WO2024161662A1 - Laser chamber device, gas laser device, and method for manufacturing an electronic device - Google Patents
Laser chamber device, gas laser device, and method for manufacturing an electronic device Download PDFInfo
- Publication number
- WO2024161662A1 WO2024161662A1 PCT/JP2023/003675 JP2023003675W WO2024161662A1 WO 2024161662 A1 WO2024161662 A1 WO 2024161662A1 JP 2023003675 W JP2023003675 W JP 2023003675W WO 2024161662 A1 WO2024161662 A1 WO 2024161662A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- magnet
- laser chamber
- gas
- axial direction
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 title claims description 9
- 230000008878 coupling Effects 0.000 claims abstract description 55
- 238000010168 coupling process Methods 0.000 claims abstract description 55
- 238000005859 coupling reaction Methods 0.000 claims abstract description 55
- 230000007246 mechanism Effects 0.000 claims abstract description 48
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 238000003780 insertion Methods 0.000 claims description 9
- 230000037431 insertion Effects 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 145
- 230000000694 effects Effects 0.000 description 22
- 230000004048 modification Effects 0.000 description 19
- 238000012986 modification Methods 0.000 description 19
- 238000001816 cooling Methods 0.000 description 16
- 230000003287 optical effect Effects 0.000 description 13
- 230000007423 decrease Effects 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 238000007599 discharging Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/04—Arrangements for thermal management
- H01S3/041—Arrangements for thermal management for gas lasers
Definitions
- This disclosure relates to a laser chamber apparatus, a gas laser apparatus, and a method for manufacturing an electronic device.
- gas laser devices used for exposure include KrF excimer laser devices that output laser light with a wavelength of approximately 248 nm, and ArF excimer laser devices that output laser light with a wavelength of approximately 193 nm.
- the spectral linewidth of the natural oscillation light of KrF excimer laser devices and ArF excimer laser devices is wide, at 350 to 400 pm. Therefore, if a projection lens is made of a material that transmits ultraviolet light, such as KrF and ArF laser light, chromatic aberration may occur. As a result, the resolution may decrease. Therefore, it is necessary to narrow the spectral linewidth of the laser light output from the gas laser device to a level where chromatic aberration can be ignored. For this reason, a line narrowing module (LNM) containing a narrowing element (such as an etalon or grating) may be provided in the laser resonator of the gas laser device to narrow the spectral linewidth.
- LNM line narrowing module
- a narrowing element such as an etalon or grating
- a laser chamber apparatus is a laser chamber apparatus comprising: a laser chamber for accommodating laser gas; a fan disposed inside the laser chamber for circulating the laser gas; and a magnetic coupling mechanism for transmitting the driving force of a motor to the rotating shaft of the fan using magnetic force, the magnetic coupling mechanism comprising an inner rotor connected to a rotating shaft partly protruding from the laser chamber and having a first magnet disposed thereon; an outer rotor which rotates by the driving force of the motor and drives the inner rotor to rotate by magnetic attraction, the outer rotor defining a first internal space which accommodates the inner rotor and having a first cylindrical portion in which a second magnet opposed to the first magnet is disposed, the first cylindrical portion having one end in the axial direction of the rotating shaft which is open and the other end which has a bottom to which the driving shaft of the motor is connected, the outer rotor being disposed with a gap between one end of the first cylindrical portion and the end face of the laser chamber; and a bottome
- a shroud facing the second magnet on its outer peripheral surface a second cylindrical portion defining a second internal space that houses the outer rotor and communicates with the first internal space through a gap, the second cylindrical portion having an open end at one axial end and a bottom having a bottom at the other end where an insertion opening through which a drive shaft of a motor is rotatably inserted is formed, one end of the second cylindrical portion being fixed to an end face of the laser chamber and the other end being a bracket to which the motor is fixed; and a second cylindrical portion formed in the first cylindrical portion of the outer rotor and configured to circulate gas in the first internal space through the second cylindrical portion.
- the bracket includes a first exhaust port that exhausts gas into the internal space and is located axially closer to the motor than the first and second magnets, a second exhaust port that is formed in the second cylindrical portion of the bracket and exhausts gas in the second internal space to the outside of the bracket and is located axially closer to the motor than the first and second magnets, and an intake port that is formed in the second cylindrical portion of the bracket and takes in gas outside the bracket into the second internal space and is located axially closer to the laser chamber than the first and second magnets.
- a gas laser device is a gas laser device that includes a laser chamber that houses a discharge electrode and laser gas, a fan that is disposed inside the laser chamber and circulates the laser gas inside the laser chamber, a motor that drives the fan, and a magnetic coupling mechanism that uses magnetic force to transmit the driving force of the motor to a rotating shaft of the fan, and that excites the laser gas by discharge to generate laser light, and the magnetic coupling mechanism includes an inner rotor that is connected to a rotating shaft that protrudes partially from the laser chamber and on which a first magnet is disposed, and a second rotor that is rotated by the driving force of the motor.
- the outer rotor is a first cylindrical portion that defines a first internal space that houses the inner rotor and in which a second magnet facing the first magnet is disposed, the first cylindrical portion having a bottom that is open at one end in the axial direction of the rotation shaft and has a bottom to which a drive shaft of a motor is connected at the other end, the outer rotor is disposed with a gap between the one end of the first cylindrical portion and an end face of a laser chamber; and a bottomed cylindrical shroud that is fixed in contact with the end face of the laser chamber and houses the inner rotor in an airtight state.
- the shroud is made of metal and faces the first magnet on its inner circumferential surface and faces the second magnet on its outer circumferential surface; a second cylindrical portion that defines a second internal space that houses the outer rotor and communicates with the first internal space through a gap, the second cylindrical portion having an open end at one axial end and a bottom at the other end having a bottom through which an insertion opening through which a drive shaft of a motor is rotatably inserted, one end of the second cylindrical portion being fixed to an end face of a laser chamber and the other end being formed in a bracket to which a motor is fixed;
- the bracket includes a first exhaust port that exhausts gas from the first internal space to the second internal space, the first exhaust port being located closer to the motor than the first and second magnets in the axial direction; a second exhaust port that is formed in the second cylindrical portion of the bracket and exhausts gas from the second internal space to the outside of the bracket, the second exhaust port being located closer to the motor than the first and second magnets in the axial direction; and
- a method for manufacturing an electronic device is a gas laser apparatus comprising a laser chamber accommodating a discharge electrode and laser gas, a fan disposed inside the laser chamber for circulating the laser gas inside the laser chamber, a motor for driving the fan, and a magnetic coupling mechanism for transmitting the driving force of the motor to a rotating shaft of the fan using magnetic force, the gas laser apparatus exciting the laser gas by discharge to generate laser light, the magnetic coupling mechanism comprising an inner rotor connected to a rotating shaft partly protruding from the laser chamber and on which a first magnet is disposed, and a second rotor connected to the rotating shaft partly protruding from the laser chamber and which rotates by the driving force of the motor and is coupled to the rotating shaft partly protruding from the laser chamber, the inner rotor having a first magnet disposed thereon, and a second rotor connected to the rotating shaft partly protruding from the laser chamber, the inner rotor being rotated by the driving force of the motor and being coupled to the rotating shaft partly protrud, the inner rot
- an outer rotor which rotates the inner rotor in an airtight manner
- the outer rotor having a first cylindrical portion which defines a first internal space which houses the inner rotor and in which a second magnet facing the first magnet is disposed, the first cylindrical portion having a bottom with one end open in the axial direction of a rotation shaft and a bottom to which a drive shaft of a motor is connected at the other end, the outer rotor being disposed with a gap between the one end of the first cylindrical portion and an end face of a laser chamber; and a shroud having a bottom and which is fixed in contact with the end face of the laser chamber and which houses the inner rotor in an airtight manner, the shroud being made of metal, facing the first magnet on its inner peripheral surface and having a bottom with a magnet on its outer peripheral surface.
- a shroud facing the second magnet in the first cylindrical portion a second internal space accommodating the outer rotor, the second internal space being in communication with the first internal space through a gap, the second cylindrical portion having one end in the axial direction that is open and the other end having a bottom with a bottom formed with an insertion opening through which a drive shaft of a motor is rotatably inserted, one end of the second cylindrical portion being fixed to an end face of the laser chamber and the other end being a bracket to which a motor is fixed; and a first exhaust port formed in the first cylindrical portion of the outer rotor for exhausting gas in the first internal space to the second internal space, the first exhaust port being located closer to the motor than the first magnet and the second magnet in the axial direction.
- the method includes generating laser light using a gas laser device that includes a first exhaust port disposed on the motor side, a second exhaust port formed in a second cylindrical portion of the bracket and discharging gas in the second internal space to the outside of the bracket, the second exhaust port being disposed on the motor side of the first magnet and the second magnet in the axial direction, and an intake port formed in the second cylindrical portion of the bracket and taking in gas outside the bracket into the second internal space, the intake port being disposed on the laser chamber side of the first magnet and the second magnet in the axial direction, generating laser light using the gas laser device, outputting the laser light to an exposure device, and exposing a photosensitive substrate to the laser light in the exposure device to manufacture an electronic device.
- a gas laser device that includes a first exhaust port disposed on the motor side, a second exhaust port formed in a second cylindrical portion of the bracket and discharging gas in the second internal space to the outside of the bracket, the second exhaust port being disposed on the motor side of the first magnet and the second magnet in the axial direction
- FIG. 1 is a cross-sectional view showing a schematic configuration of a gas laser device according to a comparative example.
- FIG. 2 is a cross-sectional view that illustrates a schematic configuration of a magnetic coupling mechanism of a comparative example.
- FIG. 3 is an exploded perspective view showing the configuration of a magnetic coupling mechanism of a comparative example.
- FIG. 4 is a cross-sectional view that illustrates a schematic configuration of the magnetic coupling mechanism according to the first embodiment.
- FIG. 5 is an exploded perspective view showing the configuration of the magnetic coupling mechanism according to the first embodiment.
- FIG. 6 is a cross-sectional view of the outer rotor according to the first embodiment.
- FIG. 7 is a cross-sectional view that illustrates a schematic configuration of a magnetic coupling mechanism according to the second embodiment.
- FIG. 8 is a cross-sectional view of an outer rotor according to the first modified example.
- FIG. 9 is a cross-sectional view of another outer rotor according to the first modified example.
- FIG. 10 is a side view of the outer rotor according to the second modification.
- FIG. 11 is a cross-sectional view of an outer rotor according to the third modification.
- FIG. 12 is a side view of a bracket according to the fourth modification.
- FIG. 13 is a diagram illustrating an example of the configuration of an exposure apparatus.
- the comparative example of the present disclosure is a form that the applicant recognizes as being known only by the applicant, and is not a publicly known example that the applicant acknowledges.
- the configuration of a gas laser apparatus 2 according to a comparative example is shown in FIG. 1.
- the gas laser apparatus 2 is a laser light source that generates a pulsed laser light PL.
- the pulsed laser light PL generated by the gas laser apparatus 2 is supplied to, for example, an exposure apparatus 3.
- the gas laser apparatus 2 is a discharge excitation type gas laser apparatus that excites a laser gas by discharging, and is, for example, an excimer laser apparatus.
- the laser gas may use, as a rare gas, krypton or xenon in addition to argon, or as a halogen gas, chlorine in addition to fluorine.
- the direction of travel of the pulsed laser light PL output from the gas laser device 2 is the Z direction.
- the X and Y directions are perpendicular to each other, and the XY plane is perpendicular to the Z direction.
- the gas laser device 2 includes a housing 9, a laser chamber 10, a charger 11, a pulse power module (PPM) 12, a pulse energy measuring unit 13, a laser control unit 14, a pressure sensor 17, and a laser resonator.
- PPM pulse power module
- the housing 9 houses each of the components of the gas laser device 2.
- the housing 9 is provided with an intake port 9A and an exhaust port 9B.
- the intake port 9A and the exhaust port 9B are ventilation ports that are used to ventilate the inside of the housing 9 and to take in cooling gas from the outside into the housing 9.
- the housing 9 is also provided with an exit window 9C that emits the pulsed laser light PL toward the exposure device 3.
- the laser chamber 10 is a metal container made of, for example, aluminum metal with a nickel-plated surface, and laser gas is sealed inside. As shown in FIG. 1, the laser chamber 10 contains a discharge electrode 21, an electrically insulating plate 23, a ground plate 24, and a fan 26.
- the discharge electrode 21 is an electrode for exciting the laser gas by discharging.
- the discharge electrode 21 is composed of a pair of electrodes 21a and 21b, and each electrode 21a and 21b is arranged facing each other with a predetermined distance between them and with their longitudinal directions approximately parallel to each other.
- the electrically insulating plate 23 is positioned so as to cover the opening formed in the laser chamber 10.
- the electrically insulating plate 23 supports the electrode 21a.
- a number of feedthroughs 25 are embedded in the electrically insulating plate 23. The feedthroughs 25 electrically connect the high voltage terminal of the PPM 12 to the electrode 21a so that the high voltage supplied from the PPM 12 is applied to the electrode 21a.
- the ground plate 24 supports the electrode 21b.
- the ground plate 24 is connected to the laser chamber 10 via wiring.
- the ground plate 24 is grounded to the ground via wiring.
- the end of the ground plate 24 in the Z direction is fixed to the laser chamber 10.
- the fan 26 is a cross-flow fan that circulates the laser gas within the laser chamber 10 to create a high-speed laser gas flow in the discharge space 30 between the electrodes 21a and 21b.
- the fan 26 is positioned so that the longitudinal direction of the discharge electrode 21 and the longitudinal direction of the fan 26 are approximately parallel.
- the rotating shaft 26a of the fan 26 is rotatably supported at both ends in the laser chamber 10.
- a motor 31 that rotates the fan 26 is connected to the laser chamber 10 via a magnetic coupling mechanism 28.
- the magnetic coupling mechanism 28 transmits the torque of the motor 31 to the rotating shaft 26a of the fan 26 using magnetic force.
- the charger 11 is a high-voltage power supply that supplies a charging voltage to the charging capacitor included in the PPM 12.
- the PPM 12 includes a solid-state switch SW that is controlled by the laser control unit 14. When the solid-state switch SW changes from OFF to ON, the PPM 12 generates a high-voltage pulse from the electrical energy stored in the charging capacitor and applies it to the discharge electrode 21.
- a discharge occurs between the electrodes 21a and 21b.
- the energy of this discharge excites the laser gas in the laser chamber 10 and causes it to transition to a high energy level.
- the excited laser gas then transitions to a low energy level, it emits light with a wavelength that corresponds to the difference in energy levels.
- Windows 10a and 10b are provided at both ends of the laser chamber 10. Light generated within the laser chamber 10 is emitted to the outside of the laser chamber 10 through the windows 10a and 10b.
- the laser resonator is composed of a line narrowing module (LNM) 15 and an output coupling mirror (Output Coupler: OC) 16.
- LNM line narrowing module
- OC output coupling mirror
- the line-narrowing module 15 includes a prism 15a and a grating 15b.
- the prism 15a expands the beam width of the light emitted from the laser chamber 10 through the window 10a and transmits it to the grating 15b side.
- Grating 15b is in a Littrow configuration in which the angle of incidence and the angle of diffraction are the same.
- Grating 15b is a wavelength selection element that selectively extracts light near a specific wavelength according to the diffraction angle. The spectral width of the light returning from grating 15b to laser chamber 10 via prism 15a is narrowed.
- the output coupling mirror 16 transmits a portion of the light emitted from the laser chamber 10 through the window 10b and reflects the other portion back to the laser chamber 10.
- the surface of the output coupling mirror 16 is coated with a partially reflective film.
- the light emitted from the laser chamber 10 travels back and forth between the line narrowing module 15 and the output coupling mirror 16, and is amplified each time it passes through the discharge space 30 between the electrodes 21a and 21b. A portion of the amplified light is output as pulsed laser light PL via the output coupling mirror 16.
- the pulsed laser light PL is an example of the "laser light” according to the technology disclosed herein.
- the pulse energy measuring unit 13 is disposed in the optical path of the pulsed laser light PL outputted via the output coupling mirror 16.
- the pulse energy measuring unit 13 includes a beam splitter 13a, a focusing optical system 13b, and an optical sensor 13c.
- the beam splitter 13a transmits the pulsed laser light PL with high transmittance, and reflects another portion of the pulsed laser light PL toward the focusing optical system 13b.
- the focusing optical system 13b focuses the light reflected by the beam splitter 13a on the light receiving surface of the optical sensor 13c.
- the optical sensor 13c measures the pulse energy of the light focused on the light receiving surface and outputs the measurement value to the laser control unit 14.
- the laser chamber 10 is provided with a laser gas supply device and a laser gas exhaust device, not shown.
- the laser gas supply device includes a valve and a flow control valve, and is connected to a gas cylinder that contains laser gas.
- the laser gas exhaust device includes a valve and an exhaust pump.
- the pressure sensor 17 detects the gas pressure inside the laser chamber 10 and outputs the detected value to the laser control unit 14.
- the laser control unit 14 is a processor that transmits and receives various signals to and from the exposure device control unit 3a provided in the exposure device 3. For example, the laser control unit 14 receives from the exposure device control unit 3a the target pulse energy of the pulsed laser light PL output to the exposure device 3, a trigger signal related to the target oscillation timing, and the like.
- the magnetic coupling mechanism 28 according to the comparative example will be described with reference to Figures 2 and 3.
- Figure 2 is a cross-sectional view of the magnetic coupling mechanism 28 taken along the YZ plane
- Figure 3 is an exploded perspective view of the magnetic coupling mechanism 28.
- the magnetic coupling mechanism 28 transmits the driving force of the motor 31 to the rotating shaft 26a of the fan 26 by utilizing magnetic force.
- the magnetic coupling mechanism 28 includes an inner rotor 42, an outer rotor 43, a shroud 44, and a bracket 46.
- the inner rotor 42 is connected to the rotating shaft 26a of the fan 26. A portion of the rotating shaft 26a protrudes from the end surface 10c of the laser chamber 10, and the inner rotor 42 is fixed to this protruding portion.
- the inner rotor 42 has a cylindrical shape with a circular cross section perpendicular to the axial direction AX of the rotating shaft 26a, and has an insertion portion in the center into which the rotating shaft 26a is inserted.
- a plurality of first magnets M1 are arranged along the outer circumferential surface of the inner rotor 42.
- the plurality of first magnets M1 are permanent magnets and are arranged at equal intervals in the circumferential direction around the rotating shaft 26a.
- the plurality of first magnets M1 are arranged with N poles and S poles alternating in the circumferential direction.
- the inner rotor 42 is an 8-pole type with eight first magnets M1.
- the outer rotor 43 rotates due to the driving force of the motor 31, and rotates the inner rotor 42 by magnetic force.
- the outer rotor 43 is connected to the drive shaft 31a of the motor 31.
- the drive shaft 31a of the motor 31 and the rotating shaft 26a of the fan 26 to which the inner rotor 42 is connected are arranged coaxially.
- the outer rotor 43 has a cup-shaped container structure with a cylindrical shape whose cross section perpendicular to the drive shaft 31a is circular.
- the outer rotor 43 has a first cylindrical portion 43a that defines a first internal space SP1 that houses the inner rotor 42.
- the first cylindrical portion 43a is a cylindrical portion with a bottom, that is, in the axial direction AX of the rotating shaft 26a, one end 43c on the laser chamber 10 side is open, and the other end on the motor 31 side has a bottom 43b.
- the second magnets M2 are arranged along the inner circumferential surface of the first cylindrical portion 43a.
- the second magnets M2 are also permanent magnets and are arranged at equal intervals in the circumferential direction around the rotating shaft 26a.
- the second magnets M2 are arranged with alternating north and south poles in the circumferential direction.
- the number of second magnets M2 is the same as that of the first magnets M1, and each second magnet M2 is arranged to face the first magnet M1.
- the first magnets M1 and the second magnets M2 are arranged so that when one of the opposing magnets is a north pole, the other is a south pole, so that an attractive force is generated between the opposing magnets to attract each other.
- the inner rotor 42 is an 8-pole type
- the outer rotor 43 is also an 8-pole type with eight second magnets M2.
- first magnet M1 and the second magnet M2 have the same length in the axial direction AX, and are positioned in the axial direction AX so that the first magnet M1 and the second magnet M2 face each other. Furthermore, the first magnet M1 and the second magnet M2, which have different magnetic poles, generate an attractive force in the radial direction centered on the rotation axis 26a within the X-Y plane perpendicular to the rotation axis 26a. The direction in which the attractive force is generated is also referred to as the radial direction below. The first magnet M1 and the second magnet M2 are positioned within a range in which their attractive forces act on each other in the radial direction.
- the bracket 46 is a fixing member for fixing the motor 31 to the laser chamber 10.
- the bracket 46 is fixed to the laser chamber 10 while housing the outer rotor 43.
- the bracket 46 has a cup-shaped container structure with a cylindrical shape whose cross section perpendicular to the drive shaft 31a is circular.
- the bracket 46 has a second cylindrical portion 46a that defines a second internal space SP2 that houses the outer rotor 43.
- the second cylindrical portion 46a is a cylindrical portion with a bottom, that is, in the axial direction AX, one end 46c on the laser chamber 10 side is open, and the other end on the motor 31 side has a bottom 46b.
- the second cylindrical portion 46a has an inner diameter larger than the outer diameter of the outer rotor 43.
- the second cylindrical portion 46a accommodates the outer rotor 43 in the second internal space SP2 so that its inner peripheral surface faces the outer peripheral surface of the outer rotor 43.
- the end 46c of the second cylindrical portion 46a on the laser chamber 10 side is fixed to the end face 10c of the laser chamber 10.
- the second internal space SP2 of the bracket 46 and the first internal space SP1 of the outer rotor 43 are in communication with each other through a gap 48, and the first internal space SP1 and the second internal space SP2 are filled with a gas such as air.
- the bottom 46b has an insertion hole 46d through which the drive shaft 31a of the motor 31 is rotatably inserted.
- the motor 31 is fixed to the outer surface of the bottom 46b of the bracket 46 with the drive shaft 31a inserted through the insertion hole 46d.
- the shroud 44 houses the inner rotor 42.
- the laser gas inside the laser chamber 10 flows into the shroud 44.
- the shroud 44 functions as a partition wall that prevents the laser gas from leaking outside the shroud 44.
- the shroud 44 has a cup-shaped container structure with a cylindrical shape whose cross section perpendicular to the rotation axis 26a is circular. More specifically, the shroud 44 has a third cylindrical portion 44a that defines a third internal space SP3 that houses the inner rotor 42, and the end of the third cylindrical portion 44a on the end face 10c side is open, and the end on the motor 31 side forms a bottom.
- the shroud 44 is fixed to the laser chamber 10 with the open end of the third cylindrical portion 44a in contact with the end face 10c, and houses the inner rotor 42 in an airtight state.
- the shroud 44 faces the first magnet M1 on its inner circumferential surface and faces the second magnet M2 on its outer circumferential surface.
- the shroud 44 is arranged sandwiched between the first magnet M1 and the second magnet M2.
- a predetermined gap is provided between the outer circumferential surface of the third cylindrical portion 44a and the inner circumferential surface of the first cylindrical portion 43a of the outer rotor 43, and between the inner circumferential surface of the third cylindrical portion 44a and the outer circumferential surface of the inner rotor 42.
- the shroud 44 is made of metal, for example stainless steel.
- a bearing unit 49 that rotatably supports the rotating shaft 26a of the fan 26 is disposed at the end of the laser chamber 10.
- the bearing unit 49 is, for example, a ball bearing, and as is well known, includes an inner ring fixed to the rotating shaft 26a, an outer ring fixed to the laser chamber 10, and multiple rotating bodies. Grooves that accommodate the multiple rotating bodies are formed on the outer periphery of the inner ring and the inner periphery of the outer ring.
- the multiple rotating bodies are rotatably held with the inside and outside sandwiched between the inner ring and the outer ring.
- the rotating bodies are, for example, spheres or cylinders.
- a seal member 47 is provided on the inside side of the laser chamber 10 relative to the bearing portion 49.
- the seal member 47 is donut-shaped with a hole in the center through which the rotating shaft 26a is inserted. A small gap is formed between the hole in the seal member 47 and the outer circumferential surface of the rotating shaft 26a to prevent contact between the seal member 47 and the rotating shaft 26a.
- the sealing member 47 prevents the laser gas with an increased density of fine particles from entering the inside of the laser chamber 10.
- the rotation of the inner rotor 42 rotates the fan 26.
- the rotation of the fan 26 circulates the laser gas within the laser chamber 10, creating a laser gas flow in the discharge space 30 of the discharge electrode 21.
- the laser control unit 14 supplies a charging voltage corresponding to the target pulse energy received from the exposure device 3 to the PPM 12 through the charger 11.
- the laser control unit 14 applies a pulsed high voltage to the discharge electrode 21 through the PPM 12.
- the laser gas is excited and laser light is emitted.
- the laser light travels back and forth between the line narrowing module 15 and the output coupling mirror 16, and is amplified each time it passes through the discharge space 30. Furthermore, the laser light is narrowed by the line narrowing module 15, and the narrowed pulsed laser light PL is emitted from the output coupling mirror 16 towards the exposure device 3.
- the rotation of the fan 26 creates a laser gas flow in the discharge space 30, stabilizing the excitation of the laser gas in the discharge space 30 and supplying a stable pulsed laser light PL to the exposure device 3.
- the magnetic coupling mechanism 28 has a structure in which the third cylindrical portion 44a of the shroud 44 is sandwiched between the first magnet M1 and the second magnet M2.
- the shroud 44 is made of metal, when the inner rotor 42 and the outer rotor 43 rotate, eddy currents are generated in the shroud 44, generating heat.
- the outside of the shroud 44 is in contact with the air in the first internal space SP1, and the inside of the shroud 44 is in contact with the laser gas in the third internal space SP3.
- the shroud 44 is cooled by such gases as air and laser gas.
- the third internal space SP3 is an airtight space, and the first internal space SP1 and the second internal space SP2 communicating with the first internal space SP1 are also highly airtight. Therefore, gas tends to stagnate in the first internal space SP1 and the third internal space SP3 to which the shroud 44 is in contact, and the heat dissipation of the shroud 44 is low. If the shroud 44 becomes too hot, the following problems occur.
- the shroud 44 is fixed in contact with the end face 10c of the laser chamber 10, so heat from the shroud 44 is transferred to the end face 10c of the laser chamber 10.
- Both the shroud 44 and the laser chamber 10 are made of metal, so they have high thermal conductivity.
- the temperature distribution becomes non-uniform, and thermal deformation of the laser chamber 10 may occur around the bearing portion 49.
- thermal deformation occurs in the laser chamber 10
- the position of the rotation center of the rotating shaft 26a of the fan 26 may shift, and there is a concern that the vibration of the fan 26 may increase.
- the vibration increases, the positions of the windows 10a and 10b and optical elements such as the laser resonator may shift, causing inconvenience such as instability in the emission direction of the pulsed laser light PL.
- the shroud 44 is also disposed between the first magnet M1 and the second magnet M2. Therefore, when the temperature of the gas in the first internal space SP1 and the third internal space SP3, which the shroud 44 contacts, rises due to radiant heat from the shroud 44, the temperature of the first magnet M1 and the second magnet M2 rises. There is a concern that this temperature rise will cause the magnetic force to decrease. The decrease in magnetic force also induces vibration of the fan 26, which can lead to the above-mentioned inconvenience.
- the bearing portion 49 and the seal member 47 will thermally expand, and there is a concern that dimensional changes and deterioration in fitting accuracy and bearing accuracy will occur. For example, if dimensional changes occur in the seal member 47, the gap with the rotating shaft 26a will change, and the sealing function will deteriorate. In addition, rotational stability will decrease due to inadvertent contact with the rotating shaft 26a. If the fitting accuracy and bearing accuracy of the bearing portion 49 decrease, the rolling resistance of the rotor will increase and the positional deviation of the rotating shaft 26a will increase. These will lead to an increase in dust generated by the bearing portion 49.
- a magnetic coupling mechanism 28A according to a first embodiment of the present disclosure will be described with reference to Fig. 4 to Fig. 6.
- Fig. 4 is a cross-sectional view of the magnetic coupling mechanism 28A in the YZ plane
- Fig. 5 is an exploded perspective view of the magnetic coupling mechanism 28A
- Fig. 6 is a cross-sectional view of the outer rotor 43 along line A-A (see Fig. 4).
- the gas laser device 2 shown in the comparative example is similar to the gas laser device equipped with the magnetic coupling mechanism 28A of the first embodiment in all parts except for the magnetic coupling mechanism 28.
- the gas laser device equipped with the magnetic coupling mechanism 28A is an example of a "gas laser device” according to the technology disclosed herein.
- the laser chamber device equipped with the laser chamber 10, the fan 26, and the magnetic coupling mechanism 28A is an example of a "laser chamber device” according to the technology disclosed herein.
- the difference between the magnetic coupling mechanism 28A according to the first embodiment and the magnetic coupling mechanism 28 according to the comparative example is that it has a first exhaust port 51, a second exhaust port 52, and an intake port 53. Therefore, the same components as those described above are given the same reference numerals, and duplicate descriptions will be omitted unless otherwise specified.
- the outer rotor 43 has a first exhaust port 51
- the bracket 46 has a second exhaust port 52 and an intake port 53.
- the first exhaust port 51 is formed in the first cylindrical portion 43a of the outer rotor 43.
- the first exhaust port 51 is a through hole that penetrates in the thickness direction between the inner and outer circumferential surfaces of the first cylindrical portion 43a.
- the opening shape of the first exhaust port 51 is circular, for example.
- the opening shape refers to the shape of a cross section perpendicular to the through axis Lp (see FIG. 6) that connects the inlet 51in and the outlet 51out in a through hole such as the first exhaust port 51.
- the first exhaust port 51 exhausts the gas G in the first internal space SP1 to the second internal space SP2.
- the first exhaust port 51 is disposed closer to the motor 31 than the first magnet M1 and the second magnet M2 in the axial direction AX.
- Symbol S1 indicates the position of the end faces of the first magnet M1 and the second magnet M2 on the motor 31 side in the axial direction AX
- symbol S2 indicates the position of the end faces of the first magnet M1 and the second magnet M2 on the laser chamber 10 side.
- the first exhaust port 51 is disposed closer to the motor 31 than position S1 in the axial direction AX.
- the first exhaust port 51 when looking at a cross section of the outer rotor 43 perpendicular to the axial direction AX passing through the center of rotation O, the first exhaust port 51 is provided, as an example, in the circumferential direction around the rotation shaft 26a.
- the through axis Lp of the first exhaust port 51 extends in a direction perpendicular to the axial direction AX. In other words, the through axis Lp extends in the radial direction of the outer rotor 43.
- the second exhaust port 52 is formed in the second cylindrical portion 46a of the bracket 46.
- the second exhaust port 52 is a through hole that penetrates in the thickness direction between the inner and outer circumferential surfaces of the second cylindrical portion 46a.
- the opening shape of the second exhaust port 52 is also circular, for example.
- the second exhaust port 52 exhausts the gas G in the second internal space SP2 to the outside of the bracket 46.
- the second exhaust port 52 is disposed closer to the motor 31 in the axial direction AX than the first magnet M1 and the second magnet M2. That is, like the first exhaust port 51, the second exhaust port 52 is also disposed closer to the motor 31 in the axial direction AX than the position S1.
- outlet 51out of the first exhaust port 51 formed on the outer peripheral surface of the first cylindrical portion 43a and the inlet 52in of the second exhaust port 52 formed on the inner peripheral surface of the second cylindrical portion 46a partially overlap in the axial direction AX.
- the intake port 53 is formed in the second cylindrical portion 46a of the bracket 46. Like the second exhaust port 52, the intake port 53 is a through hole that penetrates in the thickness direction between the inner and outer circumferential surfaces of the second cylindrical portion 46a. The opening shape of the intake port 53 is also circular, for example.
- the intake port 53 takes in gas G from outside the bracket 46 into the second internal space SP2.
- the intake port 53 is located closer to the laser chamber 10 in the axial direction AX than the first magnet M1 and the second magnet M2. In other words, the intake port 53 is located closer to the laser chamber 10 in the axial direction AX than the position S2.
- outlet 53out of the intake port 53 formed on the inner peripheral surface of the second cylindrical portion 46a and the gap 48 partially overlap in the axial direction AX.
- This flow of gas G causes the gas G in the first internal space SP1, which has become hot due to heat generation from the shroud 44, to be exhausted to the outside of the bracket 46 through the first exhaust port 51 and the second exhaust port 52. Instead, the relatively low-temperature gas G outside the bracket 46 flows into the first internal space SP1 through the intake port 53 and the gap 48, absorbing heat from the shroud 44 and cooling it.
- the mechanism for cooling the shroud 44 by the flow of the gas G is composed of the first exhaust port 51, the second exhaust port 52, and the intake port 53.
- the first exhaust port 51 and the second exhaust port 52 are disposed closer to the motor than the first magnet M1 and the second magnet M2 in the axial direction AX, and the intake port 53 and the gap 48 are disposed closer to the laser chamber 10 than the first magnet M1 and the second magnet M2. Therefore, in the shroud 44, a flow of the gas G can be created in the portion from the position S1 to the position S2 that faces the first magnet M1 and the second magnet M2 and where heat generation due to eddy current is large.
- the opening shape of the first exhaust port 51 is described as being circular.
- the opening shape is circular, it is easier to mold compared to shapes other than circular.
- the opening shape may be polygonal or other shapes other than circular.
- the through axis Lp of the first exhaust port 51 extends in a direction perpendicular to the axial direction AX.
- moldability may be better than when the through axis Lp is in a direction other than the radial direction.
- the through axis Lp does not have to be in the radial direction.
- the outlet 51out of the first exhaust port 51 and the inlet 52in of the second exhaust port 52 are partially overlapped in the axial direction AX. This allows the flow of gas G to be smoother than when they do not overlap. If the flow of gas G is smoother, the flow rate of gas G per unit time increases, and the cooling effect of the shroud 44 can be expected to be improved. However, the outlet 51out and the inlet 52in do not have to overlap in the axial direction AX. Even in this case, there is a concern that the flow path resistance will increase due to the bending of the flow path of gas G, but a flow of gas G that cools the shroud 44 is generated, so the cooling effect of the shroud 44 can be obtained.
- Second embodiment A magnetic coupling mechanism 28B according to a second embodiment will be described with reference to Fig. 7.
- the magnetic coupling mechanism 28B according to the second embodiment differs from the magnetic coupling mechanism 28A according to the first embodiment in the positions of the second exhaust port 52 and the intake port 53 in the axial direction AX. Therefore, the same reference numerals are used for configurations similar to those described above, and duplicated descriptions will be omitted unless otherwise specified.
- the outlet 51out of the first exhaust port 51 and the inlet 52in of the second exhaust port 52 completely overlap with each other in the axial direction AX.
- the widths of the outlet 51out and the inlet 52in in the axial direction AX are the same, and the centers of the outlet 51out and the inlet 52in also coincide. Therefore, the outlet 51out and the inlet 52in completely overlap with each other in the axial direction AX.
- the outlet 53out of the intake port 53 and the gap 48 completely overlap with each other in the axial direction AX.
- the width of the outlet 53out in the axial direction AX is narrower than the width of the gap 48 in the axial direction AX. Therefore, the gap 48 completely overlaps with the outlet 53out in the axial direction AX.
- the gas G exhausted from the outlet 51out of the first exhaust port 51 flows into the inlet 52in of the second exhaust port 52 while maintaining the same flow direction of the gas G when exhausted.
- the gas G flowing in from the outlet 53out of the intake port 53 also flows into the gap 48 while maintaining the same flow direction of the gas G when it flows in.
- the flow of the gas G from the first exhaust port 51 toward the second exhaust port 52 and the flow of the gas G from the intake port 53 toward the gap 48 are smoother than in the first embodiment. Furthermore, in the second embodiment, the path through which the gas G flows has fewer bends, so the length of the flow path through which the gas G flows can be shorter than in the first embodiment. This reduces the flow path resistance of the gas G, and increases the flow rate per unit time of the gas G in contact with the shroud 44. Therefore, the second embodiment improves the cooling effect of the shroud 44 compared to the first embodiment.
- Modifications 4.1 Modification 1 (example in which multiple first exhaust ports are provided) As shown in Figs. 8 and 9, a plurality of first exhaust ports 51 may be provided in the outer rotor 43. Figs. 8 and 9 show cross sections of the outer rotor 43 perpendicular to the axial direction AX passing through the rotation center O. In the examples shown in Figs. 8 and 9, the plurality of first exhaust ports 51 are arranged at intervals in the circumferential direction of the rotation center O. In the outer rotor 43 shown in Fig. 8, eight first exhaust ports 51 are arranged at equal intervals of 45° in the circumferential direction. Fig.
- FIG. 8 shows a cross section of the outer rotor 43 perpendicular to the axial direction AX passing through the rotation center O.
- the plurality of first exhaust ports 51 are arranged point-symmetrically with respect to the rotation center O.
- the plurality of first exhaust ports 51 are arranged line-symmetrically with respect to a straight line Lo passing through the rotation center O and perpendicular to the axial direction AX.
- the eight first exhaust ports 51 arranged in the circumferential direction are at the same position in the axial direction AX and are arranged in a row.
- three first exhaust ports 51 are arranged at equal intervals of 120° in the circumferential direction.
- the multiple first exhaust ports 51 are also arranged symmetrically with respect to a straight line Lo that passes through the center of rotation O and is perpendicular to the axial direction AX.
- the three first exhaust ports 51 arranged in the circumferential direction are at the same position in the axial direction AX and are lined up in a row.
- the weight of the first exhaust port 51 becomes lighter, and depending on the position where the first exhaust port 51 is provided, the weight balance may become poor. If the weight balance is poor, the center of rotation O of the outer rotor 43 becomes eccentric, which causes vibration.
- the weight balance of the outer rotor 43 is improved compared to the example shown in Figure 6, and the effect of suppressing vibration can be expected.
- the arrangement of the multiple first exhaust ports 51 does not necessarily need to be completely symmetrical, and the symmetry may be reduced depending on the acceptable range of vibration.
- first exhaust ports 51 increases the flow rate of gas G per unit time, and therefore an improvement in the cooling effect of the shroud 44 can be expected.
- there are too many first exhaust ports 51 arranged in a row in the circumferential direction there is a concern that the strength of the outer rotor 43 may be reduced.
- the number and size of the first exhaust ports 51 arranged in a row in the circumferential direction be set to appropriate values according to the size of the outer rotor 43.
- the number of first exhaust ports 51 is preferably in the range of 4 to 24.
- the size of the first exhaust port 51 is preferably in the range of 10 mm to 30 mm.
- the length of each side is preferably in the range of 10 mm to 30 mm.
- the first exhaust port 51A may have a rectangular opening shape.
- the area can be increased compared to the circular first exhaust port 51 (shown by a two-dot chain line in FIG. 10 for comparison) having the same diameter as the length of the side of the rectangle.
- the area of the opening shape of the first exhaust port 51A is increased, the flow resistance of the gas G passing through the first exhaust port 51A decreases. This can be expected to improve the cooling effect of the shroud 44 by improving the exhaust efficiency of the gas G.
- the rectangle may be a square or a rectangle. In consideration of strength, a square is preferable.
- the inclination angle ⁇ of the through axis Lp satisfies the condition represented by the following formula 1. 0° ⁇ 30° (Equation 1)
- At least one of the second exhaust ports 52 and the intake ports 53 formed in the bracket 46 may have a plurality of through holes, similar to the first exhaust port 51.
- the second exhaust ports 52 and the intake ports 53 are respectively arranged at intervals in the circumferential direction around the rotation shaft 26a.
- the rows in which the multiple through holes are arranged in the circumferential direction may include at least two rows that are positioned at different positions in the axial direction AX, as shown as the first row CLa and the second row CLb.
- the first row CLa and the second row CLb of the second exhaust ports 52 are provided to correspond to the axial position AX of the first exhaust ports 51 of the outer rotor 43.
- the first row CLa and the second row CLb of the intake ports 53 are provided to correspond to the axial position AX of the gap 48.
- the arrangement pitch D2 of the multiple second exhaust ports 52 is the same in each row, but the circumferential phase is shifted by half a period of the arrangement pitch D2.
- This type of arrangement is also called a staggered arrangement. The following effects can be expected from the staggered arrangement.
- the arrangement pitch D2 becomes narrower. This raises concerns that the strength of the bracket 46 may decrease. Therefore, by arranging the first row CLa and the second row CLb in a staggered manner, it is possible to increase the density of the second exhaust ports 52 (i.e., the number per unit area) without narrowing the arrangement pitch D2. This makes it possible to increase the flow rate of the gas G per unit time while suppressing a decrease in the strength of the bracket 46, thereby improving the cooling effect of the shroud 44.
- the interval in the axial direction AX between the first row CLa and the second row CLb be, for example, as follows: That is, when the radius of the opening diameter of the second exhaust port 52 is r and the row interval in the axial direction AX between the first row CLa and the second row CLb is D1, it is preferable that the condition shown in the following formula 2 is satisfied. r ⁇ D1 ⁇ 2r...(Formula 2)
- the row spacing D1 is the distance between the centers of the second exhaust ports 52 in the first row CLa and the second row CLb.
- the relationship between the combinations of two adjacent second exhaust ports 52 is as follows: In other words, when the circumferential distance between adjacent second exhaust ports 52 in the circumferential direction is D3 and the shortest distance between opposing points on the outlines of the adjacent second exhaust ports 52, which is the shortest distance between the opposing points, is D4, it is preferable that the condition shown in the following formula 3 is satisfied. D3 ⁇ D4 (Equation 3)
- the second exhaust port 52 By increasing the density of the second exhaust port 52, the flow rate of gas G per unit time increases, and it is expected that the cooling effect of the shroud 44 will be improved.
- the second exhaust port 52 has been used as an example, the same applies to the intake port 53.
- the gas laser device 2 using the discharge electrode 21 according to the first and second embodiments is a line-narrowing laser device
- the present invention is not limited to this and may be a gas laser device that outputs natural oscillation light.
- a high-reflection mirror may be disposed instead of the line-narrowing module 15.
- the gas laser device 2 is an excimer laser device, but instead of this, it may be an F2 molecular laser device that uses a laser gas containing fluorine gas and a buffer gas.
- the gas laser device 2 according to the present disclosure may be any gas laser device that excites a laser gas containing fluorine by discharging.
- FIG. 13 shows a schematic configuration example of an exposure apparatus 100.
- the exposure apparatus 100 includes an illumination optical system 104 and a projection optical system 106.
- the illumination optical system 104 illuminates a reticle pattern of a reticle (not shown) arranged on a reticle stage RT with a pulsed laser beam PL incident from, for example, a gas laser device 2.
- the projection optical system 106 reduces and projects the pulsed laser beam PL transmitted through the reticle to form an image on a workpiece (not shown) arranged on a workpiece table WT.
- the workpiece is a photosensitive substrate such as a semiconductor wafer coated with photoresist.
- the exposure apparatus 100 exposes the workpiece to pulsed laser light PL reflecting the reticle pattern by synchronously translating the reticle stage RT and the workpiece table WT. After the reticle pattern is transferred to the semiconductor wafer by the exposure process described above, a semiconductor device can be manufactured through multiple processes.
- a semiconductor device is an example of an "electronic device" in this disclosure.
- the gas laser device 2 shown in FIG. 13 uses the magnetic coupling mechanism 28A or 28B according to the first or second embodiment.
- the gas laser device 2 can be used for laser processing other than the manufacture of electronic devices, such as drilling.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
A laser chamber device according to one aspect of the present disclosure includes a magnetic coupling mechanism (28A) for transmitting a driving force to a rotating shaft (26a) of a fan (26) that circulates a laser gas, wherein the magnetic coupling mechanism (28A) comprises: an inner rotor (42); a metallic shroud (44) for housing the inner rotor (42); an outer rotor (43); and a bracket (46). A first exhaust port (51) is formed in the outer rotor (43), and a second exhaust port (52) and an intake port (53) are formed in the bracket (46).
Description
本開示は、レーザチャンバ装置、ガスレーザ装置及び電子デバイスの製造方法に関する。
This disclosure relates to a laser chamber apparatus, a gas laser apparatus, and a method for manufacturing an electronic device.
近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。例えば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、ならびに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
In recent years, there has been a demand for improved resolution in semiconductor exposure devices as semiconductor integrated circuits become finer and more highly integrated. This has led to efforts to shorten the wavelength of light emitted from exposure light sources. For example, gas laser devices used for exposure include KrF excimer laser devices that output laser light with a wavelength of approximately 248 nm, and ArF excimer laser devices that output laser light with a wavelength of approximately 193 nm.
KrFエキシマレーザ装置及びArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrowing Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化ガスレーザ装置という。
The spectral linewidth of the natural oscillation light of KrF excimer laser devices and ArF excimer laser devices is wide, at 350 to 400 pm. Therefore, if a projection lens is made of a material that transmits ultraviolet light, such as KrF and ArF laser light, chromatic aberration may occur. As a result, the resolution may decrease. Therefore, it is necessary to narrow the spectral linewidth of the laser light output from the gas laser device to a level where chromatic aberration can be ignored. For this reason, a line narrowing module (LNM) containing a narrowing element (such as an etalon or grating) may be provided in the laser resonator of the gas laser device to narrow the spectral linewidth. In the following, a gas laser device in which the spectral linewidth is narrowed is referred to as a narrow-line gas laser device.
本開示の1つの観点に係るレーザチャンバ装置は、レーザガスを収容するレーザチャンバと、レーザチャンバの内部に配置され、レーザガスを循環させるファンと、磁力を利用してファンの回転軸にモータの駆動力を伝達する磁気カップリング機構と、を備えるレーザチャンバ装置であって、磁気カップリング機構は、レーザチャンバから一部が突出する回転軸と連結され、第1磁石が配置されるインナーロータと、モータの駆動力によって回転し、磁気による吸引力によってインナーロータを従動回転させるアウターロータであって、インナーロータを収容する第1内部空間を画定し、第1磁石と対向する第2磁石が配置される第1筒状部であって、回転軸の軸方向における一方の端部が開口し、他方の端部にモータの駆動軸が連結される底部を有する有底の第1筒状部を有し、第1筒状部における一方の端部とレーザチャンバの端面との間に隙間を空けて配置されるアウターロータと、レーザチャンバの端面と接触した状態で固定され、インナーロータを気密状態で収容する有底の筒状をしたシュラウドであって、金属製であり、かつ内周面において第1磁石と対向し、外周面において第2磁石と対向するシュラウドと、アウターロータを収容する第2内部空間であって第1内部空間と隙間を通じて連通する第2内部空間を画定する第2筒状部であって、軸方向における一方の端部が開口し、他方の端部はモータの駆動軸が回転自在に挿通される挿通口が形成される底部を有する有底の第2筒状部を有し、第2筒状部における一方の端部がレーザチャンバの端面に固定され、他方の端部にはモータが固定されるブラケットと、アウターロータの第1筒状部に形成され、第1内部空間内の気体を第2内部空間に排気する第1排気口であって、軸方向において、第1磁石及び第2磁石よりもモータ側に配置された第1排気口と、ブラケットの第2筒状部に形成され、第2内部空間内の気体をブラケットの外側に排気する第2排気口であって、軸方向において、第1磁石及び第2磁石よりもモータ側に配置された第2排気口と、ブラケットの第2筒状部に形成され、ブラケットの外部の気体を第2内部空間に取り入れる吸気口であって、軸方向において、第1磁石及び第2磁石よりもレーザチャンバ側に配置された吸気口と、を備える。
A laser chamber apparatus according to one aspect of the present disclosure is a laser chamber apparatus comprising: a laser chamber for accommodating laser gas; a fan disposed inside the laser chamber for circulating the laser gas; and a magnetic coupling mechanism for transmitting the driving force of a motor to the rotating shaft of the fan using magnetic force, the magnetic coupling mechanism comprising an inner rotor connected to a rotating shaft partly protruding from the laser chamber and having a first magnet disposed thereon; an outer rotor which rotates by the driving force of the motor and drives the inner rotor to rotate by magnetic attraction, the outer rotor defining a first internal space which accommodates the inner rotor and having a first cylindrical portion in which a second magnet opposed to the first magnet is disposed, the first cylindrical portion having one end in the axial direction of the rotating shaft which is open and the other end which has a bottom to which the driving shaft of the motor is connected, the outer rotor being disposed with a gap between one end of the first cylindrical portion and the end face of the laser chamber; and a bottomed cylindrical shroud which is fixed in contact with the end face of the laser chamber and accommodates the inner rotor in an airtight manner, the shroud being made of metal and having an inner circumferential surface which is in contact with the first magnet. a shroud facing the second magnet on its outer peripheral surface; a second cylindrical portion defining a second internal space that houses the outer rotor and communicates with the first internal space through a gap, the second cylindrical portion having an open end at one axial end and a bottom having a bottom at the other end where an insertion opening through which a drive shaft of a motor is rotatably inserted is formed, one end of the second cylindrical portion being fixed to an end face of the laser chamber and the other end being a bracket to which the motor is fixed; and a second cylindrical portion formed in the first cylindrical portion of the outer rotor and configured to circulate gas in the first internal space through the second cylindrical portion. The bracket includes a first exhaust port that exhausts gas into the internal space and is located axially closer to the motor than the first and second magnets, a second exhaust port that is formed in the second cylindrical portion of the bracket and exhausts gas in the second internal space to the outside of the bracket and is located axially closer to the motor than the first and second magnets, and an intake port that is formed in the second cylindrical portion of the bracket and takes in gas outside the bracket into the second internal space and is located axially closer to the laser chamber than the first and second magnets.
本開示の1つの観点に係るガスレーザ装置は、放電電極とレーザガスとを収容するレーザチャンバと、レーザチャンバの内部に配置され、レーザチャンバの内部においてレーザガスを循環させるファンと、ファンを駆動するモータと、磁力を利用してファンの回転軸にモータの駆動力を伝達する磁気カップリング機構と、を備え、放電によりレーザガスを励起してレーザ光を生成するガスレーザ装置であって、磁気カップリング機構は、レーザチャンバから一部が突出する回転軸と連結され、第1磁石が配置されるインナーロータと、モータの駆動力によって回転し、磁気による吸引力によってインナーロータを従動回転させるアウターロータであって、インナーロータを収容する第1内部空間を画定し、第1磁石と対向する第2磁石が配置される第1筒状部であって、回転軸の軸方向における一方の端部が開口し、他方の端部にモータの駆動軸が連結される底部を有する有底の第1筒状部を有し、第1筒状部における一方の端部とレーザチャンバの端面との間に隙間を空けて配置されるアウターロータと、レーザチャンバの端面と接触した状態で固定され、インナーロータを気密状態で収容する有底の筒状をしたシュラウドであって、金属製であり、かつ内周面において第1磁石と対向し、外周面において第2磁石と対向するシュラウドと、アウターロータを収容する第2内部空間であって第1内部空間と隙間を通じて連通する第2内部空間を画定する第2筒状部であって、軸方向における一方の端部が開口し、他方の端部はモータの駆動軸が回転自在に挿通される挿通口が形成される底部を有する有底の第2筒状部を有し、第2筒状部における一方の端部がレーザチャンバの端面に固定され、他方の端部にはモータが固定されるブラケットと、アウターロータの第1筒状部に形成され、第1内部空間内の気体を第2内部空間に排気する第1排気口であって、軸方向において、第1磁石及び第2磁石よりもモータ側に配置された第1排気口と、ブラケットの第2筒状部に形成され、第2内部空間内の気体をブラケットの外側に排気する第2排気口であって、軸方向において、第1磁石及び第2磁石よりもモータ側に配置された第2排気口と、ブラケットの第2筒状部に形成され、ブラケットの外部の気体を第2内部空間に取り入れる吸気口であって、軸方向において、第1磁石及び第2磁石よりもレーザチャンバ側に配置された吸気口と、を備える。
A gas laser device according to one aspect of the present disclosure is a gas laser device that includes a laser chamber that houses a discharge electrode and laser gas, a fan that is disposed inside the laser chamber and circulates the laser gas inside the laser chamber, a motor that drives the fan, and a magnetic coupling mechanism that uses magnetic force to transmit the driving force of the motor to a rotating shaft of the fan, and that excites the laser gas by discharge to generate laser light, and the magnetic coupling mechanism includes an inner rotor that is connected to a rotating shaft that protrudes partially from the laser chamber and on which a first magnet is disposed, and a second rotor that is rotated by the driving force of the motor. the outer rotor is a first cylindrical portion that defines a first internal space that houses the inner rotor and in which a second magnet facing the first magnet is disposed, the first cylindrical portion having a bottom that is open at one end in the axial direction of the rotation shaft and has a bottom to which a drive shaft of a motor is connected at the other end, the outer rotor is disposed with a gap between the one end of the first cylindrical portion and an end face of a laser chamber; and a bottomed cylindrical shroud that is fixed in contact with the end face of the laser chamber and houses the inner rotor in an airtight state. the shroud is made of metal and faces the first magnet on its inner circumferential surface and faces the second magnet on its outer circumferential surface; a second cylindrical portion that defines a second internal space that houses the outer rotor and communicates with the first internal space through a gap, the second cylindrical portion having an open end at one axial end and a bottom at the other end having a bottom through which an insertion opening through which a drive shaft of a motor is rotatably inserted, one end of the second cylindrical portion being fixed to an end face of a laser chamber and the other end being formed in a bracket to which a motor is fixed; The bracket includes a first exhaust port that exhausts gas from the first internal space to the second internal space, the first exhaust port being located closer to the motor than the first and second magnets in the axial direction; a second exhaust port that is formed in the second cylindrical portion of the bracket and exhausts gas from the second internal space to the outside of the bracket, the second exhaust port being located closer to the motor than the first and second magnets in the axial direction; and an intake port that is formed in the second cylindrical portion of the bracket and takes in gas from outside the bracket to the second internal space, the intake port being located closer to the laser chamber than the first and second magnets in the axial direction.
本開示の1つの観点に係る電子デバイスの製造方法は、放電電極とレーザガスとを収容するレーザチャンバと、レーザチャンバの内部に配置され、レーザチャンバの内部においてレーザガスを循環させるファンと、ファンを駆動するモータと、磁力を利用してファンの回転軸にモータの駆動力を伝達する磁気カップリング機構と、を備え、放電によりレーザガスを励起してレーザ光を生成するガスレーザ装置であって、磁気カップリング機構は、レーザチャンバから一部が突出する回転軸と連結され、第1磁石が配置されるインナーロータと、モータの駆動力によって回転し、磁気による吸引力によってインナーロータを従動回転させるアウターロータであって、インナーロータを収容する第1内部空間を画定し、第1磁石と対向する第2磁石が配置される第1筒状部であって、回転軸の軸方向における一方の端部が開口し、他方の端部にモータの駆動軸が連結される底部を有する有底の第1筒状部を有し、第1筒状部における一方の端部とレーザチャンバの端面との間に隙間を空けて配置されるアウターロータと、レーザチャンバの端面と接触した状態で固定され、インナーロータを気密状態で収容する有底の筒状をしたシュラウドであって、金属製であり、かつ内周面において第1磁石と対向し、外周面において第2磁石と対向するシュラウドと、アウターロータを収容する第2内部空間であって第1内部空間と隙間を通じて連通する第2内部空間を画定する第2筒状部であって、軸方向における一方の端部が開口し、他方の端部はモータの駆動軸が回転自在に挿通される挿通口が形成される底部を有する有底の第2筒状部を有し、第2筒状部における一方の端部がレーザチャンバの端面に固定され、他方の端部にはモータが固定されるブラケットと、アウターロータの第1筒状部に形成され、第1内部空間内の気体を第2内部空間に排気する第1排気口であって、軸方向において、第1磁石及び第2磁石よりもモータ側に配置された第1排気口と、ブラケットの第2筒状部に形成され、第2内部空間内の気体をブラケットの外側に排気する第2排気口であって、軸方向において、第1磁石及び第2磁石よりもモータ側に配置された第2排気口と、ブラケットの第2筒状部に形成され、ブラケットの外部の気体を第2内部空間に取り入れる吸気口であって、軸方向において、第1磁石及び第2磁石よりもレーザチャンバ側に配置された吸気口と、を備える、ガスレーザ装置によってレーザ光を生成し、レーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板にレーザ光を露光することを含む。
A method for manufacturing an electronic device according to one aspect of the present disclosure is a gas laser apparatus comprising a laser chamber accommodating a discharge electrode and laser gas, a fan disposed inside the laser chamber for circulating the laser gas inside the laser chamber, a motor for driving the fan, and a magnetic coupling mechanism for transmitting the driving force of the motor to a rotating shaft of the fan using magnetic force, the gas laser apparatus exciting the laser gas by discharge to generate laser light, the magnetic coupling mechanism comprising an inner rotor connected to a rotating shaft partly protruding from the laser chamber and on which a first magnet is disposed, and a second rotor connected to the rotating shaft partly protruding from the laser chamber and which rotates by the driving force of the motor and is coupled to the rotating shaft partly protruding from the laser chamber, the inner rotor having a first magnet disposed thereon, and a second rotor connected to the rotating shaft partly protruding from the laser chamber, the inner rotor being rotated by the driving force of the motor and being coupled to the rotating shaft partly protruding from the laser chamber, the second rotor being rotated by the magnetic attraction force. an outer rotor which rotates the inner rotor in an airtight manner, the outer rotor having a first cylindrical portion which defines a first internal space which houses the inner rotor and in which a second magnet facing the first magnet is disposed, the first cylindrical portion having a bottom with one end open in the axial direction of a rotation shaft and a bottom to which a drive shaft of a motor is connected at the other end, the outer rotor being disposed with a gap between the one end of the first cylindrical portion and an end face of a laser chamber; and a shroud having a bottom and which is fixed in contact with the end face of the laser chamber and which houses the inner rotor in an airtight manner, the shroud being made of metal, facing the first magnet on its inner peripheral surface and having a bottom with a magnet on its outer peripheral surface. a shroud facing the second magnet in the first cylindrical portion; a second internal space accommodating the outer rotor, the second internal space being in communication with the first internal space through a gap, the second cylindrical portion having one end in the axial direction that is open and the other end having a bottom with a bottom formed with an insertion opening through which a drive shaft of a motor is rotatably inserted, one end of the second cylindrical portion being fixed to an end face of the laser chamber and the other end being a bracket to which a motor is fixed; and a first exhaust port formed in the first cylindrical portion of the outer rotor for exhausting gas in the first internal space to the second internal space, the first exhaust port being located closer to the motor than the first magnet and the second magnet in the axial direction. The method includes generating laser light using a gas laser device that includes a first exhaust port disposed on the motor side, a second exhaust port formed in a second cylindrical portion of the bracket and discharging gas in the second internal space to the outside of the bracket, the second exhaust port being disposed on the motor side of the first magnet and the second magnet in the axial direction, and an intake port formed in the second cylindrical portion of the bracket and taking in gas outside the bracket into the second internal space, the intake port being disposed on the laser chamber side of the first magnet and the second magnet in the axial direction, generating laser light using the gas laser device, outputting the laser light to an exposure device, and exposing a photosensitive substrate to the laser light in the exposure device to manufacture an electronic device.
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例に係るガスレーザ装置の構成を概略的に示す断面図である。
図2は、比較例の磁気カップリング機構の構成を概略的に示す断面図である。
図3は、比較例の磁気カップリング機構の構成を示す分解斜視図である。
図4は、第1実施形態に係る磁気カップリング機構の構成を概略的に示す断面図である。
図5は、第1実施形態に係る磁気カップリング機構の構成を示す分解斜視図である。
図6は、第1実施形態に係るアウターロータの断面図である。
図7は、第2実施形態に係る磁気カップリング機構の構成を概略的に示す断面図である。
図8は、変形例1に係るアウターロータの断面図である。
図9は、変形例1に係る別のアウターロータの断面図である。
図10は、変形例2に係るアウターロータの側面図である。
図11は、変形例3に係るアウターロータの断面図である。
図12は、変形例4に係るブラケットの側面図である。
図13は、露光装置の構成例を概略的に示す図である。
Some embodiments of the present disclosure will now be described, by way of example only, with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of a gas laser device according to a comparative example. FIG. 2 is a cross-sectional view that illustrates a schematic configuration of a magnetic coupling mechanism of a comparative example. FIG. 3 is an exploded perspective view showing the configuration of a magnetic coupling mechanism of a comparative example. FIG. 4 is a cross-sectional view that illustrates a schematic configuration of the magnetic coupling mechanism according to the first embodiment. FIG. 5 is an exploded perspective view showing the configuration of the magnetic coupling mechanism according to the first embodiment. FIG. 6 is a cross-sectional view of the outer rotor according to the first embodiment. FIG. 7 is a cross-sectional view that illustrates a schematic configuration of a magnetic coupling mechanism according to the second embodiment. FIG. 8 is a cross-sectional view of an outer rotor according to the first modified example. FIG. 9 is a cross-sectional view of another outer rotor according to the first modified example. FIG. 10 is a side view of the outer rotor according to the second modification. FIG. 11 is a cross-sectional view of an outer rotor according to the third modification. FIG. 12 is a side view of a bracket according to the fourth modification. FIG. 13 is a diagram illustrating an example of the configuration of an exposure apparatus.
<内容>
1.比較例
1.1 構成
1.1.1 ガスレーザ装置の構成
1.1.2 磁気カップリング機構の構成
1.2 動作
1.3 課題
2.第1実施形態
2.1 構成
2.2 動作
2.3 作用・効果
3.第2実施形態
3.1 構成及び動作
3.2 作用・効果
4. 変形例
4.1 変形例1(第1排気口を複数設ける例)
4.2 変形例2(第1排気口の開口形状の変形例)
4.3 変形例3(第1排気口の貫通軸が傾斜する例)
4.4 変形例4(第2排気口及び吸気口の変形例)
5.その他の変形例
6.電子デバイスの製造方法 <Contents>
1. Comparative Example 1.1 Configuration 1.1.1 Configuration of Gas Laser Apparatus 1.1.2 Configuration of Magnetic Coupling Mechanism 1.2 Operation 1.3 Issues 2. First Embodiment 2.1 Configuration 2.2 Operation 2.3 Functions and Effects 3. Second Embodiment 3.1 Configuration and Operation 3.2 Functions and Effects 4. Modifications 4.1 Modification 1 (Example in which multiple first exhaust ports are provided)
4.2 Modification 2 (Modification of the opening shape of the first exhaust port)
4.3 Modification 3 (Example in which the through axis of the first exhaust port is inclined)
4.4 Modification 4 (Modification of the second exhaust port and the intake port)
5. Other Modifications 6. Method for Manufacturing Electronic Device
1.比較例
1.1 構成
1.1.1 ガスレーザ装置の構成
1.1.2 磁気カップリング機構の構成
1.2 動作
1.3 課題
2.第1実施形態
2.1 構成
2.2 動作
2.3 作用・効果
3.第2実施形態
3.1 構成及び動作
3.2 作用・効果
4. 変形例
4.1 変形例1(第1排気口を複数設ける例)
4.2 変形例2(第1排気口の開口形状の変形例)
4.3 変形例3(第1排気口の貫通軸が傾斜する例)
4.4 変形例4(第2排気口及び吸気口の変形例)
5.その他の変形例
6.電子デバイスの製造方法 <Contents>
1. Comparative Example 1.1 Configuration 1.1.1 Configuration of Gas Laser Apparatus 1.1.2 Configuration of Magnetic Coupling Mechanism 1.2 Operation 1.3 Issues 2. First Embodiment 2.1 Configuration 2.2 Operation 2.3 Functions and Effects 3. Second Embodiment 3.1 Configuration and Operation 3.2 Functions and Effects 4. Modifications 4.1 Modification 1 (Example in which multiple first exhaust ports are provided)
4.2 Modification 2 (Modification of the opening shape of the first exhaust port)
4.3 Modification 3 (Example in which the through axis of the first exhaust port is inclined)
4.4 Modification 4 (Modification of the second exhaust port and the intake port)
5. Other Modifications 6. Method for Manufacturing Electronic Device
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
Below, embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiments described below are merely examples of the present disclosure, and are not intended to limit the content of the present disclosure. Furthermore, not all of the configurations and operations described in the embodiments are necessarily essential as the configurations and operations of the present disclosure. Note that the same components are given the same reference symbols, and duplicate explanations will be omitted.
1.比較例
まず、本開示の比較例について説明する。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。 1. Comparative Example First, a comparative example of the present disclosure will be described. The comparative example of the present disclosure is a form that the applicant recognizes as being known only by the applicant, and is not a publicly known example that the applicant acknowledges.
まず、本開示の比較例について説明する。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。 1. Comparative Example First, a comparative example of the present disclosure will be described. The comparative example of the present disclosure is a form that the applicant recognizes as being known only by the applicant, and is not a publicly known example that the applicant acknowledges.
1.1 構成
1.1.1 ガスレーザ装置の構成
図1を用いて比較例に係るガスレーザ装置2の構成を概略的に示す。ガスレーザ装置2は、パルスレーザ光PLを生成するレーザ光源である。ガスレーザ装置2が生成したパルスレーザ光PLは、例えば露光装置3に供給される。ガスレーザ装置2は、レーザガスを放電により励起する放電励起式のガスレーザ装置であり、例えば、エキシマレーザ装置である。レーザガスは、レアガスとして、アルゴンの他、クリプトン若しくはキセノンなどを使用してもよいし、ハロゲンガスとして、フッ素の他、塩素などを使用してもよい。バッファガスとしては、ネオン若しくはヘリウム、又はこれらの混合ガスなどが使用される。 1.1 Configuration 1.1.1 Configuration of the Gas Laser Apparatus The configuration of a gas laser apparatus 2 according to a comparative example is shown in FIG. 1. The gas laser apparatus 2 is a laser light source that generates a pulsed laser light PL. The pulsed laser light PL generated by the gas laser apparatus 2 is supplied to, for example, an exposure apparatus 3. The gas laser apparatus 2 is a discharge excitation type gas laser apparatus that excites a laser gas by discharging, and is, for example, an excimer laser apparatus. The laser gas may use, as a rare gas, krypton or xenon in addition to argon, or as a halogen gas, chlorine in addition to fluorine. As a buffer gas, neon or helium, or a mixture of these gases, or the like, is used.
1.1.1 ガスレーザ装置の構成
図1を用いて比較例に係るガスレーザ装置2の構成を概略的に示す。ガスレーザ装置2は、パルスレーザ光PLを生成するレーザ光源である。ガスレーザ装置2が生成したパルスレーザ光PLは、例えば露光装置3に供給される。ガスレーザ装置2は、レーザガスを放電により励起する放電励起式のガスレーザ装置であり、例えば、エキシマレーザ装置である。レーザガスは、レアガスとして、アルゴンの他、クリプトン若しくはキセノンなどを使用してもよいし、ハロゲンガスとして、フッ素の他、塩素などを使用してもよい。バッファガスとしては、ネオン若しくはヘリウム、又はこれらの混合ガスなどが使用される。 1.1 Configuration 1.1.1 Configuration of the Gas Laser Apparatus The configuration of a gas laser apparatus 2 according to a comparative example is shown in FIG. 1. The gas laser apparatus 2 is a laser light source that generates a pulsed laser light PL. The pulsed laser light PL generated by the gas laser apparatus 2 is supplied to, for example, an exposure apparatus 3. The gas laser apparatus 2 is a discharge excitation type gas laser apparatus that excites a laser gas by discharging, and is, for example, an excimer laser apparatus. The laser gas may use, as a rare gas, krypton or xenon in addition to argon, or as a halogen gas, chlorine in addition to fluorine. As a buffer gas, neon or helium, or a mixture of these gases, or the like, is used.
図1において、ガスレーザ装置2から出力されるパルスレーザ光PLの進行方向を、Z方向とする。また、X方向とY方向は互いに直交し、X-Y平面はZ方向と直交する。
In FIG. 1, the direction of travel of the pulsed laser light PL output from the gas laser device 2 is the Z direction. The X and Y directions are perpendicular to each other, and the XY plane is perpendicular to the Z direction.
ガスレーザ装置2は、筐体9と、レーザチャンバ10と、充電器11と、パルスパワーモジュール(PPM)12と、パルスエネルギ計測部13と、レーザ制御部14と、圧力センサ17と、レーザ共振器と、を含む。
The gas laser device 2 includes a housing 9, a laser chamber 10, a charger 11, a pulse power module (PPM) 12, a pulse energy measuring unit 13, a laser control unit 14, a pressure sensor 17, and a laser resonator.
筐体9は、ガスレーザ装置2の各構成要素を収容する。筐体9には、吸気口9Aと排気口9Bとが設けられている。吸気口9Aと排気口9Bは、ベンチレーションポートであり、筐体9内の換気や、冷却用の気体を外部から筐体9内に取り入れるために用いられる。また、筐体9には、パルスレーザ光PLを露光装置3に向けて出射する出射ウィンドウ9Cが設けられている。
The housing 9 houses each of the components of the gas laser device 2. The housing 9 is provided with an intake port 9A and an exhaust port 9B. The intake port 9A and the exhaust port 9B are ventilation ports that are used to ventilate the inside of the housing 9 and to take in cooling gas from the outside into the housing 9. The housing 9 is also provided with an exit window 9C that emits the pulsed laser light PL toward the exposure device 3.
レーザチャンバ10は、例えば、表面にニッケルのメッキが施されたアルミ金属で形成された金属容器であり、その内部にレーザガスが封入される。図1に示すように、レーザチャンバ10には、放電電極21と、電気絶縁プレート23と、グランドプレート24と、ファン26とが収容されている。
The laser chamber 10 is a metal container made of, for example, aluminum metal with a nickel-plated surface, and laser gas is sealed inside. As shown in FIG. 1, the laser chamber 10 contains a discharge electrode 21, an electrically insulating plate 23, a ground plate 24, and a fan 26.
放電電極21は、レーザガスを放電により励起するための電極である。放電電極21は、一対の電極21a及び21bで構成され、各電極21a及び21bは、所定間隔を空けた状態で、且つ、互いの長手方向が略平行となるように対向して配置される。
The discharge electrode 21 is an electrode for exciting the laser gas by discharging. The discharge electrode 21 is composed of a pair of electrodes 21a and 21b, and each electrode 21a and 21b is arranged facing each other with a predetermined distance between them and with their longitudinal directions approximately parallel to each other.
電気絶縁プレート23は、レーザチャンバ10に形成された開口を塞ぐように配置されている。電気絶縁プレート23は、電極21aを支持する。電気絶縁プレート23には、複数のフィードスルー25が埋め込まれている。フィードスルー25は、PPM12から供給される高電圧を電極21aに印加するように、PPM12の高電圧端子と電極21aとを電気的に接続する。
The electrically insulating plate 23 is positioned so as to cover the opening formed in the laser chamber 10. The electrically insulating plate 23 supports the electrode 21a. A number of feedthroughs 25 are embedded in the electrically insulating plate 23. The feedthroughs 25 electrically connect the high voltage terminal of the PPM 12 to the electrode 21a so that the high voltage supplied from the PPM 12 is applied to the electrode 21a.
グランドプレート24は、電極21bを支持する。グランドプレート24は、配線を介してレーザチャンバ10に接続されている。グランドプレート24は、配線を介してグランドに接地されている。グランドプレート24のZ方向に関する端部は、レーザチャンバ10に固定されている。
The ground plate 24 supports the electrode 21b. The ground plate 24 is connected to the laser chamber 10 via wiring. The ground plate 24 is grounded to the ground via wiring. The end of the ground plate 24 in the Z direction is fixed to the laser chamber 10.
ファン26は、レーザガスをレーザチャンバ10内で循環させて、電極21a及び21b間の放電空間30に高速のレーザガス流を作り出すクロスフローファンである。ファン26は、放電電極21の長手方向とファン26の長手方向とが略平行となるように配置されている。
The fan 26 is a cross-flow fan that circulates the laser gas within the laser chamber 10 to create a high-speed laser gas flow in the discharge space 30 between the electrodes 21a and 21b. The fan 26 is positioned so that the longitudinal direction of the discharge electrode 21 and the longitudinal direction of the fan 26 are approximately parallel.
ファン26の回転軸26aは、両端がそれぞれレーザチャンバ10に回転自在に支持されている。レーザチャンバ10には、磁気カップリング機構28を介してファン26を回転駆動するモータ31が接続されている。磁気カップリング機構28は、後述するように、磁力を利用してファン26の回転軸26aにモータ31のトルクを伝達する。
The rotating shaft 26a of the fan 26 is rotatably supported at both ends in the laser chamber 10. A motor 31 that rotates the fan 26 is connected to the laser chamber 10 via a magnetic coupling mechanism 28. As described below, the magnetic coupling mechanism 28 transmits the torque of the motor 31 to the rotating shaft 26a of the fan 26 using magnetic force.
充電器11は、PPM12に含まれる充電コンデンサに充電電圧を供給する高電圧電源である。PPM12は、レーザ制御部14によって制御される固体スイッチSWを含んでいる。固体スイッチSWがOFFからONになると、PPM12は、充電コンデンサに保持されていた電気エネルギから高電圧パルスを生成して、放電電極21に印加する。
The charger 11 is a high-voltage power supply that supplies a charging voltage to the charging capacitor included in the PPM 12. The PPM 12 includes a solid-state switch SW that is controlled by the laser control unit 14. When the solid-state switch SW changes from OFF to ON, the PPM 12 generates a high-voltage pulse from the electrical energy stored in the charging capacitor and applies it to the discharge electrode 21.
放電電極21に高電圧が印加されると、電極21a及び21b間に放電が起こる。この放電のエネルギにより、レーザチャンバ10内のレーザガスが励起されて高エネルギ準位に移行する。励起されたレーザガスが、その後低エネルギ準位に移行するとき、そのエネルギ準位差に応じた波長の光を放出する。
When a high voltage is applied to the discharge electrode 21, a discharge occurs between the electrodes 21a and 21b. The energy of this discharge excites the laser gas in the laser chamber 10 and causes it to transition to a high energy level. When the excited laser gas then transitions to a low energy level, it emits light with a wavelength that corresponds to the difference in energy levels.
レーザチャンバ10の両端には、ウィンドウ10a及び10bが設けられている。レーザチャンバ10内で発生した光は、ウィンドウ10a及び10bを介してレーザチャンバ10の外部に出射する。
Windows 10a and 10b are provided at both ends of the laser chamber 10. Light generated within the laser chamber 10 is emitted to the outside of the laser chamber 10 through the windows 10a and 10b.
レーザ共振器は、狭帯域化モジュール(LNM)15及び出力結合ミラー(Output Coupler:OC)16とで構成される。
The laser resonator is composed of a line narrowing module (LNM) 15 and an output coupling mirror (Output Coupler: OC) 16.
狭帯域化モジュール15は、プリズム15aと、グレーティング15bとを含んでいる。プリズム15aは、レーザチャンバ10からウィンドウ10aを介して出射された光を、ビーム幅を拡大してグレーティング15b側へ透過させる。
The line-narrowing module 15 includes a prism 15a and a grating 15b. The prism 15a expands the beam width of the light emitted from the laser chamber 10 through the window 10a and transmits it to the grating 15b side.
グレーティング15bは、入射角度と回折角度とが同じ角度となるリトロー配置にされている。グレーティング15bは、回折角度に応じて特定の波長付近の光を選択的に取り出す波長選択素子である。グレーティング15bからプリズム15aを介してレーザチャンバ10に戻る光のスペクトル幅は、狭帯域化される。
Grating 15b is in a Littrow configuration in which the angle of incidence and the angle of diffraction are the same. Grating 15b is a wavelength selection element that selectively extracts light near a specific wavelength according to the diffraction angle. The spectral width of the light returning from grating 15b to laser chamber 10 via prism 15a is narrowed.
出力結合ミラー16は、ウィンドウ10bを介してレーザチャンバ10から出射された光の一部を透過させ、他の一部を反射させてレーザチャンバ10に戻す。出力結合ミラー16の表面には、部分反射膜がコーティングされている。
The output coupling mirror 16 transmits a portion of the light emitted from the laser chamber 10 through the window 10b and reflects the other portion back to the laser chamber 10. The surface of the output coupling mirror 16 is coated with a partially reflective film.
レーザチャンバ10から出射された光は、狭帯域化モジュール15と出力結合ミラー16との間で往復し、電極21a及び21b間の放電空間30を通過する度に増幅される。増幅された光の一部が、出力結合ミラー16を介して、パルスレーザ光PLとして出力される。パルスレーザ光PLは、本開示の技術に係る「レーザ光」の一例である。
The light emitted from the laser chamber 10 travels back and forth between the line narrowing module 15 and the output coupling mirror 16, and is amplified each time it passes through the discharge space 30 between the electrodes 21a and 21b. A portion of the amplified light is output as pulsed laser light PL via the output coupling mirror 16. The pulsed laser light PL is an example of the "laser light" according to the technology disclosed herein.
パルスエネルギ計測部13は、出力結合ミラー16を介して出力されたパルスレーザ光PLの光路に配置されている。パルスエネルギ計測部13は、ビームスプリッタ13aと、集光光学系13bと、光センサ13cと、を含む。
The pulse energy measuring unit 13 is disposed in the optical path of the pulsed laser light PL outputted via the output coupling mirror 16. The pulse energy measuring unit 13 includes a beam splitter 13a, a focusing optical system 13b, and an optical sensor 13c.
ビームスプリッタ13aは、パルスレーザ光PLを高い透過率で透過させるとともに、パルスレーザ光PLの他の一部を集光光学系13bに向けて反射する。集光光学系13bは、ビームスプリッタ13aによって反射された光を、光センサ13cの受光面に集光する。光センサ13cは、受光面に集光された光のパルスエネルギを計測して、計測値をレーザ制御部14に出力する。
The beam splitter 13a transmits the pulsed laser light PL with high transmittance, and reflects another portion of the pulsed laser light PL toward the focusing optical system 13b. The focusing optical system 13b focuses the light reflected by the beam splitter 13a on the light receiving surface of the optical sensor 13c. The optical sensor 13c measures the pulse energy of the light focused on the light receiving surface and outputs the measurement value to the laser control unit 14.
レーザチャンバ10には、図示しないレーザガス供給装置とレーザガス排気装置とが設けられている。レーザガス供給装置は、バルブと流量制御弁を含み、レーザガスを収容したガスボンベと接続されている。レーザガス排気装置は、バルブと排気ポンプとを含む。
The laser chamber 10 is provided with a laser gas supply device and a laser gas exhaust device, not shown. The laser gas supply device includes a valve and a flow control valve, and is connected to a gas cylinder that contains laser gas. The laser gas exhaust device includes a valve and an exhaust pump.
圧力センサ17は、レーザチャンバ10内のガス圧を検出して、検出値をレーザ制御部14に出力する。
The pressure sensor 17 detects the gas pressure inside the laser chamber 10 and outputs the detected value to the laser control unit 14.
レーザ制御部14は、露光装置3に設けられた露光装置制御部3aとの間で各種信号を送受信するプロセッサである。例えば、レーザ制御部14には、露光装置3に出力されるパルスレーザ光PLの目標パルスエネルギ、目標発振タイミングに関するトリガ信号等が、露光装置制御部3aから送信される。
The laser control unit 14 is a processor that transmits and receives various signals to and from the exposure device control unit 3a provided in the exposure device 3. For example, the laser control unit 14 receives from the exposure device control unit 3a the target pulse energy of the pulsed laser light PL output to the exposure device 3, a trigger signal related to the target oscillation timing, and the like.
レーザ制御部14は、露光装置制御部3aから送信された各種信号に加えて、パルスエネルギの計測値、ガス圧の検出値等に基づいて、ガスレーザ装置2の各構成要素の動作を統括的に制御する。例えば、レーザ制御部14は、ガス圧の検出値及び充電器11の充電電圧に基づいて、レーザチャンバ10内におけるレーザガスのガス圧を決定する。レーザ制御部14は、決定したガス圧となるように、レーザガス供給装置とレーザガス排気装置とを制御する。
The laser control unit 14 comprehensively controls the operation of each component of the gas laser device 2 based on the various signals sent from the exposure device control unit 3a, as well as the measured pulse energy value, the detected gas pressure value, etc. For example, the laser control unit 14 determines the gas pressure of the laser gas in the laser chamber 10 based on the detected gas pressure value and the charging voltage of the charger 11. The laser control unit 14 controls the laser gas supply device and the laser gas exhaust device to achieve the determined gas pressure.
1.1.2 磁気カップリング機構の構成
図2及び図3を用いて比較例に係る磁気カップリング機構28を説明する。図2は磁気カップリング機構28のY-Z平面の断面図であり、図3は磁気カップリング機構28の分解斜視図である。磁気カップリング機構28は、磁力を利用してファン26の回転軸26aにモータ31の駆動力を伝達する。磁気カップリング機構28は、インナーロータ42と、アウターロータ43と、シュラウド44と、ブラケット46と、を含む。 1.1.2 Configuration of the Magnetic Coupling Mechanism The magnetic coupling mechanism 28 according to the comparative example will be described with reference to Figures 2 and 3. Figure 2 is a cross-sectional view of the magnetic coupling mechanism 28 taken along the YZ plane, and Figure 3 is an exploded perspective view of the magnetic coupling mechanism 28. The magnetic coupling mechanism 28 transmits the driving force of the motor 31 to the rotating shaft 26a of the fan 26 by utilizing magnetic force. The magnetic coupling mechanism 28 includes an inner rotor 42, an outer rotor 43, a shroud 44, and a bracket 46.
図2及び図3を用いて比較例に係る磁気カップリング機構28を説明する。図2は磁気カップリング機構28のY-Z平面の断面図であり、図3は磁気カップリング機構28の分解斜視図である。磁気カップリング機構28は、磁力を利用してファン26の回転軸26aにモータ31の駆動力を伝達する。磁気カップリング機構28は、インナーロータ42と、アウターロータ43と、シュラウド44と、ブラケット46と、を含む。 1.1.2 Configuration of the Magnetic Coupling Mechanism The magnetic coupling mechanism 28 according to the comparative example will be described with reference to Figures 2 and 3. Figure 2 is a cross-sectional view of the magnetic coupling mechanism 28 taken along the YZ plane, and Figure 3 is an exploded perspective view of the magnetic coupling mechanism 28. The magnetic coupling mechanism 28 transmits the driving force of the motor 31 to the rotating shaft 26a of the fan 26 by utilizing magnetic force. The magnetic coupling mechanism 28 includes an inner rotor 42, an outer rotor 43, a shroud 44, and a bracket 46.
インナーロータ42は、ファン26の回転軸26aに連結されている。回転軸26aは、レーザチャンバ10の端面10cから一部が突出しており、この突出部分にインナーロータ42が固定される。インナーロータ42は、回転軸26aの軸方向AXと直交する断面形状が円形の円柱形状をしており、中心部に回転軸26aが挿入される挿入部を有している。インナーロータ42には、複数の第1磁石M1が外周面に沿って配置されている。複数の第1磁石M1は、永久磁石であり、回転軸26aの周りの周方向において等間隔で配置されている。複数の第1磁石M1は、周方向においてN極とS極が交互に配置される。インナーロータ42は、一例として、第1磁石M1が8個ある8極タイプである。
The inner rotor 42 is connected to the rotating shaft 26a of the fan 26. A portion of the rotating shaft 26a protrudes from the end surface 10c of the laser chamber 10, and the inner rotor 42 is fixed to this protruding portion. The inner rotor 42 has a cylindrical shape with a circular cross section perpendicular to the axial direction AX of the rotating shaft 26a, and has an insertion portion in the center into which the rotating shaft 26a is inserted. A plurality of first magnets M1 are arranged along the outer circumferential surface of the inner rotor 42. The plurality of first magnets M1 are permanent magnets and are arranged at equal intervals in the circumferential direction around the rotating shaft 26a. The plurality of first magnets M1 are arranged with N poles and S poles alternating in the circumferential direction. As an example, the inner rotor 42 is an 8-pole type with eight first magnets M1.
アウターロータ43は、モータ31の駆動力によって回転し、磁力によってインナーロータ42を従動回転させる。アウターロータ43は、モータ31の駆動軸31aに連結されている。軸方向AXで示すように、モータ31の駆動軸31aと、インナーロータ42が連結されるファン26の回転軸26aとは同軸上に配置される。アウターロータ43は、駆動軸31aと直交する断面形状が円形の円筒形状をしたカップ型の容器構造をしている。
The outer rotor 43 rotates due to the driving force of the motor 31, and rotates the inner rotor 42 by magnetic force. The outer rotor 43 is connected to the drive shaft 31a of the motor 31. As shown by the axial direction AX, the drive shaft 31a of the motor 31 and the rotating shaft 26a of the fan 26 to which the inner rotor 42 is connected are arranged coaxially. The outer rotor 43 has a cup-shaped container structure with a cylindrical shape whose cross section perpendicular to the drive shaft 31a is circular.
より具体的には、アウターロータ43は、インナーロータ42を収容する第1内部空間SP1を画定する第1筒状部43aを有している。第1筒状部43aは、有底の筒状部であり、すなわち、回転軸26aの軸方向AXにおいて、レーザチャンバ10側の一方の端部43cが開口し、他方のモータ31側の端部に底部43bを有する。
More specifically, the outer rotor 43 has a first cylindrical portion 43a that defines a first internal space SP1 that houses the inner rotor 42. The first cylindrical portion 43a is a cylindrical portion with a bottom, that is, in the axial direction AX of the rotating shaft 26a, one end 43c on the laser chamber 10 side is open, and the other end on the motor 31 side has a bottom 43b.
底部43bには、駆動軸31aの回転軸26a側の端部が嵌入する嵌入口が形成され、嵌入口に駆動軸31aが固定される。アウターロータ43は、端部43cと、レーザチャンバ10の端面10cとの間に隙間48を空けて配置される。
The bottom 43b has an opening into which the end of the drive shaft 31a on the rotating shaft 26a side fits, and the drive shaft 31a is fixed to the opening. The outer rotor 43 is positioned with a gap 48 between the end 43c and the end face 10c of the laser chamber 10.
第1筒状部43aは、内径がインナーロータ42の外径よりも大きい。アウターロータ43は、第1筒状部43aの内周面と、インナーロータ42の外周面とが対向するように、第1内部空間SP1にインナーロータ42を収容する。より詳細には、インナーロータ42は後述するシュラウド44によってカバーされており、第1筒状部43aは、シュラウド44でカバーされた状態のインナーロータ42を収容する。
The first cylindrical portion 43a has an inner diameter larger than the outer diameter of the inner rotor 42. The outer rotor 43 accommodates the inner rotor 42 in the first internal space SP1 so that the inner peripheral surface of the first cylindrical portion 43a faces the outer peripheral surface of the inner rotor 42. More specifically, the inner rotor 42 is covered by a shroud 44 described below, and the first cylindrical portion 43a accommodates the inner rotor 42 while it is covered by the shroud 44.
第1筒状部43aには、第2磁石M2が内周面に沿って配置されている。複数の第2磁石M2も、永久磁石であり、回転軸26aの周りの周方向において等間隔で配置されている。複数の第2磁石M2は、周方向においてN極とS極が交互に配置される。第2磁石M2の数は第1磁石M1と同じであり、各第2磁石M2がそれぞれ第1磁石M1と対向するように配置される。第1磁石M1と第2磁石M2は、対向する磁石間に互いを引きつけあう吸引力が発生するように、対向する磁石同士の一方がN極の場合は他方がS極となるように配置される。インナーロータ42が8極タイプの場合は、アウターロータ43も、第2磁石M2が8個ある8極タイプである。
The second magnets M2 are arranged along the inner circumferential surface of the first cylindrical portion 43a. The second magnets M2 are also permanent magnets and are arranged at equal intervals in the circumferential direction around the rotating shaft 26a. The second magnets M2 are arranged with alternating north and south poles in the circumferential direction. The number of second magnets M2 is the same as that of the first magnets M1, and each second magnet M2 is arranged to face the first magnet M1. The first magnets M1 and the second magnets M2 are arranged so that when one of the opposing magnets is a north pole, the other is a south pole, so that an attractive force is generated between the opposing magnets to attract each other. When the inner rotor 42 is an 8-pole type, the outer rotor 43 is also an 8-pole type with eight second magnets M2.
また、第1磁石M1と第2磁石M2の軸方向AXの長さは同じであり、軸方向AXの位置は、第1磁石M1と第2磁石M2とが対向するように位置決めされている。また、磁極が異なる第1磁石M1及び第2磁石M2は、回転軸26aと直交するX-Y平面内において、回転軸26aを中心とする放射方向に、吸引力を発生する。吸引力が発生する方向を、以下においてラジアル方向ともいう。第1磁石M1と第2磁石M2は、ラジアル方向において、互いに吸引力が作用する範囲内に配置されている。
Furthermore, the first magnet M1 and the second magnet M2 have the same length in the axial direction AX, and are positioned in the axial direction AX so that the first magnet M1 and the second magnet M2 face each other. Furthermore, the first magnet M1 and the second magnet M2, which have different magnetic poles, generate an attractive force in the radial direction centered on the rotation axis 26a within the X-Y plane perpendicular to the rotation axis 26a. The direction in which the attractive force is generated is also referred to as the radial direction below. The first magnet M1 and the second magnet M2 are positioned within a range in which their attractive forces act on each other in the radial direction.
ブラケット46は、モータ31をレーザチャンバ10に対して固定するための固定部材である。ブラケット46は、アウターロータ43を収容した状態で、レーザチャンバ10に固定される。ブラケット46は、駆動軸31aと直交する断面形状が円形の円筒形状をしたカップ型の容器構造をしている。
The bracket 46 is a fixing member for fixing the motor 31 to the laser chamber 10. The bracket 46 is fixed to the laser chamber 10 while housing the outer rotor 43. The bracket 46 has a cup-shaped container structure with a cylindrical shape whose cross section perpendicular to the drive shaft 31a is circular.
より具体的には、ブラケット46は、アウターロータ43を収容する第2内部空間SP2を画定する第2筒状部46aを有している。第2筒状部46aは、有底の筒状部であり、すなわち、軸方向AXにおいて、レーザチャンバ10側の一方の端部46cが開口し、他方のモータ31側の端部に底部46bを有する。
More specifically, the bracket 46 has a second cylindrical portion 46a that defines a second internal space SP2 that houses the outer rotor 43. The second cylindrical portion 46a is a cylindrical portion with a bottom, that is, in the axial direction AX, one end 46c on the laser chamber 10 side is open, and the other end on the motor 31 side has a bottom 46b.
第2筒状部46aは、内径がアウターロータ43の外径よりも大きい。第2筒状部46aは、内周面と、アウターロータ43の外周面とが対向するように、第2内部空間SP2にアウターロータ43を収容する。
The second cylindrical portion 46a has an inner diameter larger than the outer diameter of the outer rotor 43. The second cylindrical portion 46a accommodates the outer rotor 43 in the second internal space SP2 so that its inner peripheral surface faces the outer peripheral surface of the outer rotor 43.
第2筒状部46aのレーザチャンバ10側の端部46cは、レーザチャンバ10の端面10cに固定される。また、ブラケット46の第2内部空間SP2と、アウターロータ43の第1内部空間SP1とは隙間48を通じて連通しており、第1内部空間SP1及び第2内部空間SP2には、例えば空気等の気体が充填されている。
The end 46c of the second cylindrical portion 46a on the laser chamber 10 side is fixed to the end face 10c of the laser chamber 10. The second internal space SP2 of the bracket 46 and the first internal space SP1 of the outer rotor 43 are in communication with each other through a gap 48, and the first internal space SP1 and the second internal space SP2 are filled with a gas such as air.
底部46bには、モータ31の駆動軸31aが回転自在に挿通される挿通口46dが形成されている。ブラケット46の底部46bの外面には、挿通口46dに駆動軸31aが挿通された状態でモータ31が固定される。
The bottom 46b has an insertion hole 46d through which the drive shaft 31a of the motor 31 is rotatably inserted. The motor 31 is fixed to the outer surface of the bottom 46b of the bracket 46 with the drive shaft 31a inserted through the insertion hole 46d.
シュラウド44は、インナーロータ42を収容する。シュラウド44内には、レーザチャンバ10の内部のレーザガスが流入する。シュラウド44は、シュラウド44の外部にレーザガスが漏出することを防止する隔壁として機能する。
The shroud 44 houses the inner rotor 42. The laser gas inside the laser chamber 10 flows into the shroud 44. The shroud 44 functions as a partition wall that prevents the laser gas from leaking outside the shroud 44.
シュラウド44は、回転軸26aと直交する断面形状が円形の円筒形状をしたカップ型の容器構造をしている。より具体的には、シュラウド44は、インナーロータ42を収容する第3内部空間SP3を画定する第3筒状部44aを有しており、第3筒状部44aは、端面10c側の端部が開口し、モータ31側の端部は底部となっている。シュラウド44は、第3筒状部44aの開口した端部が端面10cと接触した状態でレーザチャンバ10に固定され、インナーロータ42を気密状態で収容する。
The shroud 44 has a cup-shaped container structure with a cylindrical shape whose cross section perpendicular to the rotation axis 26a is circular. More specifically, the shroud 44 has a third cylindrical portion 44a that defines a third internal space SP3 that houses the inner rotor 42, and the end of the third cylindrical portion 44a on the end face 10c side is open, and the end on the motor 31 side forms a bottom. The shroud 44 is fixed to the laser chamber 10 with the open end of the third cylindrical portion 44a in contact with the end face 10c, and houses the inner rotor 42 in an airtight state.
シュラウド44は、内周面において第1磁石M1と対向し、外周面において第2磁石M2と対向する。シュラウド44は、第1磁石M1と第2磁石M2に挟まれた状態で配置される。第3筒状部44aの外周面とアウターロータ43の第1筒状部43aの内周面との間、および第3筒状部44aの内周面とインナーロータ42の外周面との間には、それぞれ所定の隙間が設けられている。シュラウド44は金属製であり、例えばステンレスが使用される。
The shroud 44 faces the first magnet M1 on its inner circumferential surface and faces the second magnet M2 on its outer circumferential surface. The shroud 44 is arranged sandwiched between the first magnet M1 and the second magnet M2. A predetermined gap is provided between the outer circumferential surface of the third cylindrical portion 44a and the inner circumferential surface of the first cylindrical portion 43a of the outer rotor 43, and between the inner circumferential surface of the third cylindrical portion 44a and the outer circumferential surface of the inner rotor 42. The shroud 44 is made of metal, for example stainless steel.
レーザチャンバ10の端部には、ファン26の回転軸26aを回転自在に支持する軸受け部49が配置される。軸受け部49は、一例としてボールベアリングであり、周知のように、回転軸26aに固定される内輪と、レーザチャンバ10に固定される外輪と、複数の回転体とを含む。内輪の外周と外輪の内周のそれぞれに、複数の回転体を収容する溝が形成されている。複数の回転体は、内輪と外輪とによって、内側と外側が挟まれた状態で、回転自在に保持される。回転体は、例えば、球体や円柱体である。
A bearing unit 49 that rotatably supports the rotating shaft 26a of the fan 26 is disposed at the end of the laser chamber 10. The bearing unit 49 is, for example, a ball bearing, and as is well known, includes an inner ring fixed to the rotating shaft 26a, an outer ring fixed to the laser chamber 10, and multiple rotating bodies. Grooves that accommodate the multiple rotating bodies are formed on the outer periphery of the inner ring and the inner periphery of the outer ring. The multiple rotating bodies are rotatably held with the inside and outside sandwiched between the inner ring and the outer ring. The rotating bodies are, for example, spheres or cylinders.
また、軸受け部49に対してレーザチャンバ10の内部側には、シール部材47が設けられている。シール部材47は、回転軸26aが挿通される穴が中央に形成されたドーナツ形状をしている。シール部材47の穴と回転軸26aの外周面との間には、シール部材47と回転軸26aとの接触を抑制する僅かな隙間が形成されている。
A seal member 47 is provided on the inside side of the laser chamber 10 relative to the bearing portion 49. The seal member 47 is donut-shaped with a hole in the center through which the rotating shaft 26a is inserted. A small gap is formed between the hole in the seal member 47 and the outer circumferential surface of the rotating shaft 26a to prevent contact between the seal member 47 and the rotating shaft 26a.
回転軸26a及びインナーロータ42が回転すると、軸受け部49等で粉塵等の微粒子が発生し、第3内部空間SP3内のレーザガスに含まれる微粒子の密度が増加する場合がある。シール部材47は、微粒子の密度が増加したレーザガスがレーザチャンバ10の内部に進入することを抑制する。
When the rotating shaft 26a and the inner rotor 42 rotate, fine particles such as dust may be generated in the bearing portion 49, etc., and the density of the fine particles contained in the laser gas in the third internal space SP3 may increase. The sealing member 47 prevents the laser gas with an increased density of fine particles from entering the inside of the laser chamber 10.
1.2 動作
モータ31の駆動軸31aを回転させると、駆動軸31aに連結されたアウターロータ43が回転する。アウターロータ43の第2磁石M2とインナーロータ42の第1磁石M1は、磁気による吸引力をラジアル方向に発生し、互いに引きつけあっている。そのため、アウターロータ43が回転すると、磁気による吸引力によってインナーロータ42が従動回転する。第2磁石M2と第1磁石M1のそれぞれのN極とS極の磁極は、周方向において交互に配置されている。そのため、例えば、アウターロータ43とインナーロータ42の回転位相のズレ、すなわち、第2磁石M2及び第1磁石M1の周方向における相対的な位置関係にズレが生じて、同極の磁石同士が対向することになると、磁気による斥力が発生する。この斥力によってアウターロータ43とインナーロータ42の回転位相が維持される。 1.2 Operation When the drive shaft 31a of the motor 31 is rotated, the outer rotor 43 connected to the drive shaft 31a rotates. The second magnet M2 of the outer rotor 43 and the first magnet M1 of the inner rotor 42 generate a magnetic attraction force in the radial direction and attract each other. Therefore, when the outer rotor 43 rotates, the inner rotor 42 is rotated by the magnetic attraction force. The N pole and S pole of each of the second magnet M2 and the first magnet M1 are arranged alternately in the circumferential direction. Therefore, for example, when there is a shift in the rotation phase between the outer rotor 43 and the inner rotor 42, that is, when there is a shift in the relative positional relationship between the second magnet M2 and the first magnet M1 in the circumferential direction, and magnets of the same pole face each other, a magnetic repulsive force is generated. This repulsive force maintains the rotation phase between the outer rotor 43 and the inner rotor 42.
モータ31の駆動軸31aを回転させると、駆動軸31aに連結されたアウターロータ43が回転する。アウターロータ43の第2磁石M2とインナーロータ42の第1磁石M1は、磁気による吸引力をラジアル方向に発生し、互いに引きつけあっている。そのため、アウターロータ43が回転すると、磁気による吸引力によってインナーロータ42が従動回転する。第2磁石M2と第1磁石M1のそれぞれのN極とS極の磁極は、周方向において交互に配置されている。そのため、例えば、アウターロータ43とインナーロータ42の回転位相のズレ、すなわち、第2磁石M2及び第1磁石M1の周方向における相対的な位置関係にズレが生じて、同極の磁石同士が対向することになると、磁気による斥力が発生する。この斥力によってアウターロータ43とインナーロータ42の回転位相が維持される。 1.2 Operation When the drive shaft 31a of the motor 31 is rotated, the outer rotor 43 connected to the drive shaft 31a rotates. The second magnet M2 of the outer rotor 43 and the first magnet M1 of the inner rotor 42 generate a magnetic attraction force in the radial direction and attract each other. Therefore, when the outer rotor 43 rotates, the inner rotor 42 is rotated by the magnetic attraction force. The N pole and S pole of each of the second magnet M2 and the first magnet M1 are arranged alternately in the circumferential direction. Therefore, for example, when there is a shift in the rotation phase between the outer rotor 43 and the inner rotor 42, that is, when there is a shift in the relative positional relationship between the second magnet M2 and the first magnet M1 in the circumferential direction, and magnets of the same pole face each other, a magnetic repulsive force is generated. This repulsive force maintains the rotation phase between the outer rotor 43 and the inner rotor 42.
インナーロータ42の回転により、ファン26が回転する。ファン26の回転により、レーザガスがレーザチャンバ10内で循環し、放電電極21の放電空間30にレーザガス流が作りだされる。
The rotation of the inner rotor 42 rotates the fan 26. The rotation of the fan 26 circulates the laser gas within the laser chamber 10, creating a laser gas flow in the discharge space 30 of the discharge electrode 21.
レーザ制御部14は、露光装置3から受信した目標パルスエネルギに応じた充電電圧を、充電器11を通じてPPM12に供給する。レーザ制御部14は、露光装置3からトリガ信号が入力されると、PPM12を通じて、放電電極21にパルス状の高電圧を印加する。放電電極21に高電圧が印加されると、レーザガスが励起され、レーザ光が放出される。狭帯域化モジュール15と出力結合ミラー16との間をレーザ光が往復し、放電空間30を通過する度にレーザ光が増幅される。さらに、レーザ光は狭帯域化モジュール15によって狭帯域化され、狭帯域化されたパルスレーザ光PLは、出力結合ミラー16から露光装置3に向けて出射される。
The laser control unit 14 supplies a charging voltage corresponding to the target pulse energy received from the exposure device 3 to the PPM 12 through the charger 11. When a trigger signal is input from the exposure device 3, the laser control unit 14 applies a pulsed high voltage to the discharge electrode 21 through the PPM 12. When a high voltage is applied to the discharge electrode 21, the laser gas is excited and laser light is emitted. The laser light travels back and forth between the line narrowing module 15 and the output coupling mirror 16, and is amplified each time it passes through the discharge space 30. Furthermore, the laser light is narrowed by the line narrowing module 15, and the narrowed pulsed laser light PL is emitted from the output coupling mirror 16 towards the exposure device 3.
ファン26の回転により、放電空間30にはレーザガス流が作り出されるため、放電空間30におけるレーザガスの励起が安定し、安定したパルスレーザ光PLが露光装置3に供給される。
The rotation of the fan 26 creates a laser gas flow in the discharge space 30, stabilizing the excitation of the laser gas in the discharge space 30 and supplying a stable pulsed laser light PL to the exposure device 3.
1.3 課題
図2に示したように、磁気カップリング機構28は、シュラウド44の第3筒状部44aを、第1磁石M1と第2磁石M2で挟む構造になっている。シュラウド44が金属製の場合は、インナーロータ42とアウターロータ43が回転すると、シュラウド44に渦電流が発生し発熱する。シュラウド44の外側は第1内部空間SP1内の空気に接し、シュラウド44の内側は第3内部空間SP3のレーザガスに接している。こうした空気やレーザガス等の気体によってシュラウド44は冷却される。しかしながら、第3内部空間SP3は気密な空間であり、第1内部空間SP1及び第1内部空間SP1と連通する第2内部空間SP2も気密性が高い。そのため、シュラウド44が接する第1内部空間SP1及び第3内部空間SP3内では気体が滞留する傾向にあり、シュラウド44の放熱性は低い。シュラウド44が高温になると、以下の不都合が生じる。 1.3 Problems As shown in FIG. 2, the magnetic coupling mechanism 28 has a structure in which the third cylindrical portion 44a of the shroud 44 is sandwiched between the first magnet M1 and the second magnet M2. When the shroud 44 is made of metal, when the inner rotor 42 and the outer rotor 43 rotate, eddy currents are generated in the shroud 44, generating heat. The outside of the shroud 44 is in contact with the air in the first internal space SP1, and the inside of the shroud 44 is in contact with the laser gas in the third internal space SP3. The shroud 44 is cooled by such gases as air and laser gas. However, the third internal space SP3 is an airtight space, and the first internal space SP1 and the second internal space SP2 communicating with the first internal space SP1 are also highly airtight. Therefore, gas tends to stagnate in the first internal space SP1 and the third internal space SP3 to which the shroud 44 is in contact, and the heat dissipation of the shroud 44 is low. If the shroud 44 becomes too hot, the following problems occur.
図2に示したように、磁気カップリング機構28は、シュラウド44の第3筒状部44aを、第1磁石M1と第2磁石M2で挟む構造になっている。シュラウド44が金属製の場合は、インナーロータ42とアウターロータ43が回転すると、シュラウド44に渦電流が発生し発熱する。シュラウド44の外側は第1内部空間SP1内の空気に接し、シュラウド44の内側は第3内部空間SP3のレーザガスに接している。こうした空気やレーザガス等の気体によってシュラウド44は冷却される。しかしながら、第3内部空間SP3は気密な空間であり、第1内部空間SP1及び第1内部空間SP1と連通する第2内部空間SP2も気密性が高い。そのため、シュラウド44が接する第1内部空間SP1及び第3内部空間SP3内では気体が滞留する傾向にあり、シュラウド44の放熱性は低い。シュラウド44が高温になると、以下の不都合が生じる。 1.3 Problems As shown in FIG. 2, the magnetic coupling mechanism 28 has a structure in which the third cylindrical portion 44a of the shroud 44 is sandwiched between the first magnet M1 and the second magnet M2. When the shroud 44 is made of metal, when the inner rotor 42 and the outer rotor 43 rotate, eddy currents are generated in the shroud 44, generating heat. The outside of the shroud 44 is in contact with the air in the first internal space SP1, and the inside of the shroud 44 is in contact with the laser gas in the third internal space SP3. The shroud 44 is cooled by such gases as air and laser gas. However, the third internal space SP3 is an airtight space, and the first internal space SP1 and the second internal space SP2 communicating with the first internal space SP1 are also highly airtight. Therefore, gas tends to stagnate in the first internal space SP1 and the third internal space SP3 to which the shroud 44 is in contact, and the heat dissipation of the shroud 44 is low. If the shroud 44 becomes too hot, the following problems occur.
まず、シュラウド44はレーザチャンバ10の端面10cに接触した状態で固定されているためシュラウド44の熱がレーザチャンバ10の端面10cに伝達される。シュラウド44もレーザチャンバ10も金属製であるため、熱伝導性が高い。シュラウド44から軸受け部49の周辺に熱が伝わると、温度分布が不均一になり、軸受け部49の周辺においてレーザチャンバ10に熱変形が生じる場合があった。レーザチャンバ10に熱変形が生じると、ファン26の回転軸26aの回転中心の位置ズレが生じ、ファン26の振動が増加する懸念がある。振動が増加すると、ウィンドウ10a及び10b、並びレーザ共振器などの光学素子の位置ズレが生じ、パルスレーザ光PLの出射方向が不安定になるといった不都合が生じる場合があった。
First, the shroud 44 is fixed in contact with the end face 10c of the laser chamber 10, so heat from the shroud 44 is transferred to the end face 10c of the laser chamber 10. Both the shroud 44 and the laser chamber 10 are made of metal, so they have high thermal conductivity. When heat is transferred from the shroud 44 to the periphery of the bearing portion 49, the temperature distribution becomes non-uniform, and thermal deformation of the laser chamber 10 may occur around the bearing portion 49. When thermal deformation occurs in the laser chamber 10, the position of the rotation center of the rotating shaft 26a of the fan 26 may shift, and there is a concern that the vibration of the fan 26 may increase. When the vibration increases, the positions of the windows 10a and 10b and optical elements such as the laser resonator may shift, causing inconvenience such as instability in the emission direction of the pulsed laser light PL.
また、シュラウド44は、第1磁石M1と第2磁石M2との間に配置されている。そのため、シュラウド44からの輻射熱や、シュラウド44が接する、第1内部空間SP1及び第3内部空間SP3の気体の温度が上昇すると、第1磁石M1及び第2磁石M2の温度が上昇する。この温度上昇により磁力が低下する懸念がある。磁力の低下も、ファン26の振動を誘発するため、上記の不都合が生じる場合があった。
The shroud 44 is also disposed between the first magnet M1 and the second magnet M2. Therefore, when the temperature of the gas in the first internal space SP1 and the third internal space SP3, which the shroud 44 contacts, rises due to radiant heat from the shroud 44, the temperature of the first magnet M1 and the second magnet M2 rises. There is a concern that this temperature rise will cause the magnetic force to decrease. The decrease in magnetic force also induces vibration of the fan 26, which can lead to the above-mentioned inconvenience.
また、軸受け部49の周辺においてレーザチャンバ10の温度が上昇すると、軸受け部49やシール部材47が熱膨張し、寸法変化、嵌合精度及び軸受け精度等が低下する懸念がある。例えば、シール部材47に寸法変化が生じると、回転軸26aとの間隙が変化し、シール機能が低下する。加えて、回転軸26aとの不用意な接触により回転安定性が低下する。軸受け部49の嵌合精度及び軸受け精度が低下すると、回転体の転がり抵抗の増加や、回転軸26aの位置ズレが増加する。これらは軸受け部49に起因して発生する粉塵の増加につながる。
Furthermore, if the temperature of the laser chamber 10 rises around the bearing portion 49, the bearing portion 49 and the seal member 47 will thermally expand, and there is a concern that dimensional changes and deterioration in fitting accuracy and bearing accuracy will occur. For example, if dimensional changes occur in the seal member 47, the gap with the rotating shaft 26a will change, and the sealing function will deteriorate. In addition, rotational stability will decrease due to inadvertent contact with the rotating shaft 26a. If the fitting accuracy and bearing accuracy of the bearing portion 49 decrease, the rolling resistance of the rotor will increase and the positional deviation of the rotating shaft 26a will increase. These will lead to an increase in dust generated by the bearing portion 49.
2.第1実施形態
次に、図4~図6を参照しながら、本開示の第1実施形態に係る磁気カップリング機構28Aについて説明する。図4は、磁気カップリング機構28AのY-Z平面の断面図であり、図5は、磁気カップリング機構28Aの分解斜視図である。図6は、アウターロータ43のA-A線(図4参照)の断面図である。 2. First embodiment Next, a magnetic coupling mechanism 28A according to a first embodiment of the present disclosure will be described with reference to Fig. 4 to Fig. 6. Fig. 4 is a cross-sectional view of the magnetic coupling mechanism 28A in the YZ plane, and Fig. 5 is an exploded perspective view of the magnetic coupling mechanism 28A. Fig. 6 is a cross-sectional view of the outer rotor 43 along line A-A (see Fig. 4).
次に、図4~図6を参照しながら、本開示の第1実施形態に係る磁気カップリング機構28Aについて説明する。図4は、磁気カップリング機構28AのY-Z平面の断面図であり、図5は、磁気カップリング機構28Aの分解斜視図である。図6は、アウターロータ43のA-A線(図4参照)の断面図である。 2. First embodiment Next, a magnetic coupling mechanism 28A according to a first embodiment of the present disclosure will be described with reference to Fig. 4 to Fig. 6. Fig. 4 is a cross-sectional view of the magnetic coupling mechanism 28A in the YZ plane, and Fig. 5 is an exploded perspective view of the magnetic coupling mechanism 28A. Fig. 6 is a cross-sectional view of the outer rotor 43 along line A-A (see Fig. 4).
なお、比較例で示したガスレーザ装置2は、磁気カップリング機構28以外の部分は、第1実施形態の磁気カップリング機構28Aを備えるガスレーザ装置と同様である。磁気カップリング機構28Aを備えるガスレーザ装置は、本開示の技術に係る「ガスレーザ装置」の一例である。また、レーザチャンバ10と、ファン26と、磁気カップリング機構28Aとを備えるレーザチャンバ装置は、本開示の技術に係る「レーザチャンバ装置」の一例である。
The gas laser device 2 shown in the comparative example is similar to the gas laser device equipped with the magnetic coupling mechanism 28A of the first embodiment in all parts except for the magnetic coupling mechanism 28. The gas laser device equipped with the magnetic coupling mechanism 28A is an example of a "gas laser device" according to the technology disclosed herein. Furthermore, the laser chamber device equipped with the laser chamber 10, the fan 26, and the magnetic coupling mechanism 28A is an example of a "laser chamber device" according to the technology disclosed herein.
第1実施形態に係る磁気カップリング機構28Aと、比較例に係る磁気カップリング機構28との相違点は、第1排気口51、第2排気口52及び吸気口53を有する点である。そのため、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。
The difference between the magnetic coupling mechanism 28A according to the first embodiment and the magnetic coupling mechanism 28 according to the comparative example is that it has a first exhaust port 51, a second exhaust port 52, and an intake port 53. Therefore, the same components as those described above are given the same reference numerals, and duplicate descriptions will be omitted unless otherwise specified.
2.1 構成
図4及び図5に示すように、磁気カップリング機構28Aにおいて、アウターロータ43は、第1排気口51を有しており、ブラケット46は、第2排気口52と吸気口53とを有している。 2.1 Configuration As shown in FIGS. 4 and 5, in the magnetic coupling mechanism 28A, the outer rotor 43 has a first exhaust port 51, and the bracket 46 has a second exhaust port 52 and an intake port 53.
図4及び図5に示すように、磁気カップリング機構28Aにおいて、アウターロータ43は、第1排気口51を有しており、ブラケット46は、第2排気口52と吸気口53とを有している。 2.1 Configuration As shown in FIGS. 4 and 5, in the magnetic coupling mechanism 28A, the outer rotor 43 has a first exhaust port 51, and the bracket 46 has a second exhaust port 52 and an intake port 53.
第1排気口51は、アウターロータ43の第1筒状部43aに形成されている。第1排気口51は、第1筒状部43aの内周面と外周面の間の厚み方向に貫通する貫通孔である。第1排気口51の開口形状は、一例として円形である。ここで、開口形状とは、第1排気口51のような貫通孔において、入口51inと出口51outを結ぶ貫通軸Lp(図6参照)と直交する断面の形状をいう。
The first exhaust port 51 is formed in the first cylindrical portion 43a of the outer rotor 43. The first exhaust port 51 is a through hole that penetrates in the thickness direction between the inner and outer circumferential surfaces of the first cylindrical portion 43a. The opening shape of the first exhaust port 51 is circular, for example. Here, the opening shape refers to the shape of a cross section perpendicular to the through axis Lp (see FIG. 6) that connects the inlet 51in and the outlet 51out in a through hole such as the first exhaust port 51.
第1排気口51は、第1内部空間SP1内の気体Gを第2内部空間SP2に排気する。第1排気口51は、軸方向AXにおいて、第1磁石M1及び第2磁石M2よりもモータ31側に配置されている。符号S1は、軸方向AXにおける、第1磁石M1及び第2磁石M2のモータ31側の端面の位置を示し、符号S2は、第1磁石M1及び第2磁石M2のレーザチャンバ10側の端面の位置を示す。すなわち、第1排気口51は、軸方向AXにおいて位置S1よりもモータ31側に配置されている。
The first exhaust port 51 exhausts the gas G in the first internal space SP1 to the second internal space SP2. The first exhaust port 51 is disposed closer to the motor 31 than the first magnet M1 and the second magnet M2 in the axial direction AX. Symbol S1 indicates the position of the end faces of the first magnet M1 and the second magnet M2 on the motor 31 side in the axial direction AX, and symbol S2 indicates the position of the end faces of the first magnet M1 and the second magnet M2 on the laser chamber 10 side. In other words, the first exhaust port 51 is disposed closer to the motor 31 than position S1 in the axial direction AX.
また、図6に示すように、アウターロータ43について回転中心Oを通る軸方向AXと直交する断面を見た場合において、第1排気口51は、回転軸26aの周りの周方向において、一例として、1つ設けられている。第1排気口51の貫通軸Lpは、軸方向AXと直交する方向に延びている。すなわち、貫通軸Lpはアウターロータ43のラジアル方向に延びている。
Also, as shown in FIG. 6, when looking at a cross section of the outer rotor 43 perpendicular to the axial direction AX passing through the center of rotation O, the first exhaust port 51 is provided, as an example, in the circumferential direction around the rotation shaft 26a. The through axis Lp of the first exhaust port 51 extends in a direction perpendicular to the axial direction AX. In other words, the through axis Lp extends in the radial direction of the outer rotor 43.
第2排気口52は、ブラケット46の第2筒状部46aに形成されている。第2排気口52は、第2筒状部46aの内周面と外周面の間の厚み方向に貫通する貫通孔である。第2排気口52の開口形状も、一例として円形である。第2排気口52は、第2内部空間SP2内の気体Gをブラケット46の外側に排気する。第2排気口52は、軸方向AXにおいて、第1磁石M1及び第2磁石M2よりもモータ31側に配置されている。すなわち、第2排気口52も、第1排気口51と同様に、軸方向AXにおいて位置S1よりもモータ31側に配置されている。
The second exhaust port 52 is formed in the second cylindrical portion 46a of the bracket 46. The second exhaust port 52 is a through hole that penetrates in the thickness direction between the inner and outer circumferential surfaces of the second cylindrical portion 46a. The opening shape of the second exhaust port 52 is also circular, for example. The second exhaust port 52 exhausts the gas G in the second internal space SP2 to the outside of the bracket 46. The second exhaust port 52 is disposed closer to the motor 31 in the axial direction AX than the first magnet M1 and the second magnet M2. That is, like the first exhaust port 51, the second exhaust port 52 is also disposed closer to the motor 31 in the axial direction AX than the position S1.
また、第1筒状部43aの外周面に形成される第1排気口51の出口51outと、第2筒状部46aの内周面に形成される第2排気口52の入口52inとは、軸方向AXにおいて一部が重なっている。
In addition, the outlet 51out of the first exhaust port 51 formed on the outer peripheral surface of the first cylindrical portion 43a and the inlet 52in of the second exhaust port 52 formed on the inner peripheral surface of the second cylindrical portion 46a partially overlap in the axial direction AX.
吸気口53は、ブラケット46の第2筒状部46aに形成されている。吸気口53も、第2排気口52と同様に、第2筒状部46aの内周面と外周面の間の厚み方向に貫通する貫通孔である。吸気口53の開口形状も、一例として円形である。吸気口53は、ブラケット46の外部の気体Gを、第2内部空間SP2内に取り入れる。吸気口53は、軸方向AXにおいて、第1磁石M1及び第2磁石M2よりもレーザチャンバ10側に配置されている。すなわち、吸気口53は、軸方向AXにおいて位置S2よりもレーザチャンバ10側に配置されている。
The intake port 53 is formed in the second cylindrical portion 46a of the bracket 46. Like the second exhaust port 52, the intake port 53 is a through hole that penetrates in the thickness direction between the inner and outer circumferential surfaces of the second cylindrical portion 46a. The opening shape of the intake port 53 is also circular, for example. The intake port 53 takes in gas G from outside the bracket 46 into the second internal space SP2. The intake port 53 is located closer to the laser chamber 10 in the axial direction AX than the first magnet M1 and the second magnet M2. In other words, the intake port 53 is located closer to the laser chamber 10 in the axial direction AX than the position S2.
また、第2筒状部46aの内周面に形成される吸気口53の出口53outと、隙間48とは、軸方向AXにおいて一部が重なっている。
Furthermore, the outlet 53out of the intake port 53 formed on the inner peripheral surface of the second cylindrical portion 46a and the gap 48 partially overlap in the axial direction AX.
2.2 動作
モータ31の駆動軸31aが回転すると、アウターロータ43が回転する。アウターロータ43が回転すると、第1磁石M1と第2磁石M2の磁力によってインナーロータ42が従動回転し、回転軸26aに回転力が伝達されてファン26が回転する。アウターロータ43とインナーロータ42が回転すると、金属製のシュラウド44に、磁気に起因する渦電流が発生し、シュラウド44が発熱する。 2.2 Operation When the drive shaft 31a of the motor 31 rotates, the outer rotor 43 rotates. When the outer rotor 43 rotates, the inner rotor 42 is rotated by the magnetic force of the first magnet M1 and the second magnet M2, and the rotational force is transmitted to the rotating shaft 26a to rotate the fan 26. When the outer rotor 43 and the inner rotor 42 rotate, eddy currents due to magnetism are generated in the metallic shroud 44, causing the shroud 44 to heat up.
モータ31の駆動軸31aが回転すると、アウターロータ43が回転する。アウターロータ43が回転すると、第1磁石M1と第2磁石M2の磁力によってインナーロータ42が従動回転し、回転軸26aに回転力が伝達されてファン26が回転する。アウターロータ43とインナーロータ42が回転すると、金属製のシュラウド44に、磁気に起因する渦電流が発生し、シュラウド44が発熱する。 2.2 Operation When the drive shaft 31a of the motor 31 rotates, the outer rotor 43 rotates. When the outer rotor 43 rotates, the inner rotor 42 is rotated by the magnetic force of the first magnet M1 and the second magnet M2, and the rotational force is transmitted to the rotating shaft 26a to rotate the fan 26. When the outer rotor 43 and the inner rotor 42 rotate, eddy currents due to magnetism are generated in the metallic shroud 44, causing the shroud 44 to heat up.
アウターロータ43が回転すると、アウターロータ43の周囲の気体Gがアウターロータ43との摩擦力によって回転方向に流動する。気体Gの回転方向への流動によって気体Gに遠心力が加わり、遠心力の作用によって、第1排気口51の出口51out付近の圧力が、入口51in付近に対して負圧となる。このような遠心効果によって、第1排気口51の入口51inから出口51outに向かう気体Gの流れが発生する。この気体Gの流れによって、第1内部空間SP1においてシュラウド44に接する気体Gが第1排気口51を通じて第2内部空間SP2に排出される。第2内部空間SP2に排出された気体Gは第2排気口52からブラケット46の外部に排気される。
When the outer rotor 43 rotates, the gas G around the outer rotor 43 flows in the rotational direction due to friction with the outer rotor 43. The flow of gas G in the rotational direction applies centrifugal force to the gas G, and the pressure near the outlet 51out of the first exhaust port 51 becomes negative relative to the pressure near the inlet 51in due to the centrifugal effect. This centrifugal effect generates a flow of gas G from the inlet 51in of the first exhaust port 51 toward the outlet 51out. This flow of gas G exhausts the gas G that is in contact with the shroud 44 in the first internal space SP1 through the first exhaust port 51 to the second internal space SP2. The gas G exhausted to the second internal space SP2 is exhausted to the outside of the bracket 46 from the second exhaust port 52.
このように第2排気口52を通じて第2内部空間SP2からブラケット46の外部に気体Gが排気されると、第2内部空間SP2内の圧力がブラケット46の外部の圧力に対して負圧になり、吸気口53を通じてブラケット46の外部から第2内部空間SP2に気体Gが取り入れられる。第2内部空間SP2に流入した気体Gは、隙間48を通じて、第1内部空間SP1に流入する。そして、第1内部空間SP1に流入した気体Gは、シュラウド44の外周面とアウターロータ43の内周面との間を通って、第1排気口51に流入する。
When gas G is exhausted from the second internal space SP2 to the outside of the bracket 46 through the second exhaust port 52 in this way, the pressure inside the second internal space SP2 becomes negative relative to the pressure outside the bracket 46, and gas G is taken in from the outside of the bracket 46 into the second internal space SP2 through the intake port 53. The gas G that has flowed into the second internal space SP2 flows into the first internal space SP1 through the gap 48. Then, the gas G that has flowed into the first internal space SP1 flows into the first exhaust port 51, passing between the outer peripheral surface of the shroud 44 and the inner peripheral surface of the outer rotor 43.
このような気体Gの流れによって、シュラウド44の発熱により高温になった第1内部空間SP1内の気体Gが、第1排気口51及び第2排気口52を通じてブラケット46の外部へ排出される。代わりにブラケット46の外部の比較的低温の気体Gが、吸気口53及び隙間48を通じて第1内部空間SP1に流入し、シュラウド44から熱を奪い、シュラウド44を冷却する。
This flow of gas G causes the gas G in the first internal space SP1, which has become hot due to heat generation from the shroud 44, to be exhausted to the outside of the bracket 46 through the first exhaust port 51 and the second exhaust port 52. Instead, the relatively low-temperature gas G outside the bracket 46 flows into the first internal space SP1 through the intake port 53 and the gap 48, absorbing heat from the shroud 44 and cooling it.
2.3 作用・効果
上記第1実施形態の磁気カップリング機構28Aにおいては、気体Gの流れによってシュラウド44を空冷する機構が第1排気口51、第2排気口52、及び吸気口53により構成される。第1排気口51及び第2排気口52は、軸方向AXにおいて、第1磁石M1及び第2磁石M2よりもモータ側に配置されており、吸気口53及び隙間48は第1磁石M1及び第2磁石M2よりもレーザチャンバ10側に配置されている。そのため、シュラウド44において、第1磁石M1及び第2磁石M2と対向し、渦電流による発熱が大きな位置S1から位置S2までの部分について、気体Gの流れを作り出すことができる。これにより、シュラウド44の発熱が大きな部分を効果的に冷却することができる。シュラウド44が冷却されることにより、ファン26の振動、光学素子の位置ズレ、磁力の低下、軸受け部49における粉塵の増加等、シュラウド44の発熱に起因して生じる種々の不都合が抑制される。 2.3 Actions and Effects In the magnetic coupling mechanism 28A of the first embodiment, the mechanism for cooling the shroud 44 by the flow of the gas G is composed of the first exhaust port 51, the second exhaust port 52, and the intake port 53. The first exhaust port 51 and the second exhaust port 52 are disposed closer to the motor than the first magnet M1 and the second magnet M2 in the axial direction AX, and the intake port 53 and the gap 48 are disposed closer to the laser chamber 10 than the first magnet M1 and the second magnet M2. Therefore, in the shroud 44, a flow of the gas G can be created in the portion from the position S1 to the position S2 that faces the first magnet M1 and the second magnet M2 and where heat generation due to eddy current is large. This makes it possible to effectively cool the portion of the shroud 44 that generates a large amount of heat. By cooling the shroud 44, various inconveniences caused by heat generation of the shroud 44, such as vibration of the fan 26, misalignment of the optical element, reduction in magnetic force, and increase in dust in the bearing portion 49, are suppressed.
上記第1実施形態の磁気カップリング機構28Aにおいては、気体Gの流れによってシュラウド44を空冷する機構が第1排気口51、第2排気口52、及び吸気口53により構成される。第1排気口51及び第2排気口52は、軸方向AXにおいて、第1磁石M1及び第2磁石M2よりもモータ側に配置されており、吸気口53及び隙間48は第1磁石M1及び第2磁石M2よりもレーザチャンバ10側に配置されている。そのため、シュラウド44において、第1磁石M1及び第2磁石M2と対向し、渦電流による発熱が大きな位置S1から位置S2までの部分について、気体Gの流れを作り出すことができる。これにより、シュラウド44の発熱が大きな部分を効果的に冷却することができる。シュラウド44が冷却されることにより、ファン26の振動、光学素子の位置ズレ、磁力の低下、軸受け部49における粉塵の増加等、シュラウド44の発熱に起因して生じる種々の不都合が抑制される。 2.3 Actions and Effects In the magnetic coupling mechanism 28A of the first embodiment, the mechanism for cooling the shroud 44 by the flow of the gas G is composed of the first exhaust port 51, the second exhaust port 52, and the intake port 53. The first exhaust port 51 and the second exhaust port 52 are disposed closer to the motor than the first magnet M1 and the second magnet M2 in the axial direction AX, and the intake port 53 and the gap 48 are disposed closer to the laser chamber 10 than the first magnet M1 and the second magnet M2. Therefore, in the shroud 44, a flow of the gas G can be created in the portion from the position S1 to the position S2 that faces the first magnet M1 and the second magnet M2 and where heat generation due to eddy current is large. This makes it possible to effectively cool the portion of the shroud 44 that generates a large amount of heat. By cooling the shroud 44, various inconveniences caused by heat generation of the shroud 44, such as vibration of the fan 26, misalignment of the optical element, reduction in magnetic force, and increase in dust in the bearing portion 49, are suppressed.
シュラウド44の発熱は、磁気による渦電流に起因するため、シュラウド44の材料を金属以外にすることにより、シュラウド44の発熱の原因となる渦電流そのものの発生を抑制する対策も考えられる。しかしながら、シュラウド44を金属製以外とすると、強度を確保するために、シュラウド44の厚みが増加する傾向がある。シュラウド44の厚みが厚すぎると、第1磁石M1と第2磁石M2との間の距離が広がってしまうことにより、磁力が減退するという問題が生じる。そのため、シュラウド44の厚みを薄くするためにはシュラウド44を金属製とすることが好ましい。シュラウド44を金属製とする場合に、本開示の技術は特に有効である。
Since heat generation in the shroud 44 is caused by eddy currents due to magnetism, one possible measure would be to use a material other than metal for the shroud 44 to suppress the generation of eddy currents themselves, which cause heat generation in the shroud 44. However, when the shroud 44 is made of a material other than metal, the thickness of the shroud 44 tends to increase in order to ensure strength. If the shroud 44 is too thick, the distance between the first magnet M1 and the second magnet M2 increases, causing a problem of reduced magnetic force. Therefore, in order to reduce the thickness of the shroud 44, it is preferable to make the shroud 44 out of metal. The technology disclosed herein is particularly effective when the shroud 44 is made of metal.
また、上記の第1実施形態においては、第1排気口51の開口形状は、円形とする例で説明した。開口形状が円形の場合は、円形以外の形状と比較して、成形性がよい。もちろん、開口形状は、多角形等、円形以外の形状でもよい。
In the above first embodiment, the opening shape of the first exhaust port 51 is described as being circular. When the opening shape is circular, it is easier to mold compared to shapes other than circular. Of course, the opening shape may be polygonal or other shapes other than circular.
また、上記の第1実施形態においては、第1排気口51の貫通軸Lpが、軸方向AXと直交する方向に延びている例で説明した。貫通軸Lpがアウターロータ43のラジアル方向に延びている場合は、貫通軸Lpがラジアル方向以外の場合と比較して、成形性がよい場合がある。しかし、貫通軸Lpはラジアル方向ではなくてもよい。
In the above first embodiment, an example has been described in which the through axis Lp of the first exhaust port 51 extends in a direction perpendicular to the axial direction AX. When the through axis Lp extends in the radial direction of the outer rotor 43, moldability may be better than when the through axis Lp is in a direction other than the radial direction. However, the through axis Lp does not have to be in the radial direction.
また、上記の第1実施形態においては、第1排気口51の出口51outと、第2排気口52の入口52inとは、軸方向AXにおいて一部が重なっている例で説明した。これにより、重なっていない場合と比較して、気体Gの流れをスムーズにすることができる。気体Gの流れがスムーズになれば、気体Gの単位時間当たりの流量が増加し、シュラウド44の冷却効果の向上が期待できる。しかし、出口51outと入口52inとは、軸方向AXにおいて重なっていなくてもよい。この場合でも気体Gの流路が屈曲することにより流路抵抗が増加する懸念はあるが、シュラウド44を冷却する気体Gの流れは発生するため、シュラウド44の冷却効果は得られる。
In the above first embodiment, the outlet 51out of the first exhaust port 51 and the inlet 52in of the second exhaust port 52 are partially overlapped in the axial direction AX. This allows the flow of gas G to be smoother than when they do not overlap. If the flow of gas G is smoother, the flow rate of gas G per unit time increases, and the cooling effect of the shroud 44 can be expected to be improved. However, the outlet 51out and the inlet 52in do not have to overlap in the axial direction AX. Even in this case, there is a concern that the flow path resistance will increase due to the bending of the flow path of gas G, but a flow of gas G that cools the shroud 44 is generated, so the cooling effect of the shroud 44 can be obtained.
また、上記の第1実施形態においては、吸気口53の出口53outと、隙間48とが、軸方向AXにおいて一部が重なっている例で説明した。これにより、重なっていない場合と比較して、気体Gの流れをスムーズにすることができる。これにより、気体Gの単位時間当たりの流量が増加し、シュラウド44の冷却効果の向上が期待できる。しかし、出口53outと隙間48とは、軸方向AXにおいて重なっていなくてもよく、この場合でも、第1排気口51と第2排気口52との位置関係と同様に、シュラウド44の冷却効果は得られる。
In addition, in the above first embodiment, an example has been described in which the outlet 53out of the intake port 53 and the gap 48 partially overlap in the axial direction AX. This allows the flow of gas G to be smoother compared to when there is no overlap. This increases the flow rate of gas G per unit time, and is expected to improve the cooling effect of the shroud 44. However, the outlet 53out and the gap 48 do not have to overlap in the axial direction AX, and even in this case, the cooling effect of the shroud 44 can be obtained in the same way as with the positional relationship between the first exhaust port 51 and the second exhaust port 52.
3.第2実施形態
図7を参照しながら、第2実施形態に係る磁気カップリング機構28Bを説明する。第2実施形態に係る磁気カップリング機構28Bと、第1実施形態に係る磁気カップリング機構28Aとの相違点は、第2排気口52及び吸気口53の軸方向AXにおける位置である。そのため、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。 3. Second embodiment A magnetic coupling mechanism 28B according to a second embodiment will be described with reference to Fig. 7. The magnetic coupling mechanism 28B according to the second embodiment differs from the magnetic coupling mechanism 28A according to the first embodiment in the positions of the second exhaust port 52 and the intake port 53 in the axial direction AX. Therefore, the same reference numerals are used for configurations similar to those described above, and duplicated descriptions will be omitted unless otherwise specified.
図7を参照しながら、第2実施形態に係る磁気カップリング機構28Bを説明する。第2実施形態に係る磁気カップリング機構28Bと、第1実施形態に係る磁気カップリング機構28Aとの相違点は、第2排気口52及び吸気口53の軸方向AXにおける位置である。そのため、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。 3. Second embodiment A magnetic coupling mechanism 28B according to a second embodiment will be described with reference to Fig. 7. The magnetic coupling mechanism 28B according to the second embodiment differs from the magnetic coupling mechanism 28A according to the first embodiment in the positions of the second exhaust port 52 and the intake port 53 in the axial direction AX. Therefore, the same reference numerals are used for configurations similar to those described above, and duplicated descriptions will be omitted unless otherwise specified.
3.1 構成及び動作
磁気カップリング機構28Bにおいて、第1排気口51の出口51outと第2排気口52の入口52inとは、軸方向AXにおいて一方が他方の全部と重なっている。磁気カップリング機構28Bにおいては、出口51outと入口52inの軸方向AXの幅は同じであり、出口51outと入口52inのそれぞれの中心も一致している。そのため、軸方向AXにおいて、出口51outと入口52inとは互いに全部と重なっている。 3.1 Configuration and Operation In the magnetic coupling mechanism 28B, the outlet 51out of the first exhaust port 51 and the inlet 52in of the second exhaust port 52 completely overlap with each other in the axial direction AX. In the magnetic coupling mechanism 28B, the widths of the outlet 51out and the inlet 52in in the axial direction AX are the same, and the centers of the outlet 51out and the inlet 52in also coincide. Therefore, the outlet 51out and the inlet 52in completely overlap with each other in the axial direction AX.
磁気カップリング機構28Bにおいて、第1排気口51の出口51outと第2排気口52の入口52inとは、軸方向AXにおいて一方が他方の全部と重なっている。磁気カップリング機構28Bにおいては、出口51outと入口52inの軸方向AXの幅は同じであり、出口51outと入口52inのそれぞれの中心も一致している。そのため、軸方向AXにおいて、出口51outと入口52inとは互いに全部と重なっている。 3.1 Configuration and Operation In the magnetic coupling mechanism 28B, the outlet 51out of the first exhaust port 51 and the inlet 52in of the second exhaust port 52 completely overlap with each other in the axial direction AX. In the magnetic coupling mechanism 28B, the widths of the outlet 51out and the inlet 52in in the axial direction AX are the same, and the centers of the outlet 51out and the inlet 52in also coincide. Therefore, the outlet 51out and the inlet 52in completely overlap with each other in the axial direction AX.
また、吸気口53の出口53outと隙間48とは、軸方向AXにおいて一方が他方の全部と重なっている。磁気カップリング機構28Bにおいては、出口53outの軸方向AXの幅は、隙間48の軸方向AXの幅よりも狭い。そのため、軸方向AXにおいて、隙間48が出口53outの全部と重なっている。
Furthermore, the outlet 53out of the intake port 53 and the gap 48 completely overlap with each other in the axial direction AX. In the magnetic coupling mechanism 28B, the width of the outlet 53out in the axial direction AX is narrower than the width of the gap 48 in the axial direction AX. Therefore, the gap 48 completely overlaps with the outlet 53out in the axial direction AX.
この場合、第1排気口51の出口51outから排出された気体Gは、排出時の気体Gの流れの方向を保ったまま、第2排気口52の入口52inに流入する。同様に、吸気口53の出口53outから流入した気体Gも、流入時の気体Gの流れの方向を保ったまま、隙間48に流入する。
In this case, the gas G exhausted from the outlet 51out of the first exhaust port 51 flows into the inlet 52in of the second exhaust port 52 while maintaining the same flow direction of the gas G when exhausted. Similarly, the gas G flowing in from the outlet 53out of the intake port 53 also flows into the gap 48 while maintaining the same flow direction of the gas G when it flows in.
3.2 作用・効果
こうした構成により、第1排気口51から第2排気口52に向かう気体Gの流れと、吸気口53から隙間48に向かう気体Gの流れが、第1実施形態と比較してスムーズになる。また、第2実施形態においては、気体Gが流れる経路の屈曲が少なくなるため、気体Gが流れる流路長を、第1実施形態と比較して短くすることができる。これにより、気体Gの流路抵抗が減少し、シュラウド44と接する気体Gの単位時間当たりの流量が増加する。そのため、第2実施形態は、第1実施形態と比較して、シュラウド44の冷却効果が向上する。 3.2 Actions and Effects With this configuration, the flow of the gas G from the first exhaust port 51 toward the second exhaust port 52 and the flow of the gas G from the intake port 53 toward the gap 48 are smoother than in the first embodiment. Furthermore, in the second embodiment, the path through which the gas G flows has fewer bends, so the length of the flow path through which the gas G flows can be shorter than in the first embodiment. This reduces the flow path resistance of the gas G, and increases the flow rate per unit time of the gas G in contact with the shroud 44. Therefore, the second embodiment improves the cooling effect of the shroud 44 compared to the first embodiment.
こうした構成により、第1排気口51から第2排気口52に向かう気体Gの流れと、吸気口53から隙間48に向かう気体Gの流れが、第1実施形態と比較してスムーズになる。また、第2実施形態においては、気体Gが流れる経路の屈曲が少なくなるため、気体Gが流れる流路長を、第1実施形態と比較して短くすることができる。これにより、気体Gの流路抵抗が減少し、シュラウド44と接する気体Gの単位時間当たりの流量が増加する。そのため、第2実施形態は、第1実施形態と比較して、シュラウド44の冷却効果が向上する。 3.2 Actions and Effects With this configuration, the flow of the gas G from the first exhaust port 51 toward the second exhaust port 52 and the flow of the gas G from the intake port 53 toward the gap 48 are smoother than in the first embodiment. Furthermore, in the second embodiment, the path through which the gas G flows has fewer bends, so the length of the flow path through which the gas G flows can be shorter than in the first embodiment. This reduces the flow path resistance of the gas G, and increases the flow rate per unit time of the gas G in contact with the shroud 44. Therefore, the second embodiment improves the cooling effect of the shroud 44 compared to the first embodiment.
4.変形例
4.1 変形例1(第1排気口を複数設ける例)
図8及び図9に示すように、アウターロータ43において、複数の第1排気口51を設けてもよい。図8及び図9は、それぞれアウターロータ43について回転中心Oを通る軸方向AXと直交する断面を示している。図8及び図9に示す例では、複数の第1排気口51は、回転中心Oの周方向に間隔を空けて配列されている。図8に示すアウターロータ43では、8個の第1排気口51が、周方向に45°の間隔を空けて等間隔で配置されている。図8は、アウターロータ43について回転中心Oを通る軸方向AXと直交する断面を示している。このようにアウターロータ43を見た場合において、複数の第1排気口51は、回転中心Oに対して点対称に配置されている。さらに、図8に示す例は、複数の第1排気口51は、回転中心Oを通り、軸方向AXと直交する直線Loに対して、線対称に配置されている。また、周方向に配置された8個の第1排気口51は、軸方向AXの位置が同じであり、1列に並んでいる。 4. Modifications 4.1 Modification 1 (example in which multiple first exhaust ports are provided)
As shown in Figs. 8 and 9, a plurality of first exhaust ports 51 may be provided in the outer rotor 43. Figs. 8 and 9 show cross sections of the outer rotor 43 perpendicular to the axial direction AX passing through the rotation center O. In the examples shown in Figs. 8 and 9, the plurality of first exhaust ports 51 are arranged at intervals in the circumferential direction of the rotation center O. In the outer rotor 43 shown in Fig. 8, eight first exhaust ports 51 are arranged at equal intervals of 45° in the circumferential direction. Fig. 8 shows a cross section of the outer rotor 43 perpendicular to the axial direction AX passing through the rotation center O. When the outer rotor 43 is viewed in this manner, the plurality of first exhaust ports 51 are arranged point-symmetrically with respect to the rotation center O. Furthermore, in the example shown in Fig. 8, the plurality of first exhaust ports 51 are arranged line-symmetrically with respect to a straight line Lo passing through the rotation center O and perpendicular to the axial direction AX. In addition, the eight first exhaust ports 51 arranged in the circumferential direction are at the same position in the axial direction AX and are arranged in a row.
4.1 変形例1(第1排気口を複数設ける例)
図8及び図9に示すように、アウターロータ43において、複数の第1排気口51を設けてもよい。図8及び図9は、それぞれアウターロータ43について回転中心Oを通る軸方向AXと直交する断面を示している。図8及び図9に示す例では、複数の第1排気口51は、回転中心Oの周方向に間隔を空けて配列されている。図8に示すアウターロータ43では、8個の第1排気口51が、周方向に45°の間隔を空けて等間隔で配置されている。図8は、アウターロータ43について回転中心Oを通る軸方向AXと直交する断面を示している。このようにアウターロータ43を見た場合において、複数の第1排気口51は、回転中心Oに対して点対称に配置されている。さらに、図8に示す例は、複数の第1排気口51は、回転中心Oを通り、軸方向AXと直交する直線Loに対して、線対称に配置されている。また、周方向に配置された8個の第1排気口51は、軸方向AXの位置が同じであり、1列に並んでいる。 4. Modifications 4.1 Modification 1 (example in which multiple first exhaust ports are provided)
As shown in Figs. 8 and 9, a plurality of first exhaust ports 51 may be provided in the outer rotor 43. Figs. 8 and 9 show cross sections of the outer rotor 43 perpendicular to the axial direction AX passing through the rotation center O. In the examples shown in Figs. 8 and 9, the plurality of first exhaust ports 51 are arranged at intervals in the circumferential direction of the rotation center O. In the outer rotor 43 shown in Fig. 8, eight first exhaust ports 51 are arranged at equal intervals of 45° in the circumferential direction. Fig. 8 shows a cross section of the outer rotor 43 perpendicular to the axial direction AX passing through the rotation center O. When the outer rotor 43 is viewed in this manner, the plurality of first exhaust ports 51 are arranged point-symmetrically with respect to the rotation center O. Furthermore, in the example shown in Fig. 8, the plurality of first exhaust ports 51 are arranged line-symmetrically with respect to a straight line Lo passing through the rotation center O and perpendicular to the axial direction AX. In addition, the eight first exhaust ports 51 arranged in the circumferential direction are at the same position in the axial direction AX and are arranged in a row.
図9に示すアウターロータ43では、3個の第1排気口51が、周方向に120°の間隔を空けて等間隔で配置されている。図9に示す例も、複数の第1排気口51は、回転中心Oを通り、軸方向AXと直交する直線Loに対して、線対称に配置されている。また、周方向に配置された3個の第1排気口51は、軸方向AXの位置が同じであり、1列に並んでいる。
In the outer rotor 43 shown in FIG. 9, three first exhaust ports 51 are arranged at equal intervals of 120° in the circumferential direction. In the example shown in FIG. 9, the multiple first exhaust ports 51 are also arranged symmetrically with respect to a straight line Lo that passes through the center of rotation O and is perpendicular to the axial direction AX. Furthermore, the three first exhaust ports 51 arranged in the circumferential direction are at the same position in the axial direction AX and are lined up in a row.
アウターロータ43に第1排気口51を設けると、第1排気口51の部分は重量が軽くなり、第1排気口51を設ける位置によっては重量バランスが悪くなる場合がある。重量バランスが悪いと、アウターロータ43の回転中心Oが偏心し、振動の原因となる。複数の第1排気口51を点対称や線対称の配置とすることで、図6に示した例と比較して、アウターロータ43の重量バランスが改善されるため、振動を抑制する効果が期待できる。
When the first exhaust port 51 is provided in the outer rotor 43, the weight of the first exhaust port 51 becomes lighter, and depending on the position where the first exhaust port 51 is provided, the weight balance may become poor. If the weight balance is poor, the center of rotation O of the outer rotor 43 becomes eccentric, which causes vibration. By arranging the multiple first exhaust ports 51 with point symmetry or line symmetry, the weight balance of the outer rotor 43 is improved compared to the example shown in Figure 6, and the effect of suppressing vibration can be expected.
なお、複数の第1排気口51の配置は、必ずしも完全に対称にする必要はなく、振動の許容範囲に応じて対称性を低下させてもよい。
The arrangement of the multiple first exhaust ports 51 does not necessarily need to be completely symmetrical, and the symmetry may be reduced depending on the acceptable range of vibration.
また、原則として、第1排気口51の数を増やせば、気体Gの単位時間当たりの流量が増加するため、シュラウド44の冷却効果の向上が期待できる。しかし、アウターロータ43のサイズに対して第1排気口51の数が多すぎると、1つの第1排気口51の開口径を大きくすることができない場合もある。第1排気口51の開口径が小さい場合は、気体Gと第1排気口51の内壁との摩擦損失が大きく、流路抵抗が増加する。そのため、開口径が小さな第1排気口51の数を徒に増やしても、シュラウド44の冷却効果の向上が期待できない場合もある。また、周方向において1列に配置する第1排気口51の数が多すぎると、アウターロータ43の強度が低下する懸念もある。
Furthermore, in principle, increasing the number of first exhaust ports 51 increases the flow rate of gas G per unit time, and therefore an improvement in the cooling effect of the shroud 44 can be expected. However, if there are too many first exhaust ports 51 in relation to the size of the outer rotor 43, it may not be possible to increase the opening diameter of each first exhaust port 51. If the opening diameter of the first exhaust port 51 is small, friction loss between the gas G and the inner wall of the first exhaust port 51 is large, and flow resistance increases. Therefore, even if the number of first exhaust ports 51 with small opening diameters is unnecessarily increased, there may be cases where an improvement in the cooling effect of the shroud 44 cannot be expected. Furthermore, if there are too many first exhaust ports 51 arranged in a row in the circumferential direction, there is a concern that the strength of the outer rotor 43 may be reduced.
そこで、周方向において1列に配置する第1排気口51の数及びサイズは、アウターロータ43のサイズに応じて適切な値とすることが好ましい。例えば、アウターロータ43の内径が30mm~300mmの範囲である場合は、第1排気口51の数は、4個~24個の範囲であることが好ましい。そして、第1排気口51のサイズは、開口形状が円形の場合は、10mm~30mmの範囲であることが好ましい。後述するように、開口形状が矩形の場合(図10参照)は、各辺の長さが10mm~30mmの範囲であることが好ましい。
Therefore, it is preferable that the number and size of the first exhaust ports 51 arranged in a row in the circumferential direction be set to appropriate values according to the size of the outer rotor 43. For example, when the inner diameter of the outer rotor 43 is in the range of 30 mm to 300 mm, the number of first exhaust ports 51 is preferably in the range of 4 to 24. And, when the opening shape is circular, the size of the first exhaust port 51 is preferably in the range of 10 mm to 30 mm. As will be described later, when the opening shape is rectangular (see FIG. 10), the length of each side is preferably in the range of 10 mm to 30 mm.
第1排気口51のサイズ及び数をこのような範囲とすることにより、気体Gの排気効率向上によるシュラウド44の冷却効果の向上と、アウターロータ43の強度とのバランスを確保することができる。
By setting the size and number of the first exhaust ports 51 within this range, it is possible to ensure a balance between improving the cooling effect of the shroud 44 by improving the exhaust efficiency of the gas G and the strength of the outer rotor 43.
4.2 変形例2(第1排気口の開口形状の変形例)
図10に示すアウターロータ43のように、開口形状を矩形にした第1排気口51Aを設けてもよい。第1排気口51Aのように、開口形状を矩形にすると、矩形の辺の長さと同じ直径を有する円形の第1排気口51(図10において比較用に二点鎖線で示す)と比較して、面積を大きくすることができる。第1排気口51Aの開口形状の面積が大きくなると、第1排気口51Aを通過する気体Gの流路抵抗が減少する。これにより、気体Gの排気効率向上によるシュラウド44の冷却効果の向上が期待できる。なお、矩形は、正方形でもよいし、長方形でもよい。強度を考慮すると、正方形の方が好ましい。 4.2 Modification 2 (Modification of the opening shape of the first exhaust port)
As shown in FIG. 10, the first exhaust port 51A may have a rectangular opening shape. When the opening shape is rectangular like the first exhaust port 51A, the area can be increased compared to the circular first exhaust port 51 (shown by a two-dot chain line in FIG. 10 for comparison) having the same diameter as the length of the side of the rectangle. When the area of the opening shape of the first exhaust port 51A is increased, the flow resistance of the gas G passing through the first exhaust port 51A decreases. This can be expected to improve the cooling effect of the shroud 44 by improving the exhaust efficiency of the gas G. The rectangle may be a square or a rectangle. In consideration of strength, a square is preferable.
図10に示すアウターロータ43のように、開口形状を矩形にした第1排気口51Aを設けてもよい。第1排気口51Aのように、開口形状を矩形にすると、矩形の辺の長さと同じ直径を有する円形の第1排気口51(図10において比較用に二点鎖線で示す)と比較して、面積を大きくすることができる。第1排気口51Aの開口形状の面積が大きくなると、第1排気口51Aを通過する気体Gの流路抵抗が減少する。これにより、気体Gの排気効率向上によるシュラウド44の冷却効果の向上が期待できる。なお、矩形は、正方形でもよいし、長方形でもよい。強度を考慮すると、正方形の方が好ましい。 4.2 Modification 2 (Modification of the opening shape of the first exhaust port)
As shown in FIG. 10, the first exhaust port 51A may have a rectangular opening shape. When the opening shape is rectangular like the first exhaust port 51A, the area can be increased compared to the circular first exhaust port 51 (shown by a two-dot chain line in FIG. 10 for comparison) having the same diameter as the length of the side of the rectangle. When the area of the opening shape of the first exhaust port 51A is increased, the flow resistance of the gas G passing through the first exhaust port 51A decreases. This can be expected to improve the cooling effect of the shroud 44 by improving the exhaust efficiency of the gas G. The rectangle may be a square or a rectangle. In consideration of strength, a square is preferable.
4.3 変形例3(第1排気口の貫通軸が傾斜する例)
図11に示すアウターロータ43のように、軸方向AXと直交する断面を見た場合において、第1排気口51の貫通軸Lpが、回転中心Oを通り軸方向AXと直交する直線Loに対して傾斜してもよい。貫通軸Lpの傾斜方向は、アウターロータ43が回転した場合に、アウターロータ43の内周側の入口51inに対して外周側の出口51outが後傾する位置になる方向である。すなわち、図11においては、アウターロータ43の回転方向Rdは反時計方向であるため、第1排気口51の貫通軸Lpは、直線Loに対して回転方向Rdとは反対の時計方向に傾斜している。 4.3 Modification 3 (Example in which the through axis of the first exhaust port is inclined)
As in the outer rotor 43 shown in Fig. 11, when viewed in a cross section perpendicular to the axial direction AX, the through axis Lp of the first exhaust port 51 may be inclined with respect to a straight line Lo that passes through the rotation center O and is perpendicular to the axial direction AX. The inclination direction of the through axis Lp is a direction in which, when the outer rotor 43 rotates, the outlet 51out on the outer periphery side is inclined backward with respect to the inlet 51in on the inner periphery side of the outer rotor 43. That is, in Fig. 11, since the rotation direction Rd of the outer rotor 43 is counterclockwise, the through axis Lp of the first exhaust port 51 is inclined with respect to the straight line Lo in the clockwise direction opposite to the rotation direction Rd.
図11に示すアウターロータ43のように、軸方向AXと直交する断面を見た場合において、第1排気口51の貫通軸Lpが、回転中心Oを通り軸方向AXと直交する直線Loに対して傾斜してもよい。貫通軸Lpの傾斜方向は、アウターロータ43が回転した場合に、アウターロータ43の内周側の入口51inに対して外周側の出口51outが後傾する位置になる方向である。すなわち、図11においては、アウターロータ43の回転方向Rdは反時計方向であるため、第1排気口51の貫通軸Lpは、直線Loに対して回転方向Rdとは反対の時計方向に傾斜している。 4.3 Modification 3 (Example in which the through axis of the first exhaust port is inclined)
As in the outer rotor 43 shown in Fig. 11, when viewed in a cross section perpendicular to the axial direction AX, the through axis Lp of the first exhaust port 51 may be inclined with respect to a straight line Lo that passes through the rotation center O and is perpendicular to the axial direction AX. The inclination direction of the through axis Lp is a direction in which, when the outer rotor 43 rotates, the outlet 51out on the outer periphery side is inclined backward with respect to the inlet 51in on the inner periphery side of the outer rotor 43. That is, in Fig. 11, since the rotation direction Rd of the outer rotor 43 is counterclockwise, the through axis Lp of the first exhaust port 51 is inclined with respect to the straight line Lo in the clockwise direction opposite to the rotation direction Rd.
図11に示すように貫通軸Lpを傾斜させることにより、アウターロータ43が回転した場合において、傾斜させない場合(図6や図8等参照)よりも、第1排気口51の出口51out付近に大きな静圧が得られる。これにより、第1排気口51において、入口51inから出口51outに向かう遠心方向において気体Gを押し出す力が強くなるため、気体Gの強い流れが発生する。これにより、気体Gの排気効率が向上し、気体Gの単位時間当たりの流量が増加する。その結果、シュラウド44の冷却効果が向上する。
By tilting the through axis Lp as shown in FIG. 11, when the outer rotor 43 rotates, a greater static pressure is obtained near the outlet 51out of the first exhaust port 51 than when the axis is not tilted (see FIG. 6, FIG. 8, etc.). As a result, the force pushing out the gas G in the centrifugal direction from the inlet 51in to the outlet 51out at the first exhaust port 51 becomes stronger, generating a strong flow of the gas G. This improves the exhaust efficiency of the gas G and increases the flow rate of the gas G per unit time. As a result, the cooling effect of the shroud 44 is improved.
貫通軸Lpの傾斜角θは、下記式1で示される条件を満たすことが好ましい。
0°<θ<30°・・・・(式1) It is preferable that the inclination angle θ of the through axis Lp satisfies the condition represented by the following formula 1.
0°<θ<30° (Equation 1)
0°<θ<30°・・・・(式1) It is preferable that the inclination angle θ of the through axis Lp satisfies the condition represented by the following formula 1.
0°<θ<30° (Equation 1)
傾斜角θがこの範囲を超えると、出口51out付近における静圧の増大効果が低下する場合がある。
If the inclination angle θ exceeds this range, the effect of increasing the static pressure near the outlet 51out may decrease.
4.4 変形例4(第2排気口及び吸気口の変形例)
図12に示すように、ブラケット46に形成される第2排気口52及び吸気口53のうちの少なくとも一方の貫通孔についても、第1排気口51と同様に、複数設けてもよい。図12の例では、複数の第2排気口52及び複数の吸気口53は、それぞれ、回転軸26aの周りの周方向に間隔を空けて配置されている。第2排気口52や吸気口53の貫通孔の数を増加させると、気体Gの単位時間当たりの流量が増加し、シュラウド44の冷却効果の向上が期待できる。 4.4 Modification 4 (Modification of the second exhaust port and the intake port)
12, at least one of the second exhaust ports 52 and the intake ports 53 formed in the bracket 46 may have a plurality of through holes, similar to the first exhaust port 51. In the example of Fig. 12, the second exhaust ports 52 and the intake ports 53 are respectively arranged at intervals in the circumferential direction around the rotation shaft 26a. By increasing the number of through holes of the second exhaust ports 52 and the intake ports 53, the flow rate of the gas G per unit time increases, and an improvement in the cooling effect of the shroud 44 can be expected.
図12に示すように、ブラケット46に形成される第2排気口52及び吸気口53のうちの少なくとも一方の貫通孔についても、第1排気口51と同様に、複数設けてもよい。図12の例では、複数の第2排気口52及び複数の吸気口53は、それぞれ、回転軸26aの周りの周方向に間隔を空けて配置されている。第2排気口52や吸気口53の貫通孔の数を増加させると、気体Gの単位時間当たりの流量が増加し、シュラウド44の冷却効果の向上が期待できる。 4.4 Modification 4 (Modification of the second exhaust port and the intake port)
12, at least one of the second exhaust ports 52 and the intake ports 53 formed in the bracket 46 may have a plurality of through holes, similar to the first exhaust port 51. In the example of Fig. 12, the second exhaust ports 52 and the intake ports 53 are respectively arranged at intervals in the circumferential direction around the rotation shaft 26a. By increasing the number of through holes of the second exhaust ports 52 and the intake ports 53, the flow rate of the gas G per unit time increases, and an improvement in the cooling effect of the shroud 44 can be expected.
また、図12に示すように、複数の貫通孔が周方向に配置された列は、第1列CLa及び第2列CLbとして示すように、軸方向AXの位置が異なる列が少なくとも2列あってもよい。
Also, as shown in FIG. 12, the rows in which the multiple through holes are arranged in the circumferential direction may include at least two rows that are positioned at different positions in the axial direction AX, as shown as the first row CLa and the second row CLb.
第2排気口52の第1列CLa及び第2列CLbは、アウターロータ43の第1排気口51の軸方向AXの位置に対応して設けられている。吸気口53の第1列CLa及び第2列CLbは、隙間48の軸方向AXの位置に対応して設けられている。
The first row CLa and the second row CLb of the second exhaust ports 52 are provided to correspond to the axial position AX of the first exhaust ports 51 of the outer rotor 43. The first row CLa and the second row CLb of the intake ports 53 are provided to correspond to the axial position AX of the gap 48.
図12において、貫通孔の第1列CLaと第2列CLbとの関係の例を、第2排気口52の場合を例に説明する。
In FIG. 12, an example of the relationship between the first row CLa and the second row CLb of through holes is explained using the second exhaust port 52 as an example.
第2排気口52の第1列CLa及び第2列CLbにおいて、複数の第2排気口52の配列ピッチD2は各列で同じだが、周方向の位相が配列ピッチD2の半周期分ずれている。こうした配列は千鳥配列などとも呼ばれる。千鳥配列にすることで次のような効果が期待できる。
In the first row CLa and second row CLb of the second exhaust ports 52, the arrangement pitch D2 of the multiple second exhaust ports 52 is the same in each row, but the circumferential phase is shifted by half a period of the arrangement pitch D2. This type of arrangement is also called a staggered arrangement. The following effects can be expected from the staggered arrangement.
すなわち、周方向に配置する第2排気口52の数を増加させようとすると、配列ピッチD2は狭くなる。そうすると、ブラケット46の強度が低下する懸念がある。そこで、第1列CLa及び第2列CLbを千鳥配列にすることで、配列ピッチD2を狭くすることなく、第2排気口52の密度(つまり、単位面積当たりの数)を高めることができる。これにより、ブラケット46の強度の低下を抑制しつつ、気体Gの単位時間当たりの流量を増加させることが可能になり、シュラウド44の冷却効果を向上させることができる。
In other words, if an attempt is made to increase the number of second exhaust ports 52 arranged in the circumferential direction, the arrangement pitch D2 becomes narrower. This raises concerns that the strength of the bracket 46 may decrease. Therefore, by arranging the first row CLa and the second row CLb in a staggered manner, it is possible to increase the density of the second exhaust ports 52 (i.e., the number per unit area) without narrowing the arrangement pitch D2. This makes it possible to increase the flow rate of the gas G per unit time while suppressing a decrease in the strength of the bracket 46, thereby improving the cooling effect of the shroud 44.
千鳥配列においては、第1列CLaと第2列CLbの軸方向AXの間隔を、一例として次のようにすることが好ましい。すなわち、第2排気口52の開口径の半径をr、第1列CLa及び第2列CLbの軸方向AXの列間隔をD1とした場合において、下記式2で示される条件を満たすことが好ましい。
r<D1<2r・・・・(式2) In the staggered arrangement, it is preferable that the interval in the axial direction AX between the first row CLa and the second row CLb be, for example, as follows: That is, when the radius of the opening diameter of the second exhaust port 52 is r and the row interval in the axial direction AX between the first row CLa and the second row CLb is D1, it is preferable that the condition shown in the following formula 2 is satisfied.
r<D1<2r...(Formula 2)
r<D1<2r・・・・(式2) In the staggered arrangement, it is preferable that the interval in the axial direction AX between the first row CLa and the second row CLb be, for example, as follows: That is, when the radius of the opening diameter of the second exhaust port 52 is r and the row interval in the axial direction AX between the first row CLa and the second row CLb is D1, it is preferable that the condition shown in the following formula 2 is satisfied.
r<D1<2r...(Formula 2)
列間隔D1は、第1列CLa及び第2列CLbのそれぞれの第2排気口52の中心間の距離である。列間隔D1を、第2排気口52の半径より大きく、直径よりも小さくすることで、式2の条件を満たさない場合と比べて、強度低下を抑制しつつ、第2排気口52の密度をより高めることができる。
The row spacing D1 is the distance between the centers of the second exhaust ports 52 in the first row CLa and the second row CLb. By making the row spacing D1 larger than the radius of the second exhaust ports 52 and smaller than the diameter, it is possible to increase the density of the second exhaust ports 52 while suppressing a decrease in strength, compared to a case in which the condition of Equation 2 is not satisfied.
また、第1列CLaの第2排気口52と第2列CLbの第2排気口52の組み合わせのうち、隣接する2つの第2排気口52の組み合わせの関係を次のようにすると、より好ましい。すなわち、隣接する第2排気口52の周方向における間隔である周方向間隔をD3、隣接する第2排気口52の外形において対向する点同士の間隔であって、相互間の距離が最短となる対向点間最短距離をD4とした場合において、下記式3で示される条件を満たすことが好ましい。
D3<D4・・・・(式3) Furthermore, it is more preferable that, among the combinations of the second exhaust ports 52 in the first row CLa and the second exhaust ports 52 in the second row CLb, the relationship between the combinations of two adjacent second exhaust ports 52 is as follows: In other words, when the circumferential distance between adjacent second exhaust ports 52 in the circumferential direction is D3 and the shortest distance between opposing points on the outlines of the adjacent second exhaust ports 52, which is the shortest distance between the opposing points, is D4, it is preferable that the condition shown in the following formula 3 is satisfied.
D3 < D4 (Equation 3)
D3<D4・・・・(式3) Furthermore, it is more preferable that, among the combinations of the second exhaust ports 52 in the first row CLa and the second exhaust ports 52 in the second row CLb, the relationship between the combinations of two adjacent second exhaust ports 52 is as follows: In other words, when the circumferential distance between adjacent second exhaust ports 52 in the circumferential direction is D3 and the shortest distance between opposing points on the outlines of the adjacent second exhaust ports 52, which is the shortest distance between the opposing points, is D4, it is preferable that the condition shown in the following formula 3 is satisfied.
D3 < D4 (Equation 3)
すなわち、周方向間隔D3を対向点最短距離D4よりも小さくすることで、第1列CLaと第2列CLbを2列1組で考えた場合の周方向における第2排気口52の密度を高めることができる。一方、対向点最短距離D4を周方向間隔D3よりも大きくすることで、強度低下が抑制される。このように、式3の条件を満たすことにより、条件を満たさない場合と比べて、強度低下を抑制しつつ、第2排気口52の周方向における密度をより高めることができる。
In other words, by making the circumferential spacing D3 smaller than the opposing point shortest distance D4, it is possible to increase the density of the second exhaust ports 52 in the circumferential direction when the first row CLa and the second row CLb are considered as a pair of two rows. On the other hand, by making the opposing point shortest distance D4 larger than the circumferential spacing D3, the decrease in strength is suppressed. In this way, by satisfying the condition of Equation 3, it is possible to increase the circumferential density of the second exhaust ports 52 while suppressing the decrease in strength compared to when the condition is not satisfied.
第2排気口52の密度を高めることにより、気体Gの単位時間当たりの流量が増加し、シュラウド44の冷却効果の向上が期待できる。第2排気口52を例に説明したが吸気口53にも同様である。
By increasing the density of the second exhaust port 52, the flow rate of gas G per unit time increases, and it is expected that the cooling effect of the shroud 44 will be improved. Although the second exhaust port 52 has been used as an example, the same applies to the intake port 53.
5.その他の変形例
第1及び第2実施形態に係る放電電極21が使用されるガスレーザ装置2を狭帯域化レーザ装置としているが、これに限られず、自然発振光を出力するガスレーザ装置としてもよい。例えば、狭帯域化モジュール15に代えて、高反射ミラーを配置してもよい。 Although the gas laser device 2 using the discharge electrode 21 according to the first and second embodiments is a line-narrowing laser device, the present invention is not limited to this and may be a gas laser device that outputs natural oscillation light. For example, a high-reflection mirror may be disposed instead of the line-narrowing module 15.
第1及び第2実施形態に係る放電電極21が使用されるガスレーザ装置2を狭帯域化レーザ装置としているが、これに限られず、自然発振光を出力するガスレーザ装置としてもよい。例えば、狭帯域化モジュール15に代えて、高反射ミラーを配置してもよい。 Although the gas laser device 2 using the discharge electrode 21 according to the first and second embodiments is a line-narrowing laser device, the present invention is not limited to this and may be a gas laser device that outputs natural oscillation light. For example, a high-reflection mirror may be disposed instead of the line-narrowing module 15.
また、第1及び第2実施形態では、ガスレーザ装置2をエキシマレーザ装置としているが、これに代えて、フッ素ガスとバッファガスを含むレーザガスを用いるF2分子レーザ装置としてもよい。すなわち、本開示に係るガスレーザ装置2は、フッ素を含むレーザガスを放電により励起するガスレーザ装置であればよい。
In addition, in the first and second embodiments, the gas laser device 2 is an excimer laser device, but instead of this, it may be an F2 molecular laser device that uses a laser gas containing fluorine gas and a buffer gas. In other words, the gas laser device 2 according to the present disclosure may be any gas laser device that excites a laser gas containing fluorine by discharging.
6.電子デバイスの製造方法
図13は、露光装置100の構成例を概略的に示す。露光装置100は、照明光学系104と投影光学系106とを含む。照明光学系104は、例えば、ガスレーザ装置2から入射したパルスレーザ光PLによって、レチクルステージRT上に配置された図示しないレチクルのレチクルパターンを照明する。投影光学系106は、レチクルを透過したパルスレーザ光PLを、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。 6. Manufacturing Method of Electronic Devices Fig. 13 shows a schematic configuration example of an exposure apparatus 100. The exposure apparatus 100 includes an illumination optical system 104 and a projection optical system 106. The illumination optical system 104 illuminates a reticle pattern of a reticle (not shown) arranged on a reticle stage RT with a pulsed laser beam PL incident from, for example, a gas laser device 2. The projection optical system 106 reduces and projects the pulsed laser beam PL transmitted through the reticle to form an image on a workpiece (not shown) arranged on a workpiece table WT. The workpiece is a photosensitive substrate such as a semiconductor wafer coated with photoresist.
図13は、露光装置100の構成例を概略的に示す。露光装置100は、照明光学系104と投影光学系106とを含む。照明光学系104は、例えば、ガスレーザ装置2から入射したパルスレーザ光PLによって、レチクルステージRT上に配置された図示しないレチクルのレチクルパターンを照明する。投影光学系106は、レチクルを透過したパルスレーザ光PLを、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。 6. Manufacturing Method of Electronic Devices Fig. 13 shows a schematic configuration example of an exposure apparatus 100. The exposure apparatus 100 includes an illumination optical system 104 and a projection optical system 106. The illumination optical system 104 illuminates a reticle pattern of a reticle (not shown) arranged on a reticle stage RT with a pulsed laser beam PL incident from, for example, a gas laser device 2. The projection optical system 106 reduces and projects the pulsed laser beam PL transmitted through the reticle to form an image on a workpiece (not shown) arranged on a workpiece table WT. The workpiece is a photosensitive substrate such as a semiconductor wafer coated with photoresist.
露光装置100は、レチクルステージRTとワークピーステーブルWTとを同期して平行移動させることにより、レチクルパターンを反映したパルスレーザ光PLをワークピースに露光する。以上のような露光工程によって半導体ウエハにレチクルパターンを転写後、複数の工程を経ることで半導体デバイスを製造できる。半導体デバイスは本開示における「電子デバイス」の一例である。
The exposure apparatus 100 exposes the workpiece to pulsed laser light PL reflecting the reticle pattern by synchronously translating the reticle stage RT and the workpiece table WT. After the reticle pattern is transferred to the semiconductor wafer by the exposure process described above, a semiconductor device can be manufactured through multiple processes. A semiconductor device is an example of an "electronic device" in this disclosure.
図13に示すガスレーザ装置2には、第1実施形態又は第2実施形態に係る磁気カップリング機構28A又は28Bが使用される。
The gas laser device 2 shown in FIG. 13 uses the magnetic coupling mechanism 28A or 28B according to the first or second embodiment.
なお、ガスレーザ装置2は、電子デバイスの製造に限られず、穴あけ加工等のレーザ加工に用いることも可能である。
The gas laser device 2 can be used for laser processing other than the manufacture of electronic devices, such as drilling.
上記の説明は、制限ではなく単なる例示を意図したものである。したがって、添付の特許請求の範囲を逸脱することなく本開示の各実施形態に変更を加えることができることは、当業者には明らかであろう。
The above description is intended to be illustrative and not limiting. Thus, it will be apparent to one of ordinary skill in the art that modifications may be made to the embodiments of the present disclosure without departing from the scope of the appended claims.
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきであり、さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。
Terms used throughout this specification and the appended claims should be construed as "open ended" terms. For example, the terms "including" or "including" should be construed as "not limited to what is described as including." The term "having" should be construed as "not limited to what is described as having." Additionally, the modifier "a" in this specification and the appended claims should be construed as "at least one" or "one or more." Additionally, the term "at least one of A, B, and C" should be construed as "A," "B," "C," "A+B," "A+C," "B+C," or "A+B+C," and should also be construed as including combinations other than "A," "B," and "C."
Claims (20)
- レーザガスを収容するレーザチャンバと、
前記レーザチャンバの内部に配置され、前記レーザガスを循環させるファンと、
磁力を利用して前記ファンの回転軸にモータの駆動力を伝達する磁気カップリング機構と、を備えるレーザチャンバ装置であって、
前記磁気カップリング機構は、
前記レーザチャンバから一部が突出する前記回転軸と連結され、第1磁石が配置されるインナーロータと、
前記モータの駆動力によって回転し、磁気による吸引力によって前記インナーロータを従動回転させるアウターロータであって、前記インナーロータを収容する第1内部空間を画定し、前記第1磁石と対向する第2磁石が配置される第1筒状部であって、前記回転軸の軸方向における一方の端部が開口し、他方の端部に前記モータの駆動軸が連結される底部を有する有底の第1筒状部を有し、前記第1筒状部における前記一方の端部と前記レーザチャンバの端面との間に隙間を空けて配置されるアウターロータと、
前記レーザチャンバの前記端面と接触した状態で固定され、前記インナーロータを気密状態で収容する有底の筒状をしたシュラウドであって、金属製であり、かつ内周面において前記第1磁石と対向し、外周面において前記第2磁石と対向するシュラウドと、
前記アウターロータを収容する第2内部空間であって前記第1内部空間と前記隙間を通じて連通する前記第2内部空間を画定する第2筒状部であって、前記軸方向における一方の端部が開口し、他方の端部は前記モータの駆動軸が回転自在に挿通される挿通口が形成される底部を有する有底の第2筒状部を有し、前記第2筒状部における前記一方の端部がレーザチャンバの前記端面に固定され、前記他方の端部には前記モータが固定されるブラケットと、
前記アウターロータの前記第1筒状部に形成され、前記第1内部空間内の気体を前記第2内部空間に排気する第1排気口であって、前記軸方向において、前記第1磁石及び前記第2磁石よりも前記モータ側に配置された第1排気口と、
前記ブラケットの前記第2筒状部に形成され、前記第2内部空間内の気体を前記ブラケットの外側に排気する第2排気口であって、前記軸方向において、前記第1磁石及び前記第2磁石よりも前記モータ側に配置された第2排気口と、
前記ブラケットの前記第2筒状部に形成され、前記ブラケットの外部の気体を前記第2内部空間に取り入れる吸気口であって、前記軸方向において、前記第1磁石及び前記第2磁石よりも前記レーザチャンバ側に配置された吸気口と、を備える、
レーザチャンバ装置。 a laser chamber containing a laser gas;
a fan disposed inside the laser chamber for circulating the laser gas;
a magnetic coupling mechanism that transmits a driving force of a motor to a rotating shaft of the fan by using a magnetic force,
The magnetic coupling mechanism includes:
an inner rotor connected to the rotating shaft, a portion of which protrudes from the laser chamber, and in which a first magnet is disposed;
an outer rotor that rotates by a driving force of the motor and rotates the inner rotor by magnetic attraction, the outer rotor having a first cylindrical portion that defines a first internal space that houses the inner rotor and in which a second magnet facing the first magnet is disposed, the first cylindrical portion having a bottom with one end open in the axial direction of the rotation shaft and a bottom to which a drive shaft of the motor is connected at the other end, the outer rotor being disposed with a gap between the one end of the first cylindrical portion and an end face of the laser chamber;
a bottomed, cylindrical shroud that is fixed in contact with the end surface of the laser chamber and that accommodates the inner rotor in an airtight manner, the shroud being made of metal, and facing the first magnet on an inner circumferential surface and facing the second magnet on an outer circumferential surface;
a second cylindrical portion that defines a second internal space that accommodates the outer rotor and communicates with the first internal space through the gap, the second cylindrical portion having one end in the axial direction that is open and the other end that has a bottom that has a bottom formed with an insertion opening through which a drive shaft of the motor is rotatably inserted, the one end of the second cylindrical portion being fixed to the end face of the laser chamber, and a bracket to which the motor is fixed to the other end;
a first exhaust port formed in the first cylindrical portion of the outer rotor, for exhausting gas in the first internal space to the second internal space, the first exhaust port being disposed closer to the motor than the first magnet and the second magnet in the axial direction;
a second exhaust port formed in the second cylindrical portion of the bracket and configured to exhaust gas in the second internal space to an outside of the bracket, the second exhaust port being disposed closer to the motor than the first magnet and the second magnet in the axial direction;
an intake port formed in the second cylindrical portion of the bracket and adapted to take in gas outside the bracket into the second internal space, the intake port being disposed closer to the laser chamber than the first magnet and the second magnet in the axial direction;
Laser chamber device. - 前記アウターロータの前記第1排気口の出口と前記ブラケットの前記第2排気口の入口とは、前記軸方向において少なくとも一部が重なっている、請求項1に記載のレーザチャンバ装置。 The laser chamber apparatus of claim 1, wherein the outlet of the first exhaust port of the outer rotor and the inlet of the second exhaust port of the bracket at least partially overlap in the axial direction.
- 前記第1排気口の出口と前記第2排気口の入口とは、前記軸方向において一方が他方の全部と重なっている、請求項2に記載のレーザチャンバ装置。 The laser chamber device according to claim 2, wherein the outlet of the first exhaust port and the inlet of the second exhaust port completely overlap each other in the axial direction.
- 前記吸気口の出口と前記隙間とは、前記軸方向において少なくとも一部が重なっている、請求項1に記載のレーザチャンバ装置。 The laser chamber device of claim 1, wherein the outlet of the intake port and the gap overlap at least partially in the axial direction.
- 前記吸気口の出口と前記隙間とは、前記軸方向において一方が他方の全部と重なっている、請求項2に記載のレーザチャンバ装置。 The laser chamber device according to claim 2, wherein the outlet of the intake port and the gap completely overlap with each other in the axial direction.
- 前記アウターロータにおいて、前記第1排気口は複数設けられており、複数の前記第1排気口は、前記回転軸の周りの周方向に間隔を空けて配列されている、請求項1に記載のレーザチャンバ装置。 The laser chamber apparatus according to claim 1, wherein the outer rotor is provided with a plurality of first exhaust ports, and the plurality of first exhaust ports are arranged at intervals in the circumferential direction around the rotation axis.
- 前記アウターロータの直径が30mm~300mmの範囲である場合は、前記回転軸の周りの周方向において1列に配置する第1排気口の数は、4個~24個である、請求項6に記載のレーザチャンバ装置。 The laser chamber device according to claim 6, wherein when the diameter of the outer rotor is in the range of 30 mm to 300 mm, the number of first exhaust ports arranged in a row in the circumferential direction around the rotation axis is 4 to 24.
- 前記アウターロータについて前記軸方向と直交する断面を見た場合において、複数の前記第1排気口は、前記アウターロータの回転中心に対して点対称に配置されている、請求項6に記載のレーザチャンバ装置。 The laser chamber apparatus according to claim 6, wherein the first exhaust ports are arranged point-symmetrically with respect to the center of rotation of the outer rotor when viewed in a cross section perpendicular to the axial direction of the outer rotor.
- 前記アウターロータについて前記軸方向と直交する断面を見た場合において、複数の前記第1排気口は、前記アウターロータの回転中心を通り前記軸方向と直交する直線に対して、線対称に配置されている、請求項6に記載のレーザチャンバ装置。 The laser chamber device according to claim 6, wherein, when the outer rotor is viewed in a cross section perpendicular to the axial direction, the first exhaust ports are arranged symmetrically with respect to a line that passes through the center of rotation of the outer rotor and is perpendicular to the axial direction.
- 前記第1排気口の開口形状は、円形である、請求項1に記載のレーザチャンバ装置。 The laser chamber apparatus of claim 1, wherein the opening shape of the first exhaust port is circular.
- 前記第1排気口の開口形状は、矩形である、請求項1に記載のレーザチャンバ装置。 The laser chamber apparatus of claim 1, wherein the opening shape of the first exhaust port is rectangular.
- 前記アウターロータについて前記軸方向と直交する断面を見た場合において、前記第1排気口の入口と出口の中心を結ぶ貫通軸が、前記軸方向と直交する方向に延びている、請求項1に記載のレーザチャンバ装置。 The laser chamber device according to claim 1, wherein, when the outer rotor is viewed in a cross section perpendicular to the axial direction, a through axis connecting the centers of the inlet and outlet of the first exhaust port extends in a direction perpendicular to the axial direction.
- 前記アウターロータについて前記軸方向と直交する断面を見た場合において、前記第1排気口の入口と出口の中心を結ぶ貫通軸が、前記アウターロータの回転中心を通り前記軸方向と直交する直線に対して傾斜しており、
傾斜方向は、前記アウターロータが回転した場合に、前記アウターロータの内周側の前記入口に対して外周側の前記出口が後傾する位置になる方向である、請求項1に記載のレーザチャンバ装置。 When the outer rotor is viewed in a cross section perpendicular to the axial direction, a through axis connecting centers of an inlet and an outlet of the first exhaust port is inclined with respect to a straight line that passes through a rotation center of the outer rotor and is perpendicular to the axial direction,
2. The laser chamber apparatus according to claim 1, wherein the inclination direction is a direction in which the outlet on an outer periphery side of the outer rotor is inclined backward relative to the inlet on an inner periphery side of the outer rotor when the outer rotor rotates. - 前記貫通軸の傾斜角をθとした場合において、下記式1で示される条件を満たす、請求項13に記載のレーザチャンバ装置。
0°<θ<30°・・・・(式1) 14. The laser chamber apparatus of claim 13, wherein, when an inclination angle of the penetrating axis is θ, the condition shown in the following formula 1 is satisfied.
0°<θ<30° (Equation 1) - 前記ブラケットにおいて、前記第2排気口及び前記吸気口のうちの少なくとも一方の貫通孔は複数設けられており、複数の前記貫通孔は、前記回転軸の周りの周方向に間隔を空けて配置されている、請求項1に記載のレーザチャンバ装置。 The laser chamber device according to claim 1, wherein the bracket has a plurality of through holes for at least one of the second exhaust port and the intake port, and the plurality of through holes are spaced apart in the circumferential direction around the rotation axis.
- 複数の前記貫通孔が前記周方向に配置された列は、前記軸方向の位置が異なる第1列と第2列の少なくとも2列ある、請求項15に記載のレーザチャンバ装置。 The laser chamber device according to claim 15, wherein the number of rows in which the through holes are arranged in the circumferential direction is at least two rows, a first row and a second row, which are positioned differently in the axial direction.
- 前記第1列及び前記第2列において、複数の前記貫通孔の配列ピッチは各列において同じだが、前記周方向の位相が前記配列ピッチの半周期分ずれている、請求項16に記載のレーザチャンバ装置。 The laser chamber device according to claim 16, wherein the arrangement pitch of the through holes in the first row and the second row is the same in each row, but the phase in the circumferential direction is shifted by half a period of the arrangement pitch.
- 前記貫通孔の開口径の半径をr、前記第1列及び前記第2列の前記軸方向の列間隔をD1とした場合において、下記式2で示される条件を満たす、請求項17に記載のレーザチャンバ装置。
r<D1<2r・・・・(式2) 18. The laser chamber apparatus of claim 17, wherein, when a radius of an opening diameter of the through hole is r and a row spacing in the axial direction between the first row and the second row is D1, the condition represented by the following formula 2 is satisfied.
r<D1<2r...(Formula 2) - 放電電極とレーザガスとを収容するレーザチャンバと、
前記レーザチャンバの内部に配置され、前記レーザチャンバの内部において前記レーザガスを循環させるファンと、
前記ファンを駆動するモータと、
磁力を利用して前記ファンの回転軸にモータの駆動力を伝達する磁気カップリング機構と、を備え、
放電により前記レーザガスを励起してレーザ光を生成するガスレーザ装置であって、
前記磁気カップリング機構は、
前記レーザチャンバから一部が突出する前記回転軸と連結され、第1磁石が配置されるインナーロータと、
前記モータの駆動力によって回転し、磁気による吸引力によって前記インナーロータを従動回転させるアウターロータであって、前記インナーロータを収容する第1内部空間を画定し、前記第1磁石と対向する第2磁石が配置される第1筒状部であって、前記回転軸の軸方向における一方の端部が開口し、他方の端部に前記モータの駆動軸が連結される底部を有する有底の第1筒状部を有し、前記第1筒状部における前記一方の端部と前記レーザチャンバの端面との間に隙間を空けて配置されるアウターロータと、
前記レーザチャンバの前記端面と接触した状態で固定され、前記インナーロータを気密状態で収容する有底の筒状をしたシュラウドであって、金属製であり、かつ内周面において前記第1磁石と対向し、外周面において前記第2磁石と対向するシュラウドと、
前記アウターロータを収容する第2内部空間であって前記第1内部空間と前記隙間を通じて連通する前記第2内部空間を画定する第2筒状部であって、前記軸方向における一方の端部が開口し、他方の端部は前記モータの駆動軸が回転自在に挿通される挿通口が形成される底部を有する有底の第2筒状部を有し、前記第2筒状部における前記一方の端部がレーザチャンバの前記端面に固定され、前記他方の端部には前記モータが固定されるブラケットと、
前記アウターロータの前記第1筒状部に形成され、前記第1内部空間内の気体を前記第2内部空間に排気する第1排気口であって、前記軸方向において、前記第1磁石及び前記第2磁石よりも前記モータ側に配置された第1排気口と、
前記ブラケットの前記第2筒状部に形成され、前記第2内部空間内の気体を前記ブラケットの外側に排気する第2排気口であって、前記軸方向において、前記第1磁石及び前記第2磁石よりも前記モータ側に配置された第2排気口と、
前記ブラケットの前記第2筒状部に形成され、前記ブラケットの外部の気体を前記第2内部空間に取り入れる吸気口であって、前記軸方向において、前記第1磁石及び前記第2磁石よりも前記レーザチャンバ側に配置された吸気口と、を備える、
ガスレーザ装置。 a laser chamber containing a discharge electrode and a laser gas;
a fan disposed inside the laser chamber for circulating the laser gas inside the laser chamber;
A motor that drives the fan;
a magnetic coupling mechanism that transmits a driving force of a motor to a rotating shaft of the fan by using a magnetic force,
A gas laser device that generates laser light by exciting the laser gas by discharge,
The magnetic coupling mechanism includes:
an inner rotor connected to the rotating shaft, a portion of which protrudes from the laser chamber, and in which a first magnet is disposed;
an outer rotor that rotates by a driving force of the motor and rotates the inner rotor by magnetic attraction, the outer rotor having a first cylindrical portion that defines a first internal space that houses the inner rotor and in which a second magnet facing the first magnet is disposed, the first cylindrical portion having a bottom with one end open in the axial direction of the rotation shaft and a bottom to which a drive shaft of the motor is connected at the other end, the outer rotor being disposed with a gap between the one end of the first cylindrical portion and an end face of the laser chamber;
a bottomed, cylindrical shroud that is fixed in contact with the end surface of the laser chamber and that accommodates the inner rotor in an airtight manner, the shroud being made of metal, and facing the first magnet on an inner circumferential surface and facing the second magnet on an outer circumferential surface;
a second cylindrical portion that defines a second internal space that accommodates the outer rotor and communicates with the first internal space through the gap, the second cylindrical portion having one end in the axial direction that is open and the other end that has a bottom that has a bottom formed with an insertion opening through which a drive shaft of the motor is rotatably inserted, the one end of the second cylindrical portion being fixed to the end face of the laser chamber, and a bracket to which the motor is fixed to the other end;
a first exhaust port formed in the first cylindrical portion of the outer rotor, for exhausting gas in the first internal space to the second internal space, the first exhaust port being disposed closer to the motor than the first magnet and the second magnet in the axial direction;
a second exhaust port formed in the second cylindrical portion of the bracket and configured to exhaust gas in the second internal space to an outside of the bracket, the second exhaust port being disposed closer to the motor than the first magnet and the second magnet in the axial direction;
an intake port formed in the second cylindrical portion of the bracket and adapted to take in gas outside the bracket into the second internal space, the intake port being disposed closer to the laser chamber than the first magnet and the second magnet in the axial direction;
Gas laser device. - 電子デバイスの製造方法であって、
放電電極とレーザガスとを収容するレーザチャンバと、
前記レーザチャンバの内部に配置され、前記レーザチャンバの内部において前記レーザガスを循環させるファンと、
前記ファンを駆動するモータと、
磁力を利用して前記ファンの回転軸にモータの駆動力を伝達する磁気カップリング機構と、を備え、
放電により前記レーザガスを励起してレーザ光を生成するガスレーザ装置であって、
前記磁気カップリング機構は、
前記レーザチャンバから一部が突出する前記回転軸と連結され、第1磁石が配置されるインナーロータと、
前記モータの駆動力によって回転し、磁気による吸引力によって前記インナーロータを従動回転させるアウターロータであって、前記インナーロータを収容する第1内部空間を画定し、前記第1磁石と対向する第2磁石が配置される第1筒状部であって、前記回転軸の軸方向における一方の端部が開口し、他方の端部に前記モータの駆動軸が連結される底部を有する有底の第1筒状部を有し、前記第1筒状部における前記一方の端部と前記レーザチャンバの端面との間に隙間を空けて配置されるアウターロータと、
前記レーザチャンバの前記端面と接触した状態で固定され、前記インナーロータを気密状態で収容する有底の筒状をしたシュラウドであって、金属製であり、かつ内周面において前記第1磁石と対向し、外周面において前記第2磁石と対向するシュラウドと、
前記アウターロータを収容する第2内部空間であって前記第1内部空間と前記隙間を通じて連通する前記第2内部空間を画定する第2筒状部であって、前記軸方向における一方の端部が開口し、他方の端部は前記モータの駆動軸が回転自在に挿通される挿通口が形成される底部を有する有底の第2筒状部を有し、前記第2筒状部における前記一方の端部がレーザチャンバの前記端面に固定され、前記他方の端部には前記モータが固定されるブラケットと、
前記アウターロータの前記第1筒状部に形成され、前記第1内部空間内の気体を前記第2内部空間に排気する第1排気口であって、前記軸方向において、前記第1磁石及び前記第2磁石よりも前記モータ側に配置された第1排気口と、
前記ブラケットの前記第2筒状部に形成され、前記第2内部空間内の気体を前記ブラケットの外側に排気する第2排気口であって、前記軸方向において、前記第1磁石及び前記第2磁石よりも前記モータ側に配置された第2排気口と、
前記ブラケットの前記第2筒状部に形成され、前記ブラケットの外部の気体を前記第2内部空間に取り入れる吸気口であって、前記軸方向において、前記第1磁石及び前記第2磁石よりも前記レーザチャンバ側に配置された吸気口と、を備える、ガスレーザ装置によって前記レーザ光を生成し、
前記レーザ光を露光装置に出力し、
電子デバイスを製造するために、前記露光装置内で感光基板に前記レーザ光を露光することを含む、
電子デバイスの製造方法。 1. A method for manufacturing an electronic device, comprising:
a laser chamber containing a discharge electrode and a laser gas;
a fan disposed inside the laser chamber for circulating the laser gas inside the laser chamber;
A motor that drives the fan;
a magnetic coupling mechanism that transmits a driving force of a motor to a rotating shaft of the fan by using a magnetic force,
A gas laser device that generates laser light by exciting the laser gas by discharge,
The magnetic coupling mechanism includes:
an inner rotor connected to the rotating shaft, a portion of which protrudes from the laser chamber, and in which a first magnet is disposed;
an outer rotor that rotates by a driving force of the motor and rotates the inner rotor by magnetic attraction, the outer rotor having a first cylindrical portion that defines a first internal space that houses the inner rotor and in which a second magnet facing the first magnet is disposed, the first cylindrical portion having a bottom with one end open in the axial direction of the rotation shaft and a bottom to which a drive shaft of the motor is connected at the other end, the outer rotor being disposed with a gap between the one end of the first cylindrical portion and an end face of the laser chamber;
a bottomed, cylindrical shroud that is fixed in contact with the end surface of the laser chamber and that accommodates the inner rotor in an airtight manner, the shroud being made of metal, and facing the first magnet on an inner circumferential surface and facing the second magnet on an outer circumferential surface;
a second cylindrical portion that defines a second internal space that accommodates the outer rotor and communicates with the first internal space through the gap, the second cylindrical portion having one end in the axial direction that is open and the other end that has a bottom that has a bottom formed with an insertion opening through which a drive shaft of the motor is rotatably inserted, the one end of the second cylindrical portion being fixed to the end face of the laser chamber, and a bracket to which the motor is fixed to the other end;
a first exhaust port formed in the first cylindrical portion of the outer rotor, for exhausting gas in the first internal space to the second internal space, the first exhaust port being disposed closer to the motor than the first magnet and the second magnet in the axial direction;
a second exhaust port formed in the second cylindrical portion of the bracket and configured to exhaust gas in the second internal space to an outside of the bracket, the second exhaust port being disposed closer to the motor than the first magnet and the second magnet in the axial direction;
generating the laser light using a gas laser apparatus including: an intake port formed in the second cylindrical portion of the bracket, for taking in gas outside the bracket into the second internal space, the intake port being disposed closer to the laser chamber than the first magnet and the second magnet in the axial direction;
outputting the laser light to an exposure device;
exposing a photosensitive substrate to the laser light in the exposure apparatus to manufacture an electronic device.
A method for manufacturing an electronic device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/003675 WO2024161662A1 (en) | 2023-02-03 | 2023-02-03 | Laser chamber device, gas laser device, and method for manufacturing an electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/003675 WO2024161662A1 (en) | 2023-02-03 | 2023-02-03 | Laser chamber device, gas laser device, and method for manufacturing an electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024161662A1 true WO2024161662A1 (en) | 2024-08-08 |
Family
ID=92146258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/003675 WO2024161662A1 (en) | 2023-02-03 | 2023-02-03 | Laser chamber device, gas laser device, and method for manufacturing an electronic device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024161662A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01183868A (en) * | 1988-01-19 | 1989-07-21 | Mitsubishi Electric Corp | Laser oscillator |
US5317579A (en) * | 1992-08-07 | 1994-05-31 | Litton Systems, Inc. | Laser pump |
JP2000332319A (en) * | 1999-05-19 | 2000-11-30 | Ushio Sogo Gijutsu Kenkyusho:Kk | Magnetic coupling mechanism of excimer laser device |
JP2001077446A (en) * | 1999-09-07 | 2001-03-23 | Nsk Ltd | Excimer laser |
JP2001177167A (en) * | 1999-12-20 | 2001-06-29 | Meidensha Corp | Laser gas circulating mechanism for gas laser device |
JP2005048947A (en) * | 2003-07-14 | 2005-02-24 | Ebara Corp | Magnetic bearing device and excimer laser device comprising magnetic bearing |
CN217721003U (en) * | 2022-07-27 | 2022-11-01 | 大连永磁偶合器有限公司 | Permanent magnet coupler with air cooling assembly |
-
2023
- 2023-02-03 WO PCT/JP2023/003675 patent/WO2024161662A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01183868A (en) * | 1988-01-19 | 1989-07-21 | Mitsubishi Electric Corp | Laser oscillator |
US5317579A (en) * | 1992-08-07 | 1994-05-31 | Litton Systems, Inc. | Laser pump |
JP2000332319A (en) * | 1999-05-19 | 2000-11-30 | Ushio Sogo Gijutsu Kenkyusho:Kk | Magnetic coupling mechanism of excimer laser device |
JP2001077446A (en) * | 1999-09-07 | 2001-03-23 | Nsk Ltd | Excimer laser |
JP2001177167A (en) * | 1999-12-20 | 2001-06-29 | Meidensha Corp | Laser gas circulating mechanism for gas laser device |
JP2005048947A (en) * | 2003-07-14 | 2005-02-24 | Ebara Corp | Magnetic bearing device and excimer laser device comprising magnetic bearing |
CN217721003U (en) * | 2022-07-27 | 2022-11-01 | 大连永磁偶合器有限公司 | Permanent magnet coupler with air cooling assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5349954B2 (en) | Gas discharge laser system of 6KHz and above | |
US6331994B1 (en) | Excimer laser oscillation apparatus and method, excimer laser exposure apparatus, and laser tube | |
JPH10223955A (en) | Design of aerodynamic chamber for high pulse repetition rate excimer laser | |
US20230387642A1 (en) | Chamber device, gas laser device, and electronic device manufacturing method | |
WO2015186480A1 (en) | Laser chamber | |
US10250008B2 (en) | Discharge excitation gas laser apparatus | |
WO2024161662A1 (en) | Laser chamber device, gas laser device, and method for manufacturing an electronic device | |
US11411364B2 (en) | Line narrowing module, gas laser apparatus, and electronic device manufacturing method | |
WO2024171298A1 (en) | Laser chamber apparatus, gas laser apparatus, and method for manufacturing electronic device | |
US20230187896A1 (en) | Line narrowing module, gas laser apparatus, and method for manufacturing electronic devices | |
US11588291B2 (en) | Laser chamber apparatus, gas laser apparatus, and method for manufacturing electronic device | |
US20230387641A1 (en) | Chamber device, and electronic device manufacturing method | |
WO2024195064A1 (en) | Laser chamber apparatus, gas laser apparatus, and method for manufacturing electronic device | |
US20230275386A1 (en) | Discharge electrode, method for manufacturing anode, and method for manufacturing electronic devices | |
US10965085B2 (en) | Laser chamber with metal damper member | |
US20230108886A1 (en) | Gas laser apparatus and electronic device manufacturing method | |
WO2023218548A1 (en) | Discharge electrode, method for producing anode, and method for producing electronic device | |
JPS6190485A (en) | Pulse laser oscillator | |
WO2023170835A1 (en) | Baking method for chamber of gas laser apparatus, and method for manufacturing electronic device | |
WO2024009662A1 (en) | Chamber for gas laser apparatus, gas laser apparatus, and method for manufacturing electronic device | |
WO2024176464A1 (en) | Laser chamber apparatus, gas laser apparatus, and method for manufacturing electronic device | |
WO2023127286A1 (en) | Gas laser apparatus and method for manufacturing electronic device | |
US11947263B2 (en) | Laser chamber and electronic device manufacturing method | |
WO2023175729A1 (en) | Gas laser apparatus chamber and electronic device production method | |
WO2024157484A1 (en) | Gas laser device discharge chamber and electronic device manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23919799 Country of ref document: EP Kind code of ref document: A1 |