WO2024158272A1 - Method for producing a protein feed concentrate from microbial protein - Google Patents
Method for producing a protein feed concentrate from microbial protein Download PDFInfo
- Publication number
- WO2024158272A1 WO2024158272A1 PCT/KZ2023/000002 KZ2023000002W WO2024158272A1 WO 2024158272 A1 WO2024158272 A1 WO 2024158272A1 KZ 2023000002 W KZ2023000002 W KZ 2023000002W WO 2024158272 A1 WO2024158272 A1 WO 2024158272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas mixture
- fermenter
- gas
- protein
- cultivation
- Prior art date
Links
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 15
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 15
- 239000012141 concentrate Substances 0.000 title claims abstract description 11
- 230000000813 microbial effect Effects 0.000 title claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 4
- 239000000203 mixture Substances 0.000 claims abstract description 46
- 238000007872 degassing Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000001450 methanotrophic effect Effects 0.000 claims abstract description 13
- 241000589346 Methylococcus capsulatus Species 0.000 claims abstract description 12
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 52
- 239000007789 gas Substances 0.000 claims description 49
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 244000005700 microbiome Species 0.000 claims description 19
- 235000015097 nutrients Nutrition 0.000 claims description 9
- 230000002503 metabolic effect Effects 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 239000010413 mother solution Substances 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 9
- 235000016709 nutrition Nutrition 0.000 abstract description 3
- 241000894006 Bacteria Species 0.000 abstract description 2
- 239000007791 liquid phase Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000002028 Biomass Substances 0.000 description 5
- 238000000855 fermentation Methods 0.000 description 4
- 230000004151 fermentation Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000005276 aerator Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000010565 inoculated fermentation Methods 0.000 description 3
- 238000009630 liquid culture Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 229910004619 Na2MoO4 Inorganic materials 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- -1 at the same time Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000000696 methanogenic effect Effects 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/10—Animal feeding-stuffs obtained by microbiological or biochemical processes
- A23K10/12—Animal feeding-stuffs obtained by microbiological or biochemical processes by fermentation of natural products, e.g. of vegetable material, animal waste material or biomass
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P39/00—Processes involving microorganisms of different genera in the same process, simultaneously
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
Definitions
- the invention relates to the field of agricultural technology and can be used to obtain protein feed concentrate and protect the environment.
- the system contains a loop reactor with a gas-liquid separator having inlet and outlet openings for separating a multiphase mixture of gas and liquid culture medium, as well as a loop section /WO 2018/132379 A1, publ. 07/19/2018/.
- a method for producing a first reaction product through a first fermentation process conducted in a first loop reactor comprising the steps of: (i) adding an inoculum containing one or more methanogenic microorganisms to a first loop reactor providing a first inoculated fermentation medium; (j) adding hydrogen gas (Hg) to the first inoculated fermentation medium; (iii) adding a first carbon source to the first inoculated fermentation medium; (iv) ensuring the possibility of fermentation of the first fermentation environment to obtain the first reaction product; and (y) isolating the first reaction product obtained in step (iv) /WO 2022/008478 A2, publ. 01/13/2022/.
- the closest in essence to the present invention is a method for obtaining microbial biomass of methane-oxidizing microorganisms, which consists in supplying water in an amount of 70 to 80% of the nominal volume into a clean, sterilized reactor, after which a solution of orthophosphoric acid is supplied until the required phosphorus concentration is achieved, then the concentration nitrogen is brought to the required value with ammonia water, after which the liquid flow stimulator is started to circulate the liquid phase, after which, by controlling the temperature of the coolant, a stable temperature of the liquid phase is achieved in the range of 42-44 ° C, then, according to the readings of temperature sensors, the temperature of the liquid phase is controlled , thermostatting of the liquid phase is carried out continuously in automatic mode in a heat exchanger, after which the reactor is purged with an inert gas to reduce the oxygen concentration to no more than 5% of the volume, while the oxygen concentration is controlled in the gas mixture leaving the reactor, at the same time, using a liquid flow stimulator, the liquid phase is taken from degass
- the objective of the invention is to develop a method for producing protein feed concentrate from microbial protein using a degassing chamber and cyclic use of a gas mixture with improved technical characteristics.
- the technical result is an improvement in the composition and value of the feed concentrate, as well as a reduction in harmful emissions into the environment, thanks to automated gas phase degassing processes in the fermenter and the use of closed cyclic gas phase circulation systems during cultivation processes.
- the method of producing a protein feed concentrate consisting of microbial protein including the cultivation of microorganisms in a bioreactor with the supply of a gas mixture, according to the invention, the cultivation of methanotrophic microorganisms Methylococcus capsulatus VKM No. B 2990 is carried out with the cyclic use of a gas mixture, in which a gas mixture is continuously supplied mixture from the fermenter to the degassing chamber, in which: i) the stock solution of methanotrophic microorganisms Methylococcus capsulatus VKM No.
- B 2990 is first cultivated in the fermenter with the supply of a gas mixture of oxygen and methane at a ratio of 1: 1 for 165-170 hours, then further cultivation of methanotrophic microorganisms is carried out microorganisms Methylococcus capsulatus VKM No.
- a gas mixture from metabolic products is supplied to the degassing chamber connected to the above-mentioned fermenter of the above-mentioned methanotrophic microorganisms at a circulation rate of the gas mixture of 3500-3700 l/hour, then the concentration of the gas mixture in the degassing chamber is analyzed, and if the concentration of the gas mixture decreases, the gas mixture is supplied from the fermenter through the automated valves of the degassing chamber.
- a nutrient medium of the following composition is used: KCl-0.125 g/l, MgSO4*7HiO - 0.125 g/l, FeSO4*7H2O - 10.75 mg/l, CUSC>4*5H2O - 10 mg/l, Mn8O4* 5H2O - 9.5 mg/l, H3BO3 - 6.25 mg/l, ZnSC>4*7H2O - 1.5 mg/l, Na2MoO4*2H2O - 0.25 mg/l, CoC12*6H2O - 0.25 mg /l, NzPO 4 (70%) - 0.35 ml/l.
- the proposed method involves the cyclic use of a gas mixture for the growth of methanotrophic microorganisms, in which the gas phase, when cultivating methanotrophic organisms in a bioreactor, is constantly removed from it into a degassing chamber due to a pressure difference of 0.1 kPa, where the concentration of methane and oxygen is analyzed, from the gas degassing chamber phase is pumped back into the bioreactor, while methane and oxygen are automatically dosed, due to this the content of methane and oxygen consumed during the growth of bacteria increases to the concentrations necessary for their optimal growth, the discharge of unspent methane is carried out only once at the end of the cultivation process, thus reducing thus the consumption of methane for protein production and environmental pollution.
- Figure 1 shows a diagram showing the dynamics of the growth of raw biomass of Methylococcus Capsulatus in the culture liquid.
- the invention works as follows.
- a laboratory model experiment was carried out to obtain a protein feed concentrate in a fermenter by cultivating methanotrophic microorganisms, in which, unlike other approaches, the cyclic use of a gas mixture was used, consisting of 15% oxygen and 85% methane in order to save methane and eliminate its emissions into the atmosphere on the basis of the laboratory of the Kazakh National Agrarian Research University.
- the mother culture of Methylococcus Capsulatus VKM No. B 2990 was grown, for which the culture obtained from the bank was sown on liquid medium “P” (KCl-0.125 g/l; MgSO 4 *7H 2 O - 0.125 g/l ; FeSO 4 *7H 2 O - 10.75 mg/l; CuSO 4 *5H 2 O - 10 mg/l; MnSO 4 *5H 2 O - 9.5 mg/l; ZnSO 4 *7H 2 O - 1.5 mg/l; Na 2 MoO 4 *2H 2 O - 0.25 mg/l; CoC1 2 *6H 2 O - 0.25 mg/l; - 0.35 ml/l) in a volume of 5% of the working volume of liquid in the fermenter.
- P liquid medium
- Cultivation of the mother culture was carried out in a thermoshaker type fermenter for about 7 days (168 hours).
- the gas mixture in the flask was brought to a ratio of 50% oxygen and 50% methane (1:1). After 3 days (72 hours), the gas mixture was purged again. Since the working volume of the fermenter used is 25 liters, it required 1.25 liters of mother liquor.
- a fermenter with a total volume of 45 liters was prepared.
- Sterilization of the fermenter was carried out in 2 stages: washing with sterilizing solutions (6% hydrogen peroxide solution) for 45 minutes, stirrer speed 150 rpm, and steam sterilization of the culture liquid and the bioreactor itself with a PGE 50 steam generator at a temperature of 121°C for 50 minutes.
- the culture was seeded into the fermenter. Further cultivation in the fermenter was carried out: at a pressure in the fermenter of 2 atm., a stirrer speed of 3500 rpm, a temperature of 42°C and a pH of 5.8 for 48 hours on a nutrient gas mixture with a total volume of 40 l, consisting of 15% oxygen and 85% methane (ratio 1:5.6). Composition of the gas phase in the fermenter supported by methane and oxygen sensors. A gas mixture from the metabolic products of the above-mentioned methanotrophic microorganisms is supplied to the degassing chamber connected to the above-mentioned fermenter at a circulation rate of the gas mixture of 3600 l/hour.
- the gas phase Upon reaching a certain level of gas phase concentration in the degassing chamber, the gas phase is pumped back into the fermenter at a speed of 3600 l/hour. Due to this, the content of methane and oxygen consumed during the growth of Methylococcus Capsulatus bacteria is compensated to concentrations of 15% oxygen and 8% methane required for their optimal growth. Methane consumption is 1 normal liter (0.715 g) per 0.59 g of raw biomass, oxygen consumption is 1.2 normal liter (1.7 g).
- the gas phase of the 15 liter fermenter is discharged only once at the end of the cultivation process after 48 hours.
- the average growth rate of Methylococcus Capsulatus was 0.12 g/l per hour. That is, the average methane consumption per liter of culture liquid is 0.2 l/hour, the peak is 0.6 l/hour, there are virtually no methane emissions.
- the average value of methane utilization 5 microorganisms is 0.2 l/hour, peak 0.6 l/hour, and methane emissions
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Sustainable Development (AREA)
- Physiology (AREA)
- Animal Husbandry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Food Science & Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The invention relates to the field of agrotechnology and can be used for producing a protein feed concentrate, while also protecting the environment. The technical result is that of improving the composition and nutritional value of a feed concentrate, as well as reducing harmful emissions into the environment by applying automated processes for degassing a gas phase in a fermenter and using closed cyclic systems for circulating said gas phase during cultivation processes. This result is achieved in that in the present method for producing a protein feed concentrate consisting of microbial protein, which includes cultivating bacteria in a bioreactor supplied with a gas medium, cultivation of the methanotrophic bacteria Methylococcus capsulatus VKM В-2990 is carried out with the cyclic use of a gas mixture, wherein the gas mixture is continuously fed from the fermenter into a degassing chamber.
Description
СПОСОБ ПОЛУЧЕНИЯ БЕЛКОВОГО КОРМОВОГО КОНЦЕНТРАТА ИЗ МИКРОБНОГО БЕЛКА METHOD FOR OBTAINING PROTEIN FEED CONCENTRATE FROM MICROBIAL PROTEIN
Изобретение относится к сфере агротехнологии и может быть использовано для получения белкового кормового концентрата и охраны окружающей среды. The invention relates to the field of agricultural technology and can be used to obtain protein feed concentrate and protect the environment.
Известен способ ферментации биомассы с подачей газа с применением зоны вертикального потока, который включает неоднократный перенос газа многофазной смеси в жидкую культуральную среду многофазной смеси в петлевом участке, разделение многофазной смеси газа и жидкой культуральной среды на газообразную фазу и жидкую фазу в газожидкостном сепараторе, удаление жидкой фазы и доставку удаленной жидкой фазы к входному отверстию петлевого участка петлевого реактора. Система содержит петлевой реактор с имеющим входное и выходное отверстия газожидкостным сепаратором для разделения многофазной смеси газа и жидкой культуральной среды, а также с петлевым участком /WO 2018/132379 А1, опубл. 19.07.2018 г./. There is a known method for fermentation of biomass with gas supply using a vertical flow zone, which includes repeated transfer of gas of a multiphase mixture into a liquid culture medium of a multiphase mixture in a loop section, separation of a multiphase mixture of gas and liquid culture medium into a gaseous phase and a liquid phase in a gas-liquid separator, removal of the liquid phase and delivery of the removed liquid phase to the inlet of the loop section of the loop reactor. The system contains a loop reactor with a gas-liquid separator having inlet and outlet openings for separating a multiphase mixture of gas and liquid culture medium, as well as a loop section /WO 2018/132379 A1, publ. 07/19/2018/.
Недостатком данного аналога является наличие потерь в виде выбросов метана в окружающую среду, недостаточные возможности для использования замкнутых циклических систем при процессах культивации. The disadvantage of this analogue is the presence of losses in the form of methane emissions into the environment, insufficient opportunities for the use of closed cyclic systems during cultivation processes.
Известен способ получения первого продукта реакции посредством первого процесса ферментации, проводимого в первом петлевом реакторе, причем способ включает стадии: (i) добавления инокулята, содержащего один или несколько метаногенных микроорганизмов, в первый петлевой реактор, обеспечивающий первую инокулированную ферментационную среду; (й) добавление газообразного водорода (Нг) к первой инокулированной ферментационной среде; (iii) добавление первого источника углерода в первую инокулированную ферментационную среду; (iv) обеспечение возможности брожения первой ферментационной
среды с получением первого продукта реакции; и (у) выделение первого продукта реакции, полученного на стадии (iv) /WO 2022/008478 А2, опубл. 13.01.2022 г./. A method is known for producing a first reaction product through a first fermentation process conducted in a first loop reactor, the method comprising the steps of: (i) adding an inoculum containing one or more methanogenic microorganisms to a first loop reactor providing a first inoculated fermentation medium; (j) adding hydrogen gas (Hg) to the first inoculated fermentation medium; (iii) adding a first carbon source to the first inoculated fermentation medium; (iv) ensuring the possibility of fermentation of the first fermentation environment to obtain the first reaction product; and (y) isolating the first reaction product obtained in step (iv) /WO 2022/008478 A2, publ. 01/13/2022/.
Недостатком данного аналога является наличие потерь в виде выбросов метана в окружающую среду, недостаточные возможности для использования замкнутых циклических систем при процессах культивации. The disadvantage of this analogue is the presence of losses in the form of methane emissions into the environment, insufficient opportunities for the use of closed cyclic systems in cultivation processes.
Наиболее близким по сущности к настоящему изобретению является способ получения микробной биомассы метанокисляющих микроорганизмов, заключающийся в том, что в чистый простерилизованный реактор подают воду в количестве от 70 до 80% номинального объема, после чего подают раствор ортофосфорной кислоты до достижения требуемой концентрации фосфора, затем концентрацию азота доводят до требуемого значения аммиачной водой, после чего запускают побудитель расхода жидкости для циркуляции жидкой фазы, после этого, управляя температурой теплоносителя, добиваются стабильной температуры жидкой фазы в диапазоне 42-44°С, затем, по показаниям датчиков температуры, контролируют температуру жидкой фазы, термостатирование жидкой фазы производят непрерывно в автоматическом режиме в теплообменнике, после чего реактор продувают инертным газом для снижения концентрации кислорода до не более 5% объема, при этом концентрацию кислорода контролируют в отходящей из реактора газовой смеси, одновременно посредством побудителя расхода жидкости забирают жидкую фазу из дегазатора и подают ее через теплообменник в переливную камеру аэратора, при этом, применяя эффект эжекции, подают в аэратор газовую фазу из верхней части рабочей зоны, затем через аэратор направляют жидкую фазу в слой жидкости в рабочей зоне, тем самым насыщая ее газами, одновременно с этим осуществляют контроль концентрации растворенного кислорода в жидкой фазе погруженными в рабочую среду датчиками растворенного
кислорода, в то же время водные растворы минерального питания подают внутрь рабочей камеры до достижения требуемых концентраций, при этом вводом титрующих растворов, добиваются требуемого параметра кислотности среды pH = 5,7, далее, при избытке азота титрование осуществляют раствором гидроксида натрия, при этом обеспечивают состав газовой смеси газовой фазы, добавляя метан и воздух в необходимых пропорциях при необходимом давлении, при условии достижения требуемых параметров среды внутрь корпуса подают засевную биомассу из расчета создания требуемой концентрации, после чего доводят уровень жидкой фазы до 100% рабочего объема, при этом обеспечивают кислородом микробную культуру, синтезируемую в реакторе, что определяют по остаточной рабочей концентрации растворенного кислорода, которую регулируют путем увеличения парциального давления в системе культивирования, повышением рабочего давления в реакторе или увеличивают расход воздуха, при этом подачу питательной среды осуществляют непрерывно по потребности микроорганизмов в источниках минерального питания из расчета остаточных концентраций, которые определяют по количеству азота и фосфора, при необходимости корректируют их концентрацию в растворах, изменение рабочего давления осуществляют регуляторами расхода газа на вводных трубопроводах в реактор, и контролируют состав газовой смеси в условиях изменения давления, контроль и регулирование газовой смеси производят непрерывно, одновременно регулируют скорость протока подачи воды и питательных растворов, при этом из реактора непрерывно отбирают определенное количество бактериальной суспензии при непрерывной подаче всех компонентов питательной среды, природного газа и воздуха, при отборе микробной суспензии из реактора предусматривают ее отстаивание для дегазации растворенных газов /RU 2766708 С1, опубл. 15.03.2022 г./.
Недостатком данного аналога является наличие потерь в виде выбросов метана в окружающую среду, недостаточные возможности для использования замкнутых циклических систем при процессах культивации. The closest in essence to the present invention is a method for obtaining microbial biomass of methane-oxidizing microorganisms, which consists in supplying water in an amount of 70 to 80% of the nominal volume into a clean, sterilized reactor, after which a solution of orthophosphoric acid is supplied until the required phosphorus concentration is achieved, then the concentration nitrogen is brought to the required value with ammonia water, after which the liquid flow stimulator is started to circulate the liquid phase, after which, by controlling the temperature of the coolant, a stable temperature of the liquid phase is achieved in the range of 42-44 ° C, then, according to the readings of temperature sensors, the temperature of the liquid phase is controlled , thermostatting of the liquid phase is carried out continuously in automatic mode in a heat exchanger, after which the reactor is purged with an inert gas to reduce the oxygen concentration to no more than 5% of the volume, while the oxygen concentration is controlled in the gas mixture leaving the reactor, at the same time, using a liquid flow stimulator, the liquid phase is taken from degasser and feeds it through a heat exchanger into the overflow chamber of the aerator, while using the ejection effect, the gas phase is supplied to the aerator from the upper part of the working area, then the liquid phase is directed through the aerator into the liquid layer in the working area, thereby saturating it with gases, simultaneously with This monitors the concentration of dissolved oxygen in the liquid phase with dissolved oxygen sensors immersed in the working medium. oxygen, at the same time, aqueous solutions of mineral nutrition are supplied inside the working chamber until the required concentrations are achieved, while by introducing titrating solutions, the required pH = 5.7 is achieved, then, if there is an excess of nitrogen, titration is carried out with a solution of sodium hydroxide, while ensuring composition of the gas mixture of the gas phase, adding methane and air in the required proportions at the required pressure, provided that the required environmental parameters are achieved, seeding biomass is supplied inside the housing to create the required concentration, after which the level of the liquid phase is brought to 100% of the working volume, while providing oxygen microbial culture synthesized in the reactor, which is determined by the residual working concentration of dissolved oxygen, which is regulated by increasing the partial pressure in the cultivation system, increasing the operating pressure in the reactor or increasing the air flow, while the supply of the nutrient medium is carried out continuously according to the need of microorganisms in mineral nutrition sources from the calculation of residual concentrations, which are determined by the amount of nitrogen and phosphorus, their concentration in solutions is adjusted if necessary, the operating pressure is changed by gas flow regulators on the inlet pipelines into the reactor, and the composition of the gas mixture is controlled under conditions of pressure changes, the gas mixture is monitored and regulated continuously, simultaneously adjusting the flow rate of water and nutrient solutions, while a certain amount of bacterial suspension is continuously taken from the reactor with a continuous supply of all components of the nutrient medium, natural gas and air; when taking the microbial suspension from the reactor, it is allowed to settle for degassing of dissolved gases /RU 2766708 C1, publ. 03/15/2022/. The disadvantage of this analogue is the presence of losses in the form of methane emissions into the environment, insufficient opportunities for the use of closed cyclic systems during cultivation processes.
Задачей изобретения является разработка способа получения белкового кормового концентрата из микробного белка с применением камеры дегазации и цикличного использования газовой смеси с улучшенными техническими характеристиками. The objective of the invention is to develop a method for producing protein feed concentrate from microbial protein using a degassing chamber and cyclic use of a gas mixture with improved technical characteristics.
Техническим результатом является улучшение состава и ценности кормового концентрата, а также снижение вредных выбросов в окружающую среду, благодаря автоматизированным процессам дегазации газовой фазы в ферментере и применению замкнутых циклических систем оборота газовой фазы при процессах культивации. The technical result is an improvement in the composition and value of the feed concentrate, as well as a reduction in harmful emissions into the environment, thanks to automated gas phase degassing processes in the fermenter and the use of closed cyclic gas phase circulation systems during cultivation processes.
Это достигается тем, что способ получения белкового кормового концентрата, состоящего из микробного белка, включающий культивирование микроорганизмов в биореакторе с подачей газовой смеси, согласно изобретению, проводят культивацию метанотрофных микроорганизмов Methylococcus capsulatus VKM №В 2990 с циклическим использованием газовой смеси, при котором непрерывно подают газовую смесь из ферментера в камеру дегазации, в котором: i) предварительно в ферментере культивируют маточный раствор метанотрофных микроорганизмов Methylococcus capsulatus VKM №В 2990 с подачей газовой смеси кислорода и метана при соотношении 1: 1 в течение 165-170 часов, затем проводят дальнейшее культивирование метанотрофных микроорганизмов Methylococcus capsulatus VKM №В 2990 на питательной среде в ферментере в течение 46-50 часов при температуре 40-45°С, давлении 1,8-2, 2 атм., pH 5, 5-6,0 в газовой смеси кислорода и метана при соотношении от 1:5 до 1:6, ii) в камеру дегазации, подсоединенную к вышеупомянутому ферментеру, подают газовую смесь от продуктов метаболизма
вышеупомянутых метанотрофных микроорганизмов при скорости циркуляции газовой смеси 3500-3700 л/час, далее анализируют концентрацию газовой смеси в камере дегазации, и в случае снижения концентрации газовой смеси посредством автоматизированных клапанов камеры дегазации подают газовую смесь из ферментера. This is achieved by the fact that the method of producing a protein feed concentrate consisting of microbial protein, including the cultivation of microorganisms in a bioreactor with the supply of a gas mixture, according to the invention, the cultivation of methanotrophic microorganisms Methylococcus capsulatus VKM No. B 2990 is carried out with the cyclic use of a gas mixture, in which a gas mixture is continuously supplied mixture from the fermenter to the degassing chamber, in which: i) the stock solution of methanotrophic microorganisms Methylococcus capsulatus VKM No. B 2990 is first cultivated in the fermenter with the supply of a gas mixture of oxygen and methane at a ratio of 1: 1 for 165-170 hours, then further cultivation of methanotrophic microorganisms is carried out microorganisms Methylococcus capsulatus VKM No. B 2990 on a nutrient medium in a fermenter for 46-50 hours at a temperature of 40-45°C, pressure 1.8-2.2 atm., pH 5.5-6.0 in a gas mixture of oxygen and methane at a ratio of 1:5 to 1:6, ii) a gas mixture from metabolic products is supplied to the degassing chamber connected to the above-mentioned fermenter of the above-mentioned methanotrophic microorganisms at a circulation rate of the gas mixture of 3500-3700 l/hour, then the concentration of the gas mixture in the degassing chamber is analyzed, and if the concentration of the gas mixture decreases, the gas mixture is supplied from the fermenter through the automated valves of the degassing chamber.
В качестве питательной среды используют питательную среду следующего состава: KCl-0,125 г/л, MgSO4*7HiO - 0,125 г/л, FeSO4*7H2O - 10,75 мг/л, CUSC>4*5H2O - 10 мг/л, Мп8О4*5НгО - 9,5 мг/л, НзВОз - 6,25 мг/л, ZnSC>4*7H2O - 1,5 мг/л, Ыа2МоО4*2НгО - 0,25 мг/л, СоС12*6НгО - 0,25 мг/л, НзРО4 (70%) - 0,35 мл/л. As a nutrient medium, a nutrient medium of the following composition is used: KCl-0.125 g/l, MgSO4*7HiO - 0.125 g/l, FeSO4*7H2O - 10.75 mg/l, CUSC>4*5H2O - 10 mg/l, Mn8O4* 5H2O - 9.5 mg/l, H3BO3 - 6.25 mg/l, ZnSC>4*7H2O - 1.5 mg/l, Na2MoO4*2H2O - 0.25 mg/l, CoC12*6H2O - 0.25 mg /l, NzPO 4 (70%) - 0.35 ml/l.
Предлагаемый способ включает циклическое использование газовой смеси для роста метанотрофных микроорганизмов, в котором газовая фаза при культивировании метанотрофных организмов в биореакторе постоянно удаляется из него в камеру дегазации за счет разности в давлении 0,1 кПа, где анализируется концентрация метана и кислорода, из камеры дегазации газовая фаза закачивается обратно в биореактор, при этом автоматически дозируется метан и кислород, за счет этого повышается содержание метана и кислорода, израсходованных при росте бактерий до концентраций, необходимых для их оптимального роста, сброс не отработанного метана производится только однократно при завершении процесса культивирования, уменьшая таким образом расход метана для производства белка и загрязнение окружающей среды. The proposed method involves the cyclic use of a gas mixture for the growth of methanotrophic microorganisms, in which the gas phase, when cultivating methanotrophic organisms in a bioreactor, is constantly removed from it into a degassing chamber due to a pressure difference of 0.1 kPa, where the concentration of methane and oxygen is analyzed, from the gas degassing chamber phase is pumped back into the bioreactor, while methane and oxygen are automatically dosed, due to this the content of methane and oxygen consumed during the growth of bacteria increases to the concentrations necessary for their optimal growth, the discharge of unspent methane is carried out only once at the end of the cultivation process, thus reducing thus the consumption of methane for protein production and environmental pollution.
На фигуре 1 изображена диаграмма, показывающая динамику прироста сырой биомассы Methylococcus Capsulatus в культуральной жидкости. Figure 1 shows a diagram showing the dynamics of the growth of raw biomass of Methylococcus Capsulatus in the culture liquid.
Изобретение работает следующим образом. The invention works as follows.
Поставлен лабораторный модельный эксперимент по получению белкового кормового концентрата в ферментере путем культивирования метанотрофных микроорганизмов, при котором в отличие от других подходов было применено циклическое использование газовой смеси,
состоящей из 15% кислорода и 85% метана в целях экономии метана и ликвидации его выбросов в атмосферу на базе лаборатории НАО «Казахский национальный аграрный исследовательский университет». A laboratory model experiment was carried out to obtain a protein feed concentrate in a fermenter by cultivating methanotrophic microorganisms, in which, unlike other approaches, the cyclic use of a gas mixture was used, consisting of 15% oxygen and 85% methane in order to save methane and eliminate its emissions into the atmosphere on the basis of the laboratory of the Kazakh National Agrarian Research University.
В данном эксперименте производилось культивация микроорганизма Methylococcus Capsulatus VKM № В 2990. In this experiment, the microorganism Methylococcus Capsulatus VKM No. B 2990 was cultivated.
На первом этапе была выращена маточная культура Methylococcus Capsulatus VKM № В 2990, для чего был произведен посев культуры, полученной из банка, на жидкую среду «П» (KCl-0,125 г/л; MgSO4*7H2O - 0,125 г/л; FeSO4*7H2O - 10,75 мг/л; CuSO4*5H2O - 10 мг/л; MnSO4*5H2O - 9,5 мг/л; НзВОз - 6,25 мг/л; ZnSO4*7H2O - 1,5 мг/л; Na2MoO4*2H2O - 0,25 мг/л; СоС12*6Н2О - 0,25 мг/л; НзРО4(70%) - 0,35 мл/л) в объеме 5% от рабочего объема жидкости в ферментере. Культивирование маточной культуры производилось в ферментере типа термошейкер около 7 суток (168 часов). Газовая смесь в колбе доводилась до соотношения 50% кислорода и 50% метана (1 :1). По истечению 3 суток (72 часа) производилась повторная продувка газовой смесью. Так как рабочий объем используемого ферментера 25 л то маточного раствора на него понадобилось 1,25 л. В процессе приготовления маточной культуры производилась подготовка ферментера общим объемом 45 литров. Стерилизация ферментера производилась в 2 этапа: промывка стерилизующими растворами (6% раствор перекиси водорода) 45 минут, обороты мешалки 150 об/мин, и стерилизация паром культуральной жидкости и самого биореактора парогенератором ПГЭ 50 при температуре 121°С в течении 50 минут. At the first stage, the mother culture of Methylococcus Capsulatus VKM No. B 2990 was grown, for which the culture obtained from the bank was sown on liquid medium “P” (KCl-0.125 g/l; MgSO 4 *7H 2 O - 0.125 g/l ; FeSO 4 *7H 2 O - 10.75 mg/l; CuSO 4 *5H 2 O - 10 mg/l; MnSO 4 *5H 2 O - 9.5 mg/l; ZnSO 4 *7H 2 O - 1.5 mg/l; Na 2 MoO 4 *2H 2 O - 0.25 mg/l; CoC1 2 *6H 2 O - 0.25 mg/l; - 0.35 ml/l) in a volume of 5% of the working volume of liquid in the fermenter. Cultivation of the mother culture was carried out in a thermoshaker type fermenter for about 7 days (168 hours). The gas mixture in the flask was brought to a ratio of 50% oxygen and 50% methane (1:1). After 3 days (72 hours), the gas mixture was purged again. Since the working volume of the fermenter used is 25 liters, it required 1.25 liters of mother liquor. In the process of preparing the mother culture, a fermenter with a total volume of 45 liters was prepared. Sterilization of the fermenter was carried out in 2 stages: washing with sterilizing solutions (6% hydrogen peroxide solution) for 45 minutes, stirrer speed 150 rpm, and steam sterilization of the culture liquid and the bioreactor itself with a PGE 50 steam generator at a temperature of 121°C for 50 minutes.
После всех подготовительных мероприятий производили засев культуры в ферментер. Дальнейшее культивирование в ферментере производили: при давлении в ферментере 2 атм., оборотах мешалки 3500 об/мин, температуре 42°С и pH среды 5,8 в течение 48 часов на питательной газовой смеси суммарного объема 40 л, состоящей из 15% кислорода и 85 % метана (соотношение 1:5,6). Состав газовой фазы в ферментере
поддерживался за счет датчиков метана и кислорода. В камеру дегазации, подсоединенную к вышеупомянутому ферментеру, подают газовую смесь от продуктов метаболизма вышеупомянутых метанотрофных микроорганизмов при скорости циркуляции газовой смеси 3600 л/час. По достижению определенного уровня концентрации газовой фазы в камере дегазации, из камеры дегазации газовая фаза со скоростью 3600 л/час закачивается обратно в ферментер. За счёт этого компенсируется содержание метана и кислорода израсходованных при росте бактерий Methylococcus Capsulatus до концентраций 15% кислорода и 8 % метана, необходимых для их оптимального роста. Расход метана составляет 1 нормальный литр (0,715 г) на 0,59 г сырой биомассы, расход кислорода 1,2 нормальный литр (1,7 г). After all the preparatory measures, the culture was seeded into the fermenter. Further cultivation in the fermenter was carried out: at a pressure in the fermenter of 2 atm., a stirrer speed of 3500 rpm, a temperature of 42°C and a pH of 5.8 for 48 hours on a nutrient gas mixture with a total volume of 40 l, consisting of 15% oxygen and 85% methane (ratio 1:5.6). Composition of the gas phase in the fermenter supported by methane and oxygen sensors. A gas mixture from the metabolic products of the above-mentioned methanotrophic microorganisms is supplied to the degassing chamber connected to the above-mentioned fermenter at a circulation rate of the gas mixture of 3600 l/hour. Upon reaching a certain level of gas phase concentration in the degassing chamber, the gas phase is pumped back into the fermenter at a speed of 3600 l/hour. Due to this, the content of methane and oxygen consumed during the growth of Methylococcus Capsulatus bacteria is compensated to concentrations of 15% oxygen and 8% methane required for their optimal growth. Methane consumption is 1 normal liter (0.715 g) per 0.59 g of raw biomass, oxygen consumption is 1.2 normal liter (1.7 g).
Сброс газовой фазы ферментера объемом 15 литров производится только однократно при завершении процесса культивирования через 48 часов. The gas phase of the 15 liter fermenter is discharged only once at the end of the cultivation process after 48 hours.
В результате средняя скорость роста Methylococcus Capsulatus составила 0,12 г/л в час. То есть среднее потребление метана на литр культуральной жидкости составляет 0,2 л/час, пиковое 0,6 л/час, выбросы метана фактически отсутствуют. As a result, the average growth rate of Methylococcus Capsulatus was 0.12 g/l per hour. That is, the average methane consumption per liter of culture liquid is 0.2 l/hour, the peak is 0.6 l/hour, there are virtually no methane emissions.
При полностью аналогичных условиях культивирования без использования замкнутого цикла среднее значение утилизации метана
5 микроорганизмами составляет 0,2 л/час, пиковое 0,6 л/час, а выброс метанаUnder completely similar cultivation conditions without using a closed cycle, the average value of methane utilization 5 microorganisms is 0.2 l/hour, peak 0.6 l/hour, and methane emissions
2855 л/час.
2855 l/hour.
Claims
1. Способ получения белкового кормового концентрата из микробного белка, включающий культивирование микроорганизмов в биореакторе с подачей газовой смеси, отличающийся тем, что проводят культивацию метанотрофных микроорганизмов Methylococcus capsulatus VKM №В 2990 с циклическим использованием газовой смеси, при котором непрерывно подают газовую смесь из ферментера в камеру дегазации, в котором: i) предварительно в ферментере культивируют маточный раствор метанотрофных микроорганизмов Methylococcus capsulatus VKM №В 2990 с подачей газовой смеси кислорода и метана при соотношении 1: 1 в течение 165-170 часов, затем проводят дальнейшее культивирование метанотрофных микроорганизмов Methylococcus capsulatus VKM №В 2990 на питательной среде в ферментере в течение 46-50 часов при температуре 40-45°С, давлении 1,8-2, 2 атм., pH 5, 5-6,0 в газовой смеси кислорода и метана при соотношении от 1:5 до 1:6, ii) в камеру дегазации, подсоединенную к вышеупомянутому ферментеру, подают газовую смесь от продуктов метаболизма вышеупомянутых метанотрофных микроорганизмов при скорости циркуляции газовой смеси 3500-3700 л/час, далее анализируют концентрацию газовой смеси в камере дегазации, и в случае снижения концентрации газовой смеси посредством автоматизированных клапанов камеры дегазации подают газовую смесь из ферментера. 1. A method for producing protein feed concentrate from microbial protein, including the cultivation of microorganisms in a bioreactor with the supply of a gas mixture, characterized in that the cultivation of methanotrophic microorganisms Methylococcus capsulatus VKM No. B 2990 is carried out with the cyclic use of a gas mixture, in which the gas mixture is continuously supplied from the fermenter to a degassing chamber in which: i) the mother solution of methanotrophic microorganisms Methylococcus capsulatus VKM No. B 2990 is first cultivated in the fermenter with the supply of a gas mixture of oxygen and methane at a ratio of 1: 1 for 165-170 hours, then further cultivation of methanotrophic microorganisms Methylococcus capsulatus VKM is carried out No. B 2990 on a nutrient medium in a fermenter for 46-50 hours at a temperature of 40-45°C, pressure 1.8-2.2 atm., pH 5.5-6.0 in a gas mixture of oxygen and methane at a ratio of 1:5 to 1:6, ii) a gas mixture from the metabolic products of the above-mentioned methanotrophic microorganisms is supplied to the degassing chamber connected to the above-mentioned fermenter at a circulation rate of the gas mixture of 3500-3700 l/hour, then the concentration of the gas mixture in the degassing chamber is analyzed, and in the event of a decrease in the concentration of the gas mixture, a gas mixture is supplied from the fermenter through automated valves of the degassing chamber.
2. Способ по п.1, отличающийся тем, что в качестве питательной среды используют питательную среду следующего состава: KCl-0,125 г/л, MgSO4*7H2O - 0,125 г/л, FeSO4*7H2O - 10,75 мг/л, CuSO4*5H2O - 10 мг/л, MnSO4*5H2O - 9,5 мг/л, НзВОз - 6,25 мг/л, ZnSO4*7H2O - 1,5 мг/л, Na2MoO4*2H2O - 0,25 мг/л, СоС12*6Н2О - 0,25 мг/л, Н3РО4 (70%) - 0,35 мл/л. 2. The method according to claim 1, characterized in that the following composition is used as a nutrient medium: KCl-0.125 g/l, MgSO 4 *7H 2 O - 0.125 g/l, FeSO 4 *7H 2 O - 10, 75 mg/l, CuSO 4 *5H 2 O - 10 mg/l, MnSO 4 *5H 2 O - 9.5 mg/l, H3BOz - 6.25 mg/l, ZnSO 4 *7H 2 O - 1.5 mg/l, Na 2 MoO 4 *2H 2 O - 0.25 mg/l, CoC1 2 *6H 2 O - 0.25 mg/l, H 3 PO 4 (70%) - 0.35 ml/l.
9
9
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KZ2023/000002 WO2024158272A1 (en) | 2023-01-23 | 2023-01-23 | Method for producing a protein feed concentrate from microbial protein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KZ2023/000002 WO2024158272A1 (en) | 2023-01-23 | 2023-01-23 | Method for producing a protein feed concentrate from microbial protein |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024158272A1 true WO2024158272A1 (en) | 2024-08-02 |
Family
ID=91970865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KZ2023/000002 WO2024158272A1 (en) | 2023-01-23 | 2023-01-23 | Method for producing a protein feed concentrate from microbial protein |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024158272A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001060974A2 (en) * | 2000-02-16 | 2001-08-23 | Norferm Da | Method for an extraction of proteins from a single cell |
RU2743581C1 (en) * | 2020-05-19 | 2021-02-20 | Ооо "Гипробиосинтез" | Fermentation plant for cultivation of methane-oxidizing bacteria methylococcus capsulatus |
-
2023
- 2023-01-23 WO PCT/KZ2023/000002 patent/WO2024158272A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001060974A2 (en) * | 2000-02-16 | 2001-08-23 | Norferm Da | Method for an extraction of proteins from a single cell |
RU2743581C1 (en) * | 2020-05-19 | 2021-02-20 | Ооо "Гипробиосинтез" | Fermentation plant for cultivation of methane-oxidizing bacteria methylococcus capsulatus |
Non-Patent Citations (2)
Title |
---|
BUT ET AL.: "Biochemical Properties and Phylogeny of Hydroxypyruvate Reductases from Methanotrophic Bacteria with Different C1 -Assimilation Pathways", BIOCHEMISTRY (MOSCOW, vol. 82, no. 11, 2017, pages 1295 - 1303, XP036402745, DOI: 10.1134/S0006297917110074 * |
PROKUDINA OLGA V., PESTSOV GEORGIY V., TRETYAKOVA ANASTASIA V.: "ISOLATION OF METHANOTROPHIC BACTERIA FROM NATURAL BIOCENOSES AND SELECTION OF NUTRIENT MEDIA OPTIMAL FOR CULTIVATION IN LABORATORY CONDITIONS", SIBERIAN JOURNAL OF LIFE SCIENCES AND AGRICULTURE, vol. 14, no. 6, pages 107 - 121, XP093198481, ISSN: 2658-6649, DOI: 10.12731/2658-6649-2022-14-6-107-121 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102015829B1 (en) | Coenzyme Q10 Fermentation Production Process Based on Integrated Control of Online Oxygen Consumption and Conductivity | |
US6977166B1 (en) | Method of producing an oil including docosahexaenoic acid | |
CN102168115A (en) | Industrialized production method of coenzyme Q10 | |
CN102583927B (en) | Sludge micro oxygen hydrolytic acidizing method | |
WO2008100782A2 (en) | Process for the preparation of coenzyme qlo by culturing rhodobacter sphaeroides in a defined medium | |
CN105143457A (en) | Fermentative production of hydrocarbon | |
CN107164238B (en) | Schizochytrium limacinum strain and mutagenesis method and application thereof | |
JP2008029272A (en) | Method for producing 5-aminolevulinic acid | |
WO2024158272A1 (en) | Method for producing a protein feed concentrate from microbial protein | |
CN108060144A (en) | A kind of glucose oxidase fermentation process based on OUR parameters in order to control | |
RU2787202C1 (en) | Methylococcus capsulatus strain is a producer of high-protein biomass | |
CN102517223A (en) | High-density fermentation process and equipment for methanol type pichia pastoris | |
JP3958089B2 (en) | Continuous culture of anaerobic bacteria | |
CN117701459A (en) | Escherichia coli high-density fermentation medium and fermentation process | |
CN115261361A (en) | Industrial fermentation method for generating hyaluronidase by recombinant pichia pastoris | |
CN102311923B (en) | Microalgae cultivation method | |
CN202415541U (en) | Special equipment being applicable to high-concentration culture of methanol pichia methanolica | |
CN111099740B (en) | Feed supplement control method for chemoautotrophic microorganism culture process | |
Van der Westhuizen et al. | Production of valuable products from organic waste streams | |
CN101974500A (en) | Production method of high-purity and intermediate-temperate alpha-amylase | |
CN102321683B (en) | Process for preparing fumaric acid fermentation liquid by fermentation method and for separating and extracting pure fumaric acid from fumaric acid fermentation liquid | |
CN110885774A (en) | Method for optimizing glutamic acid fermentation | |
WO2022211674A1 (en) | Method of cultivating aerobic methane-assimilating microorganisms | |
EP1613759B1 (en) | Fermentation processes with low concentrations of carbon- and nitrogen-containing nutrients | |
RU2755539C1 (en) | Method for producing a biomass of methane-oxidising microorganisms and a line for production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23918780 Country of ref document: EP Kind code of ref document: A1 |