[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024162261A1 - 表面修飾金属酸化物粒子、封止材料、封止部材、発光装置、発光装置の製造方法 - Google Patents

表面修飾金属酸化物粒子、封止材料、封止部材、発光装置、発光装置の製造方法 Download PDF

Info

Publication number
WO2024162261A1
WO2024162261A1 PCT/JP2024/002647 JP2024002647W WO2024162261A1 WO 2024162261 A1 WO2024162261 A1 WO 2024162261A1 JP 2024002647 W JP2024002647 W JP 2024002647W WO 2024162261 A1 WO2024162261 A1 WO 2024162261A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide particles
metal oxide
light
mass
modified
Prior art date
Application number
PCT/JP2024/002647
Other languages
English (en)
French (fr)
Inventor
怜 武田
智海 伊藤
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Publication of WO2024162261A1 publication Critical patent/WO2024162261A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to surface-modified metal oxide particles contained in a sealing material for sealing a light-emitting element, a sealing material containing the surface-modified metal oxide particles, a sealing member formed using the sealing material, a light-emitting device including the sealing member, and a method for manufacturing the light-emitting device.
  • LEDs Light-emitting diodes
  • the LED chip (light-emitting element) in an LED package is generally sealed with a sealing material containing resin to prevent contact with deterioration factors present in the external environment such as oxygen and moisture. Therefore, the light emitted from the LED chip passes through the sealing material and is emitted toward the outside. Therefore, in order to increase the luminous flux emitted from the LED package, it is important to convert the wavelength of the light emitted from the LED chip using phosphor particles and then efficiently extract it outside the LED package.
  • the white color of white LEDs is achieved by combining a blue LED with yellow phosphor particles.
  • white light is produced by mixing the blue light emitted from the LED chip with the yellow light whose wavelength has been converted by the phosphor particles. Therefore, in order to obtain white light from a blue LED, it is necessary to include a certain amount or more of yellow phosphor particles in the sealing material.
  • Phosphor particles are usually made of precious materials called rare earths, such as Y (yttrium) and europium (Eu).
  • the production of phosphor particles usually requires a firing process at high temperature and high pressure. This makes phosphor particles a precious and expensive material. Therefore, a light emitting device using an LED that uses a large amount of phosphor particles becomes expensive, but if the amount of phosphor used is reduced, the desired chromaticity and brightness cannot be obtained.
  • Patent Document 1 proposes providing a device with high luminous efficiency while reducing the amount of phosphor used in the light-emitting device by designing the activator concentration and particle size of the phosphor used to be within appropriate ranges.
  • Patent Document 2 proposes a light emitting device having a specific red phosphor and a sealing resin containing titanium oxide.
  • Patent Document 3 proposes that by using nanoparticles other than phosphor particles, the amount of phosphor used can be reduced, thereby reducing the cost of the light-emitting device.
  • the present invention has been made in consideration of the above circumstances, and aims to provide surface-modified metal oxide particles, a sealing material, a sealing member, a light-emitting device, and a method for manufacturing a light-emitting device, which can reduce the amount of phosphor particles used while maintaining the chromaticity and brightness of the light emitted from the light-emitting device.
  • the present invention has the following aspects.
  • Metal oxide particles surface-modified with a silane compound The refractive index of the metal oxide particles before surface modification is 1.70 or more and 2.00 or less, The average primary particle diameter of the metal oxide particles before surface modification is 5 nm or more and 100 nm or less,
  • the surface-modified metal oxide particles have a particle diameter D50 of 0.1 ⁇ m or more and 1.30 ⁇ m or less when the cumulative volume percentage of the dry particle size distribution of the surface-modified metal oxide particles is 50%.
  • the surface-modified metal oxide particles of the present invention are preferably used, for example, to reduce the amount of phosphor particles contained in a light-emitting device.
  • [2] The surface-modified metal oxide particles according to [1], wherein the content of the silane compound per 100 parts by mass of the metal oxide particles before surface modification is 10 parts by mass or more and 30 parts by mass or less.
  • [3] The surface-modified metal oxide particles according to [1] or [2], wherein the hydroxyl group treatment rate on the surface of the surface-modified metal oxide particles is 98.1 mass % or more.
  • An encapsulating material comprising the surface-modified metal oxide particles according to any one of [1] to [3], an encapsulating resin, and phosphor particles.
  • a sealing member which is a cured product of the sealing material according to [4].
  • a light emitting device comprising the sealing member according to [5] and a light emitting element sealed by the sealing member.
  • the light emitting device according to [6] wherein a mass ratio of the phosphor particles to the surface-modified metal oxide particles contained in the sealing member is 1:0.01 to 1:0.5.
  • a lighting fixture comprising the light-emitting device according to [6].
  • a display device comprising the light-emitting device according to [6].
  • a method for producing a light emitting device comprising a step of encapsulating a light emitting element with an encapsulating material containing the surface-modified metal oxide particles according to [1] or [2], an encapsulating resin, and phosphor particles.
  • the present invention provides surface-modified metal oxide particles that can reduce the amount of phosphor particles used while maintaining the chromaticity and brightness of light emitted from a light-emitting device, a sealing material containing the surface-modified metal oxide particles, a sealing member formed using the sealing material, a light-emitting device including the sealing member, a lighting fixture and display device including the light-emitting device, and a method for manufacturing a light-emitting device using the surface-modified metal oxide particles.
  • FIG. 1 is a schematic diagram showing a preferred example of a light emitting device of the present invention.
  • the surface-modified metal oxide particles of this embodiment are metal oxide particles whose surfaces have been modified with a silane compound, and the refractive index of the metal oxide particles is 1.70 or more and 2.00 or less.
  • the average primary particle diameter of the metal particles is 5 nm or more and 100 nm or less, and the particle diameter D50 when the cumulative volume percentage of the dry particle size distribution is 50% is 0.1 ⁇ m or more and 1.30 ⁇ m or less.
  • the oxide particles are preferably used to reduce the amount of phosphor particles contained in the light emitting device.
  • Metal oxide particles surface-modified with a silane compound refer to a silane compound that is in contact with or bonded to metal oxide particles through mutual interaction or reaction. Examples of contact include physical adsorption. Examples of bonds include ionic bonds, hydrogen bonds, covalent bonds, etc.
  • the amount of the silane compound relative to the metal oxide particles may be adjusted taking into consideration the compatibility with the sealing resin described below.
  • the content of the silane compound is small.
  • the content of the silane compound relative to 100 parts by mass of the metal oxide particles is preferably 10 parts by mass or more and 40 parts by mass or less, more preferably 10 parts by mass or more and 30 parts by mass or less, even more preferably 11% by mass or more and 28% by mass or less, particularly preferably 12% by mass or more and 27% by mass or less, and even more preferably 15% by mass or more and 25% by mass or less.
  • the surface-modified metal oxide particles of this embodiment have a particle diameter D50 (hereinafter sometimes abbreviated as "D50") at a cumulative volume percentage of 50% in the dry particle size distribution of 0.1 ⁇ m to 1.30 ⁇ m, preferably 0.3 ⁇ m to 1.29 ⁇ m, more preferably 0.5 ⁇ m to 1.28 ⁇ m, and even more preferably 0.8 ⁇ m to 1.27 ⁇ m. If necessary, the particle diameter may be 1.00 ⁇ m to 1.25 ⁇ m, or 1.15 ⁇ m to 1.20 ⁇ m, etc.
  • D50 particle diameter at a cumulative volume percentage of 50% in the dry particle size distribution of 0.1 ⁇ m to 1.30 ⁇ m, preferably 0.3 ⁇ m to 1.29 ⁇ m, more preferably 0.5 ⁇ m to 1.28 ⁇ m, and even more preferably 0.8 ⁇ m to 1.27 ⁇ m. If necessary, the particle diameter may be 1.00 ⁇ m to 1.25 ⁇ m, or 1.15 ⁇ m to 1.20 ⁇ m, etc.
  • the D50 refers to the value at which the cumulative volume percentage is 50% when the volumetric particle size distribution of the surface-modified metal oxide particles is measured in a dry state using a laser diffraction particle size distribution analyzer.
  • a specific example of the laser diffraction particle size distribution analyzer is a laser diffraction particle size distribution analyzer (model: Mastersizer 3000, manufactured by Malvern).
  • the D90 of the surface-modified metal oxide particles can be arbitrarily selected, for example, from 0.5 ⁇ m to 2.90 ⁇ m, from 1.0 ⁇ m to 2.8 ⁇ m, or from 2.0 ⁇ m to 2.7 ⁇ m, but is not limited to these examples.
  • the hydroxyl group treatment rate on the surface of the metal oxide particles is preferably 98.1% by mass or more, more preferably 98.2% by mass or more. It is also preferably 98.3% by mass or more or 98.5% by mass or more.
  • the upper limit of the hydroxyl group treatment rate can be selected arbitrarily, but may be 100.0% by mass or less, 99.8% by mass or less, 99.5% by mass or less, 99.3% by mass or less, or 99.0% by mass or less.
  • the "hydroxyl group treatment rate” is a numerical value indicating the ratio of hydroxyl groups that have been surface-modified with a silane compound, i.e., hydroxyl groups bonded to a silane compound, to all hydroxyl groups present on the surface of the metal oxide particles.
  • the "hydroxyl group treatment rate” is measured using a red dye that absorbs light at a wavelength of about 545 nm and is represented by the following formula (1).
  • the red dye of the above formula (1) can be produced by the following method.
  • a mixed solution is prepared by mixing 1 mmol of 2,2'-dihydroxyazobenzene, 1 mmol of diphenyltin oxide (IV) as a metal source, and 30 mL of acetone. Next, this mixture is stirred at 70° C. for 3 hours to carry out a dehydration reaction, and diphenyltin oxide is coordinated to 2,2′-dihydroxyazobenzene.
  • the mixed liquid after the dehydration reaction is filtered to recover the filtrate, and the solvent is distilled off from the filtrate, whereby the red pigment represented by formula (1) can be obtained.
  • the red dye represented by the above formula (1) selectively adsorbs to the hydroxyl groups present on the surface of metal oxide particles, and does not react with the hydroxyl groups of water, alcohol, etc. Therefore, the amount of metal hydroxyl groups contained in metal oxide particles and surface-modified metal oxide particles can be evaluated qualitatively and quantitatively without being affected by moisture.
  • the degree of hydrophobization of the surface of the metal oxide particles treatment rate of hydroxyl groups
  • the higher the treatment rate of hydroxyl groups on the surface of the metal oxide particles the more the hydroxyl groups present on the surface of the metal oxide particles have been surface-modified and hydrophobized.
  • the hydroxyl group treatment rate (%) on the surface of the metal oxide particles with the red dye can be measured by the following method. 250 nmol (0.12 mg) of the red dye represented by formula (1) is dissolved in toluene to make 5 mL, thereby obtaining a 5 ⁇ 10 ⁇ 5 mol/L solution C1 for evaluation. The absorbance C2 of solution C1 at a wavelength of 545 nm is measured.
  • x g of metal oxide particles before surface modification is added, and the mixture is stirred and mixed at 60° C. for 4 hours to prepare a mixed solution.
  • x g is approximately 4 ⁇ 10 ⁇ 3 g.
  • the metal oxide particles are removed from this mixed solution by centrifugation to obtain a mixed solution A1 for evaluation.
  • the absorbance A2 of this mixed solution A1 at a wavelength of 545 nm is measured.
  • y g of the surface-modified metal oxide particles to be measured are added, and the mixture is stirred and mixed at 60° C. for 4 hours to prepare a mixed liquid.
  • y g is approximately 4 ⁇ 10 ⁇ 3 g.
  • the surface-modified metal oxide particles are removed from this mixed liquid by centrifugation to obtain mixed liquid B1 for evaluation.
  • the absorbance B2 of this mixed liquid B1 at a wavelength of 545 nm is measured.
  • the amount (mol/g) of the red dye adsorbed to the metal oxide particles before surface modification is calculated according to the following formula (2).
  • Adsorption amount A3 ((C2 ⁇ A2)/C2) ⁇ 250 ⁇ 10 ⁇ 9 (mol)/x(g) (2)
  • the amount (mol/g) of the red dye adsorbed to the surface-modified metal oxide particles is calculated from the following formula (3).
  • Adsorption amount B3 ((C2 ⁇ B2)/C2) ⁇ 250 ⁇ 10 ⁇ 9 (mol)/y(g) (3)
  • a decrease in absorbance means that the dye is adsorbed, and therefore the amount of adsorption of the red dye is calculated based on the idea that the rate of decrease in absorbance can be converted to the rate of adsorption of the dye.
  • Metal oxide particles scatter the light emitted from the light emitting element in the sealing member, and therefore, if the amount of blue light converted to yellow light per phosphor particle can be increased by the metal oxide particles, this can greatly contribute to reducing the amount of phosphor particles.
  • the metal oxide particles before surface modification used in the production of the surface-modified metal oxide particles have a refractive index of 1.70 to 2.00, preferably 1.73 to 1.95, and more preferably 1.75 to 1.85. If necessary, the refractive index may be 1.75 to 1.96, 1.85 to 1.93, or 1.87 to 1.90.
  • the metal oxide particles in this embodiment for example, aluminum oxide particles, yttrium oxide particles, hafnium oxide particles, etc. can be used. From the viewpoint of reducing the cost of the light-emitting device, it is preferable to use aluminum oxide particles, which are inexpensive.
  • the refractive index of the metal oxide particles before surface modification may be a theoretical value described in various handbooks or a value measured by a refractometer or a spectroscopic ellipsometer.
  • the refractive index of aluminum oxide is about 1.8.
  • the refractive index of the metal oxide particles after surface modification is preferably the same as that before surface modification. However, if the refractive index of the silane compound used is small or the amount of surface modification by the silane compound is large, the refractive index may be smaller than that of the metal oxide particles before surface modification.
  • metal oxide particles having a refractive index of 1.70 or more and 2.00 or less are used in this embodiment instead of metal oxide particles having a high refractive index of more than 2.00.
  • metal oxide particles having a high refractive index of more than 2.00 In order to reduce the content of phosphor particles in the sealing member, it is necessary to increase the number of times that the blue light emitted from the light emitting element is irradiated onto the phosphor particles. In other words, metal oxide particles that scatter more blue light are required in the sealing material. It has been technically common knowledge that the use of high refractive index particles such as zirconia or titania with a refractive index of more than 2.00 would increase the light scattering effect rate in order to increase the light scattering efficiency.
  • the brightness of the light-emitting device decreases even if the light scattering efficiency increases. Therefore, in order to improve the brightness of the light-emitting device using metal oxide particles with a high refractive index or to reduce the number of phosphor particles, it has been necessary to densely modify the surfaces of the metal oxide particles with two or more types of surface modification materials by a wet method in order to avoid aggregation.
  • a methyl-based silicone resin having high heat resistance is used as the sealing resin described later, the metal oxide particles are likely to aggregate in the sealing material. Therefore, when a methyl-based silicone resin is used, it has been necessary to perform a more dense surface modification on the metal oxide particles. For these reasons, it is difficult to suppress the increase in manufacturing costs, and it is difficult to obtain the desired brightness and chromaticity.
  • the present inventors have surprisingly found that when metal oxide particles having a refractive index of 1.70 or more and 2.00 or less are used, even if the aggregated particle size becomes somewhat large in the sealing material, the light scattering effect is greater than that of metal oxide particles having a refractive index of more than 2.00. Therefore, the present inventors have found that by dispersing metal oxide particles having a refractive index of 1.70 or more and 2.00 or less in the sealing member to an extent that they do not aggregate too much, the content of phosphor particles in the sealing member can be reduced while suppressing the decrease in desired chromaticity and brightness.
  • the present inventors have found that the surface-modified metal oxide particles of this embodiment can provide an excellent reduction effect of phosphor particles even if the surface modification material used is only one type of silane compound and/or in a sealing material using a methyl-based silicone resin.
  • the surface-modified metal oxide particles of the present embodiment have a very simple structure and are less expensive than phosphor particles. It was not previously known that the inclusion of surface-modified metal oxide particles having such a simple structure can have the effect of reducing the amount of phosphor particles, which is very surprising. For these reasons, in this embodiment, metal oxide particles having a medium refractive index, ie, 1.70 or more and 2.00 or less, are used as the material for forming the surface-modified metal oxide particles.
  • the average primary particle diameter of the metal oxide particles before surface modification is preferably 5 nm to 100 nm, more preferably 5 nm to 50 nm, and even more preferably 10 nm to 30 nm.
  • the average primary particle diameter of the metal oxide particles may be 5 nm to 20 nm, 5 nm to 25 nm, 50 nm to 70 nm, or 50 nm to 40 nm, as necessary.
  • the particle diameter D50 (hereinafter sometimes abbreviated as "D50") when the cumulative volume percentage of the dry particle size distribution of the surface-modified metal oxide particles is 50% can be controlled to a desired range, which is preferable because it makes it easy to control the scattering properties of the sealing member.
  • the above average primary particle diameter value may also be adopted as an example of the average primary particle diameter of the surface-modified metal oxide particles of this embodiment.
  • the average primary particle diameter of the metal oxide particles can be measured by any method. For example, it can be measured by observation with a transmission electron microscope. For example, a predetermined number of metal oxide particles, for example 100 particles, are selected from a transmission electron microscope image using a transmission electron microscope. Then, the longest straight line segment (maximum major axis) of each of these metal oxide particles is measured, and the average primary particle diameter of the metal oxide particles is determined by arithmetically averaging these measured values.
  • the aggregate particle diameter of the aggregate is not measured. Instead, the maximum major axis of a specified number of metal oxide particles (primary particles) that make up the aggregate is measured and this is taken as the average primary particle diameter.
  • the surface-modified metal oxide particles may be dispersed as primary particles in the sealing material described below, or may be dispersed as secondary particles formed by aggregation of primary particles. Usually, the surface-modified metal oxide particles are dispersed as secondary particles.
  • silane compounds surface modification materials
  • the silane compound of the present embodiment is not particularly limited as long as it can improve compatibility with the sealing resin described below.
  • a silane compound represented by the following formula (5) can be used.
  • R1Si(OR2) 3 ...(5) R1 is an alkyl group having 1 to 18 carbon atoms, a fluoroalkyl group, a phenyl group, or a vinyl group, and R2 is an alkyl group having 1 to 4 carbon atoms.
  • R1 is preferably an alkyl group having 2 to 15 carbon atoms, more preferably an alkyl group having 2 to 13 carbon atoms, even more preferably an alkyl group having 2 to 10 carbon atoms, and still more preferably an alkyl group having 2 to 5 carbon atoms.
  • R2 is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably an alkyl group having 2 carbon atoms. The three R2 may be different or the same, but are preferably the same.
  • silane compounds include methyltrimethoxysilane, methyltriethoxysilane, methyltrippropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltrippropoxysilane, ethyltributoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltrippropoxysilane, n-propyltributoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, isopropyltrimethoxysilane, Examples include tripropoxysilane, isopropyltributoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, phenyltributoxysilane,
  • silane coupling agents may be used alone or in combination of two or more. From the viewpoint of reducing the cost of the light-emitting device, a simpler configuration is preferable, and it is preferable to use only one type of silane coupling agent.
  • the surface-modified metal oxide particles of this embodiment may be surface-modified with a surface modifier other than a silane compound, as long as the object of the present invention is not impaired.
  • a surface modifier other than the silane compound for example, a silicone compound or a fatty acid containing a carbon-carbon unsaturated bond can be contained.
  • the silicone compound has a relatively large molecular weight and contributes to improving the affinity with the sealing resin described below.
  • the dispersion stability of the metal oxide particles in the sealing material is further improved, which is preferable.
  • the surface-modified metal oxide particles of this embodiment are surface-modified only with the silane compound of this embodiment.
  • the silicone compound can be arbitrarily selected, and examples thereof include alkoxy group-containing phenyl silicone, dimethyl silicone, methylphenyl silicone, methylhydrogen silicone, methylphenylhydrogen silicone, diphenylhydrogen silicone, alkoxy-terminated phenyl silicone, alkoxy-terminated methylphenyl silicone, alkoxy group-containing methylphenyl silicone, alkoxy group-containing dimethyl silicone, alkoxy-terminated trimethyl-terminated (methyl group-terminated) dimethyl silicone, and alkoxy group-containing phenyl silicone, etc. These silicone compounds may be used alone or in combination of two or more.
  • the silicone compound may be a monomer, an oligomer, or a resin (polymer). It is preferable to use a monomer or an oligomer because it is easy to modify the surface.
  • the silicone compound is preferably alkoxy group-containing phenyl silicone, dimethyl silicone, methylphenyl silicone, alkoxy-terminated phenyl silicone, alkoxy-terminated methylphenyl silicone, alkoxy group-containing dimethyl silicone, alkoxy-terminated trimethyl-terminated dimethyl silicone (methyl group-terminated) and alkoxy group-containing phenyl silicone. At least one type selected from the group consisting of these compounds may be included. More preferably, the silicone compound includes at least one type selected from the group consisting of methoxy group-containing phenyl silicone, dimethyl silicone and methoxy group-containing dimethyl silicone.
  • the content of the silicone compound can be selected arbitrarily and is not particularly limited. For example, it is preferably 50 parts by mass or more and 500 parts by mass or less, more preferably 80 parts by mass or more and 400 parts by mass or less, and even more preferably 100 parts by mass or more and 300 parts by mass or less, relative to 100 parts by mass of the metal oxide particles before surface modification. If necessary, the content of the silicone compound may be 50 parts by mass or more and 200 parts by mass or less, or 50 parts by mass or more and 150 parts by mass or less. This allows a sufficient amount of silicone compound to be attached to the surface of the metal oxide particles, improving the dispersion stability of the metal oxide particles and improving the dispersibility in the sealing material. Furthermore, the amount of free silicone compound can be reduced, and unintended aggregation of the metal oxide particles in the sealing material can be suppressed.
  • the surface-modified metal oxide particles of this embodiment can be obtained by surface-modifying the above-mentioned metal oxide particles before surface modification with the above-mentioned silane compound.
  • the above-mentioned silane compound may be one that has been subjected to a hydrolysis reaction.
  • the surface modification method may be selected arbitrarily, and may be a dry method or a wet method. From the viewpoint of reducing the cost of the light-emitting device, it is preferable to perform the surface modification by a dry method, which has low manufacturing costs.
  • the surface modification in this embodiment can be carried out using a general device capable of surface modification, such as a known stirrer or disperser.
  • Examples of such devices include a Henschel mixer, a super mixer, a colloid mill, a roll mill, an ultrasonic disperser, a high-pressure homogenizer, an vomer, a rotary mill, a planetary mill, a bead mill, and a sand mill.
  • the silane compound and the metal oxide particles can be mixed uniformly using such a stirrer or disperser.
  • the mixing time is not particularly limited, and may be, for example, 1 minute to 24 hours, 3 minutes to 12 hours, or 5 minutes to 5 hours.
  • the surface modification reaction may be carried out while heating.
  • a heating step may be carried out in order to remove by-products, solvent, etc. and to accelerate the surface modification reaction.
  • the heating temperature is not particularly limited as long as it is a temperature at which the polymerization reaction of the silane compound proceeds.
  • the heating temperature is preferably 35°C or more and 80°C or less.
  • the heating temperature may be 40°C or more and 75°C or less, 45°C or more and 70°C or less, or 50°C or more and 65°C or less. By setting the heating temperature at 35°C or more, the polymerization reaction of the silane compound can proceed.
  • the heating time is not particularly limited, and may be a time sufficient for removing by-products.
  • the heating time may be, for example, 30 minutes or more, 1 hour or more, or 3 hours or more.
  • the heating time is preferably short, and is preferably 12 hours or less, more preferably 10 hours or less, even more preferably 8 hours or less, and more particularly preferably 6 hours or less.
  • the heating time may be 4 hours or less, 3 hours or less, 2 hours or less, or 1 hour or less.
  • the disintegration step may be performed before or after the heating step. By performing the disintegration, the hydroxyl group treatment rate can be improved and the D50 can be easily adjusted to a desired size.
  • the crushing step the crushing process can be performed using a crusher.
  • the crusher can be arbitrarily selected, and examples thereof include an atomizer, a hammer mill, a jet mill, an impeller mill, and a pin mill.
  • the crushing time can be selected as necessary. Examples include, but are not limited to, 10 seconds to 15 minutes, 20 seconds to 10 minutes, 30 seconds to 5 minutes, and 1 minute to 3 minutes.
  • the surface-modified metal oxide particles of this embodiment can be produced.
  • the surface-modified metal oxide particles may be used in a dried state or in a non-dried state, as required.
  • the encapsulating material of the present embodiment contains the surface-modified metal oxide particles of the present embodiment, an encapsulating resin, and phosphor particles.
  • the mass ratio of the phosphor particles to the surface-modified metal oxide particles can be selected as desired, but is preferably 1:0.01 to 1:0.5, and more preferably 1:0.05 to 1:0.3. If necessary, it may be 1:0.03 to 1:0.2, or 1:0.10 to 1:0.15, etc.
  • the ratio of the total mass of the sealing resin and the surface-modified metal oxide particles to the mass of the phosphor particles is preferably 1:0.1 to 1:0.9, more preferably 1:0.2 to 1:0.7, and even more preferably 1:0.2 to 1:0.6. If necessary, it may be 1:0.15 to 1:0.5, 1:0.25 to 1:0.40, etc.
  • the content of the surface-modified metal oxide particles in the total mass (100 mass%) of the sealing material of this embodiment is not particularly limited as long as it is possible to reduce the amount of phosphor particles.
  • the content is preferably 0.01 mass% to 10 mass%, more preferably 0.1 mass% to 5 mass%, and even more preferably 1 mass% to 4 mass%. If necessary, it may be 0.5 mass% to 8 mass%, or 2 mass% to 6 mass%, etc.
  • the content of phosphor particles in the total mass (100% by mass) of the sealing material of this embodiment is not particularly limited as long as it is an amount that can obtain the desired chromaticity and brightness.
  • the content is preferably 10% by mass or more and 40% by mass or less, more preferably 12% by mass or more and 35% by mass or less, even more preferably 15% by mass or more and 30% by mass or less, and even more preferably 20% by mass or more and 28% by mass or less.
  • the content of the sealing resin in the total mass (100% by mass) of the sealing material of this embodiment is not particularly limited as long as it can seal the light-emitting element described below, and can be the remainder of other components.
  • the content of the sealing resin in the total mass (100% by mass) of the sealing material of this embodiment is, for example, preferably 55% by mass or more and 89% by mass or less, more preferably 60% by mass or more and 80% by mass or less, and even more preferably 65% by mass or more and 78% by mass or less.
  • the dispersed particle diameter of the surface-modified metal oxide particles in the sealing material of the present embodiment is not particularly limited as long as the particle diameter when cured into a sealing member is 50 nm or more and 2000 nm or less.
  • the dispersed particle diameter of the surface-modified metal oxide particles in the sealing member is preferably 50 nm or more and 2000 nm or less, more preferably 70 nm or more and 1500 nm or less, even more preferably 90 nm or more and 1300 nm or less, and even more preferably 100 nm or more and 1000 nm or less.
  • the D50 of the surface-modified metal oxide particles is measured with a dry particle size distribution analyzer, and is therefore an average particle size observed in a state including aggregation of the surface-modified metal oxide particles. Therefore, when the surface-modified metal oxide particles in the sealing member are observed with an electron microscope, surface-modified metal oxide particles having a dispersed particle size smaller than the D50 are observed.
  • the sealing resin is a main component of the sealing material of this embodiment.
  • the sealing resin seals the light-emitting element by curing the sealing material of this embodiment.
  • deterioration factors from the external environment, such as moisture and oxygen, are prevented from reaching the light-emitting element.
  • the cured product obtained from the sealing resin is basically transparent and can transmit light emitted from the light-emitting element.
  • sealing resins are not particularly limited as long as they can be used as a sealing material.
  • resins such as silicone resins and epoxy resins may be used alone or in combination of two or more types.
  • silicone resins phenyl-based silicone resins and methyl-based silicone resins can be used. From the viewpoint of durability, methyl-based silicone resins are particularly preferred.
  • the above-mentioned methyl silicone resin may refer to, for example, a main skeleton having a siloxane bond in which silicon and oxygen are alternately bonded, and the functional groups bonded to Si atoms are mostly methyl groups, for example, 60% or more, preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more.
  • the above-mentioned methyl silicone resin is not limited to this example.
  • the methyl-based silicone resin for example, dimethyl silicone resin, methyl phenyl silicone resin, etc. can be used.
  • the content of the methyl-based silicone resin in the total mass (100% by mass) of the sealing resin may be adjusted according to the desired characteristics and is not particularly limited. For example, it may be 100% by mass, 20% by mass to 80% by mass, 30% by mass to 70% by mass, or 40% by mass to 60% by mass.
  • the metal oxide particles aggregate, the transparency decreases, and the refractive index does not improve sufficiently.
  • the metal oxide particles are dispersed in the methyl-based silicone resin, it is difficult to completely suppress the occurrence of excessive aggregation of the metal oxide particles.
  • the sealing material of this embodiment contains metal oxide particles having a refractive index of 1.70 to 2.00 and surface-modified with the above-mentioned silane compound. Therefore, even when a large amount of methyl-based silicone resin is contained as the sealing resin, aggregation of the metal oxide particles is suppressed, and even if they aggregate to a certain extent, the refractive index of the metal oxide particles is 1.70 to 2.00, so that the decrease in transparency is suppressed. In addition, because it is possible to use a methyl-based silicone resin, the durability of the sealing member formed using the sealing material of this embodiment is improved.
  • the structure of the sealing resin in this embodiment may be a two-dimensional chain structure, a three-dimensional network structure, or a cage structure.
  • the encapsulating resin may be in a cured polymer state when used as an encapsulating member.
  • the encapsulating resin may be in a pre-cured state, i.e., a precursor. Therefore, the encapsulating resin present in the encapsulating material may be, for example, a monomer, an oligomer, or a polymer.
  • the sealing resin may be of an addition reaction type, a condensation reaction type, or a radical polymerization reaction type.
  • the viscosity of the sealing resin at 25°C measured in accordance with JIS Z 8803:2011 is, for example, preferably 10 mPa ⁇ s or more and 100,000 mPa ⁇ s or less, more preferably 100 mPa ⁇ s or more and 10,000 mPa ⁇ s or less, and even more preferably 1,000 mPa ⁇ s or more and 7,000 mPa ⁇ s or less.
  • the phosphor particles are arbitrarily selected. There is no particular limitation as long as the phosphor particles can be used in a semiconductor light-emitting device. For example, the phosphor particles are not particularly limited as long as they can absorb blue light emitted from a light-emitting element and convert the wavelength into yellow light. That is, the phosphor particles are preferably yellow phosphor particles.
  • oxides, nitrides, sulfides, fluorides, quantum dots, etc. can be preferably used.
  • YAG yttrium aluminum garnet
  • the size and shape of the phosphor particles may be arbitrarily selected.
  • they may be selected from 1 ⁇ m to 100 ⁇ m, 3 ⁇ m to 70 ⁇ m, 5 ⁇ m to 40 ⁇ m, and 7 ⁇ m to 30 ⁇ m.
  • the amount of phosphor particles in the sealing material may also be arbitrarily selected.
  • the sealing material of the present embodiment may contain a solvent such as a hydrophobic solvent or a hydrophilic solvent during the manufacturing process.
  • the solvent may remain in the sealing material in an amount of about 1% by mass to about 10% by mass, about 2% by mass to about 5% by mass, or no solvent may be contained at all.
  • the sealing material of the present embodiment can be produced by any method, but it is preferable that no solvent is added in the production process. By not adding a solvent, the number of steps can be reduced, and the sealing material can be easily produced. That is, the sealing material of the present invention is preferably produced by mixing surface-modified metal oxide particles, sealing resin, and phosphor particles without adding a solvent.
  • the method for producing the sealing material of the present invention may include a step of mixing surface-modified metal oxide particles and sealing resin without adding a solvent to form a mixture. Furthermore, the method may include a step of mixing phosphor particles into the mixture without adding a solvent. Alternatively, the method may include a step of mixing surface-modified metal oxide particles, sealing resin, and phosphor particles without adding a solvent.
  • the sealing material of the present embodiment may contain, as a dispersion medium, a hydrophobic solvent in which the surface-modified metal oxide particles are dispersed.
  • the hydrophobic solvent is not particularly limited as long as it can disperse the surface-modified metal oxide particles and can be mixed with the sealing resin.
  • examples of such hydrophobic solvents include aromatics, saturated hydrocarbons, and unsaturated hydrocarbons. These hydrophobic solvents may be used alone or in combination of two or more. Examples of such hydrophobic solvents include aromatics, saturated hydrocarbons, and unsaturated hydrocarbons. These hydrophobic solvents may be used alone or in combination of two or more.
  • the hydrophobic solvent is preferably an aromatic, particularly an aromatic hydrocarbon.
  • Aromatic solvents have excellent compatibility with sealing resins, which contributes to improving the viscosity characteristics of the resulting composition and the quality (transparency, shape, etc.) of the sealing member formed.
  • aromatic hydrocarbons include, for example, benzene, toluene, ethylbenzene, 1-phenylpropane, isopropylbenzene, n-butylbenzene, tert-butylbenzene, sec-butylbenzene, o-xylene, m-xylene or p-xylene, 2-ethyltoluene, 3-ethyltoluene or 4-ethyltoluene.
  • aromatic hydrocarbons may be used alone or in combination of two or more.
  • At least one hydrophobic solvent selected from the group consisting of toluene, o-xylene, m-xylene or p-xylene, and benzene.
  • the sealing material of the present embodiment may contain a hydrophilic solvent.
  • the hydrophilic solvent may be contained in the sealing material, for example, by hydrolysis reaction of the silane compound.
  • hydrophilic solvents include alcohol-based solvents, ketone-based solvents, nitrile-based solvents, ether-based solvents, ester-based solvents, cellosolve-based solvents, and ether ester-based solvents. These hydrophilic solvents may be used alone or in combination of two or more.
  • alcohol-based solvents examples include branched or linear alcohol compounds having 1 to 4 carbon atoms and their ether condensates. These alcohol-based solvents may be used alone or in combination of two or more.
  • the alcohol compound contained in the alcohol-based solvent may be any of primary alcohols, secondary alcohols, and tertiary alcohols.
  • the alcohol compound contained in the alcohol-based solvent may be any of monohydric alcohols, dihydric alcohols, and trihydric alcohols.
  • alcohol-based solvents include methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butyl alcohol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, methanediol, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-butene-1,4-diol, 1,4-butynediol, glycerin, diethylene glycol, and 3-methoxy-1,2-propanediol.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • An example of the nitrile solvent is acetonitrile.
  • Examples of the ether solvent include propylene glycol monomethyl ether and propylene glycol monoethyl ether.
  • Examples of the ester solvent include ethyl acetate and butyl acetate.
  • Examples of cellosolve-based solvents include ethyl cellosolve.
  • the hydrophilic solvent preferably includes an alcohol-based solvent.
  • the number of carbon atoms in the alcohol compound constituting the alcohol-based solvent is preferably 1 or more and 3 or less, and more preferably 1 or more and 2 or less.
  • the hydrophilic solvents methanol and ethanol, particularly methanol, can be preferably used since it can fully exhibit the effects of the alcohol solvent described above.
  • the sealing material of the present embodiment may contain components other than those described above.
  • the sealing material of the present embodiment may contain components other than those described above as necessary, such as general additives such as dispersants, dispersion aids, antioxidants, flow regulators, thickeners, pH adjusters, preservatives, polymerization initiators, polymerization inhibitors, curing catalysts, and light diffusing materials.
  • the light diffusing material it is preferable to use silica particles having an average particle size of 1 ⁇ m to 30 ⁇ m.
  • the sealing material of the present embodiment may also contain components that may be contained as a result of the surface modification step, such as an acid, water, or alcohol.
  • the encapsulating material of the present embodiment can be produced by mixing the surface-modified metal oxide particles of the present embodiment, an encapsulating resin, and phosphor particles. Other materials or components selected as necessary may be mixed. After mixing, the solvent, by-products, and the like contained in the encapsulating material may be removed by an evaporator or the like as necessary.
  • the sealing material of the present embodiment is preferably produced by first mixing the surface-modified metal oxide particles and the sealing resin.
  • the sealing material of this embodiment is cured as described below and used as a sealing member for a light-emitting element.
  • the sealing material of this embodiment contains metal oxide particles with a refractive index of 1.70 or more and 2.00 or less, which have been surface-modified with a silane compound described below. Therefore, even when a methyl-based silicone resin is contained as the sealing resin, excessive aggregation of the metal oxide particles is suppressed, and a decrease in transparency is suppressed. Therefore, it is possible to reduce the amount of phosphor particles used in the light-emitting device while suppressing a decrease in the brightness and chromaticity characteristics of the light-emitting device.
  • the sealing member of this embodiment is a cured product of the sealing material of this embodiment.
  • the sealing member of this embodiment is usually used as a sealing member disposed on a light-emitting element or as a part thereof.
  • the thickness and shape of the sealing member of the present embodiment and the configuration in which the sealing member is used can be appropriately adjusted according to the desired application and characteristics, and are not particularly limited.
  • the sealing member of this embodiment can be manufactured by curing the sealing material of this embodiment as described above.
  • the method for curing the sealing material can be selected according to the characteristics of the sealing resin in the sealing material of this embodiment. Examples of methods for curing the sealing material include thermal curing and electron beam curing. More specifically, the sealing member of this embodiment can be obtained by curing the sealing resin in the sealing material of this embodiment through an addition reaction or polymerization reaction.
  • the dispersed particle diameter of the surface-modified metal oxide particles in the sealing member may be, for example, 50 nm or more and 2000 nm or less, 70 nm or more and 1500 nm or less, 90 nm or more and 1300 nm or less, or 100 nm or more and 1000 nm or less.
  • the dispersed particle diameter of the surface-modified metal oxide particles here means the secondary particle diameter (aggregated particle diameter) when the particles are aggregated together.
  • the dispersed particle diameter of the surface-modified metal oxide particles in the sealing member can be measured by observing a sample cut into a thin piece of the cured product with an electron microscope.
  • the sealing member of this embodiment may be determined by measuring the characteristics such as brightness and chromaticity.
  • the sealing member of this embodiment is a cured product of the sealing material of this embodiment, so the amount of phosphor particles used can be reduced, and manufacturing costs can be kept down.
  • a sealing member can be obtained that can obtain the desired brightness and chromaticity, reduce the amount of phosphor particles used, and keep the cost of the light-emitting device down.
  • the light emitting device of this embodiment includes the above-mentioned sealing member and a light emitting element sealed in the sealing member.
  • the light-emitting element can be selected arbitrarily, and examples thereof include light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs).
  • the sealing member of the present embodiment is suitable for sealing light-emitting diodes.
  • the light-emitting device of the present embodiment is preferably a white LED light-emitting device using a blue LED chip.
  • 1 is a schematic diagram (cross-sectional view) showing a preferred example of the light emitting device of the present embodiment, in which the light emitting element is a light emitting diode on a chip, i.e., an LED chip, and the light emitting device is an LED package.
  • the light-emitting device (LED package) 1A shown in Figure 1 comprises a substrate 2 having a recess 21, a light-emitting element 3 arranged on the bottom surface of the recess 21 of the substrate 2, and a sealing member 4A that covers and seals the light-emitting element 3 in the recess 21.
  • the sealing member 4A is composed of the sealing member of this embodiment described above. Phosphor particles 5 and surface-modified metal oxide particles 6 of this embodiment are dispersed in the sealing member 4A. In the light-emitting device of this embodiment, the amount of phosphor particles 5 used can be reduced while maintaining the chromaticity and brightness of the light emitted from the light-emitting device.
  • the sealing member 4A only needs to include the sealing member of this embodiment.
  • the sealing member 4A may have a portion including the sealing member of this embodiment and a portion not including the sealing member of this embodiment.
  • the sealing member 4A may have a one-layer structure or a two-layer or more layer structure.
  • the sealing member 4A when it has a two-layer structure or a three-layer structure, it may be composed of a layer including the sealing member of this embodiment and a layer including other members, for example, a layer including no surface-modified metal oxide particles 6 and/or phosphor particles 5 of this embodiment.
  • the layer including the sealing member 4A may be disposed closest to the light-emitting element 3, or the layer including the sealing member 4A may be disposed between two layers including other members.
  • the total content of the surface-modified metal oxide particles and the phosphor particles relative to the total mass (100 mass%) of the sealing member is not particularly limited as long as it is an amount that allows the desired chromaticity and brightness to be obtained, and is, for example, preferably 10.01 mass% or more and 50 mass% or less, more preferably 12.1 mass% or more and 40 mass% or less, even more preferably 16 mass% or more and 34 mass% or less, and particularly preferably 21 mass% or more and 32 mass% or less. If the total content of the surface-modified metal oxide particles and the phosphor particles is equal to or more than the lower limit, the desired chromaticity and brightness cannot be obtained, which is not preferable. If the total content of the surface-modified metal oxide particles and the phosphor particles is equal to or less than the upper limit, the desired chromaticity and brightness cannot be obtained, which is not preferable.
  • the mass ratio of the phosphor particles to the surface-modified metal oxide particles contained in the sealing member can be selected arbitrarily, but is preferably 1:0.01 to 1:0.5, and more preferably 1:0.05 to 1:0.3. If necessary, it may be 1:0.03 to 1:0.2, or 1:0.10 to 1:0.15. If the mass ratio of the phosphor particles to the surface-modified metal oxide particles is equal to or greater than the lower limit, the content of the phosphor particles can be reduced while maintaining the chromaticity and brightness of the light-emitting device, which is preferable. If the mass ratio of the phosphor particles to the surface-modified metal oxide particles is equal to or less than the upper limit, the content of the phosphor particles can be reduced while maintaining the chromaticity and brightness of the light-emitting device, which is preferable.
  • the light emitting element is sealed with the sealing member of this embodiment, so the degradation of the performance of the light emitting device is suppressed while the amount of phosphor particles used is reduced, making it possible to obtain a light emitting device at a lower cost than conventional devices.
  • the light-emitting element can be sealed by applying the sealing material of this embodiment onto the light-emitting element using a dispenser or the like, and then curing the sealing material.
  • the method for producing a light emitting device of this embodiment includes a step of sealing a light emitting element with a sealing material containing the surface-modified metal oxide particles of this embodiment, a sealing resin, and phosphor particles.
  • the mass ratio of the phosphor particles to the surface-modified metal oxide particles is preferably 1:0.01 to 1:0.5, and more preferably 1:0.05 to 1:0.3.
  • the mass ratio of the phosphor particles to the surface-modified metal oxide particles is equal to or greater than the lower limit, the content of the phosphor particles can be reduced while maintaining the chromaticity and brightness of the light-emitting device, which is preferable.
  • the mass ratio of the phosphor particles to the surface-modified metal oxide particles is equal to or less than the upper limit, the content of the phosphor particles can be reduced while maintaining the chromaticity and brightness of the light-emitting device, which is preferable.
  • the method for sealing the light-emitting element with the above sealing material is not particularly limited, and the light-emitting element can be sealed by the same method as that used for sealing with a conventional sealing material.
  • the light emitting device of the present embodiment as described above can be used in, for example, a lighting fixture or a display device. Accordingly, one aspect of the present invention relates to a lighting fixture or a display device including the light emitting device of the present embodiment.
  • lighting fixtures include general lighting devices such as indoor lights and outdoor lights, and lighting for switches of electronic devices such as mobile phones and office automation equipment.
  • the lighting fixture of the present embodiment includes the light emitting device of the present embodiment, and therefore, even if the same light emitting element is used, the emitted luminous flux is greater than that of the conventional lighting fixture, and the surrounding environment can be brighter.
  • Examples of display devices include mobile phones, personal digital assistants, electronic dictionaries, digital cameras, computers, televisions, and peripheral devices thereof. Since the display device of this embodiment is equipped with the light-emitting device of this embodiment, even if the same light-emitting element is used, the emitted light flux is greater than in the conventional case, and, for example, a clearer and brighter display can be provided.
  • the volumetric particle size distribution of the obtained surface-modified aluminum oxide particles was measured in a dry state using a laser diffraction particle size distribution measuring device (model: Mastersizer 3000, manufactured by Malvern). As a result, the D50 of the surface-modified aluminum oxide particles B1 of Example 1 was 1.24 ⁇ m and the D90 was 2.65 ⁇ m. The results are shown in Table 1.
  • the hydroxyl group treatment rate was measured as follows. "Preparation of red pigment” A mixed liquid was prepared by mixing 1 mmol of 2,2'-dihydroxyazobenzene, 1 mmol of diphenyltin(IV) oxide, and 30 mL of acetone. Next, this mixture was stirred at 70° C. for 3 hours to carry out a dehydration reaction, and diphenyltin oxide was coordinated to 2,2′-dihydroxyazobenzene. The mixture after the dehydration reaction was filtered, the filtrate was recovered, and the solvent was distilled off from the filtrate to obtain a red pigment represented by the above formula (1).
  • the amounts of the red dye adsorbed to the aluminum oxide particles A1 and the surface-modified aluminum oxide particles B1 were calculated using the following formulas (2) and (3).
  • Amount of dye adsorbed on aluminum oxide particles A3 ((C2 ⁇ A2)/C2) ⁇ 250 ⁇ 10 ⁇ 9 (mol)/4 ⁇ 10 ⁇ 3 (g)
  • Amount of dye adsorbed on surface-modified aluminum oxide particles B3 ((C2 ⁇ B2)/C2) ⁇ 250 ⁇ 10 ⁇ 9 (mol)/4 ⁇ 10 ⁇ 3 (g) (3)
  • Methylphenyl silicone resin product name: KER-2500-A/B, manufactured by Shin-Etsu Chemical Co., Ltd.
  • the surface-modified aluminum oxide particles of Example 1 were mixed at a mass ratio of 7:93.
  • this mixture was filled into a Teflon (registered trademark)-coated SUS container having a thickness of 1 mm to give a film thickness of 1 mm.
  • the mixture was heated at 100°C for 2 hours and then at 150°C for 4 hours to obtain a cured product of Example 1.
  • the cured product removed from the container had a thickness of 1 mm.
  • Example 1 Light Transmittance
  • the cured product of Example 1 was taken out of the container and the linear transmittance and integrated transmittance at wavelengths of 450 nm and 600 nm were measured using a spectrophotometer (manufactured by JASCO Corporation, model number: V-770).
  • the integrated transmittance refers to the result measured using an integrating sphere.
  • the scattered light was calculated from the difference between the integrated transmittance and the linear transmittance. The results are shown in Table 1.
  • the encapsulating material of Example 1 was filled to a thickness of 300 ⁇ m into an LED lead frame in which an LED element and wires were arranged at predetermined positions. The encapsulating material composition was then heated and cured to form an encapsulating member, thereby producing a white LED package of Example 1.
  • Example 2 Preparation of Surface-Modified Metal Oxide Particles
  • Hydrolysis step 91.32 parts by mass of octyltriethoxysilane (product name: KBE-3083, manufactured by Shin-Etsu Chemical Co., Ltd.), 5.94 parts by mass of water, and 2.74 parts by mass of hydrochloric acid (1N) were prepared. These were added to a container and mixed at room temperature for 1 hour to obtain a hydrolysis liquid.
  • the D50 and D90 of the surface-modified aluminum oxide particles of Example 2 were measured in the same manner as in Example 1. The results are shown in Table 1.
  • the hydroxyl group treatment rate of the surface-modified aluminum oxide particles of Example 2 was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 A cured body of Example 2, an encapsulating material of Example 2, and a white LED package of Example 2 were prepared in the same manner as in Example 1, except that the surface-modified aluminum oxide particles of Example 2 were used instead of the surface-modified aluminum oxide particles of Example 1.
  • the evaluation results of the light transmittance of the cured product of Example 2 are shown in Table 1.
  • Comparative Example 1 An encapsulating material that does not contain surface-modified aluminum particles and an LED package were fabricated.
  • 1.0 g of methylphenyl silicone resin (product name: KER-2500-A/B, manufactured by Shin-Etsu Chemical Co., Ltd.) as the sealing resin was mixed with 0.4 g of phosphor particles (yttrium aluminum garnet: YAG) to obtain an sealing material of Comparative Example 1 which contains more phosphor particles than Example 1 and does not contain surface-modified aluminum particles. That is, the mass ratio of sealing resin:phosphor particles was 100:40.
  • a white LED package of Comparative Example 1 was produced in the same manner as in Example 1, except that the sealing material of Comparative Example 1 was used instead of the sealing material of Example 1.
  • Comparative Example 2 Surface-modified zirconium oxide particles were produced. Specifically, surface-modified zirconium oxide particles of Comparative Example 2 were obtained in the same manner as in Example 1, except that zirconium oxide particles having a refractive index of 2.1 and an average primary particle diameter of 12 nm were used instead of the aluminum oxide particles having an average primary particle diameter of 12 nm used in Example 1. The D50 and D90 of the surface-modified zirconium oxide particles were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a cured body of Comparative Example 2, a sealing material of Comparative Example 2, and a white LED package of Comparative Example 2 were produced in the same manner as in Example 1, except that the surface-modified zirconium oxide particles of Comparative Example 2 were used instead of the surface-modified aluminum oxide particles of Example 1.
  • the evaluation results of the light transmittance of the cured body of Comparative Example 2 are shown in Table 1.
  • a cured body of Comparative Example 3, a sealing material of Comparative Example 3, and a white LED package of Comparative Example 3 were prepared in the same manner as in Example 1, except that the surface-modified aluminum oxide particles of Comparative Example 3 were used instead of the surface-modified aluminum oxide particles of Example 1.
  • the evaluation results of the light transmittance of the cured product of Comparative Example 3 are shown in Table 1.
  • Comparative Example 3 which had a D50 of 1.34 ⁇ m, showed a decrease in brightness of the LED package by about 2% compared to Comparative Example 1. Therefore, it is presumed that there is a critical significance in the D50 of the surface-modified aluminum oxide particles being 1.30 ⁇ m or less.
  • the present invention provides surface-modified metal oxide particles that can reduce the amount of phosphor particles used while maintaining the chromaticity and brightness of the light emitted from a light-emitting device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Led Device Packages (AREA)

Abstract

シラン化合物により表面修飾された金属酸化物粒子であって、表面修飾前の前記金属酸化物粒子の屈折率は1.70以上2.00以下であり、表面修飾前の前記金属酸化物粒子の平均一次粒子径は5nm以上100nm以下であり、表面修飾された前記金属酸化物粒子の乾式粒度分布の累積体積百分率が50%の時の粒子径D50が0.1μm以上1.30μm以下である、表面修飾金属酸化物粒子。

Description

表面修飾金属酸化物粒子、封止材料、封止部材、発光装置、発光装置の製造方法
 本発明は、発光素子を封止するための封止材料に含有される表面修飾金属酸化物粒子、前記表面修飾金属酸化物粒子を含む封止材料、前記封止材料を用いて形成される封止部材、前記封止部材を備える発光装置、および発光装置の製造方法に関する。
 本願は、2023年1月31日に、日本に出願された特願2023-013152号に基づき優先権を主張し、その内容をここに援用する。
 小型、長寿命化、低電圧駆動等の長所を有する光源として、発光ダイオード(LED)が広く用いられている。LEDパッケージ中のLEDチップ(発光素子)は、一般に、酸素や水分といった外部環境に存在する劣化因子との接触を防止するために、樹脂を含む封止部材で封止されている。したがって、LEDチップにおいて発した光は、封止部材を透過して、外部に向かって放出される。そのため、LEDパッケージから放出される光束を増大させるためには、LEDチップにおいて放出された光を、蛍光体粒子により波長変換した上で、LEDパッケージの外部に、効率よく取り出すことが重要となる。
 白色LEDの白色は、青色LEDと、黄色蛍光体粒子の組み合わせにより得られる。すなわち、LEDチップから放出された青色の光と、蛍光体粒子により波長変換された黄色の光が混ざることで白色となる。そのため、青色LEDから白色光を得るためには、所定量以上の黄色蛍光体粒子を封止部材に含有させる必要がある。
 蛍光体粒子は、通常はレアアースと呼ばれる、Y(イットリウム)、ユーロピウム(Eu)等の貴重な材料を使用する。そして蛍光体粒子の製造時には、通常は高温・高圧での焼成工程が必要である。そのため、蛍光体粒子は貴重で高額な材料となっている。
 従って、蛍光体粒子の使用量が多いLEDを用いた発光装置は高額になるが、蛍光体の使用量を減らすと、所望の色度と明るさが得られないという問題がある。
 この問題を解決するために、特許文献1では、使用する蛍光体の賦活剤濃度と粒子径をそれぞれ適切な範囲に設計することで、発光装置内の蛍光体使用量を少なくした上で、発光効率が高いデバイスの提供が提案されている。
 また、特許文献2では、特定の赤色蛍光体と酸化チタンを含む封止樹脂とを有する発光装置が提案されている。
 また、特許文献3では、蛍光体粒子以外のナノ粒子を用いることで、蛍光体の配合量を減らして、発光装置のコストを削減できることが提案されている。
特開2020-096175号公報 特開2021-048237号公報 特開2015-109354号公報
 発光装置から放出される光の色度と明るさの性能を維持しつつ、蛍光体粒子の使用量を減らすことは重要であり、蛍光体粒子の使用量のさらなる削減が求められている。
 本発明は、上記事情に鑑みてなされたものであって、発光装置から放出される光の色度と明るさを維持しながら、蛍光体粒子の使用量を削減できる表面修飾金属酸化物粒子、封止用材料、封止部材、発光装置、および発光装置の製造方法を提供することを目的とする。
 本発明は、以下の態様を有する。
[1]シラン化合物により表面修飾された金属酸化物粒子であって、
 表面修飾前の前記金属酸化物粒子の屈折率は1.70以上2.00以下であり、
 表面修飾前の前記金属酸化物粒子の平均一次粒子径は5nm以上100nm以下であり、
 表面修飾された前記金属酸化物粒子の乾式粒度分布の累積体積百分率が50%の時の粒子径D50が0.1μm以上1.30μm以下である、表面修飾金属酸化物粒子。
 本発明の表面修飾金属酸化物粒子は、例えば、発光装置に含まれる蛍光体粒子を削減するために好ましく使用される。
[2] 表面修飾前の前記金属酸化物粒子100質量部に対する前記シラン化合物の含有量が10質量部以上30質量部以下である、[1]に記載の表面修飾金属酸化物粒子。
[3] 表面修飾された前記金属酸化物粒子の表面における水酸基処理率が98.1質量%以上である、[1]または[2]に記載の表面修飾金属酸化物粒子。
[4][1]~[3]のいずれかに記載の表面修飾金属酸化物粒子と、封止樹脂と、蛍光体粒子とを、含有する封止材料。
 [5][4]に記載の封止材料の硬化物である、封止部材。
[6][5]に記載の封止部材と、前記封止部材により封止された発光素子と、を備える発光装置。
[7]前記封止部材に含まれる、前記蛍光体粒子と前記表面修飾金属酸化物粒子の質量比は1:0.01~1:0.5である、[6]に記載の発光装置。
[8][6]に記載の発光装置を備える、照明器具。
[9][6]に記載の発光装置を備える、表示装置。
[10][1]または[2]に記載の表面修飾金属酸化物粒子と、封止樹脂と、蛍光体粒子とを、含有する封止材料で、発光素子を封止する工程を有する、発光装置の製造方法。
[11]前記蛍光体粒子と前記表面修飾金属酸化物粒子の質量比は1:0.01~1:0.5である、[10]に記載の発光装置の製造方法。
[12]前記表面修飾金属酸化物粒子と、前記封止樹脂とを、溶媒を添加せずに混合する工程を有する、[4]に記載の封止材料の製造方法。
[13]前記封止材料を形成する工程をさらに含み、前記形成する工程が、前記蛍光体粒子を混合する前に、前記表面修飾金属酸化物粒子と、前記封止樹脂とを、溶媒を添加せずに混合するサブ工程を有する、[10]に記載の発光装置の製造方法。
 本発明によれば、発光装置から放出される光の色度と明るさを維持したうえで、蛍光体粒子の使用量を削減できる、表面修飾金属酸化物粒子、前記表面修飾金属酸化物粒子を含む封止材料、前記封止材料を用いて形成される封止部材、前記封止部材を備える発光装置、前記発光装置を備えた照明器具および表示装置、並びに、前記表面修飾金属酸化物粒子を用いた発光装置の製造方法を提供することができる。
本発明の発光装置の好ましい例を示す模式図である。
 本発明の一実施形態に係る表面修飾金属酸化物粒子、封止材料、封止部材、発光装置、照明器具、表示装置、および発光装置の製造方法の好ましい例について説明する。図中の各部材の大きさは、説明を容易とするため適宜強調されていることがあり、実際の寸法、部材間の比率等を示すものではない。
 なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。本発明の趣旨を逸脱しない範囲で、量、数、種類、比率、構成、形、サイズ、位置、順番、比率等について、省略、追加、置換、または変更が可能である。
(表面修飾金属酸化物粒子)
 本実施形態の表面修飾金属酸化物粒子は、シラン化合物により表面修飾された金属酸化物粒子であって、前記金属酸化物粒子の屈折率は1.70以上2.00以下であり、前記金属酸化物粒子の平均一次粒子径は5nm以上100nm以下であり、乾式粒度分布の累積体積百分率が50%の場合の粒子径D50が0.1μm以上1.30μm以下である。本実施形態の表面修飾金属酸化物粒子は、発光装置に含まれる蛍光体粒子の量を削減するために好ましく用いられる。
 シラン化合物により表面修飾された金属酸化物粒子とは、シラン化合物が金属酸化物粒子に対し、互いの間の相互作用や反応により、接触または結合することをいう。接触としては、例えば、物理吸着が挙げられる。また、結合としては、例えば、イオン結合、水素結合、共有結合等が挙げられる。
 上記金属酸化物粒子に対する上記シラン化合物の量は、後述する封止樹脂との相溶性を勘案して調整すればよい。上記表面修飾金属酸化物粒子の屈折率を低下させないために、上記シラン化後物の含有量は少ない方が好ましい。例えば、上記金属酸化物粒子100質量部に対する上記シラン化合物の含有量は10質量部以上40質量部以下であることが好ましく、10質量部以上30質量部以下であることがより好ましく、11質量%以上28質量%以下であることがさらに好ましく、12質量%以上27質量%以下であることが特に好ましく、15質量%以上25質量%以下であることが一層好ましい。
(表面修飾金属酸化物粒子のD50)
 本実施形態の表面修飾金属酸化物粒子は、乾式粒度分布の累積体積百分率が50%の時の粒子径D50(以下、「D50」と略記する場合がある。)が、0.1μm以上1.30μm以下であり、0.3μm以上1.29μm以下であることが好ましく、0.5μm以上1.28μm以下であることがより好ましく、0.8μm以上1.27μm以下であることがさらに好ましい。必要に応じて、1.00μm以上1.25μm以下や、1.15μm以上1.20μm以下などであってもよい。
 D50が上記範囲であることにより、後述する封止部材中において、上記表面修飾金属酸化物粒子の過剰な凝集を抑制することができる。その結果、封止材料中に含まれる蛍光体粒子を削減できる程度に、発光素子から放出される光を散乱することができる。
 上記D50は、レーザ回折式粒度分布測定装置を用いて、乾式で表面修飾金属酸化物粒子の体積粒度分布を測定した場合の、累積体積百分率が50%の時の値を意味する。レーザ回折式粒度分布測定装置の具体例としては、レーザ回折式粒度分布測定装置(型式:Mastersizer 3000、Malvern社製)が挙げられる。
 表面修飾金属酸化物粒子のD90は、任意に選択される。例えば、0.5μm~2.90μmや、1.0μm~2.8μm、や、2.0μm~2.7μmが例として挙げられるが、これら例のみに限定されない。
(表面修飾金属酸化物粒子の水酸基処理率)
 本実施形態の表面修飾金属酸化物粒子は、金属酸化物粒子の表面における水酸基処理率は98.1質量%以上であることが好ましく、98.2質量%以上であることがより好ましい。98.3質量%以上や、98.5質量%以上であることも好ましい。水酸基処理率の上限は任意に選択できるが、100.0%質量以下や、99.8%質量以下や、99.5%質量以下や、99.3%質量以下や、99.0%質量以下などであってもよい。
 本明細書において「水酸基処理率」とは、金属酸化物粒子表面に存在する全ての水酸基のうち、シラン化合物により表面修飾された水酸基、すなわち、シラン化合物と結合した水酸基の割合を示す数値である。「水酸基処理率」は、下記式(1)で表される波長545nm付近の光を吸収する赤色色素を用いて測定される。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)の赤色色素は、以下の用法により製造することができる。
 2,2’-ジヒドロキシアゾベンゼン1mmolと、金属源としてジフェニル酸化スズ(IV)1mmolと、アセトン30mLとを混合して、混合液を調製する。
 次いで、この混合液を70℃で3時間撹拌して、脱水反応を行い、ジフェニル酸化スズを、2,2’-ジヒドロキシアゾベンゼンに配位させる。
 脱水反応後の混合液をろ過して、ろ液を回収し、ろ液から溶媒を留去することで、式(1)で表される赤色色素を得ることができる。
 上記式(1)で表される赤色色素は、金属酸化物粒子の表面に存在する水酸基に選択的に吸着し、かつ、水やアルコール等の水酸基とは反応しない。そのため、水分の影響を受けずに、金属酸化物粒子や表面修飾金属酸化物粒子に含まれる金属水酸基の量を定性的かつ定量的に評価することができる。すなわち、表面修飾前の金属酸化物粒子への前記赤色色素の吸着量と、表面修飾金属酸化物粒子への前記赤色色素の吸着量を調べることにより、金属酸化物粒子の表面の疎水化の度合い(水酸基の処理率)を調べることができる。すなわち、金属酸化物粒子表面の水酸基の処理率が大きければ大きいほど、金属酸化物粒子の表面に存在する水酸基が表面修飾されて、疎水化されていることを意味する。
 具体的には、前記赤色色素による上記金属酸化物粒子の表面における水酸基処理率(%)は以下の方法で測定することができる。
 式(1)で表される赤色色素250nmol(0.12mg)をトルエンに溶解して5mLとすることにより、5×10-5mol/Lの評価用の溶液C1を得る。溶液C1の波長545nmにおける吸光度C2を測定する。
 前記評価用の溶液C1に、表面修飾前の金属酸化物粒子をxg添加して、60℃で4時間撹拌混合し、混合液を調製する。xgは約4×10-3gである。この混合液から金属酸化物粒子を遠心分離により除去し、評価用の混合液A1を得る。この混合液A1の波長545nmにおける吸光度A2を測定する。
 評価用の溶液C1に、測定対象の表面修飾金属酸化物粒子をyg添加して、60℃で4時間撹拌混合し、混合液を調製する。ygは約4×10-3gである。この混合液から表面修飾金属酸化物粒子を遠心分離により除去し、評価用の混合液B1を得る。この混合液B1の波長545nmにおける吸光度B2を測定する。
 下記式(2)より、表面修飾前の金属酸化物粒子への前記赤色色素の吸着量(mol/g)を算出する。
 吸着量A3=((C2-A2)/C2)×250×10-9(mol)/x(g)・・・(2)
 下記式(3)より、表面修飾金属酸化物粒子への前記赤色色素の吸着量(mol/g)を算出する。
 吸着量B3=((C2-B2)/C2)×250×10-9(mol)/y(g)・・・(3)
 式(2)および式(3)では、吸光度の減少は、色素が吸着していることを意味するので、吸光度の減少率=色素の吸着率と換算できるとの考えに基づき、前記赤色色素の吸着量を算出している。
 金属酸化物粒子の表面における水酸基処理率は下記式(4)で算出することができる。
 水酸基処理率(%)=100-((B3/A3)×100)・・・(4)
(金属酸化物粒子)
 金属酸化物粒子は、封止部材中において、発光素子から放出される光を散乱させる。そのため、蛍光体粒子1個当たりの青色光を黄色光に変換する量を、金属酸化物粒子によって増やすことができる場合、蛍光体粒子の量を削減することに対して、大きく寄与することができる。
(金属酸化物粒子の屈折率)
 表面修飾金属酸化物粒子の製造に使用される、表面修飾前の上記金属酸化物粒子は、屈折率が1.70以上2.00以下であり、1.73以上1.95以下であることが好ましく、1.75以上1.85以下であることがより好ましい。必要に応じて屈折率は、1.75以上1.96以下や、1.85以上1.93以下や、1.87以上1.90以下であってもよい。本実施形態における金属酸化物粒子としては、例えば、酸化アルミニウム粒子、酸化イットリウム粒子、酸化ハフニウム粒子等を用いることができる。発光装置のコスト削減の観点においては、値段が安い酸化アルミニウム粒子を用いることが好ましい。
 なお表面修飾前の金属酸化物粒子の屈折率の値は、各種便覧やハンドブックに記載されている理論値や屈折率計や分光エリプソメーターで測定された値を用いてもよい。例えば、酸化アルミニウムの屈折率は約1.8である。また表面修飾後の金属酸化物粒子の屈折率の値は、表面修飾前と比較して、同じであることが好ましい。しかし、使用するシラン化合物の屈折率が小さかったり、シラン化合物の表面修飾量が多い場合は、表面修飾前の金属酸化物粒子の屈折率よりも小さくなる場合がある。
 本実施形態において屈折率が2.00を超える高屈折率の金属酸化物粒子ではなく、屈折率が1.70以上2.00以下の金属酸化物粒子を用いる理由を説明する。
 封止部材における蛍光体粒子の含有量を削減するためには、発光素子から放出される青色光を、蛍光体粒子にあてる回数を多くする必要がある。すなわち、封止材料中において青色光をより多く散乱させる金属酸化物粒子が必要となる。光の散乱効率を高めるためには、屈折率が2.00を超えるジルコニアやチタニア等の高屈折率粒子を使用する方が光の散乱効果率が高まるであろうことは、これまで技術常識であった。
 しかしながら、封止材料中で表面修飾金属酸化物粒子同士が凝集すると、たとえ光の散乱効率は高まっても、発光装置の明るさは低下する。そのため、屈折率が高い金属酸化物粒子を用いて発光装置の明るさを向上させたり、蛍光体粒子を削減したりするためには、凝集をさけるために、湿式法により、2種類以上の表面修飾材料で、緻密に金属酸化物粒子の表面修飾をしなければならなかった。
 また、後述する封止樹脂として、耐熱性の高いメチル系シリコーン樹脂を用いる場合には、封止材料中において金属酸化物粒子が凝集しやすい。このため、メチル系シリコーン樹脂を用いる場合には、従来より、金属酸化物粒子に対してより緻密な表面修飾が必要とされてきた。このような理由のため、製造コストの上昇を抑制することが難しく、所望の明るさと色度を得ること自体が困難であった。
 しかしながら、様々な検討の結果、驚くべきことに、屈折率が1.70以上2.00以下の金属酸化物粒子を用いると、たとえ封止材料中で凝集粒子径が多少大きくなったとしても、屈折率が2.00を超える金属酸化物粒子よりも、光の散乱効果が大きいことを、本発明者らは見出した。そのため、屈折率が1.70以上2.00以下の金属酸化物粒子を、封止部材中に凝集しすぎない程度に分散させることにより、所望の色度と明るさの低下を抑制しながら、封止部材における蛍光体粒子の含有量を削減できることを、本発明者らは見出した。しかも、たとえ用いられる表面修飾材料がシラン化合物1種類のみであっても、及び/又はメチル系シリコーン樹脂を用いた封止材料中であっても、本実施形態の表面修飾金属酸化物粒子によって、蛍光体粒子の優れた削減効果が得られることを、本発明者等は見出した。
 本実施形態の表面修飾金属酸化物粒子は、非常に構成が単純であり、蛍光体粒子よりもコストが安い。このような簡単な構造を有する表面修飾金属酸化物粒子を含有させるだけで、蛍光体粒子を削減できる効果が得られることは、これまで知られておらず、非常に驚くべきことである。
 このような理由のため、本実施形態では、屈折率が1.70以上2.00以下である、中程度の屈折率を有する、金属酸化物粒子が、表面修飾金属酸化物粒子を形成する材料として用いられる。
(金属酸化物粒子の平均一次粒子径)
 表面修飾前の上記金属酸化物粒子の平均一次粒子径は5nm以上100nm以下であることが好ましく、5nm以上50nm以下であることがより好ましく、10nm以上30nm以下であることがさらに好ましい。金属酸化物粒子の平均一次粒子径は、必要に応じて、5nm以上20nm以下であってもよく、5nm以上25nm以下であってもよく、50nm以上70nm以下や、50nm以上40nm以下であってもよい。表面修飾前の金属酸化物粒子の平均一次粒子径が上記範囲であることにより、表面修飾金属酸化物粒子の乾式粒度分布の累積体積百分率が50%の時の粒子径D50(以下、「D50」と略記する場合がある。)を所望の範囲に制御し、封止部材の散乱特性の制御が容易となるため好ましい。なお上記平均一次粒子径の値は、本実施形態の表面修飾金属酸化物粒子の平均一次粒子径の例としても採用してよい。
 金属酸化物粒子の平均一次粒子径の測定は、任意に選択される方法で測定できる。例えば、透過型電子顕微鏡での観察により行うことができる。例えば、透過型電子顕微鏡により、透過型電子顕微鏡画像中の金属酸化物粒子を所定数、例えば、100個を選び出す。そして、これらの金属酸化物粒子各々の最長の直線分(最大長径)を測定し、これらの測定値を算術平均して、金属酸化物粒子の平均一次粒子径を求める。
 ここで、金属酸化物粒子同士が凝集している場合には、この凝集体の凝集粒子径を測定するのではない。この凝集体を構成している金属酸化物粒子の粒子(一次粒子)の最大長径を所定数測定し、平均一次粒子径とする。
 なお、表面修飾金属酸化物粒子は、後述する封止材料中において一次粒子として分散していてもよいし、一次粒子が凝集した二次粒子として分散していてもよい。通常、表面修飾金属酸化物粒子は、二次粒子として分散している。
(シラン化合物:表面修飾材料)
 本実施形態のシラン化合物は、後述する封止樹脂との相溶性を向上できるものであれば特に限定されない。例えば、下記式(5)で表わされるシラン化合物を用いることができる。
R1Si(OR2)・・・(5)
(R1は、炭素数1~18のアルキル基、フルオロアルキル基、フェニル基、またはビニル基、R2は、炭素数1~4のアルキル基を示す。)
 上記R1は、炭素数が2以上15以下のアルキル基であることが好ましく、炭素数が2以上13以下のアルキル基であることがより好ましく、炭素数が2以上10以下のアルキル基であることがさらに好ましく、炭素数が2以上5以下のアルキル基であることが一層好ましい。
 R2は炭素数が1以上3以下のアルキル基であることが好ましく、炭素数が2のアルキル基であることがより好ましい。3つのR2は互いに異なっても同じであってもよいが、同じであることが好ましい。
 具体的には、シラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリブトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリプロポキシシラン、n-プロピルトリブトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、イソプロピルトリプロポキシシラン、イソプロピルトリブトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、フェニルトリブトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン(トリエトキシカプリリルシラン)、n-オクタデシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、パーフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリエトキシシラン、及びビニルトリメトキシシラン等が挙げられる。
 これらのシラン化合物の中でも、金属酸化物粒子に付着して修飾しやすく、封止樹脂との相溶性が良い点で、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリブトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリプロポキシシラン、n-プロピルトリブトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、イソプロピルトリプロポキシシラン、イソプロピルトリブトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシランが好ましく、n-プロピルトリエトキシシランとオクチルトリエトキシシランがより好ましい。耐熱性の高いメチル系シリコーン樹脂を用いる場合には、n-プロピルトリエトキシシランとオクチルトリエトキシシランがさらに好ましい。
 これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。発光装置のコストを削減する観点においては、より簡単な構成であることが好ましく、シランカップリング剤を1種のみ用いることが好ましい。
 本実施形態の表面修飾金属酸化物粒子は、本発明の目的を阻害しない範囲で、シラン化合物以外の表面修飾材で表面修飾されていてもよい。
 シラン化合物以外の表面修飾材としては、例えば、シリコーン化合物や炭素-炭素不飽和結合含有脂肪酸を含有させることができる。シリコーン化合物は、比較的大きな分子量を有し、後述する封止樹脂との親和性の向上に寄与する。上記シラン化合物とシリコーン化合物とを併用することにより、上記金属酸化物粒子の封止材料中における分散安定性がより向上するため好ましい。
 一方で、発光装置のコストを抑制する観点においては、本実施形態の表面修飾金属酸化物粒子は、本実施形態におけるシラン化合物のみで表面修飾されているのが好ましい。
(シリコーン化合物)
 シリコーン化合物としては任意に選択でき、例えば、アルコキシ基含有フェニルシリコーン、ジメチルシリコーン、メチルフェニルシリコーン、メチルハイドロジェンシリコーン、メチルフェニルハイドロジェンシリコーン、ジフェニルハイドロジェンシリコーン、アルコキシ両末端フェニルシリコーン、アルコキシ両末端メチルフェニルシリコーン、アルコキシ基含有メチルフェニルシリコーン、アルコキシ基含有ジメチルシリコーン、アルコキシ片末端トリメチル片末端(メチル基片末端)ジメチルシリコーンおよびアルコキシ基含有フェニルシリコーン等が挙げられる。これらのシリコーン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 シリコーン化合物は、モノマーであってもよく、オリゴマーであってもよく、レジン(ポリマー)であってもよい。表面修飾が容易であることより、モノマーかオリゴマーを用いることが好ましい。
 上述した中でも、反応のし易さと疎水性の高さの観点から、シリコーン化合物は、好ましくはアルコキシ基含有フェニルシリコーン、ジメチルシリコーン、メチルフェニルシリコーン、アルコキシ両末端フェニルシリコーン、アルコキシ両末端メチルフェニルシリコーン、アルコキシ基含有メチルフェニルシリコーン、アルコキシ基含有ジメチルシリコーン、アルコキシ片末端トリメチル片末端(メチル基片末端)ジメチルシリコーンおよびアルコキシ基含有フェニルシリコーンが挙げられる。これら化合物からなる群から選択される少なくとも1種を含むことができる。より好ましくは、シリコーン化合物は、メトキシ基含有フェニルシリコーン、ジメチルシリコーン、メトキシ基含有ジメチルシリコーンからなる群から選択される少なくとも1種を含む。
 上記シリコーン化合物の含有量は任意に選択でき、特に限定されない。例えば、表面修飾前の金属酸化物粒子100質量部に対して、例えば、50質量部以上500質量部以下であることが好ましく、80質量部以上400質量部以下であることがより好ましく、100質量部以上300質量部以下であることがさらに好ましい。必要に応じて、上記シリコーン化合物の含有量は、50質量部以上200質量部以下、50質量部以上150質量部以下であってもよい。これにより、金属酸化物粒子の表面に、充分な量のシリコーン化合物を付着させることができ、金属酸化物粒子の分散安定性を向上させるとともに、封止材料への分散性を向上させることができる。さらに、遊離したシリコーン化合物の量を減らすことができ、封止材料中における金属酸化物粒子の不本意な凝集を抑制することができる。
(表面修飾金属酸化物粒子の製造方法)
 本実施形態の表面修飾金属酸化物粒子は、表面修飾前の上記金属酸化物粒子に、上記シラン化合物を表面修飾することにより得ることができる。上記シラン化合物は、加水分解反応を行ったものを用いてもよい。表面修飾方法は、任意に選択でき、乾式であってもよく、湿式であってもよい。発光装置のコストを削減する観点においては、製造コストが安い乾式法で表面修飾をするのが好ましい。
 本実施形態における表面修飾は、公知の撹拌機、分散機等の表面修飾が可能な一般的な装置を用いて行うことができる。そのような装置としては、例えば、ヘンシェルミキサー、スーパーミキサー、コロイドミル、ロールミル、超音波分散機、高圧ホモジナイザー、アルティマイザー、回転ミル、遊星ミル、ビーズミル、サンドミル等が挙げられる。このような撹拌機や分散機等で、上記シラン化合物と上記金属酸化物粒子を均一になるように混合すればよい。混合時間は特に限定されず、例えば、1分~24時間、3分~12時間、5分~5時間であってもよい。
 表面修飾反応を促進するためには、加熱しながら表面修飾反応を行ってもよい。また、上記装置で表面修飾した後に、副反応物や溶媒等を除去し、表面修飾反応を促進するために、加熱工程を行ってもよい。
 加熱温度は、シラン化合物の重合反応が進行する温度であれば特に限定されない。加熱温度は、例えば、35℃以上80℃以下であることが好ましい。前記加熱温度は、40℃以上75℃以下や、45℃以上70℃以下や、50℃以上65℃以下であってもよい。加熱温度が35℃以上であることにより、シラン化合物の重合反応を進行させることができる。一方、加熱温度が80℃以下であることにより、シラン化合物の急激な反応による金属酸化物粒子の凝集を抑制することができる。
 加熱時間は特に限定されず、副生成物が除去される程度の時間でよい。加熱時間は、例えば、30分以上行ってもよく、1時間以上行ってもよく、3時間以上行ってもよい。発光装置のコスト削減の観点からは加熱時間は短い方が好ましく、12時間以下であることが好ましく、10時間以下であることがより好ましく、8時間以下であることがさらに好ましく、6時間以下であることがより特に好ましい。加熱時間は、4時間以下であってもよく、3時間以下であってもよく、2時間以下であってもよく、1時間以下であってもよい。
 シラン化合物で金属酸化物粒子を表面修飾した後に、解砕を行うことが好ましい。解砕工程は上記加熱工程の前に行ってもよく、上記加熱工程の後に行ってもよい。上記解砕を行うことにより、上記水酸基処理率を向上させ、上記D50を容易に所望の大きさに調整することができる。
 解砕工程は、解砕機を用いて解砕処理を行うことができる。解砕機としては、任意に選択でき、例えば、アトマイザー、ハンマーミル、ジェットミル、インペラーミル、ピンミル等が挙げられる。解砕時間は必要に応じて選択してよい。例えば、10秒~15分や、20秒~10分や、30秒~5分や、1分~3分などが例として挙げられるが、これら例のみに限定されない。
 以上により、本実施形態の表面修飾金属酸化物粒子を製造することができる。
 なお表面修飾金属酸化物粒子は、必要に応じて、乾燥された状態で用いられてもよく、あるいは乾燥されていない状態で用いられてもよい。
(封止材料)
 本実施形態の封止材料は、本実施形態の表面修飾金属酸化物粒子と、封止樹脂と、蛍光体粒子と、を含有する。
 上記蛍光体粒子と上記表面修飾金属酸化物粒子との質量比は任意に選択できるが、1:0.01~1:0.5であることが好ましく、1:0.05~1:0.3であることがより好ましい。必要に応じて、1:0.03~1:0.2や、1:0.10~1:0.15などであってもよい。
 本実施形態の上記封止樹脂と表面修飾金属酸化物粒子の合計の質量と、上記蛍光体粒子の質量比率は、1:0.1~1:0.9であることが好ましく、1:0.2~1:0.7であることがより好ましく、1:0.2~1:0.6であることがさらに好ましい。必要に応じて、1:0.15~1:0.5や、1:0.25~1:0.40などであってもよい。
 本実施形態の封止材料の総質量(100質量%)中における表面修飾金属酸化物粒子の含有量は、蛍光体粒子を削減できれば特に限定されない。例えば前記含有量は、0.01質量%以上10質量%以下であることが好ましく、0.1質量%以上5質量%以下であることがより好ましく、1質量%以上4質量%以下であることがさらに好ましい。必要に応じて、0.5質量%以上8質量%以下や、2質量%以上6質量%以下などであってもよい。
 本実施形態の封止材料の総質量(100質量%)中における蛍光体粒子の含有量は、所望の色度と明るさを得られる量であれば特に限定されない。例えば前記含有量は、10質量%以上40質量%以下であることが好ましく、12質量%以上35質量%以下であることがより好ましく、15質量%以上30質量%以下であることがさらに好ましく、20質量%以上28質量%以下であることがよりさらに好ましい。
 本実施形態の封止材料の総質量(100質量%)中における上記封止樹脂の含有量は、後述する発光素子を封止することができれば特に限定されず、他の成分の残部とすることができる。本実施形態の封止材料の総質量(100質量%)中における上記封止樹脂の含有量は、例えば、55質量%以上89質量%以下であることが好ましく、60質量%以上80質量%以下であることがより好ましく、65質量%以上78質量%以下であることがよりさらに好ましい。
 本実施形態の封止材料中における表面修飾金属酸化物粒子の分散粒子径は、封止部材として硬化された時の粒子径が50nm以上2000nm以下となるような値であれば特に限定されない。封止部材中における表面修飾金属酸化物粒子の分散粒子径は、50nm以上2000nm以下であることが好ましく、70nm以上1500nm以下であることがより好ましく、90nm以上1300nm以下であることがさらに好ましく、100nm以上1000nm以下であることがよりさらに好ましい。
 上記表面修飾金属酸化物粒子のD50は、乾式粒度分布計で測定されるため、表面修飾金属酸化物粒子同士の凝集も含めた状態で観察される平均粒子径である。そのため、上記封止部材中における上記表面修飾金属酸化物粒子を電子顕微鏡で観察すると、上記D50よりも小さい分散粒子径を有する表面修飾金属酸化物粒子が観察される。
 屈折率が1.77の粒子をLEDパッケージに添加した場合の、粒子径ごとのLEDパッケージの明るさ向上効果を、シミュレーションした。その結果、封止部材中の粒子径が2000nm以下であれば、LEDパッケージの明るさが向上することがシミュレーションで確認されている。なお、屈折率が1.77の粒子は、表面修飾された酸化アルミニウム粒子を想定している。
(封止樹脂)
 封止樹脂は、本実施形態の封止材料における主成分である。封止樹脂は、本実施形態の封止材料を硬化させて発光素子を封止する。その結果、発光素子に水分、酸素等の外部環境からの劣化因子が到達することを防止する。また、本実施形態において、封止樹脂より得られる硬化物は、基本的に透明であり、発光素子から放出される光を透過させることができる。
 このような封止樹脂としては、封止材料として用いることができれば特に限定されない。封止樹脂としては、例えば、シリコーン樹脂や、エポキシ樹脂等の樹脂を、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。シリコーン樹脂としては、フェニル系シリコーン樹脂やメチル系シリコーン樹脂を用いることができる。耐久性の観点から、特にメチル系シリコーン樹脂が好ましい。
 上記メチル系シリコーン樹脂としては、例えば、主骨格としてケイ素と酸素が交互に結びついたシロキサン結合を有し、Si原子に結合する官能基の多く、例えば、60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、がメチル基であるものを、意味してもよい。ただし、上記メチル系シリコーン樹脂は、この例のみに限定されない。
 メチル系シリコーン樹脂としては、例えば、ジメチルシリコーン樹脂、メチルフェニルシリコーン樹脂等を用いることができる。
 封止樹脂の総質量(100質量%)中に占めるメチル系シリコーン樹脂の含有量は、所望の特性により調整すればよく、特に限定されない。例えば、100質量%であってもよいし、20質量%以上80質量%以下であってもよく、30質量%以上70質量%以下であってもよく、40質量%以上60質量%以下であってもよい。従来、メチル系シリコーン樹脂中に、表面修飾されていない又は表面修飾された金属酸化物粒子を含有させると、金属酸化物粒子が凝集し、透明性が低下するとともに、屈折率が充分に向上しなかった。また、メチル系シリコーン樹脂中に金属酸化物粒子が分散したとしても、金属酸化物粒子の過剰な凝集の発生を完全に抑制することは困難であった。これらに対し、本実施形態の封止材料は、上述したシラン化合物により表面修飾された、屈折率が1.70以上2.00以下の金属酸化物粒子を含む。そのため、封止樹脂としてメチル系シリコーン樹脂が多量に含まれる場合であっても、金属酸化物粒子の凝集が抑制され、また、ある程度凝集したとしても、金属酸化物粒子の屈折率が1.70以上2.00以下であるため、透明性の低下が抑制されている。また、メチル系シリコーン樹脂を採用することが可能となることから、本実施形態の封止材料を用いて形成される封止部材の耐久性が向上する。
 本実施形態における封止樹脂の構造としては、二次元の鎖状の構造であってもよく、三次元網状構造であってもよく、かご型構造であってもよい。
 封止樹脂は、封止部材として用いた際に硬化したポリマー状となっていればよい。封止材料中において、封止樹脂は、硬化前の状態、すなわち、前駆体であってもよい。したがって、封止材料中に存在する封止樹脂は、例えば、モノマーであってもよく、オリゴマーであってもよく、ポリマーであってもよい。
 封止樹脂としては、付加反応型のものを用いてもよく、縮合反応型のものを用いてもよく、ラジカル重合反応型のものを用いてもよい。
 JIS Z 8803:2011に準拠して測定される25℃における封止樹脂の粘度は、例えば、10mPa・s以上100,000mPa・s以下であることが好ましく、100mPa・s以上10,000mPa・s以下であることがより好ましく、1,000mPa・s以上7,000mPa・s以下であることがさらに好ましい。
(蛍光体粒子)
 蛍光体粒子は任意に選択される。半導体発光装置で使用できる蛍光体粒子であれば、特に限定されない。例えば、蛍光体粒子は、発光素子から放出される青色光を吸収し、黄色光に波長変換できれば特に限定されない。すなわち、蛍光体粒子は、黄色蛍光体粒子であることが好ましい。蛍光体粒子には、酸化物、窒化物、硫化物、フッ化物、または量子ドット等を好ましく用いることができる。このような蛍光体粒子としては、例えば、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)系蛍光体を好ましく用いることができる。蛍光体粒子のサイズや形状は任意に選択してよい。例えば、1μm~100μm、3μm~70μm、5μm~40μm、7μm~30μmから選択してもよい。封止材料中の蛍光体粒子の量も任意に選択してよい。
(溶媒)
 本実施形態の封止材料は、製造過程において、疎水性用溶媒や親水性溶媒といった溶媒を含んでもよい。溶媒は、封止材料中に1質量%以上10質量%以下程度残存していてもよく、2質量%以上5質量%以下程度で残存していてもよく、全く含まれていなくてもよい。
 本実施形態の封止材料は、任意の方法によって製造することができるが、製造過程において、溶媒が添加されないことが好ましい。溶媒を添加しないことで、工程数を減らすことができ、簡単に封止材料を作製することができる。すなわち、本発明の封止材料は、表面修飾金属酸化物粒子と、封止樹脂と、蛍光体粒子を、溶媒を添加せずに混合して製造することが好ましい。例えば、本発明の封止材料の製造方法においては、表面修飾金属酸化物粒子と、封止樹脂とを、溶媒の添加なしに混合し、混合物を形成する工程を有してもよい。さらに、前記混合物に、蛍光体粒子を溶媒の添加なしに混合する工程を有してもよい。あるいは、表面修飾金属酸化物粒子と、封止樹脂と、蛍光体粒子とを、溶媒の添加なしに混合する工程を有してもよい。
(疎水性溶媒)
 本実施形態の封止材料は、表面修飾金属酸化物粒子を分散する疎水性溶媒を分散媒として含んでもよい。疎水性溶媒は、表面修飾金属酸化物粒子を分散させることができ、上記封止樹脂と混合することができるものであれば、特に限定されない。
 このような疎水性溶媒としては、例えば、芳香族類、飽和炭化水素類、および、不飽和炭化水素類等が、挙げられる。これらの疎水性溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 このような疎水性溶媒としては、例えば、芳香族類、飽和炭化水素類、および、不飽和炭化水素類等が、挙げられる。これらの疎水性溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上述した中でも、疎水性溶媒は、芳香族類、特に芳香族炭化水素が好ましい。芳香族類は、封止樹脂との相溶性に優れ、これにより得られる組成物の粘度特性の向上および形成される封止部材の品質(透明性、形状等)の向上に資する。
 このような芳香族炭化水素としては、例えば、ベンゼン、トルエン、エチルベンゼン、1-フェニルプロパン、イソプロピルベンゼン、n-ブチルベンゼン、tert-ブチルベンゼン、sec-ブチルベンゼン、o-キシレン、m-キシレンまたはp-キシレン、2-エチルトルエン、3-エチルトルエンまたは4-エチルトルエン等が挙げられる。これらの芳香族炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上述した中でも、分散液の安定性や、封止材料や封止部材の製造時における疎水性溶媒の除去等における取り扱い性の容易性の観点からは、疎水性溶媒は、トルエン、o-キシレン、m-キシレンまたはp-キシレン、およびベンゼンからなる群から選択される少なくとも1種が特に好ましく用いられる。
(親水性溶媒)
 本実施形態の封止材料は、親水性溶媒を含んでいてもよい。親水性溶媒は、例えば、上記シラン化合物の加水分解反応等により、封止材料中に含まれ得る。このような親水性溶媒としては、例えば、アルコール系溶媒、ケトン系溶媒、ニトリル系溶媒、エーテル系溶媒、エステル系溶媒、セロソルブ系溶媒、エーテルエステル系溶媒等が挙げられる。これらの親水性溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 アルコール系溶媒としては、例えば、炭素数1~4の分岐または直鎖状アルコール化合物およびそのエーテル縮合物が挙げられる。これらのアルコール系溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、アルコール系溶媒に含まれるアルコール化合物は、第1級アルコール、第2級アルコールおよび第3級アルコールのいずれであってもよい。また、アルコール系溶媒に含まれるアルコール化合物は、一価アルコール、二価アルコールおよび三価アルコールのいずれであってもよい。より具体的には、アルコール系溶媒としては、例えば、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、1-ブチルアルコール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、メタンジオール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-ブテン-1,4-ジオール、1,4-ブチンジオール、グリセリン、ジエチレングリコール、3-メトキシ-1,2-プロパンジオール等が挙げられる。
 ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。
 ニトリル系溶媒としては、例えば、アセトニトリル等が挙げられる。
 エーテル系溶媒としては、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等が挙げられる。
 エステル系溶媒としては、酢酸エチル、酢酸ブチル等が挙げられる。
 セロソルブ系溶媒としては、エチルセロソルブ等が挙げられる。
 水と疎水性溶媒との親和性に優れ、これらの混和を促進させる観点から、親水性溶媒は、好ましくはアルコール系溶媒を含む。この場合において、アルコール系溶媒を構成するアルコール化合物の炭素数は、1以上3以下であることが好ましく、1以上2以下であることがより好ましい。
 親水性溶媒の中でも、メタノールおよびエタノール、特にメタノールは、上記のアルコール系溶媒の効果を充分に発現することができるために好適に用いることができる。
(その他の成分)
 本実施形態の封止材料は、上述した以外の成分を含んでもよい。例えば、本実施形態の封止材料は、必要に応じて上述した以外の成分、例えば、分散剤、分散助剤、酸化防止剤、流動調整剤、増粘剤、pH調整剤、防腐剤、重合開始剤、重合禁止剤、硬化触媒、光拡散材等の一般的な添加剤等を含んでいてもよい。光拡散剤としては、平均粒子径が1μm~30μmのシリカ粒子を用いることが好ましい。
 また、本実施形態の封止材料は、表面修飾工程に起因して含まれ得る成分、例えば、酸、水、アルコール等を含んでもよい。
(封止材料の製造方法)
 本実施形態の封止材料は、本実施形態の表面修飾金属酸化物粒子と、封止樹脂と、蛍光体粒子と、を混合することにより製造することができる。必要に応じて選択されるその他の材料や成分が混合されてもよい。また、混合後、必要に応じて、封止材料に含有されていた溶媒や副生成物等をエバポレータ等で除去してもよい。
 本実施形態の封止材料は、混合を容易に行うために、表面修飾金属酸化物粒子と封止樹脂を先に混合して製造するのが好ましい。
 本実施形態の封止材料は、後述するように硬化させて発光素子の封止部材として用いられる。本実施形態の封止材料は、後述するシラン化合物により表面修飾された屈折率が1.70以上2.00以下の金属酸化物粒子を含む。このため、封止樹脂としてメチル系シリコーン樹脂が含まれる場合であっても、金属酸化物粒子の過剰な凝集が抑制され、透明性の低下が抑制されている。このため、発光装置の明るさや色度の特性の低下を抑制しつつ、発光装置に使用される蛍光体粒子の量を削減することができる。
(封止部材)
 本実施形態の封止部材は、本実施形態の封止材料の硬化物である。本実施形態の封止部材は、通常、発光素子上に配置される封止部材またはその一部として用いられる。
 本実施形態の封止部材の厚みや形状、及び封止部材が用いられる構成は、所望の用途や特性に応じて適宜調整することができ、特に限定されるものではない。
 本実施形態の封止部材は、上述したように本実施形態の封止材料を硬化することにより製造することができる。封止材料の硬化方法は、本実施形態の封止材料中の封止樹脂の特性に応じて選択することができる。封止材料の硬化方法としては、例えば、熱硬化や電子線硬化等が挙げられる。より具体的に述べると、本実施形態の封止材料中の封止樹脂を付加反応や重合反応により硬化することにより、本実施形態の封止部材が得られる。
 封止部材中における表面修飾金属酸化物粒子の分散粒子径は、例えば、50nm以上2000nm以下であってもよく、70nm以上1500nm以下であってもよく、90nm以上1300nm以下であってもよく、100nm以上1000nm以下であってもよい。ここでの表面修飾金属酸化物粒子の分散粒子径とは、粒子同士が凝集している場合には、二次粒子径(凝集粒子径)を意味する。
 封止部材中の表面修飾金属酸化物粒子の分散粒子径は、硬化物を薄片状にカットした試料を電子顕微鏡で観察することで測定することができる。しかし、封止部材中の全ての表面修飾金属酸化物粒子を観察することは困難であるため、封止部材中の表面修飾金属酸化物粒子の粒子径を一義的に定義することは困難である。また、粒子径が同程度であっても、粒子同士の凝集具合が異なれば光の透過性は異なる。そのため、封止部材中における表面修飾金属酸化物粒子の分散粒子径を正確に測定することは困難である。そのため、本実施形態の封止部材の特徴を、表面修飾金属酸化物粒子の分散粒子径により特定することは困難である。本実施形態の封止部材の特徴は、明るさや色度等の特性を測定して、判断してもよい。
 本実施形態の封止部材は、本実施形態の封止材料の硬化物であるので、蛍光体粒子の使用量が削減でき、製造コストを抑制することができる。すなわち、本実施形態によれば、所望の明るさと色度が得られ、蛍光体粒子の使用量が削減され、発光装置のコストを抑制できる封止部材を得ることができる。
(発光装置)
 本実施形態の発光装置は、上述した封止部材と、前記封止部材に封止された発光素子とを備える。
 発光素子は任意に選択でき、例えば、発光ダイオード(LED)、有機発光ダイオード(OLED)等が挙げられる。特に、本実施形態の封止部材は、発光ダイオードの封止に適している。本実施形態の発光装置は、青色のLEDチップを用いる、白色LED発光装置であることが好ましい。
 図1は、本実施形態の発光装置の好ましい一例を示す模式図(断面図)である。発光素子がチップ上の発光ダイオード、すなわちLEDチップであり、発光装置がLEDパッケージである例が示されている。
 図1に示す発光装置(LEDパッケージ)1Aは、凹部21を有する基板2と、基板2の凹部21の底面上に配置される発光素子3と、凹部21において発光素子3を覆うように封止する封止部材4Aとを備えている。
 封止部材4Aは、上述した本実施形態の封止部材により構成されている。封止部材4A中には、蛍光体粒子5と、本実施形態の表面修飾金属酸化物粒子6とが分散している。本実施形態の発光装置では、発光装置から放出される光の色度と明るさを維持しながら、蛍光体粒子5の使用量を削減できる。
 封止部材4Aは、本実施形態の封止部材を含んでさえいればよい。例えば、封止部材4Aは、本実施形態の封止部材を含む部分と、含まない部分とを有してもよい。封止部材4Aは、1層構造でもよく又は2層以上の構造であってもよい。例えば、封止部材4Aが2層構造や3層構造からなる場合、本実施形態の封止部材からなる層と、その他の部材からなる層、例えば、本実施形態の表面修飾金属酸化物粒子6及び/又は蛍光体粒子5を含まない層、とから構成されてもよい。封止部材4Aからなる層は発光素子3に最も近い位置に配置されてもよいし、あるいは、封止部材4Aからなる層がその他の部材からなる2つの層の間に配置されてもよい。
 封止部材の総質量(100質量%)に対する、上記表面修飾金属酸化物粒子と上記蛍光体粒子の合計含有量は、所望の色度と明るさを得られる量であれば特に限定されず、例えば、10.01質量%以上50質量%以下であることが好ましく、12.1質量%以上40質量%以下であることがより好ましく、16質量%以上34質量%以下であることがさらに好ましく、21質量%以上32質量%以下であることが特に好ましい。上記表面修飾金属酸化物粒子と上記蛍光体粒子の合計含有量が前記下限値以上であると、所望の色度と明るさが得られないため好ましくない。上記表面修飾金属酸化物粒子と上記蛍光体粒子の合計含有量が前記上限値以下であると、所望の色度と明るさが得られないため好ましくない。
 封止部材に含まれる、上記蛍光体粒子と上記表面修飾金属酸化物粒子の質量比は任意に選択できるが、1:0.01~1:0.5であることが好ましく、1:0.05~1:0.3であることがより好ましい。必要に応じて、1:0.03~1:0.2や、1:0.10~1:0.15などであってもよい。上記蛍光体粒子と上記表面修飾金属酸化物粒子の質量比が前記下限値以上であると、蛍光体粒子の含有量が削減でき、かつ発光装置の色度と明るさを維持できるため好ましい。上記蛍光体粒子と上記表面修飾金属酸化物粒子の質量比が前記上限値以下であると、蛍光体粒子の含有量が削減でき、かつ発光装置の色度と明るさを維持できるため好ましい。
 本実施形態の発光装置は、発光素子が本実施形態の封止部材により封止されているため、発光装置の性能の低下は抑制されつつ、蛍光体粒子の使用量は削減されているため、従来より安いコストの発光装置を得ることができる。
 なお、発光素子の封止は、例えば、ディスペンサー等により、本実施形態の封止材料を発光素子上に付与し、その後前記封止材料を硬化させることにより行うことができる。
(発光装置の製造方法)
 本実施形態の発光装置の製造方法は、本実施形態の表面修飾金属酸化物粒子と、封止樹脂と、蛍光体粒子とを、含有する封止材料で、発光素子を封止する工程を有する。
 上記蛍光体粒子と上記表面修飾金属酸化物粒子の質量比は1:0.01~1:0.5であることが好ましく、1:0.05~1:0.3であることがより好ましい。上記蛍光体粒子と上記表面修飾金属酸化物粒子の質量比が前記下限値以上であると、蛍光体粒子の含有量が削減でき、かつ発光装置の色度と明るさを維持できるため好ましい。上記蛍光体粒子と上記表面修飾金属酸化物粒子の質量比が前記上限値以下であると、蛍光体粒子の含有量が削減でき、かつ発光装置の色度と明るさを維持できるため好ましい。
 上記封止材料で発光素子を封止する方法は特に限定されず、従来の封止材料と同様の方法で発光素子を封止することができる。
(発光装置を備える照明器具、表示装置)
 上述したような本実施形態の発光装置は、例えば、照明器具および表示装置に用いることができる。したがって、本発明は、一側面において、本実施形態の発光装置を備える照明器具または表示装置に関する。
 照明器具としては、例えば、室内灯、室外灯等の一般照明装置、携帯電話やOA機器等の、電子機器のスイッチ部の照明等が挙げられる。
 本実施形態の照明器具は、本実施形態の発光装置を備えるため、同一の発光素子を使用しても従来と比較して放出される光束が大きくなり、周囲環境をより明るくすることができる。
 表示装置としては、例えば、携帯電話、携帯情報端末、電子辞書、デジタルカメラ、コンピュータ、テレビ、およびこれらの周辺機器等が挙げられる。
 本実施形態の表示装置は、本実施形態の発光装置を備えるため、同一の発光素子を使用しても従来と比較して放出される光束が大きくなり、例えばより鮮明かつ明度の高い表示を行うことができる。
 以下、実施例および比較例により本発明をさらに詳細に説明する。なお、以下に説明する実施例は、あくまでも本発明の一例であって、本発明を限定するものではない。
[実施例1]
(表面修飾金属酸化物粒子の作製)
(i)加水分解工程
 プロピルトリエトキシシラン(商品名:KBE-3033、信越化学工業社製)91.49質量部と、水8.23質量部と、塩酸(1N)0.28質量部とを用意した。これらを容器に添加して常温で1時間混合し、加水分解液を得た。
(ii)表面修飾工程
 表面修飾前の平均一次粒子径が12nmの酸化アルミニウム(Al)粒子A1(バイコウスキー社製、製品名:CR125、屈折率1.8)64.08質量部、上記加水分解液14.01質量部、イソプロピルアルコール21.92質量部を撹拌機で均一に混合した。得られた混合物を80℃で1時間加熱して乾燥し、シラン化合物で表面修飾された酸化アルミニウム粒子を得た。
 得られたシラン化合物で表面修飾された酸化アルミニウム粒子をミキサー(製品名:ワンダーブレンダー、大阪ケミカル社製)で30秒解砕した。
 解砕後の表面修飾酸化アルミニウム粒子を100℃で3時間加熱し、実施例1の表面修飾酸化アルミニウム粒子B1を得た。
(粒度分布の測定)
 得られた表面修飾酸化アルミニウム粒子のD50とD90について、レーザ回折式粒度分布測定装置(型式:Mastersizer 3000、Malvern社製)を用いて、乾式で体積粒度分布を測定した。その結果、実施例1の表面修飾酸化アルミニウム粒子B1のD50は1.24μm、D90は2.65μmであった。結果を表1に示す。
(水酸基処理率の測定)
 以下のようにして、水酸基処理率の測定を行った。
「赤色色素の作製」
 2,2’-ジヒドロキシアゾベンゼン1mmolと、ジフェニル酸化スズ(IV)1mmolと、アセトン30mLとを混合して、混合液を調製した。
 次いで、この混合液を70℃で3時間撹拌して、脱水反応を行い、ジフェニル酸化スズを2,2’-ジヒドロキシアゾベンゼンに配位させた。
 脱水反応後の混合液をろ過して、ろ液を回収し、ろ液から溶媒を溜去することで、上記式(1)で表される赤色色素を得た。
「評価用の溶液の作製」
 得られた赤色色素250nmol(0.12mg)をトルエンに溶解して5mLとして、5×10-5mol/Lの評価用の溶液C1を得た。この評価用の溶液C1の545nmにおける吸光度C2を測定した。
 溶液C1に、表面修飾前の酸化アルミニウム粒子A1を4.0mg添加して、60℃で4時間撹拌混合し、混合液を調整した。この混合液をシリンジフィルター(0.2μm)で濾過し、濾過液の545nmにおける吸光度A2を測定した。
 溶液C1に、実施例1の表面修飾酸化アルミニウム粒子B1を4.0mg添加して、60℃で4時間撹拌混合し、混合液を調整した。この混合液をシリンジフィルター(0.2μm)で濾過し、濾過液の545nmにおける吸光度B2を測定した。
 酸化アルミニウム粒子A1と、表面修飾酸化アルミニウム粒子B1への赤色色素の吸着量とを、下記式(2)、下記式(3)で算出した。
 酸化アルミニウム粒子の色素の吸着量A3=((C2-A2)/C2)×250×10-9(mol)/4×10-3(g)・・・(2)
 表面修飾酸化アルミニウム粒子の色素の吸着量B3=((C2-B2)/C2)×250×10-9(mol)/4×10-3(g)・・・(3)
 実施例1の表面修飾酸化アルミニウム粒子の水酸基処理率を下記式(4)により算出した。結果を表1に示す。
 水酸基処理率=100-((B3/A3)×100)・・・(4)
(蛍光体粒子を含まない硬化体の作製)
 メチルフェニルシリコーン樹脂(商品名:KER-2500-A/B、信越化学工業社製)と、実施例1の表面修飾酸化アルミニウム粒子とを、質量比で7:93となるように混合した。次いで、この混合物を、テフロン(登録商標)コートされた1mm厚のSUS容器に、膜厚が1mm厚となるように充填した。次いで、100℃で2時間加熱した後、150℃で4時間加熱することで、実施例1の硬化物を得た。容器から取り出した硬化物の厚みは1mmであった。
(光透過率)
 容器から取り出した実施例1の硬化物について、波長450nmと波長600nmのそれぞれにおける直線透過率と積分透過率を、分光光度計(日本分光社製、型番:V-770)を用いて測定した。なお積分透過率とは、積分球を用いて測定した結果を意味する。さらに積分透過率と直線透過率の差から、散乱分を算出した。結果を表1に示す。
(封止用材料の作製)
 封止樹脂としてメチルフェニルシリコーン樹脂(商品名:KER-2500-A/B、信越化学工業社製)を0.96gと、蛍光体粒子(イットリウム・アルミニウム・ガーネット:YAG、商品名:YAG389A165、株式会社ネモト・ルミマテリアル社製、粒子径5~50μm)を0.36gと、蛍光体粒子削減の効果のある、実施例1の表面修飾酸化アルミニウム粒子を0.04gとを混合して、実施例1の封止用材料を作製した。すなわち、表面修飾酸化アルミニウム粒子と封止樹脂の合計含有量:蛍光体粒子の質量比=100:36である、実施例1の封止用材料を得た。
(LEDパッケージの作製)
 実施例1の封止用材料を、LED素子やワイヤが所定の位置に配置されたLEDリードフレーム内に、300μmの厚みで充填した。次いで、封止用材料である組成物を加熱硬化させて封止部材を形成し、実施例1の白色LEDパッケージを作製した。
[実施例2]
(表面修飾金属酸化物粒子の作製)
(i)加水分解工程
 オクチルトリエトキシシラン(商品名:KBE-3083、信越化学工業社製)91.32質量部と、水5.94質量部と、塩酸(1N)2.74質量部とを用意した。これらを容器に添加して常温で1時間混合し、加水分解液を得た。
(ii)表面修飾工程
 表面修飾前の平均一次粒子径が12nmの酸化アルミニウム(Al)粒子A1(バイコウスキー社製、製品名:CR125、屈折率1.8)64.08質量部、上記加水分解液14.01質量部、イソプロピルアルコール21.92質量部を撹拌機で均一に混合した。得られた混合物を80℃で1時間加熱して乾燥し、シラン化合物で表面修飾された酸化アルミニウム粒子を得た。
 得られたシラン化合物で表面修飾された酸化アルミニウム粒子をミキサー(製品名:ワンダーブレンダー、大阪ケミカル社製)で30秒解砕した。
 解砕後の表面修飾酸化アルミニウム粒子を100℃で3時間加熱し、実施例2の表面修飾酸化アルミニウム粒子を得た。
 実施例1と同様にして実施例2の表面修飾酸化アルミニウム粒子のD50とD90を測定した。結果を表1に示す。
 実施例1と同様にして、実施例2の表面修飾酸化アルミニウム粒子の水酸基処理率を測定した。結果を表1に示す。
 実施例1の表面修飾酸化アルミニウム粒子を用いる替わりに、実施例2の表面修飾酸化アルミニウム粒子を用いた以外は実施例1と同様にして、実施例2の硬化体と、実施例2の封止用材料と、実施例2の白色LEDパッケージを作製した。
 実施例2の硬化体の光透過率の評価結果を表1に示す。
[比較例1]
 表面修飾アルミニウム粒子を含まない封止用材料と、LEDパッケージを作製した。
(封止用材料とLEDパッケージの作製)
 封止樹脂としてメチルフェニルシリコーン樹脂(商品名:KER-2500-A/B、信越化学工業社製)を1.0gと、蛍光体粒子(イットリウム・アルミニウム・ガーネット:YAG)を0.4g混合して、実施例1よりも蛍光体粒子を多く含み、表面修飾アルミニウム粒子を含まない、比較例1の封止用材料を得た。すなわち、封止樹脂:蛍光体粒子の質量比=100:40であった。
 実施例1の封止用材料を用いる替わりに、比較例1の封止用材料を用いた以外は実施例1と同様にして、比較例1の白色LEDパッケージを作製した。
[比較例2]
 表面修飾酸化ジルコニウム粒子を製造した。具体的には、実施例1で用いられた平均一次粒子径が12nmの酸化アルミニウム粒子に替えて、屈折率が2.1で平均一次粒子径が12nmの酸化ジルコニウム粒子を用いた以外は、実施例1と同様にして、比較例2の表面修飾酸化ジルコニウム粒子を得た。
 実施例1と同様にして表面修飾酸化ジルコニウム粒子のD50とD90を測定した。結果を表1に示す。
 実施例1の表面修飾酸化アルミニウム粒子を用いる替わりに、比較例2の表面修飾酸化ジルコニウム粒子を用いた以外は、実施例1と同様にして、比較例2の硬化体と、比較例2の封止用材料と、比較例2の白色LEDパッケージを作製した。比較例2の硬化体の光透過率の評価結果を表1に示す。
[比較例3]
 解砕を行わずに、D50が大きい表面修飾酸化アルミニウム粒子を製造した。具体的には、実施例1の表面修飾酸化アルミニウム粒子の作製過程で得られるシラン化合物で表面修飾されたアルミナ粒子をミキサー(製品名:ワンダーブレンダー、大阪ケミカル社製)で30秒解砕しなかった以外は、実施例1と同様にして、D50がやや大きい比較例3の表面修飾酸化アルミニウム粒子を得た。なお表面修飾前の酸化アルミニウム粒子の屈折率や平均一次粒子径は実施例1と同じである。 実施例1と同様にしてD50とD90を測定した。結果を表1に示す。
 実施例1と同様にして水酸基処理率を測定した。結果を表1に示す。
 実施例1の表面修飾酸化アルミニウム粒子を用いる替わりに、比較例3の表面修飾酸化アルミニウム粒子を用いた以外は実施例1と同様にして、比較例3の硬化体と、比較例3の封止用材料と、比較例3の白色LEDパッケージを作製した。
 比較例3の硬化体の光透過率の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
(LEDパッケージの明るさの評価)
 実施例1、実施例2と、比較例1~比較例3のLEDパッケージの色度(x、y)と全光束を、全光束測定システム(大塚電子社製)にて、LEDパッケージに電圧3V、電流150mAを印加し測光することにより測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に示す結果より、実施例1、実施例2のLEDパッケージは、表面修飾アルミニウム粒子を含まない比較例1のLEDパッケージよりも、蛍光体粒子の含有量が少ないにも関わらず、色度と全光束が同等であることが確認された。
 すなわち、実施例1と実施例2の表面修飾酸化アルミニウム粒子は、貴重な資源である蛍光体粒子の使用量を削減できる効果があることが確認された。
 それに対して、酸化アルミニウム粒子よりも高い屈折率を有する酸化ジルコニウム粒子を用いた比較例2では、高い屈折率を有する金属酸化物粒子を用いたにもかかわらず、表2に示されるLEDパッケージから放出される光の明るさ(全光束)が低下した。この結果は、蛍光体粒子を含まないで作製及び評価された比較例2の硬化体の表1の結果が示すように、硬化体の直線透過率、積分透過率が小さいことから、発光素子から放出された光が表面修飾酸化ジルコニウム粒子によって充分に散乱されず、その為に明るさが低下した、と推測される。
 また、実施例1と解砕が行われなかった比較例3では、表面修飾酸化アルミニウム粒子のD50が0.1μm異なるだけである。しかしながら、比較例1(蛍光体粒子を多く含むが、表面修飾アルミニウム粒子は含まれない)と比較して、実施例1は同等の明るさを維持できた。これに対し、D50が1.34μmであった比較例3は、比較例1と比較して、LEDパッケージの明るさが約2%低下した。したがって、表面修飾酸化アルミニウム粒子のD50が1.30μm以下であることに臨界的意義があると推測される。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明は、発光装置から放出される光の色度と明るさを維持しながら、蛍光体粒子の使用量を削減できる、表面修飾金属酸化物粒子を提供することができる。
1A 発光装置
2 基板
2a 基板上部
2b 基板下部
21 凹部
21a 凹部の底
3 発光素子
4A 封止部材
5 蛍光体粒子
6 表面修飾金属酸化物粒子
 

Claims (9)

  1.  シラン化合物により表面修飾された金属酸化物粒子であって、
     表面修飾前の前記金属酸化物粒子の屈折率は1.70以上2.00以下であり、
     表面修飾前の前記金属酸化物粒子の平均一次粒子径は5nm以上100nm以下であり、
     表面修飾された前記金属酸化物粒子の乾式粒度分布の累積体積百分率が50%の時の粒子径D50が0.1μm以上1.30μm以下である、表面修飾金属酸化物粒子。
  2.  表面修飾前の前記金属酸化物粒子100質量部に対する前記シラン化合物の含有量が10質量部以上30質量部以下である、請求項1に記載の表面修飾金属酸化物粒子。
  3.  表面修飾された前記金属酸化物粒子の表面における水酸基処理率が98.1質量%以上である、請求項1または2に記載の表面修飾金属酸化物粒子。
  4.  請求項1から3のいずれか1項に記載の表面修飾金属酸化物粒子と、封止樹脂と、蛍光体粒子とを、含有する封止材料。
  5.  請求項4に記載の封止材料の硬化物である、封止部材。
  6.  請求項5に記載の封止部材と、前記封止部材により封止された発光素子と、を備える、発光装置。
  7.  請求項1から3のいずれか1項に記載の表面修飾金属酸化物粒子と、封止樹脂と、蛍光体粒子とを、含有する封止材料で、発光素子を封止する工程を有する、発光装置の製造方法。
  8.  前記表面修飾金属酸化物粒子と、前記封止樹脂とを、溶媒を添加せずに混合する工程を有する、請求項4に記載の封止材料の製造方法。
  9.  前記封止材料を形成する工程をさらに含み、
    前記形成する工程が、前記蛍光体粒子を混合する前に、前記表面修飾金属酸化物粒子と、前記封止樹脂とを、溶媒を添加せずに混合するサブ工程を有する、請求項7に記載の発光装置の製造方法。
PCT/JP2024/002647 2023-01-31 2024-01-29 表面修飾金属酸化物粒子、封止材料、封止部材、発光装置、発光装置の製造方法 WO2024162261A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-013152 2023-01-31
JP2023013152 2023-01-31

Publications (1)

Publication Number Publication Date
WO2024162261A1 true WO2024162261A1 (ja) 2024-08-08

Family

ID=92146790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/002647 WO2024162261A1 (ja) 2023-01-31 2024-01-29 表面修飾金属酸化物粒子、封止材料、封止部材、発光装置、発光装置の製造方法

Country Status (1)

Country Link
WO (1) WO2024162261A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005334A (ja) * 2012-06-22 2014-01-16 Shin Etsu Chem Co Ltd 硬化性樹脂組成物、その硬化物及びそれを用いた光半導体デバイス
JP2014027262A (ja) * 2012-06-19 2014-02-06 Jgc Catalysts & Chemicals Ltd 発光ダイオード
JP2014031436A (ja) * 2012-08-03 2014-02-20 Shin Etsu Chem Co Ltd 硬化性樹脂組成物、その硬化物及びそれを用いた光半導体デバイス
WO2015060289A1 (ja) * 2013-10-24 2015-04-30 東レ株式会社 蛍光体組成物、蛍光体シート、蛍光体シート積層体ならびにそれらを用いたledチップ、ledパッケージおよびその製造方法
WO2019026962A1 (ja) * 2017-08-04 2019-02-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および発光装置の製造方法
JP2019040978A (ja) * 2017-08-24 2019-03-14 独立行政法人国立高等専門学校機構 発光装置における金属酸化物粒子の物理量の決定方法
WO2020203459A1 (ja) * 2019-03-29 2020-10-08 住友大阪セメント株式会社 無機粒子の表面修飾方法、分散液の製造方法および分散液
JP2022057534A (ja) * 2020-09-30 2022-04-11 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置
WO2023106195A1 (ja) * 2021-12-06 2023-06-15 堺化学工業株式会社 有機ケイ素表面被覆酸化亜鉛粒子、その製造方法、化粧料、分散体、放熱性フィラー及び樹脂組成物
WO2023190495A1 (ja) * 2022-03-31 2023-10-05 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027262A (ja) * 2012-06-19 2014-02-06 Jgc Catalysts & Chemicals Ltd 発光ダイオード
JP2014005334A (ja) * 2012-06-22 2014-01-16 Shin Etsu Chem Co Ltd 硬化性樹脂組成物、その硬化物及びそれを用いた光半導体デバイス
JP2014031436A (ja) * 2012-08-03 2014-02-20 Shin Etsu Chem Co Ltd 硬化性樹脂組成物、その硬化物及びそれを用いた光半導体デバイス
WO2015060289A1 (ja) * 2013-10-24 2015-04-30 東レ株式会社 蛍光体組成物、蛍光体シート、蛍光体シート積層体ならびにそれらを用いたledチップ、ledパッケージおよびその製造方法
WO2019026962A1 (ja) * 2017-08-04 2019-02-07 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および発光装置の製造方法
JP2019040978A (ja) * 2017-08-24 2019-03-14 独立行政法人国立高等専門学校機構 発光装置における金属酸化物粒子の物理量の決定方法
WO2020203459A1 (ja) * 2019-03-29 2020-10-08 住友大阪セメント株式会社 無機粒子の表面修飾方法、分散液の製造方法および分散液
JP2022057534A (ja) * 2020-09-30 2022-04-11 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置
WO2023106195A1 (ja) * 2021-12-06 2023-06-15 堺化学工業株式会社 有機ケイ素表面被覆酸化亜鉛粒子、その製造方法、化粧料、分散体、放熱性フィラー及び樹脂組成物
WO2023190495A1 (ja) * 2022-03-31 2023-10-05 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法

Similar Documents

Publication Publication Date Title
US20230102420A1 (en) Dispersion liquid, composition, sealing member, light-emitting device, illumination tool, display device, and method for producing dispersion liquid
JP5034314B2 (ja) 高屈折率透明粒子の製造方法と高屈折率透明粒子及び高屈折率透明複合体並びに発光素子
JP7439824B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
US11692080B2 (en) Dispersion liquid, composition, sealing member, light-emitting device, illumination tool, display device, and method for producing light-emitting device
US20230416500A1 (en) Dispersion liquid, composition, sealing member, light-emitting device, illumination tool, display device, method for producing dispersion solution, and method for modifying surfaces of metal oxide particles
US11359072B2 (en) Dispersion liquid, composition, sealing member, light-emitting device, illumination tool, display device, and method for producing light-emitting device
WO2024162261A1 (ja) 表面修飾金属酸化物粒子、封止材料、封止部材、発光装置、発光装置の製造方法
JP7215198B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具および表示装置ならびに分散液の製造方法
WO2023190495A1 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
US20230365787A1 (en) Dispersion liquid, composition, sealing member, light-emitting device, llumination tool, display device, method for producing dispersion solution, and method for modifying surfaces of metal oxide particles
EP4223697A1 (en) Dispersion solution, composition, sealing member, light-emitting device, lighting device, display device, method for producing dispersion solution, and method for modifying surface of metal oxide particles
JP2021155261A (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置
JP7363634B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
WO2023190493A1 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP7243388B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具および表示装置ならびに分散液の製造方法
JP7087796B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具および表示装置
JP2023149933A (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP2021155248A (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP2023149441A (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24750210

Country of ref document: EP

Kind code of ref document: A1