[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024159377A1 - 一种信道信息传输方法及装置 - Google Patents

一种信道信息传输方法及装置 Download PDF

Info

Publication number
WO2024159377A1
WO2024159377A1 PCT/CN2023/073895 CN2023073895W WO2024159377A1 WO 2024159377 A1 WO2024159377 A1 WO 2024159377A1 CN 2023073895 W CN2023073895 W CN 2023073895W WO 2024159377 A1 WO2024159377 A1 WO 2024159377A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel information
information
channel
threshold
indication
Prior art date
Application number
PCT/CN2023/073895
Other languages
English (en)
French (fr)
Inventor
何佳
李先进
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2023/073895 priority Critical patent/WO2024159377A1/zh
Publication of WO2024159377A1 publication Critical patent/WO2024159377A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of communication technology, and in particular to a channel information transmission method and device.
  • the transmission of channel information is crucial to communication performance.
  • codebook-based channel information feedback is used, which has a performance gap compared to the ideal channel information feedback.
  • the feedback overhead of codebook-based channel information feedback is huge, and the system design complexity is high.
  • the channel information is reported by differential reporting between ports/subbands or sparse expression of orthogonal bases between ports/subbands to reduce the overhead of the terminal device reporting channel information.
  • the channel information results between ports/subbands are quite different, the effect of reducing the overhead achieved by reporting channel information in the above manner is poor, and it is very likely to reduce the transmission performance of the system.
  • the present application provides a channel information transmission method and a communication device, which are conducive to reducing the overhead of transmitting (or understanding as feedback or sending) channel information.
  • the present application provides a channel information transmission method, which can be applied to a second device, and the second device can be a communication device (for example, a terminal device or a network device) or a chip on a communication device, or a device matching the communication device.
  • the second device receives first indication information, and the first indication information is used to indicate a first channel information prediction value; the second device measures a reference signal from the first device to obtain the first channel information; further, the second device sends the second channel information to the first device according to the first channel information prediction value, the first threshold corresponding to the first channel information prediction value, and the first channel information.
  • the second device transmits the measured channel information by a predicted value (i.e., the first channel information predicted value) that is more in line with the measured channel information (i.e., the first channel information), so that the number of bits of the transmitted channel information (i.e., the second channel information) is less than the number of bits of the measured channel information, and the first device can still accurately determine the measured channel information based on the transmitted channel information.
  • the overhead of the second device transmitting channel information can be reduced through the method described in the first aspect.
  • the second channel information is the difference between the first channel information and the predicted value of the first channel information; or, if the difference between the first channel information and the predicted value of the first channel information is greater than the first threshold, the second channel information is the first channel information.
  • the second device can determine whether the predicted value of the first channel information is valid according to the first threshold.
  • the second channel information transmitted by the second device is less than the measured channel information (i.e., the first channel information); when the predicted value of the first channel information is invalid (i.e., the difference between the first channel information and the predicted value of the first channel information is greater than the first threshold), the second channel information transmitted by the second device is less than the measured channel information (i.e., the first channel information). This makes the way in which the second device transmits channel information more flexible.
  • the second device receives second indication information, where the second indication information is used to indicate the first threshold.
  • the second indication information is used to indicate the first threshold.
  • the second indication information is further used to indicate a scale factor corresponding to the first threshold; the scale factor is associated with the precision of the first threshold.
  • the first threshold is predefined by a protocol.
  • the first threshold may not be indicated by the first device, thereby saving communication transmission resources.
  • the first threshold is determined according to the first channel information and a first corresponding relationship, where the first corresponding relationship includes a corresponding relationship between the first channel information and the first threshold.
  • the second device sends type indication information to the first device, and the type indication information is used to indicate the type of the second channel information, which is a difference transmission type or a full value transmission type; wherein, when the second channel information is the difference between the first channel information and the predicted value of the first channel information, the type of the second channel information is a difference transmission type; when the second channel information is the first channel information, the type of the second channel information is a full value transmission type.
  • the first channel information belongs to the channel parameter CHP of the transmission multipath or the channel state information CSI; wherein, CHP includes one or more of the following information: transmission angle, transmission delay, transmission power or Doppler value; CSI includes one or more of the following information: channel state information reference signal resource indication CRI, rank indication RI, channel quality indication CQI, precoding matrix indication PMI or layer indication LI.
  • the first channel information belongs to the channel state information CSI, and the CSI also includes the third channel information, and the priority of the third channel information is lower than the priority of the first channel information; the first indication information is also used to indicate the second channel information prediction value corresponding to the third channel information.
  • the second device sends the difference between the third channel information and the third channel information prediction value to the first device; or, if the difference between the first channel information and the first channel information prediction value is greater than the first threshold, the second device sends the third channel information to the first device.
  • the second device when the channel information prediction value corresponding to the higher priority channel information is invalid (that is, the difference between the channel information and the corresponding prediction value is greater than the corresponding threshold of the channel information), the second device directly determines that the channel information prediction value corresponding to the lower priority channel information is invalid, and sends the lower priority channel information to the first device, thereby saving the computing resources of the second device and reducing the overhead of the second device.
  • the first channel information prediction value is obtained based on a perceptual channel prediction function of the first device.
  • the present application provides a channel information transmission method, which can be applied to a first device, and the first device can be a communication device (for example, a terminal device or a network device) or a chip on a communication device, or a device matching the communication device.
  • the method includes: the first device sends a reference signal to the second device, and the reference signal user obtains the first channel information; the first device receives the second channel information from the second device, and the second channel information is determined according to the first channel information prediction value, the first threshold corresponding to the first channel information prediction value, and the first channel information; the first device determines the first channel information according to the second channel information.
  • the second channel information is the difference between the first channel information and the predicted value of the first channel information; if the difference between the first channel information and the predicted value of the first channel information is greater than the first threshold value, the second channel information is The information is first channel information.
  • the first device sends second indication information to the second device, where the second indication information is used to indicate the first threshold.
  • the second indication information is further used to indicate a scale factor corresponding to the first threshold; the scale factor is associated with the accuracy of the first threshold.
  • the first threshold is predefined by a protocol.
  • the first threshold is determined according to the first channel information and a first corresponding relationship, where the first corresponding relationship includes a corresponding relationship between the first channel information and the first threshold.
  • a first device receives type indication information from a second device, where the type indication information is used to indicate a type of second channel information, which is a difference transmission type or a full value transmission type; wherein, when the second channel information is a difference between the first channel information and a predicted value of the first channel information, the type of the second channel information is a difference transmission type; and when the second channel information is the first channel information, the type of the second channel information is a full value transmission type.
  • the first channel information belongs to the channel parameter CHP of the transmission multipath or the channel state information CSI; wherein, CHP includes one or more of the following information: transmission angle, transmission delay, transmission power or Doppler value; CSI includes one or more of the following information: channel state information reference signal resource indication CRI, rank indication RI, channel quality indication CQI, precoding matrix indication PMI or layer indication LI.
  • the first channel information belongs to channel state information CSI, and the CSI also includes third channel information, and the priority of the third channel information is lower than the priority of the first channel information; the first indication information is also used to indicate the second channel information prediction value corresponding to the third channel information; if the difference between the first channel information and the first channel information prediction value is greater than a first threshold, and the difference between the third channel information and the second channel information prediction value is less than or equal to a second threshold, the first device receives the difference between the third channel information and the third channel information prediction value from the second device; or, if the difference between the first channel information and the first channel information prediction value is greater than the first threshold, the first device receives the third channel information from the second device.
  • the first device obtains the first channel information prediction value through a perceptual channel prediction function.
  • the present application provides a communication device, comprising a module/unit for executing any method described in the first aspect and possible implementations thereof.
  • the present application provides a communication device, comprising a module/unit for executing any method described in the second aspect and possible implementations thereof.
  • the present application provides a communication device, which may be a second device, and the second device may be a communication device (for example, a terminal device or a network device) or a chip on a communication device, or a device matched with a communication device; wherein the communication device may also be a chip system, and the communication device may execute the method performed by the second device in the first aspect.
  • the functions of the communication device may be implemented by hardware, or by hardware executing corresponding software implementations.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the unit may be software and/or hardware.
  • the operations and beneficial effects performed by the communication device may refer to the methods and beneficial effects described in the first aspect above, and the repeated parts will not be repeated.
  • the present application provides a communication device, which may be a first device, and the first device may be a communication device (for example, a terminal device or a network device) or a chip on a communication device, or a device matched with a communication device; wherein the communication device may also be a chip system, and the communication device may execute the method executed by the first device in the second aspect, or the communication device may execute the method executed by the first device in the second aspect.
  • the functions of the communication device may be implemented by hardware, or by hardware executing corresponding software implementations.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the unit may be software and/or hardware.
  • the operations and beneficial effects performed by the communication device may refer to the methods and beneficial effects described in the second aspect above, and the repeated parts will not be repeated.
  • the present application provides a communication device, comprising a processor, wherein the processor is used to execute a computer program or instruction stored in a memory, and/or, through a logic circuit, so that the communication device performs the first aspect and its possible implementations, or any method described in the second aspect and its possible implementations.
  • the communication device includes a memory for storing the above-mentioned computer program or instruction, or for storing a configuration file of the above-mentioned logic circuit.
  • the memory and the processor are integrated together, or the memory and the processor are independently configured.
  • the memory is located outside the communication device.
  • the communication device further includes a transceiver, and the transceiver is used to receive signals and/or send signals.
  • the present application provides a communication device, comprising a processor and an interface circuit, wherein the interface circuit is used to receive computer execution instructions and transmit them to the processor; the processor runs the computer execution instructions to execute the method executed by the second device or the first device in the methods described in the first aspect to the second aspect.
  • the present application provides a computer-readable storage medium, which is used to store computer-executable instructions.
  • the method executed by the second device or the first device in the method described in the first aspect to the second aspect is performed.
  • the present application provides a computer program product comprising a computer program, which, when executed, enables the method executed by the second device or the first device in the methods described in the first aspect to the second aspect to be implemented.
  • the present application provides a communication system, which includes a second device and a first device; wherein the second device is used to execute the method described in the first aspect above, and the first device is used to execute the method described in the second aspect above.
  • FIG1 is a schematic diagram of a system architecture provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a sensing system provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a perception-assisted communication system provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a flow chart of a channel information transmission method provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a flow chart of another channel information transmission method provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of another communication device provided in an embodiment of the present application.
  • At least one (item) means one or more
  • “more than one” means two or more
  • “at least two (items)” means two or three and more than three
  • “and/or” is used to describe the corresponding relationship of corresponding objects, indicating that there may be three relationships.
  • a and/or B can mean: only A exists, only B exists, and A and B exist at the same time, where A and B can be singular or plural.
  • the character “/” generally indicates that the corresponding objects before and after are in an "or” relationship.
  • “At least one of the following items” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c", where a, b, c can be single or multiple.
  • the embodiments of the present application can be applied to communication systems evolved after 5G, such as long term evolution (LTE) system, fifth generation mobile communication (5G) system, sixth generation mobile communication (6G) system, satellite communication and short-range wireless communication systems.
  • LTE long term evolution
  • 5G fifth generation mobile communication
  • 6G sixth generation mobile communication
  • the wireless communication system mentioned in the embodiments of the present application includes but is not limited to: three major application scenarios of 5G/6G mobile communication system: enhanced mobile broadband (eMBB), ultra reliable low latency communication (URLLC) and massive machine type communication (mMTC), long range Internet of Things (LoRa) system or vehicle networking system.
  • the wireless communication system may include one or more access network devices, and one or more terminal devices.
  • the communication system 1000 includes a radio access network (RAN) 100 and a core network (CN) 200.
  • the RAN 100 includes at least one network device (such as 110a and 110b in FIG1, collectively referred to as 110) and at least one terminal (such as 120a-120j in FIG1, collectively referred to as 120).
  • the RAN 100 may also include other RAN nodes, such as wireless relay devices and/or wireless backhaul devices (not shown in FIG1).
  • the terminal 120 is connected to the network device 110 in a wireless manner.
  • the network device 110 is connected to the core network 200 in a wireless or wired manner.
  • the core network device in the core network 200 and the network device 110 in the RAN 100 may be different physical devices, or may be the same physical device that integrates the core network logical functions and the radio access network logical functions.
  • RAN 100 may be a cellular system related to the 3rd Generation Partnership Project (3GPP), for example, a 4G, 5G mobile communication system, or an evolution system after 5G (for example, a 6G mobile communication system).
  • 3GPP 3rd Generation Partnership Project
  • RAN 100 may also be an open access network (open RAN, O-RAN or ORAN), a cloud radio access network (cloud radio access network, CRAN), etc.
  • RAN 100 may also be a communication system in which two or more of the above systems are integrated. It should be noted that the number of network devices and terminal devices in FIG1 is only for illustration and should not be regarded as a specific limitation of the present application.
  • the first device mentioned in the present application may be a network device or a terminal device
  • the second device may be a network device or a terminal device
  • the present application does not make specific limitations on this.
  • the first device is a network device
  • the second device is a terminal device
  • the first device is a terminal device
  • the second device is a network device.
  • Terminal equipment can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., or equipment used to provide voice or data connectivity to users, or IoT devices.
  • terminal equipment includes handheld devices with wireless connection functions, vehicle-mounted devices, etc.
  • terminal devices can be: mobile phones, tablet computers, laptops, PDAs, mobile Internet devices (MID), wearable devices (such as smart watches, smart bracelets, pedometers, etc.), vehicle-mounted devices (such as cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed trains, etc.), satellite terminals, virtual reality (VR) Devices, augmented reality (AR) devices, smart point of sale (POS) machines, customer-premises equipment (CPE), wireless terminals in industrial control, smart home devices (e.g., refrigerators, televisions, air conditioners, electric meters, etc.), smart robots, robotic arms, workshop equipment, wireless terminals in unmanned driving, wireless terminals in telemedicine, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in
  • the embodiments of the present application do not limit the device form of the terminal.
  • the device for realizing the function of the terminal device can be a terminal device; it can also be a device that can support the terminal device to realize the function, such as a chip system.
  • the device can be installed in the terminal device or used in combination with the terminal device.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • the network device is a node in the radio access network (RAN), which can also be called an access network device or a RAN node (or device).
  • the network device is used to help the terminal achieve wireless access.
  • the multiple network devices 110 in the communication system 1000 can be nodes of the same type or different types. In some scenarios, the roles of the network device 110 and the terminal 120 are relative.
  • the network element 120i in Figure 1 can be a helicopter or a drone, which can be configured as a mobile base station.
  • the network element 120i is a base station; but for the base station 110a, the network element 120i is a terminal.
  • the network device 110 and the terminal 120 are sometimes referred to as communication devices.
  • the network elements 110a and 110b in Figure 1 can be understood as communication devices with base station functions, and the network elements 120a-120j can be understood as communication devices with terminal functions.
  • the network device may be a base station, an evolved NodeB (eNodeB), a transmitting and receiving point (TRP), a transmitting point (TP), a next generation NodeB (gNB), a next generation base station in a 6th generation (6G) mobile communication system, a base station in a future mobile communication system, a satellite, an integrated access and backhaul (IAB) node, a network device in a mobile switching center non-terrestrial network (NTN) communication system, that is, it may be deployed on a high altitude platform or a satellite.
  • the network device may be a macro base station (such as 110a in FIG. 1 ), a micro base station or an indoor station (such as 110b in FIG.
  • the network device may also be a device that functions as a base station in device to device (D2D) communication, Internet of Vehicles communication, drone communication, and machine communication.
  • the network device may also be a server, a wearable device, a vehicle or an onboard device, etc.
  • the access network device in the vehicle to everything (V2X) technology may be a road side unit (RSU).
  • the network device may be a centralized unit (CU), a distributed unit (DU), a CU-control plane (CP), a CU-user plane (UP), or a radio unit (RU).
  • the CU and DU may be set separately, or may be included in the same network element, such as a baseband unit (BBU).
  • BBU baseband unit
  • the RU may be included in a radio frequency device or a radio frequency unit, such as a remote radio unit (RRU), an active antenna unit (AAU), or a remote radio head (RRH).
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into a network device in the access network RAN, or the CU may be divided into a network device in the core network CN, without limitation here.
  • CU or CU-CP and CU-UP
  • DU or RU may have different names, but the capabilities Technical personnel in the field can understand its meaning.
  • CU can also be called O-CU (open CU)
  • DU can also be called O-DU
  • CU-CP can also be called O-CU-CP
  • CU-UP can also be called O-CU-UP
  • RU can also be called O-RU.
  • this application takes CU, CU-CP, CU-UP, DU and RU as examples for description.
  • Any unit of CU (or CU-CP, CU-UP), DU and RU in this application can be implemented by a software module, a hardware module, or a combination of a software module and a hardware module.
  • the form of the network device is not limited.
  • the device for realizing the function of the network device can be a network device; or it can be a device that can support the network device to realize the function, such as a chip system.
  • the device can be installed in the network device or used in conjunction with the network device.
  • the perception device includes: a device for transmitting a perception signal is called a perception signal transmitter, and a device for receiving a perception signal is called a perception signal receiver.
  • a perception signal transmitter a device for transmitting a perception signal
  • a perception signal receiver a device for receiving a perception signal
  • the perception system shown in FIG2 includes a perception signal transmitter 201, a perception signal receiver 202, and a perception target 203.
  • the perception signal received by the perception signal receiver 202 includes a direct signal S1 and a reflected and scattered signal S2 reflected or scattered by the perception target 203.
  • the perception signal receiver 202 will detect that the channel of the wireless link has changed (manifested as changes in the amplitude and phase of the channel information, etc.).
  • the channel of a wireless link is quantified and represented as channel information in a communication protocol, such as channel state information (CSI). Then, the perception signal transmitter 201 can initiate channel detection to the perception signal receiver 202 at certain time intervals, and obtain information about changes in the channel information transmitted by the perception signal receiver 202 to know whether the perception target 203 has changed.
  • CSI channel state information
  • the perception device can perceive or understand the physical world through the transmission, reflection and scattering of wireless signals (i.e., perception signals) in the communication network.
  • the communication network can obtain high-precision positioning, imaging and environmental reconstruction capabilities, thereby improving communication performance (including but not limited to: more accurate beamforming, faster beam fault recovery, and reduced overhead when tracking CSI, etc.).
  • This technology combining perception technology with communication network is referred to as perception-assisted communication in this application.
  • the signal transmitting end 301 and the signal receiving end 302 are executing (or have executed) the perception service shown in FIG2. Further, the signal receiving end 302 measures the channel information of the perception channel (i.e., the channel used to transmit the perception signal) based on the direct signal S1 and at least one signal S2 reflected or scattered back by the surrounding environment (e.g., the environment buildings around the signal receiving end 302).
  • the signal transmitting end 301 and the signal receiving end 302 are executing (or have executed) the perception service shown in FIG2.
  • the signal receiving end 302 measures the channel information of the perception channel (i.e., the channel used to transmit the perception signal) based on the direct signal S1 and at least one signal S2 reflected or scattered back by the surrounding environment (e.g., the environment buildings around the signal receiving end 302).
  • the channel information of the communication channel corresponding to the communication service i.e., the channel information used to transmit the communication signal
  • the channel information of the communication channel corresponding to the communication service can be understood as being similar to the channel information of the perception channel.
  • the signal transmitting end 301 and the signal receiving end 302 are executing (or have executed) the perception service shown in FIG. 2 . Further, the signal receiving end 302 is based on the direct signal S1 and at least one signal S2 reflected or scattered back by the surrounding environment. Perform environmental reconstruction (i.e., sense and acquire the communication environment in which the signal receiving end 302 is located).
  • the signal transmitting end 301 acquires the position of the signal receiving end 303 in the communication environment, and based on the position of the signal receiving end 303, acquires the channel information of the communication channel corresponding to the direct signal S3 received by the signal receiving end 303 and at least one signal S4 reflected or scattered from the surrounding environment through a channel information prediction model (a model acquired by a channel modeling method).
  • the execution device for acquiring channel information based on the position of the signal receiving end 303 and the channel information prediction model is a device having a communication connection with the signal transmitting end 301 or the signal transmitting end 301 itself.
  • Channel modeling methods include but are not limited to ray tracing methods, statistical methods, and the like.
  • the terminal device may report channel information by differential reporting between ports/subbands or by sparse expression of orthogonal bases between ports/subbands, so as to reduce the overhead of the terminal device reporting the channel information.
  • the channel information of port 0 is a 0
  • the channel information of port 1 is a 1
  • the terminal device may use the channel information of port 0 as a reference to calculate the difference between the channel information of port 1 and the channel information of port 0 (i.e., a 1 -a 0 ); and then the channel information reported by the terminal device to the access network device is (a 0 , a 1 -a 0 ).
  • the overhead of the terminal device reporting (a 0 , a 1 -a 0 ) is less than the overhead of the terminal device reporting (a 0 , a 1 ).
  • the effect of reducing the overhead achieved by reporting the channel information in the above manner is poor.
  • the overhead of feedback channel information cannot be reduced by differentially reporting the channel information.
  • the present application provides a channel information transmission method.
  • the channel information transmission method and communication device provided by the present application are further introduced below in conjunction with the accompanying drawings:
  • the channel information transmission method includes the following S401 ⁇ S404.
  • the method shown in Figure 4 is illustrated by taking the second device (i.e., the channel information feedback party) and the first device (i.e., the channel information receiving party) as the execution subjects.
  • the first device can be the above-mentioned terminal device, or a chip in the terminal device, or a device matched with the terminal device, or the first device can be the above-mentioned network device, or a chip in the network device, or a device matched with the network device.
  • the second device can be the above-mentioned terminal device, or a chip in the terminal device, or a device matched with the terminal device, or the second device can be the above-mentioned network device, or a chip in the network device, or a device matched with the network device.
  • a second device receives first indication information, where the first indication information is used to indicate a first channel information prediction value.
  • the second device may receive the first indication information from the first device or other devices (devices other than the first device, such as a third device).
  • the following takes the first device sending the first indication information to the second device as an example, and the specific process of other devices sending the first indication information to the second device can be referred to in the same way.
  • the first device determines a first channel information prediction value, and sends the first indication information to the second device.
  • the ways in which the first device determines the first channel information prediction value include but are not limited to the following: 1.
  • the first device determines the first channel information prediction value based on its own perception channel prediction function for details, please refer to the implementation method of predicting channel information in combination with the perception-assisted communication system mentioned in Figure 3); 2.
  • the first device determines the first channel information prediction value based on the mean (or median or mode, etc.) determined by statistics of historical channel information in the communication network; 3.
  • the first device determines the first channel information prediction value based on the reciprocity of the uplink and downlink channels; that is, the first device receives and measures the signal from the second device to obtain channel information; and then determines the channel information as the first channel information prediction value; 4.
  • the first device determines the first channel information prediction value through historical channel information in combination with an artificial intelligence (AI) algorithm.
  • AI artificial intelligence
  • the first device obtains the first channel information prediction value from a fourth device (a device having a communication connection with the first device), and sends the first indication information to the second device.
  • the manner in which the fourth device determines the prediction value of the first channel information includes but is not limited to the following: 1.
  • the fourth device determines the prediction value of the first channel information based on its own perception channel prediction function (specifically, please refer to the implementation method of predicting channel information in combination with the perception-assisted communication system mentioned in Figure 3); 2.
  • the fourth device determines the prediction value of the first channel information based on the mean (or median or mode, etc.) determined by statistics of historical channel information in the communication network; 3.
  • the fourth device determines the prediction value of the first channel information through historical channel information combined with an AI algorithm.
  • the fourth device can be located in the same physical location as the first device, or can be set separately.
  • the fourth device can implement perception processing functions and/or perception management functions.
  • the fourth device can be a core network device, a server, or other equipment.
  • the first channel information prediction value is a prediction value corresponding to the first channel information of the channel between the first device and the second device.
  • the first channel information mentioned in this application includes but is not limited to one or more of the following information: channel state information-reference signal resource identifier (CRI), rank indicator (RI), channel quality indicator (CQI), precoding matrix indicator (PMI), layer indicator (LI), transmission angle, transmission delay, transmission power or Doppler value, etc.
  • CCP channel state information-reference signal resource identifier
  • RI rank indicator
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • LI layer indicator
  • transmission angle transmission delay
  • transmission power or Doppler value a possible implementation, when the first channel information is one of transmission angle, transmission delay, transmission power or Doppler value, the first channel information belongs to transmission multipath channel parameter (CHP); when the first channel information is one of CRI, RI, CQI, PMI or LI, the first channel information belongs to CSI.
  • CHP transmission multipath channel parameter
  • the first indication information may be sent to the second device periodically at a period specified by the communication protocol (or negotiated by the first device and the second device); or the first indication information may be sent to the second device according to the needs of the first device (i.e., when the first device requires the second device to feedback the first channel information); this application does not make specific limitations on this.
  • the first indication information is used to indicate the first channel information prediction value in an indication manner including but not limited to the following manners:
  • Indication mode 01 the first indication information directly indicates the first channel information prediction value.
  • the value indicated by the first indication information is the predicted value of the first channel information.
  • Indication mode 02 The first indication information indirectly indicates the first channel information prediction value.
  • the second device may determine the predicted value of the first channel information according to the value indicated by the first indication information.
  • the value indicated by the first indication information is the difference between the predicted value of the first channel information and the reference value.
  • the reference value may be the value of the first channel information received by the second device last time, or may be the value of the first channel information received by the second device for the first time, or may be a predefined value.
  • the reference value may be the value of the first channel information received by the second device last time.
  • the numerical value indicated by the Nth first indication information is the difference between the predicted value of the first channel information indicated by the N-1th first indication information, where N is an integer greater than 1.
  • the first channel information is CQI.
  • the second device receives the first indication information from the first device for the first time, and the numerical value indicated by the first indication information is 20, it means that the predicted value of CQI indicated by the first indication information is 20.
  • the numerical value indicated by the second first indication information is +5 (that is, the difference between the numerical value indicated this time and the numerical value indicated last time is +5).
  • the second device determines that the predicted value of CQI indicated by the first indication information is 25 based on the numerical value indicated by the first indication information (that is, +5) and the predicted value of CQI indicated last time (that is, 20).
  • the second device receives the first indication information from the access network device for the third time, the value indicated by the third first indication information is -10 (that is, the difference between the value indicated this time and the value indicated last time is -10).
  • the second device determines that the CQI prediction value indicated by the first indication information is 15 based on the value indicated by the first indication information (that is, -10) and the CQI prediction value indicated last time (that is, 25).
  • the second device measures a reference signal from the first device to obtain first channel information.
  • the first device sends a reference signal to the second device, and further, the second device receives and measures the reference signal to obtain first channel information, wherein the first channel information is channel information corresponding to the channel transmitting the reference signal.
  • the access network device sends a downlink reference signal to the terminal device, and the terminal device measures the downlink reference signal to obtain channel information of the downlink channel.
  • the second device sends second channel information to the first device according to the first channel information prediction value, the first threshold corresponding to the first channel information prediction value, and the first channel information. Accordingly, the first device receives the second channel information from the second device.
  • the first threshold is used to judge the validity of the first channel information prediction value. It can be understood that when the difference between the first channel information and the first channel information prediction value is less than the first threshold, the difference between the first channel information prediction value and the first channel information is small, and the first channel information prediction value is valid; when the difference between the first channel information and the first channel information prediction value is greater than the first threshold, the difference between the first channel information prediction value and the first channel information is large, and the first channel information prediction value is invalid.
  • the present application does not specifically limit the case where the difference between the first channel information and the first channel information prediction value is equal to the first threshold; that is, in one possible implementation, when the difference between the first channel information and the first channel information prediction value is equal to the first threshold, the first channel information prediction value is valid; in another possible implementation, when the difference between the first channel information and the first channel information prediction value is equal to the first threshold, the first channel information prediction value is invalid.
  • the second device may send the difference between the first channel information and the predicted value of the first channel information to the first device; when the predicted value of the first channel information is invalid, the second device may send the first channel information to the first device. That is, in a possible implementation, if the difference between the first channel information and the predicted value of the first channel information is less than or equal to the first threshold, the second channel information is the difference between the first channel information and the predicted value of the first channel information; or, if the difference between the first channel information and the predicted value of the first channel information is greater than the first threshold, the second channel information is the first channel information.
  • the first channel information is: the CQI value is 25, and the first threshold corresponding to the first channel information prediction value is 8.
  • the first channel information prediction value is: the CQI prediction value is 23 (the difference between the first channel information and the first channel information is less than 8)
  • the second device sends the difference between the CQI value and the CQI prediction value to the first device, that is, the second channel information is +2.
  • the first channel information prediction value is: the CQI prediction value is 13 (the difference between the first channel information and the first channel information is greater than 8), then the first channel information prediction value is invalid, and the second device sends the CQI value to the first device, that is, the second channel information is 25 (that is, the first channel information).
  • the second device may also send type indication information to the first device, and the type indication information is used to indicate the type of channel information (i.e., second channel information) transmitted by the second device to the first device, which type is a difference transmission type or a full value transmission type.
  • the type indication information indicates that the type of the second channel information is a difference transmission type; when the second channel information is the first channel information, the type indication information indicates that the type of the second channel information is a full value transmission type.
  • the second device indicates the type of the second channel information through an indicator character, for example, when the value of the indicator character is 0, it indicates that the type of the second channel information is a difference transmission type; when the value of the indicator character is 1, it indicates that the type of the second channel information is a full value transmission type.
  • the second device receives the second indication information, and the second indication information is used to indicate the first threshold.
  • the second device can receive the second indication from the first device or other devices (devices other than the first device, such as a third device).
  • the first indication information and the second indication information may be sent simultaneously (for example, included in the same message) or sent at different times (for example, included in different messages).
  • the second indication information may indicate the first threshold in the following ways, but is not limited to:
  • the second indication information directly indicates the specific value of the first threshold. That is, the value included in the second indication information is the first threshold.
  • the communication protocol specifies that the second indication information is represented by the value of 4 bits. If the value of the second indication information is 0011, it can be understood that the value contained in the second indication information is 3 (i.e., the first threshold); if the value of the second indication information is 0111, it can be understood that the value contained in the second indication information is 7 (i.e., the first threshold).
  • the scale factor corresponding to the first threshold is predefined by the communication system. This application does not specifically limit the value of the scale factor predefined by the communication system. For example, in this example, the predefined scale factor is 2.
  • the second indication information is also used to indicate a scale factor corresponding to the first threshold; the scale factor is associated with the precision of the first threshold.
  • the first threshold is the product of the scale factor and the bit indication value of the second indication information, and as the scale factor increases, the precision of the first threshold decreases; that is, the smaller the scale factor, the higher the precision of the first threshold, and the larger the scale factor, the lower the precision of the first threshold.
  • the value of the second indication information is 0111, it can be understood that the numerical value contained in the second indication information is 7. If the scale factor corresponding to the first threshold is 0.1, the first threshold indicated by the second indication information is 0.7 (that is, the product of 7 and 0.1); if the scale factor corresponding to the first threshold is 1, the first threshold indicated by the second indication information is 7 (that is, the product of 7 and 1).
  • the second indication information indirectly indicates the specific value of the first threshold. That is, the second device can determine the first threshold according to the content indicated by the second indication information.
  • the communication protocol predefines multiple thresholds corresponding to the first channel information, and each threshold corresponds to a number (which can be understood as identification information of the threshold).
  • the second indication information includes the first number, and the second device can determine the first threshold (i.e., the threshold corresponding to the first number) from the multiple thresholds according to the first number.
  • the second indication information is used to indicate the proportional relationship between the first threshold and the first channel prediction value.
  • the second device receives the first indication information and the second indication information from the first device, the first indication information is used to indicate that the first channel prediction value is: the CQI prediction value is 20, and the second indication information is used to indicate that the first threshold is 10% of the first channel prediction value; further, the second device determines that the first threshold is 2 according to the second indication information.
  • Case 2 The first threshold is predetermined by the protocol (ie, the communication protocol).
  • the communication protocol predetermines the first threshold corresponding to the first channel information. For example, when the first channel information is CQI, the first threshold is Q1; when the first channel information is RI, the first threshold is Q2.
  • the first threshold is determined according to the first channel information and the first corresponding relationship.
  • the first corresponding relationship indicates the corresponding relationship between the channel information and the threshold, and the first corresponding relationship includes the corresponding relationship between the first channel information and the first threshold.
  • the second device can determine the first threshold according to the first channel information and the corresponding relationship between the first channel information and the first threshold in the first corresponding relationship.
  • the first corresponding relationship may be a threshold control word configuration table.
  • the threshold control word configuration table 1 is only an example of a threshold control word configuration table and cannot be regarded as a specific limitation on the value of the numerical interval, the position of the closed interval, and the correspondence between the numerical interval and the threshold.
  • the left-open and right-closed numerical interval (10, 20) in Table 1 can also be replaced by the right-open and left-closed numerical interval [10, 20] in some cases.
  • S404 the first device determines the first channel information according to the second channel information.
  • the first device determines the first channel information based on the second channel information and the predicted value of the first channel information; when the second channel information is a full value transmission type, the first device determines the second channel information as the first channel information.
  • the second device transmits the measured channel information by a predicted value (i.e., the first channel information predicted value) that is closer to the measured channel information (i.e., the first channel information), so that the number of bits of the transmitted channel information (i.e., the second channel information) is less than the number of bits of the measured channel information, and the first device can still accurately determine the measured channel information based on the transmitted channel information.
  • the overhead of the second device transmitting the channel information can be reduced by the method described in the first aspect.
  • the present application only uses the first channel information prediction value corresponding to a threshold value (i.e., the first threshold value) as an example for explanation, and should not be regarded as a specific limitation of the present application.
  • the first channel information prediction value may correspond to multiple thresholds (including the first threshold value), and each threshold value is used to determine the degree of proximity between the first channel information prediction value and the first channel information.
  • the multiple thresholds include a first threshold value and a third threshold value, wherein the third threshold value is less than the first threshold value, the first threshold value is used to determine whether the first channel information prediction value is valid, and the third threshold value is used to determine whether the first channel information prediction value is approximately equal to the first channel information.
  • the second channel information can be an indicator (used to indicate that the first device determines the predicted value of the first channel information as the first channel information); when the difference between the first channel information and the predicted value of the first channel information is greater than the third threshold and less than or equal to the first threshold, the predicted value of the first channel information is valid, and the second channel information is the difference between the first channel information and the predicted value of the first channel information; when the difference between the first channel information and the predicted value of the first channel information is greater than the first threshold, the predicted value of the first channel information is invalid, and the second channel information is the first channel information.
  • the transmission overhead can be further reduced.
  • the effect achieved by the method described in FIG4 is particularly prominent in a scenario where the communication transmission resources of the second device are limited.
  • the method described in FIG4 can effectively save the overhead of the terminal device transmitting channel information in a scenario where the uplink is limited (such as an Internet of Things (IoT) application scenario).
  • the method described in FIG4 can effectively save the overhead of the access network device feedback channel information in a scenario where the downlink is limited (such as a scenario where the access network device is in a low power consumption mode or an energy-saving mode).
  • the second device measures the reference signal from the first device to obtain multiple channel information (including the first channel information).
  • multiple channel information including the first channel information.
  • the priority of each channel information can be determined based on the correlation relationship between the multiple channel information.
  • channel information 1 is determined based on channel information 2.
  • the priority of channel information 2 is higher than the priority of channel information 1. It can be understood that when the channel information prediction value corresponding to channel information 2 (i.e., the channel information with a higher priority) is invalid, the channel information prediction value corresponding to channel information 1 (i.e., the channel information with a lower priority) is most likely invalid.
  • the first channel information belongs to CSI Take this as an example for detailed introduction.
  • the channel information transmission method includes the following S501 ⁇ S507.
  • the method shown in Figure 5 is illustrated by taking the second device (i.e., the channel information feedback party) and the first device (i.e., the channel information receiving party) as the execution subjects.
  • the first device can be the above-mentioned terminal device, or a chip in the terminal device, or a device matched with the terminal device, or the first device can be the above-mentioned network device, or a chip in the network device, or a device matched with the network device.
  • the second device can be the above-mentioned terminal device, or a chip in the terminal device, or a device matched with the terminal device, or the second device can be the above-mentioned network device, or a chip in the network device, or a device matched with the network device.
  • a second device receives first indication information, where the first indication information is used to indicate a first channel information prediction value and a second channel information prediction value.
  • the first channel information prediction value corresponds to the first channel information
  • the second channel information prediction value corresponds to the third channel information
  • the first channel information and the third channel information both belong to CSI (that is, CSI includes the first channel information and the third channel information)
  • the priority of the third channel information is lower than the priority of the first channel information.
  • the priorities of the channel information included in the CSI are, from high to low: CRI, RI, CQI, PMI, LI.
  • the first channel information is CRI
  • the third channel information is CQI.
  • the manner in which the first device obtains the first channel information prediction value and the second channel information prediction value can refer to the description of obtaining the first channel information prediction value in S401; the manner in which the first indication information indicates the first channel information prediction value and the second channel information prediction value can refer to the indication method 01 and the indication method 02 in the aforementioned S401, which will not be repeated here.
  • S502 The second device measures a reference signal from the first device to obtain first channel information and third channel information.
  • the first device sends a reference signal to the second device. Further, the second device receives and measures the reference signal to obtain the first channel information and the third channel information.
  • the second device sends second channel information to the first device, where the second channel information is the difference between the first channel information and the first channel information prediction value.
  • S503 may refer to the related implementation of S403 in which the second channel information is the difference between the first channel information and the predicted value of the first channel information, which will not be described in detail here.
  • the second device If the predicted value of the second channel information is valid, the second device sends fourth channel information to the first device, where the fourth channel information is a difference between the third channel information and the predicted value of the second channel information.
  • the second device sends the difference between the third channel information and the second channel information prediction value to the first device.
  • the way in which the second device obtains the second threshold value may refer to the description of Case 1 and Case 2 for obtaining the first threshold value in S403, which will not be repeated here.
  • the second device sends the third channel information to the first device.
  • the second channel information and the fourth channel information in S503-S505 may be sent simultaneously or in a time-division manner.
  • the second device If the first channel information is invalid (i.e., the difference between the first channel information and the predicted value of the first channel information is greater than the first threshold), the second device sends second channel information and fourth channel information to the first device, wherein the second channel information is the first channel information and the fourth channel information is the third channel information.
  • the second device determines that the second channel information prediction value is invalid, and the second device sends the third channel information to the first device.
  • the first device determines the first channel information and the third channel information according to the second channel information and the fourth channel information.
  • S507 may refer to the implementation of the first device determining the first channel information according to the second channel information in S404, which will not be described in detail here.
  • the second device will determine whether the channel information prediction value corresponding to the channel information with a lower priority (i.e., the third channel information) is valid only when the channel information prediction value corresponding to the channel information with a higher priority (i.e., the first channel information) is valid; further, the second device sends the difference between the third channel information and the second channel information prediction value to the first device according to the determination result, or sends the third channel information to the first device according to the determination result.
  • the third channel information i.e., the third channel information
  • the second device sends the difference between the third channel information and the second channel information prediction value to the first device according to the determination result, or sends the third channel information to the first device according to the determination result.
  • the second device directly determines that the channel information prediction value corresponding to the channel information with a lower priority (i.e., the third channel information) is invalid, and sends the third channel information to the first device, thereby saving the computing resources of the second device and reducing the power consumption of the second device.
  • the present application provides a communication device that can be used to implement the functions of the above-mentioned first device or second device.
  • the communication device can be the first device or the second device.
  • the communication device includes a module or unit that corresponds one-to-one to the method/operation/step/action performed by the first device or the second device in the above-mentioned method embodiment.
  • the unit can be a hardware circuit, or software, or a combination of a hardware circuit and software.
  • Figure 6, shows a structural schematic diagram of a communication device 600 of an embodiment of the present application.
  • the communication device 600 may include a communication unit 601 and a processing unit 602.
  • the processing unit 602 is used to process signaling and/or data, and the signaling and/or data may be data received by the communication unit 601, and the processed signaling and/or data may also be sent by the communication unit 601;
  • the communication device 600 when the communication device 600 is a second device, wherein:
  • the communication unit 601 is used to receive first indication information, where the first indication information is used to indicate a first channel information prediction value; the processing unit 602 is used to measure a reference signal from a first device to obtain first channel information; the processing unit 602 is also used to send second channel information to the first device based on the first channel information prediction value, a first threshold corresponding to the first channel information prediction value, and the first channel information.
  • the second channel information is the difference between the first channel information and the predicted value of the first channel information; or, if the difference between the first channel information and the predicted value of the first channel information is greater than the first threshold, the second channel information is the first channel information.
  • the communication unit 601 is further configured to receive second indication information, where the second indication information is used to indicate the first threshold.
  • the second indication information is further used to indicate a scale factor corresponding to the first threshold; the scale factor is associated with the accuracy of the first threshold.
  • the first threshold is predefined by a protocol.
  • the first threshold is determined according to the first channel information and a first corresponding relationship, where the first corresponding relationship includes a corresponding relationship between the first channel information and the first threshold.
  • the communication unit 601 is further configured to send type indication information to the first device, where the type indication The information is used to indicate the type of the second channel information, which is a difference transmission type or a full value transmission type; wherein, when the second channel information is the difference between the first channel information and the predicted value of the first channel information, the type of the second channel information is a difference transmission type; when the second channel information is the first channel information, the type of the second channel information is a full value transmission type.
  • the first channel information belongs to the channel parameter CHP of the transmission multipath or the channel state information CSI; wherein, CHP includes one or more of the following information: transmission angle, transmission delay, transmission power or Doppler value; CSI includes one or more of the following information: channel state information reference signal resource indication CRI, rank indication RI, channel quality indication CQI, precoding matrix indication PMI or layer indication LI.
  • the first channel information belongs to channel state information CSI
  • the CSI also includes third channel information, and the priority of the third channel information is lower than the priority of the first channel information;
  • the first indication information is also used to indicate a predicted value of the second channel information corresponding to the third channel information;
  • the communication unit 601 is further configured to send the difference between the third channel information and the predicted value of the third channel information to the first device;
  • the communication unit 601 is further configured to send third channel information to the first device.
  • the first channel information prediction value is obtained based on a perceptual channel prediction function of the first device.
  • the communication device shown in FIG. 6 is a first device, wherein:
  • the communication unit 601 is used to send a reference signal to the second device, where the reference signal is used to obtain the first channel information; the communication unit 601 is also used to receive second channel information from the second device, where the second channel information is determined based on the first channel information prediction value, the first threshold corresponding to the first channel information prediction value, and the first channel information; the processing unit 602 is used to determine the first channel information based on the second channel information and the first channel information prediction value.
  • the second channel information is the difference between the first channel information and the predicted value of the first channel information; if the difference between the first channel information and the predicted value of the first channel information is greater than the first threshold, the second channel information is the first channel information.
  • the communication unit 601 is further configured to send second indication information to the second device, where the second indication information is used to indicate the first threshold.
  • the second indication information is further used to indicate a scale factor corresponding to the first threshold; the scale factor is associated with the accuracy of the first threshold.
  • the first threshold is predefined by a protocol.
  • the first threshold is determined according to the first channel information and a first corresponding relationship, where the first corresponding relationship includes a corresponding relationship between the first channel information and the first threshold.
  • the communication unit 601 is further used to receive type indication information from the second device, where the type indication information is used to indicate the type of the second channel information, which is a difference transmission type or a full value transmission type; wherein, when the second channel information is the difference between the first channel information and the predicted value of the first channel information, the type of the second channel information is a difference transmission type; and when the second channel information is the first channel information, the type of the second channel information is a full value transmission type.
  • the first channel information belongs to a channel parameter CHP or channel state information CSI of a transmission multipath; wherein the CHP includes one or more of the following information: a transmission angle, a transmission delay, a transmission power or a Doppler value; and the CSI It includes one or more of the following information: channel state information reference signal resource indication CRI, rank indication RI, channel quality indication CQI, precoding matrix indication PMI or layer indication LI.
  • CHP includes one or more of the following information: a transmission angle, a transmission delay, a transmission power or a Doppler value
  • the CSI It includes one or more of the following information: channel state information reference signal resource indication CRI, rank indication RI, channel quality indication CQI, precoding matrix indication PMI or layer indication LI.
  • the first channel information belongs to channel state information CSI, and the CSI also includes third channel information, and the priority of the third channel information is lower than the priority of the first channel information; the first indication information is also used to indicate the second channel information prediction value corresponding to the third channel information; if the difference between the first channel information and the first channel information prediction value is greater than the first threshold, and the difference between the third channel information and the second channel information prediction value is less than or equal to the second threshold, the communication unit 601 is also used to receive the difference between the third channel information and the third channel information prediction value from the second device; or, if the difference between the first channel information and the first channel information prediction value is greater than the first threshold, the communication unit 601 is also used to receive the third channel information from the second device.
  • the processing unit 602 is further configured to obtain a first channel information prediction value through a perceptual channel prediction function.
  • a communication device 700 provided in an embodiment of the present application is used to implement the functions of the second device or the first device described above.
  • the device may be a communication device or a device used in a communication device, and the communication device may be a terminal or a network device.
  • the device used in a communication device may be a chip system or a chip in the communication device. Among them, the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the communication device 700 includes at least one processor 710, which is used to implement the processing function of the device (e.g., the second device or the first device) in the method provided in the embodiment of the present application.
  • the communication device 700 may also include a communication interface 720, which is used to implement the transceiver operation of the device (e.g., the second device or the first device) in the method provided in the embodiment of the present application.
  • the communication interface can be a transceiver, a circuit, a bus, a module, or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 720 is used for the device in the communication device 700 to communicate with other devices.
  • the processor 710 uses the communication interface 720 to send and receive data, and is used to implement the method described in the above method embodiment.
  • the communication device 700 may also include at least one memory 730 for storing program instructions and/or data.
  • the memory 730 is coupled to the processor 710.
  • the coupling in the embodiment of the present application is an indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 710 may operate in conjunction with the memory 730.
  • the processor 710 may execute program instructions stored in the memory 730. At least one of the at least one memory may be included in the processor.
  • connection medium between the communication interface 720, the processor 710 and the memory 730 is not limited in the embodiment of the present application.
  • the memory 730, the processor 710 and the communication interface 720 are connected by a bus.
  • the bus is represented by a bold line in FIG. 7 .
  • the connection mode between other components is only for schematic illustration and is not limited thereto.
  • the bus can be divided into an address bus, a data bus, a control bus, etc. For ease of representation, only one bold line is used in FIG. 7 , but it does not mean that there is only one bus or one type of bus.
  • the communication interface 720 may output or receive a baseband signal.
  • the communication interface 720 may output or receive a radio frequency signal.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the various methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as a hardware processor.
  • the execution is completed, or the execution is completed by a combination of hardware and software modules in the processor.
  • the communication interface 720 may be used to execute the functions of the communication unit 601
  • the processor 710 may be used to execute the functions of the processing unit 602 , which will not be described in detail herein.
  • An embodiment of the present application further provides a computer-readable storage medium, in which computer-executable instructions are stored.
  • the computer-executable instructions are executed, the method executed by the second device or the first device in the above method embodiment is implemented.
  • An embodiment of the present application further provides a computer program product, which includes a computer program.
  • a computer program product which includes a computer program.
  • the embodiment of the present application also provides a computer program, which, when executed, enables the method executed by the second device or the first device in the above method embodiment to be implemented.
  • the present application also provides a communication system, which includes a second device and a first device, wherein the second device is used to execute the method executed by the second device in the above method embodiment; and the first device is used to execute the method executed by the first device in the above method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道信息传输方法及装置,该方法包括:第二装置接收第一指示信息,该第一指示信息用于指示第一信道信息预测值;第二装置测量来自第一装置的参考信号,得到第一信道信息;进一步地,第二装置根据第一信道信息预测值、第一信道信息预测值对应的第一阈值以及该第一信道信息,向第一装置发送第二信道信息。通过这样的方法,可以降低第二装置传输信道信息的开销。

Description

一种信道信息传输方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种信道信息传输方法及装置。
背景技术
信道信息的传输对通信性能至关重要,在第五代(fifth generation,5G)通信系统中采用基于码本的信道信息反馈,相比理想的信道信息反馈性能存在差距,同时基于码本的信道信息反馈的反馈开销巨大,系统设计复杂度高。在一些实现中,终端设备向接入网设备上报信道信息时,通过端口/子带间差分上报的方式、或者端口/子带间正交基稀疏表达等方式进行信道信息的上报,以降低终端设备上报信道信息的开销。但在各端口/子带间的信道信息结果差异较大的情况下,通过上述方式进行信道信息上报方式达到的降低开销的效果较差,且极大可能降低系统的传输性能。
如何在保证传输性能的同时降低信道信息传输开销是亟待解决的问题。
发明内容
本申请提供了一种信道信息传输方法及通信装置,有利于降低传输(或理解为反馈或发送)信道信息的开销。
第一方面,本申请提供一种信道信息传输方法,可应用于第二装置,该第二装置可以为通信设备(例如,终端设备或网络设备)或通信设备上的芯片,或者和通信设备匹配的装置。在该方法中,第二装置接收第一指示信息,该第一指示信息用于指示第一信道信息预测值;第二装置测量来自第一装置的参考信号,得到第一信道信息;进一步地,第二装置根据第一信道信息预测值、第一信道信息预测值对应的第一阈值以及该第一信道信息,向第一装置发送第二信道信息。
基于第一方面所描述的方法,第二装置通过更贴合实测信道信息(即第一信道信息)的预测值(即第一信道信息预测值)来对实测信道信息进行传输的方式,可以使得传输信道信息(即第二信道信息)的比特数小于该实测信道信息的比特数,第一装置根据该传输信道信息依然能准确地确定出该实测信道信息。也就是说,通过该第一方面所描述的方式,可以降低第二装置传输信道信息的开销。
在一种可能的实现中,若第一信道信息和第一信道信息预测值之间的差值小于或等于第一阈值,则第二信道信息为第一信道信息和第一信道信息预测值之间的差值;或者,若第一信道信息和第一信道信息预测值之间的差值大于第一阈值,则第二信道信息为第一信道信息。通过实施该可能的实施方式,第二装置可以根据该第一阈值确定第一信道信息预测值是否有效,在第一信道信息预测值有效(即第一信道信息和第一信道信息预测值之间的差值小于或等于第一阈值)的情况下,第二装置传输的第二信道信息小于实测信道信息(即第一信道信息);在第一信道信息预测值无效(即第一信道信息和第一信道信息预测值之间的差值大于第一阈值)的情况下,第二装置传输的第二信道信息小于实测信道信息(即第一信道信息)。从而使得第二装置传输信道信息的方式更加灵活。
在一种可能的实现中,第二装置接收第二指示信息,该第二指示信息用于指示第一阈值。 通过实施该可能的实现方式,对第一阈值进行动态指示,可以提升第一阈值的灵活性和与待传输信道信息之间适配性。
在一种可能的实现中,该第二指示信息还用于指示第一阈值对应的尺度因子;该尺度因子与第一阈值的精度关联。通过实施该可能的实现方式,通过对第一阈值的精度进行动态调整的方式,提升第一阈值的灵活性和与待传输信道信息之间适配性。
在一种可能的实现中,第一阈值为协议预先规定的。通过实施该可能的实现方式,第一阈值可以不用第一装置指示,从而节省通信传输资源。
在一种可能的实现中,第一阈值是根据第一信道信息与第一对应关系确定的,该第一对应关系包括第一信道信息和第一阈值之间的对应关系。
在一种可能的实现中,第二装置向第一装置发送类型指示信息,该类型指示信息用于指示第二信道信息的类型,该类型为差值传输类型或全值传输类型;其中,在第二信道信息为第一信道信息和第一信道信息预测值之间的差值时,第二信道信息的类型为差值传输类型;第二信道信息为第一信道信息时,第二信道信息的类型为全值传输类型。通过实施该可能的实施方式,在第二装置灵活选择传输信道信息时,保证第一装置能同步知晓该第二装置传输信道信息的类型,从而保证第二装置灵活传输信道信息的有效执行。
在一种可能的实现中,第一信道信息属于传输多径的信道参数CHP或信道状态信息CSI;其中,CHP包括以下信息中的一种或多种:传输角度、传输时延、传输功率或多普勒值;CSI包括以下信息中的一种或多种:信道状态信息参考信号资源指示CRI、秩指示RI、信道质量指示CQI、预编码矩阵指示PMI或层指示LI。
在一种可能的实现中,第一信道信息属于信道状态信息CSI,该CSI还包括第三信道信息,该第三信道信息的优先级小于第一信道信息的优先级;第一指示信息还用于指示第三信道信息对应的第二信道信息预测值。在这种情况下,若第一信道信息和第一信道信息预测值之间的差值小于或等于第一阈值,并且第三信道信息和第二信道信息预测值之间的差值小于或等于第二阈值,第二装置向第一装置发送第三信道信息与第三信道信息预测值之间的差值;或者,若第一信道信息和第一信道信息预测值之间的差值大于第一阈值,则第二装置向第一装置发送第三信道信息。通过实施该可能的实现方式,在优先级较高的信道信息对应的信道信息预测值无效(即该信道信息与其对应的预测值之间的差值大于该信道信息对应阈值)的情况下,第二装置直接确定优先级较低的信道信息对应的信道信息预测值无效,向第一装置发送该优先级较低的信道信息,从而节省第二装置的计算资源,降低第二装置的开销。
在一种可能的实现中,第一信道信息预测值是基于第一装置的感知信道预测功能获得的。
第二方面,本申请提供一种信道信息传输方法,可应用于第一装置,该第一装置可以为通信设备(例如,终端设备或网络设备)或通信设备上的芯片,或者和通信设备匹配的装置。该方法包括:第一装置向第二装置发送参考信号,该参考信号用户获取第一信道信息;第一装置接收来自第二装置的第二信道信息,该第二信道信息为根据第一信道信息预测值、第一信道信息预测值对应的第一阈值以及该第一信道信息确定的;第一装置根据该第二信道信息确定第一信道信息。
基于第二方面所提供方法的有益效果可参见对前述第一方面方法的有益效果的描述,在此不再赘述。
在一种可能的实现中,若第一信道信息和第一信道信息预测值之间的差值小于或等于第一信道信息预测值对应的第一阈值,则第二信道信息为第一信道信息和第一信道信息预测值之间的差值;若第一信道信息和第一信道信息预测值之间的差值大于第一阈值,则第二信道 信息为第一信道信息。
在一种可能的实现中,第一装置向第二装置发送第二指示信息,该第二指示信息用于指示第一阈值。
在一种可能的实现中,第二指示信息还用于指示第一阈值对应的尺度因子;该尺度因子与第一阈值的精度关联。
在一种可能的实现中,第一阈值为协议预先规定的。
在一种可能的实现中,第一阈值是根据第一信道信息与第一对应关系确定的,该第一对应关系包括第一信道信息和第一阈值之间的对应关系。
在一种可能的实现中,第一装置接收来自第二装置的类型指示信息,该类型指示信息用于指示第二信道信息的类型,类型为差值传输类型或全值传输类型;其中,在第二信道信息为第一信道信息和第一信道信息预测值之间的差值时,第二信道信息的类型为差值传输类型;第二信道信息为第一信道信息时,第二信道信息的类型为全值传输类型。
在一种可能的实现中,第一信道信息属于传输多径的信道参数CHP或信道状态信息CSI;其中,CHP包括以下信息中的一种或多种:传输角度、传输时延、传输功率或多普勒值;CSI包括以下信息中的一种或多种:信道状态信息参考信号资源指示CRI、秩指示RI、信道质量指示CQI、预编码矩阵指示PMI或层指示LI。
在一种可能的实现中,第一信道信息属于信道状态信息CSI,该CSI还包括第三信道信息,该第三信道信息的优先级小于第一信道信息的优先级;第一指示信息还用于指示第三信道信息对应的第二信道信息预测值;若第一信道信息和第一信道信息预测值之间的差值大于第一阈值,并且第三信道信息和第二信道信息预测值之间的差值小于或等于第二阈值,则第一装置接收来自第二装置的第三信道信息与第三信道信息预测值之间的差值;或者,若第一信道信息和第一信道信息预测值之间的差值大于第一阈值,则第一装置接收来自第二装置的第三信道信息。
在一种可能的实现中,第一装置通过感知信道预测功能获得第一信道信息预测值。
第三方面,本申请提供一种通信装置,该通信装置包括用于执行第一方面及其可能的实现中任一所述方法的模块/单元。
第四方面,本申请提供一种通信装置,该通信装置包括用于执行第二方面及其可能的实现中任一所述方法的模块/单元。
第五方面,本申请提供一种通信装置,该装置可以是第二装置,该第二装置可以为通信设备(例如,终端设备或网络设备)或通信设备上的芯片,或者和通信设备匹配的装置;其中,该通信装置还可以是芯片系统,该通信装置可执行第一方面中第二装置所执行的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面所述的方法以及有益效果,重复之处不再赘述。
第六方面,本申请提供一种通信装置,该装置可以是第一装置,该第一装置可以为通信设备(例如,终端设备或网络设备)或通信设备上的芯片,或者和通信设备匹配的装置;其中,该通信装置还可以是芯片系统,该通信装置可执行第二方面中第一装置所执行的方法,或者,该通信装置可执行第二方面中第一装置所执行的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第二方面所述的方法以及有益效果,重复之处不再赘述。
第七方面,本申请提供了一种通信装置,所述通信装置包括处理器,该处理器用于通过执行存储器中存储的计算机程序或指令,和/或,通过逻辑电路,使得该通信装置执行第一方面及其可能的实现,或者第二方面及其可能的实现中任一项所述的方法被执行。
一种可能的实现中,该通信装置包括存储器,用于存储上述计算机程序或指令,或者,用于存储上述逻辑电路的配置文件。
可选地,存储器和处理器集成在一起,或者,存储器和处理器独立设置。在另一种可能的实现中,上述存储器位于该通信装置之外。
一种可能的实现中,该通信装置还包括收发器,该收发器,用于接收信号和/或发送信号。
第八方面,本申请提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收计算机执行指令并传输至所述处理器;所述处理器运行所述计算机执行指令以执行如第一方面~第二方面所述的方法中第二装置或第一装置所执行的方法。
第九方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机执行指令,当该计算机执行指令被执行时,使得如第一方面~第二方面所述的方法中第二装置或第一装置所执行的方法。
第十方面,本申请提供一种包括计算机程序的计算机程序产品,当该计算机程序被执行时,使得如第一方面~第二方面所述的方法中第二装置或第一装置所执行的方法被实现。
第十一方面,本申请提供一种通信系统,该通信系统包括第二装置和第一装置;其中第二装置用于执行上述第一方面所述的方法,所述第一装置用于执行上述第二方面的方法。
附图说明
图1为本申请实施例提供的一种系统架构的示意图;
图2为本申请实施例提供的一种感知系统的示意图;
图3为本申请实施例提供的一种感知辅助通信系统的示意图;
图4为本申请实施例提供的一种信道信息传输方法的流程示意图;
图5为本申请实施例提供的另一种信道信息传输方法的流程示意图;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列操作或单元的过程、方法、系统、产品或设备没有限定于已列出的操作或单元,而是可选地还包括没有列出的操作或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它操作或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述对应对象的对应关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后对应对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
为了更好地理解本申请实施例,下面首先对本申请实施例涉及的系统架构进行介绍:
本申请实施例可应用于长期演进(long term evolution,LTE)系统、第五代移动通信(5th generation mobile communication,5G)系统、第六代移动通信(6th generation mobile communication,6G)系统等5G之后演进的通信系统、卫星通信及短距等无线通信系统中。其中,本申请实施例提及的无线通信系统包括但不限于:5G/6G移动通信系统的三大应用场景:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra reliable low latency communication,URLLC)和海量机器类通信(massive machine type of communication,mMTC),远程物联网(long range,LoRa)系统或车联网系统中。无线通信系统可以包括一个或多个接入网设备,以及一个或多个终端设备。
下面以图1所示的系统架构进行示例性讲解。如图1所示,通信系统1000包括无线接入网(radio access network,RAN)100和核心网(core network,CN)200。RAN 100包括至少一个网络设备(如图1中的110a和110b,统称为110)和至少一个终端(如图1中的120a-120j,统称为120)。RAN 100中还可以包括其它RAN节点,例如,无线中继设备和/或无线回传设备(图1中未示出)等。终端120通过无线的方式与网络设备110相连。网络设备110通过无线或有线方式与核心网200连接。核心网200中的核心网设备与RAN 100中的网络设备110可以分别是不同的物理设备,也可以是集成了核心网逻辑功能和无线接入网逻辑功能的同一个物理设备。
需要说明的是,RAN 100可以为第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统,例如,4G、5G移动通信系统、或5G之后的演进系统(例如6G移动通信系统)。RAN 100还可以是开放式接入网(open RAN,O-RAN或ORAN)、云无线接入网络(cloud radio access network,CRAN)等。RAN 100还可以是以上两种或两种以上系统融合的通信系统。需要声明的是,图1中网络设备和终端设备的数量仅为示意性的,不应视为对本申请的具体限定。本申请所提供的方法应用于上述通信系统时,本申请所提及的第一装置可以为网络设备或终端设备,第二装置可以为网络设备或终端设备,本申请对此不进行具体限定。在一个可能的实现中,当第一装置为网络设备时,第二装置为终端设备;当第一装置为终端设备时,第二装置为网络设备。下面再对系统架构所涉及的终端设备和网络设备进行详细说明。
一、终端设备
终端设备又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,或是用于向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、卫星终端、虚拟现实(virtual reality,VR) 设备、增强现实(augmented reality,AR)设备、智能销售点(point of sale,POS)机、客户终端设备(customer-premises equipment,CPE)、工业控制中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、机械臂、车间设备、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网(smart grid)中的无线终端、运输安全中的无线终端、智慧城市中的无线终端,或智慧家庭中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备还可以是其他具有终端功能的设备,例如,终端设备还可以是D2D通信中担任终端功能的设备。
本申请的实施例对终端的设备形态不做限定,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
二、网络设备
网络设备为无线接入网(radio access network,RAN)中的节点,又可以称为接入网设备,还可以称为RAN节点(或设备)。网络设备用于帮助终端实现无线接入。通信系统1000中的多个网络设备110可以为同一类型的节点,也可以为不同类型的节点。在一些场景下,网络设备110和终端120的角色是相对的,例如,图1中网元120i可以是直升机或无人机,其可以被配置成移动基站,对于那些通过网元120i接入到RAN 100的终端120j来说,网元120i是基站;但对于基站110a来说,网元120i是终端。网络设备110和终端120有时都称为通信装置,例如图1中网元110a和110b可以理解为具有基站功能的通信装置,网元120a-120j可以理解为具有终端功能的通信装置。
在一种可能的场景中,网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站、卫星、接入回传一体化(integrated access and backhaul,IAB)节点、移动交换中心非陆地通信网络(non-terrestrial network,NTN)通信系统中的网络设备,即可以部署于高空平台或者卫星等。网络设备可以是宏基站(如图1中的110a)、微基站或室内站(如图1中的110b)、中继节点或施主节点、或者是CRAN场景下的无线控制器。网络设备还可以是设备到设备(device to device,D2D)通信、车联网通信、无人机通信、机器通信中担任基站功能的设备。可选的,网络设备还可以是服务器,可穿戴设备,车辆或车载设备等。例如,车辆外联(vehicle to everything,V2X)技术中的接入网设备可以为路侧单元(road side unit,RSU)。
在另一种可能的场景中,由多个网络设备协作协助终端实现无线接入,不同网络设备分别实现基站的部分功能。例如,网络设备可以是集中式单元(central unit,CU),分布式单元(distributed unit,DU),CU-控制面(control plane,CP),CU-用户面(user plane,UP),或者无线单元(radio unit,RU)等。CU和DU可以是单独设置,或者也可以包括在同一个网元中,例如基带单元(baseband unit,BBU)中。RU可以包括在射频设备或者射频单元中,例如包括在射频拉远单元(remote radio unit,RRU)、有源天线处理单元(active antenna unit,AAU)或远程射频头(remote radio head,RRH)中。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
在不同系统中,CU(或CU-CP和CU-UP)、DU或RU也可以有不同的名称,但是本领 域的技术人员可以理解其含义。例如,在ORAN系统中,CU也可以称为O-CU(开放式CU),DU也可以称为O-DU,CU-CP也可以称为O-CU-CP,CU-UP也可以称为O-CU-UP,RU也可以称为O-RU。为描述方便,本申请中以CU,CU-CP,CU-UP、DU和RU为例进行描述。本申请中的CU(或CU-CP、CU-UP)、DU和RU中的任一单元,可以是通过软件模块、硬件模块、或者软件模块与硬件模块结合来实现。
本申请实施例中,对网络设备的形态不作限定,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。
为了方便理解本方案的内容,下面再对本申请实施例中涉及的部分用语进行解释说明,以便于本领域技术人员理解,此部分仅是为了便于理解,并不能视为对本申请的具体限定。
1、感知技术
在感知技术(又称为无线感知技术)的应用中,感知设备包括:用于发射感知信号的装置被称为感知信号发射端、用于接收感知信号的装置被称为感知信号接收端。示例性的,感知技术用于感知目标物体时,图2所示的感知系统包括感知信号发射端201、感知信号接收端202和感知目标203。在感知信号发射端201向感知信号接收端202发射感知信号之后,感知信号接收端202接收到的感知信号包括直达信号S1以及感知目标203发生反射或散射的反射及散射信号S2。当感知目标203发生变化(例如形态、位置发生变化),反射信号S2也会发生变化,从而感知信号接收端202收到的叠加感知信号也会相应产生变化。并且,感知信号接收端202会探测到无线链路的信道产生了变化(表现为信道信息的幅度和相位的变化等)。通常,无线链路的信道在通信协议中被量化表示为信道信息,如信道状态信息(channel state information,CSI),进而感知信号发射端201可以通过以一定时间间隔内向感知信号接收端202发起信道探测,获取根据感知信号接收端202传输的信道信息的变化知晓感知目标203是否发生变化。
2、感知辅助通信
在感知技术的应用过程中,感知设备可以通过通信网络中无线信号(即感知信号)的传输、反射和散射,来感知或理解物理世界。同时,通信网络可以获得高精度定位、成像和环境重建能力,从而可以提高通信性能(包括但不限于:更准确的波束成形、更快的波束故障恢复以及降低跟踪CSI时的开销等)。这种感知技术与通信网络相结合的技术,在本申请中被称为感知辅助通信。
示例性地,请参见图3所示的感知辅助通信系统的示意图,该感知辅助通信系统包括信号发射端301,信号接收端302,信号接收端303。在结合该感知辅助通信系统预测信道信息(后文中称为感知辅助预测功能)的一种实施方式中,信号发射端301和信号接收端302正在执行(或已经执行过)如图2所示的感知业务,进一步地,信号接收端302基于直达的信号S1以及周围环境(例如信号接收端302周围的环境建筑物等)反射或散射回来的至少一个信号S2,测量得到感知信道(即用于传输感知信号的信道)的信道信息。在这种情况下,若信号发射端301和信号接收端302需要执行其他通信业务(除前述感知业务之外的其他业务),该通信业务对应的通信信道(即用于传输该通信信号)的信道信息可以理解为近似于该感知信道的信道信息。
在结合该感知辅助通信系统预测信道信息(后文中称为感知辅助预测功能)的一种实施方式中,信号发射端301和信号接收端302正在执行(或已经执行过)如图2所示的感知业务,进一步地,信号接收端302基于直达的信号S1以及周围环境反射或散射回来的至少一个信号S2, 进行环境重建(即感知获取信号接收端302所处的通信环境)。信号发射端301获取信号接收端303在该通信环境的位置,并基于信号接收端303的位置通过信道信息预测模型(通过信道建模方法获取的模型),获取该信号接收端303接收直达的信号S3和周围环境反射或散射回来的至少一个信号S4对应通信信道的信道信息。
其中,基于信号接收端303的位置和信道信息预测模型,获取信道信息的执行设备为:与该信号发射端301具有通信连接的设备、或者该信号发射端301本身。信道建模方法包括但不限于:射线追踪方法、统计方法等。
在一种实现中,终端设备可以通过端口/子带间差分上报的方式、或者端口/子带间正交基稀疏表达等方式进行信道信息的上报,以降低终端设备上报信道信息的开销。示例性地,端口0的信道信息为a0,端口1的信道信息为a1;在终端设备通过端口间差分上报的方式上报信道信息的情况下,终端设备可以将端口0的信道信息作为基准,计算端口1的信道信息与端口0的信道信息之间的差值(即a1-a0);进而终端设备向接入网设备上报的信道信息为(a0,a1-a0)。由于a1-a0通常小于a1,因此终端设备上报(a0,a1-a0)的开销小于终端设备上报(a0,a1)的开销。但在各端口/子带间的信道信息结果差异较大的情况下,通过上述方式进行信道信息上报方式达到的降低开销的效果较差,例如在上述示例中a1-a0接近于a1时,通过差分上报信道信息的方式不能降低反馈信道信息的开销。
为了降低装置反馈信道信息的开销,本申请提供一种信道信息传输方法。下面结合附图对本申请提供的信道信息传输方法及通信装置进行进一步介绍:
请参见图4,图4是本申请实施例提供的一种信道信息传输方法的流程示意图。如图4所示,该信道信息传输方法包括如下S401~S404。图4所示的方法以第二装置(即信道信息反馈方)和第一装置(即信道信息接收方)为执行主体为例进行说明。可以理解的,第一装置可以是上述终端设备,或者是终端设备中的芯片,或者是与终端设备匹配使用的装置,或,第一装置可以是上述网络设备,或者是网络设备中的芯片,或者是与网络设备匹配使用的装置。第二装置可以是上述终端设备,或者是终端设备中的芯片,或者是与终端设备匹配使用的装置,或,第二装置可以是上述网络设备,或者是网络设备中的芯片,或者是与网络设备匹配使用的装置。其中:
S401、第二装置接收第一指示信息,该第一指示信息用于指示第一信道信息预测值。
具体地,第二装置可以从第一装置或其他装置(除第一装置之外的装置,例如第三装置)接收该第一指示信息。为了便于说明,下面以第一装置向第二装置发送第一指示信息为例进行说明,其他装置向第二装置发送第一指示信息的具体流程可同理参照。
在一个可能的实施方式中,第一装置确定第一信道信息预测值,并向第二装置发送该第一指示信息。
其中,第一装置确定第一信道信息预测值的方式包括但不限于以下几种:1、第一装置根据自身的感知信道预测功能,确定该第一信道信息预测值(具体可参见图3提及的结合感知辅助通信系统预测信道信息的实施方式);2、第一装置根据通信网络中的历史信道信息统计确定的均值(或中位数或众数等),确定该第一信道信息预测值;3、第一装置根据上下行信道的互易性确定该第一信道信息预测值;即第一装置接收并测量来自第二装置的信号,得到信道信息;进而将该信道信息确定为第一信道信息预测值;4、第一装置通过历史信道信息,结合人工智能(Artificial Intelligence,AI)算法确定该第一信道信息预测值。
在另一个可能的实施方式中,第一装置从第四装置(与第一装置具有通信连接的装置)获取第一信道信息预测值,并向第二装置发送该第一指示信息。
其中,第四装置确定第一信道信息预测值的方式包括但不限于以下几种:1、第四装置根据自身的感知信道预测功能,确定该第一信道信息预测值(具体可参见图3提及的结合感知辅助通信系统预测信道信息的实施方式);2、第四装置根据通信网络中的历史信道信息统计确定的均值(或中位数或众数等),确定该第一信道信息预测值;3、第四装置通过历史信道信息,结合AI算法确定该第一信道信息预测值。该第四装置可以和第一装置位于同一物理位置,也可以分立设置。该第四装置可以实现感知处理功能和/或感知管理功能。可选地,该第四装置可以是核心网设备、服务器等设备。
需要说明的是,第一信道信息预测值为第一装置与第二装置之间信道的第一信道信息对应的预测值。本申请所提及的第一信道信息包括但不限于以下信息中的一种或多种:信道状态信息参考信号资源指示(channel state information-reference signal resource identifier,CRI)、秩指示(rank indicator,RI)、信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、层指示(layer indicator,LI)、传输角度、传输时延、传输功率或多普勒值等。在一个可能的实施方式中,当该第一信道信息为传输角度、传输时延、传输功率或多普勒值中的一种时,该第一信道信息属于传输多径信道参数(Channel parameter,CHP);当该第一信道信息为CRI、RI、CQI、PMI或LI中的一种时,该第一信道信息属于CSI。本申请中,可以是以通信协议规定的(或第一装置与第二装置协商的)周期,周期性地向第二装置发送第一指示信息;也可以是根据第一装置的需求(即第一装置需要第二装置反馈第一信道信息的情况下),向第二装置发送第一指示信息;本申请对此不进行具体限定。
在一个可能的实施方式中,第一指示信息用于指示第一信道信息预测值的指示方式包括但不限于以下几种方式:
指示方式01、第一指示信息直接指示第一信道信息预测值。
在这种方式下,第一指示信息指示的数值即为该第一信道信息预测值。
指示方式02、第一指示信息间接指示第一信道信息预测值。
在这种方式下,第二装置可以根据第一指示信息指示的数值,确定第一信道信息预测值。在指示方式02的一种可能的实施方式中,第一指示信息指示的数值为第一信道信息预测值与基准值之间的差值。其中该基准值可以是第二装置前一次接收的第一信道信息的值,或者,可以是第二装置第一次接收的第一信道信息的值,或者,可以是预定义的值。
示例性的,以基准值可以是第二装置前一次接收的第一信道信息的值为例进行举例说明。第N次第一指示信息指示的数值为与第N-1次第一指示信息指示的第一信道信息预测值之间的差值,其中,N为大于1的整数。例如,第一信道信息为CQI,当第二装置第一次接收来自第一装置的第一指示信息,并且该第一指示信息指示的数值为20时,则表示该第一指示信息指示的CQI预测值为20。当第二装置第二次接收来自第一装置的第一指示信息,该第二次第一指示信息指示的数值为+5(即本次指示的数值与上一次指示的数值之间的差值为+5),在这种情况下,第二装置根据该第一指示信息指示的数值(即+5)和上一次指示的CQI预测值(即20)确定该第一指示信息指示的CQI预测值为25。当第二装置第三次接收来自接入网设备的第一指示信息,该第三次第一指示信息指示的数值为-10(即本次指示的数值与上一次指示的数值之间的差值为-10),在这种情况下,第二装置根据该第一指示信息指示的数值(即-10)和上一次指示的CQI预测值(即25)确定该第一指示信息指示的CQI预测值为15。
S402、第二装置测量来自第一装置的参考信号,得到第一信道信息。
也就是说,第一装置向第二装置发送参考信号,进一步地,第二装置接收并测量该参考信号,得到第一信道信息。其中,该第一信道信息为传输该参考信号的信道对应的信道信息。
例如,在第一装置为终端设备,第二装置为接入网设备的情况下,接入网设备向终端设备发送下行参考信号,终端设备测量该下行参考信号得到下行信道的信道信息。
S403、第二装置根据该第一信道信息预测值、第一信道信息预测值对应的第一阈值以及该第一信道信息,向第一装置发送第二信道信息。相应地,第一装置接收来自第二装置的第二信道信息。
其中,第一阈值用于判断第一信道信息预测值的有效性。可以理解为,当第一信道信息与该第一信道信息预测值之间的差值小于该第一阈值时,该第一信道信息预测值与第一信道信息之间差距较小,第一信道信息预测值有效;当第一信道信息与第一信道信息预测值之间的差值大于该第一阈值时,该第一信道信息预测值与第一信道信息之间差距较大,该第一信道信息预测值无效。需要说明的是,本申请对第一信道信息与该第一信道信息预测值之间的差值等于第一阈值的情况不进行具体限定;也就是说,在一种可能的实施方式中,当第一信道信息与该第一信道信息预测值之间的差值等于第一阈值时,第一信道信息预测值有效;在另一种可能的实施方式中,当第一信道信息与该第一信道信息预测值之间的差值等于第一阈值时,第一信道信息预测值无效。
为了有效的降低第二装置传输信道信息的开销,可以在第一信道信息预测值有效时,第二装置向第一装置发送第一信道信息与该第一信道信息预测值之间的差值;在第一信道信息预测值无效时,第二装置向第一装置发送该第一信道信息。也就是说,在一个可能的实施方式中,若第一信道信息和第一信道信息预测值之间的差值小于或等于第一阈值,则第二信道信息为第一信道信息和第一信道信息预测值之间的差值;或者,若第一信道信息和第一信道信息预测值之间的差值大于第一阈值,则第二信道信息为第一信道信息。
例如,第一信道信息为:CQI值为25,第一信道信息预测值对应的第一阈值为8。在这种情况下,若第一信道信息预测值为:CQI预测值为23(与第一信道信息之间的差值小于8),则该第一信道信息预测值有效,第二装置向第一装置发送该CQI值与CQI预测值之间的差值,即第二信道信息为+2。若该第一信道信息预测值为:CQI预测值为13(与第一信道信息之间的差值大于8),则该第一信道信息预测值无效,第二装置向第一装置发送该CQI值,即第二信道信息为25(即第一信道信息)。
结合该可能的实施方式,第二装置还可以向第一装置发送类型指示信息,该类型指示信息用于指示第二装置向第一装置传输的信道信息(即第二信道信息)的类型,该类型为差值传输类型或全值传输类型。其中,当第二信道信息为第一信道信息和第一信道信息预测值之间的差值时,类型指示信息指示该第二信道信息的类型为差值传输类型;当第二信道信息为第一信道信息时,类型指示信息指示该第二信道信息的类型为全值传输类型。示例性地,第二装置通过一个指示字符指示第二信道信息的类型,例如,当该指示字符的取值为0时,则指示该第二信道信息的类型为差值传输类型;当该指示字符的取值为1时,则指示该第二信道信息的类型为全值传输类型。
下面再对第二装置获取该第一阈值的情况进行介绍:
情况一、第二装置接收第二指示信息,该第二指示信息用于指示该第一阈值。具体地,参照第一指示信息的获取方式,第二装置可以接收来自于第一装置或者其他装置(除第一装置之外的装置,例如第三装置)的第二指示。需要说明的是,第一指示信息和第二指示信息 可以同时发送(例如包含在同一消息中),也可以分时发送(例如包含在不同消息中)。
其中,第二指示信息指示第一阈值的指示方式包括但不限于以下几种:
指示方式11、第二指示信息直接指示该第一阈值的具体数值。也就是说,第二指示信息包含的数值即为第一阈值。
示例性的,通信协议规定通过4个比特位的取值来表示第二指示信息,若该第二指示信息的值为0011,则可以理解为该第二指示信息包含的数值为3(即第一阈值);若该第二指示信息的值为0111,则可以理解为该第二指示信息包含的数值为7(即第一阈值)。在这种情况下,可以理解为该第一阈值对应的尺度因子为通信系统预定义的,本申请对通信系统预定义的尺度因子的数值不进行具体限定,例如在此示例中,该预定义该尺度因子为2。
在指示方式11的一种可能的实施方式中,该第二指示信息还用于指示第一阈值对应的尺度因子;该尺度因子与第一阈值的精度关联。可以理解为,该第一阈值为尺度因子与传输第二指示信息的比特位指示数值的乘积,随着尺度因子的增大,第一阈值的精度降低;即尺度因子越小该第一阈值的精度越高,尺度因子越大该第一阈值的精度越低。
例如,第二指示信息的值为0111,则可以理解为该第二指示信息包含的数值为7,若该第一阈值对应的尺度因子为0.1,则该第二指示信息指示的第一阈值为0.7(即7与0.1的乘积);若该第一阈值对应的尺度因子为1,则该第二指示信息指示的第一阈值为7(即7与1的乘积)。
指示方式12、第二指示信息间接指示该第一阈值的具体数值。也就是说,第二装置根据该第二指示信息指示的内容,可以确定该第一阈值。
例如,通信协议中预定义了第一信道信息对应的多个阈值,每个阈值对应有编号(可以理解为阈值的标识信息)。在这种情况下,第二指示信息包括第一编号,则第二装置可以根据该第一编号从该多个阈值中确定出第一阈值(即与该第一编号对应的阈值)。
在指示方式12的一种可能的实施方式中,第二指示信息用于指示第一阈值与该第一信道预测值之间的比例关系。例如,第二装置接收来之第一装置的第一指示信息和第二指示信息,该第一指示信息用于指示第一信道预测值为:CQI预测值为20,第二指示信息用于指示第一阈值为该第一信道预测值的10%;进一步地,第二装置根据该第二指示信息确定第一阈值为2。
情况二、第一阈值为协议(即通信协议)预先规定的。
也就是说,通信协议预先规定了第一信道信息对应的第一阈值。例如,第一信道信息为CQI时,该第一阈值为Q1;第一信道信为RI时,则该第一阈值为Q2。
在情况二下的一种可能的实施方式中,第一阈值是根据第一信道信息和第一对应关系确定的。其中第一对应关系指示信道信息与阈值之间的对应关系,该第一对应关系包括第一信道信息和第一阈值之间的对应关系。在这种情况下,第二装置可以根据第一信道信息、以及第一对应关系中第一信道信息和第一阈值之间的对应关系,确定第一阈值。
示例性地,如表1所示,第一对应关系可以为一种阈值控制字配置表。
表1
在这种情况下,若第一信道信息预测值的数值为15,则根据该阈值控制字配置表1,可以确定第一信道信息对应的第一阈值为3。需要说明的是,表1仅是一种阈值控制字配置表的示例,并不能视为对数值区间取值、封闭区间位置、以及数值区间与阈值之间的对应关系的具体限定。例如表1中左开右闭的数值区间(10,20]在一些情况下也可以由右开左闭的数值区间[10,20)替代。
S404(可选的)、第一装置根据第二信道信息确定第一信道信息。
也就是说,当第二信道信息为差值传输类型时,第一装置根据第二信道信息和该第一信道信息预测值,确定第一信道信息;当第二信道信息为全值传输类型时,第一装置将该第二信道信息确定为第一信道信息。
综上所述,在图4所描述的信道信息传输过程中,第二装置通过更贴合实测信道信息(即第一信道信息)的预测值(即第一信道信息预测值)来对实测信道信息进行传输的方式,可以使得传输信道信息(即第二信道信息)的比特数小于该实测信道信息的比特数,第一装置根据该传输信道信息依然能准确地确定出该实测信道信息。也就是说,通过该第一方面所描述的方式,可以降低第二装置传输信道信息的开销。
需要说明的是,本申请仅以第一信道信息预测值对应一个阈值(即第一阈值)为例进行说明,不应视为对本申请的具体限定。在一个可能的实施方式中,第一信道信息预测值可以对应多个阈值(包括第一阈值),各个阈值用于判断第一信道信息预测值与第一信道信息的接近程度。例如,该多个阈值包括第一阈值和第三阈值,其中,第三阈值小于第一阈值,该第一阈值用于判断第一信道信息预测值是否有效,该第三阈值用于判断第一信道信息预测值是否近似等于第一信道信息。当第一信道信息与第一信道信息预测值之间的差值小于或等于第三阈值时,第一信道信息预测值近似等于第一信道信息,在这种情况下,该第二信道信息可以为一个指示符(用于指示第一装置将第一信道信息预测值确定为第一信道信息);当第一信道信息与第一信道信息预测值之间的差值大于第三阈值,并小于或等于第一阈值时,第一信道信息预测值有效,第二信道信息为第一信道信息与该第一信道信息预测值之间的差值;当第一信道信息与第一信道信息预测值之间的差值大于该第一阈值时,第一信道信息预测值无效,第二信道信息为第一信道信息。通过实施该可能的实施方式,当第一信道信息预测值近似于第一信道信息时,可以进一步地减少传输开销。
可以理解的是,当第二装置的通信传输资源受限的场景下,图4所描述的方法达到的效果尤为突出。例如,第一装置为接入网设备,第二装置为终端设备时,图4所描述的方法在上行受限的场景(例如物联网(Internet of Things,IoT)应用场景)中,能有效地节省终端设备传输信道信息的开销。或者,第一装置为终端设备,第二装置为接入网设备时,图4所描述的方法在下行受限的场景(例如接入网设备处于低功耗模式或节能模式场景)中,能有效地节省接入网设备反馈信道信息的开销。
在一个应用场景中,第二装置测量来自第一装置的参考信号,得到多个信道信息(包括第一信道信息)。其中,该多个信道信息之间存在关联关系,根据该多个信道信息之间的关联关系可以确定出各个信道信息的优先级。示例性的,信道信息1是基于信道信息2确定的,在这种情况下,确定信道信息2的优先级高于信道信息1的优先级,可以理解为当信道信息2(即优先级较高的信道信息)对应的信道信息预测值无效时,信道信息1(即优先级较低的信道信息)对应的信道信息预测值大概率是无效的。
下面,结合这种应用场景中和图4所描述的信道信息传输方法,以第一信道信息属于CSI 为例进行详细介绍。
请参见图5,图5是本申请实施例提供的一种信道信息传输方法的流程示意图。如图5所示,该信道信息传输方法包括如下S501~S507。图5所示的方法以第二装置(即信道信息反馈方)和第一装置(即信道信息接收方)为执行主体为例进行说明。可以理解的是,第一装置可以是上述终端设备,或者是终端设备中的芯片,或者是与终端设备匹配使用的装置,或,第一装置可以是上述网络设备,或者是网络设备中的芯片,或者是与网络设备匹配使用的装置。第二装置可以是上述终端设备,或者是终端设备中的芯片,或者是与终端设备匹配使用的装置,或,第二装置可以是上述网络设备,或者是网络设备中的芯片,或者是与网络设备匹配使用的装置。其中:
S501、第二装置接收第一指示信息,该第一指示信息用于指示第一信道信息预测值和第二信道信息预测值。
其中,第一信道信息预测值和第一信道信息对应,第二信道信息预测值与第三信道信息对应;该第一信道信息和第三信道信息均属于CSI(即CSI包括该第一信道信息和第三信道信息),第三信道信息的优先级小于第一信道信息的优先级。在一个可能的实施方式中,CSI包括的信道信息的优先级由高到低依次为:CRI、RI、CQI、PMI、LI。示例性的,第一信道信息为CRI,第三信道信息为CQI。
在S501中,第一装置获取第一信道信息预测值和第二信道信息预测值的方式可参见S401中获取第一信道信息预测值的描述;第一指示信息指示第一信道信息预测值和第二信道信息预测值的指示方式,可参见前述S401中的指示方式01和指示方式02,在此不再赘述。
S502、第二装置测量来自第一装置的参考信号,得到第一信道信息和第三信道信息。
相应地,第一装置向第二装置发送参考信号,进一步地,第二装置接收并测量该参考信号,得到第一信道信息和第三信道信息。
S503、若第一信道信息预测值有效(即第一信道信息和该第一信道信息预测值之间的差值小于或等于第一阈值),则第二装置向第一装置发送第二信道信息,该第二信道信息为第一信道信息和第一信道信息预测值之间的差值。
其中,S503的具体实施方式可参见S403中第二信道信息为第一信道信息和第一信道信息预测值之间的差值的相关实施方式,在此不再赘述。
S504、若第二信道信息预测值有效,则第二装置向第一装置发送第四信道信息,该第四信道信息为第三信道信息和第二信道信息预测值之间的差值。
也就是说,在第一信道信息预测值有效的情况下,若第三信道信息和该第二信道信息预测值之间的差值小于或等于第二阈值(即第二信道信息预测值有效),则第二装置向第一装置发送第三信道信息和第二信道信息预测值之间的差值。
其中,第二装置获取该第二阈值的方式可参照S403中获取第一阈值的情况一和情况二的描述,在此不再赘述。
S505、若第二信道信息无效(即第三信道信息和该第二信道信息预测值之间的差值大于第二阈值),则第二装置向第一装置发送第四信道信息,该第四信道信息为第三信道信息。
也就是说,在第一信道信息预测值有效的情况下,若第三信道信息和该第二信道信息预测值之间的差值大于第二阈值(即第二信道信息预测值无效),则第二装置向第一装置发送第三信道信息。
需要说明的是,在S503-S505中的第二信道信息和第四信道信息的发送时机可以是同时发送,也可以是分时发送。
S506、若第一信道信息无效(即第一信道信息和该第一信道信息预测值之间的差值大于第一阈值),则第二装置向第一装置发送第二信道信息和第四信道信息。其中,该第二信道信息为第一信道信息,第四信道信息为第三信道信息。
也就是说,若第一信道信息预测值无效,则第二装置确定第二信道信息预测值无效,第二装置向第一装置发送第三信道信息。
S507(可选的)、第一装置根据第二信道信息和第四信道信息,确定第一信道信息和第三信道信息。
其中,S507的具体实施方式可参照S404中第一装置根据第二信道信息确定第一信道信息的实施方式,在此不再赘述。
综上所述,通过图5所描述的信道信息传输方法,第二装置在优先级较高的信道信息(即第一信道信息)对应的信道信息预测值有效的情况下,才会确定优先级较低的信道信息(即第三信道信息)对应的信道信息预测值是否有效;进一步地,第二装置根据确定结果向第一装置发送第三信道信息与第二信道信息预测值之间的差值,或是,根据确定结果向第一装置发送第三信道信息。在优先级较高的信道信息(即第一信道信息)对应的信道信息预测值无效的情况下,第二装置直接确定优先级较低的信道信息(即第三信道信息)对应的信道信息预测值无效,向第一装置发送该第三信道信息,从而节省第二装置的计算资源、降低第二装置的功耗开销。
本申请提供了一种通信装置,可以用于实现上述第一装置或第二装置的功能。该通信装置可以是第一装置或者第二装置。该通信装置包括上述方法实施例中第一装置或第二装置执行的方法/操作/步骤/动作所一一对应的模块或单元,该单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。请参见图6,图6示出了本申请实施例的一种通信装置600的结构示意图。通信装置600可以包括通信单元601和处理单元602。具体的,处理单元602用于处理信令和/或数据,该信令和/或数据可以是通信单元601接收的数据,该处理后的信令和/或数据也可由通信单元601发送;
在一种实施方式中,该通信装置600是第二装置时,其中:
通信单元601,用于接收第一指示信息,该第一指示信息用于指示第一信道信息预测值;处理单元602,用于测量来自第一装置的参考信号,得到第一信道信息;该处理单元602,还用于根据第一信道信息预测值、第一信道信息预测值对应的第一阈值以及第一信道信息,向第一装置发送第二信道信息。
在一种可能的实现中,若第一信道信息和第一信道信息预测值之间的差值小于或等于第一阈值,则第二信道信息为第一信道信息和第一信道信息预测值之间的差值;或者,若第一信道信息和第一信道信息预测值之间的差值大于第一阈值,则第二信道信息为第一信道信息。
在一种可能的实现中,通信单元601,还用于接收第二指示信息,该第二指示信息用于指示第一阈值。
在一种可能的实现中,第二指示信息还用于指示第一阈值对应的尺度因子;尺度因子与第一阈值的精度关联。
在一种可能的实现中,第一阈值为协议预先规定的。
在一种可能的实现中,第一阈值是根据第一信道信息与第一对应关系确定的,该第一对应关系包括第一信道信息和第一阈值之间的对应关系。
在一种可能的实现中,通信单元601,还用于向第一装置发送类型指示信息,类型指示 信息用于指示第二信道信息的类型,类型为差值传输类型或全值传输类型;其中,在第二信道信息为第一信道信息和第一信道信息预测值之间的差值时,第二信道信息的类型为差值传输类型;第二信道信息为第一信道信息时,第二信道信息的类型为全值传输类型。
在一种可能的实现中,第一信道信息属于传输多径的信道参数CHP或信道状态信息CSI;其中,CHP包括以下信息中的一种或多种:传输角度、传输时延、传输功率或多普勒值;CSI包括以下信息中的一种或多种:信道状态信息参考信号资源指示CRI、秩指示RI、信道质量指示CQI、预编码矩阵指示PMI或层指示LI。
在一种可能的实现中,第一信道信息属于信道状态信息CSI,CSI还包括第三信道信息,第三信道信息的优先级小于第一信道信息的优先级;第一指示信息还用于指示第三信道信息对应的第二信道信息预测值;
若第一信道信息和第一信道信息预测值之间的差值小于或等于第一阈值,并且第三信道信息和第二信道信息预测值之间的差值小于或等于第二阈值,通信单元601,还用于向第一装置发送第三信道信息与第三信道信息预测值之间的差值;
或者,若第一信道信息和第一信道信息预测值之间的差值大于第一阈值,则通信单元601,还用于向第一装置发送第三信道信息。
在一种可能的实现中,第一信道信息预测值是基于第一装置的感知信道预测功能获得的。
关于上述通信单元601和处理单元602的具体实施方式,可参见图4或图5中第二装置的具体实施步骤,在此不再赘述。
在一种实施方式中,该图6所示的通信装置是第一装置时,其中:
通信单元601,用于向第二装置发送参考信号,该参考信号用于获取第一信道信息;通信单元601,还用于接收来自第二装置的第二信道信息,该第二信道信息为根据第一信道信息预测值、该第一信道信息预测值对应的第一阈值以及第一信道信息确定的;处理单元602,用于根据第二信道信息和第一信道信息预测值,确定第一信道信息。
在一种可能的实现中,若第一信道信息和第一信道信息预测值之间的差值小于或等于第一信道信息预测值对应的第一阈值,则第二信道信息为第一信道信息和第一信道信息预测值之间的差值;若第一信道信息和第一信道信息预测值之间的差值大于第一阈值,则第二信道信息为第一信道信息。
在一种可能的实现中,通信单元601,还用于向第二装置发送第二指示信息,该第二指示信息用于指示第一阈值。
在一种可能的实现中,第二指示信息还用于指示第一阈值对应的尺度因子;该尺度因子与第一阈值的精度关联。
在一种可能的实现中,第一阈值为协议预先规定的。
在一种可能的实现中,第一阈值是根据第一信道信息与第一对应关系确定的,该第一对应关系包括第一信道信息和第一阈值之间的对应关系。
在一种可能的实现中,通信单元601,还用于接收来自第二装置的类型指示信息,类型指示信息用于指示第二信道信息的类型,类型为差值传输类型或全值传输类型;其中,在第二信道信息为第一信道信息和第一信道信息预测值之间的差值时,第二信道信息的类型为差值传输类型;第二信道信息为第一信道信息时,第二信道信息的类型为全值传输类型。
在一种可能的实现中,第一信道信息属于传输多径的信道参数CHP或信道状态信息CSI;其中,CHP包括以下信息中的一种或多种:传输角度、传输时延、传输功率或多普勒值;CSI 包括以下信息中的一种或多种:信道状态信息参考信号资源指示CRI、秩指示RI、信道质量指示CQI、预编码矩阵指示PMI或层指示LI。
在一种可能的实现中,第一信道信息属于信道状态信息CSI,CSI还包括第三信道信息,该第三信道信息的优先级小于第一信道信息的优先级;该第一指示信息还用于指示第三信道信息对应的第二信道信息预测值;若第一信道信息和第一信道信息预测值之间的差值大于第一阈值,并且第三信道信息和第二信道信息预测值之间的差值小于或等于第二阈值,通信单元601,还用于接收来自第二装置的第三信道信息与第三信道信息预测值之间的差值;或者,若第一信道信息和第一信道信息预测值之间的差值大于第一阈值,通信单元601,还用于接收来自第二装置的第三信道信息。
在一种可能的实现中,处理单元602,还用于通过感知信道预测功能获得第一信道信息预测值。
关于上述通信单元601和处理单元602的具体实施方式,可参见图4或图5中第一装置的具体实施步骤,在此不再赘述。
如图7所示为本申请实施例提供的一种通信装置700,用于实现上述第二装置或第一装置的功能。该装置可以是通信设备或用于通信设备中的装置,通信设备可以为终端或网络设备。用于通信设备中的装置可以为通信设备内的芯片系统或芯片。其中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置700包括至少一个处理器710,用于实现本申请实施例提供的方法中设备(例如第二装置或第一装置)的处理功能。通信装置700还可以包括通信接口720,用于实现本申请实施例提供的方法中设备(例如第二装置或第一装置)的收发操作。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口720用于通信装置700中的装置可以和其它设备进行通信。处理器710利用通信接口720收发数据,并用于实现上述方法实施例所述的方法。
通信装置700还可以包括至少一个存储器730,用于存储程序指令和/或数据。存储器730和处理器710耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器710可能和存储器730协同操作。处理器710可能执行存储器730中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口720、处理器710以及存储器730之间的具体连接介质。本申请实施例在图7中以存储器730、处理器710以及通信接口720之间通过总线连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信装置700具体是用于设备(例如第二装置或第一装置)的装置时,例如通信装置700具体是芯片或者芯片系统时,通信接口720所输出或接收的可以是基带信号。通信装置700具体是设备(例如第二装置或第一装置)时,通信接口720所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器 执行完成,或者用处理器中的硬件及软件模块组合执行完成。
需要说明的是,上述通信接口720可以用于执行前述通信单元601的功能,上述处理器710可以用于执行前述处理单元602的功能,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机执行指令,当该计算机执行指令被执行时,使得上述方法实施例中第二装置或第一装置执行的方法被实现。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当该计算机程序被执行时,使得上述方法实施例中第二装置或第一装置执行的方法被实现。
本申请实施例还提供一种计算机程序,当该计算机程序被执行时,使得上述方法实施例中第二装置或第一装置执行的方法被实现。
本申请实施例还提供一种通信系统,该通信系统包括第二装置和第一装置。其中,第二装置用于执行上述方法实施例中第二装置执行的方法;第一装置用于执行上述方法实施例中第一装置执行的方法。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本申请提供的各实施例的描述可以相互参照,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的步骤可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参考、结合或引用。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (45)

  1. 一种信道信息传输方法,其特征在于,所述方法包括:
    接收第一指示信息,所述第一指示信息用于指示第一信道信息预测值;
    测量来自第一装置的参考信号,得到第一信道信息;
    根据所述第一信道信息预测值、所述第一信道信息预测值对应的第一阈值以及所述第一信道信息,向所述第一装置发送第二信道信息。
  2. 根据权利要求1所述方法,其特征在于,
    若所述第一信道信息和所述第一信道信息预测值之间的差值小于或等于所述第一阈值,则所述第二信道信息为所述第一信道信息和所述第一信道信息预测值之间的差值;
    或者,若所述第一信道信息和所述第一信道信息预测值之间的差值大于所述第一阈值,则所述第二信道信息为所述第一信道信息。
  3. 根据权利要求2所述方法,其特征在于,所述方法还包括:
    向所述第一装置发送类型指示信息,所述类型指示信息用于指示所述第二信道信息的类型,所述类型为差值传输类型或全值传输类型;
    其中,在所述第二信道信息为所述第一信道信息和所述第一信道信息预测值之间的差值时,所述第二信道信息的类型为差值传输类型;所述第二信道信息为所述第一信道信息时,所述第二信道信息的类型为全值传输类型。
  4. 根据权利要求1-3任一项所述方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示所述第一阈值。
  5. 根据权利要求4所述方法,其特征在于,所述第二指示信息还用于指示所述第一阈值对应的尺度因子;所述尺度因子与所述第一阈值的精度关联。
  6. 根据权利要求1-3任一项所述方法,其特征在于,所述第一阈值为协议预先规定的。
  7. 根据权利要求6所述方法,其特征在于,
    所述第一阈值是根据所述第一信道信息与第一对应关系确定的,所述第一对应关系包括第一信道信息和第一阈值之间的对应关系。
  8. 根据权利要求1-7中任一项所述方法,其特征在于,所述第一信道信息属于传输多径的信道参数CHP或信道状态信息CSI;
    其中,所述CHP包括以下信息中的一种或多种:传输角度、传输时延、传输功率或多普勒值;所述CSI包括以下信息中的一种或多种:信道状态信息参考信号资源指示CRI、秩指示RI、信道质量指示CQI、预编码矩阵指示PMI或层指示LI。
  9. 根据权利要求1-8任一项所述方法,其特征在于,所述第一信道信息属于信道状态信息CSI,所述CSI还包括第三信道信息,所述第三信道信息的优先级小于所述第一信道信息的优 先级;所述第一指示信息还用于指示所述第三信道信息对应的第二信道信息预测值;所述方法还包括:
    若所述第一信道信息和所述第一信道信息预测值之间的差值小于或等于所述第一阈值,并且所述第三信道信息和所述第二信道信息预测值之间的差值小于或等于所述第二阈值,向所述第一装置发送第三信道信息与所述第三信道信息预测值之间的差值;
    或者,若所述第一信道信息和所述第一信道信息预测值之间的差值大于所述第一阈值,则向所述第一装置发送所述第三信道信息。
  10. 根据权利要求1-9任一项所述方法,其特征在于,所述第一信道信息预测值是基于所述第一装置的感知信道预测功能获得的。
  11. 一种信道信息传输方法,其特征在于,所述方法包括:
    向第二装置发送参考信号,所述参考信号用于获取第一信道信息;
    接收来自所述第二装置的第二信道信息,所述第二信道信息为根据第一信道信息预测值、所述第一信道信息预测值对应的第一阈值以及所述第一信道信息确定的;
    根据所述第二信道信息确定所述第一信道信息。
  12. 根据权利要求11所述方法,其特征在于,
    若所述第一信道信息和所述第一信道信息预测值之间的差值小于或等于所述第一信道信息预测值对应的第一阈值,则所述第二信道信息为所述第一信道信息和所述第一信道信息预测值之间的差值;
    若所述第一信道信息和所述第一信道信息预测值之间的差值大于所述第一阈值,则所述第二信道信息为所述第一信道信息。
  13. 根据权利要求12所述方法,其特征在于,所述方法还包括:
    接收来自所述第二装置的类型指示信息,所述类型指示信息用于指示所述第二信道信息的类型,所述类型为差值传输类型或全值传输类型;
    其中,在所述第二信道信息为所述第一信道信息和所述第一信道信息预测值之间的差值时,所述第二信道信息的类型为差值传输类型;所述第二信道信息为所述第一信道信息时,所述第二信道信息的类型为全值传输类型。
  14. 根据权利要求11-13任一项所述方法,其特征在于,所述方法还包括:
    向所述第二装置发送第二指示信息,所述第二指示信息用于指示所述第一阈值。
  15. 根据权利要求14所述方法,其特征在于,所述第二指示信息还用于指示所述第一阈值对应的尺度因子;所述尺度因子与所述第一阈值的精度关联。
  16. 根据权利要求11-13任一项所述方法,其特征在于,所述第一阈值为协议预先规定的。
  17. 根据权利要求16所述方法,其特征在于,
    所述第一阈值是根据所述第一信道信息与第一对应关系确定的,所述第一对应关系包括 第一信道信息和第一阈值之间的对应关系。
  18. 根据权利要求11-17任一项所述方法,其特征在于,所述第一信道信息属于传输多径的信道参数CHP或信道状态信息CSI;
    其中,所述CHP包括以下信息中的一种或多种:传输角度、传输时延、传输功率或多普勒值;所述CSI包括以下信息中的一种或多种:信道状态信息参考信号资源指示CRI、秩指示RI、信道质量指示CQI、预编码矩阵指示PMI或层指示LI。
  19. 根据权利要求11-18任一项所述方法,其特征在于,所述第一信道信息属于信道状态信息CSI,所述CSI还包括第三信道信息,所述第三信道信息的优先级小于所述第一信道信息的优先级;所述第一指示信息还用于指示所述第三信道信息对应的第二信道信息预测值;所述方法还包括:
    若所述第一信道信息和所述第一信道信息预测值之间的差值大于所述第一阈值,并且所述第三信道信息和所述第二信道信息预测值之间的差值小于或等于所述第二阈值,接收来自所述第二装置的第三信道信息与所述第三信道信息预测值之间的差值;
    或者,若所述第一信道信息和所述第一信道信息预测值之间的差值大于所述第一阈值,则接收来自所述第二装置的所述第三信道信息。
  20. 根据权利要求11-19中任一项所述方法,其特征在于,所述方法还包括:
    通过感知信道预测功能获得所述第一信道信息预测值。
  21. 一种通信装置,其特征在于,所述装置包括:
    通信单元,用于接收第一指示信息,所述第一指示信息用于指示第一信道信息预测值;
    处理单元,用于测量来自第一装置的参考信号,得到第一信道信息;
    所述处理单元,还用于根据所述第一信道信息预测值、所述第一信道信息预测值对应的第一阈值以及所述第一信道信息,向所述第一装置发送第二信道信息。
  22. 根据权利要求21所述装置,其特征在于,
    若所述第一信道信息和所述第一信道信息预测值之间的差值小于或等于所述第一阈值,则所述第二信道信息为所述第一信道信息和所述第一信道信息预测值之间的差值;
    或者,若所述第一信道信息和所述第一信道信息预测值之间的差值大于所述第一阈值,则所述第二信道信息为所述第一信道信息。
  23. 根据权利要求22所述装置,其特征在于,
    所述通信单元,还用于向所述第一装置发送类型指示信息,所述类型指示信息用于指示所述第二信道信息的类型,所述类型为差值传输类型或全值传输类型;
    其中,在所述第二信道信息为所述第一信道信息和所述第一信道信息预测值之间的差值时,所述第二信道信息的类型为差值传输类型;所述第二信道信息为所述第一信道信息时,所述第二信道信息的类型为全值传输类型。
  24. 根据权利要求21-23任一项所述装置,其特征在于,
    所述通信单元,还用于接收第二指示信息,所述第二指示信息用于指示所述第一阈值。
  25. 根据权利要求24所述装置,其特征在于,所述第二指示信息还用于指示所述第一阈值对应的尺度因子;所述尺度因子与所述第一阈值的精度关联。
  26. 根据权利要求21-23任一项所述装置,其特征在于,所述第一阈值为协议预先规定的。
  27. 根据权利要求26所述装置,其特征在于,
    所述第一阈值是根据所述第一信道信息与第一对应关系确定的,所述第一对应关系包括第一信道信息和第一阈值之间的对应关系。
  28. 根据权利要求21-27中任一项所述装置,其特征在于,所述第一信道信息属于传输多径的信道参数CHP或信道状态信息CSI;
    其中,所述CHP包括以下信息中的一种或多种:传输角度、传输时延、传输功率或多普勒值;所述CSI包括以下信息中的一种或多种:信道状态信息参考信号资源指示CRI、秩指示RI、信道质量指示CQI、预编码矩阵指示PMI或层指示LI。
  29. 根据权利要求21-28任一项所述装置,其特征在于,所述第一信道信息属于信道状态信息CSI,所述CSI还包括第三信道信息,所述第三信道信息的优先级小于所述第一信道信息的优先级;所述第一指示信息还用于指示所述第三信道信息对应的第二信道信息预测值;
    若所述第一信道信息和所述第一信道信息预测值之间的差值小于或等于所述第一阈值,并且所述第三信道信息和所述第二信道信息预测值之间的差值小于或等于所述第二阈值,所述通信单元,还用于向所述第一装置发送第三信道信息与所述第三信道信息预测值之间的差值;
    或者,若所述第一信道信息和所述第一信道信息预测值之间的差值大于所述第一阈值,则所述通信单元,还用于向所述第一装置发送所述第三信道信息。
  30. 根据权利要求21-29任一项所述装置,其特征在于,所述第一信道信息预测值是基于所述第一装置的感知信道预测功能获得的。
  31. 一种通信装置,其特征在于,所述装置包括:
    通信单元,用于向第二装置发送参考信号,所述参考信号用于获取第一信道信息;
    所述通信单元,还用于接收来自所述第二装置的第二信道信息,所述第二信道信息为根据第一信道信息预测值、所述第一信道信息预测值对应的第一阈值以及所述第一信道信息确定的;
    处理单元,用于确定所述第一信道信息。
  32. 根据权利要求31所述装置,其特征在于,
    若所述第一信道信息和所述第一信道信息预测值之间的差值小于或等于所述第一信道信息预测值对应的第一阈值,则所述第二信道信息为所述第一信道信息和所述第一信道信息预测值之间的差值;
    若所述第一信道信息和所述第一信道信息预测值之间的差值大于所述第一阈值,则所述第二信道信息为所述第一信道信息。
  33. 根据权利要求32所述装置,其特征在于,
    所述通信单元,还用于接收来自所述第二装置的类型指示信息,所述类型指示信息用于指示所述第二信道信息的类型,所述类型为差值传输类型或全值传输类型;
    其中,在所述第二信道信息为所述第一信道信息和所述第一信道信息预测值之间的差值时,所述第二信道信息的类型为差值传输类型;所述第二信道信息为所述第一信道信息时,所述第二信道信息的类型为全值传输类型。
  34. 根据权利要求31-33任一项所述装置,其特征在于,
    所述通信单元,还用于向所述第二装置发送第二指示信息,所述第二指示信息用于指示所述第一阈值。
  35. 根据权利要求34所述装置,其特征在于,所述第二指示信息还用于指示所述第一阈值对应的尺度因子;所述尺度因子与所述第一阈值的精度关联。
  36. 根据权利要求31-33任一项所述装置,其特征在于,所述第一阈值为协议预先规定的。
  37. 根据权利要求36所述装置,其特征在于,
    所述第一阈值是根据所述第一信道信息与第一对应关系确定的,所述第一对应关系包括第一信道信息和第一阈值之间的对应关系。
  38. 根据权利要求31-37任一项所述装置,其特征在于,所述第一信道信息属于传输多径的信道参数CHP或信道状态信息CSI;
    其中,所述CHP包括以下信息中的一种或多种:传输角度、传输时延、传输功率或多普勒值;所述CSI包括以下信息中的一种或多种:信道状态信息参考信号资源指示CRI、秩指示RI、信道质量指示CQI、预编码矩阵指示PMI或层指示LI。
  39. 根据权利要求31-38任一项所述装置,其特征在于,所述第一信道信息属于信道状态信息CSI,所述CSI还包括第三信道信息,所述第三信道信息的优先级小于所述第一信道信息的优先级;所述第一指示信息还用于指示所述第三信道信息对应的第二信道信息预测值;
    若所述第一信道信息和所述第一信道信息预测值之间的差值大于所述第一阈值,并且所述第三信道信息和所述第二信道信息预测值之间的差值小于或等于所述第二阈值,所述通信单元,还用于接收来自所述第二装置的第三信道信息与所述第三信道信息预测值之间的差值;
    或者,若所述第一信道信息和所述第一信道信息预测值之间的差值大于所述第一阈值,所述通信单元,还用于接收来自所述第二装置的所述第三信道信息。
  40. 根据权利要求31-39中任一项所述装置,其特征在于,
    所述处理单元,还用于通过感知信道预测功能获得所述第一信道信息预测值。
  41. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它设备的信号并传输至所述处理器,和/或,将来自所述处理器的信号发送给所述通信装置之外的其它设备,所述处理器通过逻辑电路或执行计算机程序或指令用于实现如权利要求1-10中任一项所述的方法,或者用于实现如权利要求11-20中任一项所述的方法。
  42. 根据权利要求41所述的通信装置,其特征在于,所述通信装置还包括存储器,所述存储器存储所述计算机程序或指令,或所述逻辑电路的配置文件。
  43. 一种通信系统,其特征在于,所述通信系统包括第一通信装置和第二通信装置,其中,所述第二装置用于实现如权利要求1-10中任一项所述方法,所述第一装置用于实现如权利要求11-20中任一项所述方法。
  44. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被装置执行时,实现如权利要求1-10中任一项所述的方法,或者用于实现如权利要求11-20中任一项所述的方法。
  45. 一种计算机程序产品,其特征在于,当读取并执行所述计算机程序产品时,使得通信装置执行权利要求1-10中任一项所述的方法,或者执行权利要求11-20中任一项所述的方法。
PCT/CN2023/073895 2023-01-30 2023-01-30 一种信道信息传输方法及装置 WO2024159377A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/073895 WO2024159377A1 (zh) 2023-01-30 2023-01-30 一种信道信息传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/073895 WO2024159377A1 (zh) 2023-01-30 2023-01-30 一种信道信息传输方法及装置

Publications (1)

Publication Number Publication Date
WO2024159377A1 true WO2024159377A1 (zh) 2024-08-08

Family

ID=92145750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073895 WO2024159377A1 (zh) 2023-01-30 2023-01-30 一种信道信息传输方法及装置

Country Status (1)

Country Link
WO (1) WO2024159377A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052065A (zh) * 2013-01-16 2015-11-11 高通股份有限公司 用于长期演进机器类型通信的信道状态信息以及自适应调制和编码设计
CN105637777A (zh) * 2013-10-16 2016-06-01 三星电子株式会社 在mimo无线电通信系统中用于mu-mimo方案的随机发送/接收方法和装置
US20170012724A1 (en) * 2014-01-21 2017-01-12 Nokia Solutions And Networks Management International Gmbh Opportunistic comp with low rate low latency feedback
US20200259575A1 (en) * 2019-02-08 2020-08-13 Qualcomm Incorporated Proactive beam management
US20210376895A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Qualifying machine learning-based csi prediction
US20220239359A1 (en) * 2021-01-27 2022-07-28 Qualcomm Incorporated User equipment indication to suspend report occasions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052065A (zh) * 2013-01-16 2015-11-11 高通股份有限公司 用于长期演进机器类型通信的信道状态信息以及自适应调制和编码设计
CN105637777A (zh) * 2013-10-16 2016-06-01 三星电子株式会社 在mimo无线电通信系统中用于mu-mimo方案的随机发送/接收方法和装置
US20170012724A1 (en) * 2014-01-21 2017-01-12 Nokia Solutions And Networks Management International Gmbh Opportunistic comp with low rate low latency feedback
US20200259575A1 (en) * 2019-02-08 2020-08-13 Qualcomm Incorporated Proactive beam management
US20210376895A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Qualifying machine learning-based csi prediction
US20220239359A1 (en) * 2021-01-27 2022-07-28 Qualcomm Incorporated User equipment indication to suspend report occasions

Similar Documents

Publication Publication Date Title
US11832251B2 (en) Apparatus for CSI prediction control
WO2021008581A1 (zh) 用于定位的方法和通信装置
WO2021120023A1 (zh) 一种定位方法及装置
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2022222772A1 (zh) 一种定位信息上报方法、设备及通信系统
WO2021134731A1 (zh) 一种信道信息反馈方法及通信装置
US20240129881A1 (en) Positioning processing method and apparatus, positioning reference signal sending method and apparatus, and device
WO2021047666A1 (zh) 一种探测参考信号传输的方法、相关设备以及存储介质
WO2019100776A1 (zh) 通信方法及装置
WO2021159421A1 (zh) 定位方法及装置
WO2021056588A1 (zh) 一种配置预编码的方法及装置
WO2024159377A1 (zh) 一种信道信息传输方法及装置
CN112054831B (zh) 信道状态信息的反馈方法及装置
WO2022253150A1 (zh) 数据传输方法及装置
WO2022198591A1 (zh) 一种非周期定位参考信号的测量上报方法和装置
WO2022193908A1 (zh) 一种通信方法及装置
WO2020238682A1 (zh) 一种信道信息获取方法及装置
CN112866897B (zh) 一种定位测量方法、终端和网络节点
CN116017525A (zh) 测量方法、测量配置方法以及相关通信装置
WO2022027386A1 (zh) 一种天线选择方法及装置
WO2024007112A1 (zh) 通信方法和装置
WO2023165460A1 (zh) 一种通信方法、装置及系统
WO2023020133A1 (zh) 一种通信测试方法和相关设备
WO2023011234A1 (zh) 一种上报csi报告的方法及装置
WO2023093453A1 (zh) 终端位置的测量方法、终端、基站、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23918967

Country of ref document: EP

Kind code of ref document: A1