[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024159941A1 - 代步车、机械臂的控制方法、电子设备及存储介质 - Google Patents

代步车、机械臂的控制方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2024159941A1
WO2024159941A1 PCT/CN2023/138812 CN2023138812W WO2024159941A1 WO 2024159941 A1 WO2024159941 A1 WO 2024159941A1 CN 2023138812 W CN2023138812 W CN 2023138812W WO 2024159941 A1 WO2024159941 A1 WO 2024159941A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
robotic arm
coordinate system
joint coordinate
control method
Prior art date
Application number
PCT/CN2023/138812
Other languages
English (en)
French (fr)
Inventor
张建民
孙龙
李康权
龙佳乐
莫文迪
邓明锋
孙肇鸿
钟锦鸿
吴清秀
杨秀云
陈世霖
欧杰森
张家俊
谭钰铭
赖豪杰
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2024159941A1 publication Critical patent/WO2024159941A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the embodiments of the present application relate to but are not limited to the field of robotic arm technology, and in particular to a mobility scooter, a control method for a robotic arm, an electronic device, and a storage medium.
  • the embodiments of the present application aim to solve at least one of the technical problems existing in the prior art.
  • the embodiments of the present application provide a robotic arm, a control method, an electronic device and a storage medium.
  • An embodiment of the first aspect of the present application includes:
  • the robot arm is controlled to move according to the motion trajectory.
  • constructing a joint coordinate system of each joint of the robotic arm according to the structural parameters includes:
  • the rotation axis of the joint is used as the Z axis of the joint coordinate system
  • the intersection of the common perpendicular line of two adjacent joint axes and the previous Z axis is used as the origin of the joint coordinate system
  • the direction of the straight line where the common perpendicular line is located is used as the X axis of the joint coordinate system.
  • the X axis of the joint coordinate system and the origin of the joint coordinate system, the Y axis of the joint coordinate system is determined according to the right-hand rule, and then the joint coordinate system is constructed.
  • the combining of the plurality of joint coordinate systems to construct a joint coordinate system model of the robotic arm comprises:
  • a joint coordinate system model of the robotic arm is constructed according to the link length parameter, the link torsion parameter, the link offset parameter and the joint rotation angle parameter.
  • constructing the forward kinematics equation of the robotic arm according to the joint coordinate system model of the robotic arm includes:
  • the forward kinematics equation of the robot arm is obtained according to the homogeneous transformation matrix between a plurality of adjacent joint coordinate systems.
  • solving the joint variables according to the end position, the forward kinematics equation and the inverse kinematics equation comprises:
  • the joint variables are calculated according to the forward kinematics equation, the inverse kinematics equation and the joint angle function.
  • trajectory planning is performed according to the joint variables to obtain the motion trajectory of the robotic arm, specifically: trajectory planning is performed according to the joint variables through a Cartesian space trajectory planning algorithm to obtain the motion trajectory of the robotic arm.
  • the robot arm is provided with a gripping claw, and the gripping claw is provided with a force sensor including a plurality of resistance strain gauges forming a resistance bridge;
  • the control method comprises:
  • the gripping claw is adjusted as a function of the clamping force and the torque.
  • An embodiment of the second aspect of the present application is a robotic arm, provided with multiple joints, a camera is provided at the head end of the robotic arm, and a base is provided at the tail end of the robotic arm; the robotic arm is controlled using the control method described in the embodiment of the first aspect of the present application.
  • An embodiment of the third aspect of the present application is an electronic device, comprising: a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the computer program, the control method of the robotic arm as described in the embodiment of the first aspect of the present application is implemented.
  • An embodiment of the fourth aspect of the present application is a computer-readable storage medium storing computer-executable instructions, wherein the computer-executable instructions are used to execute the control method of the robotic arm as described in the embodiment of the first aspect of the present application.
  • the embodiments of the present application obtain the structural parameters of the robotic arm; construct a joint coordinate system according to the structural parameters, and construct a joint coordinate system model by combining the joint coordinate system; construct forward kinematics equations and inverse kinematics equations according to the joint coordinate system model; obtain the end posture according to the target image, and solve the joint variables according to the end posture, forward kinematics equations and inverse kinematics equations; perform trajectory planning according to the joint variables to obtain a motion trajectory; control the motion of the robotic arm according to the motion trajectory; and can achieve high-precision, high-flexibility, and low-latency autonomous robotic arm motion.
  • FIG1 is a step diagram of a method for controlling a robotic arm provided by an embodiment of the present invention.
  • FIG2 is a schematic diagram of calibration of a hand-eye integrated robotic arm
  • FIG3 is a schematic diagram of a joint coordinate system of a robotic arm
  • FIG4 is a schematic diagram of a wrist joint coordinate system of a robotic arm
  • FIG5 is a schematic diagram of the geometric state of the robot arm in a wrist extended state
  • FIG6 is a schematic diagram of the geometric state of the robot arm in a wrist-centered state
  • FIG7 is a schematic diagram of a coordinate system of a force sensor
  • FIG8 is a circuit diagram of a force sensor.
  • An embodiment of the present application provides a robotic arm.
  • the robotic arm is provided with a plurality of joints, specifically, the robotic arm is a six-degree-of-freedom robotic arm.
  • a camera is provided at the head end of the robotic arm, and a base is provided at the end of the robotic arm, that is, the robotic arm is a hand-eye integrated type. The position of the camera is fixed on the robotic arm, and the camera moves with the movement of the robotic arm.
  • the robot arm is controlled using the following control method.
  • control method includes but is not limited to the following steps:
  • Step S100 obtaining structural parameters of the robotic arm
  • Step S200 constructing a joint coordinate system of each joint of the robotic arm according to the structural parameters, and combining multiple joint coordinate systems to construct a joint coordinate system model of the robotic arm;
  • Step S300 constructing the forward kinematics equation and inverse kinematics equation of the robotic arm according to the joint coordinate system model of the robotic arm;
  • Step S400 obtaining the end position and posture of the robot arm according to the target image acquired by the camera, and solving the joint variables according to the end position and posture, the forward kinematics equation and the inverse kinematics equation;
  • Step S500 performing trajectory planning according to the joint variables to obtain the motion trajectory of the robot arm
  • Step S600 controlling the robot arm to move according to the motion trajectory.
  • the robot arm needs to be calibrated with hand and eye.
  • the hand and eye calibration technology allows the robot to be combined with the visual system and obtain information to determine the relative relationship between the robot and the camera coordinate system.
  • the robotic arm is moved from a first position to a second position, and the camera on the robotic arm can see the calibration plate at both the first position and the second position.
  • the transformation matrix is the internal parameter matrix, which contains parameters related to the internal structure of the camera, such as the camera focal length, and then transforms the object coordinates from the world coordinate system to the camera coordinate system.
  • the camera coordinate system can be expressed as follows:
  • the complete camera model is as follows:
  • step S200 constructing the joint coordinate system of each joint of the robotic arm according to the structural parameters specifically includes the following steps:
  • the rotation axis of the joint is used as the Z axis of the joint coordinate system
  • the intersection of the common perpendicular line of two adjacent joint axes and the previous Z axis is used as the origin of the joint coordinate system
  • the direction of the straight line where the common perpendicular line is located is used as the X axis of the joint coordinate system.
  • the X axis of the joint coordinate system and the origin of the joint coordinate system, the Y axis of the joint coordinate system is determined according to the right-hand rule, and then the joint coordinate system is constructed.
  • the Z-axis is an oblique line when the two joints are in an intersecting and non-parallel state, and there is a shortest common perpendicular line that is orthogonal to any two oblique lines.
  • the local reference coordinate system X-axis in its direction is defined. If a n is the common perpendicular line between Z n and Z n-1 , the direction of X n will be along a n .
  • the Z-axis determines whether to rotate in the right-hand rule direction according to whether the joint rotates. The Z-axis moves in a straight line under the condition that the joint is sliding.
  • the meaning of the joint variable is the rotation angle around the Z-axis or the connection length d along the Z-axis.
  • the step of combining the plurality of joint coordinate systems to construct the joint coordinate system model of the robotic arm specifically includes the following steps:
  • a joint coordinate system model of the robotic arm is constructed according to the link length parameter, the link torsion parameter, the link offset parameter and the joint rotation angle parameter.
  • the connecting rod length parameter represents the distance between O i and O i '; the connecting rod torsion parameter represents the angle between axis Z i and axis Z i-1 ; the connecting rod offset parameter represents the Z coordinate of O i ' in the i-1-th joint coordinate system; the connecting rod offset parameter represents the angle between axis X i and axis X i-1 .
  • the joint coordinate system model of the robot arm is constructed according to the connecting rod length parameter, the connecting rod torsion parameter, the connecting rod offset parameter and the joint rotation angle parameter.
  • step S300 constructing the forward kinematics equation of the robotic arm according to the joint coordinate system model of the robotic arm includes the following steps:
  • the forward kinematics equation of the robot arm is obtained according to the homogeneous transformation matrix between a plurality of adjacent joint coordinate systems.
  • the fundamental solution to the forward kinematics of a robotic arm lies in the establishment of the functional relationship between the position and posture of the end effector and the joint variables. Based on the determination of the DH parameters of the robotic arm and the translation and rotation relationship between its coordinate systems, the forward kinematic equations of the six-degree-of-freedom robotic arm are constructed using a homogeneous transformation matrix.
  • the origin of the i-th joint coordinate system is marked as O i
  • the x-axis is marked as x i
  • the y-axis is marked as y i
  • the z-axis is marked as z i .
  • the origin of the i-1-th joint coordinate system is marked as O i-1
  • the x-axis is marked as x i-1
  • the y-axis is marked as y i-1
  • the z-axis is marked as z i-1 .
  • the origin of the i′-th joint coordinate system is marked as O i′
  • the x-axis is marked as x i′
  • the y-axis is marked as y i′
  • the z-axis is marked as z i′ .
  • the i-th joint coordinate system is connected to the i-1-th joint coordinate system through a i-1 , ⁇ i-1 , d i , ⁇ i .
  • the transformation can be regarded as a function of only one variable, and the other parameters are determined by the inherent properties of the robot, that is, the structural parameters.
  • the i-th joint coordinate system and the i-1-th joint coordinate system can be obtained by multiplying four homogeneous transformation matrices.
  • the step of calculating joint variables according to the end position, the forward kinematics equation and the inverse kinematics equation comprises:
  • the joint variables are calculated according to the forward kinematics equation, the inverse kinematics equation and the joint angle function.
  • the position of the w point at the fifth joint can be expressed as a function of the robot arm DH parameter d 6 and can also be expressed as the position of the robot end effector, which is obviously located at the intersection of the axes Z 3 , Z 4 , and Z 5.
  • the joint at the w point is called the wrist joint, and its coordinate system is constructed and named the wrist coordinate system, and the w point is used as the inverse kinematics equation.
  • the position of the wrist coordinate system can be obtained as follows:
  • the value of the joint variable ⁇ 1 is determined according to the quadrant where the projection of the robot end effector on the x b y b plane of the base coordinate system Ox b y b z b is located, and the joint variable ⁇ 1 can be obtained:
  • the third joint is the shoulder joint.
  • the robot arm can be divided into two states: wrist centered and wrist extended.
  • the joint variables ⁇ 2 and ⁇ 3 of these two states need to be calculated separately.
  • p a2H is the distance from the wrist joint to J2
  • p a3H is the distance from the wrist joint to J3
  • a3 is always 0.
  • the values of the joint variables ⁇ 2 and ⁇ 3 are:
  • the joint variables ⁇ 1 , ⁇ 2 , ⁇ 3 have been solved, and the homogeneous transformation matrix of the manipulator can be solved. Together with the homogeneous transformation matrix of the end effector of the manipulator, the homogeneous transformation matrix of the spherical wrist can be obtained:
  • trajectory planning is performed according to the joint variables to obtain the motion trajectory of the robotic arm, specifically: trajectory planning is performed according to the joint variables through a Cartesian space trajectory planning algorithm to obtain the motion trajectory of the robotic arm.
  • the motion trajectory can be understood as the mathematical function relationship between the end position of the actuator and time, and the robot arm motion trajectory algorithm is essentially the mathematical function relationship between the end position of the actuator and time.
  • Each joint reaches the expected angle from its original state within the specified time tf .
  • the initial state time is t 0
  • the initial angle is ⁇ 0
  • the expected angle is ⁇ f
  • the points (t 0 , t 0 ) and (t f , t f ) will be passed by the joint angle function.
  • X axis horizontal axis
  • Y axis vertical axis
  • Z axis vertical axis
  • the positive direction of the Z axis is the direction of the thumb
  • the four fingers are in the direction of the x axis.
  • the angle is turned about the y-axis to construct the Cartesian coordinates.
  • Determining the Cartesian space trajectory is intended to determine the trajectory function of the end effector in Cartesian space.
  • the function of the Cartesian variable changing with time is expressed by the trajectory spline function.
  • the expected posture of the moving body coordinate system relative to the calibration reference coordinate system is established to clarify each path point.
  • the path point is determined based on T relative to S.
  • the last step of solving the joint variables needs to be solved using inverse kinematics.
  • the Cartesian space trajectory planning has a large computing capacity. In order to obtain the inverse kinematics algorithm during real-time operation, we need to know the path speed updated in real time.
  • the change between the start and the target is compared to achieve posture interpolation.
  • the target point trajectory rotation matrix be R f
  • the start point posture rotation matrix is R 0
  • the matrix of the fixed axis is The rotation angle of the end effector of the robot arm around the fixed axis.
  • Arc planning is also a Cartesian space trajectory planning method.
  • the arc planning algorithm is now applied to the posture interpolation of the end of the robot arm.
  • the three points are connected to form a triangle with an inscribed circle and its center at o(x, y, z).
  • n trajectory points are generated, and an arc angle is divided into n parts.
  • the arc angle formed by the starting point and the i-th trajectory point is
  • the trajectory point i on the end effector starts from p 0 and rotates ⁇ i around the center o and the vertical trajectory plane axis to obtain the rotation axis arc ⁇ .
  • the unit vector in the direction of the rotation axis is
  • the robot arm is provided with a gripping claw, and the gripping claw is provided with a force sensor including a plurality of resistance strain gauges forming a resistance bridge;
  • the control method comprises:
  • the gripping claw is adjusted as a function of the clamping force and the torque.
  • the force sensor is first calibrated statically.
  • the static calibration method is to let the robot arm move in several postures and stop, obtain the sensor value when it is completely still, and calibrate itself and the load parameters using the least squares method.
  • the use of a six-dimensional force sensor can measure three-dimensional torque ( Mx , My , Mz ) and three-dimensional force ( Fx , Fy , Fz ).
  • Mx , My , Mz three-dimensional force
  • Fx , Fy , Fz three-dimensional force
  • the values of the zero points of the force vectors of the six-dimensional sensor in three dimensions are recorded as (F x0 , F y0 , F z0 ), and the values of the zero points of the three torque vectors are recorded as (M x0 , My y0 , M z0 ).
  • the spatial rectangular coordinate system of the sensor is defined as ⁇ C ⁇ .
  • the gravity of the six-dimensional sensor and the end effector is G, and the coordinates of its center of mass are (x, y, z).
  • the forces and torques of the gravity G in the three coordinate axis directions are (G x , G y , G z ), (M gx , M gy , M gz ).
  • the relationship between torque and force can be written as:
  • the force vectors in three directions measured by the six-dimensional sensor are ( Fx , Fy , Fz ), and the torque is ( Mx , My , Mz ). If there is no external force on the end effector, the force and torque are affected by the load and gravity, and we have and
  • A (F T F) -1 ⁇ F T M, which can obtain the coordinates (x, y, z) of the center of the load in the six-dimensional sensor coordinate system and the constants (k 1 , k 2 , k 3 ) values.
  • the zero point of the six-dimensional force sensor and the coordinates of the load center in the space coordinate system can be calculated.
  • the components of the external torque on the three coordinate axes of the sensor are:
  • the mechanical two-finger gripper at the end effector of the robotic arm uses an adaptive method to sense the mutual force generated by the fingers and external objects to determine whether the object is clamped. It then processes the value returned by the force sensor, calculates the appropriate force size, and uses force-position hybrid control to achieve stable clamping of objects of different shapes and sizes in a "dexterous hand" manner.
  • R 1 and R 3 are attached to the inner side of the finger, and R 2 and R 4 are attached to the outer side of the finger, so as to measure the torque of the two fingers.
  • the strain gauge When a finger of the end effector robot gripper contacts an object and generates external force, the strain gauge will deform and the finger will be subjected to torque.
  • the strains generated by the strain gauge are ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 respectively.
  • K is the sensitivity coefficient of the strain gauge.
  • the output voltage generated by the bridge is amplified and filtered and input into the end-effector manipulator control system. After internal A/D acquisition and conversion, the clamping force and its torque can be obtained. The information is fed back to the manipulator control system, and the corresponding mode is adjusted to grasp the target object in a "dexterous hand" manner.
  • An embodiment of the present application provides an electronic device, which includes a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the control method of the robotic arm as described above when executing the computer program.
  • the electronic device may be any intelligent terminal including a tablet computer, a vehicle-mounted computer, etc.
  • the processor can be implemented by a general-purpose CPU (Central Processing Unit), a microprocessor, an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits, etc., to execute relevant programs to implement the technical solutions provided in the embodiments of the present application.
  • a general-purpose CPU Central Processing Unit
  • a microprocessor e.g., a central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory can be implemented in the form of a read-only memory (ROM), a static storage device, a dynamic storage device, or a random access memory (RAM).
  • the memory can store an operating system and other application programs.
  • the relevant program code is stored in the memory, and the processor is called to execute the road pothole detection method of the embodiment of the present application.
  • the input/output interface is used to realize information input and output.
  • the communication interface is used to realize the communication interaction between this device and other devices. Communication can be achieved through wired methods (such as USB, network cable, etc.) or wireless methods (such as mobile network, WIFI, Bluetooth, etc.).
  • wired methods such as USB, network cable, etc.
  • wireless methods such as mobile network, WIFI, Bluetooth, etc.
  • the bus transmits information between the various components of the device (such as the processor, memory, input/output interface, and communication interface).
  • the processor, memory, input/output interface, and communication interface communicate with each other within the device through the bus.
  • An embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to execute the control method of the robot arm as described above.
  • computer storage medium includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules or other data).
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, disk storage or other magnetic storage devices, or any other medium that may be used to store desired information and may be accessed by a computer.
  • communication media typically contain computer-readable instructions, data structures, program modules, or other data in modulated data signals such as carrier waves or other transmission mechanisms, and may include any information delivery medium.
  • description of reference terms "one embodiment/example”, “another embodiment/example” or “certain embodiments/examples” and the like means that the specific features, structures, materials or characteristics described in conjunction with the embodiments or examples are included in at least one embodiment or example of the present application.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any one or more embodiments or examples in a suitable manner.
  • the units described above as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Manipulator (AREA)

Abstract

本申请实施例提供了代步车、机械臂的控制方法、电子设备及存储介质,其中控制方法包括获取机械臂的结构参数;根据结构参数构建关节坐标系,联合关节坐标系构建关节坐标系模型;根据关节坐标系模型构建正运动学方程和逆运动学方程;根据目标图像得到末端位姿,根据末端位姿、正运动学方程和逆运动学方程解算出关节变量;根据关节变量进行轨迹规划得到运动轨迹;根据运动轨迹控制机械臂运动;能够实现高精准、高灵活性、低延迟的自主机械臂运动。

Description

代步车、机械臂的控制方法、电子设备及存储介质 技术领域
本申请实施例涉及但不限于机械臂技术领域,尤其涉及代步车、机械臂的控制方法、电子设备及存储介质。
背景技术
目前的部分机械臂是按照预设定的路线进行运行,则只能完成预设定的有限工作和任务。对于不同的任务,需要进行不同的编程和调试来进行应对,并且对于复杂的工作和环境则难以下手,存在智能化不足的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例旨在至少解决现有技术中存在的技术问题之一,本申请实施例提供了机械臂、控制方法、电子设备及存储介质。
本申请的第一方面的实施例,一种机械臂的控制方法,包括:
获取所述机械臂的结构参数;
根据所述结构参数构建所述机械臂的每个关节的关节坐标系,联合多个所述关节坐标系构建所述机械臂的关节坐标系模型;
根据所述机械臂的关节坐标系模型构建所述机械臂的正运动学方程和逆运动学方程;
根据摄像头获取的目标图像得到机械臂的末端位姿,根据所述末端位姿、所述正运动学方程和所述逆运动学方程解算出关节变量;
根据所述关节变量进行轨迹规划,得到所述机械臂的运动轨迹;
根据所述运动轨迹控制所述机械臂进行运动。
本申请的第一方面的某些实施例,所述根据所述结构参数构建所述机械臂的每个关节的关节坐标系,包括:
对每个关节,以关节的旋转轴线作为关节坐标系的Z轴,相邻两个关节轴线的公垂线与前一个Z轴的交点作为关节坐标系的原点,公垂线所在直线方向作为关节坐标系的X轴,根据所述关节坐标系的Z轴、所述关节坐标系的X轴和所述关节坐标系的原点按照右手定则确定关节坐标系的Y轴,进而构建关节坐标系。
本申请的第一方面的某些实施例,所述联合多个所述关节坐标系构建所述机械臂的关节坐标系模型,包括:
联合多个所述关节坐标系确定连杆长度参数、连杆扭转参数、连杆偏移参数和关节转角参数;
根据所述连杆长度参数、所述连杆扭转参数、所述连杆偏移参数和所述关节转角参数构建所述机械臂的关节坐标系模型。
本申请的第一方面的某些实施例,根据所述机械臂的关节坐标系模型构建所述机械臂的正运动学方程,包括:
根据所述机械臂的关节坐标系模型得到多个相邻关节坐标系之间的齐次变换矩阵;
根据多个相邻关节坐标系之间的齐次变换矩阵得到所述机械臂的正运动学方程。
本申请的第一方面的某些实施例,所述根据所述末端位姿、所述正运动学方程和所述逆运动学方程解算出关节变量,包括:
根据所述末端位姿设置各关节的期望位姿;
根据各关节的初始位姿和所述期望位姿构建关节角度函数;
根据所述正运动学方程、所述逆运动学方程和所述关节角度函数结算出关节变量。
本申请的第一方面的某些实施例,所述根据所述关节变量进行轨迹规划,得到所述机械臂的运动轨迹,具体为:通过笛卡尔空间轨迹规划算法根据所述关节变量进行轨迹规划,得到所述机械臂的运动轨迹。
本申请的第一方面的某些实施例,所述机械臂设置有抓取爪,所述抓取爪设有包括构成电阻桥的多片电阻应变片的力传感器;
所述控制方法包括:
对所述力传感器进行静态标定;
获取在所述抓取爪处于抓取情况下的经静态标定的力传感器的输出电压;
根据所述输出电压得到所述抓取爪的夹持力和力矩;
根据所述夹持力和所述力矩调节所述抓取爪。
本申请的第二方面的实施例,一种机械臂,设有多个关节,所述机械臂的首端设有摄像头,所述机械臂的末端设有基座;所述机械臂应用如本申请的第一方面的实施例所述的控制方法进行控制。
本申请的第三方面的实施例,一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如本申请的第一方面的实施例所述的机械臂的控制方法。
本申请的第四方面的实施例,一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如本申请的第一方面的实施例所述的机械臂的控制方法。
本申请的实施例通过获取机械臂的结构参数;根据结构参数构建关节坐标系,联合关节坐标系构建关节坐标系模型;根据关节坐标系模型构建正运动学方程和逆运动学方程;根据目标图像得到末端位姿,根据末端位姿、正运动学方程和逆运动学方程解算出关节变量;根据关节变量进行轨迹规划得到运动轨迹;根据运动轨迹控制机械臂运动;能够实现高精准、高灵活性、低延迟的自主机械臂运动。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本发明的实施例所提供的机械臂的控制方法的步骤图;
图2是手眼一体的机械臂的标定示意图;
图3是机械臂的关节坐标系的示意图;
图4是机械臂的腕关节坐标系的示意图;
图5是机械臂处于手腕前伸状态的几何状态的示意图;
图6是机械臂处于手腕居中状态的几何状态的示意图;
图7是力传感器的坐标系的示意图;
图8是力传感器的电路图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
下面结合附图,对本申请实施例作进一步阐述。
本申请的实施例,提供了一种机械臂。
机械臂设有多个关节,具体地,机械臂为六自由度机械臂。所述机械臂的首端设有摄像头,所述机械臂的末端设有基座,即机械臂为手眼一体的类型。手眼一体的机械臂是将摄像头的位置是固定在机械臂上的,摄像头随着机械臂的运动而运动。
机械臂采用如下的控制方法进行控制。
参照图1,控制方法包括但不限于以下步骤:
步骤S100,获取机械臂的结构参数;
步骤S200,根据结构参数构建机械臂的每个关节的关节坐标系,联合多个关节坐标系构建机械臂的关节坐标系模型;
步骤S300,根据机械臂的关节坐标系模型构建机械臂的正运动学方程和逆运动学方程;
步骤S400,根据摄像头获取的目标图像得到机械臂的末端位姿,根据末端位姿、正运动学方程和逆运动学方程解算出关节变量;
步骤S500,根据关节变量进行轨迹规划,得到机械臂的运动轨迹;
步骤S600,根据运动轨迹控制机械臂进行运动。
参照图2,首先,需要对机械臂进行手眼标定,通过手眼标定技术让机器人与视觉系统结合并获取信息,以确定机器人与摄像头坐标系之间的相对关系。
在手眼标定过程中,通过使机械臂从第一位置运动至第二位置,且使得机械臂上的摄像头在第一位置和第二位置都可以看到标定板。
通过第一位置和第二位置构建空间变换回路,可以得到以下式子:由该式变换可以得到:即得到一个AB=BC问题。
对于变换A,只需知道机械臂在当前状态下每个关节的角度,即可计算出A变换。
对于变换C,在摄像头坐标系下,空间中三维点(X,Y,Z,1)_c与图像上对应的二维点(x,y)_c满足以下关系:其中,变换矩阵就是内参矩阵,其包含摄像头焦距等与摄像头内部结构有关的参数,然后将物体坐标从世界坐标系变换到摄像头坐标系。
摄像头坐标系可以表示如下:
完整的摄像头模型如下:
对于步骤S200,所述根据所述结构参数构建所述机械臂的每个关节的关节坐标系,具体包括以下步骤:
对每个关节,以关节的旋转轴线作为关节坐标系的Z轴,相邻两个关节轴线的公垂线与前一个Z轴的交点作为关节坐标系的原点,公垂线所在直线方向作为关节坐标系的X轴,根据所述关节坐标系的Z轴、所述关节坐标系的X轴和所述关节坐标系的原点按照右手定则确定关节坐标系的Y轴,进而构建关节坐标系。
具体地,对于指定X轴,Z轴为斜线情况是两关节处于相交和不平行状态,有最短一条正交任意两条斜线的公垂线,其方向上的本地参考坐标系X轴被定义,假如an作为Zn和Zn-1间的公垂线,则Xn的方向将沿an。对于指定Z轴,Z轴根据关节是否旋转来决定是否进行右手规则方向旋转,Z轴按关节是滑动条件下沿着直线运动方向,关节变量的含义为旋转角绕Z轴旋转或者为沿Z轴连接长度d。
所述联合多个所述关节坐标系构建所述机械臂的关节坐标系模型,具体包括以下步骤:
联合多个所述关节坐标系确定连杆长度参数、连杆扭转参数、连杆偏移参数和关节转角参数;
根据所述连杆长度参数、所述连杆扭转参数、所述连杆偏移参数和所述关节转角参数构建所述机械臂的关节坐标系模型。
利用除X轴方向和原点位置的四个参数表示原六轴的坐标变化,这四个参数决定了第i个关节坐标系关于第i-1个关节坐标系的位置和方向。这四个参数分别是连杆长度参数ai-1、连杆扭转参数αi-1、连杆偏移参数di和关节转角参数θi。连杆长度参数表示Oi与Oi’之间的距离;连杆扭转参数表示轴Zi与轴Zi-1之间的夹角;连杆偏移参数表示Oi’在第i-1个关节坐标系中的Z坐标;连杆偏移参数表示轴Xi与轴Xi-1之间的夹角。根据所述连杆长度参数、所述连杆扭转参数、所述连杆偏移参数和所述关节转角参数构建所述机械臂的关节坐标系模型。
对于步骤S300,根据所述机械臂的关节坐标系模型构建所述机械臂的正运动学方程,包括以下步骤:
根据所述机械臂的关节坐标系模型得到多个相邻关节坐标系之间的齐次变换矩阵;
根据多个相邻关节坐标系之间的齐次变换矩阵得到所述机械臂的正运动学方程。
机械臂的正运动学求解根本在于对末端执行器的位姿与关节变量函数关系的确立,并根据机械臂DH参数的确定和其各坐标系之间的平移、旋转关系,使用齐次变换矩阵构建六自由度机械臂的正运动学方程。
参照图3,可以理解的是,第i个关节坐标系的原点标记为Oi,x轴标记为xi,y轴标记为yi,z轴标记为zi。同样地,第i-1个关节坐标系的原点标记为Oi-1,x轴标记为xi-1,y轴标记为yi-1,z轴标记为zi-1。第i′个关节坐标系的原点标记为Oi′,x轴标记为xi′,y轴标记为yi′,z轴标记为zi′
第i个关节坐标系与第i-1个关节坐标系通过ai-1、αi-1、di、θi联系起来、对于机械臂来说,变换可以看成只有一个变量的函数,而其他参数是由机械臂的固有属性,即结构参数决定的。第i个关节坐标系与第i-1个关节坐标系可由四个齐次变换矩阵相乘得到。
齐次变换矩阵的一般表达式为:
设si=sinθi,sαi=sinαi,ci=cosθi,cαi=cosαi;利用坐标变换理论、结构参数以及连杆变换式子可得相邻连杆之间的变换矩阵:
由以上式子可以得到机械臂的正运动学方程,根据变换矩阵就可以得到机械臂的末端矩阵的关系式为:
所述根据所述末端位姿、所述正运动学方程和所述逆运动学方程解算出关节变量,包括:
根据所述末端位姿设置各关节的期望位姿;
根据各关节的初始位姿和所述期望位姿构建关节角度函数;
根据所述正运动学方程、所述逆运动学方程和所述关节角度函数结算出关节变量。
参照图4,对于六自由度机械臂,第五个关节处的w点位置可以表示成一个机械臂DH参数d6的函数并且也可以表示为机械臂末端执行器的位姿,其处于的位置明显为轴Z3、Z4、Z5的交点。w点的关节被称为腕关节,构建其坐标系并命名为腕部坐标系,将w点作为构建逆运动学方程。
将第五个关节和第六个关节之间与末端执行器进行齐次变换矩阵,可以得到腕部坐标系的位置,为:
根据机械臂末端执行器在基坐标系O-xbybzb的xbyb平面上的投影所在象限确定关节变量θ1的取值,可得到关节变量θ1
参照图5,第三个关节为肩关节,按照腕部坐标系的位置向量pw在基坐标系xb轴上的投影长度px与DH参数a1的差值符号,将机械臂的形态有两种分为手腕居中与手腕前伸,这两种状态的关节变量θ2、θ3需要分别进行计算。pa2H为腕关节到J2的距离,pa3H为腕关节到J3的距离,a3始终为0。根据余弦定理与勾股定理求出关节变量θ2、θ3的数值,有:
参照图6,当px-a1<0时,机械臂处于手腕居中状态,关节变量θ2和θ3数值如下:
已求解关节变量θ1、θ2、θ3,由此机械臂的齐次变换矩阵可以解出,与机械臂末端执行器的齐次变换矩阵一同计算可得到球形腕的齐次变换矩阵:
对于关节变量θ5,当腕关节朝上时,有当腕关节朝下时,有 对于关节变量θ4,当θ5=θ5,I时,当θ5=θ5,II时,对于关节变量θ6,当θ5=θ5,I且r32<0时,有
本申请的某些实施例,所述根据所述关节变量进行轨迹规划,得到所述机械臂的运动轨迹,具体为:通过笛卡尔空间轨迹规划算法根据所述关节变量进行轨迹规划,得到所述机械臂的运动轨迹。
动作轨迹可以理解为执行器末端位姿与时间形成的数学函数关系,而机械臂动作轨迹算法根本就为执行器末端位姿与时间的数学函数关系。
以点对点角度观看各个关节,每个关节从原状态角度在规定tf时间内达到期望角度,开始设定已知的各关节原初始位姿和期望位姿,再经过逆运动学算法求得初始状态和期望状态的关节变量。
设初状态时间为t0,使用三次多项式将各个关节在(t0,tf)时刻内角度与时间关系进行表达,初始角度为θ0,期望角度为θf,点(t0,t0)和(tf,tf)将被关节角度函数所通过。
确定四个约束条件以此确定三次多项式插值算法的四个系数。已知机械臂初状态和末状态这两个约束条件,有θ(t0)=θ0,θ(tf)=θf。其他两个约束条件为各关节角速度在t0与tf均为零的时刻,有三次多项式插值算式为θ(t)=a0+a1t+a2t2+a3t3。取三次多项式插值算式得一次导数与二次导数表示关节角速度与关节角加速度,有
将该上式与四个约束条件联立可得即为末端机械臂位姿与时间之间关系的函数,有
三维空间中,过以O点为原点的三条相互垂直且长度相同的数轴,分别称为横轴(X轴)、纵轴(y轴)、竖轴(z轴)的坐标轴,符合右手规则,Z轴的正向是拇指的指向,四指以x轴的角度转向y轴,构建笛卡尔坐标。
确定笛卡尔空间轨迹意旨在于确定末端执行器在笛卡尔空间轨迹函数,笛卡尔变量随时间变化的函数是由轨迹样条函数表达,确立运动体坐标系相对于标定参照物坐标系的期望位姿而明确每个路径点,路径点是根据T相对于S确定的,空间路径生成后,最后一步的关节变量求解需要运用逆运动学求解,笛卡尔空间轨迹规划运算容量大,为了求出实时运行过程中逆运动学算法,我们要知道实时更新的路径速度。
直线规划,对应的运动轨迹通常是空间中两个距离较远点间末端执行器作业过程。首先对其位置进行插补,已知起始和目标点坐标,确定两点向量,笛卡尔空间距离就为该向量模的值,取轨迹为直线的N各轨迹点,则起始点指向第i个路径点向量为进而第i个轨迹点的末端执行器上的坐标为[xi yi zi]=[x0 y0 z0]+||pf-p0||pi
通过将工具坐标系绕固定轴旋转比拟出起始与目标的变化,实现姿态的插补。设目标点轨迹旋转矩阵为Rf,则起始点姿态旋转矩阵为R0,固定轴的矩阵为 机械臂末端执行器绕固定轴旋转角度为
圆弧规划也是一种笛卡尔空间轨迹规划方法,现对机械臂末端的姿态插补应用圆弧规划算法,设p0(x0,y0,z0)、pm(xm,ym,zm)、pf(xf,yf,zf)分别为圆弧轨迹的起始、中间和目标点,将三点连接构成轨迹为内接圆圆心为o(x,y,z)的三角形,则满足(x-x0)2+(y-y0)2+(z-z0)2=(x-xm)2+(y-ym)2+(z-zm)2和(x-xm)2+(y-ym)2+(z-zm)2=(x-xf)2+(y-yf)2+(z-zf)2。整理后,有
设轨迹圆的平面方程为Ax+By+Cz=1和转化为矩阵有进而可以求得圆心坐标。
设有n个轨迹点生成,将一个圆弧角度分n份,起始的点与所求第i个轨迹点所形成的弧线角度是
末端执行器上的轨迹点i从p0出发,绕圆心o和垂直轨迹平面轴旋转θi得到旋转轴圆弧ω。
旋转轴方向上的单位向量为
旋转矩阵作为该过程变化,则旋转矩阵为 其中,ωxy=ωx+ωy,cθi=cosθy
本申请的某些实施例,所述机械臂设置有抓取爪,所述抓取爪设有包括构成电阻桥的多片电阻应变片的力传感器;
所述控制方法包括:
对所述力传感器进行静态标定;
获取在所述抓取爪处于抓取情况下的经静态标定的力传感器的输出电压;
根据所述输出电压得到所述抓取爪的夹持力和力矩;
根据所述夹持力和所述力矩调节所述抓取爪。
参照图7,首先对力传感器进行静态标定,静态标定法具体是让机械臂运动几个姿态与停止,获取完全静止时传感器数值跟最小二乘法标定自身与负载参数。在三维空间中任何标定的坐标系中,使用六维力传感器能够测量三维力矩(Mx,My,Mz)与三维力(Fx,Fy,Fz)。使机械臂处于静态时,其力和力矩由六维传感器自身误差、传感器与末端执行器重力和末端执行器所受的接触力组成。所以我们需要通过静态标定的方法在末端执行器夹取外部物体所产生接触力时,消除六维传感器自身误差与重力影响,以此精准得到自身与外部接触力信息。
使六维传感器三个维度的力向量的零点处的值记为(Fx0,Fy0,Fz0),三个力矩向量零点处的值记为(Mx0,My0,Mz0),传感器的空间直角坐标系定义为{C}。六维传感器与末端执行器的重力为G,其质心坐标为(x,y,z),重力G在三个坐标轴方向的作用力以及力矩为 (Gx,Gy,Gz),(Mgx,Mgy,Mgz)。力矩和力之间关系式可以写为:
把六维传感器测出的三个方向的力向量为(Fx,Fy,Fz),其力矩为(Mx,My,Mz),如果末端执行器上没有外部作用力,则力和力矩由负载和重力两部分影响,有
利用N各不同姿态表示机械臂末端执行器的位姿,得到N组六维传感器数值,M=F·A,其中A=[x,y,z,k1,k2,k3]T。有
矩阵最小二乘法的解是A=(FTF)-1·FTM,可以求得负载的中心在六维传感器坐标系中坐标的(x,y,z)与常数(k1,k2,k3)值。
设空间坐标系为{O},机械臂基坐标系为{B},则机械臂基坐标系与空间坐标系的姿态变换矩阵为空间坐标系中,重力表示为:WG=[0,0,-g]T
在六维力传感器坐标系{C}中,重力向量表示为:
则有:
利用N个不同姿态对应N组传感器数据可得出,f=R·B,计算出B=[0,0,-g,Fx0,Fy0,Fz0]T
矩阵与最小二乘式计算得:进而有:
由此看出矩阵最小二乘法的解是B=(RTR)-1·RTf,基于数据从而解算出传感器力的零点值,并且我们知道重力大小G,把已经算出的负载中心在六维传感器坐标系中坐标的(x,y,z)与常数(k1,k2,k3)值,代入合并得:
基于所上得以解算出六维力传感器的零点、负载重心得空间坐标系中的坐标。
则外部力在传感器三个坐标轴上的分量为:
外部力矩在传感器三个坐标轴上的分量为:
机械臂末端执行器的机械二指手爪利用自适应方法,能感知手指与外界物体所产生相互的力来判断是否夹取到物体,然后根据力传感器返回数值进行处理,解算出合适力大小并使用力位混合控制以“灵巧手”方式实现稳定夹持不同形状、大小的物体。
参照图8,在手指的两端都贴了四片一样的电阻应变片,构成全桥电阻应变片,手指内侧贴上R1和R3,手指外侧贴上R2和R4,以此测出两个手指所受力矩。
当末端执行器机械手爪一个手指接触到物体产生外力时,应变片会发生形变,手指受到力矩。应变片产生应变分别为ε1、ε2、ε3、ε4,K为应变片灵敏系数,当输入加U1电压时,电桥产生U0输出电压为:
当机械手爪与被夹物体产生接触力越大,应变片形变就越大,同时由公式得出U0也会越大。最后电桥所产生的输出电压经过放大和滤波输入末端执行器机械爪控制系统,再经内部A/D采集转化,便可以得到夹持力和其力矩大小,信息反馈到机械臂控制系统,并调整相应模式以“灵巧手”方式抓取目标物体。
本申请的实施例,提供了一种电子设备。电子设备包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的机械臂的控制方法。
该电子设备可以为包括平板电脑、车载电脑等任意智能终端。
总体而言,对于电子设备的硬件结构,处理器可以采用通用的CPU(Central Processing Unit,中央处理器)、微处理器、应用专用集成电路(Application Specific Integrated Circuit,ASIC)、或者一个或多个集成电路等方式实现,用于执行相关程序,以实现本申请实施例所提供的技术方案。
存储器可以采用只读存储器(Read Only Memory,ROM)、静态存储设备、动态存储设备或者随机存取存储器(Random Access Memory,RAM)等形式实现。存储器可以存储操作系统和其他应用程序,在通过软件或者固件来实现本说明书实施例所提供的技术方案时,相关的程序代码保存在存储器中,并由处理器来调用执行本申请实施例的道路坑洞检测方法。
输入/输出接口用于实现信息输入及输出。
通信接口用于实现本设备与其他设备的通信交互,可以通过有线方式(例如USB、网线等)实现通信,也可以通过无线方式(例如移动网络、WIFI、蓝牙等)实现通信。
总线在设备的各个组件(例如处理器、存储器、输入/输出接口和通信接口)之间传输信息。处理器、存储器、输入/输出接口和通信接口通过总线实现彼此之间在设备内部的通信连接。
本申请的实施例,提供了一种计算机可读存储介质。计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述的机械臂的控制方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。在本说明书的上述描述中,参考术语“一个实施方式/实施例”、“另一实施方式/实施例”或“某些实施方式/实施例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
尽管已经示出和描述了本申请的实施方式,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本申 请的范围由实施例及其等同物限定。
以上是对本申请的较佳实施进行了具体说明,但本申请并不限于实施例,熟悉本领域的技术人员在不违背本申请精神的前提下可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本实施例所限定的范围内。

Claims (10)

  1. 一种机械臂的控制方法,包括:
    获取所述机械臂的结构参数;
    根据所述结构参数构建所述机械臂的每个关节的关节坐标系,联合多个所述关节坐标系构建所述机械臂的关节坐标系模型;
    根据所述机械臂的关节坐标系模型构建所述机械臂的正运动学方程和逆运动学方程;
    根据摄像头获取的目标图像得到机械臂的末端位姿,根据所述末端位姿、所述正运动学方程和所述逆运动学方程解算出关节变量;
    根据所述关节变量进行轨迹规划,得到所述机械臂的运动轨迹;
    根据所述运动轨迹控制所述机械臂进行运动。
  2. 根据权利要求1所述的机械臂的控制方法,其特征在于,所述根据所述结构参数构建所述机械臂的每个关节的关节坐标系,包括:
    对每个关节,以关节的旋转轴线作为关节坐标系的Z轴,相邻两个关节轴线的公垂线与前一个Z轴的交点作为关节坐标系的原点,公垂线所在直线方向作为关节坐标系的X轴,根据所述关节坐标系的Z轴、所述关节坐标系的X轴和所述关节坐标系的原点按照右手定则确定关节坐标系的Y轴,进而构建关节坐标系。
  3. 根据权利要求2所述的机械臂的控制方法,其特征在于,所述联合多个所述关节坐标系构建所述机械臂的关节坐标系模型,包括:
    联合多个所述关节坐标系确定连杆长度参数、连杆扭转参数、连杆偏移参数和关节转角参数;
    根据所述连杆长度参数、所述连杆扭转参数、所述连杆偏移参数和所述关节转角参数构建所述机械臂的关节坐标系模型。
  4. 根据权利要求1所述的机械臂的控制方法,其特征在于,根据所述机械臂的关节坐标系模型构建所述机械臂的正运动学方程,包括:
    根据所述机械臂的关节坐标系模型得到多个相邻关节坐标系之间的齐次变换矩阵;
    根据多个相邻关节坐标系之间的齐次变换矩阵得到所述机械臂的正运动学方程。
  5. 根据权利要求1所述的机械臂的控制方法,其特征在于,所述根据所述末端位姿、所述正运动学方程和所述逆运动学方程解算出关节变量,包括:
    根据所述末端位姿设置各关节的期望位姿;
    根据各关节的初始位姿和所述期望位姿构建关节角度函数;
    根据所述正运动学方程、所述逆运动学方程和所述关节角度函数结算出关节变量。
  6. 根据权利要求1所述的机械臂的控制方法,其特征在于,所述根据所述关节变量进行轨迹规划,得到所述机械臂的运动轨迹,具体为:通过笛卡尔空间轨迹规划算法根据所述关节变量进行轨迹规划,得到所述机械臂的运动轨迹。
  7. 根据权利要求1所述的机械臂的控制方法,其特征在于,所述机械臂设置有抓取爪,所述抓取爪设有包括构成电阻桥的多片电阻应变片的力传感器;
    所述控制方法包括:
    对所述力传感器进行静态标定;
    获取在所述抓取爪处于抓取情况下的经静态标定的力传感器的输出电压;
    根据所述输出电压得到所述抓取爪的夹持力和力矩;
    根据所述夹持力和所述力矩调节所述抓取爪。
  8. 一种代步车,其特征在于,所述代步车设有机械臂,所述机械臂设有多个关节,所述 机械臂的首端设有摄像头,所述机械臂的末端设有基座;所述机械臂应用如权利要求1至7任一项所述的控制方法进行控制。
  9. 一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7中任一项所述的机械臂的控制方法。
  10. 一种计算机可读存储介质,其特征在于,存储有计算机可执行指令,所述计算机可执行指令用于执行如权利要求1至7中任一项所述的机械臂的控制方法。
PCT/CN2023/138812 2023-02-03 2023-12-14 代步车、机械臂的控制方法、电子设备及存储介质 WO2024159941A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310077249.1 2023-02-03
CN202310077249.1A CN116038647A (zh) 2023-02-03 2023-02-03 代步车、机械臂的控制方法、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024159941A1 true WO2024159941A1 (zh) 2024-08-08

Family

ID=86114627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138812 WO2024159941A1 (zh) 2023-02-03 2023-12-14 代步车、机械臂的控制方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN116038647A (zh)
WO (1) WO2024159941A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116038647A (zh) * 2023-02-03 2023-05-02 五邑大学 代步车、机械臂的控制方法、电子设备及存储介质
CN117325166B (zh) * 2023-10-16 2024-07-23 北京理工大学前沿技术研究院 针对行进车辆的机械臂控制方法、系统、介质及设备
CN117817654A (zh) * 2023-11-23 2024-04-05 佛山科学技术学院 一种重载机器人运动规划方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106945023A (zh) * 2017-04-19 2017-07-14 华中农业大学 掏膛机械手、臂以及方法
CN107589934A (zh) * 2017-07-24 2018-01-16 大连理工大学 一种关节型机械臂逆运动学解析解的求取方法
CN109895101A (zh) * 2019-04-09 2019-06-18 大连理工大学 一种关节型机械臂逆运动学数值唯一解求取方法
US20190184560A1 (en) * 2017-01-19 2019-06-20 Beijing University Of Technology A Trajectory Planning Method For Six Degree-of-Freedom Robots Taking Into Account of End Effector Motion Error
CN112084576A (zh) * 2020-08-17 2020-12-15 盐城工学院 车载机械臂运动学建模方法
CN113127989A (zh) * 2021-04-22 2021-07-16 中国科学院沈阳自动化研究所 一种六自由度机械臂逆运动学解析求解控制方法
CN113601509A (zh) * 2021-08-16 2021-11-05 安徽元古纪智能科技有限公司 一种多自由度机械臂柔性控制方法和系统
CN115648200A (zh) * 2022-09-08 2023-01-31 杭州景吾智能科技有限公司 复合型机器人协同控制方法及系统
CN116038647A (zh) * 2023-02-03 2023-05-02 五邑大学 代步车、机械臂的控制方法、电子设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111538949B (zh) * 2020-07-10 2020-10-16 深圳市优必选科技股份有限公司 冗余机器人逆运动学求解方法、装置和冗余机器人
CN112276940A (zh) * 2020-09-23 2021-01-29 天津大学 一种六自由度非球型手腕机器人逆运动学求解方法
CN215318773U (zh) * 2021-04-01 2021-12-28 山东张弛电气科技有限公司 一种适用于不同厚度板料抓取的机械手爪
CN216050390U (zh) * 2021-10-29 2022-03-15 常州坤维传感科技有限公司 一种机器人手指压力传感器
CN114131601B (zh) * 2021-12-02 2024-07-30 武汉科技大学 偏置腕6r工业机械手笛卡尔轨迹跟踪逆运动学算法
CN114952859B (zh) * 2022-06-20 2024-02-23 成都飞机工业(集团)有限责任公司 机器人逆解方法、装置、设备及介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190184560A1 (en) * 2017-01-19 2019-06-20 Beijing University Of Technology A Trajectory Planning Method For Six Degree-of-Freedom Robots Taking Into Account of End Effector Motion Error
CN106945023A (zh) * 2017-04-19 2017-07-14 华中农业大学 掏膛机械手、臂以及方法
CN107589934A (zh) * 2017-07-24 2018-01-16 大连理工大学 一种关节型机械臂逆运动学解析解的求取方法
CN109895101A (zh) * 2019-04-09 2019-06-18 大连理工大学 一种关节型机械臂逆运动学数值唯一解求取方法
CN112084576A (zh) * 2020-08-17 2020-12-15 盐城工学院 车载机械臂运动学建模方法
CN113127989A (zh) * 2021-04-22 2021-07-16 中国科学院沈阳自动化研究所 一种六自由度机械臂逆运动学解析求解控制方法
CN113601509A (zh) * 2021-08-16 2021-11-05 安徽元古纪智能科技有限公司 一种多自由度机械臂柔性控制方法和系统
CN115648200A (zh) * 2022-09-08 2023-01-31 杭州景吾智能科技有限公司 复合型机器人协同控制方法及系统
CN116038647A (zh) * 2023-02-03 2023-05-02 五邑大学 代步车、机械臂的控制方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN116038647A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2024159941A1 (zh) 代步车、机械臂的控制方法、电子设备及存储介质
CN109895101B (zh) 一种关节型机械臂逆运动学数值唯一解求取方法
EP1728600B1 (en) Controlling the trajectory of an effector
JP2698660B2 (ja) マニピュレータの制御方法及び制御装置並びにマニピュレータ装置
WO2020237407A1 (zh) 机器人运动学参数自标定方法、系统及存储装置
JP2019509907A (ja) 機械システムの制御方法,機械システム用コントローラ,ロボットマニピュレータ,および非一時的なコンピュータ可読記憶媒体
CN114378809B (zh) 软体机器人操纵器的无奇点运动学参数化
JP2021091013A (ja) 制御装置、ロボット装置、シミュレーション装置、制御方法、シミュレーション方法、物品の製造方法、プログラム及び記録媒体
Cheng et al. Manipulation with suction cups using external contacts
Jiang et al. An integrated inverse kinematic approach for the 7-DOF humanoid arm with offset wrist
Boubekri et al. Robotic grasping: gripper designs, control methods and grasp configurations–a review of research
CN112476435B (zh) 重力加速度方向的标定方法、标定装置及存储介质
Mishra et al. Dynamic modelling of an elephant trunk like flexible bionic manipulator
Misra et al. Kinematic and dynamic analysis of an industrial six-axis robotic manipulator
Krishnan et al. Kinematic analysis and validation of an industrial robot manipulator
Zefran et al. Optimal trajectories and force distribution for cooperating arms
JP2017131990A (ja) 干渉回避方法
Kim et al. Inverse kinematics of a redundant manipulator based on conformal geometry using geometric approach
WO1991003779A1 (en) Robot control method
Boldareva et al. Development of a mechatronic systems module control system based on MEMS orientation sensors
KR102624551B1 (ko) 회전 변위의 제약이 없는 다관절 로봇의 작업공간 유연제어방법
Chappell et al. Kinematic control of a three-fingered and fully adaptive end-effector using a Jacobian matrix
Chandra et al. Dual-arm coordination using dual quaternions and virtual mechanisms
Akbari et al. Kinematic Modeling of a Spatial Soft Robot by an Improved Analytical Method Based on Serial Robots
Zakharov et al. Positional Control of 6-DoF Robot Based on an Optimal Inverse Kinematics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23919503

Country of ref document: EP

Kind code of ref document: A1