℃下で十分均一に混合して混合物とし、次いで、その混合物に他の成分を添加して攪拌し、次いで、脱泡処理することにより、第一剤および第二剤をそれぞれ調製した。 <Examples 1 to 6 and Comparative Examples 1 to 2>
The first and second agents were prepared by thoroughly mixing each component in the ratio (unit: parts by mass) shown in Table 1 using a stirring device equipped with a stirring blade. Next, equal amounts of the first and second agents were mixed to prepare a curable resin composition. The following evaluations were performed using the obtained curable resin composition. The obtained results are shown in Table 1. Note that the units of the ratios of each component in Table 1 are all parts by mass.
In the preparation of the first and second agents, the monomer components and the elastomer (C) were mixed thoroughly and uniformly at 50 to 80° C. to prepare a mixture, and then other components were added to the mixture and stirred, followed by degassing treatment to prepare the first and second agents, respectively.
表1に記載されているものの一部に関する情報を、以下に追加で記載しておく。
・BL-20:メチルメタクリレート・ブタジエン・アクリロニトリル・スチレンゴム(メチルメタクリレート含有量15質量%、ブタジエン含有量46質量%、アクリロニトリル含有量3質量%、スチレン含有量36質量%、ソフトセグメントユニットの含有率46質量%)
・1300X33VTBNX LC:両末端にメタクリロイル基を有するアクリロニトリル・ブタジエンゴム(アクリロニトリル含有量18質量%、ソフトセグメントユニットの含有率82質量%)
・N250SL:アクリロニトリル・ブタジエンゴム(アクリロニトリル含有量19.5質量%、ソフトセグメントユニットの含有率81質量%)
・DCPD型ジメタクリレート:ジシクロペンタニルジメタクリレート
・SIPOMER PAM 4000:2-ヒドロキシエチルメタクリレートのリン酸エステル(前記式(1)において、RはCH2=CR1CO(OR2)m-(R1は-CH3、R2は-C2H4-、mは1)である。nが1であるリン酸エステルとnが2であるリン酸エステルの混合物である。) Additional information regarding some of the items listed in Table 1 is provided below.
BL-20: methyl methacrylate, butadiene, acrylonitrile, styrene rubber (methyl methacrylate content 15% by mass, butadiene content 46% by mass, acrylonitrile content 3% by mass, styrene content 36% by mass, soft segment unit content 46% by mass)
1300X33VTBNX LC: acrylonitrile butadiene rubber having methacryloyl groups at both ends (acrylonitrile content 18% by mass, soft segment unit content 82% by mass)
N250SL: acrylonitrile-butadiene rubber (acrylonitrile content 19.5% by mass, soft segment unit content 81% by mass)
DCPD type dimethacrylate: dicyclopentanyl dimethacrylate SIPOMER PAM 4000: phosphate ester of 2-hydroxyethyl methacrylate (in the above formula (1), R is CH 2 ═CR 1 CO(OR 2 ) m — (R 1 is —CH 3 , R 2 is —C 2 H 4 —, m is 1). It is a mixture of a phosphate ester in which n is 1 and a phosphate ester in which n is 2.)
・BL-20:メチルメタクリレート・ブタジエン・アクリロニトリル・スチレンゴム(メチルメタクリレート含有量15質量%、ブタジエン含有量46質量%、アクリロニトリル含有量3質量%、スチレン含有量36質量%、ソフトセグメントユニットの含有率46質量%)
・1300X33VTBNX LC:両末端にメタクリロイル基を有するアクリロニトリル・ブタジエンゴム(アクリロニトリル含有量18質量%、ソフトセグメントユニットの含有率82質量%)
・N250SL:アクリロニトリル・ブタジエンゴム(アクリロニトリル含有量19.5質量%、ソフトセグメントユニットの含有率81質量%)
・DCPD型ジメタクリレート:ジシクロペンタニルジメタクリレート
・SIPOMER PAM 4000:2-ヒドロキシエチルメタクリレートのリン酸エステル(前記式(1)において、RはCH2=CR1CO(OR2)m-(R1は-CH3、R2は-C2H4-、mは1)である。nが1であるリン酸エステルとnが2であるリン酸エステルの混合物である。) Additional information regarding some of the items listed in Table 1 is provided below.
BL-20: methyl methacrylate, butadiene, acrylonitrile, styrene rubber (methyl methacrylate content 15% by mass, butadiene content 46% by mass, acrylonitrile content 3% by mass, styrene content 36% by mass, soft segment unit content 46% by mass)
1300X33VTBNX LC: acrylonitrile butadiene rubber having methacryloyl groups at both ends (acrylonitrile content 18% by mass, soft segment unit content 82% by mass)
N250SL: acrylonitrile-butadiene rubber (acrylonitrile content 19.5% by mass, soft segment unit content 81% by mass)
DCPD type dimethacrylate: dicyclopentanyl dimethacrylate SIPOMER PAM 4000: phosphate ester of 2-hydroxyethyl methacrylate (in the above formula (1), R is CH 2 ═CR 1 CO(OR 2 ) m — (R 1 is —CH 3 , R 2 is —C 2 H 4 —, m is 1). It is a mixture of a phosphate ester in which n is 1 and a phosphate ester in which n is 2.)
<評価>
以下の各測定・評価は、全て、各3回行い、得られた3つの数値を平均したものを結果として採用した。 <Evaluation>
Each of the following measurements and evaluations was carried out three times, and the average of the three values obtained was used as the result.
以下の各測定・評価は、全て、各3回行い、得られた3つの数値を平均したものを結果として採用した。 <Evaluation>
Each of the following measurements and evaluations was carried out three times, and the average of the three values obtained was used as the result.
[引張せん断接着試験(アルミニウム合金板-アルミニウム合金板)]
JIS K 6850:1999、接着剤-剛性被着材の引張せん断接着強さ試験方法に準拠して評価した。具体的には、一枚の試験片(25mm×100mm×2.0mmtのアルミニウム合金板(JIS H 4000:2022、A5052P、UACJ社製)、アセトン脱脂処理を実施)の片面に硬化性樹脂組成物(二剤型のものは二剤混合後のもの)を塗布して膜を形成し、膜の表面に、もう一方の試験片(25mm×100mm×2.0mmtのアルミニウム合金板(JIS H 4000:2022、A5052P、UACJ社製)、アセトン脱脂処理を実施)を直ちに重ね合わせて貼り合わせた。その後、室温(23℃)で24時間養生した。このようにして引張せん断接着強さ測定用試験片を得た。ここで、粒径100μmのポリエチレンフィラー(プライムポリマー社製、製品名:ハイゼックス2100JPD)を硬化性樹脂組成物に添加し、ポリエチレンフィラー(膜厚調整用のスペーサー)の作用により、硬化性樹脂組成物の膜厚は100μm(=0.1mm)に調整した。ポリエチレンフィラーの使用量は、モノマー成分100質量部に対して0.5質量部である。
次いで、上記引張せん断接着強さ測定用試験片を用いて、温度23℃の環境下、相対湿度50%の環境下、引張速度10mm/分の条件で、Instron社製万能試験機Model 5967を用いて引張せん断接着試験を行い、引張せん断接着強さF0を測定した。
また、上記引張せん断接着強さ測定用試験片を、恒温恒湿器(GPL-3、ESPEC社製)に静置し、95℃×95%RHの環境下に500時間暴露した。
次いで、500時間暴露後の引張せん断接着強さ測定用試験片を用いて、温度23℃の環境下、相対湿度50%の環境下、引張速度10mm/分の条件で、Instron社製万能試験機Model 5967を用いて引張せん断接着試験を行い、引張せん断接着強さF500を測定した。
得られた引張せん断接着強さF0および引張せん断接着強さF500からF500/F0を算出した。 [Tensile shear adhesion test (aluminum alloy plate - aluminum alloy plate)]
The evaluation was performed in accordance with JIS K 6850:1999, adhesive-rigid adherend tensile shear bond strength test method. Specifically, a curable resin composition (two-component type is after mixing of two-component) was applied to one side of one test piece (25 mm x 100 mm x 2.0 mmt aluminum alloy plate (JIS H 4000:2022, A5052P, manufactured by UACJ), acetone degreasing treatment was performed) to form a film, and the other test piece (25 mm x 100 mm x 2.0 mmt aluminum alloy plate (JIS H 4000:2022, A5052P, manufactured by UACJ), acetone degreasing treatment was performed) was immediately superimposed on the surface of the film and bonded. Then, the test piece was aged at room temperature (23 ° C.) for 24 hours. In this way, a test piece for measuring tensile shear bond strength was obtained. Here, a polyethylene filler having a particle size of 100 μm (manufactured by Prime Polymer Co., Ltd., product name: Hi-Zex 2100JPD) was added to the curable resin composition, and the film thickness of the curable resin composition was adjusted to 100 μm (=0.1 mm) by the action of the polyethylene filler (spacer for adjusting the film thickness). The amount of the polyethylene filler used was 0.5 parts by mass with respect to 100 parts by mass of the monomer component.
Next, using the above test pieces for measuring tensile shear bond strength, a tensile shear bond test was performed using an Instron universal testing machine Model 5967 under conditions of a temperature of 23° C., a relative humidity of 50%, and a tensile speed of 10 mm/min, to measure the tensile shear bond strength F0 .
The test pieces for measuring the tensile shear adhesive strength were placed in a thermohygrostat (GPL-3, manufactured by ESPEC) and exposed to an environment of 95° C.×95% RH for 500 hours.
Next, using the test pieces for measuring the tensile shear bond strength after 500 hours of exposure, a tensile shear bond test was performed using an Instron universal testing machine Model 5967 under conditions of a temperature of 23°C, a relative humidity of 50%, and a tensile speed of 10 mm/min, to measure the tensile shear bond strength F 500 .
F 500 /F 0 was calculated from the obtained tensile shear adhesive strength F 0 and tensile shear adhesive strength F 500 .
JIS K 6850:1999、接着剤-剛性被着材の引張せん断接着強さ試験方法に準拠して評価した。具体的には、一枚の試験片(25mm×100mm×2.0mmtのアルミニウム合金板(JIS H 4000:2022、A5052P、UACJ社製)、アセトン脱脂処理を実施)の片面に硬化性樹脂組成物(二剤型のものは二剤混合後のもの)を塗布して膜を形成し、膜の表面に、もう一方の試験片(25mm×100mm×2.0mmtのアルミニウム合金板(JIS H 4000:2022、A5052P、UACJ社製)、アセトン脱脂処理を実施)を直ちに重ね合わせて貼り合わせた。その後、室温(23℃)で24時間養生した。このようにして引張せん断接着強さ測定用試験片を得た。ここで、粒径100μmのポリエチレンフィラー(プライムポリマー社製、製品名:ハイゼックス2100JPD)を硬化性樹脂組成物に添加し、ポリエチレンフィラー(膜厚調整用のスペーサー)の作用により、硬化性樹脂組成物の膜厚は100μm(=0.1mm)に調整した。ポリエチレンフィラーの使用量は、モノマー成分100質量部に対して0.5質量部である。
次いで、上記引張せん断接着強さ測定用試験片を用いて、温度23℃の環境下、相対湿度50%の環境下、引張速度10mm/分の条件で、Instron社製万能試験機Model 5967を用いて引張せん断接着試験を行い、引張せん断接着強さF0を測定した。
また、上記引張せん断接着強さ測定用試験片を、恒温恒湿器(GPL-3、ESPEC社製)に静置し、95℃×95%RHの環境下に500時間暴露した。
次いで、500時間暴露後の引張せん断接着強さ測定用試験片を用いて、温度23℃の環境下、相対湿度50%の環境下、引張速度10mm/分の条件で、Instron社製万能試験機Model 5967を用いて引張せん断接着試験を行い、引張せん断接着強さF500を測定した。
得られた引張せん断接着強さF0および引張せん断接着強さF500からF500/F0を算出した。 [Tensile shear adhesion test (aluminum alloy plate - aluminum alloy plate)]
The evaluation was performed in accordance with JIS K 6850:1999, adhesive-rigid adherend tensile shear bond strength test method. Specifically, a curable resin composition (two-component type is after mixing of two-component) was applied to one side of one test piece (25 mm x 100 mm x 2.0 mmt aluminum alloy plate (JIS H 4000:2022, A5052P, manufactured by UACJ), acetone degreasing treatment was performed) to form a film, and the other test piece (25 mm x 100 mm x 2.0 mmt aluminum alloy plate (JIS H 4000:2022, A5052P, manufactured by UACJ), acetone degreasing treatment was performed) was immediately superimposed on the surface of the film and bonded. Then, the test piece was aged at room temperature (23 ° C.) for 24 hours. In this way, a test piece for measuring tensile shear bond strength was obtained. Here, a polyethylene filler having a particle size of 100 μm (manufactured by Prime Polymer Co., Ltd., product name: Hi-Zex 2100JPD) was added to the curable resin composition, and the film thickness of the curable resin composition was adjusted to 100 μm (=0.1 mm) by the action of the polyethylene filler (spacer for adjusting the film thickness). The amount of the polyethylene filler used was 0.5 parts by mass with respect to 100 parts by mass of the monomer component.
Next, using the above test pieces for measuring tensile shear bond strength, a tensile shear bond test was performed using an Instron universal testing machine Model 5967 under conditions of a temperature of 23° C., a relative humidity of 50%, and a tensile speed of 10 mm/min, to measure the tensile shear bond strength F0 .
The test pieces for measuring the tensile shear adhesive strength were placed in a thermohygrostat (GPL-3, manufactured by ESPEC) and exposed to an environment of 95° C.×95% RH for 500 hours.
Next, using the test pieces for measuring the tensile shear bond strength after 500 hours of exposure, a tensile shear bond test was performed using an Instron universal testing machine Model 5967 under conditions of a temperature of 23°C, a relative humidity of 50%, and a tensile speed of 10 mm/min, to measure the tensile shear bond strength F 500 .
F 500 /F 0 was calculated from the obtained tensile shear adhesive strength F 0 and tensile shear adhesive strength F 500 .
[動的粘弾性(DMA)測定]
まず、動的粘弾性測定用の、硬化性樹脂組成物の硬化物(試験片)を作製した。具体的には以下(1)~(3)のようにして試験片を作製した。
(1)まず、PETフィルム上に5mm×40mmの穴をあけた0.5mm厚のシリコーンシートをのせた。この穴のある部分に硬化性樹脂組成物を塗布して塗布膜を形成した。
(2)上記塗布膜の上から、別のPETフィルムを張り合わせた。そして、1cm厚のガラス板で両面を挟み、重りを乗せて圧締した。この状態で、温度23℃、相対湿度50RH%の室内にて24時間養生した。その後、圧締を解除し、PETフィルムを剥がした。このようにしてシート状硬化物を得た。ここで、シリコーンシートの厚みにより、膜厚は約500μmに調整された。
(3)上記のシート状硬化物を切断して、寸法5mm×40mm×0.5mmの短冊状の試験片を得た。 [Dynamic Viscoelasticity (DMA) Measurement]
First, a cured product (test piece) of the curable resin composition for measuring dynamic viscoelasticity was prepared. Specifically, the test piece was prepared as follows (1) to (3).
(1) First, a 0.5 mm thick silicone sheet with a 5 mm x 40 mm hole was placed on a PET film. A curable resin composition was applied to the hole to form a coating film.
(2) Another PET film was laminated on the coating film. Then, both sides were sandwiched between 1 cm thick glass plates, and a weight was placed on top to press the film. In this state, the film was aged for 24 hours in a room at a temperature of 23°C and a relative humidity of 50 RH%. Then, the pressure was released and the PET film was peeled off. In this way, a sheet-like cured product was obtained. Here, the film thickness was adjusted to about 500 μm depending on the thickness of the silicone sheet.
(3) The above sheet-like cured product was cut into rectangular test pieces measuring 5 mm x 40 mm x 0.5 mm.
まず、動的粘弾性測定用の、硬化性樹脂組成物の硬化物(試験片)を作製した。具体的には以下(1)~(3)のようにして試験片を作製した。
(1)まず、PETフィルム上に5mm×40mmの穴をあけた0.5mm厚のシリコーンシートをのせた。この穴のある部分に硬化性樹脂組成物を塗布して塗布膜を形成した。
(2)上記塗布膜の上から、別のPETフィルムを張り合わせた。そして、1cm厚のガラス板で両面を挟み、重りを乗せて圧締した。この状態で、温度23℃、相対湿度50RH%の室内にて24時間養生した。その後、圧締を解除し、PETフィルムを剥がした。このようにしてシート状硬化物を得た。ここで、シリコーンシートの厚みにより、膜厚は約500μmに調整された。
(3)上記のシート状硬化物を切断して、寸法5mm×40mm×0.5mmの短冊状の試験片を得た。 [Dynamic Viscoelasticity (DMA) Measurement]
First, a cured product (test piece) of the curable resin composition for measuring dynamic viscoelasticity was prepared. Specifically, the test piece was prepared as follows (1) to (3).
(1) First, a 0.5 mm thick silicone sheet with a 5 mm x 40 mm hole was placed on a PET film. A curable resin composition was applied to the hole to form a coating film.
(2) Another PET film was laminated on the coating film. Then, both sides were sandwiched between 1 cm thick glass plates, and a weight was placed on top to press the film. In this state, the film was aged for 24 hours in a room at a temperature of 23°C and a relative humidity of 50 RH%. Then, the pressure was released and the PET film was peeled off. In this way, a sheet-like cured product was obtained. Here, the film thickness was adjusted to about 500 μm depending on the thickness of the silicone sheet.
(3) The above sheet-like cured product was cut into rectangular test pieces measuring 5 mm x 40 mm x 0.5 mm.
得られた試験片の動的粘弾性特性を、動的粘弾性測定装置(DMS7100、SII社製)を使用して、周波数:1.0Hz、モード:引張モード、測定温度範囲:0℃から250℃、昇温速度:5℃/minの条件で測定し、データを取得した。得られたデータに基づき、温度-損失正接(tanδ)の曲線から、損失正接(tanδ)のピークトップ温度(tanδピーク値、すなわちガラス転移温度)を求めた。
The dynamic viscoelastic properties of the obtained test specimens were measured using a dynamic viscoelasticity measuring device (DMS7100, manufactured by SII) under the following conditions: frequency: 1.0 Hz, mode: tensile mode, measurement temperature range: 0°C to 250°C, heating rate: 5°C/min, and data was obtained. Based on the obtained data, the peak top temperature of the loss tangent (tan δ) (tan δ peak value, i.e., glass transition temperature) was obtained from the temperature-loss tangent (tan δ) curve.
[吸水率]
まず、吸水率測定用の、硬化性樹脂組成物の硬化物(試験片)を作製した。具体的には以下(1)~(3)のようにして試験片を作製した。
(1)まず、PETフィルム上に5mm×40mmの穴をあけた0.5mm厚のシリコーンシートをのせた。この穴のある部分に硬化性樹脂組成物を塗布して塗布膜を形成した。
(2)上記塗布膜の上から、別のPETフィルムを張り合わせた。そして、1cm厚のガラス板で両面を挟み、重りを乗せて圧締した。この状態で、温度23℃、相対湿度50RH%の室内にて24時間養生した。その後、圧締を解除し、PETフィルムを剥がした。このようにしてシート状硬化物を得た。ここで、シリコーンシートの厚みにより、膜厚は約500μmに調整された。
(3)上記のシート状硬化物を切断して、寸法5mm×40mm×0.5mmの短冊状の試験片を得た。
次いで、得られた試験片を70℃の水中に24時間浸漬し、水中に浸漬する前の試験片の質量をW1(g)とし、水中に浸漬した後の試験片の質量をW2(g)としたとき、(W2-W1)/W1×100の式に基づいて、水浸漬前後における質量変化から吸水率(%)を算定した。 [Water absorption rate]
First, a cured product (test piece) of the curable resin composition for measuring water absorption was prepared. Specifically, the test piece was prepared as follows (1) to (3).
(1) First, a 0.5 mm thick silicone sheet with a 5 mm x 40 mm hole was placed on a PET film. A curable resin composition was applied to the hole to form a coating film.
(2) Another PET film was laminated on the coating film. Then, both sides were sandwiched between 1 cm thick glass plates, and a weight was placed on top to press the film. In this state, the film was aged for 24 hours in a room at a temperature of 23°C and a relative humidity of 50 RH%. Then, the pressure was released and the PET film was peeled off. In this way, a sheet-like cured product was obtained. Here, the film thickness was adjusted to about 500 μm depending on the thickness of the silicone sheet.
(3) The above sheet-like cured product was cut into rectangular test pieces measuring 5 mm x 40 mm x 0.5 mm.
Next, the obtained test piece was immersed in water at 70°C for 24 hours. When the mass of the test piece before immersion in water was W1 (g) and the mass of the test piece after immersion in water was W2 (g), the water absorption (%) was calculated from the change in mass before and after immersion in water based on the formula ( W2 - W1 )/ W1 x 100.
まず、吸水率測定用の、硬化性樹脂組成物の硬化物(試験片)を作製した。具体的には以下(1)~(3)のようにして試験片を作製した。
(1)まず、PETフィルム上に5mm×40mmの穴をあけた0.5mm厚のシリコーンシートをのせた。この穴のある部分に硬化性樹脂組成物を塗布して塗布膜を形成した。
(2)上記塗布膜の上から、別のPETフィルムを張り合わせた。そして、1cm厚のガラス板で両面を挟み、重りを乗せて圧締した。この状態で、温度23℃、相対湿度50RH%の室内にて24時間養生した。その後、圧締を解除し、PETフィルムを剥がした。このようにしてシート状硬化物を得た。ここで、シリコーンシートの厚みにより、膜厚は約500μmに調整された。
(3)上記のシート状硬化物を切断して、寸法5mm×40mm×0.5mmの短冊状の試験片を得た。
次いで、得られた試験片を70℃の水中に24時間浸漬し、水中に浸漬する前の試験片の質量をW1(g)とし、水中に浸漬した後の試験片の質量をW2(g)としたとき、(W2-W1)/W1×100の式に基づいて、水浸漬前後における質量変化から吸水率(%)を算定した。 [Water absorption rate]
First, a cured product (test piece) of the curable resin composition for measuring water absorption was prepared. Specifically, the test piece was prepared as follows (1) to (3).
(1) First, a 0.5 mm thick silicone sheet with a 5 mm x 40 mm hole was placed on a PET film. A curable resin composition was applied to the hole to form a coating film.
(2) Another PET film was laminated on the coating film. Then, both sides were sandwiched between 1 cm thick glass plates, and a weight was placed on top to press the film. In this state, the film was aged for 24 hours in a room at a temperature of 23°C and a relative humidity of 50 RH%. Then, the pressure was released and the PET film was peeled off. In this way, a sheet-like cured product was obtained. Here, the film thickness was adjusted to about 500 μm depending on the thickness of the silicone sheet.
(3) The above sheet-like cured product was cut into rectangular test pieces measuring 5 mm x 40 mm x 0.5 mm.
Next, the obtained test piece was immersed in water at 70°C for 24 hours. When the mass of the test piece before immersion in water was W1 (g) and the mass of the test piece after immersion in water was W2 (g), the water absorption (%) was calculated from the change in mass before and after immersion in water based on the formula ( W2 - W1 )/ W1 x 100.
[発熱ピーク温度]
サーモロガーに接続したK熱電対を紙コップ底面に固定し、その紙コップ内に硬化性樹脂組成物10gを吐出し、硬化性樹脂組成物が硬化する際の発熱温度をサーモロガーにて測定し、最も高温となった温度を発熱ピーク温度とした。 [Exothermic peak temperature]
A K thermocouple connected to a thermologger was fixed to the bottom of a paper cup, and 10 g of a curable resin composition was discharged into the paper cup. The heat generation temperature when the curable resin composition cured was measured with the thermologger, and the highest temperature was recorded as the peak heat generation temperature.
サーモロガーに接続したK熱電対を紙コップ底面に固定し、その紙コップ内に硬化性樹脂組成物10gを吐出し、硬化性樹脂組成物が硬化する際の発熱温度をサーモロガーにて測定し、最も高温となった温度を発熱ピーク温度とした。 [Exothermic peak temperature]
A K thermocouple connected to a thermologger was fixed to the bottom of a paper cup, and 10 g of a curable resin composition was discharged into the paper cup. The heat generation temperature when the curable resin composition cured was measured with the thermologger, and the highest temperature was recorded as the peak heat generation temperature.
[表面硬化性]
まず、表面硬化性評価用の、硬化性樹脂組成物の硬化物(試験片)を作製した。具体的には以下(1)~(2)のようにして試験片を作製した。
(1)まず、PETフィルム上に5mm×40mmの穴をあけた0.5mm厚のシリコーンシートをのせた。この穴のある部分に硬化性樹脂組成物を塗布して塗布膜を形成した。
(2)この状態で、温度23℃、相対湿度50RH%の室内にて5時間養生した。このようにしてシート状硬化物(試験片)を得た。
次いで、得られた試験片の表面状態を観察し、以下の基準で表面硬化性を評価した。粘着性がまったく無いものをAA、粘着性がほぼ無い(わずかに感じられる)ものをA、粘着性が十分に感じられるものをB、ベタベタしているものをCと評価した。 [Surface hardening]
First, a cured product (test piece) of the curable resin composition for evaluating surface curability was prepared. Specifically, the test piece was prepared as follows (1) and (2).
(1) First, a 0.5 mm thick silicone sheet with a 5 mm x 40 mm hole was placed on a PET film. A curable resin composition was applied to the hole to form a coating film.
(2) In this state, the sheet was cured for 5 hours in a room at a temperature of 23° C. and a relative humidity of 50 RH%, thereby obtaining a sheet-like cured product (test piece).
Next, the surface condition of the obtained test piece was observed, and the surface curability was evaluated according to the following criteria: AA was used for no tackiness, A for almost no tackiness (slightly tacky), B for sufficient tackiness, and C for sticky.
まず、表面硬化性評価用の、硬化性樹脂組成物の硬化物(試験片)を作製した。具体的には以下(1)~(2)のようにして試験片を作製した。
(1)まず、PETフィルム上に5mm×40mmの穴をあけた0.5mm厚のシリコーンシートをのせた。この穴のある部分に硬化性樹脂組成物を塗布して塗布膜を形成した。
(2)この状態で、温度23℃、相対湿度50RH%の室内にて5時間養生した。このようにしてシート状硬化物(試験片)を得た。
次いで、得られた試験片の表面状態を観察し、以下の基準で表面硬化性を評価した。粘着性がまったく無いものをAA、粘着性がほぼ無い(わずかに感じられる)ものをA、粘着性が十分に感じられるものをB、ベタベタしているものをCと評価した。 [Surface hardening]
First, a cured product (test piece) of the curable resin composition for evaluating surface curability was prepared. Specifically, the test piece was prepared as follows (1) and (2).
(1) First, a 0.5 mm thick silicone sheet with a 5 mm x 40 mm hole was placed on a PET film. A curable resin composition was applied to the hole to form a coating film.
(2) In this state, the sheet was cured for 5 hours in a room at a temperature of 23° C. and a relative humidity of 50 RH%, thereby obtaining a sheet-like cured product (test piece).
Next, the surface condition of the obtained test piece was observed, and the surface curability was evaluated according to the following criteria: AA was used for no tackiness, A for almost no tackiness (slightly tacky), B for sufficient tackiness, and C for sticky.
[接着耐久性]
前述した引張せん断接着強さ測定用試験片を、恒温恒湿器(GPL-3、ESPEC社製)に静置し、95℃×95%RHの環境下に500時間暴露した。
次いで、500時間暴露後の引張せん断接着強さ測定用試験片を用いて、温度23℃、相対湿度50%の環境下、引張速度10mm/分の条件でInstron社製万能試験機Model 5967を用いて引張せん断接着試験を行い、その破壊状態を確認した。硬化性樹脂組成物が全面凝集破壊したものをA、接着面積の50%以上が硬化性樹脂組成物の凝集破壊であり、残りがアルミニウム合金板と硬化性樹脂組成物の界面で剥離したものをB、接着面積の50%未満が硬化性樹脂組成物の凝集破壊であり、残りがアルミニウム合金板と硬化性樹脂組成物の界面で剥離したものをC、全面がアルミニウム合金板と硬化性樹脂組成物の界面で剥離したものをDとした。接着強さのばらつきが小さく、高品質の接着が実施できる点で、接着面積全体に占める凝集破壊部分の面積の比率は、大きいことが好ましい。 [Adhesion durability]
The above-mentioned test piece for measuring tensile shear adhesive strength was placed in a thermohygrostat (GPL-3, manufactured by ESPEC) and exposed to an environment of 95° C.×95% RH for 500 hours.
Next, using the test piece for measuring the tensile shear bond strength after 500 hours of exposure, a tensile shear adhesion test was performed using an Instron universal testing machine Model 5967 under conditions of a temperature of 23 ° C., a relative humidity of 50%, and a tensile speed of 10 mm / min, and the fracture state was confirmed. A was used when the curable resin composition underwent full-surface cohesive failure, B was used when 50% or more of the adhesive area was the cohesive failure of the curable resin composition, and the remainder peeled off at the interface between the aluminum alloy plate and the curable resin composition, C was used when less than 50% of the adhesive area was the cohesive failure of the curable resin composition, and the remainder peeled off at the interface between the aluminum alloy plate and the curable resin composition, and D was used when the entire surface peeled off at the interface between the aluminum alloy plate and the curable resin composition. In terms of small variation in adhesive strength and high-quality adhesion, it is preferable that the ratio of the area of the cohesive failure portion to the entire adhesive area is large.
前述した引張せん断接着強さ測定用試験片を、恒温恒湿器(GPL-3、ESPEC社製)に静置し、95℃×95%RHの環境下に500時間暴露した。
次いで、500時間暴露後の引張せん断接着強さ測定用試験片を用いて、温度23℃、相対湿度50%の環境下、引張速度10mm/分の条件でInstron社製万能試験機Model 5967を用いて引張せん断接着試験を行い、その破壊状態を確認した。硬化性樹脂組成物が全面凝集破壊したものをA、接着面積の50%以上が硬化性樹脂組成物の凝集破壊であり、残りがアルミニウム合金板と硬化性樹脂組成物の界面で剥離したものをB、接着面積の50%未満が硬化性樹脂組成物の凝集破壊であり、残りがアルミニウム合金板と硬化性樹脂組成物の界面で剥離したものをC、全面がアルミニウム合金板と硬化性樹脂組成物の界面で剥離したものをDとした。接着強さのばらつきが小さく、高品質の接着が実施できる点で、接着面積全体に占める凝集破壊部分の面積の比率は、大きいことが好ましい。 [Adhesion durability]
The above-mentioned test piece for measuring tensile shear adhesive strength was placed in a thermohygrostat (GPL-3, manufactured by ESPEC) and exposed to an environment of 95° C.×95% RH for 500 hours.
Next, using the test piece for measuring the tensile shear bond strength after 500 hours of exposure, a tensile shear adhesion test was performed using an Instron universal testing machine Model 5967 under conditions of a temperature of 23 ° C., a relative humidity of 50%, and a tensile speed of 10 mm / min, and the fracture state was confirmed. A was used when the curable resin composition underwent full-surface cohesive failure, B was used when 50% or more of the adhesive area was the cohesive failure of the curable resin composition, and the remainder peeled off at the interface between the aluminum alloy plate and the curable resin composition, C was used when less than 50% of the adhesive area was the cohesive failure of the curable resin composition, and the remainder peeled off at the interface between the aluminum alloy plate and the curable resin composition, and D was used when the entire surface peeled off at the interface between the aluminum alloy plate and the curable resin composition. In terms of small variation in adhesive strength and high-quality adhesion, it is preferable that the ratio of the area of the cohesive failure portion to the entire adhesive area is large.
硬化性樹脂組成物の組成と、測定・評価結果とをまとめて表1に示す。
表1において、硬化性樹脂組成物の各成分の量の単位は質量部である。 The composition of the curable resin composition and the measurement and evaluation results are shown in Table 1.
In Table 1, the amount of each component of the curable resin composition is expressed in parts by mass.
表1において、硬化性樹脂組成物の各成分の量の単位は質量部である。 The composition of the curable resin composition and the measurement and evaluation results are shown in Table 1.
In Table 1, the amount of each component of the curable resin composition is expressed in parts by mass.
実施例1~6の硬化性樹脂組成物は、比較例1~2の硬化性樹脂組成物に比べて、接着耐久性および表面硬化性の性能バランスが向上していた。
The curable resin compositions of Examples 1 to 6 had an improved balance of adhesive durability and surface curability compared to the curable resin compositions of Comparative Examples 1 and 2.
この出願は、2023年2月3日に出願された日本出願特願2023-015203号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2023-015203, filed on February 3, 2023, the entire disclosure of which is incorporated herein by reference.
Claims (15)
- 23℃および引張速度10mm/分の条件で測定される、下記<作製条件1>により得られる試験片の引張せん断接着強さをF0とし、
下記<作製条件1>により得られる試験片を95℃×95%RHの環境下に500時間暴露した後、23℃および引張速度10mm/分の条件で測定される、前記試験片の引張せん断接着強さをF500としたとき、
F500/F0が0.70以上である組成物。
<作製条件1>
(1)アルミニウム合金板(A5052P)の片面に前記組成物を塗布して厚み0.1mmの膜を形成する
(2)前記膜の表面に別のアルミニウム合金板(A5052P)を重ねて、得られた積層体を23℃で24時間静置することにより前記膜を硬化させて試験片を得る The tensile shear adhesive strength of the test piece obtained under the following <Preparation Condition 1> measured under the conditions of 23° C. and a tensile speed of 10 mm/min is designated as F 0 .
A test piece obtained by the following <Preparation Condition 1> is exposed to an environment of 95°C x 95% RH for 500 hours, and then the tensile shear adhesive strength of the test piece measured under conditions of 23°C and a tensile speed of 10 mm/min is defined as F500 .
A composition having F500 / F0 of 0.70 or more.
<Preparation Condition 1>
(1) The composition is applied to one side of an aluminum alloy plate (A5052P) to form a film having a thickness of 0.1 mm. (2) Another aluminum alloy plate (A5052P) is placed on the surface of the film, and the resulting laminate is left to stand at 23° C. for 24 hours to harden the film and obtain a test specimen. - 前記F500が7.0MPa以上である、請求項1に記載の組成物。 2. The composition of claim 1, wherein the F500 is 7.0 MPa or greater.
- 前記F0が10.0MPa以上である、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein F0 is 10.0 MPa or more.
- 動的粘弾性測定により求められる、前記組成物からなる硬化物のガラス転移温度が80℃以上である、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the glass transition temperature of a cured product of the composition is 80°C or higher, as determined by dynamic viscoelasticity measurement.
- 下記方法1により測定される吸水率が5.0%以下である、請求項1または2に記載の組成物。
(方法1)
前記組成物を23℃、24時間処理することにより、5mm×40mm×0.5mmの硬化物サンプルを作製し、次いで、得られた前記硬化物サンプルを70℃の水中に24時間浸漬し、水中に浸漬する前の前記硬化物サンプルの質量をW1(g)とし、水中に浸漬した後の前記硬化物サンプルの質量をW2(g)としたとき、(W2-W1)/W1×100の式に基づいて、水浸漬前後における質量変化から吸水率(%)を算定する。 3. The composition according to claim 1, which has a water absorption rate of 5.0% or less as measured by the following method 1.
(Method 1)
The composition is treated at 23°C for 24 hours to prepare a cured sample of 5 mm x 40 mm x 0.5 mm. The obtained cured sample is then immersed in water at 70°C for 24 hours. When the mass of the cured sample before immersion in water is W1 (g) and the mass of the cured sample after immersion in water is W2 (g), the water absorption (%) is calculated from the change in mass before and after immersion in water based on the formula ( W2 - W1 )/ W1 x 100. - 下記方法2により測定される発熱ピーク温度が50℃以上である、請求項1または2に記載の組成物。
(方法2)
サーモロガーに接続したK熱電対を紙コップ底面に固定し、その紙コップ内に前記組成物を吐出し、前記組成物が硬化する際の発熱温度をサーモロガーにて測定し、最も高温となった温度を発熱ピーク温度とする。 The composition according to claim 1 or 2, which has an exothermic peak temperature of 50° C. or higher as measured by the following method 2.
(Method 2)
A K thermocouple connected to a thermologger is fixed to the bottom of a paper cup, the composition is discharged into the paper cup, and the heat generation temperature as the composition hardens is measured with the thermologger. The highest temperature is recorded as the peak heat generation temperature. - アミド基含有モノマー(A)と、単官能(メタ)アクリレート(B)と、エラストマー(C)と、を含む、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, comprising an amide group-containing monomer (A), a monofunctional (meth)acrylate (B), and an elastomer (C).
- 前記単官能(メタ)アクリレート(B)が水酸基含有(メタ)アクリレート(B1)を含む、請求項7に記載の組成物。 The composition according to claim 7, wherein the monofunctional (meth)acrylate (B) includes a hydroxyl group-containing (meth)acrylate (B1).
- 前記単官能(メタ)アクリレート(B)が環状構造を有する単官能(メタ)アクリレート(B2)を含む、請求項7に記載の組成物。 The composition according to claim 7, wherein the monofunctional (meth)acrylate (B) includes a monofunctional (meth)acrylate (B2) having a cyclic structure.
- 前記エラストマー(C)が、(メタ)アクリロニトリル・ブタジエンゴム、メチル(メタ)アクリレート・ブタジエン・スチレンゴム、および、メチル(メタ)アクリレート・ブタジエン・(メタ)アクリロニトリル・スチレンゴムからなる群から選択される一種または二種以上を含む、請求項7に記載の組成物。 The composition according to claim 7, wherein the elastomer (C) comprises one or more selected from the group consisting of (meth)acrylonitrile butadiene rubber, methyl (meth)acrylate butadiene styrene rubber, and methyl (meth)acrylate butadiene (meth)acrylonitrile styrene rubber.
- 硬化性樹脂組成物である、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, which is a curable resin composition.
- バッテリーに用いられる、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, which is used in a battery.
- バッテリー端子部の保護材に用いられる、請求項12に記載の組成物。 The composition according to claim 12, which is used as a protective material for battery terminals.
- 請求項1または2に記載の組成物からなる硬化物を含む物品。 An article comprising a cured product of the composition according to claim 1 or 2.
- 請求項1または2に記載の組成物からなる硬化物を含むバッテリー。 A battery comprising a cured product of the composition according to claim 1 or 2.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-015203 | 2023-02-03 | ||
JP2023015203 | 2023-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024162201A1 true WO2024162201A1 (en) | 2024-08-08 |
Family
ID=92146715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/002376 WO2024162201A1 (en) | 2023-02-03 | 2024-01-26 | Composition, article, and battery |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024162201A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0315150A (en) * | 1989-03-30 | 1991-01-23 | Devars Ms Co | Battery wrapped with vacuum sealing packaging material and manufacture thereof |
WO2016181742A1 (en) * | 2015-05-14 | 2016-11-17 | 株式会社カネカ | Radical-curable composition and cured product thereof |
WO2017010401A1 (en) * | 2015-07-10 | 2017-01-19 | 住友精化株式会社 | Epoxy resin composition, process for producing same, and uses of said composition |
JP2022051002A (en) * | 2020-09-18 | 2022-03-31 | 昭和電工マテリアルズ株式会社 | Adhesive composition for circuit connection, and circuit connection structure and method for manufacturing the same |
WO2022249965A1 (en) * | 2021-05-25 | 2022-12-01 | セメダイン株式会社 | Heat-resistant acrylic adhesive composition |
-
2024
- 2024-01-26 WO PCT/JP2024/002376 patent/WO2024162201A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0315150A (en) * | 1989-03-30 | 1991-01-23 | Devars Ms Co | Battery wrapped with vacuum sealing packaging material and manufacture thereof |
WO2016181742A1 (en) * | 2015-05-14 | 2016-11-17 | 株式会社カネカ | Radical-curable composition and cured product thereof |
WO2017010401A1 (en) * | 2015-07-10 | 2017-01-19 | 住友精化株式会社 | Epoxy resin composition, process for producing same, and uses of said composition |
JP2022051002A (en) * | 2020-09-18 | 2022-03-31 | 昭和電工マテリアルズ株式会社 | Adhesive composition for circuit connection, and circuit connection structure and method for manufacturing the same |
WO2022249965A1 (en) * | 2021-05-25 | 2022-12-01 | セメダイン株式会社 | Heat-resistant acrylic adhesive composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102008180B1 (en) | Adhesive for optical film, adhesive layer, optical element, and image display device | |
KR102008179B1 (en) | Adhesive for optical film, adhesive layer for optical film, optical element, and image display device | |
JP5151982B2 (en) | Pressure sensitive adhesive and pressure sensitive adhesive film | |
JP6737585B2 (en) | Adhesive composition, adhesive sheet and image display device | |
JP4459880B2 (en) | Energy ray curable resin composition and adhesive using the same | |
JP5586497B2 (en) | Adhesive composition for optical member, adhesive layer, optical member provided with adhesive layer, image display device with optical member, and method of manufacturing image display device | |
JP6323041B2 (en) | Adhesive composition and use thereof | |
TWI441886B (en) | Adhesive composition and optical member using the same | |
KR102008183B1 (en) | Adhesive composition, adhesive film and image display device | |
WO2017170957A1 (en) | Composition | |
WO2006088099A1 (en) | Adhesive for optical member and method for producing adhesive for optical member | |
JP7203056B2 (en) | Printable curable mixtures and curing compositions | |
JP2017095660A (en) | Adhesive composition, manufacturing method therefor, adhesive sheet and image display device | |
JP2017095658A (en) | Adhesive composition, optical member and adhesive sheet | |
WO2022210703A1 (en) | Adhesive composition and article | |
JP7415497B2 (en) | Heat-resistant acrylic adhesive composition | |
WO2024162201A1 (en) | Composition, article, and battery | |
WO2024162199A1 (en) | Composition, component, and battery | |
WO2022249965A1 (en) | Heat-resistant acrylic adhesive composition | |
JP7047851B2 (en) | Adhesive composition and its use | |
CN116981705A (en) | Compositions comprising acrylic monomers having carboxylic acid groups, acrylic monomers having hydroxyl groups, alkyl (meth) acrylate monomers, and cross-linking agents, and related articles and methods | |
JP7496432B2 (en) | CURABLE COMPOSITION, ARTICLES, CONFIRMATION METHOD AND ADHESIVE COMPOSITION | |
JP2021014571A (en) | Adhesive set, structure, and method of manufacturing structure | |
JP2022029725A (en) | Adhesive sheet and adhesive composition | |
WO2020162518A1 (en) | Adhesive sheet and layered product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24750150 Country of ref document: EP Kind code of ref document: A1 |