[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024157305A1 - Stator, electric motor, compressor, and refrigeration cycle apparatus - Google Patents

Stator, electric motor, compressor, and refrigeration cycle apparatus Download PDF

Info

Publication number
WO2024157305A1
WO2024157305A1 PCT/JP2023/001823 JP2023001823W WO2024157305A1 WO 2024157305 A1 WO2024157305 A1 WO 2024157305A1 JP 2023001823 W JP2023001823 W JP 2023001823W WO 2024157305 A1 WO2024157305 A1 WO 2024157305A1
Authority
WO
WIPO (PCT)
Prior art keywords
tooth
teeth
step portion
core
stator
Prior art date
Application number
PCT/JP2023/001823
Other languages
French (fr)
Japanese (ja)
Inventor
優樹 東
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2023/001823 priority Critical patent/WO2024157305A1/en
Publication of WO2024157305A1 publication Critical patent/WO2024157305A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation

Definitions

  • This disclosure relates to a stator, an electric motor, a compressor, and a refrigeration cycle device.
  • the stator of an electric motor has a stator core with teeth, windings wound around the teeth, and insulating parts interposed between the teeth and the windings.
  • a stator core with teeth, windings wound around the teeth, and insulating parts interposed between the teeth and the windings.
  • This disclosure has been made to solve the above problems, and aims to shorten the perimeter of the winding and suppress the increase in iron loss.
  • the stator according to the present disclosure has a stator core having an annular core back, teeth extending radially inward from the core back, and slots adjacent to the teeth in the circumferential direction of the core back, an insulating portion provided on the teeth, and a winding wound around the teeth via the insulating portion.
  • the teeth have end faces that define the ends of the teeth in the axial direction of the stator core, side faces the slot, a step portion formed between the end face and the side face, and an intermediate step portion formed in the step portion.
  • the insulating portion has a first surface that covers the end face of the teeth, a second surface that faces the slot, and a third surface that is a curved surface or an inclined surface extending from the first surface to the second surface.
  • the shortest distance T1 from the end face of the tooth to the first surface of the insulating portion and the shortest distance T3 from the intermediate step to the third surface of the insulating portion satisfy T1>T3.
  • an intermediate step is provided at the step portion of the teeth, and the strength of the insulating portion is ensured by the above-mentioned relationship T1>T3, so the cross-sectional area of the teeth can be increased while suppressing the swelling of the winding. This makes it possible to shorten the circumference of the winding and suppress the increase in iron loss.
  • FIG. 1 is a cross-sectional view showing an electric motor according to a first embodiment of the present invention
  • 2 is a diagram showing the axial positional relationship between a stator core and a rotor core in the first embodiment.
  • FIG. FIG. 2 is a plan view showing the stator core of the first embodiment.
  • FIG. 2 is a perspective view showing a split core according to the first embodiment.
  • 2 is a perspective view showing a split core and an insulating portion according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing a tooth and an insulating portion according to the first embodiment.
  • FIG. 4 is an enlarged cross-sectional view showing a portion including a step portion of the tooth according to the first embodiment.
  • FIG. 4A is a cross-sectional view showing the teeth and insulating portion of Comparative Example 1
  • FIG. 4B is a cross-sectional view showing the teeth and insulating portion of Comparative Example 2
  • FIG. 4C is a cross-sectional view showing the teeth and insulating portion of Comparative Example 3.
  • 13 is an enlarged view showing a portion including a step portion of a tooth of Comparative Example 3.
  • FIG. 4 is a cross-sectional view for explaining the operation of the first embodiment.
  • FIG. 4 is a cross-sectional view showing dimensions of each part including a step part of the tooth of the first embodiment.
  • FIG. 5A to 5E show examples of shapes of step portions of teeth according to the first embodiment.
  • 5A and 5B are diagrams showing the relationship between the shape of the step portion of the teeth and the winding bulge state of the winding in the first embodiment.
  • 13 is a graph showing the relationship between loss and the ratio A/L1 of the height A of the step portion to the length L1 of the teeth in Comparative Example 3.
  • 11 is a graph showing the relationship between loss and a ratio A/L1 of a height A of a step portion to a length L1 of a tooth in the first embodiment.
  • 5A and 5B show examples of the shapes of step portions and intermediate step portions of teeth in a numerical analysis of the first embodiment.
  • 13A and 13B are cross-sectional views showing a case in which the cross-sectional area of the intermediate step portion is maximized.
  • FIG. 11 is a cross-sectional view showing a portion including a step portion of a tooth according to a second embodiment.
  • FIG. 13 is a cross-sectional view showing the shape of a step portion and an intermediate step portion of a tooth according to a second embodiment.
  • FIG. 13 is a diagram showing the axial positional relationship between a stator core and a rotor core in a third embodiment.
  • FIG. 13 is a diagram showing the axial positional relationship between a stator core and a rotor core in a modified example of the third embodiment.
  • FIG. FIG. 13 is a perspective view showing a split core and an insulator according to a fourth embodiment. A cross-sectional view showing the teeth, insulator, and insulating film of embodiment 4.
  • FIG. 2 is a vertical sectional view showing a compressor to which the electric motor of each embodiment can be applied.
  • FIG. 27 is a diagram showing a refrigeration cycle device to which the compressor of FIG. 26 can be applied.
  • Fig. 1 is a cross-sectional view showing an electric motor 100 according to embodiment 1.
  • the electric motor 100 shown in Fig. 1 is an embedded permanent magnet electric motor, and is used in, for example, a compressor 8 (Fig. 26).
  • the electric motor 100 has a rotor 5 having a shaft 90 which is a rotating shaft, and a stator 1 arranged to surround the rotor 5.
  • An air gap of, for example, 0.3 to 1.0 mm is provided between the stator 1 and the rotor 5.
  • the stator 1 is incorporated inside the cylindrical shell 80 of the compressor 8 ( Figure 26) which will be described later.
  • the direction of the axis Ax which is the center of rotation of the rotor 5, is referred to as the "axial direction”.
  • the radial direction centered on the axis Ax is referred to as the "radial direction”.
  • the circumferential direction centered on the axis Ax is referred to as the "circumferential direction”.
  • the rotor 5 has a cylindrical rotor core 50 centered on the axis Ax, and a permanent magnet 60 attached to the rotor core 50.
  • the rotor core 50 is made by stacking a plurality of electromagnetic steel plates in the axial direction and fixing them by caulking, etc.
  • the thickness of the electromagnetic steel plates is 0.1 to 0.7 mm.
  • a central hole 53 is formed in the radial center of the rotor core 50.
  • the shaft 90 is fixed in the central hole 53 of the rotor core 50 by shrink fitting, press fitting, adhesive, or the like.
  • the rotor core 50 has a circular outer periphery centered on the axis Ax.
  • a number of magnet insertion holes 51 are formed along the outer periphery of the rotor core 50.
  • One magnet insertion hole 51 corresponds to one magnetic pole.
  • the circumferential center of the magnet insertion hole 51 corresponds to the pole center.
  • An inter-pole portion is defined between adjacent magnet insertion holes 51.
  • the number of magnet insertion holes 51 is six here. In other words, the number of poles is six. However, the number of poles is not limited to six, and may be two or more.
  • the magnet insertion hole 51 extends linearly in a direction perpendicular to a line passing through the circumferential center of the magnet insertion hole 51.
  • the magnet insertion hole 51 is not limited to this shape, and may extend, for example, in a V-shape.
  • the permanent magnet 60 is placed in each magnet insertion hole 51.
  • the permanent magnet 60 is flat and has a width in the circumferential direction of the rotor core 50 and a thickness in the radial direction. Each permanent magnet 60 is magnetized in the thickness direction.
  • the permanent magnets 60 are, for example, rare earth magnets.
  • the rare earth magnets are, for example, neodymium magnets containing neodymium (Nd), iron (Fe) and boron (B). Two or more permanent magnets 60 may be placed in each magnet insertion hole 51.
  • flux barriers 52 which are holes, are formed at both circumferential ends of the magnet insertion holes 51.
  • a thin-walled portion is formed between each flux barrier 52 and the outer periphery of the rotor core 50.
  • the radial width of the thin-walled portion is set to be the same as the plate thickness of the electromagnetic steel plate, for example.
  • Slits 54 are formed between the magnet insertion holes 51 and the outer periphery of the rotor core 50.
  • the slits 54 are formed to regulate the flow of magnetic flux emitted from the permanent magnets 60.
  • seven slits 54 are formed symmetrically with respect to the circumferential center of the magnet insertion holes 51.
  • the number and arrangement of the slits 54 are not limited to the example described here.
  • the rotor core 50 does not necessarily have to have slits 54.
  • holes 57, 58 are formed radially inward from the magnet insertion hole 51.
  • the holes 57, 58 are used as vents to allow refrigerant to pass through or as holes for inserting jigs.
  • the same number of holes 57, 58 are formed as the number of poles.
  • the circumferential position of each hole 57 coincides with the circumferential center of the magnet insertion hole 51.
  • the circumferential position of each hole 58 coincides with the inter-pole portion.
  • the number and arrangement of the holes 57, 58 are not limited to the example described here.
  • the rotor core 50 does not necessarily have to have the holes 57, 58.
  • a crimping portion 56 for fixing the electromagnetic steel plate of the rotor core 50 is formed on the radial outside of each hole portion 58.
  • the arrangement of the crimping portion 56 is not limited to the example described here.
  • the electromagnetic steel plate of the rotor core 50 may be fixed by a method other than crimping.
  • the stator 1 has a stator core 10 that surrounds the rotor core 50 from the radial outside, and a winding 30 wound around the stator core 10.
  • the stator core 10 is made by stacking a plurality of electromagnetic steel plates in the axial direction and fixing them by crimping, etc.
  • the thickness of the electromagnetic steel plates is 0.1 to 0.7 mm.
  • the stator core 10 has an annular core back 11 centered on the axis Ax, and a number of teeth 12 extending radially inward from the core back 11.
  • the teeth 12 are arranged at regular intervals in the circumferential direction.
  • the number of teeth 12 is nine.
  • the number of teeth 12 is not limited to nine, and may be two or more.
  • Slots 14 are formed between adjacent teeth 12 in the circumferential direction. The number of slots 14 is nine, the same as the number of teeth 12.
  • the winding 30 is made of magnet wire and is wound around each tooth 12 in a concentrated manner.
  • the outer diameter, i.e., wire diameter, of the magnet wire is, for example, 1.0 mm.
  • the number of turns of the winding 30 around one tooth 12 is, for example, 80 turns.
  • the windings 30 are made of aluminum wire or copper wire.
  • Aluminum wire is particularly desirable because it is softer than copper wire and can be tightly wound around the teeth 12.
  • Aluminum wire is also less expensive than copper wire, which is advantageous in reducing manufacturing costs.
  • FIG 2 is a diagram showing the axial positional relationship between the stator core 10 and the rotor core 50. As shown in Figure 2, the stator core 10 and the rotor core 50 are at the same axial position. That is, both axial end faces 10e of the stator core 10 are at the same axial position as both axial end faces 50e of the rotor core 50.
  • the axial positional relationship between the stator core 10 and the rotor core 50 is not limited to the example shown in FIG. 2, as long as the axial center position of the stator core 10 and the axial center position of the rotor core 50 coincide. Also, the axial center position of the stator core 10 and the axial center position of the rotor core 50 do not have to coincide, but this will be explained in embodiment 3.
  • FIG. 3 is a plan view showing the stator core 10.
  • the core back 11 has an inner peripheral surface 11a and an outer peripheral surface.
  • the inner peripheral surface 11a of the core back 11 faces the slots 14.
  • the outer peripheral surface of the core back 11 fits into the shell 80 of the compressor 8 (FIG. 26).
  • a groove 18a is formed in the outer peripheral surface of the core back 11 in a portion located radially outward of the teeth 12.
  • a protrusion 17a is formed on both circumferential sides of the groove 18a.
  • a notch 18b is formed at a position where the protrusion 17a is sandwiched circumferentially between the groove 18a and the notch 18b.
  • a protrusion 17b is formed at a position where the notch 18b is sandwiched circumferentially between the protrusion 17a and the notch 18b.
  • the outer peripheral surfaces of the protrusions 17a and 17b form part of the outer peripheral surface of the core back 11 and fit into the inner peripheral surface of the shell 80 of the compressor 8 (Fig. 26).
  • the groove 18a is a groove that extends in the axial direction and functions as a refrigerant passage in the compressor 8.
  • the notch 18b is provided to relieve the stress that the core back 11 receives from the shell 80 of the compressor 8 (Fig. 26).
  • the teeth 12 extend radially inward from the core back 11.
  • a radial line passing through the circumferential center of each tooth 12 is called the teeth centerline T.
  • the teeth 12 have a pair of side surfaces 12a on both circumferential sides.
  • the side surfaces 12a of the teeth 12 face the slots 14.
  • Each tooth 12 also has a tooth tip portion 13 that faces the rotor 5 ( Figure 1).
  • the tooth tip portion 13 has a circumferential width greater than the other portions of the tooth 12, and protrudes circumferentially beyond the side surface 12a of the tooth 12.
  • An outer surface 13a is formed radially outward of the protruding portion of the tooth tip portion 13.
  • the outer surface 13a of the tooth tip portion 13 faces the slot 14.
  • tooth tips 13 are part of the teeth 12, they have a different shape from the other parts of the teeth 12, so the tooth tips 13 may be described separately from the other parts of the teeth 12.
  • a step portion 12S is formed at the axial end of the tooth 12.
  • the step portion 12S is formed on the side surface 12a side of the tooth 12, i.e., on the slot 14 side. Therefore, the circumferential width of the tooth 12 is narrower at the axial end than at the axial center of the stator core 10.
  • a step portion 11S is formed at the axial end of the core back 11.
  • the step portion 11S is formed on the inner peripheral surface 11a side of the core back 11, i.e., on the slot 14 side. Therefore, the radial width of the core back 11 is narrower at the axial end than at the axial center of the stator core 10.
  • a step portion 13S is formed at the axial end of the tooth tip portion 13.
  • the step portion 13S is formed on the outer surface 13a side of the tooth tip portion 13, i.e., on the slot 14 side. Therefore, the radial width of the protruding portion of the tooth tip portion 13 is narrower at the axial end portion than at the axial center portion of the stator core 10.
  • the stator core 10 is constructed by combining multiple split cores 15, each of which includes one tooth 12, in a ring shape.
  • the number of split cores 15 is the same as the number of teeth 12, which is nine in this example.
  • Adjacent split cores 15 are connected to each other by crimped portions 16 formed on the outer periphery of the core back 11.
  • the connecting portions of the split cores 15 are not limited to the crimped portions 16 and may be, for example, thin-walled portions. Also, instead of providing connecting portions, adjacent split cores 15 may be joined by welding.
  • FIG. 4 is a perspective view showing the split core 15.
  • the direction of the axis Ax (FIG. 1), i.e., the axial direction, is indicated by arrow Z.
  • the core back 11 has an axial end face 11e
  • the teeth 12 have an axial end face 12e
  • the tooth tip portion 13 has an axial end face 13e.
  • the end faces 11e, 12e, and 13e are on the same plane and correspond to the end face 10e shown in FIG. 2.
  • the step portion 12S of the tooth 12 is formed between the end face 12e and the side face 12a of the tooth 12.
  • the step portion 12S is composed of a wall surface 12b facing the slot 14 and a bottom surface 12c facing the axial direction.
  • the wall surface 12b is parallel to the axial direction, and the bottom surface 12c is perpendicular to the axial direction.
  • the step portion 11S of the core back 11 is formed between the end face 11e and the inner peripheral surface 11a of the core back 11.
  • the step portion 11S is composed of a wall surface 11b facing the slot 14 and a bottom surface 11c facing the axial direction.
  • the wall surface 11b is parallel to the axial direction, and the bottom surface 11c is perpendicular to the axial direction.
  • the step portion 13S of the tooth tip portion 13 is formed between the end face 13e of the tooth tip portion 13 and the outer surface 13a.
  • the step portion 13S is composed of a wall surface 13b facing the slot 14 and a bottom surface 13c facing the axial direction.
  • the wall surface 13b is parallel to the axial direction, and the bottom surface 13c is perpendicular to the axial direction.
  • the bottom surfaces 11c, 12c, and 13c of the step portions 11S, 12S, and 13S are at the same position in the axial direction. Therefore, the axial heights of the step portions 11S, 12S, and 13S are the same.
  • the step portion 11S of the core back 11 has an intermediate step portion 11T formed as a protrusion.
  • the intermediate step portion 11T has a first surface parallel to the end face 11e of the core back 11 and a second surface parallel to the inner peripheral surface 11a of the core back 11.
  • the step portion 12S of the tooth 12 has an intermediate step portion 12T formed as a protrusion.
  • the intermediate step portion 12T has a first surface 121 (FIG. 6) parallel to the end surface 12e of the tooth 12, and a second surface 122 (FIG. 6) parallel to the side surface 12a of the tooth 12.
  • the step portion 13S of the tooth tip portion 13 is formed with an intermediate step portion 13T as a protrusion.
  • the intermediate step portion 13T has a first surface parallel to the end face 13e of the tooth tip portion 13 and a second surface parallel to the outer surface 13a of the tooth tip portion 13.
  • the first surfaces of the intermediate steps 11T, 12T, and 13T are located at the same position in the axial direction. In other words, the axial heights of the intermediate steps 11T, 12T, and 13T are the same.
  • the split core 15 has a core portion 15a in the axial center, core portions 15b on both axial sides of core portion 15a, and core portions 15c on both axial ends.
  • Core portion 15b is located in the axial region where intermediate stages 11T, 12T, and 13T are formed.
  • Core portion 15c is located on the end face 10e side of core portion 15b in the axial direction.
  • core portion 15b Compared to core portion 15a, core portion 15b has a narrower width of core back 11, a narrower width of teeth 12, and a narrower width of protruding portion of tooth tip 13.
  • core portion 15c Compared to core portion 15b, core portion 15c has an even narrower width of core back 11, a narrower width of teeth 12, and a narrower width of protruding portion of tooth tip 13.
  • FIG. 5 is a perspective view showing the split core 15 and the insulating portion 20.
  • the insulating portion 20 is attached to the split core 15 so as to cover the teeth 12 from both axial and circumferential sides.
  • the insulating portion 20 is made of a resin such as polybutylene terephthalate (PBT) or liquid crystal polymer (LCP).
  • the insulating portion 20 has a body portion 21 that covers the teeth 12, a wall portion 22 that is arranged radially outside the body portion 21, and a flange portion 23 that is arranged radially inside the body portion 21.
  • the wall portion 22 and the flange portion 23 face each other in the radial direction with the body portion 21 in between.
  • the wall portion 22 is provided to cover the inner peripheral surface 11a of the core back 11 and protrudes on both sides in the axial direction.
  • the wall portion 22 has an engagement portion 22a that engages with the step portion 11S of the core back 11.
  • the body 21 is provided to cover the end faces 12e and side faces 12a (Fig. 4) of the teeth 12.
  • the body 21 has an engagement portion 21a (Fig. 6) that engages with the step portion 12S (Fig. 4) of the teeth 12.
  • the flange portion 23 is provided to cover the end face 13e (FIG. 4) and the outer surface 13a of the tooth tip portion 13.
  • the flange portion 23 has an engagement portion 23a that engages with the step portion 13S of the tooth tip portion 13.
  • the winding 30 ( Figure 1) is wound around the body 21.
  • the wall 22 and the flange 23 guide the winding 30 wound around the body 21 from both radial sides.
  • the insulating section 20 is formed, for example, by molding resin integrally with the split core 15.
  • the insulating section 20 may also be a resin molded body attached to the split core 15.
  • the insulating part 20 that is constructed as an integral part, but the insulating part 20 may also be constructed from an insulator and an insulating film. This will be explained in embodiment 4.
  • Figure 6 is a cross-sectional view showing the teeth 12 and the insulating portion 20, taken along a plane perpendicular to the extension direction of the teeth 12.
  • the extension direction of the teeth 12 refers to a radial line passing through the circumferential center of the teeth 12, i.e., the direction of the teeth centerline T ( Figure 3).
  • the teeth 12 have a length L1 in the axial direction.
  • the length L1 is the distance between both end faces 12e of the teeth 12.
  • the teeth 12 also have a width W1 at the center in the axial direction, a width W2 in the area where the intermediate step portion 12T is formed, and a width W3 at the axial end portions.
  • Width W1 is the distance between both side surfaces 12a of the teeth 12.
  • Width W2 is the distance between the second surfaces 122 of the two intermediate step portions 12T of the teeth 12.
  • Width W3 is the distance between the wall surfaces 12b of the two step portions 12S of the teeth 12.
  • the relationship between widths W1, W2, and W3 is W1>W2>W3.
  • the insulating portion 20 has a first surface 201, which is a flat surface covering the end surface 12e of the tooth 12, a second surface 202, which is a flat surface facing the slot 14, and a third surface 203, which is a curved or inclined surface extending from the first surface 201 to the second surface 202.
  • the first surface 201 is a plane extending in a plane perpendicular to the axial direction and faces the end surface 12e of the tooth 12.
  • the second surface 202 is a plane extending in a plane parallel to the axial direction and faces the side surface 12a of the tooth 12.
  • the third surface 203 is a curved surface that connects the first surface 201 and the second surface 202 in a curved line in a cross section perpendicular to the extension direction of the teeth 12, or an inclined surface that connects the first surface 201 and the second surface 202 in a straight line.
  • the third surface 203 is a curved surface will be described, but it may also be an inclined surface (see FIG. 25 described later).
  • FIG. 7 is an enlarged view of a portion of the tooth 12 including the step portion 12S.
  • the step portion 12S is formed between the end face 12e and the side face 12a of the tooth 12, and an intermediate step portion 12T is formed in the step portion 12S.
  • the intermediate step portion 12T has a first surface 121 facing the axial direction and a second surface 122 facing the slot 14.
  • the first surface 121 of the intermediate step portion 12T is parallel to the end surface 12e of the tooth 12.
  • the second surface 122 of the intermediate step portion 12T is parallel to the side surface 12a of the tooth 12.
  • a corner E is formed between the first surface 121 and the second surface 122 of the intermediate step portion 12T.
  • the corner E is the ridge line (the intersection in the cross section of FIG. 7) between the first surface 121 and the second surface 122.
  • the corner E is the part of the step portion 12S of the tooth 12 that is closest to the third surface 203 of the insulating portion 20.
  • the shortest distance from the end face 12e of the tooth 12 to the first surface 201 of the insulating portion 20 is defined as T1.
  • the shortest distance from the side face 12a of the tooth 12 to the second surface 202 of the insulating portion 20 is defined as T2.
  • the shortest distance from the corner E of the intermediate step portion 12T to the third surface 203 of the insulating portion 20 is defined as T3.
  • the shortest distance T1 from the end face 12e of the tooth 12 to the first surface 201 of the insulating portion 20 and the shortest distance T3 from the corner E of the intermediate step portion 12T to the third surface 203 of the insulating portion 20 satisfy T1>T3.
  • the shortest distance T2 from the side surface 12a of the tooth 12 to the second surface 202 of the insulating portion 20 and the shortest distance T3 from the corner E of the intermediate step portion 12T to the third surface 203 of the insulating portion 20 satisfy T3>T2.
  • these shortest distances T1, T2, and T3 satisfy T1>T3>T2.
  • Fig. 8(A) is a cross-sectional view showing the tooth 12 and the insulating portion 20 of comparative example 1.
  • Fig. 8(B) is a cross-sectional view showing the tooth 12 and the insulating portion 20 of comparative example 2.
  • Fig. 8(C) is a cross-sectional view showing the tooth 12 and the insulating portion 20 of comparative example 3.
  • the teeth 12 of Comparative Example 1 shown in FIG. 8(A) do not have a step between the end faces 12e and the side faces 12a. That is, a 90-degree corner is formed between the end faces 12e and the side faces 12a of the teeth 12.
  • the insulating portion 20 has a first surface 201 that covers the end faces 12e of the teeth 12, a second surface 202 that faces the slot 14, and a third surface 203 between these surfaces 201, 202.
  • the third surface 203 faces the corner of the teeth 12.
  • the radius of curvature of the third surface 203 In order to wind the winding 30 around the insulating part 20 without causing any bulging, it is desirable for the radius of curvature of the third surface 203 to be large. However, in order to increase the radius of curvature of the third surface 203, it is necessary to increase the shortest distance T1 from the end surface 12e of the tooth 12 to the first surface 201 of the insulating part 20. This increases the circumferential length of the winding 30, resulting in increased copper loss.
  • the teeth 12 of Comparative Example 2 shown in FIG. 8(B) do not have a step portion at the axial end, like the teeth 12 of Comparative Example 1. In other words, a 90-degree corner is formed between the end face 12e and the side face 12a of the teeth 12.
  • the shortest distance T1 from the end face 12e of the teeth 12 to the first surface 201 of the insulating portion 20 is shorter than in Comparative Example 1.
  • the shortest distance T1 is short, so the radius of curvature of the third surface 203 is small, and the winding 30 is likely to bulge toward the slot 14. This increases the perimeter of the winding 30, and makes it difficult to arrange the winding 30 densely within the slot 14.
  • the tooth 12 of Comparative Example 3 shown in FIG. 8(C) has a step portion 12S between the end face 12e and the side face 12a.
  • the insulating portion 20 has a first surface 201 that covers the end face 12e of the tooth 12, a second surface 202 that faces the slot 14, and a third surface 203 that covers the step portion 12S.
  • a step portion 12S is formed on the tooth 12, so that the radius of curvature of the third surface 203 can be increased and the shortest distance T1 from the end surface 12e of the tooth 12 to the first surface 201 of the insulating portion 20 can be shortened.
  • an intermediate step portion 12T is provided at the step portion S of the tooth 12.
  • the width of the tooth 12 is increased, suppressing magnetic saturation and thereby suppressing an increase in iron loss.
  • the radius of curvature of the third surface 203 can be increased without excessively increasing the thickness of the insulating portion 20, thereby suppressing the winding bulge of the winding 30.
  • FIG. 10 is a cross-sectional view of the teeth 12 and the windings 30 taken along a plane perpendicular to the direction in which the teeth 12 extend.
  • the arrows indicate the force acting around one of the four corners of the teeth 12.
  • the teeth 12 have an axial length L1 (FIG. 6) that is longer than their width W1 (FIG. 6).
  • the cross-sectional shape of the teeth 12 is a rectangle that is long in the axial direction. Therefore, the winding 30 is wound around the insulating portion 20 in an elliptical shape that is long in the axial direction.
  • tension is applied to the winding 30, and this tension causes the winding 30 to contact the first surface 201, the second surface 202, and the third surface 203 of the insulating part 20.
  • stress is applied from the winding 30 to the first surface 201, the second surface 202, and the third surface 203 of the insulating part 20.
  • the cross-sectional shape of the teeth 12 is a rectangle that is long in the axial direction, so the greatest force acts on the first surface 201 of the insulating part 20.
  • the force F1 that the first surface 201 of the insulating part 20 receives from the winding 30 is greater than the force F2 that the second surface 202 receives from the winding 30.
  • the force F1 that the first surface 201 of the insulating portion 20 receives from the winding 30 is maximum at the portion facing the corner K between the end surface 12e of the tooth 12 and the wall surface 12b of the step portion 12S.
  • the shortest distance T1 from the end face 12e of the tooth 12 to the first surface 201 of the insulating portion 20 is longer than the shortest distance T3 from the corner E of the intermediate step portion 12T of the tooth 12 to the third surface 203 of the insulating portion 20. Therefore, damage to the insulating portion 20 can be prevented when the first surface 201 of the insulating portion 20 receives a force F1 from the winding 30.
  • the shortest distance T3 from the corner E of the intermediate step 12T of the tooth 12 to the third surface 203 of the insulating portion 20 is longer than the shortest distance T2 from the side surface 12a of the tooth 12 to the second surface 202 of the insulating portion 20. Therefore, damage to the insulating portion 20 can be prevented when the third surface 203 of the insulating portion 20 receives a force F3 from the winding 30.
  • the shortest distance T2 from the side surface 12a of the tooth 12 to the second surface 202 of the insulating portion 20 can be made the shortest. This makes it possible to increase the area of the slot 14 and efficiently accommodate the winding 30.
  • FIG. 11 is a diagram for explaining the dimensions of the step portion 12S of the tooth 12 and the third surface 203 of the insulating portion 20.
  • the axial dimension of the step portion 12S is taken as height A. This height A corresponds to the axial distance from the bottom surface 12c of the step portion 12S to the end surface 12e of the tooth 12.
  • width B the dimension of the step portion 12S in the direction perpendicular to the axial direction (also called the width direction) is defined as width B.
  • This width B corresponds to the distance in the width direction from the wall surface 12b of the step portion 12S to the side surface 12a of the teeth 12.
  • the height A and width B of the step portion 12S of the tooth 12 satisfy the relationship A ⁇ B.
  • the third surface 203 extends to form a long elliptical arc in the axial direction.
  • the first surface 201 of the insulating portion 20 covers the end surface 12e of the tooth 12 and also protrudes into the step portion 12S.
  • the second surface 202 of the insulating portion 20 covers the side surface 12a of the tooth 12 and also protrudes into the step portion 12S.
  • the boundary between the first surface 201 and the third surface 203 is designated as point P.
  • the boundary between the second surface 202 and the third surface 203 is designated as point Q.
  • Points P and Q define both ends of the third surface 203.
  • the distance in the axial direction between points P and Q is distance D1.
  • the distance in the direction perpendicular to the axial direction (i.e., the width direction) between points P and Q is distance D2.
  • distance D1 corresponds to the distance from point P to intersection point U
  • distance D2 corresponds to the distance from point Q to intersection point U.
  • the height A and width B of the step portion 12S and the distances D1 and D2 satisfy D1 ⁇ A and D2 ⁇ B. In other words, point P does not face the end face 12e of the tooth 12, and point Q does not face the side face 12a of the tooth 12.
  • point P does not face the end face 12e of the tooth 12
  • point Q does not face the side face 12a of the tooth 12. Therefore, there are no locally thin portions of the insulating portion 20.
  • the shape of the third surface 203 of the insulating portion 20 is set to match the shape of the step portion 12S of the tooth 12.
  • Figures 12(A) to (E) are diagrams showing examples of the step portion 12S of the tooth 12 and the third surface 203 of the insulating portion 20.
  • the intermediate step portion 12T is omitted in Figures 12(A) to (E).
  • the third surface 203 of the insulating portion 20 has the same arc shape, but the shape of the step portion 12S is different.
  • points P and Q of the insulating portion 20 can be made not to face the end face 12e and side face 12a of the tooth 12.
  • the third surface 203 of the insulating portion 20 has an elliptical arc shape that is long in the axial direction, when the height A and width B of the step portion 12S satisfy A>B, it is possible to prevent points P and Q of the insulating portion 20 from facing the end surface 12e and side surface 12a of the tooth 12.
  • the third surface 203 of the insulating portion 20 has a circular arc shape.
  • the third surface 203 of the insulating portion 20 has an elliptical arc shape that is long in the axial direction.
  • the third surface 203 of the insulating portion 20 has an elliptical arc shape that is long in the width direction.
  • Figures 13(A) and (B) are diagrams showing the portion including the step portion 12S of the teeth 12 and the bulging state of the winding 30 when the third surface 203 of the insulating portion 20 has an elliptical shape.
  • the intermediate step portion 12T is omitted in Figures 13(A) and (B).
  • the height A and width B of the step portion 12S satisfy A>B.
  • FIG. 14 is a graph showing the relationship between the ratio A/L1 of the height A of the step portion 12S to the length L1 of the tooth 12 and the iron loss and copper loss (relative values) when the step portion 12S of the tooth 12 does not have an intermediate step portion 12T.
  • the values of iron loss and copper loss were obtained by performing an analysis in which the height A and width B were changed so that the ratio ((A x B)/(L1 x W1)) of the cross-sectional area (A x B) of the step portion 12S to the cross-sectional area (L1 x W1) of the tooth 12 without the step portion 12S was constant.
  • the values of iron loss and copper loss are expressed as relative values to the values of iron loss and copper loss when the tooth 12 does not have the step portion 12S.
  • the reason why the iron loss increases as the value of A/L1 increases is that as the ratio of the height A of the step portion 12S to the length L1 of the tooth 12 increases, the ratio of the narrow portion of the tooth 12 increases, and the magnetic resistance of the entire tooth 12 increases.
  • step portion 11S of the core back 11 and the step portion 13S of the tooth tip 13 are formed at the same height (i.e., axial position) as the step portion 12S of the tooth 12 (see FIG. 4), the magnetic path length within the tooth 12 from the core back 11 to the tooth tip 13 becomes longer. Therefore, as the ratio of the height A of the step portion 12S to the length L1 of the tooth 12 increases, the portion of the tooth 12 with a long magnetic path length increases, and as described above, iron loss increases.
  • Fig. 15 is a graph showing the relationship between the ratio A/L1 of the height A of step portion 12S to the length L1 of tooth 12 when intermediate step portion 12T is provided in step portion 12S of tooth 12, and the iron loss and copper loss (relative values). The values of iron loss and copper loss are as described in Fig. 14.
  • the height A and width B of the step portion 12S were changed as explained in FIG. 14, and the height and width of the intermediate step portion 12T were changed accordingly.
  • a virtual elliptical arc M is set with its center at the intersection J between the bottom surface 12c and the wall surface 12b of the step portion 12S, length A as its major axis radius, and width B as its minor axis radius. Then, the height and width of the intermediate step portion 12T are determined so that the midpoint of the elliptical arc M coincides with the corner E of the intermediate step portion 12T.
  • copper loss can be reduced by preventing the winding 30 from expanding, so it is desirable to have A/L1 ⁇ 0.141, where the increase in iron loss is equal to or smaller than the increase in copper loss.
  • the electric motor 100 used in the compressor is designed according to the required specifications of the compressor, but it is desirable to keep the shape of the stator core 10 common and respond to various required specifications by adjusting the width of the core back 11 or teeth 12, or the number of turns of the winding 30, etc. In this embodiment, copper loss and iron loss can be reduced by the shape of the teeth 12, so a highly efficient electric motor 100 that responds to various required specifications can be realized.
  • stator core 10 is not limited to this configuration.
  • the stator core 10 may be an integrated core in which electromagnetic steel sheets punched into an annular shape are stacked in the axial direction.
  • step portions 12S are formed on both circumferential sides of the teeth 12
  • step portions 12S are formed on at least one circumferential side of the teeth 12.
  • steps 11S, 13S are provided on the core back 11 and the tooth tip portion 13, but since the winding 30 is not wound on the core back 11 and the tooth tip portion 13, steps 11S, 13S on the core back 11 and the tooth tip portion 13 do not necessarily have to be provided.
  • the stator 1 of the first embodiment has a core back 11 and teeth 12, and the windings 30 are wound around the teeth 12 via the insulating portion 20.
  • the teeth 12 have end faces 12e that define the axial ends of the teeth 12, side faces 12a that face the slots 14, step portions 12S formed between the end faces 12e and the side faces 12a, and intermediate step portions 12T provided in the step portions 12S.
  • the insulating portion 20 has a first surface 201 that covers the end faces 12e of the teeth 12, a second surface 202 that faces the slots 14, and a third surface 203 that is a curved surface or an inclined surface extending from the first surface 201 to the second surface 202.
  • the shortest distance T1 from the end face 12e of the tooth 12 to the first surface 201 of the insulating portion 20 and the shortest distance T3 from the intermediate step portion 12T to the third surface 203 of the insulating portion 20 satisfy T1>T3.
  • the intermediate step 12T is provided at the step 12S of the teeth 12 in this way, the cross-sectional area of the teeth 12 can be increased while suppressing the swelling of the winding 30.
  • the thickness of the insulating part 20 can be made thin while ensuring strength. Therefore, the circumferential length of the winding 30 can be shortened to reduce copper loss and suppress an increase in iron loss.
  • the shortest distance T3 from the intermediate step 12T to the third surface 203 of the insulating portion 20 and the shortest distance T2 from the side surface 12a of the tooth 12 to the second surface 202 of the insulating portion 20 satisfy T3>T2. Since the second surface 202 of the insulating portion 20 receives small stress during the winding process of the winding 30, the winding 30 can be densely arranged within the slot 14 by reducing the thickness of the portion including the second surface 202 of the insulating portion 20 (corresponding to the shortest distance T2).
  • the boundary between the first surface 201 and the third surface 203 of the insulating portion 20 is defined as point P
  • the boundary between the second surface 202 and the third surface 203 is defined as point Q
  • the intersection point U of a first straight line L1 that passes through point P and is parallel to the axial direction and a second straight line L2 that passes through point Q and is perpendicular to the axial direction is defined as point U
  • the axial height A of the step portion 12S, the width B of the step portion 12S in a direction perpendicular to the axial direction, the distance D1 from point P to the intersection point U, and the distance D2 from point Q to the intersection point U satisfy D1 ⁇ A and D2 ⁇ B.
  • point P of the insulating portion 20 does not face the end face 12e of the teeth 12, and point Q of the insulating portion 20 does not face the side surface 12a of the teeth 12. Therefore, even if the radius of curvature of the third surface 203 of the insulating part 20 is increased, there are no locally thin areas, and stress concentration on the insulating part 20 can be suppressed.
  • the height A and width B of the step portion 12S satisfy A ⁇ B, it is possible to suppress the winding 30 from expanding into the slot 14, thereby improving the arrangement density of the winding 30 within the slot 14.
  • the axial height A of the step portion 12S and the axial length L1 of the stator core 10 satisfy A/L1 ⁇ 0.141, which reduces copper loss in the windings 30 and suppresses increases in iron loss in the teeth 12.
  • Embodiment 2 Next, a description will be given of embodiment 2.
  • one intermediate step portion 12T is formed in step portion 12S of tooth 12.
  • two or more intermediate step portions 12T are formed in step portion 12S of tooth 12.
  • Figures 17(A) and (B) are diagrams for explaining the imaginary curved surface G.
  • Figure 17(B) shows a case where the height A and width B of the step portion 12S satisfy A>B.
  • one intermediate step portion 12T is provided in the step portion 12S, as in the first embodiment.
  • the imaginary curved surface G is a curved surface that is parallel to the third surface 203 of the insulating portion 20 and extends from the end surface 12e of the tooth 12 to the side surface 12a.
  • the distance between the imaginary curved surface G and the third surface 203 of the insulating portion 20 is the shortest distance T3 described above.
  • the cross-sectional area of the intermediate step portion 12T is maximum when the corner E of the intermediate step portion 12T coincides with the point V that bisects the imaginary curved surface G.
  • the cross-sectional area of the intermediate step portion 12T is maximum when the corner portion E of the intermediate step portion 12T is located closer to the end face 12e of the tooth 12 than the point V that bisects the imaginary curved surface G.
  • the cross-sectional area of the intermediate step portion 12T is maximum when the corner E of the intermediate step portion 12T is located closer to the side surface 12a of the tooth 12 than the point V that bisects the imaginary curved surface G.
  • the stator 1 of embodiment 2 has two or more intermediate step portions 12T in the step portion 12S of the teeth 12, and is configured so that the cross-sectional area of these is maximized.
  • FIG. 18 is a cross-sectional view showing the step portion 12S of the tooth 12 in embodiment 2.
  • the step portion 12S of the tooth 12 has a shape that satisfies A>B, and n (n is 2 or more) intermediate step portions 12T are provided in this step portion 12S.
  • n is 3.
  • the points obtained by dividing the imaginary curved surface G into (n+1) equal parts are designated as points V1, V2, ..., Vn, in order from the end face 12e side of the teeth 12.
  • points V1, V2, V3 are designated as points V1, V2, V3, in order from the end face 12e side of the teeth 12.
  • intermediate step portion 12T1 the cross-sectional area of the intermediate step portion 12T closest to the end face 12e of the tooth 12 (referred to as intermediate step portion 12T1 ) is the largest when the corner E1 of intermediate step portion 12T1 is located closer to the end face 12e of the tooth 12 than point V1.
  • the cross-sectional area of the intermediate step portion 12T (referred to as intermediate step portion 12T2 ) that is second closest to the end face 12e of the tooth 12 is the largest when the corner E2 of the intermediate step portion 12T2 is located closer to the end face 12e of the tooth 12 than point V2.
  • intermediate step portion 12T3 the cross-sectional area of the intermediate step portion 12T farthest from the end face 12e of the tooth 12 (referred to as intermediate step portion 12T3 ) is the largest when the corner E3 of intermediate step portion 12T3 is located closer to the end face 12e of the tooth 12 than point V2.
  • the amount of insulating portion 20 filling the step portion 12S of the teeth 12 can be reduced, and the cross-sectional area of the teeth 12 can be increased. In other words, magnetic saturation in the teeth 12 is less likely to occur, and iron loss can be reduced.
  • step portion 12S of the tooth 12 has a shape that satisfies A > B, but the step portion 12S may have a shape that satisfies A ⁇ B.
  • the corners E1 to En of the intermediate step portions 12T 1 to 12 n are located closer to the side surface 12 a of the tooth 12 than the points V1 to Vn obtained by equally dividing the imaginary curved surface G into (n+1).
  • the shortest distance between the intermediate step portions 12T 1 to 12 n of the teeth 12 and the third surface 203 of the insulating portion 20 is larger the closer it is to the first surface 201 (i.e., closer to the end surfaces 12e of the teeth 12) and smaller the closer it is to the second surface 202 (i.e., closer to the side surfaces 12a of the teeth 12).
  • the shortest distance T3 between the intermediate step portion 12T1 (also referred to as the first intermediate step portion) and the third surface 203 is set to be larger than the shortest distance T4 between the intermediate step portion 12T2 (also referred to as the second intermediate step portion) and the third surface 203.
  • the electric motor of the second embodiment is configured similarly to the electric motor 100 of the first embodiment.
  • the step portion 12S of the tooth 12 has a shape that satisfies A>B, and the corners E1 to En of the multiple intermediate step portions 12T 1 to 12 n formed in the step portion 12S are located closer to the end face 12e of the tooth 12 than the points V1 to Vn obtained by equally dividing the imaginary curved surface G into (n+1) parts.
  • This configuration allows the cross-sectional area of the teeth 12 to be increased, suppressing magnetic saturation in the teeth 12 and reducing iron loss.
  • Embodiment 3 Next, a description will be given of embodiment 3.
  • the step portions 12S are formed at both axial ends of the stator 1.
  • the step portion 12S is formed only at one axial end of the stator 1.
  • FIG. 20 is a diagram showing the relationship between the stator core 10 and rotor core 50 of the electric motor of embodiment 3.
  • the axial direction toward the compression mechanism 9 of the compressor 8 (FIG. 26) is shown as the -Z direction, and the opposite direction is shown as the +Z direction.
  • the +Z end face 50e of the rotor core 50 is located further in the +Z direction than the +Z end face 10e of the stator core 10.
  • the -Z end face 50e of the rotor core 50 is located further in the +Z direction than the -Z end face 10e of the stator core 10.
  • the rotor core 50 protrudes in the +Z direction from the stator core 10. That is, the axial center position of the rotor core 50 is displaced in the +Z direction from the axial center position of the stator core 10.
  • a magnetic attraction force acts between the stator core 10 and the rotor core 50 in a direction that brings the center positions of both closer together in the axial direction.
  • This magnetic attraction force urges the rotor 5 in the -Z direction, i.e., toward the compression mechanism 9, suppressing vibration of the rotor 5.
  • the +Z-direction end of the tooth 12 does not have a step portion 12S.
  • the -Z-direction end of the tooth 12 has a step portion 12S and also has an intermediate step portion 12T ( Figure 7).
  • the configuration of the step portion 12S and the intermediate step portion 12T is as described in the first embodiment.
  • the axial length of the step portion 12S of the teeth 12 is height A, as explained in the first embodiment.
  • the axial length of the area of the core region R1, which is at height A in the axial direction from the -Z end face 10e of the stator core 10, that faces the rotor core 50 is L1.
  • Core region R1 is also referred to as the first region, and core region R2 is also referred to as the second region.
  • the axial length of the core region R2, which is at height A in the axial direction from the end face 10e of the stator core 10 in the +Z direction, that faces the rotor core 50 is defined as L2.
  • the lengths L1, L2 of the facing region with the rotor core 50 satisfy L1 ⁇ L2.
  • the step portions 12S of the teeth 12 are formed on the side where the proportion of the facing region with the rotor core 50 in the core regions R1, R2 is smaller.
  • step portion 12S is provided in core region R2 of teeth 12, magnetic saturation is more likely to occur, and iron loss may increase.
  • the teeth 12 are provided with step portions 12S and intermediate step portions 12T only in the core region R1 where the inflow magnetic flux from the rotor core 50 is small.
  • the teeth 12 are provided with step portions 12S and intermediate step portions 12T only at the end of the stator core 10 in the -Z direction.
  • the step portions 11S of the core back 11 and the step portions 13S of the tooth tips 13 are also provided only at the end of the stator core 10 in the -Z direction.
  • the electric motor of the third embodiment is configured similarly to the electric motor 100 of the first embodiment.
  • the teeth 12 are provided with a step portion 12S and an intermediate step portion 12T at the end of the stator core 10 in the axial direction that faces the rotor core 50 in a smaller area when the axial length is the same. This makes it possible to reduce the circumferential length of the windings 30 and reduce copper loss while suppressing magnetic saturation in the teeth 12.
  • Variant examples. 21 is a diagram showing the relationship between stator core 10 and rotor core 50 in a modification of embodiment 3.
  • rotor core 50 protrudes from stator core 10 on both axial sides, i.e., in the +Z and ⁇ Z directions.
  • the amount of protrusion Z2 of rotor core 50 in the +Z direction is greater than the amount of protrusion Z1 in the ⁇ Z direction.
  • the rotor core 50 protrudes from the stator core 10 on both axial sides, thereby shortening the axial length of the stator core 10 and reducing the material costs of the stator core 10.
  • stator core 10 magnetic flux also flows into the stator core 10 from the protruding portion of the rotor core 50. Therefore, more magnetic flux from the rotor core 50 flows into the +Z end of the stator core 10 compared to the -Z end of the stator core 10.
  • the teeth 12 are provided with step portions 12S and intermediate step portions 12T only at the -Z direction end of the stator core 10 where the inflow of magnetic flux from the rotor core 50 is small.
  • the step portions 11S of the core back 11 and the step portions 13S of the tooth tips 13 are also provided only at the -Z direction end of the stator core 10.
  • Fig. 22 is a perspective view showing a split core 15 and an insulator 40 according to the fourth embodiment.
  • the insulator 40 is provided on the end face 10e of the split core 15, and an insulating film 70 (Fig. 23) is provided on the side face 12a of the tooth 12.
  • the shape of the teeth 12 of the split core 15 is as described in the first embodiment.
  • the core back 11 has a fitting hole 101 formed therein. It is preferable that the core back 11 of each split core 15 has two or more fitting holes 101. It is even more preferable that each fitting hole 101 is formed on the outer periphery of the core back 11.
  • two fitting holes 101 are formed on both circumferential sides of the teeth 12. More specifically, the fitting holes 101 are formed adjacent to the radially inner sides of the two notches 18b formed in the core back 11.
  • the insulator 40 is made of a resin such as polybutylene terephthalate (PBT) or liquid crystal polymer (LCP).
  • PBT polybutylene terephthalate
  • LCP liquid crystal polymer
  • the body portion 41 is provided on the end surface 12e of the tooth 12.
  • the body portion 41 also has an engagement portion 41a (FIG. 23) that engages with the step portion 12S of the tooth 12.
  • the body portion 41 has a first surface 401 facing the axial direction, a second surface 402 facing the slot 14, and a third surface 403 extending from the first surface 401 to the second surface 402.
  • the wall portion 42 is provided on the end surface 11e of the core back 11.
  • the wall portion 42 also has an engagement portion 42a that engages with the step portion 11S of the core back 11.
  • Two pins 44 are formed as fitting portions on the side of the wall portion 42 facing the core back 11. The pins 44 engage with fitting holes 101 formed in the core back 11.
  • the flange portion 43 is provided on the end face 13e of the tooth tip portion 13.
  • the flange portion 43 also has an engagement portion 43a that engages with the step portion 13S of the tooth tip portion 13.
  • the insulator 40 is fixed to the split core 15 by fitting the pin 44 of the wall portion 42 into the fitting hole 101 of the core back 11.
  • the winding 30 is wound around the body portion 41 of the insulator 40.
  • the wall portion 42 and the flange portion 43 guide the winding 30 wound around the body portion 41.
  • the insulator 40 Because force is applied to the insulator 40 when the winding 30 is wound, it is necessary to fix the insulator 40 to prevent it from shifting position relative to the split core 15. If sufficient fixing force is to be obtained only by the engagement between the engagement portion 41a of the insulator 40 and the step portion 12S of the tooth 12, the step portion 12S of the tooth 12 must be made larger, which reduces the cross-sectional area of the tooth 12.
  • the insulator 40 is provided with a pin 44 as a fitting portion.
  • the insulator 40 only has one pin 44, it is difficult to resist the force in the torsional direction of the insulator 40 (i.e., the force that tilts the extension direction of the body portion 41 relative to the extension direction of the teeth 12).
  • two pins 44 are provided on the insulator 40 (more specifically, the wall portion 42). This allows the insulator 40 to be fixed to the split core 15 with sufficient strength, and prevents misalignment when winding the winding 30.
  • the fitting holes 101 that fit onto the pins 44 of the insulator 40 are formed on the outer periphery of the core back 11.
  • the flow of magnetic flux is greater on the inner periphery closer to the slots 14. Therefore, if the fitting holes 101 are formed on the outer periphery of the core back 11, there is less effect on the flow of magnetic flux. Therefore, it is possible to suppress an increase in iron loss in the core back 11.
  • the fitting hole 101 is formed radially inside the notch 18b of the core back 11, but the notch 18b may be used as the fitting hole. Also, the notch 18b may be formed in another location on the outer periphery of the core back 11. However, since the protrusions 17a, 17b of the core back 11 are abutment parts that fit into the shell of the compressor, etc., it is preferable to form the fitting hole 101 somewhere other than these protrusions 17a, 17b.
  • FIG. 23 is a cross-sectional view of the teeth 12, insulator 40, and insulating film 70 of embodiment 4, taken along a plane perpendicular to the extension direction of the teeth 12.
  • the insulating film 70 is, for example, a film made of a resin such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the thickness of the insulating film 70 is, for example, 0.35 mm.
  • the insulating film 70 is provided so as to cover the inner peripheral surface 11a (FIG. 22) of the core back 11, the side surface 12a of the teeth 12, and the outer surface 13a (FIG. 22) of the tooth tip portion 13. In other words, the insulating film 70 is provided so as to cover the inner surface of the slot 14.
  • the insulating film 70 not only covers the side surface 12a of the tooth 12, but also extends to cover the second surface 402 of the insulator 40. In other words, the insulating film 70 protrudes further in the axial direction from the side surface 12a of the tooth 12.
  • the third surface 403 protrudes toward the slot 14 side more than the second surface 402.
  • the insulator 40 is formed with a canopy-shaped cover portion 405 that covers the end surface of the insulating film 70.
  • the insulating portion is made up of the insulator 40 and the insulating film 70, it is necessary to ensure an insulation distance from the teeth 12 to the windings 30.
  • the insulation distance is the shortest distance between conductors measured along the surface of the insulator, and is also called the creepage distance.
  • the amount of axial protrusion of the insulating film 70 from the bottom surface 12c of the step portion 12S is defined as H.
  • the amount of protrusion H of the insulating film 70 is set to be equal to or greater than the creepage distance from the teeth 12 to the windings 30.
  • the insulation distance is, for example, 2.5 mm.
  • the teeth 12 have step portions 12S, and a portion of the insulating film 70 extends along the second surface 402 of the insulator 40, so that the axial protrusion amount H of the insulating film 70 can be increased and an insulating distance can be ensured without increasing the size of the insulator 40. This allows the circumferential length of the winding 30 to be shortened, and copper loss to be reduced.
  • the electric motor of the fourth embodiment is configured similarly to the electric motor 100 of the first embodiment.
  • an insulator 40 is provided for each tooth 12, two or more pins 44 are provided as fitting portions on each insulator 40, and two or more fitting holes 101 into which the pins 44 fit are formed in the core back 11. Therefore, it is possible to suppress misalignment of the insulator 40 due to an external force acting when winding the winding 30.
  • fitting holes 101 are formed at locations on the outer periphery of the core back 11 other than the contact area with the shell, the effect of the fitting holes 101 on the magnetic flux inside the core back 11 can be reduced.
  • an insulating film 70 is provided to cover the side surface 12a of the teeth 12, so the insulator 40 and the insulating film 70 can insulate the winding 30 from the stator core 10.
  • the insulating film 70 extends to cover not only the side surface 12a of the teeth 12 but also a portion of the insulator 40 (more specifically, the second surface 402), a sufficient insulating distance can be ensured without increasing the size of the insulator 40.
  • Fig. 24 is a cross-sectional view showing a tooth 12, an insulator 40, and an insulating film 70 according to a modification of the fourth embodiment. Fig. 24 also shows a winding 30 wound around the tooth 12.
  • the width W4 of the axial center portion 125 of the tooth 12 is wider than the width of the other portions of the tooth 12 (i.e., the widths W1, W2, and W3 described in embodiment 1).
  • the insulating film 70 is flexible, so it can be curved and positioned along the side of the central portion 125 of the tooth 12 and along the side surfaces 12a on both axial sides of the central portion 125.
  • the gap between the side surface 12a of the teeth 12 and the winding 30 can be minimized by suppressing the winding bulge of the winding 30.
  • a small gap may occur between the side surface 12a of the teeth 12 and the winding 30 in the axial center of the teeth 12.
  • the width W4 of the axial center portion 125 of the teeth 12 is made wider than the width T1 of the other portions of the teeth 12, taking into account the amount of swelling of the windings 30. This makes it possible to increase the cross-sectional area of the teeth 12 by utilizing the space created by the swelling of the windings 30. This makes it possible to suppress magnetic saturation in the teeth 12 and reduce iron loss.
  • the third surface 203 (403) of the insulating portion 20 (40) is a curved surface.
  • the third surface 203 (403) of the insulating portion 20 (40) is not limited to a curved surface, and may be formed of at least one inclined surface.
  • the insulating portion 20 shown in FIG. 25 has a first surface 201 facing the end surface 12e of the tooth 12, a second surface 202 facing the side surface 12a of the tooth 12, and a third surface 205 extending from the first surface 201 to the second surface 202.
  • the third surface 205 is formed by a combination of a first inclined surface 211 and a second inclined surface 212.
  • connection between the first inclined surface 211 and the second inclined surface 212 faces the corner E of the intermediate step portion 12T.
  • the inclined surface refers to a plane that is inclined with respect to the end surface 12e and the side surface 12a of the tooth 12.
  • FIG. 25 shows the third surface 205 formed by two inclined surfaces, but the third surface 205 may be formed by a single inclined surface or a combination of three or more inclined surfaces.
  • Embodiments 1 to 4 and the various modifications can be combined as appropriate.
  • a step 12S provided at only one axial end of a tooth 12 may be provided with two or more intermediate steps 12T as described in embodiment 2.
  • a tooth 12 having two or more intermediate steps 12T provided at a step 12S as described in embodiment 2 may be combined with an insulator 40 and insulating film 70 as described in embodiment 4.
  • Fig. 26 is a cross-sectional view showing the configuration of the compressor 8.
  • the compressor 8 is a rotary compressor here, and has a shell 80, a compression mechanism 9 disposed in the shell 80, an electric motor 100 that drives the compression mechanism 9, and a shaft 90 that connects the electric motor 100 and the compression mechanism 9 so as to be capable of transmitting power.
  • the shaft 90 is the shaft 90 shown in Fig. 1 etc., and is fitted into the central hole 53 of the rotor 5 of the electric motor 100.
  • the shell 80 is a sealed container made of, for example, steel plate, and covers the electric motor 100 and the compression mechanism 9.
  • the shell 80 has an upper shell 80a and a lower shell 80b.
  • the upper shell 80a is fitted with a glass terminal 81 as a terminal part for supplying power to the electric motor 100 from outside the compressor 8, and a discharge pipe 85 for discharging the refrigerant compressed in the compressor 8 to the outside.
  • the lower shell 80b houses the electric motor 100 and the compression mechanism 9.
  • the compression mechanism 9 has an annular first cylinder 91 and a second cylinder 92 along the shaft 90.
  • the first cylinder 91 and the second cylinder 92 are fixed to the inner periphery of the lower shell 80b.
  • An annular first piston 93 is disposed on the inner periphery of the first cylinder 91
  • an annular second piston 94 is disposed on the inner periphery of the second cylinder 92.
  • the first piston 93 and the second piston 94 are rotary pistons that rotate together with the shaft 90.
  • a partition plate 97 is provided between the first cylinder 91 and the second cylinder 92.
  • the partition plate 97 is a disk-shaped member with a through hole in the center.
  • the cylinder chambers of the first cylinder 91 and the second cylinder 92 are provided with vanes (not shown) that divide the cylinder chambers into an intake side and a compression side.
  • the first cylinder 91, the second cylinder 92, and the partition plate 97 are fixed together by bolts 98.
  • An upper frame 95 is disposed above the first cylinder 91 so as to close the upper side of the cylinder chamber of the first cylinder 91.
  • a lower frame 96 is disposed below the second cylinder 92 so as to close the lower side of the cylinder chamber of the second cylinder 92.
  • the upper frame 95 and the lower frame 96 rotatably support the shaft 90.
  • Refrigeration oil (not shown) that lubricates each sliding part of the compression mechanism 9 is stored in the bottom of the lower shell 80b of the shell 80.
  • the refrigeration oil rises through a hole 90a formed in the axial direction inside the shaft 90, and is supplied to each sliding part from oil supply holes 90b formed in multiple places on the shaft 90.
  • the stator 1 of the electric motor 100 is attached to the inside of the shell 80 by shrink fitting. Electricity is supplied to the windings 30 of the stator 1 from glass terminals 81 attached to the upper shell 80a. A shaft 90 is fixed in the central hole 53 of the rotor 5 ( Figure 1).
  • An accumulator 87 that stores refrigerant gas is attached to the shell 80.
  • the accumulator 87 is held, for example, by a holding portion 80c provided on the outside of the lower shell 80b.
  • a pair of suction pipes 88, 89 are attached to the shell 80, and refrigerant gas is supplied from the accumulator 87 to the cylinders 91, 92 via the suction pipes 88, 89.
  • refrigerant for example, R410A, R407C, or R22, etc. may be used, but from the perspective of preventing global warming, it is desirable to use a refrigerant with a low GWP (global warming potential).
  • GWP global warming potential
  • the following refrigerants can be used as low GWP refrigerants.
  • a halogenated hydrocarbon having a carbon double bond in its composition such as HFO (Hydro-Fluoro-Orefin)-1234yf (CF 3 CF ⁇ CH 2 ), can be used.
  • the GWP of HFO-1234yf is 4.
  • Hydrocarbons having carbon double bonds in their composition such as R1270 (propylene), may also be used.
  • R1270 has a GWP of 3, which is lower than HFO-1234yf, but is more flammable than HFO-1234yf.
  • a mixture containing at least one of a halogenated hydrocarbon having a carbon-carbon double bond in its composition or a hydrocarbon having a carbon-carbon double bond in its composition for example, a mixture of HFO-1234yf and R32 may be used.
  • the above-mentioned HFO-1234yf is a low-pressure refrigerant and tends to cause large pressure loss, which may lead to a decrease in the performance of the refrigeration cycle (especially the evaporator). For this reason, it is practically preferable to use a mixture of HFO-1234yf and R32 or R41, which are refrigerants with a higher pressure than HFO-1234yf.
  • the basic operation of the compressor 8 is as follows. Refrigerant gas supplied from the accumulator 87 is supplied to each cylinder chamber of the first cylinder 91 and the second cylinder 92 through the suction pipes 88, 89.
  • the shaft 90 rotates together with the rotor 5.
  • the first piston 93 and the second piston 94 fitted to the shaft 90 rotate eccentrically in each cylinder chamber, compressing the refrigerant in each cylinder chamber.
  • the compressed refrigerant passes through the holes 57, 58 of the rotor 5 ( Figure 1), rises inside the shell 80, and is discharged to the outside from the discharge pipe 85.
  • the compressor in which the electric motor 100 is used is not limited to a rotary compressor, but may be, for example, a scroll compressor.
  • the electric motor 100 of each embodiment has high motor efficiency due to reduced copper loss and iron loss. This improves the operating efficiency of the compressor 8. In addition, the manufacturing cost of the electric motor 100 is reduced by suppressing the swelling of the windings 30, and therefore the manufacturing cost of the compressor 8 can also be reduced.
  • a refrigeration cycle apparatus 300 having the compressor 8 shown in Fig. 26 will be described.
  • Fig. 27 is a diagram showing the refrigeration cycle apparatus 300.
  • the refrigeration cycle apparatus 300 is, for example, an air conditioner, but is not limited thereto and may be, for example, a refrigerator.
  • the refrigeration cycle device 300 shown in FIG. 27 includes a compressor 301, a condenser 302 that condenses the refrigerant, a pressure reducing device 303 that reduces the pressure of the refrigerant, and an evaporator 304 that evaporates the refrigerant.
  • the compressor 301, the condenser 302, and the pressure reducing device 303 are provided in the outdoor unit 310, and the evaporator 304 is provided in the indoor unit 320.
  • Compressor 301 condenser 302, pressure reducing device 303, and evaporator 304 are connected by refrigerant piping 307 to form a refrigerant circuit.
  • Compressor 301 is composed of compressor 8 shown in FIG. 26.
  • Refrigeration cycle device 300 also includes outdoor blower 305 facing condenser 302, and indoor blower 306 facing evaporator 304.
  • the operation of the refrigeration cycle device 300 is as follows.
  • the compressor 301 compresses the sucked refrigerant and sends it out as high-temperature, high-pressure refrigerant gas.
  • the condenser 302 exchanges heat between the refrigerant sent out from the compressor 301 and the outdoor air sent by the outdoor blower 305, condenses the refrigerant, and sends it out as liquid refrigerant.
  • the pressure reducing device 303 expands the liquid refrigerant sent out from the condenser 302, and sends it out as low-temperature, low-pressure liquid refrigerant.
  • the evaporator 304 exchanges heat between the low-temperature, low-pressure liquid refrigerant sent from the pressure reducing device 303 and the indoor air, evaporating the refrigerant and sending it out as refrigerant gas.
  • the air from which the heat has been removed by the evaporator 304 is supplied to the room by the indoor blower 306.
  • the electric motor 100 described in each embodiment can be applied to the compressor 301 of the refrigeration cycle device 300, so the operating efficiency of the refrigeration cycle device 300 can be improved.
  • stator 5 rotor, 8 compressor, 9 compression mechanism, 10 stator core, 10e end face, 11 core back, 11S step portion, 11T intermediate stage portion, 12 teeth, 12E elliptical arc, 12S step portion, 12T intermediate stage portion, 12T1 intermediate stage portion (first intermediate stage portion), 12T2 intermediate stage portion (second intermediate stage portion), 12T3 intermediate stage portion, 12a Side, 12b wall, 12c bottom, 12e end, 13 tooth tip, 13S step, 13T intermediate step, 14 slot, 15 split core, 17a, 17b convex (contact portion), 18a groove, 18b notch, 20 insulating portion, 21 body, 22 wall, 23 flange, 30 winding, 40 insulator, 41 body, 42 wall , 43 flange portion, 44 pin (fitting portion), 50 rotor core, 50e end face, 51 magnet insertion hole, 52 flux barrier, 53 center hole, 60 permanent magnet, 70 insulating film, 80 shell, 90 shaft, 100 electric motor, 101 fitting hole, 121 first surface of intermediate stage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This stator core has an annular core back, teeth extending from the core back to the radially inner side, and slots adjacent to the tooth in the circumferential direction. A winding is wound around the tooth with an insulating portion interposed therebetween. The tooth has an end surface that defines an end portion of the tooth in the axial direction, side surfaces that face the slots, stepped portions each formed between the end surface and the side surface, and an intermediate stepped portion formed in each stepped portion. When the dimension of the tooth in the direction orthogonal to both the axial direction and the extending direction of the tooth is defined as the width, the tooth has widths W1, W2, W3 depending on positions in the axial direction and W1>W2>W3 is satisfied. The insulating portion has a first surface that covers the end surface of the tooth, a second surface that faces the slots, and a third surface that is a curved surface or a sloped surface that extends from the first surface to the second surface. The minimum distance T1 from the end surface of the tooth to the first surface of the insulating portion and the minimum distance T3 from the intermediate stepped portion to the third surface of the insulating portion satisfy T1>T3.

Description

ステータ、電動機、圧縮機および冷凍サイクル装置Stator, motor, compressor and refrigeration cycle device
 本開示は、ステータ、電動機、圧縮機および冷凍サイクル装置に関する。 This disclosure relates to a stator, an electric motor, a compressor, and a refrigeration cycle device.
 電動機のステータは、ティースを有するステータコアと、ティースに巻かれた巻線と、ティースと巻線との間に介在する絶縁部とを有する。巻線の周長を短くして銅損を低減するためには、巻線の巻き膨らみを少なくすることが望ましい。そこで、ティースの軸方向端部に段差部を設けることが提案されている(例えば、特許文献1)。 The stator of an electric motor has a stator core with teeth, windings wound around the teeth, and insulating parts interposed between the teeth and the windings. In order to shorten the circumferential length of the windings and reduce copper loss, it is desirable to reduce the swelling of the windings. Therefore, it has been proposed to provide a step part at the axial end of the teeth (for example, Patent Document 1).
特開2011-112205号公報(要約参照)JP 2011-112205 A (see Abstract)
 しかしながら、ティースに段差部を設けると、ティースの断面積が局所的に小さくなる。そのため、ティース内で磁気飽和が生じ、鉄損が増加する可能性がある。 However, providing a step on the teeth locally reduces the cross-sectional area of the teeth. This can cause magnetic saturation within the teeth, increasing iron loss.
 本開示は、上記の課題を解決するためになされたものであり、巻線の周長を短くし、且つ鉄損の増加を抑制することを目的とする。 This disclosure has been made to solve the above problems, and aims to shorten the perimeter of the winding and suppress the increase in iron loss.
 本開示によるステータは、環状のコアバックと、コアバックからその径方向の内側に延在するティースと、コアバックの周方向においてティースに隣接するスロットとを有するステータコアと、ティースに設けられた絶縁部と、ティースに絶縁部を介して巻かれた巻線とを有する。ティースは、ステータコアの軸方向においてティースの端部を規定する端面と、スロットに面する側面と、端面と側面との間に形成された段差部と、段差部に形成された中間段部とを有する。軸方向およびティースの延在方向の両方に直交する方向におけるティースの寸法を幅と定義すると、ティースは、軸方向における位置によって幅W1,W2,W3を有し、W1>W2>W3が成立する。絶縁部は、ティースの端面を覆う第1の面と、スロットに面する第2の面と、第1の面から第2の面まで延在する湾曲面または傾斜面である第3の面とを有する。ティースの端面から絶縁部の第1の面までの最短距離T1と、中間段部から絶縁部の第3の面までの最短距離T3とは、T1>T3を満足する。 The stator according to the present disclosure has a stator core having an annular core back, teeth extending radially inward from the core back, and slots adjacent to the teeth in the circumferential direction of the core back, an insulating portion provided on the teeth, and a winding wound around the teeth via the insulating portion. The teeth have end faces that define the ends of the teeth in the axial direction of the stator core, side faces the slot, a step portion formed between the end face and the side face, and an intermediate step portion formed in the step portion. If the dimension of the teeth in a direction perpendicular to both the axial direction and the extension direction of the teeth is defined as the width, the teeth have widths W1, W2, and W3 depending on the position in the axial direction, and W1>W2>W3 holds. The insulating portion has a first surface that covers the end face of the teeth, a second surface that faces the slot, and a third surface that is a curved surface or an inclined surface extending from the first surface to the second surface. The shortest distance T1 from the end face of the tooth to the first surface of the insulating portion and the shortest distance T3 from the intermediate step to the third surface of the insulating portion satisfy T1>T3.
 本開示では、ティースの段差部に中間段部が設けられており、また、上記T1>T3の関係により絶縁部の強度が確保されるため、巻線の巻き膨らみを抑えながら、ティースの断面積を大きくすることができる。そのため、巻線の周長を短くし、且つ鉄損の増加を抑制することができる。 In the present disclosure, an intermediate step is provided at the step portion of the teeth, and the strength of the insulating portion is ensured by the above-mentioned relationship T1>T3, so the cross-sectional area of the teeth can be increased while suppressing the swelling of the winding. This makes it possible to shorten the circumference of the winding and suppress the increase in iron loss.
実施の形態1の電動機を示す断面図である。1 is a cross-sectional view showing an electric motor according to a first embodiment of the present invention; 実施の形態1のステータコアとロータコアとの軸方向の位置関係を示す図である。2 is a diagram showing the axial positional relationship between a stator core and a rotor core in the first embodiment. FIG. 実施の形態1のステータコアを示す平面図である。FIG. 2 is a plan view showing the stator core of the first embodiment. 実施の形態1の分割コアを示す斜視図である。FIG. 2 is a perspective view showing a split core according to the first embodiment. 実施の形態1の分割コアおよび絶縁部を示す斜視図である。2 is a perspective view showing a split core and an insulating portion according to the first embodiment. FIG. 実施の形態1のティースおよび絶縁部を示す断面図である。4 is a cross-sectional view showing a tooth and an insulating portion according to the first embodiment. FIG. 実施の形態1のティースの段差部を含む部分を拡大して示す断面図である。4 is an enlarged cross-sectional view showing a portion including a step portion of the tooth according to the first embodiment. FIG. 比較例1のティースおよび絶縁部を示す断面図(A)、比較例2のティースおよび絶縁部を示す断面図(B)、および比較例3のティースおよび絶縁部を示す断面図(C)である。4A is a cross-sectional view showing the teeth and insulating portion of Comparative Example 1, FIG. 4B is a cross-sectional view showing the teeth and insulating portion of Comparative Example 2, and FIG. 4C is a cross-sectional view showing the teeth and insulating portion of Comparative Example 3. 比較例3のティースの段差部を含む部分を拡大して示す図である。13 is an enlarged view showing a portion including a step portion of a tooth of Comparative Example 3. FIG. 実施の形態1の作用を説明するための断面図である。4 is a cross-sectional view for explaining the operation of the first embodiment. FIG. 実施の形態1のティースの段差部を含む各部の寸法を示す断面図である。4 is a cross-sectional view showing dimensions of each part including a step part of the tooth of the first embodiment. FIG. 実施の形態1のティースの段差部の形状の例を示す図(A)~(E)である。5A to 5E show examples of shapes of step portions of teeth according to the first embodiment. 実施の形態1のティースの段差部の形状と巻線の巻き膨らみ状態との関係を示す図(A),(B)である。5A and 5B are diagrams showing the relationship between the shape of the step portion of the teeth and the winding bulge state of the winding in the first embodiment. 比較例3における段差部の高さAとティースの長さL1との比A/L1と、損失との関係を示すグラフである。13 is a graph showing the relationship between loss and the ratio A/L1 of the height A of the step portion to the length L1 of the teeth in Comparative Example 3. 実施の形態1における段差部の高さAとティースの長さL1との比A/L1と、損失との関係を示すグラフである。11 is a graph showing the relationship between loss and a ratio A/L1 of a height A of a step portion to a length L1 of a tooth in the first embodiment. 実施の形態1の数値解析におけるティースの段差部および中間段部の形状の例を示す図(A),(B)である。5A and 5B show examples of the shapes of step portions and intermediate step portions of teeth in a numerical analysis of the first embodiment. 中間段部の断面積を最大化した場合を示す断面図(A),(B)である。13A and 13B are cross-sectional views showing a case in which the cross-sectional area of the intermediate step portion is maximized. 実施の形態2のティースの段差部を含む部分を示す断面図である。11 is a cross-sectional view showing a portion including a step portion of a tooth according to a second embodiment. FIG. 実施の形態2のティースの段差部および中間段部の形状を示す断面図である。13 is a cross-sectional view showing the shape of a step portion and an intermediate step portion of a tooth according to a second embodiment. FIG. 実施の形態3のステータコアとロータコアとの軸方向の位置関係を示す図である。13 is a diagram showing the axial positional relationship between a stator core and a rotor core in a third embodiment. FIG. 実施の形態3の変形例のステータコアとロータコアとの軸方向の位置関係を示す図である。13 is a diagram showing the axial positional relationship between a stator core and a rotor core in a modified example of the third embodiment. FIG. 実施の形態4の分割コアおよびインシュレータを示す斜視図である。FIG. 13 is a perspective view showing a split core and an insulator according to a fourth embodiment. 実施の形態4のティース、インシュレータおよび絶縁フィルムを示す断面図である。A cross-sectional view showing the teeth, insulator, and insulating film of embodiment 4. 実施の形態4の変形例のティース、インシュレータ、絶縁フィルムおよび巻線を示す断面図である。A cross-sectional view showing a tooth, an insulator, an insulating film, and a winding in a modified example of the fourth embodiment. 各実施の形態の変形例のティースの段差部を含む部分を示す断面図である。13A to 13C are cross-sectional views showing a portion including a step portion of a tooth in modified examples of each embodiment. 各実施の形態の電動機が適用可能な圧縮機を示す縦断面図である。FIG. 2 is a vertical sectional view showing a compressor to which the electric motor of each embodiment can be applied. 図26の圧縮機が適用可能な冷凍サイクル装置を示す図である。FIG. 27 is a diagram showing a refrigeration cycle device to which the compressor of FIG. 26 can be applied.
実施の形態1.
<電動機の構成>
 まず、実施の形態1について説明する。図1は、実施の形態1の電動機100を示す断面図である。図1に示す電動機100は、永久磁石埋込型電動機であり、例えば圧縮機8(図26)に用いられる。
Embodiment 1.
<Motor configuration>
First, a description will be given of embodiment 1. Fig. 1 is a cross-sectional view showing an electric motor 100 according to embodiment 1. The electric motor 100 shown in Fig. 1 is an embedded permanent magnet electric motor, and is used in, for example, a compressor 8 (Fig. 26).
 電動機100は、回転軸であるシャフト90を有するロータ5と、ロータ5を囲むように設けられたステータ1とを有する。ステータ1とロータ5との間には、例えば0.3~1.0mmのエアギャップが設けられている。ステータ1は、後述する圧縮機8(図26)の円筒状のシェル80の内側に組み込まれている。 The electric motor 100 has a rotor 5 having a shaft 90 which is a rotating shaft, and a stator 1 arranged to surround the rotor 5. An air gap of, for example, 0.3 to 1.0 mm is provided between the stator 1 and the rotor 5. The stator 1 is incorporated inside the cylindrical shell 80 of the compressor 8 (Figure 26) which will be described later.
 以下では、ロータ5の回転中心である軸線Axの方向を「軸方向」とする。軸線Axを中心とする径方向を「径方向」とする。軸線Axを中心とする周方向を「周方向」とする。 In the following, the direction of the axis Ax, which is the center of rotation of the rotor 5, is referred to as the "axial direction". The radial direction centered on the axis Ax is referred to as the "radial direction". The circumferential direction centered on the axis Ax is referred to as the "circumferential direction".
<ロータの構成>
 ロータ5は、軸線Axを中心とする円筒状のロータコア50と、ロータコア50に取り付けられた永久磁石60とを有する。ロータコア50は、複数の電磁鋼板を軸方向に積層し、カシメ等により固定したものである。電磁鋼板の板厚は、0.1~0.7mmである。
<Rotor configuration>
The rotor 5 has a cylindrical rotor core 50 centered on the axis Ax, and a permanent magnet 60 attached to the rotor core 50. The rotor core 50 is made by stacking a plurality of electromagnetic steel plates in the axial direction and fixing them by caulking, etc. The thickness of the electromagnetic steel plates is 0.1 to 0.7 mm.
 ロータコア50の径方向中心には中心孔53が形成されている。ロータコア50の中心孔53には、上記のシャフト90が、焼嵌め、圧入または接着等により固定されている。ロータコア50は、軸線Axを中心とする円周状の外周を有する。 A central hole 53 is formed in the radial center of the rotor core 50. The shaft 90 is fixed in the central hole 53 of the rotor core 50 by shrink fitting, press fitting, adhesive, or the like. The rotor core 50 has a circular outer periphery centered on the axis Ax.
 ロータコア50の外周に沿って、複数の磁石挿入孔51が形成されている。1つの磁石挿入孔51は、1磁極に相当する。磁石挿入孔51の周方向中心は、極中心に相当する。隣り合う磁石挿入孔51の間には、極間部が規定される。磁石挿入孔51の数は、ここでは6である。言い換えると、極数は6である。但し、極数は6に限定されるものではなく、2以上であればよい。 A number of magnet insertion holes 51 are formed along the outer periphery of the rotor core 50. One magnet insertion hole 51 corresponds to one magnetic pole. The circumferential center of the magnet insertion hole 51 corresponds to the pole center. An inter-pole portion is defined between adjacent magnet insertion holes 51. The number of magnet insertion holes 51 is six here. In other words, the number of poles is six. However, the number of poles is not limited to six, and may be two or more.
 磁石挿入孔51は、磁石挿入孔51の周方向の中心を通る直線に直交する方向に、直線状に延在している。但し、磁石挿入孔51はこのような形状には限定されず、例えばV字状に延在していてもよい。 The magnet insertion hole 51 extends linearly in a direction perpendicular to a line passing through the circumferential center of the magnet insertion hole 51. However, the magnet insertion hole 51 is not limited to this shape, and may extend, for example, in a V-shape.
 各磁石挿入孔51には、1つの永久磁石60が配置されている。永久磁石60は、平板状であり、ロータコア50の周方向に幅を有し、径方向に厚さを有する。各永久磁石60は、厚さ方向に着磁されている。 One permanent magnet 60 is placed in each magnet insertion hole 51. The permanent magnet 60 is flat and has a width in the circumferential direction of the rotor core 50 and a thickness in the radial direction. Each permanent magnet 60 is magnetized in the thickness direction.
 永久磁石60は、例えば、希土類磁石で構成される。希土類磁石は、例えば、ネオジウム(Nd)、鉄(Fe)およびボロン(B)を含有するネオジム磁石である。なお、各磁石挿入孔51に2つ以上の永久磁石60を配置してもよい。 The permanent magnets 60 are, for example, rare earth magnets. The rare earth magnets are, for example, neodymium magnets containing neodymium (Nd), iron (Fe) and boron (B). Two or more permanent magnets 60 may be placed in each magnet insertion hole 51.
 ロータコア50において、磁石挿入孔51の周方向両端には、穴部であるフラックスバリア52が形成されている。各フラックスバリア52とロータコア50の外周との間には、薄肉部が形成される。薄肉部の径方向の幅は、例えば、電磁鋼板の板厚と同じに設定される。 In the rotor core 50, flux barriers 52, which are holes, are formed at both circumferential ends of the magnet insertion holes 51. A thin-walled portion is formed between each flux barrier 52 and the outer periphery of the rotor core 50. The radial width of the thin-walled portion is set to be the same as the plate thickness of the electromagnetic steel plate, for example.
 磁石挿入孔51とロータコア50の外周との間には、スリット54が形成されている。スリット54は、永久磁石60から出た磁束の流れを整えるために形成される。ここでは7つのスリット54が、磁石挿入孔51の周方向中心に対して対称に形成されている。但し、スリット54の数および配置はここで説明した例には限定されない。また、ロータコア50は必ずしもスリット54を有さなくてもよい。 Slits 54 are formed between the magnet insertion holes 51 and the outer periphery of the rotor core 50. The slits 54 are formed to regulate the flow of magnetic flux emitted from the permanent magnets 60. Here, seven slits 54 are formed symmetrically with respect to the circumferential center of the magnet insertion holes 51. However, the number and arrangement of the slits 54 are not limited to the example described here. In addition, the rotor core 50 does not necessarily have to have slits 54.
 ロータコア50において、磁石挿入孔51よりも径方向内側には、穴部57,58が形成されている。穴部57,58は、冷媒を通過させる風穴または治具を挿通する穴として用いられる。穴部57,58はいずれも、極数と同数だけ形成されている。各穴部57の周方向位置は、磁石挿入孔51の周方向中心と一致している。各穴部58の周方向位置は、極間部と一致している。但し、穴部57,58の数および配置はここで説明した例には限定されない。また、ロータコア50は必ずしも穴部57,58を有さなくてもよい。 In the rotor core 50, holes 57, 58 are formed radially inward from the magnet insertion hole 51. The holes 57, 58 are used as vents to allow refrigerant to pass through or as holes for inserting jigs. The same number of holes 57, 58 are formed as the number of poles. The circumferential position of each hole 57 coincides with the circumferential center of the magnet insertion hole 51. The circumferential position of each hole 58 coincides with the inter-pole portion. However, the number and arrangement of the holes 57, 58 are not limited to the example described here. Furthermore, the rotor core 50 does not necessarily have to have the holes 57, 58.
 また、各穴部58の径方向外側には、ロータコア50の電磁鋼板を固定するカシメ部56が形成されている。但し、カシメ部56の配置はここで説明した例には限定されない。また、ロータコア50の電磁鋼板は、カシメ以外の方法で固定されていてもよい。 Furthermore, a crimping portion 56 for fixing the electromagnetic steel plate of the rotor core 50 is formed on the radial outside of each hole portion 58. However, the arrangement of the crimping portion 56 is not limited to the example described here. Furthermore, the electromagnetic steel plate of the rotor core 50 may be fixed by a method other than crimping.
<ステータの構成>
 ステータ1は、ロータコア50を径方向外側から囲むステータコア10と、ステータコア10に巻き付けられた巻線30とを有する。ステータコア10は、複数の電磁鋼板を軸方向に積層し、カシメ等により固定したものである。電磁鋼板の板厚は、0.1~0.7mmである。
<Stator Configuration>
The stator 1 has a stator core 10 that surrounds the rotor core 50 from the radial outside, and a winding 30 wound around the stator core 10. The stator core 10 is made by stacking a plurality of electromagnetic steel plates in the axial direction and fixing them by crimping, etc. The thickness of the electromagnetic steel plates is 0.1 to 0.7 mm.
 ステータコア10は、軸線Axを中心とする環状のコアバック11と、コアバック11から径方向内側に延在する複数のティース12とを有する。ティース12は、周方向に一定間隔で配置されている。ティース12の数は、ここでは9である。但し、ティース12の数は9に限定されるものではなく、2以上であればよい。周方向に隣り合うティース12の間には、スロット14が形成される。スロット14の数は、ティース12の数と同じ9である。 The stator core 10 has an annular core back 11 centered on the axis Ax, and a number of teeth 12 extending radially inward from the core back 11. The teeth 12 are arranged at regular intervals in the circumferential direction. Here, the number of teeth 12 is nine. However, the number of teeth 12 is not limited to nine, and may be two or more. Slots 14 are formed between adjacent teeth 12 in the circumferential direction. The number of slots 14 is nine, the same as the number of teeth 12.
 巻線30は、マグネットワイヤで構成されており、各ティース12に集中巻きで巻かれている。マグネットワイヤの外径すなわち線径は、例えば1.0mmである。1つのティース12への巻線30の巻き数は、例えば80ターンである。 The winding 30 is made of magnet wire and is wound around each tooth 12 in a concentrated manner. The outer diameter, i.e., wire diameter, of the magnet wire is, for example, 1.0 mm. The number of turns of the winding 30 around one tooth 12 is, for example, 80 turns.
 巻線30は、アルミニウム線または銅線で構成されている。アルミニウム線は、銅線よりも柔らかく、ティース12に密に巻き付けることができるため、特に望ましい。また、アルミニウム線は、銅線よりも安価であるため、製造コストの低減に有利である。 The windings 30 are made of aluminum wire or copper wire. Aluminum wire is particularly desirable because it is softer than copper wire and can be tightly wound around the teeth 12. Aluminum wire is also less expensive than copper wire, which is advantageous in reducing manufacturing costs.
 図2は、ステータコア10とロータコア50との軸方向の位置関係を示す図である。図2に示すように、ステータコア10とロータコア50とは、軸方向において同じ位置にある。すなわち、ステータコア10の軸方向の両端面10eは、ロータコア50の軸方向の両端面50eとそれぞれ同じ軸方向位置にある。 Figure 2 is a diagram showing the axial positional relationship between the stator core 10 and the rotor core 50. As shown in Figure 2, the stator core 10 and the rotor core 50 are at the same axial position. That is, both axial end faces 10e of the stator core 10 are at the same axial position as both axial end faces 50e of the rotor core 50.
 なお、ステータコア10とロータコア50との軸方向の位置関係は、図2に示した例に限らず、ステータコア10の軸方向の中心位置とロータコア50の軸方向の中心位置とが一致していればよい。また、ステータコア10の軸方向の中心位置とロータコア50の軸方向の中心位置とが一致しなくてもよいが、これについては実施の形態3で説明する。 The axial positional relationship between the stator core 10 and the rotor core 50 is not limited to the example shown in FIG. 2, as long as the axial center position of the stator core 10 and the axial center position of the rotor core 50 coincide. Also, the axial center position of the stator core 10 and the axial center position of the rotor core 50 do not have to coincide, but this will be explained in embodiment 3.
 図3は、ステータコア10を示す平面図である。コアバック11は、内周面11aと外周面とを有する。コアバック11の内周面11aは、スロット14に面している。コアバック11の外周面は、圧縮機8(図26)のシェル80に嵌合する。 FIG. 3 is a plan view showing the stator core 10. The core back 11 has an inner peripheral surface 11a and an outer peripheral surface. The inner peripheral surface 11a of the core back 11 faces the slots 14. The outer peripheral surface of the core back 11 fits into the shell 80 of the compressor 8 (FIG. 26).
 コアバック11の外周面のうち、ティース12の径方向外側に位置する部分には、溝部18aが形成されている。溝部18aの周方向両側には、凸部17aが形成されている。また、溝部18aとの間で凸部17aを周方向に挟み込む位置に、切欠き18bが形成されている。凸部17aとの間で切欠き18bを周方向に挟み込む位置に、凸部17bが形成されている。 A groove 18a is formed in the outer peripheral surface of the core back 11 in a portion located radially outward of the teeth 12. A protrusion 17a is formed on both circumferential sides of the groove 18a. A notch 18b is formed at a position where the protrusion 17a is sandwiched circumferentially between the groove 18a and the notch 18b. A protrusion 17b is formed at a position where the notch 18b is sandwiched circumferentially between the protrusion 17a and the notch 18b.
 凸部17a,17bの外周面は、コアバック11の外周面の一部をなしており、圧縮機8(図26)のシェル80の内周面に嵌合する。溝部18aは軸方向に延在する溝であり、圧縮機8における冷媒通路として機能する。切欠き18bは、コアバック11が圧縮機8(図26)のシェル80から受ける応力を緩和するために設けられている。 The outer peripheral surfaces of the protrusions 17a and 17b form part of the outer peripheral surface of the core back 11 and fit into the inner peripheral surface of the shell 80 of the compressor 8 (Fig. 26). The groove 18a is a groove that extends in the axial direction and functions as a refrigerant passage in the compressor 8. The notch 18b is provided to relieve the stress that the core back 11 receives from the shell 80 of the compressor 8 (Fig. 26).
 ティース12は、上記の通り、コアバック11から径方向内側に延在している。各ティース12の周方向中心を通る径方向の直線を、ティース中心線Tと称する。ティース12は、その周方向の両側に一対の側面12aを有する。ティース12の側面12aは、スロット14に面している。 As described above, the teeth 12 extend radially inward from the core back 11. A radial line passing through the circumferential center of each tooth 12 is called the teeth centerline T. The teeth 12 have a pair of side surfaces 12a on both circumferential sides. The side surfaces 12a of the teeth 12 face the slots 14.
 各ティース12は、また、ロータ5(図1)に対向する歯先部13を有する。歯先部13は、ティース12の他の部分よりも周方向幅が広く、ティース12の側面12aよりも周方向に突出している。歯先部13の突出部分の径方向外側には、外側面13aが形成されている。歯先部13の外側面13aは、スロット14に面している。 Each tooth 12 also has a tooth tip portion 13 that faces the rotor 5 (Figure 1). The tooth tip portion 13 has a circumferential width greater than the other portions of the tooth 12, and protrudes circumferentially beyond the side surface 12a of the tooth 12. An outer surface 13a is formed radially outward of the protruding portion of the tooth tip portion 13. The outer surface 13a of the tooth tip portion 13 faces the slot 14.
 なお、歯先部13はティース12の一部であるが、ティース12の他の部分と形状が異なるため、歯先部13をティース12の他の部分と分けて説明する場合もある。 Note that although the tooth tips 13 are part of the teeth 12, they have a different shape from the other parts of the teeth 12, so the tooth tips 13 may be described separately from the other parts of the teeth 12.
 ティース12の軸方向端部には、段差部12Sが形成されている。段差部12Sは、ティース12の側面12a側、すなわちスロット14側に形成されている。そのため、ティース12の周方向の幅は、ステータコア10の軸方向中央部よりも軸方向端部で狭い。 A step portion 12S is formed at the axial end of the tooth 12. The step portion 12S is formed on the side surface 12a side of the tooth 12, i.e., on the slot 14 side. Therefore, the circumferential width of the tooth 12 is narrower at the axial end than at the axial center of the stator core 10.
 コアバック11の軸方向端部には、段差部11Sが形成されている。段差部11Sは、コアバック11の内周面11a側、すなわちスロット14側に形成されている。そのため、コアバック11の径方向の幅は、ステータコア10の軸方向中央部よりも軸方向端部で狭い。 A step portion 11S is formed at the axial end of the core back 11. The step portion 11S is formed on the inner peripheral surface 11a side of the core back 11, i.e., on the slot 14 side. Therefore, the radial width of the core back 11 is narrower at the axial end than at the axial center of the stator core 10.
 歯先部13の軸方向端部には、段差部13Sが形成されている。段差部13Sは、歯先部13の外側面13a側、すなわちスロット14側に形成されている。そのため、歯先部13の突出部分の径方向の幅は、ステータコア10の軸方向中央部よりも軸方向端部で狭い。 A step portion 13S is formed at the axial end of the tooth tip portion 13. The step portion 13S is formed on the outer surface 13a side of the tooth tip portion 13, i.e., on the slot 14 side. Therefore, the radial width of the protruding portion of the tooth tip portion 13 is narrower at the axial end portion than at the axial center portion of the stator core 10.
 ステータコア10は、ティース12を1つずつ含む複数の分割コア15を環状に組み合わせて構成されている。分割コア15の数は、ティース12の数と同じであり、ここでは9である。 The stator core 10 is constructed by combining multiple split cores 15, each of which includes one tooth 12, in a ring shape. The number of split cores 15 is the same as the number of teeth 12, which is nine in this example.
 隣り合う分割コア15は、コアバック11の外周側に形成されたカシメ部16で、互いに連結されている。なお、分割コア15の連結部はカシメ部16には限定されず、例えば薄肉部であってもよい。また、連結部を設ける代わりに、隣り合う分割コア15を溶接により接合してもよい。 Adjacent split cores 15 are connected to each other by crimped portions 16 formed on the outer periphery of the core back 11. Note that the connecting portions of the split cores 15 are not limited to the crimped portions 16 and may be, for example, thin-walled portions. Also, instead of providing connecting portions, adjacent split cores 15 may be joined by welding.
 図4は、分割コア15を示す斜視図である。図4では、軸線Ax(図1)の方向すなわち軸方向を、矢印Zで示す。コアバック11は軸方向の端面11eを有し、ティース12は軸方向の端面12eを有し、歯先部13は軸方向の端面13eを有する。端面11e,12e,13eは同一面上にあり、図2に示した端面10eに対応する。 FIG. 4 is a perspective view showing the split core 15. In FIG. 4, the direction of the axis Ax (FIG. 1), i.e., the axial direction, is indicated by arrow Z. The core back 11 has an axial end face 11e, the teeth 12 have an axial end face 12e, and the tooth tip portion 13 has an axial end face 13e. The end faces 11e, 12e, and 13e are on the same plane and correspond to the end face 10e shown in FIG. 2.
 ティース12の段差部12Sは、ティース12の端面12eと側面12aとの間に形成されている。段差部12Sは、スロット14に面する壁面12bと、軸方向を向く底面12cとで構成されている。壁面12bは軸方向に平行であり、底面12cは軸方向に直交している。 The step portion 12S of the tooth 12 is formed between the end face 12e and the side face 12a of the tooth 12. The step portion 12S is composed of a wall surface 12b facing the slot 14 and a bottom surface 12c facing the axial direction. The wall surface 12b is parallel to the axial direction, and the bottom surface 12c is perpendicular to the axial direction.
 コアバック11の段差部11Sは、コアバック11の端面11eと内周面11aとの間に形成されている。段差部11Sは、スロット14に面する壁面11bと、軸方向を向く底面11cとで構成されている。壁面11bは軸方向に平行であり、底面11cは軸方向に直交している。 The step portion 11S of the core back 11 is formed between the end face 11e and the inner peripheral surface 11a of the core back 11. The step portion 11S is composed of a wall surface 11b facing the slot 14 and a bottom surface 11c facing the axial direction. The wall surface 11b is parallel to the axial direction, and the bottom surface 11c is perpendicular to the axial direction.
 歯先部13の段差部13Sは、歯先部13の端面13eと外側面13aとの間に形成されている。段差部13Sは、スロット14に面する壁面13bと、軸方向を向く底面13cとで構成されている。壁面13bは軸方向に平行であり、底面13cは軸方向に直交している。 The step portion 13S of the tooth tip portion 13 is formed between the end face 13e of the tooth tip portion 13 and the outer surface 13a. The step portion 13S is composed of a wall surface 13b facing the slot 14 and a bottom surface 13c facing the axial direction. The wall surface 13b is parallel to the axial direction, and the bottom surface 13c is perpendicular to the axial direction.
 段差部11S,12S,13Sの底面11c,12c,13cは、軸方向において同一位置にある。そのため、段差部11S,12S,13Sの軸方向の高さは、同じである。 The bottom surfaces 11c, 12c, and 13c of the step portions 11S, 12S, and 13S are at the same position in the axial direction. Therefore, the axial heights of the step portions 11S, 12S, and 13S are the same.
 コアバック11の段差部11Sには、凸部としての中間段部11Tが形成されている。中間段部11Tは、コアバック11の端面11eと平行な第1の面と、コアバック11の内周面11aと平行な第2の面とを有する。 The step portion 11S of the core back 11 has an intermediate step portion 11T formed as a protrusion. The intermediate step portion 11T has a first surface parallel to the end face 11e of the core back 11 and a second surface parallel to the inner peripheral surface 11a of the core back 11.
 ティース12の段差部12Sには、凸部としての中間段部12Tが形成されている。中間段部12Tは、ティース12の端面12eと平行な第1の面121(図6)と、ティース12の側面12aと平行な第2の面122(図6)とを有する。 The step portion 12S of the tooth 12 has an intermediate step portion 12T formed as a protrusion. The intermediate step portion 12T has a first surface 121 (FIG. 6) parallel to the end surface 12e of the tooth 12, and a second surface 122 (FIG. 6) parallel to the side surface 12a of the tooth 12.
 歯先部13の段差部13Sには、凸部としての中間段部13Tが形成されている。中間段部13Tは、歯先部13の端面13eと平行な第1の面と、歯先部13の外側面13aと平行な第2の面とを有する。 The step portion 13S of the tooth tip portion 13 is formed with an intermediate step portion 13T as a protrusion. The intermediate step portion 13T has a first surface parallel to the end face 13e of the tooth tip portion 13 and a second surface parallel to the outer surface 13a of the tooth tip portion 13.
 中間段部11T,12T,13Tの第1の面は、軸方向における位置が同じである。すなわち、中間段部11T,12T,13Tの軸方向の高さは、同じである。 The first surfaces of the intermediate steps 11T, 12T, and 13T are located at the same position in the axial direction. In other words, the axial heights of the intermediate steps 11T, 12T, and 13T are the same.
 分割コア15は、軸方向中央のコア部15aと、コア部15aの軸方向両側のコア部15bと、軸方向両端のコア部15cとを有する。コア部15bは、軸方向において、中間段部11T,12T,13Tが形成された領域に位置する。コア部15cは、軸方向において、コア部15bよりも端面10e側に位置する。 The split core 15 has a core portion 15a in the axial center, core portions 15b on both axial sides of core portion 15a, and core portions 15c on both axial ends. Core portion 15b is located in the axial region where intermediate stages 11T, 12T, and 13T are formed. Core portion 15c is located on the end face 10e side of core portion 15b in the axial direction.
 コア部15bでは、コア部15aと比較して、コアバック11の幅、ティース12の幅、および歯先部13の突出部の幅が狭い。コア部15cでは、コア部15bと比較して、コアバック11の幅、ティース12の幅、および歯先部13の突出部の幅がさらに狭い。 Compared to core portion 15a, core portion 15b has a narrower width of core back 11, a narrower width of teeth 12, and a narrower width of protruding portion of tooth tip 13.Compared to core portion 15b, core portion 15c has an even narrower width of core back 11, a narrower width of teeth 12, and a narrower width of protruding portion of tooth tip 13.
 図5は、分割コア15と絶縁部20とを示す斜視図である。分割コア15には、ティース12を軸方向両側および周方向両側から覆うように、絶縁部20が取り付けられる。絶縁部20は、例えば、ポリブチレンテレフタレート(PBT)、液晶ポリマー(LCP)等の樹脂で構成される。 FIG. 5 is a perspective view showing the split core 15 and the insulating portion 20. The insulating portion 20 is attached to the split core 15 so as to cover the teeth 12 from both axial and circumferential sides. The insulating portion 20 is made of a resin such as polybutylene terephthalate (PBT) or liquid crystal polymer (LCP).
 絶縁部20は、ティース12を覆う胴部21と、胴部21の径方向外側に配置された壁部22と、胴部21の径方向内側に配置されたフランジ部23とを有する。壁部22とフランジ部23とは、胴部21を挟んで径方向に対向している。 The insulating portion 20 has a body portion 21 that covers the teeth 12, a wall portion 22 that is arranged radially outside the body portion 21, and a flange portion 23 that is arranged radially inside the body portion 21. The wall portion 22 and the flange portion 23 face each other in the radial direction with the body portion 21 in between.
 壁部22は、コアバック11の内周面11aを覆うように設けられ、さらに軸方向両側に突出している。壁部22は、コアバック11の段差部11Sに係合する係合部22aを有する。 The wall portion 22 is provided to cover the inner peripheral surface 11a of the core back 11 and protrudes on both sides in the axial direction. The wall portion 22 has an engagement portion 22a that engages with the step portion 11S of the core back 11.
 胴部21は、ティース12の端面12eおよび側面12a(図4)を覆うように設けられている。胴部21は、ティース12の段差部12S(図4)に係合する係合部21a(図6)を有する。 The body 21 is provided to cover the end faces 12e and side faces 12a (Fig. 4) of the teeth 12. The body 21 has an engagement portion 21a (Fig. 6) that engages with the step portion 12S (Fig. 4) of the teeth 12.
 フランジ部23は、歯先部13の端面13e(図4)および外側面13aを覆うように設けられている。フランジ部23は、歯先部13の段差部13Sに係合する係合部23aを有する。 The flange portion 23 is provided to cover the end face 13e (FIG. 4) and the outer surface 13a of the tooth tip portion 13. The flange portion 23 has an engagement portion 23a that engages with the step portion 13S of the tooth tip portion 13.
 胴部21には、巻線30(図1)が巻き付けられる。壁部22およびフランジ部23は、胴部21に巻き付けられた巻線30を径方向両側からガイドする。 The winding 30 (Figure 1) is wound around the body 21. The wall 22 and the flange 23 guide the winding 30 wound around the body 21 from both radial sides.
 絶縁部20は、例えば、樹脂を分割コア15と一体成形することによって形成される。絶縁部20は、また、樹脂の成形体を分割コア15に取り付けたものであってもよい。 The insulating section 20 is formed, for example, by molding resin integrally with the split core 15. The insulating section 20 may also be a resin molded body attached to the split core 15.
 ここでは、一体的に構成された絶縁部20について説明するが、絶縁部20をインシュレータと絶縁フィルムとで構成してもよい。これについては、実施の形態4で説明する。 Here, we will explain the insulating part 20 that is constructed as an integral part, but the insulating part 20 may also be constructed from an insulator and an insulating film. This will be explained in embodiment 4.
 図6は、ティース12と絶縁部20とを示す、ティース12の延在方向に直交する面における断面図である。ティース12の延在方向とは、ティース12の周方向中心を通る径方向の直線、すなわちティース中心線T(図3)の方向を言う。 Figure 6 is a cross-sectional view showing the teeth 12 and the insulating portion 20, taken along a plane perpendicular to the extension direction of the teeth 12. The extension direction of the teeth 12 refers to a radial line passing through the circumferential center of the teeth 12, i.e., the direction of the teeth centerline T (Figure 3).
 ティース12は、軸方向に長さL1を有する。長さL1は、ティース12の両端面12e間の距離である。また、ティース12は、軸方向中央部で幅W1を有し、中間段部12Tが形成された領域で幅W2を有し、軸方向端部で幅W3を有する。 The teeth 12 have a length L1 in the axial direction. The length L1 is the distance between both end faces 12e of the teeth 12. The teeth 12 also have a width W1 at the center in the axial direction, a width W2 in the area where the intermediate step portion 12T is formed, and a width W3 at the axial end portions.
 幅W1は、ティース12の両側面12a間の距離である。幅W2は、ティース12の2つの中間段部12Tの第2の面122間の距離である。幅W3は、ティース12の2つの段差部12Sの壁面12b間の距離である。幅W1,W2,W3は、W1>W2>W3の関係にある。 Width W1 is the distance between both side surfaces 12a of the teeth 12. Width W2 is the distance between the second surfaces 122 of the two intermediate step portions 12T of the teeth 12. Width W3 is the distance between the wall surfaces 12b of the two step portions 12S of the teeth 12. The relationship between widths W1, W2, and W3 is W1>W2>W3.
 絶縁部20は、ティース12の端面12eを覆う平面である第1の面201と、スロット14に面する平面である第2の面202と、第1の面201から第2の面202まで延在する湾曲面または傾斜面である第3の面203とを有する。 The insulating portion 20 has a first surface 201, which is a flat surface covering the end surface 12e of the tooth 12, a second surface 202, which is a flat surface facing the slot 14, and a third surface 203, which is a curved or inclined surface extending from the first surface 201 to the second surface 202.
 第1の面201は、軸方向に直交する面内で延在する平面であり、ティース12の端面12eに対向している。 The first surface 201 is a plane extending in a plane perpendicular to the axial direction and faces the end surface 12e of the tooth 12.
 第2の面202は、軸方向と平行な面内で延在する平面であり、ティース12の側面12aに対向している。 The second surface 202 is a plane extending in a plane parallel to the axial direction and faces the side surface 12a of the tooth 12.
 第3の面203は、ティース12の延在方向に直交する断面において、第1の面201と第2の面202とを曲線的に結ぶ湾曲面、または、第1の面201と第2の面202とを直線的に結ぶ傾斜面である。以下では、第3の面203が湾曲面である場合について説明するが、傾斜面であってもよい(後述する図25参照)。 The third surface 203 is a curved surface that connects the first surface 201 and the second surface 202 in a curved line in a cross section perpendicular to the extension direction of the teeth 12, or an inclined surface that connects the first surface 201 and the second surface 202 in a straight line. Below, a case where the third surface 203 is a curved surface will be described, but it may also be an inclined surface (see FIG. 25 described later).
 図7は、ティース12の段差部12Sを含む部分を拡大して示す図である。上記の通り、ティース12の端面12eと側面12aとの間には段差部12Sが形成され、段差部12Sには中間段部12Tが形成されている。 FIG. 7 is an enlarged view of a portion of the tooth 12 including the step portion 12S. As described above, the step portion 12S is formed between the end face 12e and the side face 12a of the tooth 12, and an intermediate step portion 12T is formed in the step portion 12S.
 中間段部12Tは、軸方向を向く第1の面121と、スロット14に面する第2の面122とを有する。中間段部12Tの第1の面121は、ティース12の端面12eと平行である。中間段部12Tの第2の面122は、ティース12の側面12aと平行である。 The intermediate step portion 12T has a first surface 121 facing the axial direction and a second surface 122 facing the slot 14. The first surface 121 of the intermediate step portion 12T is parallel to the end surface 12e of the tooth 12. The second surface 122 of the intermediate step portion 12T is parallel to the side surface 12a of the tooth 12.
 中間段部12Tの第1の面121と第2の面122との間には、角部Eが形成される。角部Eは、第1の面121と第2の面122との間の稜線(図7の断面では交点)である。角部Eは、ティース12の段差部12Sにおいて、絶縁部20の第3の面203に最も近い部分である。 A corner E is formed between the first surface 121 and the second surface 122 of the intermediate step portion 12T. The corner E is the ridge line (the intersection in the cross section of FIG. 7) between the first surface 121 and the second surface 122. The corner E is the part of the step portion 12S of the tooth 12 that is closest to the third surface 203 of the insulating portion 20.
 ティース12の端面12eから絶縁部20(より具体的には胴部21)の第1の面201までの最短距離を、T1とする。ティース12の側面12aから絶縁部20の第2の面202までの最短距離を、T2とする。中間段部12Tの角部Eから絶縁部20の第3の面203までの最短距離を、T3とする。 The shortest distance from the end face 12e of the tooth 12 to the first surface 201 of the insulating portion 20 (more specifically, the body portion 21) is defined as T1. The shortest distance from the side face 12a of the tooth 12 to the second surface 202 of the insulating portion 20 is defined as T2. The shortest distance from the corner E of the intermediate step portion 12T to the third surface 203 of the insulating portion 20 is defined as T3.
 ティース12の端面12eから絶縁部20の第1の面201までの最短距離T1と、中間段部12Tの角部Eから絶縁部20の第3の面203までの最短距離T3とは、T1>T3を満足する。 The shortest distance T1 from the end face 12e of the tooth 12 to the first surface 201 of the insulating portion 20 and the shortest distance T3 from the corner E of the intermediate step portion 12T to the third surface 203 of the insulating portion 20 satisfy T1>T3.
 また、ティース12の側面12aから絶縁部20の第2の面202までの最短距離T2と、中間段部12Tの角部Eから絶縁部20の第3の面203までの最短距離T3とは、T3>T2を満足する。すなわち、これらの最短距離T1,T2,T3は、T1>T3>T2を満足する。 Furthermore, the shortest distance T2 from the side surface 12a of the tooth 12 to the second surface 202 of the insulating portion 20 and the shortest distance T3 from the corner E of the intermediate step portion 12T to the third surface 203 of the insulating portion 20 satisfy T3>T2. In other words, these shortest distances T1, T2, and T3 satisfy T1>T3>T2.
<作用>
 実施の形態1の作用について、比較例1~3と対比して説明する。図8(A)は、比較例1のティース12および絶縁部20を示す断面図である。図8(B)は、比較例2のティース12および絶縁部20を示す断面図である。図8(C)は、比較例3のティース12および絶縁部20を示す断面図である。
<Action>
The operation of the first embodiment will be described in comparison with comparative examples 1 to 3. Fig. 8(A) is a cross-sectional view showing the tooth 12 and the insulating portion 20 of comparative example 1. Fig. 8(B) is a cross-sectional view showing the tooth 12 and the insulating portion 20 of comparative example 2. Fig. 8(C) is a cross-sectional view showing the tooth 12 and the insulating portion 20 of comparative example 3.
 図8(A)~(C)では、対比を容易にするため、比較例1~3の構成要素にも、実施の形態1の構成要素と同一の符号を付している。 In Figures 8(A) to (C), for ease of comparison, the components in Comparative Examples 1 to 3 are given the same reference numerals as those in the first embodiment.
 図8(A)に示す比較例1のティース12は、端面12eと側面12aとの間に、段差部を有さない。すなわち、ティース12の端面12eと側面12aとの間には、90度の角部が形成されている。絶縁部20は、ティース12の端面12eを覆う第1の面201と、スロット14に面する第2の面202と、これらの面201,202の間の第3の面203とを有する。第3の面203は、ティース12の角部に対向する。 The teeth 12 of Comparative Example 1 shown in FIG. 8(A) do not have a step between the end faces 12e and the side faces 12a. That is, a 90-degree corner is formed between the end faces 12e and the side faces 12a of the teeth 12. The insulating portion 20 has a first surface 201 that covers the end faces 12e of the teeth 12, a second surface 202 that faces the slot 14, and a third surface 203 between these surfaces 201, 202. The third surface 203 faces the corner of the teeth 12.
 巻線30を巻き膨らみが生じないように絶縁部20に巻き付けるためには、第3の面203の曲率半径が大きいことが望ましい。しかしながら、第3の面203の曲率半径が大きくするためには、ティース12の端面12eから絶縁部20の第1の面201までの最短距離T1を長くする必要がある。そのため、巻線30の周長が長くなり、銅損が増加する。 In order to wind the winding 30 around the insulating part 20 without causing any bulging, it is desirable for the radius of curvature of the third surface 203 to be large. However, in order to increase the radius of curvature of the third surface 203, it is necessary to increase the shortest distance T1 from the end surface 12e of the tooth 12 to the first surface 201 of the insulating part 20. This increases the circumferential length of the winding 30, resulting in increased copper loss.
 図8(B)に示す比較例2のティース12は、比較例1のティース12と同様、軸方向端部に段差部を有さない。すなわち、ティース12の端面12eと側面12aとの間には、90度の角部が形成されている。比較例2では、比較例1よりも、ティース12の端面12eから絶縁部20の第1の面201までの最短距離T1が短い。 The teeth 12 of Comparative Example 2 shown in FIG. 8(B) do not have a step portion at the axial end, like the teeth 12 of Comparative Example 1. In other words, a 90-degree corner is formed between the end face 12e and the side face 12a of the teeth 12. In Comparative Example 2, the shortest distance T1 from the end face 12e of the teeth 12 to the first surface 201 of the insulating portion 20 is shorter than in Comparative Example 1.
 この比較例2では、最短距離T1が短いため、第3の面203の曲率半径が小さくなり、巻線30のスロット14側への巻き膨らみが生じやすい。そのため、巻線30の周長が長くなり、また、スロット14内に巻線30を密に配置することが難しくなる。 In this comparative example 2, the shortest distance T1 is short, so the radius of curvature of the third surface 203 is small, and the winding 30 is likely to bulge toward the slot 14. This increases the perimeter of the winding 30, and makes it difficult to arrange the winding 30 densely within the slot 14.
 図8(C)に示す比較例3のティース12は、端面12eと側面12aとの間に、段差部12Sを有する。絶縁部20は、ティース12の端面12eを覆う第1の面201と、スロット14に面する第2の面202と、段差部12Sを覆う第3の面203とを有する。 The tooth 12 of Comparative Example 3 shown in FIG. 8(C) has a step portion 12S between the end face 12e and the side face 12a. The insulating portion 20 has a first surface 201 that covers the end face 12e of the tooth 12, a second surface 202 that faces the slot 14, and a third surface 203 that covers the step portion 12S.
 この比較例3では、ティース12に段差部12Sが形成されているため、第3の面203の曲率半径を大きくし、且つティース12の端面12eから絶縁部20の第1の面201までの最短距離T1を短くすることができる。 In this comparative example 3, a step portion 12S is formed on the tooth 12, so that the radius of curvature of the third surface 203 can be increased and the shortest distance T1 from the end surface 12e of the tooth 12 to the first surface 201 of the insulating portion 20 can be shortened.
 しかしながら、図9に拡大して示すように、比較例3のティース12の段差部12Sには、絶縁部20の厚さが過剰に厚い部分(符号204で示す)が生じ、その分だけティース12の幅が軸方向端部で狭くなる。そのため、ティース12内で磁気飽和が生じやすくなり、鉄損が増加する。 However, as shown in an enlarged view in FIG. 9, in the step portion 12S of the tooth 12 in Comparative Example 3, there is a portion (indicated by reference symbol 204) where the thickness of the insulating portion 20 is excessively thick, and the width of the tooth 12 at the axial end portion is accordingly narrower. As a result, magnetic saturation is more likely to occur within the tooth 12, and iron loss increases.
 そこで、この実施の形態1では、図7に示したように、ティース12の段差部Sに中間段部12Tを設けている。中間段部12Tを設けることで、ティース12の幅が広くなるため、磁気飽和が抑制され、これにより鉄損増加が抑制される。 In this embodiment, as shown in FIG. 7, an intermediate step portion 12T is provided at the step portion S of the tooth 12. By providing the intermediate step portion 12T, the width of the tooth 12 is increased, suppressing magnetic saturation and thereby suppressing an increase in iron loss.
 また、絶縁部20の厚さを過剰に厚くせずに第3の面203の曲率半径を大きくすることができるため、巻線30の巻き膨らみを抑制することができる。 In addition, the radius of curvature of the third surface 203 can be increased without excessively increasing the thickness of the insulating portion 20, thereby suppressing the winding bulge of the winding 30.
 一方、ティース12の段差部12Sに中間段部12Tを設けた場合、中間段部12Tと絶縁部20の第3の面203との間に、絶縁部20の厚さの薄い部分、すなわち図7に示す最短距離T3の部分が生じる。この点について、以下に説明する。 On the other hand, if an intermediate step 12T is provided on the step portion 12S of the tooth 12, a thin portion of the insulating portion 20, i.e., a portion of the shortest distance T3 shown in FIG. 7, will be created between the intermediate step 12T and the third surface 203 of the insulating portion 20. This point will be explained below.
 図10は、ティース12と巻線30とを示す、ティース12の延在方向に直交する面における断面図である。図10には、ティース12の4つの角部のうち、1つの角部の周囲に作用する力を矢印で示している。 FIG. 10 is a cross-sectional view of the teeth 12 and the windings 30 taken along a plane perpendicular to the direction in which the teeth 12 extend. In FIG. 10, the arrows indicate the force acting around one of the four corners of the teeth 12.
 ティース12は、軸方向の長さL1(図6)が幅W1(図6)よりも長い。言い換えると、ティース12の断面形状は、軸方向に長い長方形である。そのため、巻線30は、軸方向に長い楕円状に絶縁部20に巻かれる。 The teeth 12 have an axial length L1 (FIG. 6) that is longer than their width W1 (FIG. 6). In other words, the cross-sectional shape of the teeth 12 is a rectangle that is long in the axial direction. Therefore, the winding 30 is wound around the insulating portion 20 in an elliptical shape that is long in the axial direction.
 巻線工程では巻線30に張力が印加され、この張力によって、巻線30は絶縁部20の第1の面201、第2の面202および第3の面203に接触する。すなわち、絶縁部20の第1の面201、第2の面202および第3の面203には、巻線30からの応力が加わる。 In the winding process, tension is applied to the winding 30, and this tension causes the winding 30 to contact the first surface 201, the second surface 202, and the third surface 203 of the insulating part 20. In other words, stress is applied from the winding 30 to the first surface 201, the second surface 202, and the third surface 203 of the insulating part 20.
 上記のようにティース12の断面形状は軸方向に長い長方形であるため、絶縁部20の第1の面201に最も大きな力が作用する。すなわち、絶縁部20の第1の面201が巻線30から受ける力F1は、第2の面202が巻線30から受ける力F2よりも大きい。 As described above, the cross-sectional shape of the teeth 12 is a rectangle that is long in the axial direction, so the greatest force acts on the first surface 201 of the insulating part 20. In other words, the force F1 that the first surface 201 of the insulating part 20 receives from the winding 30 is greater than the force F2 that the second surface 202 receives from the winding 30.
 なお、絶縁部20の第1の面201が巻線30から受ける力F1は、ティース12の端面12eと段差部12Sの壁面12bとの間の角部Kに対向する部分で最大となる。 The force F1 that the first surface 201 of the insulating portion 20 receives from the winding 30 is maximum at the portion facing the corner K between the end surface 12e of the tooth 12 and the wall surface 12b of the step portion 12S.
 図7に示したように、ティース12の端面12eから絶縁部20の第1の面201までの最短距離T1は、ティース12の中間段部12Tの角部Eから絶縁部20の第3の面203までの最短距離T3よりも長い。そのため、絶縁部20の第1の面201が巻線30から受ける力F1に対し、絶縁部20の破損を防止することができる。 As shown in FIG. 7, the shortest distance T1 from the end face 12e of the tooth 12 to the first surface 201 of the insulating portion 20 is longer than the shortest distance T3 from the corner E of the intermediate step portion 12T of the tooth 12 to the third surface 203 of the insulating portion 20. Therefore, damage to the insulating portion 20 can be prevented when the first surface 201 of the insulating portion 20 receives a force F1 from the winding 30.
 また、ティース12の中間段部12Tの角部Eから絶縁部20の第3の面203までの最短距離T3は、ティース12の側面12aから絶縁部20の第2の面202までの最短距離T2よりも長い。そのため、絶縁部20の第3の面203が巻線30から受ける力F3に対し、絶縁部20の破損を防止することができる。 Furthermore, the shortest distance T3 from the corner E of the intermediate step 12T of the tooth 12 to the third surface 203 of the insulating portion 20 is longer than the shortest distance T2 from the side surface 12a of the tooth 12 to the second surface 202 of the insulating portion 20. Therefore, damage to the insulating portion 20 can be prevented when the third surface 203 of the insulating portion 20 receives a force F3 from the winding 30.
 絶縁部20の第2の面202が巻線30から受ける力F2は最も小さいため、ティース12の側面12aから絶縁部20の第2の面202までの最短距離T2を最も短くすることができる。これにより、スロット14の面積を大きくし、巻線30を効率よく収容することが可能になる。 Because the force F2 that the second surface 202 of the insulating portion 20 receives from the winding 30 is the smallest, the shortest distance T2 from the side surface 12a of the tooth 12 to the second surface 202 of the insulating portion 20 can be made the shortest. This makes it possible to increase the area of the slot 14 and efficiently accommodate the winding 30.
 図11は、ティース12の段差部12Sおよび絶縁部20の第3の面203の寸法を説明するための図である。図11において、段差部12Sの軸方向の寸法を、高さAとする。この高さAは、段差部12Sの底面12cから、ティース12の端面12eまでの軸方向の距離に相当する。 FIG. 11 is a diagram for explaining the dimensions of the step portion 12S of the tooth 12 and the third surface 203 of the insulating portion 20. In FIG. 11, the axial dimension of the step portion 12S is taken as height A. This height A corresponds to the axial distance from the bottom surface 12c of the step portion 12S to the end surface 12e of the tooth 12.
 ティース12の延在方向に直交する断面において、軸方向に直交する方向(幅方向とも称する)における段差部12Sの寸法を、幅Bとする。この幅Bは、段差部12Sの壁面12bから、ティース12の側面12aまでの幅方向の距離に相当する。 In a cross section perpendicular to the extension direction of the teeth 12, the dimension of the step portion 12S in the direction perpendicular to the axial direction (also called the width direction) is defined as width B. This width B corresponds to the distance in the width direction from the wall surface 12b of the step portion 12S to the side surface 12a of the teeth 12.
 図11に示した例では、ティース12の段差部12Sの高さAと幅Bとが、A≧Bの関係にある。A>Bの場合、第3の面203は、軸方向に長い楕円弧をなすように延在する。A=Bの場合、第3の面203は、円弧をなすように延在する。 In the example shown in FIG. 11, the height A and width B of the step portion 12S of the tooth 12 satisfy the relationship A≧B. When A>B, the third surface 203 extends to form a long elliptical arc in the axial direction. When A=B, the third surface 203 extends to form a circular arc.
 絶縁部20の第1の面201は、ティース12の端面12eを覆い、さらに段差部12Sに張り出している。絶縁部20の第2の面202は、ティース12の側面12aを覆い、さらに段差部12Sに張り出している。 The first surface 201 of the insulating portion 20 covers the end surface 12e of the tooth 12 and also protrudes into the step portion 12S. The second surface 202 of the insulating portion 20 covers the side surface 12a of the tooth 12 and also protrudes into the step portion 12S.
 ティース12の延在方向に直交する断面において、第1の面201と第3の面203との境界となる点を、点Pとする。また、第2の面202と第3の面203との境界となる点を、点Qとする。点P,Qは、第3の面203の両端を規定する。 In a cross section perpendicular to the extension direction of the teeth 12, the boundary between the first surface 201 and the third surface 203 is designated as point P. The boundary between the second surface 202 and the third surface 203 is designated as point Q. Points P and Q define both ends of the third surface 203.
 点Pと点Qとの軸方向の距離を、距離D1とする。点Pと点Qとの軸方向に直交する方向(すなわち幅方向)の距離を、距離D2とする。すなわち、点Pを通って軸方向に平行な第1の直線L1と、点Qを通って軸方向に直交する第2の直線L2との交点をUとすると、距離D1は点Pから交点Uまでの距離に相当し、距離D2は点Qから交点Uまでの距離に相当する。 The distance in the axial direction between points P and Q is distance D1. The distance in the direction perpendicular to the axial direction (i.e., the width direction) between points P and Q is distance D2. In other words, if the intersection point of a first straight line L1 that passes through point P and is parallel to the axial direction, and a second straight line L2 that passes through point Q and is perpendicular to the axial direction is U, then distance D1 corresponds to the distance from point P to intersection point U, and distance D2 corresponds to the distance from point Q to intersection point U.
 段差部12Sの高さAおよび幅Bと、距離D1,D2とは、D1≦AおよびD2≦Bを満足する。すなわち、点Pはティース12の端面12eに対向せず、点Qはティース12の側面12aに対向しない。 The height A and width B of the step portion 12S and the distances D1 and D2 satisfy D1≦A and D2≦B. In other words, point P does not face the end face 12e of the tooth 12, and point Q does not face the side face 12a of the tooth 12.
 点Pがティース12の端面12eに対向していると、絶縁部20の第3の面203とティース12の端面12eとの間に、局所的に厚さの薄い部分が生じる。同様に、点Qがティース12の側面12aに対向していると、第3の面203とティース12の側面12aとの間にも、局所的に厚さの薄い部分が生じる。 When point P faces end face 12e of tooth 12, a locally thin portion is created between third surface 203 of insulating portion 20 and end face 12e of tooth 12. Similarly, when point Q faces side surface 12a of tooth 12, a locally thin portion is created between third surface 203 and side surface 12a of tooth 12.
 これに対し、実施の形態1では、点Pはティース12の端面12eに対向せず、点Qはティース12の側面12aに対向しない。そのため、絶縁部20には、厚さが局所的に薄くなる部分が生じない。 In contrast, in embodiment 1, point P does not face the end face 12e of the tooth 12, and point Q does not face the side face 12a of the tooth 12. Therefore, there are no locally thin portions of the insulating portion 20.
 このように絶縁部20の厚さが局所的に薄くなる部分が生じないため、ティース12の端面12eから絶縁部20の第1の面201までの最短距離T1を短くしても、絶縁部20の破損を防止することができる。これにより、第3の面203の曲率半径を大きくして巻線30の巻き膨らみを抑制すると共に、最短距離T1すなわち厚さを薄くして巻線30の周長を短くすることができる。その結果、銅損を効果的に低減することができる。 As such, since there are no locally thin portions of the insulating portion 20, damage to the insulating portion 20 can be prevented even if the shortest distance T1 from the end face 12e of the tooth 12 to the first surface 201 of the insulating portion 20 is shortened. This makes it possible to increase the radius of curvature of the third surface 203 to suppress swelling of the winding 30, and to reduce the shortest distance T1, i.e., the thickness, to shorten the perimeter of the winding 30. As a result, copper loss can be effectively reduced.
 絶縁部20の第3の面203の形状は、ティース12の段差部12Sの形状に合わせて設定される。図12(A)~(E)は、ティース12の段差部12Sと絶縁部20の第3の面203の例を示す図である。図12(A)~(E)では、中間段部12Tを省略している。 The shape of the third surface 203 of the insulating portion 20 is set to match the shape of the step portion 12S of the tooth 12. Figures 12(A) to (E) are diagrams showing examples of the step portion 12S of the tooth 12 and the third surface 203 of the insulating portion 20. The intermediate step portion 12T is omitted in Figures 12(A) to (E).
 図12(A)~(C)では、絶縁部20の第3の面203が同一の円弧形状を有しており、段差部12Sの形状が異なる。 In Figures 12(A) to (C), the third surface 203 of the insulating portion 20 has the same arc shape, but the shape of the step portion 12S is different.
 図12(A)に示すように、段差部12Sの高さAおよび幅BがA=Bを満足する場合には、絶縁部20の点P,Qを、ティース12の端面12eおよび側面12aに対向させないようにすることができる。 As shown in FIG. 12(A), when the height A and width B of the step portion 12S satisfy A=B, points P and Q of the insulating portion 20 can be made not to face the end face 12e and side face 12a of the tooth 12.
 一方、図12(B)に示すように、段差部12Sの高さAおよび幅BがA<Bを満足する場合には、点Qがティース12の側面12aに対向する。また、図12(C)に示すように、段差部12Sの高さAおよび幅BがA>Bを満足する場合には、点Pがティース12の端面12eに対向する。 On the other hand, as shown in FIG. 12(B), when the height A and width B of the step portion 12S satisfy A<B, point Q faces the side surface 12a of the tooth 12. Also, as shown in FIG. 12(C), when the height A and width B of the step portion 12S satisfy A>B, point P faces the end surface 12e of the tooth 12.
 これに対し、図12(D)に示すように、絶縁部20の第3の面203が幅方向に長い楕円弧形状を有していれば、段差部12Sの高さAおよび幅BがA<Bを満足する場合に、絶縁部20の点P,Qをティース12の端面12eおよび側面12aに対向させないようにすることができる。 In contrast, as shown in FIG. 12(D), if the third surface 203 of the insulating portion 20 has an elliptical arc shape that is long in the width direction, when the height A and width B of the step portion 12S satisfy A<B, it is possible to prevent points P and Q of the insulating portion 20 from facing the end surface 12e and side surface 12a of the tooth 12.
 また、図12(E)に示すように、絶縁部20の第3の面203が軸方向に長い楕円弧形状を有していれば、段差部12Sの高さAおよび幅BがA>Bを満足する場合に、絶縁部20の点P,Qをティース12の端面12eおよび側面12aに対向させないようにすることができる。 Furthermore, as shown in FIG. 12(E), if the third surface 203 of the insulating portion 20 has an elliptical arc shape that is long in the axial direction, when the height A and width B of the step portion 12S satisfy A>B, it is possible to prevent points P and Q of the insulating portion 20 from facing the end surface 12e and side surface 12a of the tooth 12.
 すなわち、段差部12Sの高さAおよび幅BがA=Bを満足する場合には、絶縁部20の第3の面203が円弧形状を有することが望ましい。段差部12Sの高さAおよび幅BがA>Bを満足する場合には、絶縁部20の第3の面203が軸方向に長い楕円弧形状を有することが望ましい。段差部12Sの高さAおよび幅BがA<Bを満足する場合には、絶縁部20の第3の面203が幅方向に長い楕円弧形状を有することが望ましい。 In other words, when the height A and width B of the step portion 12S satisfy A=B, it is desirable that the third surface 203 of the insulating portion 20 has a circular arc shape. When the height A and width B of the step portion 12S satisfy A>B, it is desirable that the third surface 203 of the insulating portion 20 has an elliptical arc shape that is long in the axial direction. When the height A and width B of the step portion 12S satisfy A<B, it is desirable that the third surface 203 of the insulating portion 20 has an elliptical arc shape that is long in the width direction.
 図13(A),(B)は、絶縁部20の第3の面203が楕円形状を有する場合におけるティース12の段差部12Sを含む部分と巻線30の巻き膨らみ状態とを示す図である。図13(A),(B)では、中間段部12Tを省略している。 Figures 13(A) and (B) are diagrams showing the portion including the step portion 12S of the teeth 12 and the bulging state of the winding 30 when the third surface 203 of the insulating portion 20 has an elliptical shape. The intermediate step portion 12T is omitted in Figures 13(A) and (B).
 図13(A)に示すように段差部12Sの高さAおよび幅BがA<Bを満足する場合、符号B1で示すように、巻線30の周方向の巻き膨らみが大きくなる。すなわち、巻線30がスロット14内に張り出すように膨らむ。 As shown in FIG. 13(A), when the height A and width B of the step portion 12S satisfy A<B, the circumferential bulge of the winding 30 increases as indicated by the symbol B1. In other words, the winding 30 bulges so as to protrude into the slot 14.
 これに対し、図13(B)に示すように段差部12Sの高さAおよび幅BがA>Bを満足する場合、符号B2で示すように、巻線30の軸方向の巻き膨らみが大きくなる。すなわち、巻線30がティース12から軸方向に張り出すように膨らむ。 In contrast, as shown in FIG. 13(B), when the height A and width B of the step portion 12S satisfy A>B, the axial bulge of the winding 30 increases, as indicated by the symbol B2. In other words, the winding 30 bulges outward from the tooth 12 in the axial direction.
 図13(A),(B)のいずれの場合も、巻線30の巻き膨らみが生じると周長が長くなる。但し、図13(A)に示した場合には、スロット14内の巻線30の配置密度が低下するのに対し、図13(B)に示した場合には、スロット14内の巻線30の配置密度への影響は少ない。 13(A) and (B), the circumference length increases when the winding 30 bulges. However, in the case shown in FIG. 13(A), the arrangement density of the winding 30 in the slot 14 decreases, whereas in the case shown in FIG. 13(B), there is little effect on the arrangement density of the winding 30 in the slot 14.
 そのため、図13(B)に示すように、段差部12Sの高さAおよび幅BがA>Bを満足することが望ましい。また、図12(A)に示したように、段差部12Sの高さAおよび幅BがA=Bを満足していてもよい。すなわち、段差部12Sの高さAおよび幅Bは、A≧Bを満足することが望ましい。 For this reason, as shown in FIG. 13(B), it is desirable that the height A and width B of the step portion 12S satisfy A>B. Also, as shown in FIG. 12(A), the height A and width B of the step portion 12S may satisfy A=B. In other words, it is desirable that the height A and width B of the step portion 12S satisfy A≧B.
 次に、段差部12Sの軸方向の高さAとティース12の軸方向の長さL1との関係について説明する。 Next, we will explain the relationship between the axial height A of the step portion 12S and the axial length L1 of the tooth 12.
 図14は、ティース12の段差部12Sに中間段部12Tが設けられていない場合の、ティース12の長さL1に対する段差部12Sの高さAの比A/L1と、鉄損および銅損(相対値)との関係を示すグラフである。 FIG. 14 is a graph showing the relationship between the ratio A/L1 of the height A of the step portion 12S to the length L1 of the tooth 12 and the iron loss and copper loss (relative values) when the step portion 12S of the tooth 12 does not have an intermediate step portion 12T.
 鉄損および銅損の値は、段差部12Sを有さないティース12の断面積(L1×W1)に対する段差部12Sの断面積(A×B)の比((A×B)/(L1×W1))が一定となるように高さAと幅Bを変更して解析を行って得た値である。また、鉄損および銅損の値は、ティース12が段差部12Sを有さない場合の鉄損および銅損の値に対する相対値で表している。 The values of iron loss and copper loss were obtained by performing an analysis in which the height A and width B were changed so that the ratio ((A x B)/(L1 x W1)) of the cross-sectional area (A x B) of the step portion 12S to the cross-sectional area (L1 x W1) of the tooth 12 without the step portion 12S was constant. The values of iron loss and copper loss are expressed as relative values to the values of iron loss and copper loss when the tooth 12 does not have the step portion 12S.
 図14に示すように、A/L1の値が増加するほど、銅損は減少し、鉄損は増加する。A/L1の値が増加するほど銅損が減少する理由は、段差部12Sの断面積(A×B)を一定とすると、段差部12Sの高さAが増加するほど(すなわち幅Bが減少するほど)、磁気飽和の抑制によってロータ5からの磁束が流入し易くなり、磁束が有効に利用できることでトルク定数が大きくなるため、電流値を小さくできるためである。 As shown in Figure 14, as the value of A/L1 increases, copper loss decreases and iron loss increases. The reason that copper loss decreases as the value of A/L1 increases is that, assuming that the cross-sectional area (A x B) of step 12S is constant, as the height A of step 12S increases (i.e., the width B decreases), magnetic saturation is suppressed and magnetic flux from rotor 5 flows in more easily, and the magnetic flux can be effectively utilized, increasing the torque constant and allowing the current value to be reduced.
 また、A/L1の値が増加するほど鉄損が増加する理由は、ティース12の長さL1に対して段差部12Sの高さAの割合が増加するほど、ティース12の幅の狭い部分の割合が多くなり、ティース12の全体で磁気抵抗が大きくなるためである。 The reason why the iron loss increases as the value of A/L1 increases is that as the ratio of the height A of the step portion 12S to the length L1 of the tooth 12 increases, the ratio of the narrow portion of the tooth 12 increases, and the magnetic resistance of the entire tooth 12 increases.
 また、ティース12の段差部12Sと同じ高さ(すなわち軸方向位置)に、コアバック11の段差部11Sおよび歯先部13の段差部13Sが形成されるため(図4参照)、コアバック11から歯先部13に至るティース12内の磁路長が長くなる。そのため、ティース12の長さL1に対して段差部12Sの高さAの割合が増加するほど、ティース12の磁路長の長い部分が増加することになり、上記のように鉄損が増加する。 In addition, because the step portion 11S of the core back 11 and the step portion 13S of the tooth tip 13 are formed at the same height (i.e., axial position) as the step portion 12S of the tooth 12 (see FIG. 4), the magnetic path length within the tooth 12 from the core back 11 to the tooth tip 13 becomes longer. Therefore, as the ratio of the height A of the step portion 12S to the length L1 of the tooth 12 increases, the portion of the tooth 12 with a long magnetic path length increases, and as described above, iron loss increases.
 なお、A/L1の値が十分大きくなると、A×Bの値を一定にした関係から、段差部12Sの幅Bおよび段差部11S,13Sの幅が十分に小さくなるため、上述した磁路長の増加の影響が減少し、その結果、鉄損の増加が図14に示すように飽和する。 When the value of A/L1 becomes large enough, the width B of step 12S and the widths of steps 11S and 13S become small enough because the value of A×B is kept constant, so the effect of the increase in magnetic path length described above decreases, and as a result, the increase in iron loss saturates as shown in FIG. 14.
 図15は、ティース12の段差部12Sに中間段部12Tを設けた場合の、ティース12の長さL1に対する段差部12Sの高さAの比A/L1と、鉄損および銅損(相対値)との関係を示すグラフである。鉄損および銅損の値については、図14について説明した通りである。 Fig. 15 is a graph showing the relationship between the ratio A/L1 of the height A of step portion 12S to the length L1 of tooth 12 when intermediate step portion 12T is provided in step portion 12S of tooth 12, and the iron loss and copper loss (relative values). The values of iron loss and copper loss are as described in Fig. 14.
 解析に際しては、図14について説明したように段差部12Sの高さAと幅Bとを変更し、それに合わせて中間段部12Tの高さと幅を変更した。中間段部12Tについては、図16(A),(B)に示すように、ティース12の延在方向に直交する断面において、段差部12Sの底面12cと壁面12bとの交点Jを中心とし、長さAを長軸半径とし、幅Bを短軸半径とする仮想の楕円弧Mを設定する。そして、楕円弧Mの中点が中間段部12Tの角部Eと一致するように、中間段部12Tの高さと幅を決定する。 For the analysis, the height A and width B of the step portion 12S were changed as explained in FIG. 14, and the height and width of the intermediate step portion 12T were changed accordingly. For the intermediate step portion 12T, as shown in FIGS. 16(A) and (B), in a cross section perpendicular to the extension direction of the teeth 12, a virtual elliptical arc M is set with its center at the intersection J between the bottom surface 12c and the wall surface 12b of the step portion 12S, length A as its major axis radius, and width B as its minor axis radius. Then, the height and width of the intermediate step portion 12T are determined so that the midpoint of the elliptical arc M coincides with the corner E of the intermediate step portion 12T.
 図15では、図14と比較して、A/L1の全範囲に亘って、鉄損および銅損の値が共に小さくなっている。 In Figure 15, compared to Figure 14, the iron loss and copper loss values are both smaller across the entire range of A/L1.
 図15から、ティース12が段差部12Sを有さない場合に対する鉄損の増加割合と銅損の減少割合とが同じになるのは、A/L1=0.141のときである。A/L1=0.141のときには、ティース12が段差部12Sを有さない場合と比較して、銅損が0.65%増加し、鉄損も0.65%増加する。 From Figure 15, the rate of increase in iron loss and the rate of decrease in copper loss are the same when A/L1 = 0.141 compared to when the teeth 12 do not have the step portion 12S. When A/L1 = 0.141, copper loss increases by 0.65% and iron loss also increases by 0.65% compared to when the teeth 12 do not have the step portion 12S.
 A/L1<0.141の場合には、ティース12が段差部12Sを有さない場合と比較して、銅損の増加が鉄損の増加よりも大きい。A/L1>0.141の場合には、ティース12が段差部12Sを有さない場合と比較して、鉄損の増加が銅損の増加よりも大きい。 When A/L1<0.141, the increase in copper loss is greater than the increase in iron loss, compared to when the teeth 12 do not have the step portion 12S. When A/L1>0.141, the increase in iron loss is greater than the increase in copper loss, compared to when the teeth 12 do not have the step portion 12S.
 この実施の形態では、巻線30の巻き膨らみの防止によって銅損を低減できるため、鉄損の増加が銅損の増加と同じかまたはそれよりも小さくなるA/L1≦0.141の範囲が望ましい。 In this embodiment, copper loss can be reduced by preventing the winding 30 from expanding, so it is desirable to have A/L1≦0.141, where the increase in iron loss is equal to or smaller than the increase in copper loss.
 なお、圧縮機に用いられる電動機100は、圧縮機の要求仕様に応じて設計されるが、ステータコア10の形状は共通とし、コアバック11またはティース12の幅、あるいは巻線30の巻き数等の調整により多様な要求仕様に対応することが望ましい。この実施の形態では、ティース12の形状によって銅損および鉄損を低減することができるため、多様な要求仕様に対応した高効率な電動機100を実現することができる。 The electric motor 100 used in the compressor is designed according to the required specifications of the compressor, but it is desirable to keep the shape of the stator core 10 common and respond to various required specifications by adjusting the width of the core back 11 or teeth 12, or the number of turns of the winding 30, etc. In this embodiment, copper loss and iron loss can be reduced by the shape of the teeth 12, so a highly efficient electric motor 100 that responds to various required specifications can be realized.
 なお、ここではステータコア10を複数の分割コア15で構成した例について説明したが、ステータコア10はこのような構成には限定されない。すなわち、ステータコア10は、環状に打ち抜かれた電磁鋼板を軸方向に積層した一体型コアであってもよい。 Although an example in which the stator core 10 is made up of multiple split cores 15 has been described here, the stator core 10 is not limited to this configuration. In other words, the stator core 10 may be an integrated core in which electromagnetic steel sheets punched into an annular shape are stacked in the axial direction.
 また、ここではティース12の周方向両側に段差部12Sを形成した例について説明したが、ティース12の周方向の少なくとも一方の側に段差部12Sが形成されていればよい。 In addition, although an example in which step portions 12S are formed on both circumferential sides of the teeth 12 has been described here, it is sufficient that step portions 12S are formed on at least one circumferential side of the teeth 12.
 また、ここではコアバック11および歯先部13に段差部11S,13Sを設けたが、コアバック11および歯先部13には巻線30が巻かれないため、コアバック11および歯先部13の段差部11S,13Sは必ずしも設けられていなくても良い。 In addition, here, steps 11S, 13S are provided on the core back 11 and the tooth tip portion 13, but since the winding 30 is not wound on the core back 11 and the tooth tip portion 13, steps 11S, 13S on the core back 11 and the tooth tip portion 13 do not necessarily have to be provided.
<実施の形態の効果>
 以上説明したように、実施の形態1のステータ1は、コアバック11とティース12とを有し、ティース12には絶縁部20を介して巻線30が巻かれている。ティース12は、ティース12の軸方向端部を規定する端面12eと、スロット14に面する側面12aと、端面12eと側面12aとの間に形成された段差部12Sと、段差部12Sに設けられた中間段部12Tを有する。絶縁部20は、ティース12の端面12eを覆う第1の面201と、スロット14に面する第2の面202と、第1の面201から第2の面202まで延在する湾曲面または傾斜面である第3の面203とを有する。ティース12の端面12eから絶縁部20の第1の面201までの最短距離T1と、中間段部12Tから絶縁部20の第3の面203までの最短距離T3とは、T1>T3を満足する。
<Effects of the embodiment>
As described above, the stator 1 of the first embodiment has a core back 11 and teeth 12, and the windings 30 are wound around the teeth 12 via the insulating portion 20. The teeth 12 have end faces 12e that define the axial ends of the teeth 12, side faces 12a that face the slots 14, step portions 12S formed between the end faces 12e and the side faces 12a, and intermediate step portions 12T provided in the step portions 12S. The insulating portion 20 has a first surface 201 that covers the end faces 12e of the teeth 12, a second surface 202 that faces the slots 14, and a third surface 203 that is a curved surface or an inclined surface extending from the first surface 201 to the second surface 202. The shortest distance T1 from the end face 12e of the tooth 12 to the first surface 201 of the insulating portion 20 and the shortest distance T3 from the intermediate step portion 12T to the third surface 203 of the insulating portion 20 satisfy T1>T3.
 このようにティース12の段差部12Sに中間段部12Tが設けられているため、ティース12の断面積を大きくしながら、巻線30の巻き膨らみを抑えることができる。また、T1>T3の関係により、絶縁部20の厚さを薄くしながら強度を確保することができる。そのため、巻線30の周長を短くして銅損を低減し、且つ鉄損の増加を抑制することができる。 Since the intermediate step 12T is provided at the step 12S of the teeth 12 in this way, the cross-sectional area of the teeth 12 can be increased while suppressing the swelling of the winding 30. In addition, due to the relationship T1>T3, the thickness of the insulating part 20 can be made thin while ensuring strength. Therefore, the circumferential length of the winding 30 can be shortened to reduce copper loss and suppress an increase in iron loss.
 また中間段部12Tから絶縁部20の第3の面203までの最短距離T3と、ティース12の側面12aから絶縁部20の第2の面202までの最短距離T2とが、T3>T2を満足する。絶縁部20の第2の面202は巻線30の巻き付け工程で受ける応力が小さいため、絶縁部20の第2の面202を含む部分の厚さ(最短距離T2に相当)を薄くすることにより、スロット14内に巻線30を密に配置することができる。 Furthermore, the shortest distance T3 from the intermediate step 12T to the third surface 203 of the insulating portion 20 and the shortest distance T2 from the side surface 12a of the tooth 12 to the second surface 202 of the insulating portion 20 satisfy T3>T2. Since the second surface 202 of the insulating portion 20 receives small stress during the winding process of the winding 30, the winding 30 can be densely arranged within the slot 14 by reducing the thickness of the portion including the second surface 202 of the insulating portion 20 (corresponding to the shortest distance T2).
 また、ティース12の延在方向に直交する断面において、絶縁部20の第1の面201と第3の面203との境界を点Pとし、第2の面202と第3の面203との境界を点Qとし、点Pを通って軸方向に平行な第1の直線L1と点Qを通って軸方向に直交する第2の直線L2との交点をUとした場合、段差部12Sの軸方向の高さAと、段差部12Sの軸方向に直交する方向の幅Bと、点Pから交点Uまでの距離D1と、点Qから交点Uまでの距離D2とは、D1≦AおよびD2≦Bを満足する。すなわち、絶縁部20の点Pがティース12の端面12eに対向せず、絶縁部20の点Qがティース12の側面12aに対向しない。そのため、絶縁部20の第3の面203の曲率半径を大きくしても、厚さが局所的に薄くなる部分が生じず、絶縁部20への応力集中を抑制することができる。 Furthermore, in a cross section perpendicular to the extension direction of the teeth 12, if the boundary between the first surface 201 and the third surface 203 of the insulating portion 20 is defined as point P, the boundary between the second surface 202 and the third surface 203 is defined as point Q, and the intersection point U of a first straight line L1 that passes through point P and is parallel to the axial direction and a second straight line L2 that passes through point Q and is perpendicular to the axial direction is defined as point U, then the axial height A of the step portion 12S, the width B of the step portion 12S in a direction perpendicular to the axial direction, the distance D1 from point P to the intersection point U, and the distance D2 from point Q to the intersection point U satisfy D1≦A and D2≦B. That is, point P of the insulating portion 20 does not face the end face 12e of the teeth 12, and point Q of the insulating portion 20 does not face the side surface 12a of the teeth 12. Therefore, even if the radius of curvature of the third surface 203 of the insulating part 20 is increased, there are no locally thin areas, and stress concentration on the insulating part 20 can be suppressed.
 また、段差部12Sの高さAと幅BがA≧Bを満足するため、巻線30のスロット14内への巻き膨らみを抑制することができ、スロット14内の巻線30の配置密度を向上することができる。 In addition, because the height A and width B of the step portion 12S satisfy A ≥ B, it is possible to suppress the winding 30 from expanding into the slot 14, thereby improving the arrangement density of the winding 30 within the slot 14.
 加えて、段差部12Sの軸方向の高さAとステータコア10の軸方向の長さL1がA/L1≦0.141を満足するため、巻線30における銅損を低減すると共に、ティース12における鉄損の増加を抑えることができる。 In addition, the axial height A of the step portion 12S and the axial length L1 of the stator core 10 satisfy A/L1≦0.141, which reduces copper loss in the windings 30 and suppresses increases in iron loss in the teeth 12.
実施の形態2.
 次に、実施の形態2について説明する。実施の形態1では、ティース12の段差部12Sに1つの中間段部12Tが形成されていた。これに対し、実施の形態2では、ティース12の段差部12Sに2つ以上の中間段部12Tが形成されている。
Embodiment 2.
Next, a description will be given of embodiment 2. In embodiment 1, one intermediate step portion 12T is formed in step portion 12S of tooth 12. In contrast, in embodiment 2, two or more intermediate step portions 12T are formed in step portion 12S of tooth 12.
 まず、実施の形態2で定義する仮想湾曲面Gについて説明する。図17(A),(B)は、仮想湾曲面Gを説明するための図である。図17(A)は、段差部12Sの高さAと幅BとがA=Bを満足する場合を示し、図17(B)は、段差部12Sの高さAと幅BとがA>Bを満足する場合を示す。図17(A),(B)では、実施の形態1と同様に、段差部12Sに1つの中間段部12Tが設けられている。 First, the imaginary curved surface G defined in the second embodiment will be described. Figures 17(A) and (B) are diagrams for explaining the imaginary curved surface G. Figure 17(A) shows a case where the height A and width B of the step portion 12S satisfy A=B, and Figure 17(B) shows a case where the height A and width B of the step portion 12S satisfy A>B. In Figures 17(A) and (B), one intermediate step portion 12T is provided in the step portion 12S, as in the first embodiment.
 図17(A),(B)に示すように、仮想湾曲面Gは、絶縁部20の第3の面203と平行で、ティース12の端面12eから側面12aにかけて延在する湾曲面である。仮想湾曲面Gと絶縁部20の第3の面203との間隔は、上述した最短距離T3である。 As shown in Figures 17(A) and (B), the imaginary curved surface G is a curved surface that is parallel to the third surface 203 of the insulating portion 20 and extends from the end surface 12e of the tooth 12 to the side surface 12a. The distance between the imaginary curved surface G and the third surface 203 of the insulating portion 20 is the shortest distance T3 described above.
 図17(A)に示すようにティース12の段差部12SがA=Bを満足する場合には、中間段部12Tの断面積が最大になるのは、中間段部12Tの角部Eが、仮想湾曲面Gを2等分した点Vと一致する場合である。 As shown in FIG. 17(A), when the step portion 12S of the tooth 12 satisfies A=B, the cross-sectional area of the intermediate step portion 12T is maximum when the corner E of the intermediate step portion 12T coincides with the point V that bisects the imaginary curved surface G.
 一方、図17(B)に示すようにティース12の段差部12SがA>Bを満足する場合、中間段部12Tの断面積が最大になるのは、中間段部12Tの角部Eが仮想湾曲面Gを2等分した点Vよりもティース12の端面12e側に位置する場合である。 On the other hand, when the step portion 12S of the tooth 12 satisfies A>B as shown in FIG. 17(B), the cross-sectional area of the intermediate step portion 12T is maximum when the corner portion E of the intermediate step portion 12T is located closer to the end face 12e of the tooth 12 than the point V that bisects the imaginary curved surface G.
 逆に、ティース12の段差部12SがA<Bを満足する場合、中間段部12Tの断面積が最大になるのは、中間段部12Tの角部Eが仮想湾曲面Gを2等分した点Vよりもティース12の側面12a側に位置する場合である。 Conversely, when the step portion 12S of the tooth 12 satisfies A < B, the cross-sectional area of the intermediate step portion 12T is maximum when the corner E of the intermediate step portion 12T is located closer to the side surface 12a of the tooth 12 than the point V that bisects the imaginary curved surface G.
 実施の形態2のステータ1は、ティース12の段差部12Sに2つ以上の中間段部12Tを有し、これらの断面積が最大になるように構成されている。 The stator 1 of embodiment 2 has two or more intermediate step portions 12T in the step portion 12S of the teeth 12, and is configured so that the cross-sectional area of these is maximized.
 図18は、実施の形態2のティース12の段差部12Sを示す断面図である。図18に示した例では、ティース12の段差部12SがA>Bを満足する形状を有しており、この段差部12Sに、n個(nは2以上)の中間段部12Tが設けられている。ここでは、nは3である。 FIG. 18 is a cross-sectional view showing the step portion 12S of the tooth 12 in embodiment 2. In the example shown in FIG. 18, the step portion 12S of the tooth 12 has a shape that satisfies A>B, and n (n is 2 or more) intermediate step portions 12T are provided in this step portion 12S. Here, n is 3.
 仮想湾曲面Gを(n+1)等分した点を、ティース12の端面12e側から順に、点V1,V2…,Vnとする。ここでは、n=3であるため、仮想湾曲面Gを4等分した点を、ティース12の端面12e側から順に、点V1,V2,V3とする。 The points obtained by dividing the imaginary curved surface G into (n+1) equal parts are designated as points V1, V2, ..., Vn, in order from the end face 12e side of the teeth 12. Here, since n=3, the points obtained by dividing the imaginary curved surface G into four equal parts are designated as points V1, V2, V3, in order from the end face 12e side of the teeth 12.
 3つの中間段部12Tのうち、ティース12の端面12eに最も近い中間段部12T(中間段部12Tと称する)の断面積が最も大きくなるのは、中間段部12Tの角部E1が点V1よりもティース12の端面12e側に位置する場合である。 Of the three intermediate step portions 12T, the cross-sectional area of the intermediate step portion 12T closest to the end face 12e of the tooth 12 (referred to as intermediate step portion 12T1 ) is the largest when the corner E1 of intermediate step portion 12T1 is located closer to the end face 12e of the tooth 12 than point V1.
 また、3つの中間段部12Tのうち、ティース12の端面12eに2番目に近い中間段部12T(中間段部12Tと称する)の断面積が最も大きくなるのは、中間段部12Tの角部E2が点V2よりもティース12の端面12e側に位置する場合である。 Furthermore, among the three intermediate step portions 12T, the cross-sectional area of the intermediate step portion 12T (referred to as intermediate step portion 12T2 ) that is second closest to the end face 12e of the tooth 12 is the largest when the corner E2 of the intermediate step portion 12T2 is located closer to the end face 12e of the tooth 12 than point V2.
 また、3つの中間段部12Tのうち、ティース12の端面12eから最も遠い中間段部12T(中間段部12Tと称する)の断面積が最も大きくなるのは、中間段部12Tの角部E3が点V2よりもティース12の端面12e側に位置する場合である。 Furthermore, among the three intermediate step portions 12T, the cross-sectional area of the intermediate step portion 12T farthest from the end face 12e of the tooth 12 (referred to as intermediate step portion 12T3 ) is the largest when the corner E3 of intermediate step portion 12T3 is located closer to the end face 12e of the tooth 12 than point V2.
 このように、ティース12の段差部12Sにn個の中間段部12T~12を形成し、これらの角部E1~Enが、仮想湾曲面Gを(n+1)等分した点V1~Vnよりもティース12の端面12e側に位置する構成により、中間段部12T~12の断面積をそれぞれ最大にすることができる。 In this way, by forming n intermediate step portions 12T 1 to 12 n in the step portion 12S of the tooth 12 and positioning these corner portions E1 to En closer to the end face 12e of the tooth 12 than the points V1 to Vn obtained by equally dividing the imaginary curved surface G into (n+1) parts, the cross-sectional area of each of the intermediate step portions 12T 1 to 12 n can be maximized.
 そのため、ティース12の段差部12Sを埋める絶縁部20を少なくし、ティース12の断面積を大きくすることができる。すなわち、ティース12における磁気飽和を生じにくくし、鉄損を低減することができる。 As a result, the amount of insulating portion 20 filling the step portion 12S of the teeth 12 can be reduced, and the cross-sectional area of the teeth 12 can be increased. In other words, magnetic saturation in the teeth 12 is less likely to occur, and iron loss can be reduced.
 なお、図18には、ティース12の段差部12SがA>Bを満足する形状を有する例を示したが、段差部12SがA<Bを満足する形状を有していても良い。この場合には、中間段部12T~12の角部E1~Enが、仮想湾曲面Gを(n+1)等分した点V1~Vnよりもティース12の側面12a側に位置していればよい。 18 shows an example in which the step portion 12S of the tooth 12 has a shape that satisfies A > B, but the step portion 12S may have a shape that satisfies A < B. In this case, it is sufficient that the corners E1 to En of the intermediate step portions 12T 1 to 12 n are located closer to the side surface 12 a of the tooth 12 than the points V1 to Vn obtained by equally dividing the imaginary curved surface G into (n+1).
 次に、ティース12の中間段部12T~12と、絶縁部20の第3の面203との最短距離について説明する。実施の形態1で図10を参照して説明したように、巻線30の巻き付け工程で絶縁部20に作用する力は、第1の面201で大きく、第2の面202で小さい。 Next, a description will be given of the shortest distance between intermediate step portions 12T 1 to 12 n of teeth 12 and third surface 203 of insulating portion 20. As described in the first embodiment with reference to FIG. 10 , the force acting on insulating portion 20 in the winding process of winding 30 is large on first surface 201 and small on second surface 202.
 そのため、ティース12の中間段部12T~12と、絶縁部20の第3の面203との最短距離は、第1の面201に近いほど(すなわちティース12の端面12eに近いほど)大きく、第2の面202に近いほど(すなわちティース12の側面12aに近いほど)小さいことが望ましい。 Therefore, it is desirable that the shortest distance between the intermediate step portions 12T 1 to 12 n of the teeth 12 and the third surface 203 of the insulating portion 20 is larger the closer it is to the first surface 201 (i.e., closer to the end surfaces 12e of the teeth 12) and smaller the closer it is to the second surface 202 (i.e., closer to the side surfaces 12a of the teeth 12).
 図19は、段差部12Sに2つの中間段部12T,12Tが設けられた場合の、中間段部12T,12Tと絶縁部20の第3の面203との最短距離を説明するための図である。中間段部12T(第1の中間段部とも称する)と第3の面203との最短距離T3は、中間段部12T(第2の中間段部とも称する)と第3の面203との最短距離T4よりも大きく設定される。 19 is a diagram for explaining the shortest distance between the intermediate step portions 12T1 , 12T2 and the third surface 203 of the insulating portion 20 when two intermediate step portions 12T1 , 12T2 are provided in the step portion 12S. The shortest distance T3 between the intermediate step portion 12T1 (also referred to as the first intermediate step portion) and the third surface 203 is set to be larger than the shortest distance T4 between the intermediate step portion 12T2 (also referred to as the second intermediate step portion) and the third surface 203.
 中間段部12Tと絶縁部20の第3の面203との間には、中間段部12Tと絶縁部20の第3の面203との間よりも大きい力が作用するため、最短距離T3,T4がT3>T4を満足することにより、絶縁部20の破損を防止しながら、ティース12の断面積をより大きくすることができる。 Since a greater force acts between intermediate step portion 12T1 and the third surface 203 of insulating portion 20 than between intermediate step portion 12T2 and the third surface 203 of insulating portion 20, the shortest distances T3, T4 satisfy T3 > T4, so that the cross-sectional area of teeth 12 can be increased while preventing damage to insulating portion 20.
 上述した点を除き、実施の形態2の電動機は、実施の形態1の電動機100と同様に構成されている。 Except for the points mentioned above, the electric motor of the second embodiment is configured similarly to the electric motor 100 of the first embodiment.
 以上説明したように、実施の形態2では、ティース12の段差部12SがA>Bを満足する形状を有し、段差部12Sに形成された複数の中間段部12T~12の角部E1~Enが、仮想湾曲面Gを(n+1)等分した点V1~Vnよりもティース12の端面12e側に位置している。 As described above, in embodiment 2, the step portion 12S of the tooth 12 has a shape that satisfies A>B, and the corners E1 to En of the multiple intermediate step portions 12T 1 to 12 n formed in the step portion 12S are located closer to the end face 12e of the tooth 12 than the points V1 to Vn obtained by equally dividing the imaginary curved surface G into (n+1) parts.
 この構成により、ティース12の断面積をより大きくすることができ、ティース12における磁気飽和を抑制して鉄損を低減することができる。 This configuration allows the cross-sectional area of the teeth 12 to be increased, suppressing magnetic saturation in the teeth 12 and reducing iron loss.
実施の形態3.
 次に、実施の形態3について説明する。実施の形態1では、ステータ1の軸方向の両端部に段差部12Sが形成されていた。これに対し、実施の形態3では、ステータ1の軸方向の一端部にのみ段差部12Sが形成されている。
Embodiment 3.
Next, a description will be given of embodiment 3. In embodiment 1, the step portions 12S are formed at both axial ends of the stator 1. In contrast, in embodiment 3, the step portion 12S is formed only at one axial end of the stator 1.
 図20は、実施の形態3の電動機のステータコア10とロータコア50との関係を示す図である。図20では、軸方向において、圧縮機8の圧縮機構9(図26)に向かう方向を-Z方向とし、その反対方向を+Z方向で示す。 FIG. 20 is a diagram showing the relationship between the stator core 10 and rotor core 50 of the electric motor of embodiment 3. In FIG. 20, the axial direction toward the compression mechanism 9 of the compressor 8 (FIG. 26) is shown as the -Z direction, and the opposite direction is shown as the +Z direction.
 ロータコア50の+Z方向の端面50eは、ステータコア10の+Z方向の端面10eよりも+Z方向に位置している。ロータコア50の-Z方向の端面50eは、ステータコア10の-Z方向の端面10eよりも+Z方向に位置している。 The +Z end face 50e of the rotor core 50 is located further in the +Z direction than the +Z end face 10e of the stator core 10. The -Z end face 50e of the rotor core 50 is located further in the +Z direction than the -Z end face 10e of the stator core 10.
 言い換えると、ロータコア50は、ステータコア10よりも+Z方向に突出している。すなわち、ロータコア50の軸方向の中心位置は、ステータコア10の軸方向の中心位置よりも+Z方向に変位している。 In other words, the rotor core 50 protrudes in the +Z direction from the stator core 10. That is, the axial center position of the rotor core 50 is displaced in the +Z direction from the axial center position of the stator core 10.
 そのため、ステータコア10とロータコア50との間に、両者の中心位置を軸方向に接近させる方向に磁気吸引力が作用する。この磁気吸引力により、ロータ5が-Z方向すなわち圧縮機構9側に付勢され、ロータ5の振動が抑制される。 As a result, a magnetic attraction force acts between the stator core 10 and the rotor core 50 in a direction that brings the center positions of both closer together in the axial direction. This magnetic attraction force urges the rotor 5 in the -Z direction, i.e., toward the compression mechanism 9, suppressing vibration of the rotor 5.
 実施の形態3のティース12の+Z方向の端部には、段差部12Sが形成されていない。一方、ティース12の-Z方向の端部には、段差部12Sが形成され、中間段部12T(図7)も形成されている。段差部12Sおよび中間段部12Tの構成は、実施の形態1で説明した通りである。 In the third embodiment, the +Z-direction end of the tooth 12 does not have a step portion 12S. On the other hand, the -Z-direction end of the tooth 12 has a step portion 12S and also has an intermediate step portion 12T (Figure 7). The configuration of the step portion 12S and the intermediate step portion 12T is as described in the first embodiment.
 ティース12の段差部12Sの軸方向の長さは、実施の形態1で説明した通り、高さAである。ステータコア10の-Z方向の端面10eから軸方向に高さAのコア領域R1のうち、ロータコア50と対向する領域の軸方向の長さを、L1とする。なお、コア領域R1は第1の領域、コア領域R2は第2の領域とも称する。 The axial length of the step portion 12S of the teeth 12 is height A, as explained in the first embodiment. The axial length of the area of the core region R1, which is at height A in the axial direction from the -Z end face 10e of the stator core 10, that faces the rotor core 50 is L1. Core region R1 is also referred to as the first region, and core region R2 is also referred to as the second region.
 同様に、ステータコア10の+Z方向の端面10eから軸方向に高さAのコア領域R2のうち、ロータコア50と対向する領域の軸方向の長さを、L2とする。 Similarly, the axial length of the core region R2, which is at height A in the axial direction from the end face 10e of the stator core 10 in the +Z direction, that faces the rotor core 50 is defined as L2.
 ステータコア10のコア領域R1,R2において、ロータコア50との対向領域の長さL1,L2は、L1<L2を満足する。言い換えると、ティース12の段差部12Sは、ステータコア10の軸方向両端に同じ高さAのコア領域R1,R2を規定した場合に、コア領域R1,R2におけるロータコア50との対向領域の割合が小さい側に形成されている。 In the core regions R1, R2 of the stator core 10, the lengths L1, L2 of the facing region with the rotor core 50 satisfy L1 < L2. In other words, when the core regions R1, R2 of the same height A are defined at both axial ends of the stator core 10, the step portions 12S of the teeth 12 are formed on the side where the proportion of the facing region with the rotor core 50 in the core regions R1, R2 is smaller.
 ステータコア10のコア領域R2では、ロータコア50との対向領域の割合が大きいため、ロータ5からの磁束がより多く流入する。そのため、ティース12のコア領域R2に段差部12Sを設けると、磁気飽和が生じ易くなり、鉄損が増加する可能性がある。 In core region R2 of stator core 10, the proportion of the area facing rotor core 50 is large, so more magnetic flux flows in from rotor 5. Therefore, if step portion 12S is provided in core region R2 of teeth 12, magnetic saturation is more likely to occur, and iron loss may increase.
 そこで、実施の形態3では、ロータコア50からの流入磁束の少ないコア領域R1においてのみ、ティース12に段差部12Sを設け、さらに中間段部12Tを設けている。すなわち、ステータコア10の-Z方向の端部においてのみ、ティース12に段差部12Sおよび中間段部12Tを設けている。また、図示は省略するが、コアバック11の段差部11Sおよび歯先部13の段差部13Sも、ステータコア10の-Z方向の端部のみに設けられている。 In view of this, in the third embodiment, the teeth 12 are provided with step portions 12S and intermediate step portions 12T only in the core region R1 where the inflow magnetic flux from the rotor core 50 is small. In other words, the teeth 12 are provided with step portions 12S and intermediate step portions 12T only at the end of the stator core 10 in the -Z direction. In addition, although not shown in the figure, the step portions 11S of the core back 11 and the step portions 13S of the tooth tips 13 are also provided only at the end of the stator core 10 in the -Z direction.
 上述した点を除き、実施の形態3の電動機は、実施の形態1の電動機100と同様に構成されている。 Except for the points mentioned above, the electric motor of the third embodiment is configured similarly to the electric motor 100 of the first embodiment.
 以上説明したように、実施の形態3では、ステータコア10の軸方向両端部のうち、軸方向長さを同一とした場合にロータコア50との対向領域が小さい方の端部において、ティース12に段差部12Sおよび中間段部12Tが設けられている。そのため、ティース12における磁気飽和を抑制しながら、巻線30の周長を短くし、銅損を低減することができる。 As described above, in the third embodiment, the teeth 12 are provided with a step portion 12S and an intermediate step portion 12T at the end of the stator core 10 in the axial direction that faces the rotor core 50 in a smaller area when the axial length is the same. This makes it possible to reduce the circumferential length of the windings 30 and reduce copper loss while suppressing magnetic saturation in the teeth 12.
変形例.
 図21は、実施の形態3の変形例におけるステータコア10とロータコア50との関係を示す図である。変形例では、ロータコア50がステータコア10から軸方向両側、すなわち+Z方向と-Z方向に突出している。但し、ロータコア50の+Z方向の突出量Z2が-Z方向の突出量Z1よりも大きい。
Variant examples.
21 is a diagram showing the relationship between stator core 10 and rotor core 50 in a modification of embodiment 3. In this modification, rotor core 50 protrudes from stator core 10 on both axial sides, i.e., in the +Z and −Z directions. However, the amount of protrusion Z2 of rotor core 50 in the +Z direction is greater than the amount of protrusion Z1 in the −Z direction.
 このようにロータコア50がステータコア10から軸方向両側に突出した構成により、ステータコア10の軸方向長さを短くし、ステータコア10の材料コストを低減することができる。 In this manner, the rotor core 50 protrudes from the stator core 10 on both axial sides, thereby shortening the axial length of the stator core 10 and reducing the material costs of the stator core 10.
 一方、ステータコア10には、ロータコア50の突出部分からの磁束も流入する。そのため、ステータコア10の+Z方向の端部には、ステータコア10の-Z方向の端部と比較して、ロータコア50からの磁束がより多く流入する。 Meanwhile, magnetic flux also flows into the stator core 10 from the protruding portion of the rotor core 50. Therefore, more magnetic flux from the rotor core 50 flows into the +Z end of the stator core 10 compared to the -Z end of the stator core 10.
 そこで、変形例では、ロータコア50からの流入磁束の少ないステータコア10の-Z方向の端部でのみ、ティース12に段差部12Sが設けられ、また中間段部12Tが設けられている。また、図示は省略するが、コアバック11の段差部11Sおよび歯先部13の段差部13Sも、ステータコア10の-Z方向の端部のみに設けられている。 In this modified example, the teeth 12 are provided with step portions 12S and intermediate step portions 12T only at the -Z direction end of the stator core 10 where the inflow of magnetic flux from the rotor core 50 is small. In addition, although not shown in the figure, the step portions 11S of the core back 11 and the step portions 13S of the tooth tips 13 are also provided only at the -Z direction end of the stator core 10.
 この変形例においても、実施の形態3と同様、ティース12における磁気飽和を抑制しながら、巻線30の周長を短くし、銅損を低減することができる。 In this modified example, as in the third embodiment, it is possible to reduce the circumferential length of the winding 30 and reduce copper loss while suppressing magnetic saturation in the teeth 12.
実施の形態4.
 次に、実施の形態4について説明する。図22は、実施の形態4の分割コア15およびインシュレータ40を示す斜視図である。実施の形態4では、分割コア15の端面10eにインシュレータ40が設けられ、ティース12の側面12aに絶縁フィルム70(図23)が設けられる。
Embodiment 4.
Next, a fourth embodiment will be described. Fig. 22 is a perspective view showing a split core 15 and an insulator 40 according to the fourth embodiment. In the fourth embodiment, the insulator 40 is provided on the end face 10e of the split core 15, and an insulating film 70 (Fig. 23) is provided on the side face 12a of the tooth 12.
 分割コア15のティース12の形状は、実施の形態1で説明した通りである。但し、コアバック11には、嵌合穴101が形成されている。各分割コア15のコアバック11に、2つ以上の嵌合穴101が設けられていることが望ましい。各嵌合穴101が、コアバック11の外周部に形成されていれば、さらに望ましい。 The shape of the teeth 12 of the split core 15 is as described in the first embodiment. However, the core back 11 has a fitting hole 101 formed therein. It is preferable that the core back 11 of each split core 15 has two or more fitting holes 101. It is even more preferable that each fitting hole 101 is formed on the outer periphery of the core back 11.
 図22に示した例では、2つの嵌合穴101が、ティース12に対して周方向の両側に形成されている。より具体的には、コアバック11に形成された2つの切欠き18bの径方向内側に隣接して、嵌合穴101がそれぞれ形成されている。 In the example shown in FIG. 22, two fitting holes 101 are formed on both circumferential sides of the teeth 12. More specifically, the fitting holes 101 are formed adjacent to the radially inner sides of the two notches 18b formed in the core back 11.
 インシュレータ40は、例えば、ポリブチレンテレフタレート(PBT)、液晶ポリマー(LCP)等の樹脂で構成される。インシュレータ40は、ティース12に取り付けられる胴部41と、コアバック11に取り付けられる壁部42と、歯先部13に取り付けられるフランジ部43とを有する。 The insulator 40 is made of a resin such as polybutylene terephthalate (PBT) or liquid crystal polymer (LCP). The insulator 40 has a body portion 41 attached to the teeth 12, a wall portion 42 attached to the core back 11, and a flange portion 43 attached to the tooth tip portion 13.
 胴部41は、ティース12の端面12e上に設けられる。胴部41は、また、ティース12の段差部12Sに係合する係合部41a(図23)を有する。胴部41は、軸方向を向く第1の面401と、スロット14に面する第2の面402と、第1の面401から第2の面402まで延在する第3の面403とを有する。 The body portion 41 is provided on the end surface 12e of the tooth 12. The body portion 41 also has an engagement portion 41a (FIG. 23) that engages with the step portion 12S of the tooth 12. The body portion 41 has a first surface 401 facing the axial direction, a second surface 402 facing the slot 14, and a third surface 403 extending from the first surface 401 to the second surface 402.
 壁部42は、コアバック11の端面11e上に設けられる。壁部42は、また、コアバック11の段差部11Sに係合する係合部42aを有する。壁部42のコアバック11に対向する側には、嵌合部としての2つのピン44が形成されている。ピン44は、コアバック11に形成された嵌合穴101に係合する。 The wall portion 42 is provided on the end surface 11e of the core back 11. The wall portion 42 also has an engagement portion 42a that engages with the step portion 11S of the core back 11. Two pins 44 are formed as fitting portions on the side of the wall portion 42 facing the core back 11. The pins 44 engage with fitting holes 101 formed in the core back 11.
 フランジ部43は、歯先部13の端面13e上に設けられる。フランジ部43は、また、歯先部13の段差部13Sに係合する係合部43aを有する。 The flange portion 43 is provided on the end face 13e of the tooth tip portion 13. The flange portion 43 also has an engagement portion 43a that engages with the step portion 13S of the tooth tip portion 13.
 インシュレータ40は、壁部42のピン44とコアバック11の嵌合穴101との嵌合により、分割コア15に固定される。インシュレータ40の胴部41には巻線30が巻かれる。壁部42およびフランジ部43は、胴部41に巻かれた巻線30をガイドする。 The insulator 40 is fixed to the split core 15 by fitting the pin 44 of the wall portion 42 into the fitting hole 101 of the core back 11. The winding 30 is wound around the body portion 41 of the insulator 40. The wall portion 42 and the flange portion 43 guide the winding 30 wound around the body portion 41.
 インシュレータ40には、巻線30の巻き付け時に力が作用するため、分割コア15に対してインシュレータ40が位置ずれしないように固定する必要がある。インシュレータ40の係合部41aとティース12の段差部12Sとの係合だけで十分な固定力を得ようとすると、ティース12の段差部12Sを大きくしなければならず、ティース12の断面積が減少する。 Because force is applied to the insulator 40 when the winding 30 is wound, it is necessary to fix the insulator 40 to prevent it from shifting position relative to the split core 15. If sufficient fixing force is to be obtained only by the engagement between the engagement portion 41a of the insulator 40 and the step portion 12S of the tooth 12, the step portion 12S of the tooth 12 must be made larger, which reduces the cross-sectional area of the tooth 12.
 そのため、インシュレータ40には、嵌合部としてのピン44が設けられている。但し、インシュレータ40のピン44の数が1つだけの場合、インシュレータ40の捩じり方向の力(すなわち、ティース12の延在方向に対して胴部41の延在方向を傾斜させる力)に対抗することが難しい。 For this reason, the insulator 40 is provided with a pin 44 as a fitting portion. However, if the insulator 40 only has one pin 44, it is difficult to resist the force in the torsional direction of the insulator 40 (i.e., the force that tilts the extension direction of the body portion 41 relative to the extension direction of the teeth 12).
 この実施の形態4では、上記の通り、インシュレータ40(より具体的には、壁部42)に2つのピン44を設けている。そのため、インシュレータ40を十分な強度で分割コア15に固定することができ、巻線30の巻き付け時における位置ずれを抑制することができる。 In this fourth embodiment, as described above, two pins 44 are provided on the insulator 40 (more specifically, the wall portion 42). This allows the insulator 40 to be fixed to the split core 15 with sufficient strength, and prevents misalignment when winding the winding 30.
 また、インシュレータ40のピン44に嵌合する嵌合穴101は、コアバック11の外周部に形成されている。コアバック11では、スロット14に近い内周側ほど磁束の流れが多いため、嵌合穴101がコアバック11の外周部に形成されていれば、磁束の流れへの影響が少ない。そのため、コアバック11内における鉄損の増加を抑制することができる。 In addition, the fitting holes 101 that fit onto the pins 44 of the insulator 40 are formed on the outer periphery of the core back 11. In the core back 11, the flow of magnetic flux is greater on the inner periphery closer to the slots 14. Therefore, if the fitting holes 101 are formed on the outer periphery of the core back 11, there is less effect on the flow of magnetic flux. Therefore, it is possible to suppress an increase in iron loss in the core back 11.
 図22では、コアバック11の切欠き18bの径方向内側に嵌合穴101を形成したが、切欠き18bを嵌合穴として利用してもよい。また、コアバック11の外周部であれば、他の箇所に切欠き18bを形成してもよい。但し、コアバック11の凸部17a,17bは圧縮機のシェル等に嵌合する当接部分であるため、嵌合穴101はこれらの凸部17a,17b以外に形成することが望ましい。 In FIG. 22, the fitting hole 101 is formed radially inside the notch 18b of the core back 11, but the notch 18b may be used as the fitting hole. Also, the notch 18b may be formed in another location on the outer periphery of the core back 11. However, since the protrusions 17a, 17b of the core back 11 are abutment parts that fit into the shell of the compressor, etc., it is preferable to form the fitting hole 101 somewhere other than these protrusions 17a, 17b.
 図23は、実施の形態4のティース12、インシュレータ40および絶縁フィルム70の、ティース12の延在方向に直交する面における断面図である。 FIG. 23 is a cross-sectional view of the teeth 12, insulator 40, and insulating film 70 of embodiment 4, taken along a plane perpendicular to the extension direction of the teeth 12.
 絶縁フィルム70は、例えば、ポリエチレンテレフタレート(PET)等の樹脂で形成されたフィルムである。絶縁フィルム70の厚さは、例えば、0.35mmである。 The insulating film 70 is, for example, a film made of a resin such as polyethylene terephthalate (PET). The thickness of the insulating film 70 is, for example, 0.35 mm.
 絶縁フィルム70は、コアバック11の内周面11a(図22)、ティース12の側面12aおよび歯先部13の外側面13a(図22)を覆うように設けられる。言い換えると、絶縁フィルム70は、スロット14の内面を覆うように設けられる。 The insulating film 70 is provided so as to cover the inner peripheral surface 11a (FIG. 22) of the core back 11, the side surface 12a of the teeth 12, and the outer surface 13a (FIG. 22) of the tooth tip portion 13. In other words, the insulating film 70 is provided so as to cover the inner surface of the slot 14.
 絶縁フィルム70は、ティース12の側面12aを覆うだけでなく、インシュレータ40の第2の面402を覆うように延在している。言い換えると、絶縁フィルム70は、ティース12の側面12aからさらに軸方向に突出している。 The insulating film 70 not only covers the side surface 12a of the tooth 12, but also extends to cover the second surface 402 of the insulator 40. In other words, the insulating film 70 protrudes further in the axial direction from the side surface 12a of the tooth 12.
 インシュレータ40では、第3の面403が、第2の面402よりもスロット14側に突出している。言い換えると、インシュレータ40には、絶縁フィルム70の端面を覆う庇状の覆い部405が形成されている。 In the insulator 40, the third surface 403 protrudes toward the slot 14 side more than the second surface 402. In other words, the insulator 40 is formed with a canopy-shaped cover portion 405 that covers the end surface of the insulating film 70.
 実施の形態4では、インシュレータ40と絶縁フィルム70とで絶縁部を構成しているため、ティース12から巻線30までの絶縁距離を確保する必要がある。絶縁距離は、絶縁体の表面に沿って測定した導電体間の最短距離であり、沿面距離とも称する。 In the fourth embodiment, since the insulating portion is made up of the insulator 40 and the insulating film 70, it is necessary to ensure an insulation distance from the teeth 12 to the windings 30. The insulation distance is the shortest distance between conductors measured along the surface of the insulator, and is also called the creepage distance.
 絶縁フィルム70の段差部12Sの底面12cからの軸方向の突出量を、Hとする。絶縁フィルム70の突出量Hは、ティース12から巻線30までの沿面距離以上に設定される。絶縁距離は、例えば2.5mmである。 The amount of axial protrusion of the insulating film 70 from the bottom surface 12c of the step portion 12S is defined as H. The amount of protrusion H of the insulating film 70 is set to be equal to or greater than the creepage distance from the teeth 12 to the windings 30. The insulation distance is, for example, 2.5 mm.
 実施の形態4では、ティース12が段差部12Sを有し、絶縁フィルム70の一部がインシュレータ40の第2の面402に沿って延在するため、インシュレータ40を大きくしなくても、絶縁フィルム70の軸方向の突出量Hを大きくし、絶縁距離を確保することができる。従って巻線30の周長を短くし、銅損を低減することができる。 In the fourth embodiment, the teeth 12 have step portions 12S, and a portion of the insulating film 70 extends along the second surface 402 of the insulator 40, so that the axial protrusion amount H of the insulating film 70 can be increased and an insulating distance can be ensured without increasing the size of the insulator 40. This allows the circumferential length of the winding 30 to be shortened, and copper loss to be reduced.
 上述した点を除き、実施の形態4の電動機は、実施の形態1の電動機100と同様に構成されている。 Except for the points mentioned above, the electric motor of the fourth embodiment is configured similarly to the electric motor 100 of the first embodiment.
 以上説明したように、実施の形態4では、ティース12毎にインシュレータ40が設けられ、各インシュレータ40に嵌合部としての2つ以上のピン44が設けられ、コアバック11にピン44が嵌合する2つ以上の嵌合穴101が形成されている。そのため、巻線30の巻き付け時に作用する外力によるインシュレータ40の位置ずれを抑制することができる。 As described above, in the fourth embodiment, an insulator 40 is provided for each tooth 12, two or more pins 44 are provided as fitting portions on each insulator 40, and two or more fitting holes 101 into which the pins 44 fit are formed in the core back 11. Therefore, it is possible to suppress misalignment of the insulator 40 due to an external force acting when winding the winding 30.
 また、嵌合穴101が、コアバック11の外周部において、シェルとの当接部分以外の箇所に形成されているため、嵌合穴101がコアバック11内の磁束に与える影響を抑えることができる。 In addition, since the fitting holes 101 are formed at locations on the outer periphery of the core back 11 other than the contact area with the shell, the effect of the fitting holes 101 on the magnetic flux inside the core back 11 can be reduced.
 また、ティース12の側面12aを覆う絶縁フィルム70が設けられているため、インシュレータ40と絶縁フィルム70により、巻線30とステータコア10とを絶縁することができる。 In addition, an insulating film 70 is provided to cover the side surface 12a of the teeth 12, so the insulator 40 and the insulating film 70 can insulate the winding 30 from the stator core 10.
 特に、絶縁フィルム70が、ティース12の側面12aだけでなく、インシュレータ40の一部(より具体的には第2の面402)も覆うように延在しているため、インシュレータ40を大型化することなく、十分な絶縁距離を確保することができる。 In particular, since the insulating film 70 extends to cover not only the side surface 12a of the teeth 12 but also a portion of the insulator 40 (more specifically, the second surface 402), a sufficient insulating distance can be ensured without increasing the size of the insulator 40.
変形例.
 図24は、実施の形態4の変形例のティース12、インシュレータ40および絶縁フィルム70を示す断面図である。図24には、ティース12に巻き付けられる巻線30も併せて示している。
Variant examples.
Fig. 24 is a cross-sectional view showing a tooth 12, an insulator 40, and an insulating film 70 according to a modification of the fourth embodiment. Fig. 24 also shows a winding 30 wound around the tooth 12.
 実施の形態4では、ティース12の軸方向の中央部125の幅W4が、ティース12の他の部分の幅(すなわち、実施の形態1で説明した幅W1,W2,W3)よりも広い。 In embodiment 4, the width W4 of the axial center portion 125 of the tooth 12 is wider than the width of the other portions of the tooth 12 (i.e., the widths W1, W2, and W3 described in embodiment 1).
 絶縁フィルム70は可撓性を有するため、ティース12の中央部125の側面と、その軸方向両側の側面12aに沿って湾曲させて配置することができる。 The insulating film 70 is flexible, so it can be curved and positioned along the side of the central portion 125 of the tooth 12 and along the side surfaces 12a on both axial sides of the central portion 125.
 上述した実施の形態1~4で説明した構成では、巻線30の巻き膨らみの抑制により、ティース12の側面12aと巻線30との隙間を最小限に抑えることができる。但し、巻線30の巻き膨らみは0にはできないため、ティース12の軸方向中央部では、ティース12の側面12aと巻線30との間に僅かな隙間が生じる場合がある。 In the configurations described in the above-mentioned embodiments 1 to 4, the gap between the side surface 12a of the teeth 12 and the winding 30 can be minimized by suppressing the winding bulge of the winding 30. However, since the winding bulge of the winding 30 cannot be reduced to zero, a small gap may occur between the side surface 12a of the teeth 12 and the winding 30 in the axial center of the teeth 12.
 実施の形態4の変形例では、巻線30の巻き膨らみ量を考慮し、ティース12の軸方向の中央部125の幅W4を、ティース12の他の部分の幅T1よりも広くしている。これにより、巻線30の巻き膨らみによって生じるスペースを利用してティース12の断面積を大きくすることができる。そのため、ティース12における磁気飽和を抑制し、鉄損を低減することができる。 In a modification of the fourth embodiment, the width W4 of the axial center portion 125 of the teeth 12 is made wider than the width T1 of the other portions of the teeth 12, taking into account the amount of swelling of the windings 30. This makes it possible to increase the cross-sectional area of the teeth 12 by utilizing the space created by the swelling of the windings 30. This makes it possible to suppress magnetic saturation in the teeth 12 and reduce iron loss.
 上述した実施の形態1~4および各変形例では、絶縁部20(40)の第3の面203(403)が湾曲面であった。しかしながら、絶縁部20(40)の第3の面203(403)は、湾曲面に限らず、少なくとも一つの傾斜面で形成しても良い。 In the above-described first to fourth embodiments and each of the modified examples, the third surface 203 (403) of the insulating portion 20 (40) is a curved surface. However, the third surface 203 (403) of the insulating portion 20 (40) is not limited to a curved surface, and may be formed of at least one inclined surface.
 例えば、図25に示した絶縁部20は、ティース12の端面12eに対向する第1の面201と、ティース12の側面12aに対向する第2の面202と、第1の面201から第2の面202まで延在する第3の面205とを有する。第3の面205は、第1の傾斜面211と第2の傾斜面212との組み合わせで形成されている。 For example, the insulating portion 20 shown in FIG. 25 has a first surface 201 facing the end surface 12e of the tooth 12, a second surface 202 facing the side surface 12a of the tooth 12, and a third surface 205 extending from the first surface 201 to the second surface 202. The third surface 205 is formed by a combination of a first inclined surface 211 and a second inclined surface 212.
 第1の傾斜面211と第2の傾斜面212との接続部分は、中間段部12Tの角部Eに対抗している。なお、傾斜面とは、ティース12の端面12eおよび側面12aに対して傾斜した平面を言う。 The connection between the first inclined surface 211 and the second inclined surface 212 faces the corner E of the intermediate step portion 12T. Note that the inclined surface refers to a plane that is inclined with respect to the end surface 12e and the side surface 12a of the tooth 12.
 図25には、2つの傾斜面で形成された第3の面205を示したが、第3の面205は1つの傾斜面で形成してもよく、3つ以上の傾斜面の組み合わせで形成してもよい。 FIG. 25 shows the third surface 205 formed by two inclined surfaces, but the third surface 205 may be formed by a single inclined surface or a combination of three or more inclined surfaces.
 実施の形態1~4および各変形例は、適宜、組み合わせることが可能である。例えば、実施の形態3で説明したようにティース12の軸方向一端のみに設けられた段差部12Sに、実施の形態2で説明した2以上の中間段部12Tを設けてもよい。あるいは、実施の形態2で説明したように段差部12Sに2以上の中間段部12Tを設けたティース12と、実施の形態4で説明したインシュレータ40および絶縁フィルム70とを組み合わせてもよい。 Embodiments 1 to 4 and the various modifications can be combined as appropriate. For example, as described in embodiment 3, a step 12S provided at only one axial end of a tooth 12 may be provided with two or more intermediate steps 12T as described in embodiment 2. Alternatively, a tooth 12 having two or more intermediate steps 12T provided at a step 12S as described in embodiment 2 may be combined with an insulator 40 and insulating film 70 as described in embodiment 4.
<圧縮機>
 次に、電動機100を用いた圧縮機8について説明する。図26は、圧縮機8の構成を示す断面図である。圧縮機8は、ここではロータリー圧縮機であり、シェル80と、シェル80内に配設された圧縮機構9と、圧縮機構9を駆動する電動機100と、電動機100と圧縮機構9とを動力伝達可能に連結するシャフト90とを有する。シャフト90は、図1等に示したシャフト90であり、電動機100のロータ5の中心孔53に嵌合する。
<Compressor>
Next, the compressor 8 using the electric motor 100 will be described. Fig. 26 is a cross-sectional view showing the configuration of the compressor 8. The compressor 8 is a rotary compressor here, and has a shell 80, a compression mechanism 9 disposed in the shell 80, an electric motor 100 that drives the compression mechanism 9, and a shaft 90 that connects the electric motor 100 and the compression mechanism 9 so as to be capable of transmitting power. The shaft 90 is the shaft 90 shown in Fig. 1 etc., and is fitted into the central hole 53 of the rotor 5 of the electric motor 100.
 シェル80は、例えば鋼板で形成された密閉容器であり、電動機100および圧縮機構9を覆う。シェル80は、上部シェル80aと下部シェル80bとを有している。上部シェル80aには、圧縮機8の外部から電動機100に電力を供給するための端子部としてのガラス端子81と、圧縮機8内で圧縮された冷媒を外部に吐出するための吐出管85とが取り付けられている。下部シェル80bには、電動機100および圧縮機構9が収容されている。 The shell 80 is a sealed container made of, for example, steel plate, and covers the electric motor 100 and the compression mechanism 9. The shell 80 has an upper shell 80a and a lower shell 80b. The upper shell 80a is fitted with a glass terminal 81 as a terminal part for supplying power to the electric motor 100 from outside the compressor 8, and a discharge pipe 85 for discharging the refrigerant compressed in the compressor 8 to the outside. The lower shell 80b houses the electric motor 100 and the compression mechanism 9.
 圧縮機構9は、シャフト90に沿って、環状の第1シリンダ91および第2シリンダ92を有している。第1シリンダ91および第2シリンダ92は、下部シェル80bの内周部に固定されている。第1シリンダ91の内周側には、環状の第1ピストン93が配置され、第2シリンダ92の内周側には、環状の第2ピストン94が配置されている。第1ピストン93および第2ピストン94は、シャフト90と共に回転するロータリーピストンである。 The compression mechanism 9 has an annular first cylinder 91 and a second cylinder 92 along the shaft 90. The first cylinder 91 and the second cylinder 92 are fixed to the inner periphery of the lower shell 80b. An annular first piston 93 is disposed on the inner periphery of the first cylinder 91, and an annular second piston 94 is disposed on the inner periphery of the second cylinder 92. The first piston 93 and the second piston 94 are rotary pistons that rotate together with the shaft 90.
 第1シリンダ91と第2シリンダ92との間には、仕切板97が設けられている。仕切板97は、中央に貫通穴を有する円板状の部材である。第1シリンダ91および第2シリンダ92のシリンダ室には、シリンダ室を吸入側と圧縮側とに分けるベーン(図示せず)が設けられている。第1シリンダ91、第2シリンダ92および仕切板97は、ボルト98によって一体に固定されている。 A partition plate 97 is provided between the first cylinder 91 and the second cylinder 92. The partition plate 97 is a disk-shaped member with a through hole in the center. The cylinder chambers of the first cylinder 91 and the second cylinder 92 are provided with vanes (not shown) that divide the cylinder chambers into an intake side and a compression side. The first cylinder 91, the second cylinder 92, and the partition plate 97 are fixed together by bolts 98.
 第1シリンダ91の上側には、第1シリンダ91のシリンダ室の上側を塞ぐように、上部フレーム95が配置されている。第2シリンダ92の下側には、第2シリンダ92のシリンダ室の下側を塞ぐように、下部フレーム96が配置されている。上部フレーム95および下部フレーム96は、シャフト90を回転可能に支持している。 An upper frame 95 is disposed above the first cylinder 91 so as to close the upper side of the cylinder chamber of the first cylinder 91. A lower frame 96 is disposed below the second cylinder 92 so as to close the lower side of the cylinder chamber of the second cylinder 92. The upper frame 95 and the lower frame 96 rotatably support the shaft 90.
 シェル80の下部シェル80bの底部には、圧縮機構9の各摺動部を潤滑する冷凍機油(図示せず)が貯留されている。冷凍機油は、シャフト90の内部に軸方向に形成された孔90a内を上昇し、シャフト90の複数箇所に形成された給油孔90bから各摺動部に供給される。 Refrigeration oil (not shown) that lubricates each sliding part of the compression mechanism 9 is stored in the bottom of the lower shell 80b of the shell 80. The refrigeration oil rises through a hole 90a formed in the axial direction inside the shaft 90, and is supplied to each sliding part from oil supply holes 90b formed in multiple places on the shaft 90.
 電動機100のステータ1は、焼き嵌めによりシェル80の内側に取り付けられている。ステータ1の巻線30には、上部シェル80aに取り付けられたガラス端子81から電力が供給される。ロータ5の中心孔53(図1)には、シャフト90が固定されている。 The stator 1 of the electric motor 100 is attached to the inside of the shell 80 by shrink fitting. Electricity is supplied to the windings 30 of the stator 1 from glass terminals 81 attached to the upper shell 80a. A shaft 90 is fixed in the central hole 53 of the rotor 5 (Figure 1).
 シェル80には、冷媒ガスを貯蔵するアキュムレータ87が取り付けられている。アキュムレータ87は、例えば、下部シェル80bの外側に設けられた保持部80cによって保持されている。シェル80には、一対の吸入パイプ88,89が取り付けられ、この吸入パイプ88,89を介してアキュムレータ87からシリンダ91,92に冷媒ガスが供給される。 An accumulator 87 that stores refrigerant gas is attached to the shell 80. The accumulator 87 is held, for example, by a holding portion 80c provided on the outside of the lower shell 80b. A pair of suction pipes 88, 89 are attached to the shell 80, and refrigerant gas is supplied from the accumulator 87 to the cylinders 91, 92 via the suction pipes 88, 89.
 冷媒としては、例えば、R410A、R407CまたはR22等を用いてもよいが、地球温暖化防止の観点からは、低GWP(地球温暖化係数)の冷媒を用いることが望ましい。低GWPの冷媒としては、例えば、以下の冷媒を用いることができる。 As a refrigerant, for example, R410A, R407C, or R22, etc. may be used, but from the perspective of preventing global warming, it is desirable to use a refrigerant with a low GWP (global warming potential). For example, the following refrigerants can be used as low GWP refrigerants.
(1)まず、組成中に炭素の二重結合を有するハロゲン化炭化水素、例えばHFO(Hydro-Fluoro-Orefin)-1234yf(CFCF=CH)を用いることができる。HFO-1234yfのGWPは4である。
(2)また、組成中に炭素の二重結合を有する炭化水素、例えばR1270(プロピレン)を用いてもよい。R1270のGWPは3であり、HFO-1234yfより低いが、可燃性はHFO-1234yfより高い。
(3)また、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくとも何れかを含む混合物、例えばHFO-1234yfとR32との混合物を用いてもよい。上述したHFO-1234yfは低圧冷媒のため圧損が大きくなる傾向があり、冷凍サイクル(特に蒸発器)の性能低下を招く可能性がある。そのため、HFO-1234yfよりも高圧冷媒であるR32またはR41との混合物を用いることが実用上は望ましい。
(1) First, a halogenated hydrocarbon having a carbon double bond in its composition, such as HFO (Hydro-Fluoro-Orefin)-1234yf (CF 3 CF═CH 2 ), can be used. The GWP of HFO-1234yf is 4.
(2) Hydrocarbons having carbon double bonds in their composition, such as R1270 (propylene), may also be used. R1270 has a GWP of 3, which is lower than HFO-1234yf, but is more flammable than HFO-1234yf.
(3) Also, a mixture containing at least one of a halogenated hydrocarbon having a carbon-carbon double bond in its composition or a hydrocarbon having a carbon-carbon double bond in its composition, for example, a mixture of HFO-1234yf and R32 may be used. The above-mentioned HFO-1234yf is a low-pressure refrigerant and tends to cause large pressure loss, which may lead to a decrease in the performance of the refrigeration cycle (especially the evaporator). For this reason, it is practically preferable to use a mixture of HFO-1234yf and R32 or R41, which are refrigerants with a higher pressure than HFO-1234yf.
 圧縮機8の基本動作は、以下の通りである。アキュムレータ87から供給された冷媒ガスは、吸入パイプ88,89を通って第1シリンダ91および第2シリンダ92の各シリンダ室に供給される。電動機100が駆動されてロータ5が回転すると、ロータ5と共にシャフト90が回転する。そして、シャフト90に嵌合する第1ピストン93および第2ピストン94が各シリンダ室内で偏心回転し、各シリンダ室内で冷媒を圧縮する。圧縮された冷媒は、ロータ5の穴部57,58(図1)を通ってシェル80内を上昇し、吐出管85から外部に吐出される。 The basic operation of the compressor 8 is as follows. Refrigerant gas supplied from the accumulator 87 is supplied to each cylinder chamber of the first cylinder 91 and the second cylinder 92 through the suction pipes 88, 89. When the electric motor 100 is driven and the rotor 5 rotates, the shaft 90 rotates together with the rotor 5. Then, the first piston 93 and the second piston 94 fitted to the shaft 90 rotate eccentrically in each cylinder chamber, compressing the refrigerant in each cylinder chamber. The compressed refrigerant passes through the holes 57, 58 of the rotor 5 (Figure 1), rises inside the shell 80, and is discharged to the outside from the discharge pipe 85.
 なお、電動機100が用いられる圧縮機は、ロータリー圧縮機に限定されるものではなく、例えばスクロール圧縮機等であってもよい。 The compressor in which the electric motor 100 is used is not limited to a rotary compressor, but may be, for example, a scroll compressor.
 各実施の形態の電動機100は、銅損および鉄損の低減により、高い電動機効率を有する。そのため、圧縮機8の運転効率を向上することができる。また、巻線30の巻き膨らみの抑制により電動機100の製造コストが低減されるため、圧縮機8の製造コストも低減することができる。 The electric motor 100 of each embodiment has high motor efficiency due to reduced copper loss and iron loss. This improves the operating efficiency of the compressor 8. In addition, the manufacturing cost of the electric motor 100 is reduced by suppressing the swelling of the windings 30, and therefore the manufacturing cost of the compressor 8 can also be reduced.
<冷凍サイクル装置>
 次に、図26に示した圧縮機8を有する冷凍サイクル装置300について説明する。図27は、冷凍サイクル装置300を示す図である。冷凍サイクル装置300は、例えば空気調和装置であるが、これには限定されず、例えば冷蔵庫であってもよい。
<Refrigeration cycle device>
Next, a refrigeration cycle apparatus 300 having the compressor 8 shown in Fig. 26 will be described. Fig. 27 is a diagram showing the refrigeration cycle apparatus 300. The refrigeration cycle apparatus 300 is, for example, an air conditioner, but is not limited thereto and may be, for example, a refrigerator.
 図27に示した冷凍サイクル装置300は、圧縮機301と、冷媒を凝縮する凝縮器302と、冷媒を減圧する減圧装置303と、冷媒を蒸発させる蒸発器304とを備える。圧縮機301、凝縮器302および減圧装置303は室外機310に設けられ、蒸発器304は室内機320に設けられる。 The refrigeration cycle device 300 shown in FIG. 27 includes a compressor 301, a condenser 302 that condenses the refrigerant, a pressure reducing device 303 that reduces the pressure of the refrigerant, and an evaporator 304 that evaporates the refrigerant. The compressor 301, the condenser 302, and the pressure reducing device 303 are provided in the outdoor unit 310, and the evaporator 304 is provided in the indoor unit 320.
 圧縮機301、凝縮器302、減圧装置303および蒸発器304は、冷媒配管307によって連結され、冷媒回路を構成している。圧縮機301は、図26に示した圧縮機8で構成される。冷凍サイクル装置300は、また、凝縮器302に対向する室外送風機305と、蒸発器304に対向する室内送風機306とを備える。 Compressor 301, condenser 302, pressure reducing device 303, and evaporator 304 are connected by refrigerant piping 307 to form a refrigerant circuit. Compressor 301 is composed of compressor 8 shown in FIG. 26. Refrigeration cycle device 300 also includes outdoor blower 305 facing condenser 302, and indoor blower 306 facing evaporator 304.
 冷凍サイクル装置300の動作は、次の通りである。圧縮機301は、吸入した冷媒を圧縮して高温高圧の冷媒ガスとして送り出す。凝縮器302は、圧縮機301から送り出された冷媒と、室外送風機305により送られた室外空気との熱交換を行い、冷媒を凝縮して液冷媒として送り出す。減圧装置303は、凝縮器302から送り出された液冷媒を膨張させて、低温低圧の液冷媒として送り出す。 The operation of the refrigeration cycle device 300 is as follows. The compressor 301 compresses the sucked refrigerant and sends it out as high-temperature, high-pressure refrigerant gas. The condenser 302 exchanges heat between the refrigerant sent out from the compressor 301 and the outdoor air sent by the outdoor blower 305, condenses the refrigerant, and sends it out as liquid refrigerant. The pressure reducing device 303 expands the liquid refrigerant sent out from the condenser 302, and sends it out as low-temperature, low-pressure liquid refrigerant.
 蒸発器304は、減圧装置303から送り出された低温低圧の液冷媒と室内空気との熱交換を行い、冷媒を蒸発させ、冷媒ガスとして送り出す。蒸発器304で熱が奪われた空気は、室内送風機306により、室内に供給される。 The evaporator 304 exchanges heat between the low-temperature, low-pressure liquid refrigerant sent from the pressure reducing device 303 and the indoor air, evaporating the refrigerant and sending it out as refrigerant gas. The air from which the heat has been removed by the evaporator 304 is supplied to the room by the indoor blower 306.
 冷凍サイクル装置300の圧縮機301には、各実施の形態で説明した電動機100が適用可能であるため、冷凍サイクル装置300の運転効率を向上することができる。 The electric motor 100 described in each embodiment can be applied to the compressor 301 of the refrigeration cycle device 300, so the operating efficiency of the refrigeration cycle device 300 can be improved.
 以上、望ましい実施の形態について具体的に説明したが、本開示は上記の実施の形態に限定されるものではなく、各種の改良または変形を行なうことができる。 The above describes a preferred embodiment in detail, but the present disclosure is not limited to the above embodiment, and various improvements and modifications can be made.
 1 ステータ、 5 ロータ、 8 圧縮機、 9 圧縮機構、 10 ステータコア、 10e 端面、 11 コアバック、 11S 段差部、 11T 中間段部、 12 ティース、 12E 楕円弧、 12S 段差部、 12T 中間段部、 12T1 中間段部(第1の中間段部)、 12T2 中間段部(第2の中間段部)、 12T3 中間段部、 12a 側面、 12b 壁面、 12c 底面、 12e 端面、 13 歯先部、 13S 段差部、 13T 中間段部、 14 スロット、 15 分割コア、 17a,17b 凸部(当接部分)、 18a 溝部、 18b 切欠き、 20 絶縁部、 21 胴部、 22 壁部、 23 フランジ部、 30 巻線、 40 インシュレータ、 41 胴部、 42 壁部、 43 フランジ部、 44 ピン(嵌合部)、 50 ロータコア、 50e 端面、 51 磁石挿入孔、 52 フラックスバリア、 53 中心孔、 60 永久磁石、 70 絶縁フィルム、 80 シェル、 90 シャフト、 100 電動機、 101 嵌合穴、 121 中間段部の第1の面、 122 中間段部の第2の面、 125 ティースの中央部、 201,401 絶縁部の第1の面、 202,402 絶縁部の第2の面、 203,205,403 絶縁部の第3の面、 211 第1の傾斜面、 212 第2の傾斜面、 300 冷凍サイクル装置、 301 圧縮機、 302 凝縮器、 303 減圧装置、 304 蒸発器、 401 第1の面、 402 第2の面、 403 第3の面、 405 覆い部。  1 stator, 5 rotor, 8 compressor, 9 compression mechanism, 10 stator core, 10e end face, 11 core back, 11S step portion, 11T intermediate stage portion, 12 teeth, 12E elliptical arc, 12S step portion, 12T intermediate stage portion, 12T1 intermediate stage portion (first intermediate stage portion), 12T2 intermediate stage portion (second intermediate stage portion), 12T3 intermediate stage portion, 12a Side, 12b wall, 12c bottom, 12e end, 13 tooth tip, 13S step, 13T intermediate step, 14 slot, 15 split core, 17a, 17b convex (contact portion), 18a groove, 18b notch, 20 insulating portion, 21 body, 22 wall, 23 flange, 30 winding, 40 insulator, 41 body, 42 wall , 43 flange portion, 44 pin (fitting portion), 50 rotor core, 50e end face, 51 magnet insertion hole, 52 flux barrier, 53 center hole, 60 permanent magnet, 70 insulating film, 80 shell, 90 shaft, 100 electric motor, 101 fitting hole, 121 first surface of intermediate stage portion, 122 second surface of intermediate stage portion, 125 center of teeth, 201, 401: first surface of insulating part; 202, 402: second surface of insulating part; 203, 205, 403: third surface of insulating part; 211: first inclined surface; 212: second inclined surface; 300: refrigeration cycle device; 301: compressor; 302: condenser; 303: pressure reducing device; 304: evaporator; 401: first surface; 402: second surface; 403: third surface; 405: cover part.

Claims (19)

  1.  環状のコアバックと、前記コアバックからその径方向の内側に延在するティースと、前記コアバックの周方向において前記ティースに隣接するスロットとを有するステータコアと、
     前記ティースに設けられた絶縁部と、
     前記ティースに前記絶縁部を介して巻かれた巻線と
     を有し、
     前記ティースは、前記ステータコアの軸方向において前記ティースの端部を規定する端面と、前記スロットに面する側面と、前記端面と前記側面との間に形成された段差部と、前記段差部に形成された中間段部とを有し、
     前記軸方向および前記ティースの延在方向の両方と直交する方向に前記ティースの幅を定義すると、前記ティースは、前記軸方向における位置によって幅W1,W2,W3を有し、W1>W2>W3が成立し、
     前記絶縁部は、前記ティースの前記端面を覆う第1の面と、前記スロットに面する第2の面と、前記第1の面から前記第2の面まで延在する湾曲面または傾斜面である第3の面とを有し、
     前記ティースの前記端面から前記絶縁部の前記第1の面までの最短距離T1と、前記中間段部から前記絶縁部の前記第3の面までの最短距離T3とは、T1>T3を満足する
     ステータ。
    a stator core including an annular core back, teeth extending radially inward from the core back, and slots adjacent to the teeth in a circumferential direction of the core back;
    An insulating portion provided on the tooth;
    a winding wound around the tooth via the insulating portion,
    The teeth each have an end surface that defines an end of the tooth in the axial direction of the stator core, a side surface facing the slot, a step portion formed between the end surface and the side surface, and an intermediate step portion formed in the step portion,
    When the width of the teeth is defined in a direction perpendicular to both the axial direction and the extension direction of the teeth, the teeth have widths W1, W2, and W3 depending on their positions in the axial direction, and W1>W2>W3 holds true.
    The insulating portion has a first surface covering the end surface of the tooth, a second surface facing the slot, and a third surface which is a curved surface or an inclined surface extending from the first surface to the second surface,
    A stator, wherein a shortest distance T1 from the end face of the tooth to the first surface of the insulating portion and a shortest distance T3 from the intermediate step portion to the third surface of the insulating portion satisfy T1>T3.
  2.  前記中間段部から前記絶縁部の前記第3の面までの最短距離T3と、前記ティースの前記側面から前記絶縁部の前記第2の面までの最短距離T2とは、T3>T2を満足する
     請求項1に記載のステータ。
    2. The stator according to claim 1, wherein a shortest distance T3 from the intermediate step portion to the third surface of the insulating portion and a shortest distance T2 from the side surface of the tooth to the second surface of the insulating portion satisfy T3>T2.
  3.  前記ティースの延在方向に直交する断面において、前記第1の面と前記第3の面との境界を点Pとし、前記第2の面と前記第3の面との境界を点Qとし、前記点Pを通って前記軸方向と平行な第1の直線と前記点Qを通って前記軸方向に直交する第2の直線との交点をUとすると、
     前記軸方向における前記段差部の高さAと、前記軸方向および前記ティースの延在方向の両方と直交する方向における前記段差部の幅Bと、点Pから交点Uまでの距離D1と、点Qから交点Uまでの距離D2とが、
     D1≦AおよびD2≦Bを満足する
     請求項1または2に記載のステータ。
    In a cross section perpendicular to the extending direction of the teeth, a boundary between the first surface and the third surface is defined as point P, a boundary between the second surface and the third surface is defined as point Q, and an intersection point U is defined between a first straight line that passes through point P and is parallel to the axial direction and a second straight line that passes through point Q and is perpendicular to the axial direction.
    a height A of the step portion in the axial direction, a width B of the step portion in a direction perpendicular to both the axial direction and the extending direction of the teeth, a distance D1 from a point P to an intersection point U, and a distance D2 from a point Q to the intersection point U.
    3. The stator according to claim 1, wherein D1≦A and D2≦B are satisfied.
  4.  前記段差部の前記高さAと前記幅Bとが、A≧Bを満足する
     請求項3に記載のステータ。
    The stator according to claim 3 , wherein the height A and the width B of the step portion satisfy A≧B.
  5.  前記ティースの前記軸方向の長さL1に対して、前記段差部の前記高さAが、
     A/L1≦0.141
     満足する
     請求項3または4に記載のステータ。
    The height A of the step portion with respect to the axial length L1 of the tooth is,
    A/L1≦0.141
    A stator according to claim 3 or 4, which satisfies the above requirements.
  6.  前記ティースの前記段差部には、n個(nは2以上の整数)の中間段部が形成されている
     請求項1から5までの何れか1項に記載のステータ。
    The stator according to claim 1 , wherein the step portion of the tooth is formed with n (n is an integer of 2 or more) intermediate step portions.
  7.  前記軸方向における前記段差部の高さAと、前記軸方向および前記ティースの延在方向の両方と直交する方向における前記段差部の幅Bとが、A>Bを満足し、
     前記絶縁部の前記第3の面を、n個の中間段部のうちの少なくとも一つの中間段部の角部を通るように平行移動した仮想湾曲面を定義し、前記仮想湾曲面を(n+1)等分するn個の分割点を定義すると、
     n個の中間段部はいずれも、対応する分割点よりも前記ティースの前記端面に近い側に配置されている
     請求項6に記載のステータ。
    a height A of the step portion in the axial direction and a width B of the step portion in a direction perpendicular to both the axial direction and the extending direction of the teeth satisfy A>B,
    A virtual curved surface is defined by translating the third surface of the insulating portion so as to pass through a corner of at least one of the n number of intermediate step portions, and n division points are defined to equally divide the virtual curved surface into (n+1).
    The stator according to claim 6 , wherein each of the n intermediate step portions is disposed closer to the end face of the tooth than a corresponding division point.
  8.  n個の中間段部のうちの1つの中間段部を第1の中間段部とし、
     前記第1の中間段部よりも前記ティースの前記側面に近い側の中間段部を、第2の中間段部とすると、
     前記第1の中間段部から前記絶縁部の前記第3の面までの最短距離は、前記第2の中間段部から前記絶縁部の前記第3の面までの最短距離よりも長い
     請求項7に記載のステータ。
    One of the n intermediate stages is a first intermediate stage;
    When an intermediate step portion closer to the side surface of the tooth than the first intermediate step portion is defined as a second intermediate step portion,
    The stator according to claim 7 , wherein a shortest distance from the first intermediate stage to the third surface of the insulating portion is longer than a shortest distance from the second intermediate stage to the third surface of the insulating portion.
  9.  前記絶縁部は、前記ティースの前記端面に配置されるインシュレータと、前記ティースの前記側面を覆う絶縁フィルムとを有する
     請求項1から8までの何れか1項に記載のステータ。
    The stator according to claim 1 , wherein the insulating portion includes an insulator disposed on the end surface of the tooth and an insulating film covering the side surface of the tooth.
  10.  前記インシュレータは、前記ステータコアに向けて突出する2つ以上の嵌合部を有し、
     前記ステータコアは、前記2つ以上の嵌合部が嵌合する2つ以上の穴部を有する
     請求項9に記載のステータ。
    the insulator has two or more fitting portions protruding toward the stator core,
    The stator according to claim 9 , wherein the stator core has two or more holes into which the two or more fitting portions fit.
  11.  前記ステータコアは、円筒状のシェルに嵌合するものであり、
     前記2つ以上の穴部は、前記ステータコアの外周部において、前記シェルとの当接部分以外の部分に形成されている
     請求項10に記載のステータ。
    The stator core is fitted into a cylindrical shell,
    The stator according to claim 10 , wherein the two or more holes are formed in an outer periphery of the stator core other than a portion in contact with the shell.
  12.  前記絶縁フィルムは、前記ティースの前記側面を覆い、さらに、前記絶縁部の前記第2の面を覆うように設けられている
     請求項9から11までの何れか1項に記載のステータ。
    The stator according to claim 9 , wherein the insulating film is provided to cover the side surfaces of the teeth and to cover the second surface of the insulating portion.
  13.  前記インシュレータは、前記絶縁フィルムの前記軸方向の端部に対向する対向部を有する
     請求項12に記載のステータ。
    The stator according to claim 12 , wherein the insulator has an opposing portion that faces an end portion of the insulating film in the axial direction.
  14.  前記ティースの前記軸方向の中央部の幅は、前記ティースの他の部分の幅よりも広い
     請求項9から13までの何れか1項に記載のステータ。
    The stator according to claim 9 , wherein a width of a central portion of each of the teeth in the axial direction is greater than a width of other portions of each of the teeth.
  15.  前記ステータコアは、ロータコアに対向し、
     前記ステータコアは、前記軸方向の一端部に高さAの第1の領域を有し、前記軸方向の他端部に高さAの第2の領域を有し、
     前記第1の領域のうち前記ロータコアに対向する範囲の長さは、前記第2の領域のうち前記ロータコアに対向する範囲の長さよりも短く、
     前記段差部は、前記ステータコアの前記第1の領域のみに設けられている
     請求項1から14までの何れか1項に記載のステータ。
    The stator core faces the rotor core,
    the stator core has a first region having a height A at one end in the axial direction and a second region having a height A at the other end in the axial direction;
    a length of a range of the first region facing the rotor core is shorter than a length of a range of the second region facing the rotor core,
    The stator according to claim 1 , wherein the step portion is provided only in the first region of the stator core.
  16.  前記ステータコアは、ロータコアに対向し、
     前記ロータコアは、前記ステータコアから前記軸方向の一端部から距離Z1だけ突出し、前記ステータコアの前記軸方向の他端部から距離Z2だけ突出し、
     距離Z1は距離Z2よりも短く、
     前記段差部は、前記ステータコアの前記一端部の側のみに設けられている
     請求項1から14までの何れか1項に記載のステータ。
    The stator core faces the rotor core,
    The rotor core protrudes from one end of the stator core in the axial direction by a distance Z1, and protrudes from the other end of the stator core in the axial direction by a distance Z2,
    Distance Z1 is shorter than distance Z2,
    The stator according to claim 1 , wherein the step portion is provided only on the one end side of the stator core.
  17.  請求項1から16までのいずれか1項に記載のステータと、
     前記ステータの内側に配置されたロータと
     を備えた電動機。
    A stator according to any one of claims 1 to 16,
    and a rotor disposed inside the stator.
  18.  請求項17に記載の電動機と、
     前記電動機によって駆動される圧縮機構と
     を備えた圧縮機。
    An electric motor according to claim 17;
    a compression mechanism driven by the electric motor.
  19.  請求項18に記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを備えた
     冷凍サイクル装置。
     
    A refrigeration cycle apparatus comprising: the compressor according to claim 18; a condenser; a pressure reducing device; and an evaporator.
PCT/JP2023/001823 2023-01-23 2023-01-23 Stator, electric motor, compressor, and refrigeration cycle apparatus WO2024157305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/001823 WO2024157305A1 (en) 2023-01-23 2023-01-23 Stator, electric motor, compressor, and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/001823 WO2024157305A1 (en) 2023-01-23 2023-01-23 Stator, electric motor, compressor, and refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2024157305A1 true WO2024157305A1 (en) 2024-08-02

Family

ID=91970091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001823 WO2024157305A1 (en) 2023-01-23 2023-01-23 Stator, electric motor, compressor, and refrigeration cycle apparatus

Country Status (1)

Country Link
WO (1) WO2024157305A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439043U (en) * 1990-07-30 1992-04-02
US20030164654A1 (en) * 2002-02-25 2003-09-04 Thaxton Edgar S. Axially segmented permanent magnet synchronous machine with integrated magnetic bearings and active stator control of the axial degree-of-freedom
JP2004135382A (en) * 2002-10-08 2004-04-30 Denso Corp Magnet type generator
JP2007215335A (en) * 2006-02-10 2007-08-23 Sumitomo Electric Ind Ltd Stator for motor and motor equipped with this stator
JP2007244065A (en) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd Stator structure of concentrated winding motor
JP2010130842A (en) * 2008-11-28 2010-06-10 Sanko Kiki Co Ltd Stator core and stator core with coil
JP2013240160A (en) * 2012-05-14 2013-11-28 Mitsubishi Electric Corp Armature and manufacturing method therefor
WO2014006958A1 (en) * 2012-07-04 2014-01-09 三菱重工オートモーティブサーマルシステムズ株式会社 Electric motor
JP2015171249A (en) * 2014-03-07 2015-09-28 オリエンタルモーター株式会社 Stator of motor
JP2017093076A (en) * 2015-11-05 2017-05-25 日産自動車株式会社 Rotary electric machine
US20190238022A1 (en) * 2018-01-26 2019-08-01 Milwaukee Electric Tool Corporation Stepped stator for an electric motor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439043U (en) * 1990-07-30 1992-04-02
US20030164654A1 (en) * 2002-02-25 2003-09-04 Thaxton Edgar S. Axially segmented permanent magnet synchronous machine with integrated magnetic bearings and active stator control of the axial degree-of-freedom
JP2004135382A (en) * 2002-10-08 2004-04-30 Denso Corp Magnet type generator
JP2007215335A (en) * 2006-02-10 2007-08-23 Sumitomo Electric Ind Ltd Stator for motor and motor equipped with this stator
JP2007244065A (en) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd Stator structure of concentrated winding motor
JP2010130842A (en) * 2008-11-28 2010-06-10 Sanko Kiki Co Ltd Stator core and stator core with coil
JP2013240160A (en) * 2012-05-14 2013-11-28 Mitsubishi Electric Corp Armature and manufacturing method therefor
WO2014006958A1 (en) * 2012-07-04 2014-01-09 三菱重工オートモーティブサーマルシステムズ株式会社 Electric motor
JP2015171249A (en) * 2014-03-07 2015-09-28 オリエンタルモーター株式会社 Stator of motor
JP2017093076A (en) * 2015-11-05 2017-05-25 日産自動車株式会社 Rotary electric machine
US20190238022A1 (en) * 2018-01-26 2019-08-01 Milwaukee Electric Tool Corporation Stepped stator for an electric motor

Similar Documents

Publication Publication Date Title
JP6636144B2 (en) Stator, electric motor, compressor, and refrigeration air conditioner
JP7003267B2 (en) Motors, compressors and air conditioners
JP7023408B2 (en) Motors, compressors and air conditioners
JP3960122B2 (en) Electric compressor
JP7038827B2 (en) Stator, motor, compressor and air conditioner
JP7237178B2 (en) Rotors, electric motors, compressors, and air conditioners
JP7105999B2 (en) Electric motor, compressor, air conditioner, and method for manufacturing electric motor
WO2024157305A1 (en) Stator, electric motor, compressor, and refrigeration cycle apparatus
JP7204897B2 (en) Rotors, motors, compressors, and air conditioners
US20220224193A1 (en) Compressor and air conditioner
JP7450805B2 (en) Motors, compressors and refrigeration cycle equipment
JP2023168510A (en) Motor, compressor, air blower, and refrigerating air conditioner
WO2023233629A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
JP7361921B2 (en) Electric motors, compressors and refrigeration cycle equipment
JP7433420B2 (en) Rotors, motors, compressors and air conditioners
JP7154373B2 (en) Electric motors, compressors, and air conditioners
CN110366809B (en) Rotating electric machine, compressor, and refrigeration cycle device
WO2024218968A1 (en) Stator, electric motor, compressor, refrigeration cycle device, and production method for stator
WO2023112078A1 (en) Stator, motor, compressor, and refrigeration cycle device
WO2023248466A1 (en) Stator, electric motor, compressor, refrigeration cycle device, and method of producing electric motor
JP7286019B2 (en) Stator, electric motor, compressor, refrigeration cycle device and air conditioner
WO2023181238A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
JP7486613B2 (en) Stator, motor, compressor and refrigeration cycle device
WO2023187880A1 (en) Stator, electric motor, compressor, refrigeration cycle device, and stator manufacturing method
WO2024166151A1 (en) Rotor, electric motor, compressor, and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23918278

Country of ref document: EP

Kind code of ref document: A1