[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024162040A1 - Wiring board and mounting structure - Google Patents

Wiring board and mounting structure Download PDF

Info

Publication number
WO2024162040A1
WO2024162040A1 PCT/JP2024/001451 JP2024001451W WO2024162040A1 WO 2024162040 A1 WO2024162040 A1 WO 2024162040A1 JP 2024001451 W JP2024001451 W JP 2024001451W WO 2024162040 A1 WO2024162040 A1 WO 2024162040A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
groove
recess
insulating layer
wiring board
Prior art date
Application number
PCT/JP2024/001451
Other languages
French (fr)
Japanese (ja)
Inventor
泰大 東川
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024162040A1 publication Critical patent/WO2024162040A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a wiring board and a mounting structure using the same.
  • Patent Document 1 wiring patterns formed on wiring boards are formed with fine wiring at high density in line with the miniaturization of electronic devices.
  • width between the wiring becomes narrower due to finer wiring, short circuits due to ion migration become more likely to occur.
  • Patent Document 2 provides a recess between adjacent conductors, with the deepest part being the midpoint between the adjacent conductors.
  • the wiring board according to the present disclosure includes a first insulating layer having a first surface, a first conductor located on the first surface, a second conductor located adjacent to the first conductor on the first surface, a first groove located between the first conductor and the second conductor on the first surface, and a second insulating layer located on the first surface, covering the first conductor and the second conductor, and embedded in the first groove.
  • the first groove includes a first recess located on the first conductor side and recessed on the opposite side to the first surface, a second recess located on the second conductor side and recessed on the opposite side to the first surface, and a first intermediate portion located between the first recess and the second recess and having an end portion closer to the first surface than the bottom of the first recess and the bottom of the second recess.
  • the mounting structure according to the present disclosure includes the above-mentioned wiring board and an electronic component mounted on the wiring board.
  • FIG. 2 is an explanatory diagram for explaining a wiring board according to an embodiment of the present disclosure.
  • 2A is an enlarged explanatory view for explaining one embodiment of a cross section of region X shown in FIG. 1 (cross section including the first groove)
  • FIG. 2B is an enlarged explanatory view for explaining one embodiment of a portion of region X shown in FIG. 1 that differs from FIG. 2A (cross section not including the first groove)
  • FIG. 2C is a plan view seen from the direction of arrow A shown in FIG. 2A (however, the second insulating layer is omitted).
  • 3A is an enlarged explanatory diagram for illustrating another embodiment of the cross section of region X shown in FIG. 1, and FIG.
  • 3B is a plan view seen from the direction of arrow B shown in FIG. 3A (however, the second insulating layer is omitted).
  • 4A is an enlarged explanatory view for explaining another embodiment of the cross section of region X shown in FIG. 1 (cross section including the second groove), and
  • FIG. 4B is an enlarged explanatory view for explaining another embodiment of a portion of region X shown in FIG. 1 that differs from FIG. 4A (cross section not including the second groove).
  • 5A is an enlarged explanatory view for explaining another embodiment of the cross section of region X shown in FIG. 1 (a cross section including the first groove and the third groove), and
  • FIG. 5B is an enlarged explanatory view for explaining another embodiment of a portion of region X shown in FIG.
  • FIG. 6 is a graph showing the unevenness of the first side surface based on the results of measuring the first side surface using a three-dimensional white light interference microscope.
  • FIG. 7 is a graph showing the unevenness of the side surfaces other than the first side surface based on the results of measuring the side surfaces other than the first side surface using a three-dimensional white light interference microscope.
  • FIG. 8 is a graph showing the unevenness of the first upper surface based on the results of measuring the first upper surface using a three-dimensional white light interference microscope.
  • FIG. 9 is a graph showing the unevenness of the top surface other than the first top surface based on the result of measuring the top surface other than the first top surface using a three-dimensional white light interference microscope.
  • 10A to 10C are explanatory views for explaining one embodiment of a method for forming a first recess, a second recess, and a first intermediate portion in a first groove.
  • 10A to 10C are explanatory views for explaining another embodiment of a method for forming a first recess, a second recess, and a first intermediate portion in a first groove.
  • the wiring board according to the present disclosure has a configuration as described in the section on means for solving the above problems, thereby reducing short circuits caused by ion migration and providing high insulation reliability.
  • FIG. 1 is an explanatory diagram for explaining a wiring board 1 according to an embodiment of the present disclosure.
  • the wiring board 1 according to the embodiment includes an insulating layer 2, a conductor layer 3, and a solder resist 4.
  • the insulating layer 2 includes a core insulating layer 21 and a build-up insulating layer 22.
  • the core insulating layer 21 is not particularly limited as long as it is made of an insulating material. Examples of insulating materials include resins such as epoxy resin, bismaleimide-triazine resin, polyimide resin, and polyphenylene ether resin. Only one of these resins may be used, or two or more of them may be used in combination.
  • the thickness of the core insulating layer 21 is not particularly limited, and is, for example, 0.04 mm or more and 2 mm or less.
  • the core insulating layer 21 may contain a reinforcing material.
  • reinforcing materials include insulating cloth materials such as glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Only one type of reinforcing material may be used, or two or more types may be used in combination.
  • the core insulating layer 21 may have inorganic insulating fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide dispersed therein. Only one type of inorganic filler may be used, or two or more types may be used in combination.
  • Through-hole conductors 21a are located in the core insulating layer 21 to electrically connect the top and bottom surfaces of the core insulating layer 21.
  • the through-hole conductors 21a are located in through-holes that penetrate the core insulating layer 21 from the top surface to the bottom surface.
  • the through-hole conductors 21a are formed, for example, by metal plating such as copper plating.
  • the through-hole conductors 21a are connected to the conductor layers 3 located on both sides of the core insulating layer 21.
  • the through-hole conductors 21a may be located only on the inner surface of the through-hole, or may be filled in the through-hole.
  • the upper and lower surfaces of the core insulating layer 21 are provided with a build-up layer in which conductor layers 3 and build-up insulating layers 22 are alternately stacked.
  • the conductor layer 3 is not limited as long as it is a conductor such as a metal.
  • the conductor layer 3 is formed of a metal foil such as copper foil, a metal plating such as copper plating, or the like.
  • the thickness of the conductor layer 3 is not particularly limited, and is, for example, 5 ⁇ m or more and 25 ⁇ m or less.
  • the build-up insulating layer 22, like the core insulating layer 21, is not particularly limited as long as it is made of an insulating material.
  • insulating materials include resins such as epoxy resin, bismaleimide-triazine resin, polyimide resin, and polyphenylene ether resin. Only one type of these resins may be used, or two or more types may be used in combination.
  • the build-up insulating layers 22 may be made of the same resin or different resins.
  • the build-up insulating layer 22 and the core insulating layer 21 may be made of the same resin or different resins.
  • the build-up insulating layer 22 may contain a reinforcing material.
  • reinforcing materials include insulating cloth materials such as glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Only one type of reinforcing material may be used, or two or more types may be used in combination.
  • the build-up insulating layer 22 may have inorganic fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide dispersed therein. Only one type of inorganic filler may be used, or two or more types may be used in combination.
  • the thickness of the build-up insulating layer 22 is not particularly limited, and is, for example, 5 ⁇ m or more and 100 ⁇ m or less.
  • the build-up insulating layers 22 may have the same thickness or different thicknesses.
  • the build-up insulating layer 22 includes via-hole conductors 22a for electrically connecting layers.
  • the via-hole conductors 22a are located in via holes that penetrate the top and bottom surfaces of the build-up insulating layer 22.
  • the via-hole conductors 22a are formed, for example, by metal plating such as copper plating.
  • the via-hole conductors 22a are connected to the conductor layers 3 that are located on both sides of the build-up insulating layer 22.
  • the via-hole conductors 22a may fill the via holes, or may be located only on the inner surface of the via holes.
  • a solder resist 4 may be located on the surface of the build-up layer.
  • the solder resist 4 is made of a resin, such as an acrylic-modified epoxy resin.
  • the solder resist 4 has openings so that the conductor layer 3 and the electrodes of the electronic component E are electrically connected via solder 5.
  • Examples of the electronic component E include semiconductor integrated circuit elements and optoelectronic elements.
  • the conductor layer 3 located on the main surface of the insulating layer 2 includes a conductor 31 having a relatively narrow width and a grounding conductor layer having a wide width. As shown in FIG. 2A, the conductor 31 has a first conductor 311 and a second conductor 312 located adjacent to each other on the first surface 221' of the first insulating layer 221.
  • FIG. 2A is an enlarged explanatory view for explaining one embodiment of a cross section of region X shown in FIG. 1.
  • both the first insulating layer 221 and the second insulating layer 222 shown in FIG. 2A are build-up insulating layers 22.
  • the first insulating layer 221 may also be the core insulating layer 21. That is, in this specification, the insulating layer 2 having the conductor 31 located on its main surface (first surface 221') is defined as the first insulating layer 221, and the insulating layer 2 covering the conductor 31 and the first surface 221' of the first insulating layer 221 is defined as the second insulating layer 222.
  • the distance (first distance) between the first conductor 311 and the second conductor 312 is relatively short, but is not particularly limited, and may be, for example, 6 ⁇ m or more and 12 ⁇ m or less.
  • a first groove 6 is located on the first surface 221'.
  • the first groove 6 does not need to be located entirely between the first conductor 311 and the second conductor 312.
  • the first groove 6 only needs to be located at least partially between the first conductor 311 and the second conductor 312.
  • FIG. 2C is a plan view seen from the direction of the arrow A shown in FIG. 2A (however, the second insulating layer 222 is omitted).
  • the first groove 6 includes a first recess 61, a second recess 62, and a first intermediate portion 6a.
  • the first recess 61 is located on the first conductor 311 side and is a recess recessed on the side opposite the first surface 221'.
  • the second recess 62 is located on the second conductor 312 side and is a recess recessed on the side opposite the first surface 221'.
  • the depth D1 of the first recess 61 and the second recess 62 is not limited and may be, for example, 20% to 60% of the thickness of the first insulating layer 221.
  • the depth D1 of the first recess 61 and the second recess 62 is the distance from an imaginary line connecting the first surfaces 221' located on either side of the first groove 6 to the deepest parts of the first recess 61 and the second recess 62, as shown in FIG. 2A.
  • the dashed line portion shown in the first groove 6 is the imaginary line.
  • the depth D1 of the first recess 61 and the second recess 62 may be the same or different from each other.
  • the first intermediate portion 6a is located between the first recess 61 and the second recess 62.
  • the end 6aT of the first intermediate portion 6a is located closer to the first surface 221' than the bottoms of the first recess 61 and the second recess 62.
  • the shortest distance D2 between the virtual straight line and the end 6aT of the first intermediate portion 6a is not limited, and may be, for example, 0% to 30% of the thickness of the first insulating layer 221.
  • a part of the end 6aT of the first intermediate portion 6a may be at the same height as the virtual straight line.
  • the first groove 6 includes the first recess 61, the second recess 62, and the first intermediate portion 6a, so that the distance of the inner surface of the first groove 6 from the first conductor 311 to the second conductor 312, that is, the length of the boundary between the first insulating layer 221 and the second insulating layer 222, can be increased. As a result, even if the width between the first conductor 311 and the second conductor 312 is relatively narrow, short circuits due to ion migration can be reduced. Furthermore, the second insulating layer 222 covering the first conductor 311 and the second conductor 312 is embedded in the first groove 6.
  • the unevenness of the first recess 61, the second recess 62, and the first intermediate portion 6a increases the area of the bonding interface between the first insulating layer 221 and the second insulating layer 222. Therefore, the adhesion between the first insulating layer 221 and the second insulating layer 222 is improved.
  • the deep first recess 61 and second recess 62 are located at both ends of the first groove 6 (the first conductor 311 side and the second conductor 312 side), which increases the length of the boundary between the first insulating layer 221 and the second insulating layer 222. Furthermore, the second insulating layer 222 is less likely to peel off from the ends of the first groove 6. That is, the amount of the second insulating layer 222 embedded in the deep first recess 61 and second recess 62 increases. As a result, the area of the bonding interface between the first insulating layer 221 and the second insulating layer 222 increases at both ends of the first groove 6. This improves the adhesion between the first insulating layer 221 and the second insulating layer 222.
  • the surface roughness of the inner surface of the first groove 6 is not limited.
  • the inorganic insulating filler may be exposed on the inner surface of the first groove 6.
  • the surface roughness of the inner surface of the first groove 6 is greater than the surface roughness of the first surface 221'.
  • the adhesion between the first insulating layer 221 and the second insulating layer 222 can be further improved.
  • the surface roughness of the inner surface of the first groove 6 may be, for example, 700 nm or more and 800 nm or less.
  • the surface roughness of the first surface 221' may be, for example, 40 nm or more and 60 nm or less.
  • Such inner surface roughness of the first groove 6 and the surface roughness of the first surface 221' can be calculated by analysis using, for example, a three-dimensional white light interference microscope.
  • the surface roughness of the first recess 61, the surface roughness of the second recess 62, and the surface roughness of the first intermediate portion 6a are not limited.
  • the surface roughness of the first recess 61 and the surface roughness of the second recess 62 may be greater than the surface roughness of the first intermediate portion 6a.
  • the surface roughness of the first recess 61 and the surface roughness of the second recess 62 may be, for example, 400 nm or more and 600 nm or less.
  • the surface roughness of the first recess 61 and the surface roughness of the second recess 62 may be the same or different.
  • the surface roughness of the first intermediate portion 6a may be, for example, 400 nm or more and 600 nm or less.
  • the shortest distance D2 between the virtual straight line and the end 6aT of the first intermediate portion 6a may be, for example, 0% to 25% of the greater of the depths D1 of the first recess 61 and the second recess 62.
  • the first surface 221' may have at least one of a first region 3a located between the opening edge of the first groove 6 and the first conductor 311, and a second region 3b located between the opening edge of the first groove 6 and the second conductor 312.
  • FIG. 3A is an enlarged explanatory view for explaining another embodiment of the cross section of region X shown in FIG. 1.
  • the contact area between the first insulating layer 221 and the second insulating layer 222 increases.
  • the adhesion between the first insulating layer 221 and the second insulating layer 222 is further improved.
  • the interface with the second insulating layer 222 is not smooth from the first conductor 311 and the second conductor 312 to the first groove 6. Therefore, the extension of cracks and the peeling of the second insulating layer 222 are reduced.
  • a nichrome layer (second seed layer) 32 may be located in at least one of the first region 3a and the second region 3b.
  • the nichrome layer (second seed layer) 32 has a higher melting point than copper.
  • the thickness of the nichrome layer (second seed layer) 32 is not limited and may be, for example, 0.04 ⁇ m or more and 0.1 ⁇ m or less.
  • a nichrome layer is exemplified as a second seed layer located in at least one of the first region 3a and the second region 3b.
  • the second seed layer may also be a layer formed of a transition metal from Group 4, 5, 6, or 10 of the periodic table, such as titanium, chromium, nickel, tantalum, molybdenum, tungsten, and palladium.
  • the side of the first conductor 311 and the side of the second conductor 312 may be perpendicular to the first surface 221' or may be inclined.
  • the side on the first groove 6 side may be an inclined surface in which the width of the first conductor 311 and the width of the second conductor 312 increase from the end (upper end) of the first conductor 311 and the end (upper end) of the second conductor 312 to the first surface 221' when viewed in cross section.
  • the filling of the second insulating layer 222 into the first groove 6 is further improved.
  • the surface roughness of the first side surface 35a adjacent to the first groove 6 among the side surfaces of the first conductor 311 and the second conductor 312 may be smaller than the surface roughness of the side surfaces 35x other than the first side surface 35a.
  • the first side surface 35a adjacent to the first groove 6 refers to the side surface of the first conductor 311 and the side surface of the second conductor 312 that is positioned adjacent to the first groove 6 when the first conductor 311 and the second conductor 312 are viewed in cross-section as shown in Figures 2A and 2B.
  • the surface roughness of the first upper surface 36a located in a portion adjacent to the first groove 6 among the upper surfaces of the first conductor 311 and the second conductor 312 may be smaller than the surface roughness of the upper surface 36x other than the first upper surface 36a.
  • the "first upper surface 36a located in a portion adjacent to the first groove 6" refers to the upper surface located adjacent to the first groove 6 among the upper surfaces of the first conductor 311 and the upper surfaces of the second conductor 312, as shown in FIG. 2C, when the first conductor 311 and the second conductor 312 are viewed in a plane, as shown in FIG. 2C.
  • FIG. 2C is a plan view seen from the direction of the arrow A shown in FIG. 2A (however, the second insulating layer 222 is omitted).
  • the surface roughness of the first side 35a is smaller than the surface roughness of the side 35x other than the first side 35a, the gaps that are the starting points of ion migration (i.e., the gaps between the first conductor 311 and the second conductor 312 and the second insulating layer 222) are reduced. As a result, short circuits due to ion migration are further reduced.
  • the surface roughness of the first side 35a is not limited.
  • the first side 35a may have a root-mean-square roughness Rq of, for example, 0.05 ⁇ m or more and 0.2 ⁇ m or less.
  • the second insulating layer 222 flows more efficiently into the first groove 6 when the second insulating layer 222 is laminated. This makes it easier to form a structure in which the inside of the first groove 6 and the space between the first conductor 311 and the second conductor 312 are filled with the second insulating layer 222.
  • the surface roughness of the first upper surface 36a is not limited.
  • the first upper surface 36a may have a root-mean-square roughness Rq of, for example, 0.04 ⁇ m or more and 0.09 ⁇ m or less.
  • a laser may be lightly irradiated onto the portions of the first conductor 311 and the second conductor 312 that correspond to the first side surface 35a and the first top surface 36a. By irradiating the laser, the conductor (metal) surface of the corresponding portion melts, reducing the unevenness.
  • Figure 6 is a graph showing the unevenness of the first side 35a based on the measurement results. As is clear from Figure 6, the unevenness of the first side 35a is relatively small.
  • the root mean square roughness Rq of the first side 35a was calculated based on the measurement results to be 0.086 ⁇ m.
  • Figure 7 is a graph showing the unevenness of the side surfaces 35x other than the first side surface based on the measurement results. As is clear from Figure 7, the unevenness of the side surfaces 35x other than the first side surface is large.
  • the root mean square roughness Rq of the side surfaces other than the first side surface 35a was calculated based on the measurement results to be 0.103 ⁇ m.
  • Figure 8 is a graph showing the unevenness of the first upper surface 36a based on the measurement results. As is clear from Figure 8, the unevenness of the first upper surface 36a is relatively small.
  • the root mean square roughness Rq of the first upper surface 36a was calculated based on the measurement results to be 0.075 ⁇ m.
  • FIG. 9 shows a graph showing the unevenness of the upper surface 36x other than the first upper surface based on the measurement results, in which the upper surface 36x other than the first upper surface was measured using a three-dimensional white light interference microscope.
  • the upper surface 36x other than the first upper surface has large unevenness.
  • the root mean square roughness Rq of the upper surface 36x other than the first upper surface was calculated based on the measurement results to be 0.106 ⁇ m.
  • the conductor used in the measurement was the first conductor 311, which had a thickness of 7.5 ⁇ m and a width of 8 ⁇ m and was made of copper.
  • the first side surface 35a and the first top surface 36a were formed by irradiating a laser for 60 seconds.
  • FIG. 4 is an enlarged explanatory view for explaining yet another embodiment of the cross section of region X shown in FIG. 1.
  • the third conductor 313 and the fourth conductor 314 are adjacently located on the first surface 221' of the first insulating layer 221.
  • the distance (second distance) between the third conductor 313 and the fourth conductor 314 is longer than the distance (first distance) between the first conductor 311 and the second conductor 312.
  • the first distance may be 6 ⁇ m or more and 12 ⁇ m or less as described above, and the second distance may be, for example, 25 ⁇ m or more and 42 ⁇ m or less.
  • the second groove 7 is located on the first surface 221' between the third conductor 313 and the fourth conductor 314.
  • the second groove 7 does not need to be located entirely between the third conductor 313 and the fourth conductor 314.
  • the second groove 7 only needs to be located at least partially between the third conductor 313 and the fourth conductor 314.
  • the second groove 7 includes a third recess 71, a fourth recess 72, and a second intermediate portion 7a.
  • the third recess 71 is located on the third conductor 313 side and is a recess recessed on the opposite side of the first surface 221'.
  • the fourth recess 72 is located on the fourth conductor 314 side and is a recess recessed on the opposite side of the first surface 221'.
  • the depth D3 of the third recess 71 and the fourth recess 72 is not limited, and may be, for example, 20% to 60% of the thickness of the first insulating layer 221. As shown in FIG.
  • the depth D3 of the third recess 71 and the fourth recess 72 is the distance from a virtual straight line connecting the first surfaces 221' located on either side of the second groove 7 to the deepest parts of the first recess 61 and the second recess 62.
  • the dashed line portion shown in the second groove 7 is a virtual straight line.
  • the depths D3 of the third recess 71 and the fourth recess 72 may be the same or different from each other.
  • the second intermediate portion 7a is located between the third recess 71 and the fourth recess 72.
  • the end 7aT of the second intermediate portion 7a is located closer to the first surface 221' than the bottoms of the third recess 71 and the fourth recess 72.
  • the shortest distance D4 between the virtual line and the end 7aT of the second intermediate portion 7a may be shorter than the shortest distance D2 between the virtual line and the end 6aT of the first intermediate portion 6a.
  • the shortest distance D4 may be 0% or more and 10% or less of the thickness of the first insulating layer 221. 0% means that at least a part of the end of the second intermediate portion 7a is in contact with the virtual line.
  • the second groove 7 includes the third recess 71, the fourth recess 72, and the second intermediate portion 7a, so that the distance of the inner surface of the second groove 7 from the third conductor 313 to the fourth conductor 314 is increased. As a result, short circuits due to ion migration are reduced between the third conductor 313 and the fourth conductor 314. Furthermore, the second insulating layer 222 that covers the third conductor 313 and the fourth conductor 314 is embedded in the second groove 7. As a result, the unevenness of the third recess 71, the fourth recess 72, and the second intermediate portion 7a increases the area of the bonding interface, improving the adhesion. Therefore, the adhesion between the first insulating layer 221 and the second insulating layer 222 is improved.
  • the deep third recess 71 and fourth recess 72 are located at both ends of the second groove 7 (the third conductor 313 side and the fourth conductor 314 side), making it difficult for the second insulating layer 222 to peel off from the ends of the second groove 7.
  • the amount of the second insulating layer 222 embedded in the deep third recess 71 and fourth recess 72 increases.
  • the area of the bonding interface between the first insulating layer 221 and the second insulating layer 222 increases at both ends of the second groove 7. This improves the adhesion between the first insulating layer 221 and the second insulating layer 222.
  • At least a part of the second intermediate portion 7a may be at the same height as the imaginary line. That is, the shortest distance D4 between the imaginary line and the end 7aT of the second intermediate portion 7a may be 0.
  • the shortest distance D4 between the imaginary line and the end 7aT of the second intermediate portion 7a may be 0.
  • the length of the boundary between the third conductor 313 and the fourth conductor 314 is ensured, and the amount of the second insulating layer 222 embedded in the wide second groove 7 is reduced. As a result, depressions occurring on the surface of the second insulating layer 222 opposite the second groove 7 are reduced.
  • the side of the third conductor 313 and the side of the fourth conductor 314 may be perpendicular to the first surface 221' or may be inclined.
  • the side on the second groove 7 side may be an inclined surface in which the width of the third conductor 313 and the width of the fourth conductor 314 increase from the end (upper end) of the third conductor 313 and the end (upper end) of the fourth conductor 314 to the first surface 221' when viewed in cross section.
  • the filling of the second insulating layer 222 into the second groove 7 is further improved.
  • the surface roughness of the second side surface 35b adjacent to the second groove 7 among the side surfaces of the third conductor 313 and the fourth conductor 314 may be smaller than the surface roughness of the side surface 35y other than the second side surface.
  • the second side surface 35b adjacent to the second groove 7 means the side surface of the third conductor 313 and the side surface of the fourth conductor 314 that is located adjacent to the second groove 7 among the side surfaces of the third conductor 313 and the fourth conductor 314 when viewed in a cross-section.
  • the surface roughness of the second upper surface 36b located in the portion adjacent to the second groove 7 among the upper surfaces of the third conductor 313 and the fourth conductor 314 may be smaller than the surface roughness of the upper surface 36y other than the second upper surface.
  • the second upper surface 36b located adjacent to the second groove 7 refers to the upper surface of the third conductor 313 and the upper surface of the fourth conductor 314 that is located adjacent to the second groove 7 when the third conductor 313 and the fourth conductor 314 are viewed in a plan view (see FIG. 2C for an explanation of the first upper surface 36a).
  • the surface roughness of the second side 35b is smaller than the surface roughness of the side 35y other than the second side, the gaps that are the starting points of ion migration (i.e., the gaps between the third conductor 313 and the fourth conductor 314 and the second insulating layer 222) are reduced. As a result, short circuits due to ion migration are further reduced.
  • the surface roughness of the second side 35b is not limited.
  • the second side 35b may have a root-mean-square roughness Rq of, for example, 0.05 ⁇ m or more and 0.2 ⁇ m or less.
  • the second insulating layer 222 flows more efficiently into the second groove 7 when the second insulating layer 222 is laminated. This makes it easier to form a structure in which the inside of the second groove 7 and the space between the third conductor 313 and the fourth conductor 314 are filled with the second insulating layer 222.
  • the surface roughness of the second upper surface 36b is not limited.
  • the first upper surface 36a may have a root-mean-square roughness Rq of, for example, 0.04 ⁇ m or more and 0.09 ⁇ m or less.
  • FIG. 5 is an enlarged explanatory diagram for explaining another example of the arrangement of adjacent conductors 31.
  • FIG. 5 shows a structure in which three conductors 31, a first conductor 311, a second conductor 312, and a fifth conductor 315, are positioned adjacent to each other on the first surface 221' of the first insulating layer 221.
  • the second conductor 312 is positioned so as to be sandwiched between the first conductor 311 and the fifth conductor 315.
  • the first groove 6 is positioned between the first conductor 311 and the second conductor 312.
  • the first conductor 311, the second conductor 312, and the first groove 6 are as described above, and detailed description thereof will be omitted.
  • the third groove 8 is located on the first surface 221' between the second conductor 312 and the fifth conductor 315.
  • the third groove 8 does not need to be located entirely between the second conductor 312 and the fifth conductor 315.
  • the third groove 8 only needs to be located at least partially between the second conductor 312 and the fifth conductor 315.
  • the third groove 8 includes a fifth recess 81, a sixth recess 82, and a third intermediate portion 8a.
  • the fifth recess 81 is located on the second conductor 312 side and is a recess recessed on the opposite side of the first surface 221'.
  • the sixth recess 82 is located on the fifth conductor 315 side and is a recess recessed on the opposite side of the first surface 221'.
  • the depths of the fifth recess 81 and the sixth recess 82 are not limited.
  • the depths of the fifth recess 81 and the sixth recess 82 may be, for example, 20% to 60% of the thickness of the first insulating layer 221, similar to the depth D1 of the first recess 61 and the second recess 62.
  • the depth of the fifth recess 81 and the sixth recess 82 may be, for example, 20% to 60% of the thickness of the first insulating layer 221, similar to the depth D3 of the third recess 71 and the fourth recess 72.
  • the depth of the fifth recess 81 and the sixth recess 82 is the distance from the imaginary line connecting the first surfaces located on either side of the third groove 8 to the deepest part of the fifth recess 81 and the sixth recess 82.
  • the depths of the fifth recess 81 and the sixth recess 82 may be the same or different from each other.
  • the third intermediate portion 8a is located between the fifth recess 81 and the sixth recess 82.
  • the end 8aT of the third intermediate portion 8a is located closer to the first surface 221' than the bottoms of the fifth recess 81 and the sixth recess 82.
  • the shortest distance between the virtual straight line and the end 8aT of the third intermediate portion 8a may be 0% to 25% of the thickness of the first insulating layer 221, similar to the shortest distance D2 between the virtual straight line and the end 6aT of the first intermediate portion 6a, when the distance between the second conductor 312 and the fifth conductor 315 is relatively short, such as the first distance.
  • the shortest distance D4 between the virtual straight line and the end 7aT of the second intermediate portion 7a may be 0% to 10% of the thickness of the first insulating layer 221. In the case of 0%, this means that at least a part of the end 8aT of the third intermediate portion 8a is in a position tangent to the imaginary line. As mentioned above, it is acceptable for a part of the first intermediate portion 6a to be in a position tangent to the imaginary line.
  • the side surfaces on the first groove 6 and third groove 8 side may be inclined surfaces in which the width of the second conductor 312 increases from the end (upper end) of the second conductor 312 toward the first surface 221' when viewed in cross section.
  • at least one of the side surface on the first groove 6 side of the first conductor 311 and the side surface on the third groove 8 side of the fifth conductor 315 may be inclined surfaces in which the width of the first conductor 311 and the width of the fifth conductor 315 increase from the end of the first conductor 311 and the end of the fifth conductor 315 toward the first surface 221' when viewed in cross section.
  • the surface roughness of the third side surface 35c of the side surfaces of the fifth conductor 315 adjacent to the third groove 8 may be smaller than the surface roughness of the side surfaces 35z other than the third side surface.
  • the third side surface 35c adjacent to the third groove 8 refers to the step surface of the side surfaces of the fifth conductor 315 that is located adjacent to the third groove 8 when the fifth conductor 315 is viewed in cross-section.
  • the surface roughness of the third upper surface 36c located in a portion of the upper surface of the fifth conductor 315 adjacent to the third groove 8 may be smaller than the surface roughness of the upper surface 36z other than the third upper surface.
  • the third upper surface 36c located in a portion adjacent to the third groove 8 means the upper surface of the fifth conductor 315 located adjacent to the third groove 8 when the fifth conductor 315 is viewed in a plan view (see FIG. 2C which describes the first upper surface 36a).
  • the surface roughness of the third side surface 35c is smaller than the surface roughness of the other side surfaces 35z, the gap that is the starting point of ion migration (i.e., the gap between the fifth conductor 315 and the second insulating layer 222) is reduced. As a result, short circuits due to ion migration are further reduced.
  • the surface roughness of the third side surface 35c is not limited.
  • the third side surface 35c may have a root-mean-square roughness Rq of, for example, 0.05 ⁇ m or more and 0.2 ⁇ m or less.
  • the second insulating layer 222 flows more efficiently into the third groove 8 when the second insulating layer 222 is laminated. This makes it easier to form a structure in which the inside of the third groove 8 and the space between the second conductor 312 and the fifth conductor 315 are filled with the second insulating layer 222.
  • the surface roughness of the third upper surface 36c is not limited.
  • the third upper surface 36c may have a root-mean-square roughness Rq of, for example, 0.04 ⁇ m or more and 0.09 ⁇ m or less.
  • the method for forming the first recess 61, the second recess 62, and the first intermediate portion 6a in the first groove 6 is not limited. For example, they may be formed by the process shown in FIG. 10.
  • FIG. 10 is an explanatory diagram for explaining one embodiment of the method for forming the first recess 61, the second recess 62, and the first intermediate portion 6a in the first groove 6.
  • a first seed layer 33 is formed on the first surface 221' of the first insulating layer 221.
  • the first seed layer 33 is formed of a metal such as copper by electroless plating.
  • the thickness of the first seed layer 33 is not limited, and is, for example, 0.4 ⁇ m or more and 0.6 ⁇ m or less.
  • a resist 34 is formed on the surface of the first seed layer 33 to perform masking.
  • An opening is provided in the resist 34, and the conductor 31 is formed in this opening.
  • the opening is formed by forming a partial light-shielding portion on the surface of the resist 34, exposing it to light, and developing it.
  • An example of the resist 34 is a dry film resist.
  • conductors 31 are formed in the openings of resist 34.
  • Conductors 31 are formed by metal plating such as copper plating.
  • resist 34 is peeled off as shown in FIG. 10D, and the first seed layer 33 in the portion masked by resist 34 is removed as shown in FIG. 10E.
  • Methods for removing first seed layer 33 include, for example, etching. Etching is performed using, for example, a hydrogen peroxide-sulfuric acid based etching solution.
  • a first groove 6 is formed between the conductors 31 (between the first conductor 311 and the second conductor 312).
  • the first groove 6 is formed, for example, by irradiating the first surface 221' of the first insulating layer 221 with a laser.
  • the first recess 61, the second recess 62, and the first intermediate portion 6a are formed by changing the number of times of laser irradiation to be performed on the portion to form the first recess 61 and the second recess 62 and the number of times of laser irradiation to be performed on the portion to form the first intermediate portion 6a.
  • the portion to form the first recess 61 and the second recess 62 may be irradiated with the laser 11 times or more and 13 times or less.
  • the portion to form the first intermediate portion 6a may be irradiated with the laser 8 times or more and 10 times or less.
  • the side surface on the first groove 6 side may be an inclined surface in which the width of the first conductor 311 and the width of the second conductor 312 increase from the end (top end) of the first conductor 311 and the end (top end) of the second conductor 312 toward the first surface 221' when viewed in cross section.
  • a method for forming such an inclined surface is to adjust the laser irradiation position so that the laser is irradiated to the side surface of the first conductor 311 and the side surface of the second conductor 312 as well.
  • FIG. 11 is an explanatory diagram for explaining another embodiment of the method for forming the first recess 61, the second recess 62, and the first intermediate portion 6a in the first groove 6.
  • the second seed layer 32 is formed on the first surface 221' of the first insulating layer 221, and the first seed layer 33 is formed on the surface of the second seed layer 32.
  • the second seed layer 32 and the first seed layer 33 are formed by, for example, sputtering.
  • the thickness of the second seed layer 32 is not limited, and is, for example, 0.04 ⁇ m or more and 0.1 ⁇ m or less.
  • the thickness of the first seed layer 33 is as described above.
  • the second seed layer may be formed by sputtering or a deposition method other than sputtering using a transition metal of Group 4, Group 5, Group 6, or Group 10 of the periodic table, such as nichrome, titanium, chromium, nickel, tantalum, molybdenum, tungsten, or palladium, or an alloy of transition metals.
  • a transition metal of Group 4, Group 5, Group 6, or Group 10 of the periodic table such as nichrome, titanium, chromium, nickel, tantalum, molybdenum, tungsten, or palladium, or an alloy of transition metals.
  • FIGS. 11B to 11D are similar to FIG. 10B to FIG. 10D except that a second seed layer 32 is formed, and detailed description thereof will be omitted.
  • the first seed layer 33 and the second seed layer 32 are removed from the portions masked by the resist 34.
  • Methods for removing the first seed layer 33 include etching.
  • the first seed layer 33 is etched using, for example, a hydrogen peroxide-sulfuric acid-based etching solution.
  • the second seed layer 32 is removed.
  • Methods for removing the second seed layer 32 include etching.
  • the second seed layer 32 is etched using, for example, an acid-based etching solution such as a mixture of hydrochloric acid and sulfuric acid.
  • a first groove 6 is formed between the conductors 31 (between the first conductor 311 and the second conductor 312) in the same manner as in FIG. 10F.
  • the method for forming the first groove 6 is as described above, and a detailed description will be omitted.
  • a portion (side surface) of the first conductor 311 and the second conductor 312 is removed again by etching. In this manner, the second seed layer 32 is positioned in the first region 3a and the second region 3b.
  • the mounting structure according to the present disclosure includes a wiring board 1 according to one embodiment, and an electronic component E located on the surface of the wiring board 1.
  • the conductor layer 3 in the opening of the solder resist 4 and the electrodes of the electronic component E are connected via solder 5.
  • examples of the electronic component E include semiconductor integrated circuit elements and optoelectronic elements.
  • the electronic components E may be located on both sides of the wiring board 1, or the electronic component E may be located on one surface and, for example, a motherboard may be located on the other surface.
  • the wiring board according to the present disclosure includes a first insulating layer having a first surface, a first conductor located on the first surface, a second conductor located adjacent to the first conductor on the first surface, a first groove located between the first conductor and the second conductor on the first surface, and a second insulating layer located on the first surface, covering the first conductor and the second conductor, and embedded in the first groove.
  • the first groove includes a first recess located on the first conductor side and recessed on the opposite side to the first surface, a second recess located on the second conductor side and recessed on the opposite side to the first surface, and a first intermediate portion located between the first recess and the second recess and having an end portion closer to the first surface than the bottom of the first recess and the bottom of the second recess.
  • the surface roughness of the inner surface of the first groove is greater than the surface roughness of the first surface.
  • the surface roughness of the first recess and the surface roughness of the second recess are greater than the surface roughness of the first intermediate portion.
  • the wiring board according to any one of (1) to (3) above in the thickness direction of the first insulating layer, at least a portion of the first intermediate portion is flush with the first surface.
  • the first surface has at least one of a first region located between the opening edge of the first groove and the first conductor and a second region located between the opening edge of the first groove and the second conductor, and at least one of the first region and the second region is in contact with the second insulating layer.
  • a nichrome layer is located in at least one of the first region and the second region.
  • the surface roughness of a first side surface of the first conductor and the second conductor adjacent to the first groove when viewed in cross section in a direction perpendicular to the direction in which the first conductor and the second conductor extend, the surface roughness of a first side surface of the first conductor and the second conductor adjacent to the first groove, and when the first conductor and the second conductor are viewed in plan, the surface roughness of a first top surface of the top surfaces of the first conductor and the second conductor located in a portion adjacent to the first groove are smaller than the surface roughness of side surfaces other than the first side surfaces and top surfaces other than the first top surface.
  • the side surface on the first groove side is an inclined surface in which the width of the first conductor and the width of the second conductor increase from the end of the first conductor and the end of the second conductor toward the first surface in the first cross section.
  • the second groove includes a third recess located on the third conductor side and recessed on the opposite side to the first surface in a cross section including the third conductor and the fourth conductor, a fourth recess located on the fourth conductor side and recessed on the opposite side to the first surface, and a second intermediate portion located between the third recess and the fourth recess and having an end closer to the first surface than the bottom of the third recess and the bottom of the fourth recess.
  • the second distance between the third conductor and the fourth conductor is longer than the first distance between the first conductor and the second conductor.
  • the shortest distance between an imaginary line connecting the first surfaces located across the second groove and an upper end of the second intermediate portion is shorter than the shortest distance between an imaginary line connecting the first surfaces located across the first groove and an upper end of the first intermediate portion.
  • a second insulating layer covers the third conductor and the fourth conductor and is embedded in the second groove.
  • the first distance is not less than 6 ⁇ m and not more than 12 ⁇ m
  • the second distance is not less than 25 ⁇ m and not more than 42 ⁇ m.
  • the wiring board according to any one of (1) to (12) above further includes a fifth conductor located adjacent to the second conductor on the first surface so as to sandwich the second conductor together with the first conductor, and a third groove located between the second conductor and the fifth conductor on the first surface.
  • the third groove includes a fifth recess located on the second conductor side and recessed on the opposite side to the first surface in a cross section including the second conductor and the fifth conductor, a sixth recess located on the fifth conductor side and recessed on the opposite side to the first surface, and a third intermediate portion located between the fifth recess and the sixth recess and having an end closer to the first surface than the bottom of the fifth recess and the bottom of the sixth recess.
  • the side surfaces on the first groove and the third groove side are inclined surfaces in which the width of the second conductor increases from the end of the second conductor to the first surface when viewed in cross section.
  • a second insulating layer covers the fifth conductor and is embedded in the third groove.
  • at least one of the side surface of the first conductor facing the first groove and the side surface of the fifth conductor facing the third groove is an inclined surface in which the width of the first conductor and the width of the fifth conductor increase from the end of the first conductor and the end of the fifth conductor toward the first surface in a cross-sectional view including the first conductor and the fifth conductor.
  • the surface roughness of the third side surface of the fifth conductor adjacent to the third groove, and when the fifth conductor is viewed in plan, the surface roughness of the third top surface of the top surface of the fifth conductor located in a portion adjacent to the third groove, are smaller than the surface roughness of the side surfaces other than the third side surface and the top surfaces other than the third top surface.
  • the mounting structure according to the present disclosure includes a wiring board described in any one of (1) to (15) above and an electronic component mounted on the wiring board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

A wiring board according to the present disclosure comprises: a first insulation layer that has a first surface; a first conductor that is positioned on the first surface; a second conductor that is positioned adjacent to the first conductor on the first surface; a first groove that is positioned between the first conductor and the second conductor on the first surface; and a second insulation layer that is positioned on the first surface, covers the first conductor and the second conductor, and is embedded in the first groove. On a first cross section including the first conductor and the second conductor, the first groove includes: a first recessed section that is positioned on the first-conductor side and is recessed toward the opposite side from the first surface; a second recessed section that is positioned on the second-conductor side and recessed toward the opposite side from the first surface; and a first intermediate section that is positioned between the first recessed section and the second recessed section and has an edge portion more on the first-surface side than the bottom portion of the first recessed section and the bottom portion of the second recessed section.

Description

配線基板および実装構造体Wiring board and mounting structure
 本発明は、配線基板およびそれを用いた実装構造体に関する。 The present invention relates to a wiring board and a mounting structure using the same.
 近年、配線基板に形成されている配線パターンは、特許文献1に記載のように、電子機器の小型化などに伴って、微細な配線が高密度で形成されている。微細配線化によって配線間の幅が狭くなると、イオンマイグレーションによるショートが発生しやすくなる。隣接する導体間の距離を少しでも長くするために、特許文献2では、隣接する導体間に、隣接する導体間の中間点が最深部となる凹みを設けている。 In recent years, as described in Patent Document 1, wiring patterns formed on wiring boards are formed with fine wiring at high density in line with the miniaturization of electronic devices. When the width between the wiring becomes narrower due to finer wiring, short circuits due to ion migration become more likely to occur. In order to increase the distance between adjacent conductors as much as possible, Patent Document 2 provides a recess between adjacent conductors, with the deepest part being the midpoint between the adjacent conductors.
特開2014-204099号公報JP 2014-204099 A 特開2022-133504号公報JP 2022-133504 A
 本開示に係る配線基板は、第1面を有する第1絶縁層と、第1面に位置する第1導体と、第1面において、第1導体と隣接して位置する第2導体と、第1面において、第1導体および第2導体の間に位置する第1溝と、第1面に位置しており、第1導体および第2導体を被覆し、第1溝に埋入する第2絶縁層とを含む。第1溝は、第1導体および第2導体を含む第1断面において、第1導体側に位置し、第1面と反対側に窪む第1凹部と、第2導体側に位置し、第1面と反対側に窪む第2凹部と、第1凹部と第2凹部との間に位置し、第1凹部の底部および第2凹部の底部よりも第1面側に端部を有する第1中間部とを含む。 The wiring board according to the present disclosure includes a first insulating layer having a first surface, a first conductor located on the first surface, a second conductor located adjacent to the first conductor on the first surface, a first groove located between the first conductor and the second conductor on the first surface, and a second insulating layer located on the first surface, covering the first conductor and the second conductor, and embedded in the first groove. In a first cross section including the first conductor and the second conductor, the first groove includes a first recess located on the first conductor side and recessed on the opposite side to the first surface, a second recess located on the second conductor side and recessed on the opposite side to the first surface, and a first intermediate portion located between the first recess and the second recess and having an end portion closer to the first surface than the bottom of the first recess and the bottom of the second recess.
 本開示に係る実装構造体は、上記の配線基板と、配線基板に実装された電子部品とを含む。 The mounting structure according to the present disclosure includes the above-mentioned wiring board and an electronic component mounted on the wiring board.
本開示の一実施形態に係る配線基板を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a wiring board according to an embodiment of the present disclosure. 図2Aは、図1に示す領域Xの断面の一実施形態(第1溝を含む断面)を説明するための拡大説明図であり、図2Bは、図1に示す領域Xの図2Aと異なる箇所の一実施形態(第1溝を含まない断面)を説明するための拡大説明図であり、図2Cは、図2Aに示す矢印A方向から見た平面図(但し、第2絶縁層は省略)である。2A is an enlarged explanatory view for explaining one embodiment of a cross section of region X shown in FIG. 1 (cross section including the first groove), FIG. 2B is an enlarged explanatory view for explaining one embodiment of a portion of region X shown in FIG. 1 that differs from FIG. 2A (cross section not including the first groove), and FIG. 2C is a plan view seen from the direction of arrow A shown in FIG. 2A (however, the second insulating layer is omitted). 図3Aは、図1に示す領域Xの断面の他の実施形態を説明するための拡大説明図であり、図3Bは、図3Aに示す矢印B方向から見た平面図(但し、第2絶縁層は省略)である。3A is an enlarged explanatory diagram for illustrating another embodiment of the cross section of region X shown in FIG. 1, and FIG. 3B is a plan view seen from the direction of arrow B shown in FIG. 3A (however, the second insulating layer is omitted). 図4Aは、図1に示す領域Xの断面の他の実施形態(第2溝を含む断面)を説明するための拡大説明図であり、図4Bは、図1に示す領域Xの図4Aと異なる箇所の他の実施形態(第2溝を含まない断面)を説明するための拡大説明図である。4A is an enlarged explanatory view for explaining another embodiment of the cross section of region X shown in FIG. 1 (cross section including the second groove), and FIG. 4B is an enlarged explanatory view for explaining another embodiment of a portion of region X shown in FIG. 1 that differs from FIG. 4A (cross section not including the second groove). 図5Aは、図1に示す領域Xの断面の他の実施形態(第1溝および第3溝を含む断面)を説明するための拡大説明図であり、図5Bは、図1に示す領域Xの図5Aと異なる箇所の他の実施形態(第1溝および第3溝を含まない断面)を説明するための拡大説明図である。5A is an enlarged explanatory view for explaining another embodiment of the cross section of region X shown in FIG. 1 (a cross section including the first groove and the third groove), and FIG. 5B is an enlarged explanatory view for explaining another embodiment of a portion of region X shown in FIG. 1 that differs from FIG. 5A (a cross section not including the first groove and the third groove). 図6は、3次元白色光干渉型顕微鏡を用いて第1側面を測定した結果に基づいて第1側面の凹凸を示すグラフである。FIG. 6 is a graph showing the unevenness of the first side surface based on the results of measuring the first side surface using a three-dimensional white light interference microscope. 図7は、3次元白色光干渉型顕微鏡を用いて第1側面以外の側面を測定した結果に基づいて第1側面以外の側面の凹凸を示すグラフである。FIG. 7 is a graph showing the unevenness of the side surfaces other than the first side surface based on the results of measuring the side surfaces other than the first side surface using a three-dimensional white light interference microscope. 図8は、3次元白色光干渉型顕微鏡を用いて第1上面を測定した結果に基づいて第1上面の凹凸を示すグラフである。FIG. 8 is a graph showing the unevenness of the first upper surface based on the results of measuring the first upper surface using a three-dimensional white light interference microscope. 図9は、3次元白色光干渉型顕微鏡を用いて第1上面以外の上面を測定した結果に基づいて第1上面以外の上面の凹凸を示すグラフである。FIG. 9 is a graph showing the unevenness of the top surface other than the first top surface based on the result of measuring the top surface other than the first top surface using a three-dimensional white light interference microscope. 第1溝に、第1凹部、第2凹部および第1中間部を形成する方法の一実施形態を説明するための説明図である。10A to 10C are explanatory views for explaining one embodiment of a method for forming a first recess, a second recess, and a first intermediate portion in a first groove. 第1溝に、第1凹部、第2凹部および第1中間部を形成する方法の他の実施形態を説明するための説明図である。10A to 10C are explanatory views for explaining another embodiment of a method for forming a first recess, a second recess, and a first intermediate portion in a first groove.
 特許文献2に記載のように、隣接する導体間の中間点が最深部となる凹みの場合、配線基板の小型化に伴い、薄い絶縁層が使用される。そのため、互いに隣接する導体間において、イオンマイグレーションが生じやすい互いに積層された絶縁層同士の境界の距離を大きくすることが難しい。その結果、絶縁信頼性を向上することが難しい。したがって、イオンマイグレーションによるショートを低減し、高い絶縁信頼性を有する配線基板が求められている。 As described in Patent Document 2, in the case of a recess in which the midpoint between adjacent conductors is the deepest part, a thin insulating layer is used as the wiring board becomes smaller. Therefore, it is difficult to increase the distance between the boundaries of stacked insulating layers between adjacent conductors, where ion migration is likely to occur. As a result, it is difficult to improve insulation reliability. Therefore, there is a demand for a wiring board that reduces short circuits caused by ion migration and has high insulation reliability.
 本開示に係る配線基板は、上記の課題を解決するための手段の欄に記載のような構成を有することによって、イオンマイグレーションによるショートが低減され、高い絶縁信頼性を有する。 The wiring board according to the present disclosure has a configuration as described in the section on means for solving the above problems, thereby reducing short circuits caused by ion migration and providing high insulation reliability.
 本開示の一実施形態に係る配線基板を、図1~5に基づいて説明する。図1は、本開示の一実施形態に係る配線基板1を説明するための説明図である。図1に示すように、一実施形態に係る配線基板1は、絶縁層2、導体層3およびソルダーレジスト4を含む。 A wiring board according to an embodiment of the present disclosure will be described with reference to Figures 1 to 5. Figure 1 is an explanatory diagram for explaining a wiring board 1 according to an embodiment of the present disclosure. As shown in Figure 1, the wiring board 1 according to the embodiment includes an insulating layer 2, a conductor layer 3, and a solder resist 4.
 絶縁層2には、コア用絶縁層21およびビルドアップ用絶縁層22が含まれる。コア用絶縁層21は、絶縁性を有する素材であれば特に限定されない。絶縁性を有する素材としては、例えば、エポキシ樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂およびポリフェニレンエーテル樹脂などの樹脂が挙げられる。これらの樹脂は1種のみを用いてもよく、2種以上を併用してもよい。コア用絶縁層21の厚みは特に限定されず、例えば0.04mm以上2mm以下である。 The insulating layer 2 includes a core insulating layer 21 and a build-up insulating layer 22. The core insulating layer 21 is not particularly limited as long as it is made of an insulating material. Examples of insulating materials include resins such as epoxy resin, bismaleimide-triazine resin, polyimide resin, and polyphenylene ether resin. Only one of these resins may be used, or two or more of them may be used in combination. The thickness of the core insulating layer 21 is not particularly limited, and is, for example, 0.04 mm or more and 2 mm or less.
 コア用絶縁層21には、補強材が含まれていてもよい。補強材としては、例えば、ガラス繊維、ガラス不織布、アラミド不織布、アラミド繊維およびポリエステル繊維などの絶縁性布材が挙げられる。補強材は1種のみを用いてもよく、2種以上を併用してもよい。さらに、コア用絶縁層21には、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウムおよび酸化チタンなどの無機絶縁性フィラーが分散されていてもよい。無機フィラーは1種のみを用いてもよく、2種以上を併用してもよい。 The core insulating layer 21 may contain a reinforcing material. Examples of reinforcing materials include insulating cloth materials such as glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Only one type of reinforcing material may be used, or two or more types may be used in combination. Furthermore, the core insulating layer 21 may have inorganic insulating fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide dispersed therein. Only one type of inorganic filler may be used, or two or more types may be used in combination.
 コア用絶縁層21には、コア用絶縁層21の上下面を電気的に接続するために、スルーホール導体21aが位置している。スルーホール導体21aは、コア用絶縁層21の上面から下面まで貫通するスルーホール内に位置している。スルーホール導体21aは、例えば、銅めっきなどの金属めっきなどで形成されている。スルーホール導体21aは、コア用絶縁層21の両面に位置する導体層3に接続している。スルーホール導体21aは、スルーホールの内面のみに位置していてもよく、スルーホール内に充填されていてもよい。 Through-hole conductors 21a are located in the core insulating layer 21 to electrically connect the top and bottom surfaces of the core insulating layer 21. The through-hole conductors 21a are located in through-holes that penetrate the core insulating layer 21 from the top surface to the bottom surface. The through-hole conductors 21a are formed, for example, by metal plating such as copper plating. The through-hole conductors 21a are connected to the conductor layers 3 located on both sides of the core insulating layer 21. The through-hole conductors 21a may be located only on the inner surface of the through-hole, or may be filled in the through-hole.
 コア用絶縁層21の上面および下面には、導体層3およびビルドアップ用絶縁層22が交互に積層されたビルドアップ層が位置している。導体層3は、金属などの導体であれば限定されない。具体的には、導体層3は、銅箔などの金属箔、銅めっきなどの金属めっきなどで形成されている。導体層3の厚みは特に限定されず、例えば5μm以上25μm以下である。 The upper and lower surfaces of the core insulating layer 21 are provided with a build-up layer in which conductor layers 3 and build-up insulating layers 22 are alternately stacked. The conductor layer 3 is not limited as long as it is a conductor such as a metal. Specifically, the conductor layer 3 is formed of a metal foil such as copper foil, a metal plating such as copper plating, or the like. The thickness of the conductor layer 3 is not particularly limited, and is, for example, 5 μm or more and 25 μm or less.
 ビルドアップ用絶縁層22は、コア用絶縁層21と同様、絶縁性を有する素材であれば特に限定されない。絶縁性を有する素材としては、例えば、エポキシ樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂およびポリフェニレンエーテル樹脂などの樹脂が挙げられる。これらの樹脂は1種のみを用いてもよく、2種以上を併用してもよい。ビルドアップ用絶縁層22は、それぞれ同じ樹脂であってもよく、異なる樹脂であってもよい。ビルドアップ用絶縁層22とコア用絶縁層21とは、同じ樹脂であってもよく、異なる樹脂であってもよい。 The build-up insulating layer 22, like the core insulating layer 21, is not particularly limited as long as it is made of an insulating material. Examples of insulating materials include resins such as epoxy resin, bismaleimide-triazine resin, polyimide resin, and polyphenylene ether resin. Only one type of these resins may be used, or two or more types may be used in combination. The build-up insulating layers 22 may be made of the same resin or different resins. The build-up insulating layer 22 and the core insulating layer 21 may be made of the same resin or different resins.
 ビルドアップ用絶縁層22には、補強材が含まれていてもよい。補強材としては、例えば、ガラス繊維、ガラス不織布、アラミド不織布、アラミド繊維およびポリエステル繊維などの絶縁性布材が挙げられる。補強材は1種のみを用いてもよく、2種以上を併用してもよい。さらに、ビルドアップ用絶縁層22には、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウムおよび酸化チタンなどの無機フィラーが、分散されていてもよい。無機フィラーは1種のみを用いてもよく、2種以上を併用してもよい。ビルドアップ用絶縁層22の厚みは特に限定されず、例えば5μm以上100μm以下である。ビルドアップ用絶縁層22は、それぞれ同じ厚みを有していてもよく、異なる厚みを有していてもよい。 The build-up insulating layer 22 may contain a reinforcing material. Examples of reinforcing materials include insulating cloth materials such as glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Only one type of reinforcing material may be used, or two or more types may be used in combination. Furthermore, the build-up insulating layer 22 may have inorganic fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide dispersed therein. Only one type of inorganic filler may be used, or two or more types may be used in combination. The thickness of the build-up insulating layer 22 is not particularly limited, and is, for example, 5 μm or more and 100 μm or less. The build-up insulating layers 22 may have the same thickness or different thicknesses.
 ビルドアップ用絶縁層22には、層間を電気的に接続するためのビアホール導体22aが位置している。ビアホール導体22aは、ビルドアップ用絶縁層22の上下面を貫通するビアホール内に位置している。ビアホール導体22aは、例えば、銅めっきなどの金属めっきなどで形成されている。ビアホール導体22aは、ビルドアップ用絶縁層22の両面に位置する導体層3に接続している。ビアホール導体22aは、ビアホール内に充填されていてもよく、ビアホールの内面のみに位置していてもよい。 The build-up insulating layer 22 includes via-hole conductors 22a for electrically connecting layers. The via-hole conductors 22a are located in via holes that penetrate the top and bottom surfaces of the build-up insulating layer 22. The via-hole conductors 22a are formed, for example, by metal plating such as copper plating. The via-hole conductors 22a are connected to the conductor layers 3 that are located on both sides of the build-up insulating layer 22. The via-hole conductors 22a may fill the via holes, or may be located only on the inner surface of the via holes.
 図1に示すように、ビルドアップ層の表面には、ソルダーレジスト4が位置していてもよい。ソルダーレジスト4は樹脂で形成されており、樹脂としては、例えばアクリル変性エポキシ樹脂などが挙げられる。導体層3と電子部品Eの電極とが半田5を介して電気的に接続されるために、ソルダーレジスト4には、開口が設けられている。電子部品Eとしては、例えば、半導体集積回路素子およびオプトエレクトロニクス素子などが挙げられる。 As shown in FIG. 1, a solder resist 4 may be located on the surface of the build-up layer. The solder resist 4 is made of a resin, such as an acrylic-modified epoxy resin. The solder resist 4 has openings so that the conductor layer 3 and the electrodes of the electronic component E are electrically connected via solder 5. Examples of the electronic component E include semiconductor integrated circuit elements and optoelectronic elements.
 絶縁層2の主面に位置する導体層3は、比較的狭い幅を有する導体31および広い幅を有する接地用導体層などを含む。導体31は、図2Aに示すように、第1絶縁層221の第1面221’に、互いに隣接して位置する第1導体311および第2導体312を有している。図2Aは、図1に示す領域Xの断面の一実施形態を説明するための拡大説明図である。 The conductor layer 3 located on the main surface of the insulating layer 2 includes a conductor 31 having a relatively narrow width and a grounding conductor layer having a wide width. As shown in FIG. 2A, the conductor 31 has a first conductor 311 and a second conductor 312 located adjacent to each other on the first surface 221' of the first insulating layer 221. FIG. 2A is an enlarged explanatory view for explaining one embodiment of a cross section of region X shown in FIG. 1.
 図1に示すX領域は、図2Aに示す第1絶縁層221および第2絶縁層222のいずれもが、ビルドアップ用絶縁層22である。しかし、第1絶縁層221はコア用絶縁層21であってもよい。すなわち、本明細書において、主面(第1面221’)に導体31が位置している絶縁層2を第1絶縁層221と定義し、導体31および第1絶縁層221の第1面221’を被覆している絶縁層2を第2絶縁層222と定義する。 In the X region shown in FIG. 1, both the first insulating layer 221 and the second insulating layer 222 shown in FIG. 2A are build-up insulating layers 22. However, the first insulating layer 221 may also be the core insulating layer 21. That is, in this specification, the insulating layer 2 having the conductor 31 located on its main surface (first surface 221') is defined as the first insulating layer 221, and the insulating layer 2 covering the conductor 31 and the first surface 221' of the first insulating layer 221 is defined as the second insulating layer 222.
 図2Aに示すように、第1導体311と第2導体312との間の距離(第1距離)は特に限定されないものの比較的短く、例えば、6μm以上12μm以下であってもよい。第1導体311と第2導体312との間には、第1面221’に第1溝6が位置している。第1溝6は、第1導体311と第2導体312との間全体に位置している必要はない。図2Cに示すように、第1溝6は、第1導体311と第2導体312との間の少なくとも一部に位置していればよい。図2Cは、図2Aに示す矢印A方向から見た平面図(但し、第2絶縁層222は省略)である。 As shown in FIG. 2A, the distance (first distance) between the first conductor 311 and the second conductor 312 is relatively short, but is not particularly limited, and may be, for example, 6 μm or more and 12 μm or less. Between the first conductor 311 and the second conductor 312, a first groove 6 is located on the first surface 221'. The first groove 6 does not need to be located entirely between the first conductor 311 and the second conductor 312. As shown in FIG. 2C, the first groove 6 only needs to be located at least partially between the first conductor 311 and the second conductor 312. FIG. 2C is a plan view seen from the direction of the arrow A shown in FIG. 2A (however, the second insulating layer 222 is omitted).
 図2Aに示すように、第1溝6は、第1凹部61、第2凹部62および第1中間部6aを含む。第1凹部61は、第1導体311側に位置しており、第1面221’と反対側に窪む凹部である。第2凹部62は、第2導体312側に位置しており、第1面221’と反対側に窪む凹部である。第1凹部61および第2凹部62の深さD1は限定されず、例えば、第1絶縁層221の厚みの20%以上60%以下であってもよい。 As shown in FIG. 2A, the first groove 6 includes a first recess 61, a second recess 62, and a first intermediate portion 6a. The first recess 61 is located on the first conductor 311 side and is a recess recessed on the side opposite the first surface 221'. The second recess 62 is located on the second conductor 312 side and is a recess recessed on the side opposite the first surface 221'. The depth D1 of the first recess 61 and the second recess 62 is not limited and may be, for example, 20% to 60% of the thickness of the first insulating layer 221.
 第1凹部61および第2凹部62の深さD1は、図2Aに示すように、第1溝6を挟んで位置する第1面221’同士を結ぶ仮想直線から第1凹部61および第2凹部62の最深部までの距離である。図2Aにおいて、第1溝6内に示す破線部分が仮想直線である。第1凹部61および第2凹部62の深さD1は同じであってもよく、それぞれ異なっていてもよい。 The depth D1 of the first recess 61 and the second recess 62 is the distance from an imaginary line connecting the first surfaces 221' located on either side of the first groove 6 to the deepest parts of the first recess 61 and the second recess 62, as shown in FIG. 2A. In FIG. 2A, the dashed line portion shown in the first groove 6 is the imaginary line. The depth D1 of the first recess 61 and the second recess 62 may be the same or different from each other.
 第1中間部6aは、第1凹部61と第2凹部62との間に位置している。第1中間部6aの端部6aTは、第1凹部61および第2凹部62の底部よりも第1面221’側に位置している。第1中間部6aの端部6aTにおいて、仮想直線と第1中間部6aの端部6aTとの最短距離D2は限定されず、例えば、第1絶縁層221の厚みの0%以上30%以下であってもよい。第1中間部6aの端部6aTの一部が仮想直線と同じ高さであっても構わない。 The first intermediate portion 6a is located between the first recess 61 and the second recess 62. The end 6aT of the first intermediate portion 6a is located closer to the first surface 221' than the bottoms of the first recess 61 and the second recess 62. At the end 6aT of the first intermediate portion 6a, the shortest distance D2 between the virtual straight line and the end 6aT of the first intermediate portion 6a is not limited, and may be, for example, 0% to 30% of the thickness of the first insulating layer 221. A part of the end 6aT of the first intermediate portion 6a may be at the same height as the virtual straight line.
 第1溝6が、第1凹部61、第2凹部62および第1中間部6aを含むことによって、第1導体311から第2導体312まで、第1溝6の内面の距離、すなわち第1絶縁層221と第2絶縁層222との境界の長さを長くすることができる。その結果、第1導体311と第2導体312との間の幅が比較的狭くても、イオンマイグレーションによるショートを低減することができる。さらに、第1導体311および第2導体312を被覆する第2絶縁層222が、第1溝6に埋入される。その結果、第1凹部61、第2凹部62および第1中間部6aの凹凸によって、第1絶縁層221と第2絶縁層222との接合界面の面積が増加する。そのため、第1絶縁層221と第2絶縁層222との密着性が向上する。 The first groove 6 includes the first recess 61, the second recess 62, and the first intermediate portion 6a, so that the distance of the inner surface of the first groove 6 from the first conductor 311 to the second conductor 312, that is, the length of the boundary between the first insulating layer 221 and the second insulating layer 222, can be increased. As a result, even if the width between the first conductor 311 and the second conductor 312 is relatively narrow, short circuits due to ion migration can be reduced. Furthermore, the second insulating layer 222 covering the first conductor 311 and the second conductor 312 is embedded in the first groove 6. As a result, the unevenness of the first recess 61, the second recess 62, and the first intermediate portion 6a increases the area of the bonding interface between the first insulating layer 221 and the second insulating layer 222. Therefore, the adhesion between the first insulating layer 221 and the second insulating layer 222 is improved.
 第1溝6の両端部(第1導体311側および第2導体312側)に深い第1凹部61および第2凹部62が位置していることによって、第1絶縁層221と第2絶縁層222との境界の長さが長くなる。さらに、第1溝6端部からの第2絶縁層222の剥離が生じにくくなる。すなわち、深い第1凹部61および第2凹部62への第2絶縁層222の埋入量が多くなる。その結果、第1溝6両端部において第1絶縁層221と第2絶縁層222の接合界面の面積が増加する。そのため、第1絶縁層221と第2絶縁層222との密着性が向上する。 The deep first recess 61 and second recess 62 are located at both ends of the first groove 6 (the first conductor 311 side and the second conductor 312 side), which increases the length of the boundary between the first insulating layer 221 and the second insulating layer 222. Furthermore, the second insulating layer 222 is less likely to peel off from the ends of the first groove 6. That is, the amount of the second insulating layer 222 embedded in the deep first recess 61 and second recess 62 increases. As a result, the area of the bonding interface between the first insulating layer 221 and the second insulating layer 222 increases at both ends of the first groove 6. This improves the adhesion between the first insulating layer 221 and the second insulating layer 222.
 第1溝6の内面の表面粗さは限定されない。第1溝6の内面は、第1絶縁層221が無機絶縁性フィラーを含む場合、第1溝6の内面に無機絶縁性フィラーが露出することがある。このような場合、第1溝6の内面の表面粗さは、第1面221’の表面粗さよりも大きくなる。第1溝6の内面の表面粗さが、第1面221’の表面粗さよりも大きい場合、第1絶縁層221と第2絶縁層222との密着性をより向上させることができる。第1溝6の内面の表面粗さは、例えば、700nm以上800nm以下であってもよい。第1面221’の表面粗さは、例えば、40nm以上60nm以下であってもよい。このような第1溝6の内面粗さ、および第1面221’の表面粗さは、例えば3次元白色光干渉型顕微鏡による分析によって算出することができる。 The surface roughness of the inner surface of the first groove 6 is not limited. When the first insulating layer 221 contains an inorganic insulating filler, the inorganic insulating filler may be exposed on the inner surface of the first groove 6. In such a case, the surface roughness of the inner surface of the first groove 6 is greater than the surface roughness of the first surface 221'. When the surface roughness of the inner surface of the first groove 6 is greater than the surface roughness of the first surface 221', the adhesion between the first insulating layer 221 and the second insulating layer 222 can be further improved. The surface roughness of the inner surface of the first groove 6 may be, for example, 700 nm or more and 800 nm or less. The surface roughness of the first surface 221' may be, for example, 40 nm or more and 60 nm or less. Such inner surface roughness of the first groove 6 and the surface roughness of the first surface 221' can be calculated by analysis using, for example, a three-dimensional white light interference microscope.
 第1凹部61の表面粗さ、第2凹部62の表面粗さおよび第1中間部6aの表面粗さは、限定されない。例えば、第1凹部61の表面粗さおよび第2凹部62の表面粗さは、第1中間部6aの表面粗さよりも大きくてもよい。このような構成を有する場合、第1凹部61および第2凹部62に埋入している第2絶縁層222の密着性をより向上させることができる。その結果、第1溝6端部からの第2絶縁層222の剥離がより生じにくくなる。第1凹部61の表面粗さおよび第2凹部62の表面粗さは、例えば、400nm以上600nm以下であってもよい。第1凹部61の表面粗さおよび第2凹部62の表面粗さは、同じであってもよく異なっていてもよい。第1中間部6aの表面粗さは、例えば、400nm以上600nm以下であってもよい。 The surface roughness of the first recess 61, the surface roughness of the second recess 62, and the surface roughness of the first intermediate portion 6a are not limited. For example, the surface roughness of the first recess 61 and the surface roughness of the second recess 62 may be greater than the surface roughness of the first intermediate portion 6a. With such a configuration, the adhesion of the second insulating layer 222 embedded in the first recess 61 and the second recess 62 can be further improved. As a result, peeling of the second insulating layer 222 from the end of the first groove 6 is less likely to occur. The surface roughness of the first recess 61 and the surface roughness of the second recess 62 may be, for example, 400 nm or more and 600 nm or less. The surface roughness of the first recess 61 and the surface roughness of the second recess 62 may be the same or different. The surface roughness of the first intermediate portion 6a may be, for example, 400 nm or more and 600 nm or less.
 仮想直線と第1中間部6aの端部6aTとの最短距離D2は、例えば、第1凹部61および第2凹部62の深さD1のうち深い方の深さD1の0%以上25%以下であってもよい。このような構成を有することによって、比較的幅の狭い第1溝6にも、第1絶縁層221と第2絶縁層222との境界の長さを確保して、第2絶縁層222を十分に埋入させることができる。その結果、第1絶縁層221と第2絶縁層222との密着性がより向上する。 The shortest distance D2 between the virtual straight line and the end 6aT of the first intermediate portion 6a may be, for example, 0% to 25% of the greater of the depths D1 of the first recess 61 and the second recess 62. With this configuration, the length of the boundary between the first insulating layer 221 and the second insulating layer 222 can be ensured and the second insulating layer 222 can be sufficiently embedded even in the first groove 6, which has a relatively narrow width. As a result, the adhesion between the first insulating layer 221 and the second insulating layer 222 is further improved.
 図3Aに示すように、第1面221’は、第1溝6の開口縁と第1導体311との間に位置する第1領域3a、および第1溝6の開口縁と第2導体312との間に位置する第2領域3bの少なくとも一方を有していてもよい。図3Aは、図1に示す領域Xの断面の他の実施形態を説明するための拡大説明図である。第1領域3aおよび第2領域3bの少なくとも一方と第2絶縁層222とが接していると、第1絶縁層221と第2絶縁層222との接触面積が増加する。その結果、第1絶縁層221と第2絶縁層222との密着性がより向上する。さらに、第1導体311および第2導体312から第1溝6にかけて、第2絶縁層222との界面が滑らかにならない。そのため、クラックの伸展および第2絶縁層222の剥離が低減される。 3A, the first surface 221' may have at least one of a first region 3a located between the opening edge of the first groove 6 and the first conductor 311, and a second region 3b located between the opening edge of the first groove 6 and the second conductor 312. FIG. 3A is an enlarged explanatory view for explaining another embodiment of the cross section of region X shown in FIG. 1. When at least one of the first region 3a and the second region 3b is in contact with the second insulating layer 222, the contact area between the first insulating layer 221 and the second insulating layer 222 increases. As a result, the adhesion between the first insulating layer 221 and the second insulating layer 222 is further improved. Furthermore, the interface with the second insulating layer 222 is not smooth from the first conductor 311 and the second conductor 312 to the first groove 6. Therefore, the extension of cracks and the peeling of the second insulating layer 222 are reduced.
 図3Aに示すように、第1領域3aおよび第2領域3bの少なくとも一方には、ニクロム層(第2シード層)32が位置していてもよい。ニクロム層(第2シード層)32は銅より融点が高い。第1領域3aおよび第2領域3bの少なくとも一方にニクロム層(第2シード層)32が位置していることによって、第1溝6の形成に調整したレーザが第1領域3aに当たったとしても、ニクロム層(第2シード層)32は溶融しにくい。その結果、第1領域3aが保護される。ニクロム層(第2シード層)32の厚みは限定されず、例えば、0.04μm以上0.1μm以下であってもよい。第1領域3aおよび第2領域3bの少なくとも一方に位置している第2シード層としてニクロム層を例示している。しかし、第2シード層としては、例えば、チタン、クロム、ニッケル、タンタル、モリブデン、タングステンおよびパラジウムなどの周期表4族、5族、6族または10族である遷移金属で形成された層であってもよい。 As shown in FIG. 3A, a nichrome layer (second seed layer) 32 may be located in at least one of the first region 3a and the second region 3b. The nichrome layer (second seed layer) 32 has a higher melting point than copper. By having the nichrome layer (second seed layer) 32 located in at least one of the first region 3a and the second region 3b, even if a laser adjusted to form the first groove 6 hits the first region 3a, the nichrome layer (second seed layer) 32 is less likely to melt. As a result, the first region 3a is protected. The thickness of the nichrome layer (second seed layer) 32 is not limited and may be, for example, 0.04 μm or more and 0.1 μm or less. A nichrome layer is exemplified as a second seed layer located in at least one of the first region 3a and the second region 3b. However, the second seed layer may also be a layer formed of a transition metal from Group 4, 5, 6, or 10 of the periodic table, such as titanium, chromium, nickel, tantalum, molybdenum, tungsten, and palladium.
 第1導体311および第2導体312を断面視した場合、第1導体311の側面および第2導体312の側面は、第1面221’に対して垂直であってもよく、傾斜していてもよい。例えば、第1導体311および第2導体312の少なくとも一方において、第1溝6側の側面は、断面視した場合、第1導体311の端部(上端部)および第2導体312の端部(上端部)から第1面221’にかけて、第1導体311の幅および第2導体312の幅が大きくなる傾斜面であってもよい。第1導体311および第2導体312の少なくとも一方がこのような傾斜面を有する場合、第1溝6への第2絶縁層222の充填性がより向上する。 When the first conductor 311 and the second conductor 312 are viewed in cross section, the side of the first conductor 311 and the side of the second conductor 312 may be perpendicular to the first surface 221' or may be inclined. For example, in at least one of the first conductor 311 and the second conductor 312, the side on the first groove 6 side may be an inclined surface in which the width of the first conductor 311 and the width of the second conductor 312 increase from the end (upper end) of the first conductor 311 and the end (upper end) of the second conductor 312 to the first surface 221' when viewed in cross section. When at least one of the first conductor 311 and the second conductor 312 has such an inclined surface, the filling of the second insulating layer 222 into the first groove 6 is further improved.
 第1導体311および第2導体312が延在する方向と垂直な方向に断面視した場合、第1導体311および第2導体312における側面のうち、第1溝6と隣接する第1側面35aの表面粗さは、第1側面35a以外の側面35xの表面粗さよりも小さくてもよい。「第1溝6と隣接する第1側面35a」とは、図2Aおよび図2Bに示すように、第1導体311および第2導体312を断面視した場合に、第1導体311の側面および第2導体312の側面のうち、第1溝6と隣り合うように位置する側面を意味する。 When viewed in a cross-section perpendicular to the direction in which the first conductor 311 and the second conductor 312 extend, the surface roughness of the first side surface 35a adjacent to the first groove 6 among the side surfaces of the first conductor 311 and the second conductor 312 may be smaller than the surface roughness of the side surfaces 35x other than the first side surface 35a. "The first side surface 35a adjacent to the first groove 6" refers to the side surface of the first conductor 311 and the side surface of the second conductor 312 that is positioned adjacent to the first groove 6 when the first conductor 311 and the second conductor 312 are viewed in cross-section as shown in Figures 2A and 2B.
 さらに、第1導体311および第2導体312を平面視した場合、第1導体311および第2導体312における上面のうち、第1溝6と隣接する部分に位置する第1上面36aの表面粗さは、第1上面36a以外の上面36xの表面粗さよりも小さくてもよい。「第1溝6と隣接する部分に位置する第1上面36a」とは、図2Cに示すように、第1導体311および第2導体312を平面視した場合に、第1導体311の上面および第2導体312の上面のうち、第1溝6と隣り合うように位置する上面を意味する。図2Cは、図2Aに示す矢印A方向から見た平面図(但し、第2絶縁層222は省略)である。 Furthermore, when the first conductor 311 and the second conductor 312 are viewed in a plane, the surface roughness of the first upper surface 36a located in a portion adjacent to the first groove 6 among the upper surfaces of the first conductor 311 and the second conductor 312 may be smaller than the surface roughness of the upper surface 36x other than the first upper surface 36a. The "first upper surface 36a located in a portion adjacent to the first groove 6" refers to the upper surface located adjacent to the first groove 6 among the upper surfaces of the first conductor 311 and the upper surfaces of the second conductor 312, as shown in FIG. 2C, when the first conductor 311 and the second conductor 312 are viewed in a plane, as shown in FIG. 2C. FIG. 2C is a plan view seen from the direction of the arrow A shown in FIG. 2A (however, the second insulating layer 222 is omitted).
 第1側面35aの表面粗さが第1側面35a以外の側面35xの表面粗さよりも小さいと、イオンマイグレーションの起点となる隙間(すなわち、第1導体311および第2導体312と第2絶縁層222との隙間)が減少する。その結果、イオンマイグレーションによるショートがより低減される。第1側面35aの表面粗さは、限定されない。第1側面35aは、例えば、0.05μm以上0.2μm以下の二乗平均平方根粗さRqを有していてもよい。 If the surface roughness of the first side 35a is smaller than the surface roughness of the side 35x other than the first side 35a, the gaps that are the starting points of ion migration (i.e., the gaps between the first conductor 311 and the second conductor 312 and the second insulating layer 222) are reduced. As a result, short circuits due to ion migration are further reduced. The surface roughness of the first side 35a is not limited. The first side 35a may have a root-mean-square roughness Rq of, for example, 0.05 μm or more and 0.2 μm or less.
 第1上面36aの表面粗さが第1上面36a以外の上面36xの表面粗さよりも小さいと、第2絶縁層222の積層時に、第1溝6に第2絶縁層222がより効率よく流れ込む。これにより、第1溝6の内側、および第1導体311と第2導体312との間を第2絶縁層222で充填する構造とすることが容易になる。第1上面36aの表面粗さは、限定されない。第1上面36aは、例えば、0.04μm以上0.09μm以下の二乗平均平方根粗さRqを有していてもよい。 If the surface roughness of the first upper surface 36a is smaller than the surface roughness of the upper surface 36x other than the first upper surface 36a, the second insulating layer 222 flows more efficiently into the first groove 6 when the second insulating layer 222 is laminated. This makes it easier to form a structure in which the inside of the first groove 6 and the space between the first conductor 311 and the second conductor 312 are filled with the second insulating layer 222. The surface roughness of the first upper surface 36a is not limited. The first upper surface 36a may have a root-mean-square roughness Rq of, for example, 0.04 μm or more and 0.09 μm or less.
 第1側面35aおよび第1上面36aの表面粗さを小さくする方法は限定されない。例えば、第1導体311および第2導体312において、第1側面35aおよび第1上面36aに相当する部分に、軽くレーザを照射すればよい。レーザを照射することによって、当該部分の導体(金属)表面が溶融して凹凸が少なくなる。 There are no limitations on the method for reducing the surface roughness of the first side surface 35a and the first top surface 36a. For example, a laser may be lightly irradiated onto the portions of the first conductor 311 and the second conductor 312 that correspond to the first side surface 35a and the first top surface 36a. By irradiating the laser, the conductor (metal) surface of the corresponding portion melts, reducing the unevenness.
 第1側面35aの性状および第1側面以外の側面35xの性状について、3次元白色光干渉型顕微鏡を用いて測定した。図6は、測定結果に基づいて第1側面35aの凹凸を示すグラフである。図6から明らかなように、第1側面35aは凹凸が比較的小さいことがわかる。測定結果に基づいて第1側面35aの二乗平均平方根粗さRqを求めると、0.086μmであった。 The properties of the first side 35a and the properties of the sides 35x other than the first side were measured using a three-dimensional white light interference microscope. Figure 6 is a graph showing the unevenness of the first side 35a based on the measurement results. As is clear from Figure 6, the unevenness of the first side 35a is relatively small. The root mean square roughness Rq of the first side 35a was calculated based on the measurement results to be 0.086 μm.
 第1側面以外の側面35xの性状について、3次元白色光干渉型顕微鏡を用いて測定した。図7は、測定結果に基づいて第1側面以外の側面35xの凹凸を示すグラフである。図7から明らかなように、第1側面以外の側面35xは凹凸が大きいことがわかる。測定結果に基づいて第1側面35a以外の側面の二乗平均平方根粗さRqを求めると、0.103μmであった。 The properties of the side surfaces 35x other than the first side surface were measured using a three-dimensional white light interference microscope. Figure 7 is a graph showing the unevenness of the side surfaces 35x other than the first side surface based on the measurement results. As is clear from Figure 7, the unevenness of the side surfaces 35x other than the first side surface is large. The root mean square roughness Rq of the side surfaces other than the first side surface 35a was calculated based on the measurement results to be 0.103 μm.
 次に、第1上面36aの性状について、3次元白色光干渉型顕微鏡を用いて測定した。図8は、測定結果に基づいて第1上面36aの凹凸を示すグラフである。図8から明らかなように、第1上面36aは凹凸が比較的小さいことがわかる。測定結果に基づいて第1上面36aの二乗平均平方根粗さRqを求めると、0.075μmであった。 Next, the properties of the first upper surface 36a were measured using a three-dimensional white light interference microscope. Figure 8 is a graph showing the unevenness of the first upper surface 36a based on the measurement results. As is clear from Figure 8, the unevenness of the first upper surface 36a is relatively small. The root mean square roughness Rq of the first upper surface 36a was calculated based on the measurement results to be 0.075 μm.
 次に、3次元白色光干渉型顕微鏡を用いて第1上面以外の上面36xを測定した図9は、測定結果に基づいて第1上面以外の上面36xの凹凸を示すグラフである。図9から明らかなように、第1上面以外の上面36xは凹凸が大きいことがわかる。測定結果に基づいて第1上面以外の上面36xの二乗平均平方根粗さRqを求めると、0.106μmであった。 Next, FIG. 9 shows a graph showing the unevenness of the upper surface 36x other than the first upper surface based on the measurement results, in which the upper surface 36x other than the first upper surface was measured using a three-dimensional white light interference microscope. As is clear from FIG. 9, the upper surface 36x other than the first upper surface has large unevenness. The root mean square roughness Rq of the upper surface 36x other than the first upper surface was calculated based on the measurement results to be 0.106 μm.
 測定に使用した導体は、7.5μmの厚みおよび8μmの幅を有し、銅で形成された第1導体311である。第1側面35aおよび第1上面36aは、60秒間レーザを照射することによって形成した。 The conductor used in the measurement was the first conductor 311, which had a thickness of 7.5 μm and a width of 8 μm and was made of copper. The first side surface 35a and the first top surface 36a were formed by irradiating a laser for 60 seconds.
 一実施形態に係る配線基板1には、図4に示すように、導体31間が比較的広い部分が位置していてもよい。図4は、図1に示す領域Xの断面のさらに他の実施形態を説明するための拡大説明図である。図4に示すように、第1絶縁層221の第1面221’には、第3導体313および第4導体314が隣接して位置している。第3導体313と第4導体314との間の距離(第2距離)は、第1導体311と第2導体312との間の距離(第1距離)よりも長い。第1距離は、上記のように6μm以上12μm以下であってもよく、第2距離は、例えば、25μm以上42μm以下であってもよい。 In the wiring board 1 according to one embodiment, as shown in FIG. 4, there may be a portion where the conductors 31 are spaced relatively wide from each other. FIG. 4 is an enlarged explanatory view for explaining yet another embodiment of the cross section of region X shown in FIG. 1. As shown in FIG. 4, the third conductor 313 and the fourth conductor 314 are adjacently located on the first surface 221' of the first insulating layer 221. The distance (second distance) between the third conductor 313 and the fourth conductor 314 is longer than the distance (first distance) between the first conductor 311 and the second conductor 312. The first distance may be 6 μm or more and 12 μm or less as described above, and the second distance may be, for example, 25 μm or more and 42 μm or less.
 第3導体313と第4導体314との間には、第1面221’に第2溝7が位置している。第2溝7は、第3導体313と第4導体314との間全体に位置している必要はない。第1溝6と同様、第2溝7は、第3導体313と第4導体314との間の少なくとも一部に位置していればよい。 The second groove 7 is located on the first surface 221' between the third conductor 313 and the fourth conductor 314. The second groove 7 does not need to be located entirely between the third conductor 313 and the fourth conductor 314. Like the first groove 6, the second groove 7 only needs to be located at least partially between the third conductor 313 and the fourth conductor 314.
 図4に示すように、第2溝7は、第3凹部71、第4凹部72および第2中間部7aを含む。第3凹部71は、第3導体313側に位置しており、第1面221’と反対側に窪む凹部である。第4凹部72は、第4導体314側に位置しており、第1面221’と反対側に窪む凹部である。第3凹部71および第4凹部72の深さD3は限定されず、例えば、第1絶縁層221の厚みの20%以上60%以下であってもよい。第3凹部71および第4凹部72の深さD3は、図4に示すように、第2溝7を挟んで位置する第1面221’同士を結ぶ仮想直線から第1凹部61および第2凹部62の最深部までの距離である。図4において、第2溝7内に示す破線部分が仮想直線である。第3凹部71および第4凹部72の深さD3は同じであってもよく、それぞれ異なっていてもよい。 As shown in FIG. 4, the second groove 7 includes a third recess 71, a fourth recess 72, and a second intermediate portion 7a. The third recess 71 is located on the third conductor 313 side and is a recess recessed on the opposite side of the first surface 221'. The fourth recess 72 is located on the fourth conductor 314 side and is a recess recessed on the opposite side of the first surface 221'. The depth D3 of the third recess 71 and the fourth recess 72 is not limited, and may be, for example, 20% to 60% of the thickness of the first insulating layer 221. As shown in FIG. 4, the depth D3 of the third recess 71 and the fourth recess 72 is the distance from a virtual straight line connecting the first surfaces 221' located on either side of the second groove 7 to the deepest parts of the first recess 61 and the second recess 62. In FIG. 4, the dashed line portion shown in the second groove 7 is a virtual straight line. The depths D3 of the third recess 71 and the fourth recess 72 may be the same or different from each other.
 第2中間部7aは、第3凹部71および第4凹部72との間に位置している。第2中間部7aの端部7aTは、第3凹部71および第4凹部72の底部よりも第1面221’側に位置している。第2中間部7aの端部7aTにおいて、仮想直線と第2中間部7aの端部7aTとの最短距離D4は、仮想直線と第1中間部6aの端部6aTとの最短距離D2よりも短くてもよい。例えば、最短距離D4は、第1絶縁層221の厚みの0%以上10%以下であってもよい。0%の場合、第2中間部7aの端部の少なくとも一部は、仮想直線と接する位置にあることを意味する。 The second intermediate portion 7a is located between the third recess 71 and the fourth recess 72. The end 7aT of the second intermediate portion 7a is located closer to the first surface 221' than the bottoms of the third recess 71 and the fourth recess 72. At the end 7aT of the second intermediate portion 7a, the shortest distance D4 between the virtual line and the end 7aT of the second intermediate portion 7a may be shorter than the shortest distance D2 between the virtual line and the end 6aT of the first intermediate portion 6a. For example, the shortest distance D4 may be 0% or more and 10% or less of the thickness of the first insulating layer 221. 0% means that at least a part of the end of the second intermediate portion 7a is in contact with the virtual line.
 第2溝7が、第3凹部71、第4凹部72および第2中間部7aを含むことによって、第3導体313から第4導体314まで、第2溝7の内面の距離が長くなる。その結果、第3導体313と第4導体314との間において、イオンマイグレーションによるショートが低減される。さらに、第3導体313および第4導体314を被覆する第2絶縁層222が、第2溝7に埋入される。その結果、第3凹部71、第4凹部72および第2中間部7aの凹凸によって接合界面の面積が増加するため密着力が向上する。そのため、第1絶縁層221と第2絶縁層222との密着性が向上する。 The second groove 7 includes the third recess 71, the fourth recess 72, and the second intermediate portion 7a, so that the distance of the inner surface of the second groove 7 from the third conductor 313 to the fourth conductor 314 is increased. As a result, short circuits due to ion migration are reduced between the third conductor 313 and the fourth conductor 314. Furthermore, the second insulating layer 222 that covers the third conductor 313 and the fourth conductor 314 is embedded in the second groove 7. As a result, the unevenness of the third recess 71, the fourth recess 72, and the second intermediate portion 7a increases the area of the bonding interface, improving the adhesion. Therefore, the adhesion between the first insulating layer 221 and the second insulating layer 222 is improved.
 第2溝7の両端部(第3導体313側および第4導体314側)に深い第3凹部71および第4凹部72が位置していることによって、第2溝7端部からの第2絶縁層222の剥離が生じにくくなる。すなわち、深い第3凹部71および第4凹部72への第2絶縁層222の埋入量が多くなる。その結果、第2溝7両端部において第1絶縁層221と第2絶縁層222の接合界面の面積が増加する。そのため、第1絶縁層221と第2絶縁層222との密着力が向上する。 The deep third recess 71 and fourth recess 72 are located at both ends of the second groove 7 (the third conductor 313 side and the fourth conductor 314 side), making it difficult for the second insulating layer 222 to peel off from the ends of the second groove 7. In other words, the amount of the second insulating layer 222 embedded in the deep third recess 71 and fourth recess 72 increases. As a result, the area of the bonding interface between the first insulating layer 221 and the second insulating layer 222 increases at both ends of the second groove 7. This improves the adhesion between the first insulating layer 221 and the second insulating layer 222.
 第1絶縁層221の厚さ方向において、第2中間部7aの少なくとも一部は、仮想直線と同じ高さであってもよい。すなわち、仮想直線と第2中間部7aの端部7aTとの最短距離D4が0であってもよい。第2中間部7aの少なくとも一部が、仮想直線と同じ高さである場合、導体31間が比較的広い部分であっても、第1絶縁層221と第2絶縁層222との密着性を確保しつつ、第2絶縁層222の主面に窪みが生じるのを低減することができる。すなわち、第3導体313と第4導体314との境界の長さが確保され、第2絶縁層222が広範囲の第2溝7に埋入する量を低減する。その結果、第2絶縁層222における第2溝7と反対側の面に生じる窪みが低減される。 In the thickness direction of the first insulating layer 221, at least a part of the second intermediate portion 7a may be at the same height as the imaginary line. That is, the shortest distance D4 between the imaginary line and the end 7aT of the second intermediate portion 7a may be 0. When at least a part of the second intermediate portion 7a is at the same height as the imaginary line, even in a portion where the distance between the conductors 31 is relatively wide, it is possible to reduce the occurrence of depressions on the main surface of the second insulating layer 222 while ensuring adhesion between the first insulating layer 221 and the second insulating layer 222. That is, the length of the boundary between the third conductor 313 and the fourth conductor 314 is ensured, and the amount of the second insulating layer 222 embedded in the wide second groove 7 is reduced. As a result, depressions occurring on the surface of the second insulating layer 222 opposite the second groove 7 are reduced.
 第3導体313および第4導体314を断面視した場合、第3導体313の側面および第4導体314の側面は、第1面221’に対して垂直であってもよく、傾斜していてもよい。例えば、第3導体313および第4導体314の少なくとも一方において、第2溝7側の側面は、断面視した場合、第3導体313の端部(上端部)および第4導体314の端部(上端部)から第1面221’にかけて、第3導体313の幅および第4導体314の幅が大きくなる傾斜面であってもよい。第3導体313および第4導体314の少なくとも一方がこのような傾斜面を有する場合、第2溝7への第2絶縁層222の充填性がより向上する。 When the third conductor 313 and the fourth conductor 314 are viewed in cross section, the side of the third conductor 313 and the side of the fourth conductor 314 may be perpendicular to the first surface 221' or may be inclined. For example, in at least one of the third conductor 313 and the fourth conductor 314, the side on the second groove 7 side may be an inclined surface in which the width of the third conductor 313 and the width of the fourth conductor 314 increase from the end (upper end) of the third conductor 313 and the end (upper end) of the fourth conductor 314 to the first surface 221' when viewed in cross section. When at least one of the third conductor 313 and the fourth conductor 314 has such an inclined surface, the filling of the second insulating layer 222 into the second groove 7 is further improved.
 図4Aおよび図4Bに示すように、第3導体313および第4導体314が延在する方向と垂直な方向に断面視した場合、第3導体313および第4導体314における側面のうち、第2溝7と隣接する第2側面35bの表面粗さは、第2側面以外の側面35yの表面粗さよりも小さくてもよい。「第2溝7と隣接する第2側面35b」とは、第3導体313および第4導体314を断面視した場合に、第3導体313の側面および第4導体314の側面のうち、第2溝7と隣り合うように位置する側面を意味する。さらに、第3導体313および第4導体314を平面視した場合、第3導体313および第4導体314における上面のうち、第2溝7と隣接する部分に位置する第2上面36bの表面粗さは、第2上面以外の上面36yの表面粗さよりも小さくてもよい。「第2溝7と隣接する部分に位置する第2上面36b」とは、第3導体313および第4導体314を平面視した場合に、第3導体313の上面および第4導体314の上面のうち、第2溝7と隣り合うように位置する上面を意味する(第1上面36aについて説明した図2Cを参照)。 4A and 4B, when viewed in a cross-section perpendicular to the direction in which the third conductor 313 and the fourth conductor 314 extend, the surface roughness of the second side surface 35b adjacent to the second groove 7 among the side surfaces of the third conductor 313 and the fourth conductor 314 may be smaller than the surface roughness of the side surface 35y other than the second side surface. "The second side surface 35b adjacent to the second groove 7" means the side surface of the third conductor 313 and the side surface of the fourth conductor 314 that is located adjacent to the second groove 7 among the side surfaces of the third conductor 313 and the fourth conductor 314 when viewed in a cross-section. Furthermore, when the third conductor 313 and the fourth conductor 314 are viewed in a plan view, the surface roughness of the second upper surface 36b located in the portion adjacent to the second groove 7 among the upper surfaces of the third conductor 313 and the fourth conductor 314 may be smaller than the surface roughness of the upper surface 36y other than the second upper surface. "The second upper surface 36b located adjacent to the second groove 7" refers to the upper surface of the third conductor 313 and the upper surface of the fourth conductor 314 that is located adjacent to the second groove 7 when the third conductor 313 and the fourth conductor 314 are viewed in a plan view (see FIG. 2C for an explanation of the first upper surface 36a).
 第2側面35bの表面粗さが第2側面以外の側面35yの表面粗さよりも小さいと、イオンマイグレーションの起点となる隙間(すなわち、第3導体313および第4導体314と第2絶縁層222との隙間)が減少する。その結果、イオンマイグレーションによるショートがより低減される。第2側面35bの表面粗さは、限定されない。第2側面35bは、例えば、0.05μm以上0.2μm以下の二乗平均平方根粗さRqを有していてもよい。 If the surface roughness of the second side 35b is smaller than the surface roughness of the side 35y other than the second side, the gaps that are the starting points of ion migration (i.e., the gaps between the third conductor 313 and the fourth conductor 314 and the second insulating layer 222) are reduced. As a result, short circuits due to ion migration are further reduced. The surface roughness of the second side 35b is not limited. The second side 35b may have a root-mean-square roughness Rq of, for example, 0.05 μm or more and 0.2 μm or less.
 第2上面36bの表面粗さが第2上面以外の上面36yの表面粗さよりも小さいと、第2絶縁層222の積層時に、第2溝7に第2絶縁層222がより効率よく流れ込む。これにより、第2溝7の内側、および第3導体313と第4導体314との間を第2絶縁層222で充填する構造とすることが容易になる。第2上面36bの表面粗さは、限定されない。第1上面36aは、例えば、0.04μm以上0.09μm以下の二乗平均平方根粗さRqを有していてもよい。 If the surface roughness of the second upper surface 36b is smaller than the surface roughness of the upper surface 36y other than the second upper surface, the second insulating layer 222 flows more efficiently into the second groove 7 when the second insulating layer 222 is laminated. This makes it easier to form a structure in which the inside of the second groove 7 and the space between the third conductor 313 and the fourth conductor 314 are filled with the second insulating layer 222. The surface roughness of the second upper surface 36b is not limited. The first upper surface 36a may have a root-mean-square roughness Rq of, for example, 0.04 μm or more and 0.09 μm or less.
 図1には図示していないものの、図5に示すように、3つの導体31が隣接して位置する場合もある。図5は、隣接する導体31の他の配置例を説明するための拡大説明図である。 Although not shown in FIG. 1, three conductors 31 may be positioned adjacent to each other as shown in FIG. 5. FIG. 5 is an enlarged explanatory diagram for explaining another example of the arrangement of adjacent conductors 31.
 図5には、第1絶縁層221の第1面221’に、第1導体311、第2導体312および第5導体315の3つの導体31が隣接して位置する構造が記載されている。具体的には、第1導体311と第5導体315との間に、第2導体312が挟まれるように位置している。上記のように、第1導体311および第2導体312の間には第1溝6が位置している。第1導体311、第2導体312および第1溝6については上述の通りであり、詳細な説明は省略する。 FIG. 5 shows a structure in which three conductors 31, a first conductor 311, a second conductor 312, and a fifth conductor 315, are positioned adjacent to each other on the first surface 221' of the first insulating layer 221. Specifically, the second conductor 312 is positioned so as to be sandwiched between the first conductor 311 and the fifth conductor 315. As described above, the first groove 6 is positioned between the first conductor 311 and the second conductor 312. The first conductor 311, the second conductor 312, and the first groove 6 are as described above, and detailed description thereof will be omitted.
 第2導体312と第5導体315との間には、第1面221’に第3溝8が位置している。第3溝8は、第2導体312と第5導体315との間全体に位置している必要はない。第1溝6と同様、第3溝8は、第2導体312と第5導体315との間の少なくとも一部に位置していればよい。 The third groove 8 is located on the first surface 221' between the second conductor 312 and the fifth conductor 315. The third groove 8 does not need to be located entirely between the second conductor 312 and the fifth conductor 315. Like the first groove 6, the third groove 8 only needs to be located at least partially between the second conductor 312 and the fifth conductor 315.
 図5に示すように、第3溝8は、第5凹部81、第6凹部82および第3中間部8aを含む。第5凹部81は、第2導体312側に位置しており、第1面221’と反対側に窪む凹部である。第6凹部82は、第5導体315側に位置しており、第1面221’と反対側に窪む凹部である。第5凹部81および第6凹部82の深さは限定されない。例えば、第2導体312と第5導体315との間の距離が、第1導体311と第2導体312との間の第1距離のように比較的短い場合、第5凹部81および第6凹部82の深さは、例えば、第1凹部61および第2凹部62の深さD1と同様、第1絶縁層221の厚みの20%以上60%以下であってもよい。 As shown in FIG. 5, the third groove 8 includes a fifth recess 81, a sixth recess 82, and a third intermediate portion 8a. The fifth recess 81 is located on the second conductor 312 side and is a recess recessed on the opposite side of the first surface 221'. The sixth recess 82 is located on the fifth conductor 315 side and is a recess recessed on the opposite side of the first surface 221'. The depths of the fifth recess 81 and the sixth recess 82 are not limited. For example, when the distance between the second conductor 312 and the fifth conductor 315 is relatively short like the first distance between the first conductor 311 and the second conductor 312, the depths of the fifth recess 81 and the sixth recess 82 may be, for example, 20% to 60% of the thickness of the first insulating layer 221, similar to the depth D1 of the first recess 61 and the second recess 62.
 一方、第2導体312と第5導体315との間の距離が、第3導体313と第4導体314との間の第2距離のように比較的長い場合、第5凹部81および第6凹部82の深さは、例えば、第3凹部71および第4凹部72の深さD3と同様、第1絶縁層221の厚みの20%以上60%以下であってもよい。第5凹部81および第6凹部82の深さは、第3溝8を挟んで位置する第1面同士を結ぶ仮想直線から第5凹部81および第6凹部82の最深部までの距離である。第5凹部81および第6凹部82の深さは同じであってもよく、それぞれ異なっていてもよい。 On the other hand, when the distance between the second conductor 312 and the fifth conductor 315 is relatively long like the second distance between the third conductor 313 and the fourth conductor 314, the depth of the fifth recess 81 and the sixth recess 82 may be, for example, 20% to 60% of the thickness of the first insulating layer 221, similar to the depth D3 of the third recess 71 and the fourth recess 72. The depth of the fifth recess 81 and the sixth recess 82 is the distance from the imaginary line connecting the first surfaces located on either side of the third groove 8 to the deepest part of the fifth recess 81 and the sixth recess 82. The depths of the fifth recess 81 and the sixth recess 82 may be the same or different from each other.
 第3中間部8aは、第5凹部81および第6凹部82との間に位置している。第3中間部8aの端部8aTは、第5凹部81および第6凹部82の底部よりも第1面221’側に位置している。第3中間部8aの端部8aTにおいて、仮想直線と第3中間部8aの端部8aTとの最短距離は、第2導体312と第5導体315との間の距離が、第1距離のように比較的短い場合、例えば、仮想直線と第1中間部6aの端部6aTとの最短距離D2と同様、第1絶縁層221の厚みの0%以上25%以下であってもよい。第2導体312と第5導体315との間の距離が、第2距離のように比較的長い場合、例えば、仮想直線と第2中間部7aの端部7aTとの最短距離D4と同様、第1絶縁層221の厚みの0%以上10%以下であってもよい。0%の場合、第3中間部8aの端部8aTの少なくとも一部は、仮想直線と接する位置にあることを意味する。前述の通り、第1中間部6aの一部が仮想直線と接する位置にあっても構わない。 The third intermediate portion 8a is located between the fifth recess 81 and the sixth recess 82. The end 8aT of the third intermediate portion 8a is located closer to the first surface 221' than the bottoms of the fifth recess 81 and the sixth recess 82. At the end 8aT of the third intermediate portion 8a, the shortest distance between the virtual straight line and the end 8aT of the third intermediate portion 8a may be 0% to 25% of the thickness of the first insulating layer 221, similar to the shortest distance D2 between the virtual straight line and the end 6aT of the first intermediate portion 6a, when the distance between the second conductor 312 and the fifth conductor 315 is relatively short, such as the first distance. When the distance between the second conductor 312 and the fifth conductor 315 is relatively long, such as the second distance, the shortest distance D4 between the virtual straight line and the end 7aT of the second intermediate portion 7a may be 0% to 10% of the thickness of the first insulating layer 221. In the case of 0%, this means that at least a part of the end 8aT of the third intermediate portion 8a is in a position tangent to the imaginary line. As mentioned above, it is acceptable for a part of the first intermediate portion 6a to be in a position tangent to the imaginary line.
 第2導体312において、第1溝6および第3溝8側の側面は、断面視した場合、第2導体312の端部(上端部)から第1面221’にかけて第2導体312の幅が大きくなる傾斜面であってもよい。さらに、第1導体311の第1溝6側の側面および第5導体315の第3溝8側の側面の少なくとも一方は、断面視した場合、第1導体311の端部および第5導体315の端部から第1面221’にかけて、第1導体311の幅および第5導体315の幅が大きくなる傾斜面であってもよい。 In the second conductor 312, the side surfaces on the first groove 6 and third groove 8 side may be inclined surfaces in which the width of the second conductor 312 increases from the end (upper end) of the second conductor 312 toward the first surface 221' when viewed in cross section. Furthermore, at least one of the side surface on the first groove 6 side of the first conductor 311 and the side surface on the third groove 8 side of the fifth conductor 315 may be inclined surfaces in which the width of the first conductor 311 and the width of the fifth conductor 315 increase from the end of the first conductor 311 and the end of the fifth conductor 315 toward the first surface 221' when viewed in cross section.
 図5Aおよび図5Bに示すように、第5導体315が延在する方向と垂直な方向に断面視した場合、第5導体315における側面のうち、第3溝8と隣接する第3側面35cの表面粗さは、第3側面以外の側面35zの表面粗さよりも小さくてもよい。「第3溝8と隣接する第3側面35c」とは、第5導体315を断面視した場合に、第5導体315の側面のうち、第3溝8と隣り合うように位置する段面を意味する。 As shown in Figures 5A and 5B, when viewed in a cross-section perpendicular to the direction in which the fifth conductor 315 extends, the surface roughness of the third side surface 35c of the side surfaces of the fifth conductor 315 adjacent to the third groove 8 may be smaller than the surface roughness of the side surfaces 35z other than the third side surface. "The third side surface 35c adjacent to the third groove 8" refers to the step surface of the side surfaces of the fifth conductor 315 that is located adjacent to the third groove 8 when the fifth conductor 315 is viewed in cross-section.
 さらに、第5導体315を平面視した場合、第5導体315における上面のうち、第3溝8と隣接する部分に位置する第3上面36cの表面粗さは、第3上面以外の上面36zの表面粗さよりも小さくてもよい。「第3溝8と隣接する部分に位置する第3上面36c」とは、第5導体315を平面視した場合に、第5導体315の上面のうち、第3溝8と隣り合うように位置する上面を意味する(第1上面36aについて説明した図2Cを参照)。 Furthermore, when the fifth conductor 315 is viewed in a plan view, the surface roughness of the third upper surface 36c located in a portion of the upper surface of the fifth conductor 315 adjacent to the third groove 8 may be smaller than the surface roughness of the upper surface 36z other than the third upper surface. "The third upper surface 36c located in a portion adjacent to the third groove 8" means the upper surface of the fifth conductor 315 located adjacent to the third groove 8 when the fifth conductor 315 is viewed in a plan view (see FIG. 2C which describes the first upper surface 36a).
 第3側面35cの表面粗さが第3側面以外の側面35zの表面粗さよりも小さいと、イオンマイグレーションの起点となる隙間(すなわち、第5導体315と第2絶縁層222との隙間)が減少する。その結果、イオンマイグレーションによるショートがより低減される。第3側面35cの表面粗さは、限定されない。第3側面35cは、例えば、0.05μm以上0.2μm以下の二乗平均平方根粗さRqを有していてもよい。 If the surface roughness of the third side surface 35c is smaller than the surface roughness of the other side surfaces 35z, the gap that is the starting point of ion migration (i.e., the gap between the fifth conductor 315 and the second insulating layer 222) is reduced. As a result, short circuits due to ion migration are further reduced. The surface roughness of the third side surface 35c is not limited. The third side surface 35c may have a root-mean-square roughness Rq of, for example, 0.05 μm or more and 0.2 μm or less.
 第3上面36cの表面粗さが第3上面以外の上面36zの表面粗さよりも小さいと、第2絶縁層222の積層時に、第3溝8に第2絶縁層222がより効率よく流れ込む。これにより、第3溝8の内側、および第2導体312と第5導体315との間を第2絶縁層222で充填する構造とすることが容易になる。第3上面36cの表面粗さは、限定されない。第3上面36cは、例えば、0.04μm以上0.09μm以下の二乗平均平方根粗さRqを有していてもよい。 If the surface roughness of the third upper surface 36c is smaller than the surface roughness of the upper surface 36z other than the third upper surface, the second insulating layer 222 flows more efficiently into the third groove 8 when the second insulating layer 222 is laminated. This makes it easier to form a structure in which the inside of the third groove 8 and the space between the second conductor 312 and the fifth conductor 315 are filled with the second insulating layer 222. The surface roughness of the third upper surface 36c is not limited. The third upper surface 36c may have a root-mean-square roughness Rq of, for example, 0.04 μm or more and 0.09 μm or less.
 一実施形態に係る配線基板1のように、第1溝6に、第1凹部61、第2凹部62および第1中間部6aを形成する方法は限定されない。例えば、図10に示すような工程で形成される。図10は、第1溝6に、第1凹部61、第2凹部62および第1中間部6aを形成する方法の一実施形態を説明するための説明図である。 As with the wiring board 1 according to one embodiment, the method for forming the first recess 61, the second recess 62, and the first intermediate portion 6a in the first groove 6 is not limited. For example, they may be formed by the process shown in FIG. 10. FIG. 10 is an explanatory diagram for explaining one embodiment of the method for forming the first recess 61, the second recess 62, and the first intermediate portion 6a in the first groove 6.
 まず、図10Aに示すように、第1絶縁層221の第1面221’に、第1シード層33を形成する。第1シード層33は、例えば、銅などの金属で形成されており、無電解めっきによって形成される。第1シード層33の厚みは限定されず、例えば、0.4μm以上0.6μm以下である。 First, as shown in FIG. 10A, a first seed layer 33 is formed on the first surface 221' of the first insulating layer 221. The first seed layer 33 is formed of a metal such as copper by electroless plating. The thickness of the first seed layer 33 is not limited, and is, for example, 0.4 μm or more and 0.6 μm or less.
 次いで、図10Bに示すように、第1シード層33の表面にレジスト34を形成してマスキングを行う。レジスト34には、開口部が設けられており、この開口部に導体31が形成される。開口部は、レジスト34の表面に部分的に遮光部を形成し、露光および現像することによって形成される。レジスト34としては、例えば、ドライフィルムレジストなどが挙げられる。 Next, as shown in FIG. 10B, a resist 34 is formed on the surface of the first seed layer 33 to perform masking. An opening is provided in the resist 34, and the conductor 31 is formed in this opening. The opening is formed by forming a partial light-shielding portion on the surface of the resist 34, exposing it to light, and developing it. An example of the resist 34 is a dry film resist.
 次いで、図10Cに示すように、レジスト34の開口部に導体31を形成する。導体31は、例えば銅めっきなどの金属めっきによって形成される。導体31を形成した後、図10Dに示すようにレジスト34を剥離して、図10Eに示すようにレジスト34でマスキングされていた部分の第1シード層33を除去する。第1シード層33を除去する方法としては、例えば、エッチングなどが挙げられる。エッチングは、例えば、過水硫酸系エッチング液などを用いて行われる。 Next, as shown in FIG. 10C, conductors 31 are formed in the openings of resist 34. Conductors 31 are formed by metal plating such as copper plating. After forming conductors 31, resist 34 is peeled off as shown in FIG. 10D, and the first seed layer 33 in the portion masked by resist 34 is removed as shown in FIG. 10E. Methods for removing first seed layer 33 include, for example, etching. Etching is performed using, for example, a hydrogen peroxide-sulfuric acid based etching solution.
 次いで、図10Fに示すように、導体31間(第1導体311と第2導体312との間)に第1溝6を形成する。第1溝6は、例えば、第1絶縁層221の第1面221’にレーザを照射することによって形成される。第1凹部61および第2凹部62を形成する部分に照射するレーザの照射回数と、第1中間部6aを形成する部分に照射するレーザの照射回数とを変更することによって、第1凹部61、第2凹部62および第1中間部6aが形成される。例えば、レーザエネルギーを0.25mWとした場合、第1凹部61および第2凹部62を形成する部分には、レーザを11回以上13回以下照射すればよい。一方、第1中間部6aを形成する部分には、レーザを8回以上10回以下照射すればよい。 Next, as shown in FIG. 10F, a first groove 6 is formed between the conductors 31 (between the first conductor 311 and the second conductor 312). The first groove 6 is formed, for example, by irradiating the first surface 221' of the first insulating layer 221 with a laser. The first recess 61, the second recess 62, and the first intermediate portion 6a are formed by changing the number of times of laser irradiation to be performed on the portion to form the first recess 61 and the second recess 62 and the number of times of laser irradiation to be performed on the portion to form the first intermediate portion 6a. For example, when the laser energy is 0.25 mW, the portion to form the first recess 61 and the second recess 62 may be irradiated with the laser 11 times or more and 13 times or less. On the other hand, the portion to form the first intermediate portion 6a may be irradiated with the laser 8 times or more and 10 times or less.
 上述のように、第1導体311および第2導体312の少なくとも一方において、第1溝6側の側面は、断面視した場合、第1導体311の端部(上端部)および第2導体312の端部(上端部)から第1面221’にかけて、第1導体311の幅および第2導体312の幅が大きくなる傾斜面としてもよい。このような傾斜面を形成する方法は、第1導体311の側面および第2導体312の側面にも、レーザが照射されるように、レーザの照射位置を調節すればよい。 As described above, in at least one of the first conductor 311 and the second conductor 312, the side surface on the first groove 6 side may be an inclined surface in which the width of the first conductor 311 and the width of the second conductor 312 increase from the end (top end) of the first conductor 311 and the end (top end) of the second conductor 312 toward the first surface 221' when viewed in cross section. A method for forming such an inclined surface is to adjust the laser irradiation position so that the laser is irradiated to the side surface of the first conductor 311 and the side surface of the second conductor 312 as well.
 さらに、図3Aに示すように第2シード層32を有する場合、例えば、図11に示すような工程で形成される。図11は、第1溝6に、第1凹部61、第2凹部62および第1中間部6aを形成する方法の他の実施形態を説明するための説明図である。 Furthermore, when a second seed layer 32 is provided as shown in FIG. 3A, it is formed, for example, by the process shown in FIG. 11. FIG. 11 is an explanatory diagram for explaining another embodiment of the method for forming the first recess 61, the second recess 62, and the first intermediate portion 6a in the first groove 6.
 まず、図11Aに示すように、第1絶縁層221の第1面221’に、第2シード層32を形成し、第2シード層32の表面に第1シード層33を形成する。この場合、第2シード層32および第1シード層33は、例えば、スパッタリングによって形成される。第2シード層32の厚みは限定されず、例えば、0.04μm以上0.1μm以下である。第1シード層33の厚みは上述の通りである。第2シード層は、例えば、ニクロム、チタン、クロム、ニッケル、タンタル、モリブデン、タングステンおよびパラジウムなどの周期表第4族、5族、6族または10族である遷移金属、あるいは遷移金属同士の合金を、スパッタおよびスパッタ以外の蒸着法を用いて、形成してもかまわない。 First, as shown in FIG. 11A, the second seed layer 32 is formed on the first surface 221' of the first insulating layer 221, and the first seed layer 33 is formed on the surface of the second seed layer 32. In this case, the second seed layer 32 and the first seed layer 33 are formed by, for example, sputtering. The thickness of the second seed layer 32 is not limited, and is, for example, 0.04 μm or more and 0.1 μm or less. The thickness of the first seed layer 33 is as described above. The second seed layer may be formed by sputtering or a deposition method other than sputtering using a transition metal of Group 4, Group 5, Group 6, or Group 10 of the periodic table, such as nichrome, titanium, chromium, nickel, tantalum, molybdenum, tungsten, or palladium, or an alloy of transition metals.
 図11B~図11Dについては、第2シード層32が形成されている以外、図10B~図10Dと同様であり、詳細な説明は省略する。 FIGS. 11B to 11D are similar to FIG. 10B to FIG. 10D except that a second seed layer 32 is formed, and detailed description thereof will be omitted.
 図11Eに示すように、レジスト34でマスキングされていた部分の第1シード層33および第2シード層32を除去する。第1シード層33を除去する方法としては、エッチングなどが挙げられる。第1シード層33のエッチングは、例えば、過水硫酸系エッチング液などを用いて行われる。第1シード層33を除去した後、第2シード層32を除去する。第2シード層32を除去する方法としては、エッチングなどが挙げられる。第2シード層32のエッチングは、例えば、塩酸と硫酸との混合液のような酸系のエッチング液などを用いて行われる。 As shown in FIG. 11E, the first seed layer 33 and the second seed layer 32 are removed from the portions masked by the resist 34. Methods for removing the first seed layer 33 include etching. The first seed layer 33 is etched using, for example, a hydrogen peroxide-sulfuric acid-based etching solution. After the first seed layer 33 is removed, the second seed layer 32 is removed. Methods for removing the second seed layer 32 include etching. The second seed layer 32 is etched using, for example, an acid-based etching solution such as a mixture of hydrochloric acid and sulfuric acid.
 次いで、図11Fに示すように、図10Fと同様、導体31間(第1導体311と第2導体312との間)に第1溝6を形成する。第1溝6を形成する方法については、上述の通りであり、詳細な説明は省略する。第1溝6を形成した後、再度エッチングによって、第1導体311および第2導体312の一部(側面)を除去する。このようにして、第1領域3aおよび第2領域3bに第2シード層32が位置する。 Next, as shown in FIG. 11F, a first groove 6 is formed between the conductors 31 (between the first conductor 311 and the second conductor 312) in the same manner as in FIG. 10F. The method for forming the first groove 6 is as described above, and a detailed description will be omitted. After the first groove 6 is formed, a portion (side surface) of the first conductor 311 and the second conductor 312 is removed again by etching. In this manner, the second seed layer 32 is positioned in the first region 3a and the second region 3b.
 本開示に係る実装構造体は、一実施形態に係る配線基板1と、配線基板1の表面に位置する電子部品Eとを含む。ソルダーレジスト4の開口内の導体層3と電子部品Eの電極とが、半田5を介して接続されている。電子部品Eとしては、上記のように、半導体集積回路素子およびオプトエレクトロニクス素子などが挙げられる。配線基板1の両面に電子部品Eが位置していてもよく、一方の表面には電子部品Eが位置し、他方の表面には、例えばマザーボードなどが位置していてもよい。 The mounting structure according to the present disclosure includes a wiring board 1 according to one embodiment, and an electronic component E located on the surface of the wiring board 1. The conductor layer 3 in the opening of the solder resist 4 and the electrodes of the electronic component E are connected via solder 5. As described above, examples of the electronic component E include semiconductor integrated circuit elements and optoelectronic elements. The electronic components E may be located on both sides of the wiring board 1, or the electronic component E may be located on one surface and, for example, a motherboard may be located on the other surface.
 以上、本開示の実施形態について説明した。しかし、本開示に係る発明は上記実施形態に限定されるものではなく、下記の(1)および(16)に示す本開示の範囲内で種々の変更および改良が可能である。 The above describes the embodiments of the present disclosure. However, the invention according to the present disclosure is not limited to the above embodiments, and various modifications and improvements are possible within the scope of the present disclosure as shown in (1) and (16) below.
 (1)本開示に係る配線基板は、第1面を有する第1絶縁層と、第1面に位置する第1導体と、第1面において、第1導体と隣接して位置する第2導体と、第1面において、第1導体および第2導体の間に位置する第1溝と、第1面に位置しており、第1導体および第2導体を被覆し、第1溝に埋入する第2絶縁層とを含む。第1溝は、第1導体および第2導体を含む第1断面において、第1導体側に位置し、第1面と反対側に窪む第1凹部と、第2導体側に位置し、第1面と反対側に窪む第2凹部と、第1凹部と第2凹部との間に位置し、第1凹部の底部および第2凹部の底部よりも第1面側に端部を有する第1中間部とを含む。 (1) The wiring board according to the present disclosure includes a first insulating layer having a first surface, a first conductor located on the first surface, a second conductor located adjacent to the first conductor on the first surface, a first groove located between the first conductor and the second conductor on the first surface, and a second insulating layer located on the first surface, covering the first conductor and the second conductor, and embedded in the first groove. In a first cross section including the first conductor and the second conductor, the first groove includes a first recess located on the first conductor side and recessed on the opposite side to the first surface, a second recess located on the second conductor side and recessed on the opposite side to the first surface, and a first intermediate portion located between the first recess and the second recess and having an end portion closer to the first surface than the bottom of the first recess and the bottom of the second recess.
 本開示の実施形態に関し、以下の(2)~(15)に示す実施形態をさらに開示する。 With regard to the embodiments of the present disclosure, the following embodiments (2) to (15) are further disclosed.
 (2)上記(1)に記載の配線基板において、第1溝の内面の表面粗さは、第1面の表面粗さよりも大きい。
 (3)上記(1)または(2)に記載の配線基板において、第1凹部の表面粗さおよび第2凹部の表面粗さは、第1中間部の表面粗さよりも大きい。
 (4)上記(1)~(3)のいずれかに記載の配線基板において、第1絶縁層の厚さ方向において、第1中間部の少なくとも一部分は、第1面と同じ高さである。
 (5)上記(1)~(4)のいずれかに記載の配線基板において、第1面は、第1溝の開口縁と第1導体との間に位置する第1領域、および第1溝の開口縁と第2導体との間に位置する第2領域の少なくとも一方を有し、第1領域および第2領域の少なくとも一方と第2絶縁層とが接している。
 (6)上記(5)に記載の配線基板において、第1領域および第2領域の少なくとも一方にニクロム層が位置している。
 (7)上記(1)~(6)のいずれかに記載の配線基板において、第1導体および第2導体が延在する方向と垂直な方向に断面視した場合、第1導体および第2導体における側面のうち、第1溝と隣接する第1側面の表面粗さ、および第1導体および第2導体を平面視した場合、第1導体および第2導体における上面のうち、第1溝と隣接する部分に位置する第1上面の表面粗さは、第1側面以外の側面および第1上面以外の上面の表面粗さよりも小さい。
 (8)上記(1)~(7)のいずれかに記載の配線基板において、第1導体および第2導体の少なくとも一方において、第1溝側の側面は、第1断面において、第1導体の端部および第2導体の端部から第1面にかけて、第1導体の幅および第2導体の幅が大きくなる傾斜面である。
 (9)上記(1)~(8)のいずれかに記載の配線基板において、第1面に位置する第3導体と、第1面において、第3導体と隣接して位置する第4導体と、第1面において、第3導体および第4導体の間に位置する第2溝とをさらに含む。第2溝は、第3導体および第4導体を含む断面において、第3導体側に位置し、第1面と反対側に窪む第3凹部と、第4導体側に位置し、第1面と反対側に窪む第4凹部と、第3凹部と第4凹部との間に位置し、第3凹部の底部および第4凹部の底部よりも第1面側に端部を有する第2中間部とを含む。第3導体と第4導体との間の第2距離は、第1導体と第2導体との間の第1距離よりも長い。第2溝を挟んで位置する第1面同士を結ぶ仮想直線と第2中間部の上端部との最短距離は、第1溝を挟んで位置する第1面同士を結ぶ仮想直線と第1中間部の上端部との最短距離よりも短い。第2絶縁層が、第3導体および第4導体を被覆し、第2溝に埋入している。
 (10)上記(9)に記載の配線基板において、第3導体および第4導体の少なくとも一方において、第2溝側の側面は、第3導体および第4導体を含む断面視において、第3導体の端部および第4導体の端部から第1面にかけて、第3導体の幅および第4導体の幅が大きくなる傾斜面である。
 (11)上記(9)または(10)に記載の配線基板において、第1距離は、6μm以上12μm以下であり、第2距離は、25μm以上42μm以下である。
 (12)上記(9)~(11)のいずれかに記載の配線基板において、第3導体および第4導体が延在する方向と垂直な方向に断面視した場合、第3導体および第4導体における側面のうち、第2溝と隣接する第2側面の表面粗さ、および第3導体および第4導体を平面視した場合、第3導体および第4導体における上面のうち、第2溝と隣接する部分に位置する第2上面の表面粗さは、第2側面以外の側面および第2上面以外の上面の表面粗さよりも小さい。
 (13)上記(1)~(12)のいずれかに記載の配線基板において、第1面において、第1導体とともに第2導体を挟むように第2導体に隣接して位置する第5導体と、第1面において、第2導体および第5導体の間に位置する第3溝とをさらに含む。第3溝は、第2導体および第5導体を含む断面において、第2導体側に位置し、第1面と反対側に窪む第5凹部と、第5導体側に位置し、第1面と反対側に窪む第6凹部と、第5凹部と第6凹部との間に位置し、第5凹部の底部および第6凹部の底部よりも第1面側に端部を有する第3中間部とを含む。第2導体において、第1溝および第3溝側の側面は、断面視した場合、第2導体の端部から第1面にかけて第2導体の幅が大きくなる傾斜面である。第2絶縁層が、第5導体を被覆し、第3溝に埋入している。
 (14)上記(13)に記載の配線基板において、第1導体の第1溝側の側面および第5導体の第3溝側の側面の少なくとも一方は、第1導体および第5導体を含む断面視において、第1導体の端部および第5導体の端部から第1面にかけて、第1導体の幅および第5導体の幅が大きくなる傾斜面である。
 (15)上記(13)または(14)に記載の配線基板において、第5導体が延在する方向と垂直な方向に断面視した場合、第5導体における側面のうち、第3溝と隣接する第3側面の表面粗さ、および第5導体を平面視した場合、第5導体における上面のうち、第3溝と隣接する部分に位置する第3上面の表面粗さは、第3側面以外の側面および第3上面以外の上面の表面粗さよりも小さい。
(2) In the wiring board described in (1) above, the surface roughness of the inner surface of the first groove is greater than the surface roughness of the first surface.
(3) In the wiring board according to (1) or (2) above, the surface roughness of the first recess and the surface roughness of the second recess are greater than the surface roughness of the first intermediate portion.
(4) In the wiring board according to any one of (1) to (3) above, in the thickness direction of the first insulating layer, at least a portion of the first intermediate portion is flush with the first surface.
(5) In the wiring board described in any one of (1) to (4) above, the first surface has at least one of a first region located between the opening edge of the first groove and the first conductor and a second region located between the opening edge of the first groove and the second conductor, and at least one of the first region and the second region is in contact with the second insulating layer.
(6) In the wiring board according to (5) above, a nichrome layer is located in at least one of the first region and the second region.
(7) In the wiring board described in any one of (1) to (6) above, when viewed in cross section in a direction perpendicular to the direction in which the first conductor and the second conductor extend, the surface roughness of a first side surface of the first conductor and the second conductor adjacent to the first groove, and when the first conductor and the second conductor are viewed in plan, the surface roughness of a first top surface of the top surfaces of the first conductor and the second conductor located in a portion adjacent to the first groove are smaller than the surface roughness of side surfaces other than the first side surfaces and top surfaces other than the first top surface.
(8) In the wiring board described in any one of (1) to (7) above, in at least one of the first conductor and the second conductor, the side surface on the first groove side is an inclined surface in which the width of the first conductor and the width of the second conductor increase from the end of the first conductor and the end of the second conductor toward the first surface in the first cross section.
(9) The wiring board according to any one of (1) to (8), further comprising a third conductor located on the first surface, a fourth conductor located adjacent to the third conductor on the first surface, and a second groove located between the third conductor and the fourth conductor on the first surface. The second groove includes a third recess located on the third conductor side and recessed on the opposite side to the first surface in a cross section including the third conductor and the fourth conductor, a fourth recess located on the fourth conductor side and recessed on the opposite side to the first surface, and a second intermediate portion located between the third recess and the fourth recess and having an end closer to the first surface than the bottom of the third recess and the bottom of the fourth recess. The second distance between the third conductor and the fourth conductor is longer than the first distance between the first conductor and the second conductor. The shortest distance between an imaginary line connecting the first surfaces located across the second groove and an upper end of the second intermediate portion is shorter than the shortest distance between an imaginary line connecting the first surfaces located across the first groove and an upper end of the first intermediate portion. A second insulating layer covers the third conductor and the fourth conductor and is embedded in the second groove.
(10) In the wiring board described in (9) above, in at least one of the third conductor and the fourth conductor, the side surface on the second groove side is an inclined surface in which the width of the third conductor and the width of the fourth conductor increase from the end of the third conductor and the end of the fourth conductor toward the first surface in a cross-sectional view including the third conductor and the fourth conductor.
(11) In the wiring board according to (9) or (10) above, the first distance is not less than 6 μm and not more than 12 μm, and the second distance is not less than 25 μm and not more than 42 μm.
(12) In the wiring board described in any one of (9) to (11) above, when viewed in cross section in a direction perpendicular to the direction in which the third conductor and the fourth conductor extend, the surface roughness of the second side surface of the third conductor and the fourth conductor adjacent to the second groove, and when the third conductor and the fourth conductor are viewed in a plan view, the surface roughness of the second top surface of the top surfaces of the third conductor and the fourth conductor located in a portion adjacent to the second groove are smaller than the surface roughness of the side surfaces other than the second side surfaces and the top surfaces other than the second top surface.
(13) The wiring board according to any one of (1) to (12) above further includes a fifth conductor located adjacent to the second conductor on the first surface so as to sandwich the second conductor together with the first conductor, and a third groove located between the second conductor and the fifth conductor on the first surface. The third groove includes a fifth recess located on the second conductor side and recessed on the opposite side to the first surface in a cross section including the second conductor and the fifth conductor, a sixth recess located on the fifth conductor side and recessed on the opposite side to the first surface, and a third intermediate portion located between the fifth recess and the sixth recess and having an end closer to the first surface than the bottom of the fifth recess and the bottom of the sixth recess. In the second conductor, the side surfaces on the first groove and the third groove side are inclined surfaces in which the width of the second conductor increases from the end of the second conductor to the first surface when viewed in cross section. A second insulating layer covers the fifth conductor and is embedded in the third groove.
(14) In the wiring board described in (13) above, at least one of the side surface of the first conductor facing the first groove and the side surface of the fifth conductor facing the third groove is an inclined surface in which the width of the first conductor and the width of the fifth conductor increase from the end of the first conductor and the end of the fifth conductor toward the first surface in a cross-sectional view including the first conductor and the fifth conductor.
(15) In the wiring board described in (13) or (14) above, when viewed in cross-section perpendicular to the direction in which the fifth conductor extends, the surface roughness of the third side surface of the fifth conductor adjacent to the third groove, and when the fifth conductor is viewed in plan, the surface roughness of the third top surface of the top surface of the fifth conductor located in a portion adjacent to the third groove, are smaller than the surface roughness of the side surfaces other than the third side surface and the top surfaces other than the third top surface.
 (16)本開示に係る実装構造体は、上記(1)~(15)のいずれかに記載の配線基板と、配線基板に実装された電子部品とを含む。 (16) The mounting structure according to the present disclosure includes a wiring board described in any one of (1) to (15) above and an electronic component mounted on the wiring board.
 1  配線基板
 2  絶縁層
 21 コア用絶縁層
 22 ビルドアップ用絶縁層
 21a スルーホール導体
 22a ビアホール導体
 221 第1絶縁層
 221’ 第1面
 222 第2絶縁層
 3  導体層
 31 導体
 311 第1導体
 312 第2導体
 313 第3導体
 314 第4導体
 315 第5導体
 32 第2シード層
 33 第1シード層
 34 レジスト
 35a 第1側面
 35b 第2側面
 35c 第3側面
 35x 第1側面以外の側面
 35y 第2側面以外の側面
 35z 第3側面以外の側面
 36a 第1上面
 36b 第2上面
 36c 第3上面
 36x 第1上面以外の上面
 36y 第2上面以外の上面
 36z 第3上面以外の上面
 3a 第1領域
 3b 第2領域
 4  ソルダーレジスト
 5  半田
 6  第1溝
 61 第1凹部
 62 第2凹部
 6a 第1中間部
 6aT、7aT、8aT 端部
 7  第2溝
 71 第3凹部
 72 第4凹部
 7a 第2中間部
 8  第3溝
 81 第5凹部
 82 第6凹部
 8a 第3中間部
REFERENCE SIGNS LIST 1 wiring board 2 insulating layer 21 core insulating layer 22 build-up insulating layer 21a through-hole conductor 22a via-hole conductor 221 first insulating layer 221' first surface 222 second insulating layer 3 conductor layer 31 conductor 311 first conductor 312 second conductor 313 third conductor 314 fourth conductor 315 fifth conductor 32 second seed layer 33 first seed layer 34 resist 35a first side 35b second side 35c third side 35x side other than first side 35y side other than second side 35z side other than third side 36a first top surface 36b second top surface 36c third top surface 36x top surface other than first top surface 36y top surface other than second top surface 36z top surface other than third top surface 3a first region 3b Second region 4 Solder resist 5 Solder 6 First groove 61 First recess 62 Second recess 6a First intermediate portion 6aT, 7aT, 8aT End portion 7 Second groove 71 Third recess 72 Fourth recess 7a Second intermediate portion 8 Third groove 81 Fifth recess 82 Sixth recess 8a Third intermediate portion

Claims (16)

  1.  第1面を有する第1絶縁層と、
     前記第1面に位置する第1導体と、
     前記第1面において、前記第1導体と隣接して位置する第2導体と、
     前記第1面において、前記第1導体および前記第2導体の間に位置する第1溝と、
     前記第1面に位置しており、前記第1導体および前記第2導体を被覆し、前記第1溝に埋入する第2絶縁層と、
    を含み、
     該第1溝は、前記第1導体および前記第2導体を含む第1断面において、
     前記第1導体側に位置し、前記第1面と反対側に窪む第1凹部と、
     前記第2導体側に位置し、前記第1面と反対側に窪む第2凹部と、
     前記第1凹部と前記第2凹部との間に位置し、前記第1凹部の底部および前記第2凹部の底部よりも前記第1面側に端部を有する第1中間部と、
     を含む配線基板。
    a first insulating layer having a first surface;
    a first conductor located on the first surface;
    a second conductor located adjacent to the first conductor on the first surface;
    a first groove located in the first surface between the first conductor and the second conductor;
    a second insulating layer located on the first surface, covering the first conductor and the second conductor, and embedded in the first groove;
    Including,
    The first groove has, in a first cross section including the first conductor and the second conductor,
    a first recess located on the first conductor side and recessed on a side opposite to the first surface;
    a second recess located on the second conductor side and recessed on a side opposite to the first surface;
    a first intermediate portion located between the first recess and the second recess and having an end portion closer to the first surface than a bottom portion of the first recess and a bottom portion of the second recess;
    A wiring board including:
  2.  前記第1溝の内面の表面粗さは、前記第1面の表面粗さよりも大きい、請求項1に記載の配線基板。 The wiring board of claim 1, wherein the surface roughness of the inner surface of the first groove is greater than the surface roughness of the first surface.
  3.  前記第1凹部の表面粗さおよび前記第2凹部の表面粗さは、前記第1中間部の表面粗さよりも大きい、請求項1または2に記載の配線基板。 The wiring board according to claim 1 or 2, wherein the surface roughness of the first recess and the surface roughness of the second recess are greater than the surface roughness of the first intermediate portion.
  4.  前記第1絶縁層の厚さ方向において、前記第1中間部の少なくとも一部分は、前記第1面と同じ高さである、請求項1~3のいずれかに記載の配線基板。 The wiring board according to any one of claims 1 to 3, wherein at least a portion of the first intermediate portion is at the same height as the first surface in the thickness direction of the first insulating layer.
  5.  前記第1面は、前記第1溝の開口縁と前記第1導体との間に位置する第1領域、および前記第1溝の開口縁と前記第2導体との間に位置する第2領域の少なくとも一方を有し、
     前記第1領域および前記第2領域の少なくとも一方と前記第2絶縁層とが接している、
    請求項1~4のいずれかに記載の配線基板。
    the first surface has at least one of a first region located between an opening edge of the first groove and the first conductor and a second region located between an opening edge of the first groove and the second conductor;
    At least one of the first region and the second region is in contact with the second insulating layer.
    The wiring board according to any one of claims 1 to 4.
  6.  前記第1領域と前記第2絶縁層との間および前記第2領域と前記第2絶縁層との間の少なくとも一方にニクロム層が位置している、請求項5に記載の配線基板。 The wiring board of claim 5, wherein a nichrome layer is located at least either between the first region and the second insulating layer or between the second region and the second insulating layer.
  7.  前記第1導体および前記第2導体が延在する方向と垂直な方向に断面視した場合、前記第1導体および前記第2導体における側面のうち、前記第1溝と隣接する第1側面の表面粗さ、および前記第1導体および前記第2導体を平面視した場合、前記第1導体および前記第2導体における上面のうち、前記第1溝と隣接する部分に位置する第1上面の表面粗さは、前記第1側面以外の側面および前記第1上面以外の上面の表面粗さよりも小さい、請求項1~6のいずれかに記載の配線基板。 The wiring board according to any one of claims 1 to 6, wherein, when viewed in cross section in a direction perpendicular to the direction in which the first conductor and the second conductor extend, the surface roughness of a first side surface of the first conductor and the second conductor that is adjacent to the first groove, and when the first conductor and the second conductor are viewed in plan, the surface roughness of a first top surface of the top surfaces of the first conductor and the second conductor that is located in a portion adjacent to the first groove, is smaller than the surface roughness of the side surfaces other than the first side surface and the top surfaces other than the first top surface.
  8.  前記第1導体および前記第2導体の少なくとも一方において、前記第1溝側の側面は、前記第1断面において、前記第1導体の端部および前記第2導体の端部から前記第1面にかけて、前記第1導体の幅および前記第2導体の幅が大きくなる傾斜面である、請求項1~7のいずれかに記載の配線基板。 The wiring board according to any one of claims 1 to 7, wherein the side surface of the first groove of at least one of the first conductor and the second conductor is an inclined surface in which the width of the first conductor and the width of the second conductor increase from the end of the first conductor and the end of the second conductor to the first surface in the first cross section.
  9.  前記第1面に位置する第3導体と、
     前記第1面において、前記第3導体と隣接して位置する第4導体と、
     前記第1面において、前記第3導体および前記第4導体の間に位置する第2溝と、
    をさらに含み、
     該第2溝は、前記第3導体および前記第4導体を含む断面において、
     前記第3導体側に位置し、前記第1面と反対側に窪む第3凹部と、
     前記第4導体側に位置し、前記第1面と反対側に窪む第4凹部と、
     前記第3凹部と前記第4凹部との間に位置し、前記第3凹部の底部および前記第4凹部の底部よりも前記第1面側に端部を有する第2中間部と、
    を含み、
     前記第3導体と前記第4導体との間の第2距離は、前記第1導体と前記第2導体との間の第1距離よりも長く、
     前記第2溝を挟んで位置する前記第1面同士を結ぶ仮想直線と前記第2中間部の上端部との最短距離は、前記第1溝を挟んで位置する前記第1面同士を結ぶ仮想直線と前記第1中間部の上端部との最短距離よりも短く、
     前記第2絶縁層が、前記第3導体および前記第4導体を被覆し、前記第2溝に埋入している、
    請求項1~8のいずれかに記載の配線基板。
    a third conductor located on the first surface;
    a fourth conductor located adjacent to the third conductor on the first surface;
    a second groove located in the first surface between the third conductor and the fourth conductor;
    Further comprising:
    The second groove has a cross section including the third conductor and the fourth conductor,
    a third recess located on the third conductor side and recessed on a side opposite to the first surface;
    a fourth recess located on the fourth conductor side and recessed on a side opposite to the first surface;
    a second intermediate portion located between the third recess and the fourth recess and having an end portion closer to the first surface than a bottom portion of the third recess and a bottom portion of the fourth recess;
    Including,
    a second distance between the third conductor and the fourth conductor is greater than a first distance between the first conductor and the second conductor;
    a shortest distance between a virtual line connecting the first surfaces located across the second groove and an upper end of the second intermediate portion is shorter than a shortest distance between a virtual line connecting the first surfaces located across the first groove and an upper end of the first intermediate portion,
    the second insulating layer covers the third conductor and the fourth conductor and is embedded in the second groove;
    The wiring board according to any one of claims 1 to 8.
  10.  前記第3導体および前記第4導体の少なくとも一方において、前記第2溝側の側面は、前記第3導体および前記第4導体を含む断面視において、前記第3導体の端部および前記第4導体の端部から前記第1面にかけて、前記第3導体の幅および前記第4導体の幅が大きくなる傾斜面である、請求項9に記載の配線基板。 The wiring board according to claim 9, wherein the side surface of the second groove of at least one of the third conductor and the fourth conductor is an inclined surface in which the width of the third conductor and the width of the fourth conductor increase from the end of the third conductor and the end of the fourth conductor to the first surface in a cross-sectional view including the third conductor and the fourth conductor.
  11.  前記第1距離は、6μm以上12μm以下であり、前記第2距離は、25μm以上42μm以下である、請求項9または10に記載の配線基板。 The wiring board according to claim 9 or 10, wherein the first distance is 6 μm or more and 12 μm or less, and the second distance is 25 μm or more and 42 μm or less.
  12.  前記第3導体および前記第4導体が延在する方向と垂直な方向に断面視した場合、前記第3導体および前記第4導体における側面のうち、前記第2溝と隣接する第2側面の表面粗さ、および前記第3導体および前記第4導体を平面視した場合、前記第3導体および前記第4導体における上面のうち、前記第2溝と隣接する部分に位置する第2上面の表面粗さは、前記第2側面以外の側面および前記第2上面以外の上面の表面粗さよりも小さい、請求項9~11のいずれかに記載の配線基板。 The wiring board according to any one of claims 9 to 11, wherein, when viewed in cross section in a direction perpendicular to the direction in which the third conductor and the fourth conductor extend, the surface roughness of a second side surface of the third conductor and the fourth conductor adjacent to the second groove, and when the third conductor and the fourth conductor are viewed in plan, the surface roughness of a second upper surface of the upper surfaces of the third conductor and the fourth conductor located in a portion adjacent to the second groove, is smaller than the surface roughness of the side surfaces other than the second side surface and the upper surfaces other than the second upper surface.
  13.  前記第1面において、前記第1導体とともに前記第2導体を挟むように前記第2導体に隣接して位置する第5導体と、
     前記第1面において、前記第2導体および前記第5導体の間に位置する第3溝と、
    をさらに含み、
     該第3溝は、前記第2導体および前記第5導体を含む断面において、
     前記第2導体側に位置し、前記第1面と反対側に窪む第5凹部と、
     前記第5導体側に位置し、前記第1面と反対側に窪む第6凹部と、
     前記第5凹部と前記第6凹部との間に位置し、前記第5凹部の底部および前記第6凹部の底部よりも前記第1面側に端部を有する第3中間部と、
    を含み、
     前記第2導体において、前記第1溝および前記第3溝側の側面は、断面視した場合、前記第2導体の端部から前記第1面にかけて前記第2導体の幅が大きくなる傾斜面であり、
     前記第2絶縁層が、前記第5導体を被覆し、前記第3溝に埋入している、
    請求項1~12のいずれかに記載の配線基板。
    a fifth conductor located adjacent to the second conductor on the first surface so as to sandwich the second conductor together with the first conductor;
    a third groove located on the first surface between the second conductor and the fifth conductor;
    Further comprising:
    The third groove has a cross section including the second conductor and the fifth conductor,
    a fifth recess located on the second conductor side and recessed on a side opposite to the first surface;
    a sixth recess located on the fifth conductor side and recessed on a side opposite to the first surface;
    a third intermediate portion located between the fifth recess and the sixth recess and having an end portion closer to the first surface than a bottom portion of the fifth recess and a bottom portion of the sixth recess;
    Including,
    In the second conductor, a side surface on the side of the first groove and the third groove is an inclined surface in which a width of the second conductor increases from an end of the second conductor toward the first surface when viewed in cross section,
    the second insulating layer covers the fifth conductor and is embedded in the third groove;
    The wiring board according to any one of claims 1 to 12.
  14.  前記第1導体の前記第1溝側の側面および前記第5導体の前記第3溝側の側面の少なくとも一方は、前記第1導体および前記第5導体を含む断面視において、前記第1導体の端部および前記第5導体の端部から前記第1面にかけて、前記第1導体の幅および前記第5導体の幅が大きくなる傾斜面である、請求項13に記載の配線基板。 The wiring board according to claim 13, wherein at least one of the side of the first conductor on the side of the first groove and the side of the fifth conductor on the side of the third groove is an inclined surface in which the width of the first conductor and the width of the fifth conductor increase from the end of the first conductor and the end of the fifth conductor to the first surface in a cross-sectional view including the first conductor and the fifth conductor.
  15.  前記第5導体が延在する方向と垂直な方向に断面視した場合、前記第5導体における側面のうち、前記第3溝と隣接する第3側面の表面粗さ、および前記第5導体を平面視した場合、前記第5導体における上面のうち、前記第3溝と隣接する部分に位置する第3上面の表面粗さは、前記第3側面以外の側面および前記第3上面以外の上面の表面粗さよりも小さい、請求項13または14に記載の配線基板。 The wiring board according to claim 13 or 14, wherein, when viewed in cross section in a direction perpendicular to the direction in which the fifth conductor extends, the surface roughness of a third side surface of the fifth conductor adjacent to the third groove, and when the fifth conductor is viewed in plan, the surface roughness of a third upper surface of the fifth conductor located in a portion adjacent to the third groove, are smaller than the surface roughness of the side surfaces other than the third side surface and the upper surface other than the third upper surface.
  16.  請求項1~15のいずれかに記載の配線基板と、
     該配線基板に実装された電子部品と、
    を含む、実装構造体。
    A wiring board according to any one of claims 1 to 15,
    An electronic component mounted on the wiring board;
    An implementation struct, including:
PCT/JP2024/001451 2023-01-31 2024-01-19 Wiring board and mounting structure WO2024162040A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-012812 2023-01-31
JP2023012812 2023-01-31
JP2023202215 2023-11-29
JP2023-202215 2023-11-29

Publications (1)

Publication Number Publication Date
WO2024162040A1 true WO2024162040A1 (en) 2024-08-08

Family

ID=92146633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/001451 WO2024162040A1 (en) 2023-01-31 2024-01-19 Wiring board and mounting structure

Country Status (1)

Country Link
WO (1) WO2024162040A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051834A (en) * 2014-09-01 2016-04-11 イビデン株式会社 Printed wiring board and manufacturing method of the same
JP2017224649A (en) * 2016-06-13 2017-12-21 新光電気工業株式会社 Wiring board and manufacturing method thereof
JP2021072443A (en) * 2019-10-25 2021-05-06 新光電気工業株式会社 Wiring board and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051834A (en) * 2014-09-01 2016-04-11 イビデン株式会社 Printed wiring board and manufacturing method of the same
JP2017224649A (en) * 2016-06-13 2017-12-21 新光電気工業株式会社 Wiring board and manufacturing method thereof
JP2021072443A (en) * 2019-10-25 2021-05-06 新光電気工業株式会社 Wiring board and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101472640B1 (en) Circuit board and method of manufacturing the same
KR20090100292A (en) Multilayer wiring substrate and method of manufacturing the same
KR20090104142A (en) Multilayer printed wiring board
KR102493591B1 (en) wiring board
JP2014131017A (en) Multilayered substrate
JP2009283739A (en) Wiring substrate and production method thereof
US9736945B2 (en) Printed wiring board
KR102078009B1 (en) Printed circuit board and manufacturing method of the same
WO2024162040A1 (en) Wiring board and mounting structure
JP7234049B2 (en) printed wiring board
WO2024024878A1 (en) Wiring board and mounting structure using same
JP7461505B2 (en) Wiring Board
WO2024071007A1 (en) Wiring board and circuit structure obtained using same
WO2024135456A1 (en) Wiring board and method for producing same
US20240023250A1 (en) Wiring substrate
WO2023074661A1 (en) Wiring board and method for manufacturing same
JP2022168943A (en) wiring board
JP7583680B2 (en) Wiring board and manufacturing method thereof
WO2023145592A1 (en) Wiring board
JP7397718B2 (en) Printed wiring board and method for manufacturing printed wiring board
KR100632545B1 (en) Method of manufacturing a ball grid array substrate having a ball pad shape for improved reliability
KR101497268B1 (en) Circuit board and method of manufacturing the same
JP2024031606A (en) wiring board
JP2023005233A (en) Wiring board and method for manufacturing the same
JP2024011472A (en) wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24749993

Country of ref document: EP

Kind code of ref document: A1