[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024161754A1 - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
WO2024161754A1
WO2024161754A1 PCT/JP2023/040923 JP2023040923W WO2024161754A1 WO 2024161754 A1 WO2024161754 A1 WO 2024161754A1 JP 2023040923 W JP2023040923 W JP 2023040923W WO 2024161754 A1 WO2024161754 A1 WO 2024161754A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
light source
substrate
region
main surface
Prior art date
Application number
PCT/JP2023/040923
Other languages
French (fr)
Japanese (ja)
Inventor
祥寛 金端
靖 尾前
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2024161754A1 publication Critical patent/WO2024161754A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light source device, and in particular to a light source device in which a solid-state light source element is mounted on a metal substrate.
  • the inventors have considered increasing the arrangement density of solid-state light source elements by arranging the power supply unit for supplying power to the solid-state light source elements on the surface opposite to the surface (mounting surface) on which the solid-state light source elements such as LEDs are arranged, thereby minimizing the arrangement of electronic components other than the solid-state light source elements on the mounting surface.
  • the present invention aims to provide a light source device that uses a metal substrate and has improved heat dissipation properties when power is supplied to the solid-state light source element from the side opposite the mounting surface of the solid-state light source element.
  • the light source device comprises: A metal substrate; a first insulating layer disposed on a first major surface of the substrate; a solid-state light source element disposed on an upper layer of the first insulating layer opposite to the substrate; a second insulating layer disposed on a partial region of a second main surface of the substrate opposite to the first main surface; a power supply portion disposed on an upper layer of the second insulating layer opposite to the substrate; a conductive layer disposed across a first region sandwiched between the first insulating layer and the solid-state light source element in a first direction perpendicular to the first main surface of the substrate, a second region sandwiched between the second insulating layer and the power supply unit in the first direction, and a third region penetrating the substrate, the first insulating layer, and the second insulating layer in the first direction to connect the first region and the second region; a third insulating layer interposed between the conductive layer and the substrate at a position outside the conductive layer disposed in the
  • a heat sink is placed on the surface of the substrate on which the power supply section is formed (second main surface), either directly or via a layer with a higher thermal conductivity than the second insulating layer. This allows the heat generated from the solid-state light source element to be efficiently dissipated to the heat sink side via the metal substrate. For comparison, it was confirmed that the above light source device was able to reduce the junction temperature of the solid-state light source element by approximately 15% when compared to a case in which a second insulating layer was placed on the second main surface of the substrate and a heat sink was placed on top of this second insulating layer.
  • a second insulating layer is arranged on the upper surface of the second main surface. This ensures insulation between the power supply unit and the metal substrate.
  • the heat sink can be air-cooled or water-cooled.
  • the metal substrate is made of a metal material with high thermal conductivity, preferably copper, aluminum, iron, etc., with copper being particularly preferred.
  • the main material of the conductive layer is a metal material with low resistivity, and copper, silver, gold, etc. are preferably used, with copper being particularly preferred.
  • the conductive layer may also be a plating material that has the above metal material as the main material.
  • the third insulating layer may be made of the same material as the first insulating layer or the second insulating layer, or it may be made of a different material.
  • the heat sink may be arranged so as to be in direct contact with the second main surface of the substrate, or, in order to increase the adhesion between the two, may be arranged so as to be in contact with the second main surface of the substrate via another layer (adhesion layer).
  • adheresion layer By interposing an adhesion layer between the heat sink and the substrate, the presence of an air layer between the heat sink and the substrate is suppressed, and the thermal resistance between the substrate and the heat sink can be reduced.
  • a highly thermally conductive grease or a highly thermally conductive sheet can be suitably used.
  • high thermal conductive grease refers to grease with a thermal conductivity of 0.5 W/m ⁇ K or more.
  • high thermal conductive sheet refers to a sheet-like material with a thermal conductivity of 0.5 W/m ⁇ K or more.
  • the substrate has a step portion at a different height position of the second main surface in a region where the second insulating layer is not formed on the second main surface
  • the second main surface of the substrate may be such that the height position of the region in which the heat sink is formed is closer to the first main surface than the height position of the region in which the second insulating layer is formed.
  • the above configuration allows the heat sink to be positioned closer to the solid-state light source element, further improving heat dissipation.
  • the second insulating layer may have a lower thermal conductivity than the first insulating layer.
  • a power supply section is disposed near the second insulating layer.
  • the power supply section is an area that receives power from an external power source in order to supply electricity to the solid-state light source element.
  • the current density is high near the power supply section, so the temperature is likely to rise. Therefore, from the standpoint of making it difficult for the heat generated in the power supply section to be transmitted to the solid-state light source element, it is preferable that the second insulating layer disposed between the power supply section and the metal substrate has low thermal conductivity.
  • a solid-state light source element is disposed on the first main surface side of the metal substrate, and a first insulating layer is interposed between this solid-state light source element and the substrate. From the viewpoint of efficiently dissipating heat generated by the solid-state light source element to the heat sink side via the substrate, it is preferable that the first insulating layer has a relatively high thermal conductivity.
  • a method when manufacturing the light source device, a method can be used in which a second insulating layer is formed over the entire surface of the second main surface of the substrate, and then the second insulating layer is removed from within the area where the heat sink is to be disposed.
  • the thermal conductivity of the second insulating layer lower than that of the first insulating layer, the hardness of the second insulating layer is reduced compared to that of the first insulating layer, which also has the effect of making it easier to remove the second insulating layer from within the area where the heat sink is to be disposed.
  • the power supply units may be arranged at multiple positions spaced apart from each other when viewed from the first direction.
  • the number of power supply units may be much smaller than the number of solid-state light source elements. As an example, power can be supplied from six power supply units to 240 solid-state light source elements.
  • the power supply units may be arranged at multiple positions closer to the outer edge of the substrate than to the center when viewed from the first direction.
  • the temperature tends to rise near the power supply. It is easier to cool the heat from the power supply by placing it near the outer edge of the board than by placing it near the center.
  • the light source device of the present invention uses a metal substrate, and provides power to the solid-state light source element from the side opposite the mounting surface of the solid-state light source element, while achieving high heat dissipation.
  • FIG. 1 is a schematic perspective view of an embodiment of a light source device of the present invention.
  • 2 is a schematic plan view of the light source device 1 shown in FIG. 1 as viewed from the -Z side.
  • 2 is a schematic plan view of the light source device 1 shown in FIG. 1 as viewed from the +Z side.
  • FIG. 2 is a perspective view of the light source device 1 shown in FIG. 1 with a heat sink 21 omitted.
  • 5 is a schematic cross-sectional view of the light source device 1 shown in FIG. 4 taken along line V-V in FIG. 4.
  • FIG. 6 is a partially enlarged view of FIG. 5 .
  • FIG. 6 is a partially enlarged view of FIG. 5 .
  • 5 is another schematic cross-sectional view of the light source device 1 according to another embodiment of the present invention taken along line V-V in FIG. 4.
  • FIG. 1 is a schematic perspective view of the light source device 1.
  • FIG. 2 is a schematic plan view of the light source device 1 shown in FIG. 1 as viewed from the -Z side.
  • FIG. 3 is a schematic plan view of the light source device 1 shown in FIG. 1 as viewed from the +Z side.
  • FIG. 4 is a perspective view of the light source device 1 shown in FIG. 1 with the heat sink 21 omitted for ease of explanation.
  • FIG. 5 is a schematic cross-sectional view of the light source device 1 shown in FIG. 4 taken along line V-V in FIG. 4. However, FIG. 5 also shows the heat sink 21.
  • FIG. 6 and FIG. 7 are each an enlarged view of a portion of FIG. 5.
  • the light source device 1 includes multiple solid-state light source elements 11.
  • the solid-state light source elements 11 are typically LED elements, but may also be surface-emitting LD elements.
  • the light source device 1 shown in Figures 1 to 3 is arranged so that each solid-state light source element 11 emits light in the +Z direction.
  • the light source device 1 includes a substrate 3 on which multiple solid-state light source elements 11 are mounted.
  • the substrate 3 is made of a metal material with high thermal conductivity, typically copper, aluminum, iron, etc.
  • the surface of the substrate 3 on which the solid-state light source elements 11 are arranged may be referred to as the "mounting surface,” and the opposite surface may be referred to as the "rear surface.”
  • the surface on the +Z side of the substrate 3 corresponds to the "mounting surface”
  • the surface on the -Z side corresponds to the "rear surface.”
  • multiple solid-state light source elements 11 are arranged along the mounting surface of the substrate 3.
  • multiple solid-state light source elements 11 are arranged in a matrix along the X and Y directions parallel to the sides of the substrate 3.
  • the arrangement of the multiple solid-state light source elements 11 is not limited.
  • the light source device 1 includes a power supply unit 25 for supplying power to each solid-state light source element 11.
  • the power supply units 25 are provided in six locations, but the present invention does not limit the number of power supply units 25.
  • the light source device 1 is equipped with a large number of solid-state light source elements 11.
  • the number of solid-state light source elements 11 is about 100 to 400.
  • the light source device 1 supplies power to more than 300 solid-state light source elements 11 from power supply units 25 provided in six locations.
  • the power supply units 25 occupy an area of about 5% to 15% of the area along the X-Y plane of the substrate 3.
  • the power supply unit 25 is preferably positioned closer to the outer edge of the substrate 3 than near the center. As described below, when the solid light source element 11 emits light, the area near the power supply unit 25 heats up and tends to become hot. By positioning the power supply unit 25 closer to the outer edge of the substrate 3, the heat generated by the power supply unit 25 can be easily dissipated to the outside.
  • the metal substrate 3 provided in the light source device 1 has components mounted on both the +Z and -Z main surfaces.
  • the +Z main surface of the substrate 3 will be referred to as the "first main surface 3a”
  • the -Z main surface of the substrate 3 will be referred to as the "second main surface 3b.”
  • the first main surface 3a corresponds to the "mounting surface.”
  • the second main surface 3b corresponds to the "rear surface.”
  • the light source device 1 includes a first insulating layer 5 disposed on the first main surface 3a of the substrate 3.
  • the first insulating layer 5 is, for example, a polyimide resin or an epoxy resin.
  • the solid-state light source element 11 is disposed in the upper layer of the first insulating layer 5 on the side opposite the substrate 3 (the +Z side). In the example shown in FIG. 5, the solid-state light source element 11 is disposed on the +Z side surface of the first insulating layer 5 via the conductive layer 29 and the silver paste 13. However, in the present invention, the silver paste 13 is not an essential element.
  • the light source device 1 includes a second insulating layer 7 disposed on the second main surface 3b of the substrate 3.
  • the second insulating layer 7 is, for example, a polyimide resin or an epoxy resin.
  • the second insulating layer 7 preferably has a lower thermal conductivity than the first insulating layer 5.
  • the thermal conductivity of the insulating layer can be adjusted by changing the amount of filler to be filled, the particle shape of the filler, the degree of dispersion of the filler, etc. In the latter case, inorganic materials such as Al2O3 , BN, MgO, ZnO, and AlN are used as the filler, in addition to changing the main material.
  • Increasing the amount of filler filled into the resin can increase the thermal conductivity.
  • the thermal conductivity of the first insulating layer 5 will be higher than that of the second insulating layer 7.
  • the light source device 1 includes a power supply section 25 in the upper layer of the second insulating layer 7, opposite the substrate 3. As described above with reference to Figures 1 to 4, the power supply sections 25 are arranged at multiple locations in a direction parallel to the X-Y plane, and power is supplied to multiple solid-state light source elements 11 through each power supply section 25.
  • the conductive layer 29 is formed to connect the first main surface 3a and the second main surface 3b of the substrate 3. This will be explained in detail with reference to Figures 6 and 7.
  • the region sandwiched between the first insulating layer 5 and the solid-state light source element 11 in the direction perpendicular to the first main surface 3a of the substrate 3, i.e., the Z direction, will be referred to as the "first region J1" (see Figure 6).
  • the region sandwiched between the second insulating layer 7 and the power supply section 25 will be referred to as the "second region J2" (see Figure 7).
  • the region that penetrates the substrate 3, the first insulating layer 5, and the second insulating layer 7 in the Z direction to connect the first region J1 and the second region J2 will be referred to as the "third region J3" (see Figures 6 and 7).
  • the Z direction corresponds to the "first direction”.
  • the conductive layer 29 is formed across the first region J1, the third region J3, and the second region J2. As a result, the conductive layer 29 electrically connects the power supply section 25 arranged on the first main surface 3a side of the substrate 3 to the solid-state light source element 11 arranged on the second main surface 3b side of the substrate 3.
  • the substrate 3 is made of a metal material and is conductive. Therefore, from the viewpoint of preventing a short circuit between the conductive layer 29 and the substrate 3, the light source device 1 is provided with a third insulating layer 9 interposed between the conductive layer 29 and the substrate 3 at a position outside the conductive layer 29 arranged in the third region J3.
  • This third insulating layer 9 may be made of the same material as the first insulating layer 5 or the second insulating layer 7, or may be made of a different material from either of the insulating layers (5, 7).
  • the thermal conductivity of the third insulating layer 9 may be approximately the same as that of the first insulating layer 5.
  • a resist layer 31 for protecting the conductive layer 29 is provided on the upper layer of each of the conductive layers 29 arranged on the first main surface 3a side and the second main surface 3b side of the substrate 3.
  • the resist layer 31 is arranged so as to cover the upper and side surfaces of the conductive layer 29, and serves the function of preventing moisture, dust, etc. from adhering to the conductive layer 29.
  • the resist layer 31 is not an essential element in the present invention.
  • the second insulating layer 7 is disposed in a partial region on the second main surface 3b of the substrate 3.
  • a heat sink 21 is disposed on the upper surface of the region of the second main surface 3b of the substrate 3 where the second insulating layer 7 is not formed.
  • the heat sink 21 is disposed on the upper surface of the region of the second main surface 3b of the substrate 3 where the second insulating layer 7 is not formed via an adhesive layer 23.
  • the adhesion layer 23 is provided for the purpose of increasing the adhesion between the heat sink 21 and the second main surface 3b of the substrate 3. Increasing the adhesion between the two reduces the presence of air between the heat sink 21 and the substrate 3, lowering the thermal resistance between the heat sink 21 and the substrate 3 and improving heat dissipation.
  • Highly thermally conductive grease or a highly thermally conductive sheet is preferably used as the adhesion layer 23. Using highly thermally conductive grease as the adhesion layer 23 allows the thickness of the adhesion layer 23 to be reduced to around 30 ⁇ m to 60 ⁇ m.
  • the first insulating layer 5 is disposed on the first main surface 3a of the substrate 3, and the second insulating layer 7 is disposed on the second main surface 3b of the substrate 3, and then a through hole is formed that penetrates the second insulating layer 7, the substrate 3, and the first insulating layer 5 in the Z direction.
  • a third insulating layer 9 is formed along the inner side surface of the through hole, and then a conductive layer 29 is formed so as to connect the upper surface of the +Z side of the first insulating layer 5 to the upper surface of the -Z side of the second insulating layer 7 via the inner through hole surrounded by the third insulating layer 9.
  • the conductive layer 29 may be formed so as to completely fill the inner through-hole surrounded by the third insulating layer 9. In that case, however, the conductive layer 29 needs to be thick to a certain extent. On the other hand, if the conductive layer 29 is made thin, the inner through-hole surrounded by the third insulating layer 9 will not be completely filled by the conductive layer 29. In this case, even after the conductive layer 29 is formed, the through-hole continues to be formed inside the conductive layer 29.
  • the element referenced by the symbol 33 in FIG. 5 indicates the through-hole that remains after the conductive layer 29 is formed.
  • the second insulating layer 7 is removed from the area where the heat sink 21 is to be disposed, and then the heat sink 21 is disposed on the second main surface 3b side of the substrate 3.
  • the second insulating layer 7 can be realized from a material softer than the first insulating layer 5, and therefore the energy required to remove the second insulating layer 7 can be reduced.
  • the first insulating layer 5 arranged on the first main surface 3a side of the substrate 3 has a higher thermal conductivity than the second insulating layer 7, which makes it possible to efficiently dissipate heat generated by the solid-state light source element 11 to the metal substrate 3 side.
  • the second insulating layer 7 is disposed between the power supply unit 25 and the substrate 3 in the Z direction.
  • the power supply unit 25 has a relatively high current density because a current is injected into it to supply power to a large number of solid-state light source elements 11. For this reason, the vicinity of the power supply unit 25 tends to become hot when the solid-state light source elements 11 are driven.
  • the second insulating layer 7 from a material with low thermal conductivity, the heat generated in the power supply unit 25 is less likely to diffuse to the solid-state light source elements 11, and this also has the effect of suppressing the rise in temperature in the vicinity of the solid-state light source elements 11 due to the heat generated in the power supply unit 25.
  • the scope of the present invention also includes cases where the thermal conductivity of the first insulating layer 5 and the second insulating layer 7 are equivalent, or where the second insulating layer 7 is made of a material with a higher thermal conductivity than the first insulating layer 5.
  • a heat sink 21 is disposed on the second main surface 3b of the substrate 3 without a second insulating layer 7 therebetween. This allows the heat generated by the solid-state light source element 11 to be efficiently dissipated to the heat sink 21 side via the metal substrate 3.
  • FIG. 8 is a cross-sectional view of the structure of a light source device 1 according to another embodiment, illustrated following FIG. 5.
  • the light source device 1 shown in FIG. 8 differs from the light source device 1 shown in FIG. 5 in that the height position of the region on the second main surface 3b of the substrate 3 where the heat sink 21 is disposed is closer to the first main surface 3a than the height position of the region on which the second insulating layer 7 is formed.
  • the height position of the region on the second main surface 3b of the substrate 3 where the heat sink 21 is disposed is located on the +Z side of the height position of the region where the second insulating layer 7 is formed.
  • the substrate 3 has a step portion D1 in the region where the heat sink 21 is disposed.
  • the heat sink 21 can be installed closer to the solid-state light source element 11 than in the light source device 1 shown in FIG. 5. This allows the heat generated by the solid-state light source element 11 to be discharged more efficiently.
  • the second insulating layer 7 and the substrate 3 are removed from the area where the heat sink 21 is to be disposed to form a step portion D1, and then the heat sink 21 is disposed on the second main surface 3b side of the substrate 3.
  • the same method as used when manufacturing the light source device 1 shown in FIG. 5 can be used.
  • Light source device 3 Substrate 3a: First main surface 3b: Second main surface 5: First insulating layer 7: Second insulating layer 9: Third insulating layer 11: Solid-state light source element 13: Silver paste 21: Heat sink 23: Adhesion layer 25: Power supply section 29: Conductive layer 31: Resist layer 33: Through hole D1: Step portion J1: First region J2: Second region J3: Third region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

Provided is a light source device offering improved heat dissipation in instances where a substrate made of metal is used to supply power to a solid-state light source element from the side of the solid-state light source element opposite a mounting surface thereof.  This light source device is provided with: a substrate made of metal; a first insulating layer arranged on a first principal surface of the substrate; a solid-state light source element arranged on an upper layer on a side of the first insulating layer opposite the substrate; a second insulating layer arranged in a partial region on a second principal surface of the substrate; a power-supplying unit arranged on an upper layer on a side of the second insulating layer opposite the substrate; an electroconductive layer arranged straddling a first region sandwiched between the first insulating layer and the solid-state light source element, a second region sandwiched between the second insulating layer and the power-supplying unit, and a third region creating communication between the first region and the second region by penetrating through the substrate, the first insulating layer and the second insulating layer; and a heat sink arranged, either directly or with another layer therebetween, on an upper surface of a region of the second principal surface of the substrate where the second insulating layer is not formed.

Description

光源装置Light source
 本発明は光源装置に関し、特に、金属製の基板に固体光源素子が実装された光源装置に関する。 The present invention relates to a light source device, and in particular to a light source device in which a solid-state light source element is mounted on a metal substrate.
 従来、LED等の固体光源素子が発生する熱に対する放熱性を高める観点で、金属製の基板に固体光源素子を実装した光源装置が知られている(例えば、特許文献1参照)。  Conventionally, light source devices have been known in which solid-state light source elements such as LEDs are mounted on a metal substrate in order to improve the heat dissipation properties of the heat generated by the solid-state light source elements (see, for example, Patent Document 1).
特開2018-056397号公報JP 2018-056397 A
 昨今、LED等の固体光源素子を備えた光源装置は、高輝度で、小型且つ軽量の装置が市場から求められている。 Recently, there has been demand from the market for light source devices equipped with solid-state light source elements such as LEDs that are high-brightness, compact, and lightweight.
 輝度を高める観点からは、固体光源素子の配置数を増加させればよい。しかし、単に固体光源素子の配置数を増加させようとすると、固体光源素子の配置領域の面積が増大する。この結果、光源装置自体のサイズが大きくなってしまう。装置サイズが拡大すると、装置の取付部品の強度を高める必要が生じ、この結果、装置の重量が重くなる。更には、装置に利用される材料の量も増えて世界的なSDGsの流れに逆行することにもつながる。
また、作業者が装置を取扱う際の困難性を高めるおそれもある。
From the viewpoint of increasing brightness, it is sufficient to increase the number of solid light source elements. However, simply increasing the number of solid light source elements increases the area of the region in which the solid light source elements are arranged. As a result, the size of the light source device itself increases. When the device size increases, it becomes necessary to increase the strength of the attachment parts of the device, which results in the weight of the device becoming heavier. Furthermore, the amount of material used in the device also increases, which goes against the global trend of SDGs.
It may also increase the difficulty for an operator to handle the device.
 かかる観点から、本発明者らは、固体光源素子に対して給電を行うための給電部を、LED等の固体光源素子が配置される側の面(実装面)とは反対側の面に配置することで、実装面には固体光源素子以外の電子部品の配置を極力減らして、固体光源素子の配置密度を高めることを検討した。 From this perspective, the inventors have considered increasing the arrangement density of solid-state light source elements by arranging the power supply unit for supplying power to the solid-state light source elements on the surface opposite to the surface (mounting surface) on which the solid-state light source elements such as LEDs are arranged, thereby minimizing the arrangement of electronic components other than the solid-state light source elements on the mounting surface.
 固体光源素子の配置密度を高めることは、それだけ固体光源素子からの発熱量が増えることにつながる。LED等の固体光源素子は、温度が上昇すると発光効率が低下するため、固体光源素子が発生した熱を効率的に排熱することは重要である。しかし、上記の構成を採用しようとすると、基板が金属製であることから、実装面とは反対側の面においては、給電部と電気的な絶縁を確保する必要がある。一般的に、絶縁層は金属製の基板よりも熱伝導率が低い。このため、絶縁層の存在は、固体光源素子からの発熱を高効率に排熱させる上では、障害になり得る。 Increasing the arrangement density of solid-state light source elements leads to an increase in the amount of heat generated by the solid-state light source elements. The light-emitting efficiency of solid-state light source elements such as LEDs decreases as the temperature rises, so it is important to efficiently dissipate the heat generated by the solid-state light source elements. However, when attempting to adopt the above configuration, since the board is made of metal, it is necessary to ensure electrical insulation from the power supply section on the side opposite the mounting surface. In general, insulating layers have a lower thermal conductivity than metal boards. For this reason, the presence of an insulating layer can be an obstacle to efficiently dissipating heat generated by the solid-state light source elements.
 本発明は、上記の課題に鑑み、金属製の基板を用い、固体光源素子の実装面とは反対側から固体光源素子に対して給電を行う場合において、排熱性を向上した光源装置を提供することを目的とする。 In view of the above problems, the present invention aims to provide a light source device that uses a metal substrate and has improved heat dissipation properties when power is supplied to the solid-state light source element from the side opposite the mounting surface of the solid-state light source element.
 本発明に係る光源装置は、
 金属製の基板と、
 前記基板の第一主面上に配置された第一絶縁層と、
 前記第一絶縁層の前記基板とは反対側の上層に配置された固体光源素子と、
 前記基板の前記第一主面とは反対側の第二主面上の一部領域に配置された第二絶縁層と、
 前記第二絶縁層の前記基板と反対側の上層に配置された給電部と、
 前記基板の前記第一主面に直交する第一方向に関して前記第一絶縁層と前記固体光源素子とに挟まれた第一領域と、前記第一方向に関して前記第二絶縁層と前記給電部とに挟まれた第二領域と、前記基板、前記第一絶縁層、及び前記第二絶縁層を前記第一方向に貫通して前記第一領域と前記第二領域とを連絡する第三領域とに跨って配置された、導電層と、
 前記第三領域に配置された前記導電層の外側の位置において、前記導電層と前記基板との間に介在する第三絶縁層と、
 前記基板の前記第二主面のうち、前記第二絶縁層が形成されていない領域の上面に、直接又は前記第二絶縁層よりも熱伝導率の高い他の層を介して配置されたヒートシンクとを備えたことを特徴とする。
The light source device according to the present invention comprises:
A metal substrate;
a first insulating layer disposed on a first major surface of the substrate;
a solid-state light source element disposed on an upper layer of the first insulating layer opposite to the substrate;
a second insulating layer disposed on a partial region of a second main surface of the substrate opposite to the first main surface;
a power supply portion disposed on an upper layer of the second insulating layer opposite to the substrate;
a conductive layer disposed across a first region sandwiched between the first insulating layer and the solid-state light source element in a first direction perpendicular to the first main surface of the substrate, a second region sandwiched between the second insulating layer and the power supply unit in the first direction, and a third region penetrating the substrate, the first insulating layer, and the second insulating layer in the first direction to connect the first region and the second region;
a third insulating layer interposed between the conductive layer and the substrate at a position outside the conductive layer disposed in the third region;
The present invention is characterized in that it comprises a heat sink that is placed on the upper surface of the second main surface of the substrate in an area where the second insulating layer is not formed, either directly or via another layer having a higher thermal conductivity than the second insulating layer.
 上記構成によれば、基板の、給電部が形成されている側の面(第二主面)には、直接、又は第二絶縁層よりも熱伝導率の高い層を介してヒートシンクが配置される。これにより、固体光源素子から発せられた熱は、金属製の基板を介してヒートシンク側に効率的に排熱できる。比較のため、基板の第二主面上に第二絶縁層を配置した上で、この第二絶縁層の上層にヒートシンクを配置した場合と比べると、上記光源装置によれば固体光源素子のジャンクション温度を約15%低下できたことが確認された。 With the above configuration, a heat sink is placed on the surface of the substrate on which the power supply section is formed (second main surface), either directly or via a layer with a higher thermal conductivity than the second insulating layer. This allows the heat generated from the solid-state light source element to be efficiently dissipated to the heat sink side via the metal substrate. For comparison, it was confirmed that the above light source device was able to reduce the junction temperature of the solid-state light source element by approximately 15% when compared to a case in which a second insulating layer was placed on the second main surface of the substrate and a heat sink was placed on top of this second insulating layer.
 基板の第二主面のうち、ヒートシンクが配置されていない領域においては、第二主面の上面に第二絶縁層が配置されている。これにより、給電部と金属製基板との間の絶縁性は確保される。 In the area of the second main surface of the substrate where the heat sink is not arranged, a second insulating layer is arranged on the upper surface of the second main surface. This ensures insulation between the power supply unit and the metal substrate.
 ヒートシンクは、空冷式であっても水冷式であっても構わない。 The heat sink can be air-cooled or water-cooled.
 前記金属製の基板としては、熱伝導率の高い金属材料が利用され、銅、アルミニウム、鉄等が好適に用いられ、銅が特に好ましい。 The metal substrate is made of a metal material with high thermal conductivity, preferably copper, aluminum, iron, etc., with copper being particularly preferred.
 導電層の主材料としては、抵抗率の低い金属材料が利用され、銅、銀、金等が好適に用いられ、銅が特に好ましい。なお、導電層は、前記金属材料を主材料とするメッキ材料であっても構わない。 The main material of the conductive layer is a metal material with low resistivity, and copper, silver, gold, etc. are preferably used, with copper being particularly preferred. The conductive layer may also be a plating material that has the above metal material as the main material.
 第三絶縁層は、第一絶縁層又は第二絶縁層と同一の材料であっても構わないし、異なる材料であっても構わない。 The third insulating layer may be made of the same material as the first insulating layer or the second insulating layer, or it may be made of a different material.
 ヒートシンクは、基板の第二主面に直接接触するように配置されても構わないし、両者の密着性を高める観点で、基板の第二主面に他の層(密着層)を介して接触するように配置されても構わない。ヒートシンクと基板の間に密着層を介在させることで、ヒートシンクと基板の間に空気層が介在することが抑制され、基板とヒートシンクとの間の熱抵抗を低下できる。密着層としては、高熱伝導性グリス又は高熱伝導性シートが好適に利用できる。 The heat sink may be arranged so as to be in direct contact with the second main surface of the substrate, or, in order to increase the adhesion between the two, may be arranged so as to be in contact with the second main surface of the substrate via another layer (adhesion layer). By interposing an adhesion layer between the heat sink and the substrate, the presence of an air layer between the heat sink and the substrate is suppressed, and the thermal resistance between the substrate and the heat sink can be reduced. As the adhesion layer, a highly thermally conductive grease or a highly thermally conductive sheet can be suitably used.
 ここで、「高熱伝導性グリス」とは、熱伝導率が0.5W/m・K以上を示すグリスを指す。同様に、「高熱伝導性シート」とは、熱伝導率が0.5W/m・K以上を示すシート状素材を指す。 Here, "high thermal conductive grease" refers to grease with a thermal conductivity of 0.5 W/m·K or more. Similarly, "high thermal conductive sheet" refers to a sheet-like material with a thermal conductivity of 0.5 W/m·K or more.
 前記基板は、前記第二主面の上層に前記第二絶縁層が形成されていない領域において、前記第二主面の高さ位置が異なる段差部を有しており、
 前記基板の前記第二主面は、前記ヒートシンクが形成されている領域の高さ位置が、前記第二絶縁層が形成されている領域の高さ位置よりも、前記第一主面に近いものとしても構わない。
the substrate has a step portion at a different height position of the second main surface in a region where the second insulating layer is not formed on the second main surface,
The second main surface of the substrate may be such that the height position of the region in which the heat sink is formed is closer to the first main surface than the height position of the region in which the second insulating layer is formed.
 上記の構成によれば、ヒートシンクの設置位置を、固体光源素子に対してより近づけることができるため、排熱性が更に高められる。 The above configuration allows the heat sink to be positioned closer to the solid-state light source element, further improving heat dissipation.
 前記第二絶縁層は、前記第一絶縁層よりも熱伝導率が低いものとしても構わない。 The second insulating layer may have a lower thermal conductivity than the first insulating layer.
 上述したように、前記第二絶縁層の近くには給電部が配置される。給電部は、固体光源素子に対して電気を供給するために、外部電源より給電される領域である。給電部の近傍は電流密度が高くなるため、温度が上昇しやすい。よって、この給電部で生じた熱を固体光源素子側に伝わりにくくする観点で、給電部と金属製の基板との間に配置される第二絶縁層は、熱伝導率が低いことが好ましい。 As described above, a power supply section is disposed near the second insulating layer. The power supply section is an area that receives power from an external power source in order to supply electricity to the solid-state light source element. The current density is high near the power supply section, so the temperature is likely to rise. Therefore, from the standpoint of making it difficult for the heat generated in the power supply section to be transmitted to the solid-state light source element, it is preferable that the second insulating layer disposed between the power supply section and the metal substrate has low thermal conductivity.
 一方、金属製の基板の第一主面側には固体光源素子が配置され、この固体光源素子と基板との間には第一絶縁層が介在している。固体光源素子が生じた熱を、基板を介してヒートシンク側に効率的に排熱する観点から、第一絶縁層は熱伝導率が相対的に高いことが好ましい。 On the other hand, a solid-state light source element is disposed on the first main surface side of the metal substrate, and a first insulating layer is interposed between this solid-state light source element and the substrate. From the viewpoint of efficiently dissipating heat generated by the solid-state light source element to the heat sink side via the substrate, it is preferable that the first insulating layer has a relatively high thermal conductivity.
 ところで、上記光源装置を製造するに際しては、基板の第二主面側の全面に第二絶縁層を形成した後、ヒートシンクの配置予定領域内の第二絶縁層を除去する方法を利用することができる。第二絶縁層の熱伝導率を第一絶縁層よりも低くすることで、第二絶縁層を第一絶縁層よりも硬度が低下し、ヒートシンクの配置予定領域内の第二絶縁層を除去しやすくできるという効果も奏する。 Incidentally, when manufacturing the light source device, a method can be used in which a second insulating layer is formed over the entire surface of the second main surface of the substrate, and then the second insulating layer is removed from within the area where the heat sink is to be disposed. By making the thermal conductivity of the second insulating layer lower than that of the first insulating layer, the hardness of the second insulating layer is reduced compared to that of the first insulating layer, which also has the effect of making it easier to remove the second insulating layer from within the area where the heat sink is to be disposed.
 前記給電部は、前記第一方向から見て離間した複数の位置に配置されているものとしても構わない。 The power supply units may be arranged at multiple positions spaced apart from each other when viewed from the first direction.
 なお、給電部の配置数は、固体光源素子の配置数に比べて十分少ないものとしても構わない。一例として、240個の固体光源素子に対して6箇所の給電部から給電を行うことができる。 The number of power supply units may be much smaller than the number of solid-state light source elements. As an example, power can be supplied from six power supply units to 240 solid-state light source elements.
 前記給電部は、前記第一方向から見て、前記基板の中央よりも外縁に近い複数の位置に配置されているものとしても構わない。 The power supply units may be arranged at multiple positions closer to the outer edge of the substrate than to the center when viewed from the first direction.
 前述したように、給電部の近傍は温度が上昇しやすい。給電部を基板の中央付近に配置する場合よりも、外縁付近に配置した方が、給電部からの熱を冷却しやすくなる。 As mentioned above, the temperature tends to rise near the power supply. It is easier to cool the heat from the power supply by placing it near the outer edge of the board than by placing it near the center.
 本発明の光源装置によれば、金属製の基板を用い、固体光源素子の実装面とは反対側から固体光源素子に対して給電を行いつつ、高い排熱性が実現される。 The light source device of the present invention uses a metal substrate, and provides power to the solid-state light source element from the side opposite the mounting surface of the solid-state light source element, while achieving high heat dissipation.
本発明の光源装置の一実施形態の模式的な斜視図である。1 is a schematic perspective view of an embodiment of a light source device of the present invention. 図1に示す光源装置1を、-Z側から見たときの模式的な平面図である。2 is a schematic plan view of the light source device 1 shown in FIG. 1 as viewed from the -Z side. 図1に示す光源装置1を、+Z側から見たときの模式的な平面図である。2 is a schematic plan view of the light source device 1 shown in FIG. 1 as viewed from the +Z side. 図1に示す光源装置1から、ヒートシンク21の図示を省略した斜視図である。FIG. 2 is a perspective view of the light source device 1 shown in FIG. 1 with a heat sink 21 omitted. 図4に示す光源装置1を、図4内のV-V線で切断したときの模式的な断面図である。5 is a schematic cross-sectional view of the light source device 1 shown in FIG. 4 taken along line V-V in FIG. 4. 図5の一部拡大図である。FIG. 6 is a partially enlarged view of FIG. 5 . 図5の一部拡大図である。FIG. 6 is a partially enlarged view of FIG. 5 . 図4に示す光源装置1の別実施形態を、図4内のV-V線で切断したときの模式的な別の断面図である。5 is another schematic cross-sectional view of the light source device 1 according to another embodiment of the present invention taken along line V-V in FIG. 4. FIG.
 本発明に係る光源装置の実施形態につき、図面を参照して説明する。なお、以下の図面は模式的に示されたものであり、図面上の寸法比は実際の寸法比と一致していない。また、各図面間においても、寸法比は必ずしも一致していない。 The following embodiments of the light source device according to the present invention will be described with reference to the drawings. Note that the following drawings are schematic, and the dimensional ratios in the drawings do not match the actual dimensional ratios. Furthermore, the dimensional ratios do not necessarily match between the different drawings.
 図1は、光源装置1の模式的な斜視図である。図2は、図1に示す光源装置1を、-Z側から見たときの模式的な平面図である。図3は、図1に示す光源装置1を、+Z側から見たときの模式的な平面図である。図4は、図1に示す光源装置1から、説明の都合上、ヒートシンク21の図示を省略した斜視図である。 FIG. 1 is a schematic perspective view of the light source device 1. FIG. 2 is a schematic plan view of the light source device 1 shown in FIG. 1 as viewed from the -Z side. FIG. 3 is a schematic plan view of the light source device 1 shown in FIG. 1 as viewed from the +Z side. FIG. 4 is a perspective view of the light source device 1 shown in FIG. 1 with the heat sink 21 omitted for ease of explanation.
 図5は、図4に示す光源装置1を、図4内のV-V線で切断したときの模式的な断面図である。ただし、図5では、ヒートシンク21が図示されている。図6及び図7は、それぞれ図5の一部拡大図である。 FIG. 5 is a schematic cross-sectional view of the light source device 1 shown in FIG. 4 taken along line V-V in FIG. 4. However, FIG. 5 also shows the heat sink 21. FIG. 6 and FIG. 7 are each an enlarged view of a portion of FIG. 5.
 図1~図3に示すように、光源装置1は複数の固体光源素子11を備える。固体光源素子11は、典型的にはLED素子であるが、面発光型のLD素子であっても構わない。図1~図3に示す光源装置1は、各固体光源素子11が+Z方向に光を発するように配置されている。 As shown in Figures 1 to 3, the light source device 1 includes multiple solid-state light source elements 11. The solid-state light source elements 11 are typically LED elements, but may also be surface-emitting LD elements. The light source device 1 shown in Figures 1 to 3 is arranged so that each solid-state light source element 11 emits light in the +Z direction.
 光源装置1は、複数の固体光源素子11を実装する基板3を備える。基板3は、熱伝導率の高い金属材料からなり、典型的には銅、アルミニウム、鉄等である。以下では、基板3の面のうち、固体光源素子11が配置されている側の面を「実装面」と呼び、その反対側の面を「裏面」と呼ぶことがある。図1~図3に示すX-Y-Z座標系を参照すれば、基板3の+Z側の面が「実装面」に対応し、-Z側の面が「裏面」に対応する。 The light source device 1 includes a substrate 3 on which multiple solid-state light source elements 11 are mounted. The substrate 3 is made of a metal material with high thermal conductivity, typically copper, aluminum, iron, etc. In the following, the surface of the substrate 3 on which the solid-state light source elements 11 are arranged may be referred to as the "mounting surface," and the opposite surface may be referred to as the "rear surface." With reference to the X-Y-Z coordinate system shown in Figures 1 to 3, the surface on the +Z side of the substrate 3 corresponds to the "mounting surface," and the surface on the -Z side corresponds to the "rear surface."
 図1に示すように、光源装置1は、基板3の裏面側にヒートシンク21を備える。図1~図2の例では、ヒートシンク21が空冷式である場合が図示されているが、水冷式であっても構わない。 As shown in FIG. 1, the light source device 1 has a heat sink 21 on the back side of the substrate 3. In the example of FIG. 1 and FIG. 2, the heat sink 21 is shown as being air-cooled, but it may also be water-cooled.
 図1及び図3に示すように、固体光源素子11は、基板3の実装面に沿って複数配置されている。この例では、基板3の辺に平行なX方向及びY方向に沿って、複数の固体光源素子11がマトリクス状に配置されている。しかし、本発明において、複数の固体光源素子11の配置態様は限定されない。 As shown in Figures 1 and 3, multiple solid-state light source elements 11 are arranged along the mounting surface of the substrate 3. In this example, multiple solid-state light source elements 11 are arranged in a matrix along the X and Y directions parallel to the sides of the substrate 3. However, in the present invention, the arrangement of the multiple solid-state light source elements 11 is not limited.
 図1及び図2に示すように、光源装置1は、各固体光源素子11に対して給電を行うための給電部25を備える。図2の例では、給電部25は6箇所に設けられているが、本発明において、給電部25の配置数は限定されない。 As shown in Figs. 1 and 2, the light source device 1 includes a power supply unit 25 for supplying power to each solid-state light source element 11. In the example of Fig. 2, the power supply units 25 are provided in six locations, but the present invention does not limit the number of power supply units 25.
 図3に示すように、光源装置1は、多数の固体光源素子11を備えている。一例として、固体光源素子11の数は100個~400個程度である。図2~図4に示す例によれば、光源装置1は、6箇所に設けられた給電部25から、300個を超える固体光源素子11に対して給電が行われる。例えば、給電部25は、基板3のX-Y平面に沿った面積に対して、5%~15%程度の領域を占有する。 As shown in FIG. 3, the light source device 1 is equipped with a large number of solid-state light source elements 11. As an example, the number of solid-state light source elements 11 is about 100 to 400. According to the example shown in FIG. 2 to FIG. 4, the light source device 1 supplies power to more than 300 solid-state light source elements 11 from power supply units 25 provided in six locations. For example, the power supply units 25 occupy an area of about 5% to 15% of the area along the X-Y plane of the substrate 3.
 図2及び図4に示すように、給電部25は、好ましくは基板3の中央付近よりも外縁に近い位置に配置される。後述するように、固体光源素子11の発光時には、給電部25の近傍は加熱され、高温になりやすい。給電部25を基板3の外縁に近い位置に配置することで、給電部25が生じる熱を外側に逃しやすくなる。 As shown in Figures 2 and 4, the power supply unit 25 is preferably positioned closer to the outer edge of the substrate 3 than near the center. As described below, when the solid light source element 11 emits light, the area near the power supply unit 25 heats up and tends to become hot. By positioning the power supply unit 25 closer to the outer edge of the substrate 3, the heat generated by the power supply unit 25 can be easily dissipated to the outside.
 次に、図5~図7を参照して、光源装置1の詳細な構造について説明する。図5に示すように、光源装置1が備える金属製の基板3は、+Z側及び-Z側の両主面に部品が実装されている。以下では、基板3の+Z側の主面を「第一主面3a」と呼び、基板3の-Z側の主面を「第二主面3b」と呼ぶ。第一主面3aは前記「実装面」に対応する。第二主面3bは前記「裏面」に対応する。 Next, the detailed structure of the light source device 1 will be described with reference to Figures 5 to 7. As shown in Figure 5, the metal substrate 3 provided in the light source device 1 has components mounted on both the +Z and -Z main surfaces. Hereinafter, the +Z main surface of the substrate 3 will be referred to as the "first main surface 3a," and the -Z main surface of the substrate 3 will be referred to as the "second main surface 3b." The first main surface 3a corresponds to the "mounting surface." The second main surface 3b corresponds to the "rear surface."
 光源装置1は、基板3の第一主面3a上に配置された第一絶縁層5を備える。第一絶縁層5は、例えば、ポリイミド樹脂やエポキシ樹脂である。 The light source device 1 includes a first insulating layer 5 disposed on the first main surface 3a of the substrate 3. The first insulating layer 5 is, for example, a polyimide resin or an epoxy resin.
 固体光源素子11は、第一絶縁層5の、基板3とは反対側(+Z側)の上層に配置されている。図5に示す例では、固体光源素子11は、第一絶縁層5の+Z側の面において、導電層29及び銀ペースト13を介して配置されている。ただし、本発明において、銀ペースト13は必須の要素ではない。 The solid-state light source element 11 is disposed in the upper layer of the first insulating layer 5 on the side opposite the substrate 3 (the +Z side). In the example shown in FIG. 5, the solid-state light source element 11 is disposed on the +Z side surface of the first insulating layer 5 via the conductive layer 29 and the silver paste 13. However, in the present invention, the silver paste 13 is not an essential element.
 光源装置1は、基板3の第二主面3b上に配置された第二絶縁層7を備える。第二絶縁層7は、例えば、ポリイミド樹脂やエポキシ樹脂である。 The light source device 1 includes a second insulating layer 7 disposed on the second main surface 3b of the substrate 3. The second insulating layer 7 is, for example, a polyimide resin or an epoxy resin.
 第二絶縁層7は、好ましくは第一絶縁層5よりも熱伝導率が低い。絶縁層の熱伝導率は、主材料を異ならせる方法の他、充填されるフィラーの量、フィラーの粒子形状、フィラーの分散程度等を異ならせることでも調整できる。後者の場合、フィラーとしては、Al23、BN、MgO、ZnO、AlN等の無機材料が利用される。 The second insulating layer 7 preferably has a lower thermal conductivity than the first insulating layer 5. The thermal conductivity of the insulating layer can be adjusted by changing the amount of filler to be filled, the particle shape of the filler, the degree of dispersion of the filler, etc. In the latter case, inorganic materials such as Al2O3 , BN, MgO, ZnO, and AlN are used as the filler, in addition to changing the main material.
 樹脂に充填されるフィラーの量を増加させると、熱伝導率を高めることができる。つまり、第一絶縁層5と第二絶縁層7の主材料を共に樹脂で構成した場合において、第一絶縁層5に充填されるフィラー量を、第二絶縁層7よりも高めると、第一絶縁層5の熱伝導率が第二絶縁層7よりも高くなる。 Increasing the amount of filler filled into the resin can increase the thermal conductivity. In other words, if the main material of both the first insulating layer 5 and the second insulating layer 7 is resin, and the amount of filler filled into the first insulating layer 5 is greater than that of the second insulating layer 7, the thermal conductivity of the first insulating layer 5 will be higher than that of the second insulating layer 7.
 光源装置1は、第二絶縁層7の、基板3とは反対側の上層に給電部25を備える。図1~図4を参照して上述したように、この給電部25は、X-Y平面に平行な方向に関して複数の箇所に配置されており、各給電部25を通じて、多数の固体光源素子11に対して給電が行われる。 The light source device 1 includes a power supply section 25 in the upper layer of the second insulating layer 7, opposite the substrate 3. As described above with reference to Figures 1 to 4, the power supply sections 25 are arranged at multiple locations in a direction parallel to the X-Y plane, and power is supplied to multiple solid-state light source elements 11 through each power supply section 25.
 導電層29は、基板3の第一主面3a側と第二主面3b側とを連絡するように形成されている。この点について、図6~図7を参照して詳細に説明する。 The conductive layer 29 is formed to connect the first main surface 3a and the second main surface 3b of the substrate 3. This will be explained in detail with reference to Figures 6 and 7.
 以下では、基板3の第一主面3aに直交する方向、すなわちZ方向に関して、第一絶縁層5と固体光源素子11とに挟まれた領域を、「第一領域J1」と呼ぶ(図6参照)。また、Z方向に関して、第二絶縁層7と給電部25とに挟まれた領域を、「第二領域J2」と呼ぶ(図7参照)。また、基板3、第一絶縁層5、及び第二絶縁層7をZ方向に貫通して第一領域J1と第二領域J2とを連絡する領域を、「第三領域J3」と呼ぶ(図6、図7参照)。Z方向が「第一方向」に対応する。 Hereinafter, the region sandwiched between the first insulating layer 5 and the solid-state light source element 11 in the direction perpendicular to the first main surface 3a of the substrate 3, i.e., the Z direction, will be referred to as the "first region J1" (see Figure 6). Also, in the Z direction, the region sandwiched between the second insulating layer 7 and the power supply section 25 will be referred to as the "second region J2" (see Figure 7). Also, the region that penetrates the substrate 3, the first insulating layer 5, and the second insulating layer 7 in the Z direction to connect the first region J1 and the second region J2 will be referred to as the "third region J3" (see Figures 6 and 7). The Z direction corresponds to the "first direction".
 図6~図7に示すように、導電層29は、第一領域J1、第三領域J3、及び第二領域J2に跨るように形成されている。この結果、導電層29は、基板3の第一主面3a側に配置された給電部25と、基板3の第二主面3b側に配置された固体光源素子11とを電気的に接続する。 As shown in Figures 6 and 7, the conductive layer 29 is formed across the first region J1, the third region J3, and the second region J2. As a result, the conductive layer 29 electrically connects the power supply section 25 arranged on the first main surface 3a side of the substrate 3 to the solid-state light source element 11 arranged on the second main surface 3b side of the substrate 3.
 上述したように、基板3は金属材料からなり、導電性を示す。このため、導電層29と基板3とが短絡するのを抑制する観点から、光源装置1は、第三領域J3内に配置された導電層29の外側の位置において、導電層29と基板3との間に介在する第三絶縁層9を備えている。この第三絶縁層9は、第一絶縁層5又は第二絶縁層7と同じ材料であっても構わないし、いずれの絶縁層(5,7)とも異なる材料であっても構わない。第三絶縁層9の熱伝導率は、第一絶縁層5と同程度としても構わない。 As described above, the substrate 3 is made of a metal material and is conductive. Therefore, from the viewpoint of preventing a short circuit between the conductive layer 29 and the substrate 3, the light source device 1 is provided with a third insulating layer 9 interposed between the conductive layer 29 and the substrate 3 at a position outside the conductive layer 29 arranged in the third region J3. This third insulating layer 9 may be made of the same material as the first insulating layer 5 or the second insulating layer 7, or may be made of a different material from either of the insulating layers (5, 7). The thermal conductivity of the third insulating layer 9 may be approximately the same as that of the first insulating layer 5.
 基板3の第一主面3a側及び第二主面3b側に配置されたそれぞれの導電層29の上層には、導電層29を保護するためのレジスト層31が設けられている。レジスト層31は、導電層29の上面及び側面を覆うように配置されており、導電層29に対して水分や埃等が付着するのを防止する機能を奏する。ただし、本発明において、レジスト層31は必須の要素ではない。 A resist layer 31 for protecting the conductive layer 29 is provided on the upper layer of each of the conductive layers 29 arranged on the first main surface 3a side and the second main surface 3b side of the substrate 3. The resist layer 31 is arranged so as to cover the upper and side surfaces of the conductive layer 29, and serves the function of preventing moisture, dust, etc. from adhering to the conductive layer 29. However, the resist layer 31 is not an essential element in the present invention.
 図5に示すように、第二絶縁層7は、基板3の第二主面3b上の一部領域に配置されている。そして、基板3の第二主面3bのうち、第二絶縁層7が形成されていない領域の上面には、ヒートシンク21が配置されている。図5に示す例では、ヒートシンク21が、基板3の第二主面3bのうちの、第二絶縁層7が形成されていない領域の上面に、密着層23を介して配置されている。 As shown in FIG. 5, the second insulating layer 7 is disposed in a partial region on the second main surface 3b of the substrate 3. A heat sink 21 is disposed on the upper surface of the region of the second main surface 3b of the substrate 3 where the second insulating layer 7 is not formed. In the example shown in FIG. 5, the heat sink 21 is disposed on the upper surface of the region of the second main surface 3b of the substrate 3 where the second insulating layer 7 is not formed via an adhesive layer 23.
 密着層23は、ヒートシンク21と基板3の第二主面3bとの密着性を高める目的で設けられている。両者の密着性を高めることで、ヒートシンク21と基板3との間に空気が介在するのが抑制され、ヒートシンク21と基板3との間の熱抵抗が低下し、排熱性が向上する。密着層23としては、高熱伝導性グリス又は高熱伝導性シートが好適に利用できる。密着層23として高熱伝導性グリスを用いる方が、密着層23の厚みを30μm~60μm程度と薄くすることができる。 The adhesion layer 23 is provided for the purpose of increasing the adhesion between the heat sink 21 and the second main surface 3b of the substrate 3. Increasing the adhesion between the two reduces the presence of air between the heat sink 21 and the substrate 3, lowering the thermal resistance between the heat sink 21 and the substrate 3 and improving heat dissipation. Highly thermally conductive grease or a highly thermally conductive sheet is preferably used as the adhesion layer 23. Using highly thermally conductive grease as the adhesion layer 23 allows the thickness of the adhesion layer 23 to be reduced to around 30 μm to 60 μm.
 図5に示す光源装置1を製造するに際しては、基板3の第一主面3a側に第一絶縁層5を、基板3の第二主面3b側に第二絶縁層7をそれぞれ配置した後、第二絶縁層7、基板3、及び第一絶縁層5をZ方向に貫通する貫通孔が形成される。その後、貫通孔の内側面に沿って第三絶縁層9を成膜した後、第三絶縁層9に囲まれた内側の貫通孔を介して、第一絶縁層5の+Z側の上面と、第二絶縁層7の-Z側の上面とを連絡するように、導電層29が成膜される。 When manufacturing the light source device 1 shown in FIG. 5, the first insulating layer 5 is disposed on the first main surface 3a of the substrate 3, and the second insulating layer 7 is disposed on the second main surface 3b of the substrate 3, and then a through hole is formed that penetrates the second insulating layer 7, the substrate 3, and the first insulating layer 5 in the Z direction. After that, a third insulating layer 9 is formed along the inner side surface of the through hole, and then a conductive layer 29 is formed so as to connect the upper surface of the +Z side of the first insulating layer 5 to the upper surface of the -Z side of the second insulating layer 7 via the inner through hole surrounded by the third insulating layer 9.
 導電層29は、第三絶縁層9に囲まれた内側の貫通孔を完全に充填するように形成されても構わない。ただし、その場合には、導電層29の厚みがある程度必要となる。一方、導電層29の厚みを薄くすると、第三絶縁層9に囲まれた内側の貫通孔が導電層29によって完全には充填されない。このとき、導電層29が形成された後においても、導電層29の内側には引き続き貫通孔が形成されたままである。図5において符号33で参照されている要素は、導電層29が形成された後に残存する貫通孔を示している。 The conductive layer 29 may be formed so as to completely fill the inner through-hole surrounded by the third insulating layer 9. In that case, however, the conductive layer 29 needs to be thick to a certain extent. On the other hand, if the conductive layer 29 is made thin, the inner through-hole surrounded by the third insulating layer 9 will not be completely filled by the conductive layer 29. In this case, even after the conductive layer 29 is formed, the through-hole continues to be formed inside the conductive layer 29. The element referenced by the symbol 33 in FIG. 5 indicates the through-hole that remains after the conductive layer 29 is formed.
 また、図5に示す光源装置1を製造するに際しては、ヒートシンク21が配置される領域内の第二絶縁層7を除去した後、基板3の第二主面3b側にヒートシンク21が配置される。上述したように、第二絶縁層7を第一絶縁層5よりも熱伝導率の低い材料で構成することで、第二絶縁層7を第一絶縁層5よりも柔らかい素材で実現できるため、第二絶縁層7を除去する際に必要なエネルギーを低減できる。 In addition, when manufacturing the light source device 1 shown in FIG. 5, the second insulating layer 7 is removed from the area where the heat sink 21 is to be disposed, and then the heat sink 21 is disposed on the second main surface 3b side of the substrate 3. As described above, by forming the second insulating layer 7 from a material with a lower thermal conductivity than the first insulating layer 5, the second insulating layer 7 can be realized from a material softer than the first insulating layer 5, and therefore the energy required to remove the second insulating layer 7 can be reduced.
 一方で、基板3の第一主面3a側に配置される第一絶縁層5については、第二絶縁層7よりも熱伝導率を高くすることで、固体光源素子11が発生する熱を金属製の基板3側に効率的に排熱することが可能となる。 On the other hand, the first insulating layer 5 arranged on the first main surface 3a side of the substrate 3 has a higher thermal conductivity than the second insulating layer 7, which makes it possible to efficiently dissipate heat generated by the solid-state light source element 11 to the metal substrate 3 side.
 図5に示すように、第二絶縁層7は、Z方向に関して給電部25と基板3との間に配置されている。給電部25は、多数の固体光源素子11に対して給電するために電流が注入されるため、電流密度が相対的に高くなる。このため、固体光源素子11の駆動時には、給電部25の近傍は高温になりやすい。第二絶縁層7を熱伝導率の低い材料で形成することで、給電部25で発生した熱が固体光源素子11側に拡散しにくくなり、給電部25で発生した熱に由来して固体光源素子11の近傍の温度が上昇するのを抑制できるという効果も奏する。 As shown in FIG. 5, the second insulating layer 7 is disposed between the power supply unit 25 and the substrate 3 in the Z direction. The power supply unit 25 has a relatively high current density because a current is injected into it to supply power to a large number of solid-state light source elements 11. For this reason, the vicinity of the power supply unit 25 tends to become hot when the solid-state light source elements 11 are driven. By forming the second insulating layer 7 from a material with low thermal conductivity, the heat generated in the power supply unit 25 is less likely to diffuse to the solid-state light source elements 11, and this also has the effect of suppressing the rise in temperature in the vicinity of the solid-state light source elements 11 due to the heat generated in the power supply unit 25.
 ただし、第一絶縁層5と第二絶縁層7の熱伝導率が同等である場合や、第二絶縁層7が第一絶縁層5よりも熱伝導率の高い材料で形成されている場合についても、本発明の射程範囲である。 However, the scope of the present invention also includes cases where the thermal conductivity of the first insulating layer 5 and the second insulating layer 7 are equivalent, or where the second insulating layer 7 is made of a material with a higher thermal conductivity than the first insulating layer 5.
 図5に示す光源装置1によれば、基板3の第二主面3b側には、第二絶縁層7を介することなく、基板3の第二主面3bにヒートシンク21が配置される。これにより、固体光源素子11から発せられた熱を、金属製の基板3を介してヒートシンク21側に効率的に排熱できる。 In the light source device 1 shown in FIG. 5, a heat sink 21 is disposed on the second main surface 3b of the substrate 3 without a second insulating layer 7 therebetween. This allows the heat generated by the solid-state light source element 11 to be efficiently dissipated to the heat sink 21 side via the metal substrate 3.
 図8は、別実施形態の光源装置1の構造を、図5にならって図示した断面図である。図8に示す光源装置1は、図5に示す光源装置1と比較して、基板3の第二主面3bのうち、ヒートシンク21が配置されている領域の高さ位置が、第二絶縁層7が形成されている領域の高さ位置よりも、第一主面3aに近くなっている点が異なる。 FIG. 8 is a cross-sectional view of the structure of a light source device 1 according to another embodiment, illustrated following FIG. 5. The light source device 1 shown in FIG. 8 differs from the light source device 1 shown in FIG. 5 in that the height position of the region on the second main surface 3b of the substrate 3 where the heat sink 21 is disposed is closer to the first main surface 3a than the height position of the region on which the second insulating layer 7 is formed.
 言い換えれば、図8に示す光源装置1は、基板3の第二主面3bのうち、ヒートシンク21が配置されている領域の高さ位置が、第二絶縁層7が形成されている領域の高さ位置よりも、+Z側に位置している。つまり、基板3は、ヒートシンク21が配置されている領域において、段差部D1を有している。 In other words, in the light source device 1 shown in FIG. 8, the height position of the region on the second main surface 3b of the substrate 3 where the heat sink 21 is disposed is located on the +Z side of the height position of the region where the second insulating layer 7 is formed. In other words, the substrate 3 has a step portion D1 in the region where the heat sink 21 is disposed.
 図8に示す光源装置1によれば、図5に示す光源装置1と比較して、ヒートシンク21の設置位置を、固体光源素子11に対してより近づけることができる。これにより、固体光源素子11が発生する熱を、更に効率的に排熱できる。 In the light source device 1 shown in FIG. 8, the heat sink 21 can be installed closer to the solid-state light source element 11 than in the light source device 1 shown in FIG. 5. This allows the heat generated by the solid-state light source element 11 to be discharged more efficiently.
 図8に示す光源装置1を製造するに際しては、ヒートシンク21が配置される領域内の第二絶縁層7及び基板3を除去して段差部D1を形成した後、基板3の第二主面3b側にヒートシンク21が配置される。他の要素の配置に際しては、図5に示す光源装置1の製造時と同様の方法が採用できる。 When manufacturing the light source device 1 shown in FIG. 8, the second insulating layer 7 and the substrate 3 are removed from the area where the heat sink 21 is to be disposed to form a step portion D1, and then the heat sink 21 is disposed on the second main surface 3b side of the substrate 3. When arranging the other elements, the same method as used when manufacturing the light source device 1 shown in FIG. 5 can be used.
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されるものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 The present invention is not limited to the above-described embodiment, and includes various modified examples. For example, the above-described embodiment has been described in detail to provide a better understanding of the present invention, and is not necessarily limited to having all of the configurations described. The scope of the present invention is indicated by the claims, and it is intended to include all modifications within the meaning and scope of the claims.
1  :光源装置
3  :基板
3a :第一主面
3b :第二主面
5  :第一絶縁層
7  :第二絶縁層
9  :第三絶縁層
11 :固体光源素子
13 :銀ペースト
21 :ヒートシンク
23 :密着層
25 :給電部
29 :導電層
31 :レジスト層
33 :貫通孔
D1 :段差部
J1 :第一領域
J2 :第二領域
J3 :第三領域
 
1: Light source device 3: Substrate 3a: First main surface 3b: Second main surface 5: First insulating layer 7: Second insulating layer 9: Third insulating layer 11: Solid-state light source element 13: Silver paste 21: Heat sink 23: Adhesion layer 25: Power supply section 29: Conductive layer 31: Resist layer 33: Through hole D1: Step portion J1: First region J2: Second region J3: Third region

Claims (7)

  1.  金属製の基板と、
     前記基板の第一主面上に配置された第一絶縁層と、
     前記第一絶縁層の前記基板とは反対側の上層に配置された固体光源素子と、
     前記基板の前記第一主面とは反対側の第二主面上の一部領域に配置された第二絶縁層と、
     前記第二絶縁層の前記基板とは反対側の上層に配置された給電部と、
     前記基板の前記第一主面に直交する第一方向に関して前記第一絶縁層と前記固体光源素子とに挟まれた第一領域と、前記第一方向に関して前記第二絶縁層と前記給電部とに挟まれた第二領域と、前記基板、前記第一絶縁層、及び前記第二絶縁層を前記第一方向に貫通して前記第一領域と前記第二領域とを連絡する第三領域とに跨って配置された、導電層と、
     前記第三領域に配置された前記導電層の外側の位置において、前記導電層と前記基板との間に介在する第三絶縁層と、
     前記基板の前記第二主面のうち、前記第二絶縁層が形成されていない領域の上面に、直接又は前記第二絶縁層よりも熱伝導率の高い他の層を介して配置されたヒートシンクとを備えたことを特徴とする、光源装置。
    A metal substrate;
    a first insulating layer disposed on a first major surface of the substrate;
    a solid-state light source element disposed on an upper layer of the first insulating layer opposite to the substrate;
    a second insulating layer disposed on a partial region of a second main surface of the substrate opposite to the first main surface;
    a power supply portion disposed on an upper layer of the second insulating layer opposite to the substrate;
    a conductive layer disposed across a first region sandwiched between the first insulating layer and the solid-state light source element in a first direction perpendicular to the first main surface of the substrate, a second region sandwiched between the second insulating layer and the power supply unit in the first direction, and a third region penetrating the substrate, the first insulating layer, and the second insulating layer in the first direction to connect the first region and the second region;
    a third insulating layer interposed between the conductive layer and the substrate at a position outside the conductive layer disposed in the third region;
    a heat sink disposed on an upper surface of the second main surface of the substrate in an area where the second insulating layer is not formed, either directly or via another layer having a higher thermal conductivity than the second insulating layer.
  2.  前記基板は、前記第二主面の上層に前記第二絶縁層が形成されていない領域において、前記第二主面の高さ位置が異なる段差部を有しており、
     前記基板の前記第二主面は、前記ヒートシンクが形成されている領域の高さ位置が、前記第二絶縁層が形成されている領域の高さ位置よりも、前記第一主面に近いことを特徴とする、請求項1に記載の光源装置。
    the substrate has a step portion at a different height position of the second main surface in a region where the second insulating layer is not formed on the second main surface,
    The light source device according to claim 1, characterized in that the height position of the region in which the heat sink is formed on the second main surface of the substrate is closer to the first main surface than the height position of the region in which the second insulating layer is formed.
  3.  前記第二絶縁層は、前記第一絶縁層よりも熱伝導率が低いことを特徴とする、請求項1又は2に記載の光源装置。 The light source device according to claim 1 or 2, characterized in that the second insulating layer has a lower thermal conductivity than the first insulating layer.
  4.  前記給電部は、前記第一方向から見て離間した複数の位置に配置されていることを特徴とする、請求項1又は2に記載の光源装置。 The light source device according to claim 1 or 2, characterized in that the power supply units are arranged at a plurality of positions spaced apart when viewed from the first direction.
  5.  前記給電部は、前記第一方向から見て、前記基板の中央よりも外縁に近い複数の位置に配置されていることを特徴とする、請求項4に記載の光源装置。 The light source device according to claim 4, characterized in that the power supply units are arranged at multiple positions closer to the outer edge than to the center of the substrate when viewed from the first direction.
  6.  前記第一方向に関して前記ヒートシンクと前記基板の前記第二主面との間に配置された密着層を備えたことを特徴とする、請求項1又は2に記載の光源装置。 The light source device according to claim 1 or 2, further comprising an adhesive layer disposed between the heat sink and the second main surface of the substrate in the first direction.
  7.  前記密着層は、高熱伝導性グリス又は高熱伝導性シートであることを特徴とする、請求項6に記載の光源装置。
     
    The light source device according to claim 6 , wherein the adhesive layer is a highly thermally conductive grease or a highly thermally conductive sheet.
PCT/JP2023/040923 2023-01-31 2023-11-14 Light source device WO2024161754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023013116A JP2024108649A (en) 2023-01-31 2023-01-31 Light source device
JP2023-013116 2023-01-31

Publications (1)

Publication Number Publication Date
WO2024161754A1 true WO2024161754A1 (en) 2024-08-08

Family

ID=92146082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040923 WO2024161754A1 (en) 2023-01-31 2023-11-14 Light source device

Country Status (2)

Country Link
JP (1) JP2024108649A (en)
WO (1) WO2024161754A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090704A (en) * 1998-09-10 2000-03-31 Toyoda Gosei Co Ltd Light
JP2008199011A (en) * 2007-02-15 2008-08-28 Samsung Electro Mech Co Ltd Package board and method for manufacturing thereof
JP2008258080A (en) * 2007-04-09 2008-10-23 Hitachi Displays Ltd Light source module, light source unit, liquid crystal display device, and lighting system
WO2018221351A1 (en) * 2017-05-31 2018-12-06 セイコーエプソン株式会社 Light emitting device, projector, and a light emitting device manufacturing method
WO2021140727A1 (en) * 2020-01-08 2021-07-15 ローム株式会社 Semiconductor light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090704A (en) * 1998-09-10 2000-03-31 Toyoda Gosei Co Ltd Light
JP2008199011A (en) * 2007-02-15 2008-08-28 Samsung Electro Mech Co Ltd Package board and method for manufacturing thereof
JP2008258080A (en) * 2007-04-09 2008-10-23 Hitachi Displays Ltd Light source module, light source unit, liquid crystal display device, and lighting system
WO2018221351A1 (en) * 2017-05-31 2018-12-06 セイコーエプソン株式会社 Light emitting device, projector, and a light emitting device manufacturing method
WO2021140727A1 (en) * 2020-01-08 2021-07-15 ローム株式会社 Semiconductor light emitting device

Also Published As

Publication number Publication date
JP2024108649A (en) 2024-08-13

Similar Documents

Publication Publication Date Title
JP5388598B2 (en) Element heat dissipation structure
JP5288642B2 (en) Light emitting element
US20080278917A1 (en) Heat dissipation module and method for fabricating the same
US20110180819A1 (en) Light-emitting arrangement
JP4969332B2 (en) Substrate and lighting device
WO2018172152A1 (en) Mounting an led element on a flat carrier
KR20060121671A (en) Power module package structure
JP2013138068A (en) Multilayer printed board
US10236429B2 (en) Mounting assembly and lighting device
US20090039382A1 (en) Light emitting diode package structure
JP2010186907A (en) Radiator plate, module, and method of manufacturing module
WO2024161754A1 (en) Light source device
JP2009147258A (en) Led package and light-emitting module
JP2005109005A (en) Heat dissipation structure of module
JPH07106721A (en) Printed circuit board and heat radiating method
JP3207656U (en) Assembly structure of high power semiconductor and radiator
WO2012017725A1 (en) Substrate module for having heat generating source mounted thereon, and lighting device
JP2014120549A (en) Insulation heat radiation substrate and circuit module using the same
JP5088939B2 (en) Laminated board
JPH1093250A (en) Heat-dissipating structure of printed wiring board
TW201814853A (en) Electronic device and production method therefor
CN109524374B (en) LED light-emitting module
KR200452491Y1 (en) LED printed circuit board with excellent heat dissipation
CN108925027B (en) Heat radiation structure
WO2023090102A1 (en) Mounting board and electrical equipment having mounting board installed thereon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23919889

Country of ref document: EP

Kind code of ref document: A1