[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024156465A1 - Structure comprising a surface layer transferred to a support provided with a charge trapping layer with limited contamination and method for manufacturing same - Google Patents

Structure comprising a surface layer transferred to a support provided with a charge trapping layer with limited contamination and method for manufacturing same Download PDF

Info

Publication number
WO2024156465A1
WO2024156465A1 PCT/EP2023/087972 EP2023087972W WO2024156465A1 WO 2024156465 A1 WO2024156465 A1 WO 2024156465A1 EP 2023087972 W EP2023087972 W EP 2023087972W WO 2024156465 A1 WO2024156465 A1 WO 2024156465A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
dielectric layer
charge trapping
trapping layer
substrate
Prior art date
Application number
PCT/EP2023/087972
Other languages
French (fr)
Inventor
Isabelle Bertrand
Alexis Drouin
Morgane Logiou
Marcel Broekaart
Raphaël CAULMILONE
Odile MOUREY
Original Assignee
Soitec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec filed Critical Soitec
Publication of WO2024156465A1 publication Critical patent/WO2024156465A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • H10N30/073Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • the invention relates to a structure comprising a surface layer transferred onto a support provided with a charge trapping layer, the structure being capable of limiting pollution of the charge trapping layer by contaminants.
  • the invention extends to a method of manufacturing this structure.
  • Integrated devices are usually produced on wafer-shaped substrates, which mainly serve as support for their manufacturing.
  • the increase in the degree of integration and the expected performances of these devices lead to an increasingly important coupling between their performances and the characteristics of the substrate on which they are formed. This is particularly the case for radio frequency (RF) devices, processing signals whose frequency is between approximately 3kHz and 300GHz, which find their application in particular in the field of telecommunications (telephony, Wi-Fi, Bluetooth, etc.).
  • RF radio frequency
  • crosstalk As an example of device/substrate coupling, the electromagnetic fields, resulting from high frequency signals propagating in the devices, penetrate into the depth of the substrate and interact with any electrical charge carriers found there. This results in unnecessary consumption of part of the signal energy through insertion loss and possible influences between components through crosstalk (“crosstalk” according to Anglo-Saxon terminology).
  • HR SOI highly resistive insulator
  • the support substrate may also include a charge trapping layer which will be placed on the side of the dielectric layer, preferably in contact with it.
  • the trapping layer may include undoped polycrystalline silicon.
  • a corresponding mechanical signal (that is to say an oscillation or a vibration) is generated at this material: the electrical signal is translated into a mechanical signal having a frequency dependence in relation to the alternating electrical signal, a dependence which is a function of the characteristics of the electrode(s), the properties of the ferroelectric material and other factors including the characteristics of the semiconductor support of the device.
  • a dielectric layer interposed between the ferroelectric layer and its support makes it possible to improve the mechanical behavior of the transducer, and more particularly to limit the appearance of parasitic responses, induced losses linked to the properties of the substrate and interface effects within stacking. Increasing working frequencies may require thinning of the dielectric layer for purely mechanical reasons.
  • the charge trapping layer by capturing possible electric charge carriers, limits interactions with the electromagnetic fields resulting from high frequency signals from the devices formed on the substrate and allows these devices to achieve high levels of performance.
  • the thinning of the dielectric layers promotes the diffusion towards the trapping layer of charges of contaminating species such as hydrogen originally included in the surface layer or brought during the manufacture of the devices or lithium in the case of layer ferroelectric surface plates made of lithium niobate or lithium tantalate.
  • the present invention aims to address, at least in part, this problem of contamination of the electrical charge trapping layer exacerbated by the thinness of the dielectric layer. It aims more particularly to propose a structure comprising a surface layer transferred to a support provided with an electrical charge trapping layer limiting contamination of the latter as well as a process allowing the manufacture of such a structure.
  • the object of the invention is a device comprising a ferroelectric surface layer containing lithium; a dielectric layer comprising an oxide and disposed in contact with the ferroelectric surface layer; and a substrate in contact with the dielectric layer, the substrate comprising a charge trapping layer disposed on a support, the charge trapping layer being disposed between the support and the dielectric layer, device in which the dielectric layer has a thickness comprised between 150 nm and 500 nm, preferably between 150 nm and 300 nm; and a concentration of nitrogen in the dielectric layer and a surface roughness of the charge trapping layer are such that the charge trapping layer has a lithium dose of less than 5.10 11 at/cm 2 .
  • An advantage of the structure according to the invention is to maintain the effectiveness of the trapping function of the electrical charge trapping layer even when the dielectric layer separating the charge trapping layer from the surface layer is thinned, this avoiding its contamination by chemical species likely to passivate charge trapping sites, in particular hydrogen and lithium present in the surface layer.
  • the structure according to the invention makes it possible to provide substrates for the manufacture of components comprising piezoelectric layers and designed to operate at high frequencies and having excellent performance.
  • the dielectric layer may have a thickness of between 150 nm and 250 nm;
  • the nitrogen concentration of the dielectric layer can be between 10 21 at/cm 3 and 6.10 21 at/cm 3 ;
  • the dielectric layer may be a layer of silicon oxide and a hydrogen concentration of the dielectric layer may be strictly lower than the nitrogen concentration of the dielectric layer;
  • a hydrogen concentration of the dielectric layer (16) can be at least three times lower than the nitrogen concentration of the dielectric layer;
  • a hydrogen concentration in the dielectric layer may be less than 10 22 at/cm 3 ;
  • the lithium dose in the charge trapping layer may be less than 10 11 at/cm 2 ;
  • the ferroelectric surface layer may comprise lithium niobate or lithium tantalate;
  • the charge trapping layer may comprise polycrystalline silicon
  • the ferroelectric surface layer may consist of a monocrystalline material.
  • a second aspect of the invention relates to a method of manufacturing a device comprising a ferroelectric layer, comprising the steps of forming a charge trapping layer on a support to form a substrate; smoothing an exposed surface of the trapping layer so as to reduce a roughness of this exposed surface below a threshold roughness; forming a dielectric layer at least on the smoothed charge trapping layer and optionally on a donor substrate comprising a ferroelectric material, the dielectric layer having a thickness of between 150 nm and 500 nm; assembling the donor substrate and the substrate via the dielectric layer; removing part of the donor substrate to form a ferroelectric surface layer, the threshold roughness and a concentration of nitrogen in an oxide layer included in the dielectric layer being chosen so that the dose of lithium in the charge trapping layer is less than 5.10 11 at/cm 2 at the end of the manufacturing process.
  • the nitrogen concentration of the dielectric layer can be between 5.10 20 at/cm 3 and 10 22 at/cm 3 ; and the surface roughness of the trapping layer may be less, in peak-valley measurement, than 800 nm, preferably less than 400 nm, and even more preferably less than 100 nm;
  • the smoothing step may include mechanical-chemical polishing of the charge trapping layer
  • the charge trapping layer may comprise polycrystalline silicon
  • the manufacturing process may include the formation of a weakening plane by implantation of light species in the donor substrate to define the surface layer, and the step of eliminating part of the donor substrate may include detachment of the surface layer at the level of the weakening plane.
  • a structure 1 comprising a substrate 10 integrating a support 12 and a layer 14 for trapping electrical charges on the support, a surface layer 20 placed on the substrate 10, and a dielectric layer 16 interposed between the surface layer 20 and the substrate 10 , preferably in direct contact with the surface layer 20 and the charge trapping layer 14.
  • the surface layer 20 is a layer making it possible to give functions, for example piezoelectric, to a device developed on or in the structure 1.
  • structure 1 can be in the form of a circular plate whose diameter can be 100, 200, 300 or even 450mm.
  • structure 1 can be produced in multiple ways.
  • structure 1 can be produced by a manufacturing process comprising the assembly of the substrate 10 and a donor substrate, the dielectric layer 16 being interposed between these two elements, followed by a step of eliminating a part of the donor substrate to form the surface layer 20.
  • the step of eliminating part of the donor substrate can be carried out by mechanical-chemical thinning of this substrate.
  • the structure 1 is preferentially manufactured by application of Smart CutTM technology, according to which a layer intended to form the surface layer 20 is delimited by means of a weakening plane formed by implantation of light species such as hydrogen in the donor substrate. This layer is then separated from the donor substrate stuck to the support via the dielectric layer 16, by fracture at the level of the weakening plane, the surface layer 20 remaining fixed on the substrate 10 provided with the trapping layer 14, with the dielectric layer 16 interposed between them.
  • the substrate 10 typically has a thickness of several hundred microns.
  • the substrate has a high resistivity, greater than 1000 ohm.centimeter, and even more preferably, greater than 2000 ohm.centimeter. This limits the density of charges, holes or electrons, which are likely to move in the substrate.
  • the invention is not limited to a substrate 10 having such a resistivity, and it also provides RF performance advantages when the substrate has a more consistent resistivity, of the order of a few hundred ohm.centimeter, for example less than 1000 ohm.cm, or 500 ohm.cm or even 10 ohm.cm.
  • the support 12 is preferably made of monocrystalline silicon. It may for example be a CZ silicon substrate with a low interstitial oxygen content of between 6 and 10 ppm, or an FZ silicon substrate which notably has a naturally very low interstitial oxygen content. It may also be a CZ silicon substrate having a high amount of interstitial oxygen (referred to as “High Oi”) greater than 26 ppm.
  • the support 12 can alternatively be formed from another material: it can for example be sapphire, glass, quartz, silicon carbide, etc. In certain circumstances, and in particular when the trapping layer 14 has a sufficient thickness , for example greater than 30 microns, the support 12 can have a standard resistivity, less than 1 kohm.cm.
  • the trapping layer 14 can be of very varied natures, as reported in the documents forming the state of the art. Generally speaking, it is a non-crystalline layer presenting structural defects such as dislocations, grain boundaries, amorphous zones, interstices, inclusions, pores, etc. These structural defects form traps for the charges likely to circulate in the material, for example at the level of incomplete or dangling chemical bonds. This prevents or limits conduction in the trapping layer which consequently has a high resistivity.
  • this trapping layer 14 is formed of a layer of polycrystalline silicon. Its thickness, particularly when it is formed on a resistive support 12, can be between 0.3 and 3 ⁇ m. But other thicknesses less than or greater than this interval are entirely possible, depending on the level of RF performance expected from structure 1.
  • an amorphous layer made of silicon dioxide for example, on the support 12 before deposition of the trapping layer. of charges 14.
  • the trapping layer 14 can be formed by implantation of a heavy species, such as argon, in a superficial thickness of the support 12, in order to form the structural defects constituting the electrical traps.
  • This layer 14 can also be formed by porosification of a surface thickness of the support 12.
  • the dielectric layer is usually made of silicon oxide and preferably contains nitrogen, favorable for forming a barrier layer preventing the diffusion of species, in particular hydrogen and lithium mentioned above.
  • the surface layer 20 can be of any suitable nature. It is very preferably formed from a monocrystalline material. When structure 1 is intended to receive integrated semiconductor components, the surface layer 20 can thus be composed of monocrystalline silicon, or any other semiconductor material. In such a case, lithium contamination may originate from the equipment used to manufacture the structure. When structure 1 is intended to receive surface acoustic wave filters, surface layer 20 may be composed of a piezoelectric and/or ferroelectric material, such as lithium tantalate or lithium niobate. In this case, in addition to possible contamination from the outside, the lithium contamination also has its origin in the surface layer itself. The surface layer 20 can also include finished or semi-finished integrated components, formed on the donor substrate and transferred to the substrate 10 during the step of manufacturing the structure 1. Generally speaking, the thin layer can have a thickness between 10 nm and 10 ⁇ m.
  • a charge trapping layer 14 in polycrystalline silicon is formed by deposition, for example using an LPCVD technique carried out between 600°C and 650°C.
  • the trapping layer 14 has a thickness of approximately 500 nm, or even 1 micron.
  • the trapping layer 14 is then polished by a chemical-mechanical polishing step (or CMP for Chemical-Mechanical Polishing in English terminology) leading to a removal of approximately 100 to 200 nanometers of the trapping layer, resulting in a layer of thickness between 500 and 1000 nanometer to present a surface roughness less than 300 nm, preferably less than 140 nm, or even more preferably less than 100 nm, in peak-valley measurement.
  • a peak-valley roughness of 800 nm can be obtained with a deposition of a polycrystalline silicon charge trapping layer of several microns (approximately 4 ⁇ m).
  • Such roughness could make it possible to avoid parasitic modes, in particular present in a POI (Piezoelectric-On-Insulator) type structure with a thickness of the piezoelectric layer greater than the wavelength used, due to the radiation of these modes of volumes within the volume and their interaction with the interfaces.
  • a POI piezoelectric-On-Insulator
  • a first annealing of this layer can be provided in an atmosphere poor in hydrogen (ie less than 5 ppm) at a temperature between the deposition temperature and 1000°C. .
  • the temperature of the first annealing is greater than 620°C and preferably less than 900°C, for at least one hour and preferably for several hours.
  • the hydrogen present in the trapping layer 3 is effectively exodused under these preferential annealing conditions to reduce its concentration below the threshold of 10 18 at/cm 3 , preferably 10 1 7 at/cm 3 , without deteriorating the polycrystalline nature of the trapping layer, by recrystallization effect.
  • a dielectric layer 16 formed of a layer of silicon oxide including nitrogen of 300 is deposited, for example by a PECVD technique carried out at a temperature between 600°C and 800°C. nm to 1000 nm thick forming the dielectric layer 16 of structure 1.
  • the layer is then polished by a chemical mechanical polishing (CMP) step leading to a removal of approximately 200 to 800 nanometers of the oxide to provide a surface having a roughness less than 0.3 nm RMS, for example on a field of 5*5 microns or a field of 30*30 microns by measurement by atomic force microscopy.
  • CMP chemical mechanical polishing
  • the dielectric layer 16 has a thickness of between 150 nm and 500 nm, preferably between 150 nm and 250 nm, and a significant hydrogen concentration of more than 10 20 at/cm 3 but preferably remaining lower than a nitrogen concentration. in the dielectric layer 16.
  • a second annealing can be applied, similar to the first annealing described previously. It is therefore an annealing under an atmosphere poor in hydrogen (ie less than 5 ppm) and exposing the dielectric layer 16 to a temperature higher than its deposition temperature. It can be a neutral or oxidizing atmosphere. Preferably this temperature is greater than 800°C, typically between 800°C and 900°C. The annealing is continued for at least one hour, and preferably for several hours, finally to exo-diffuse the hydrogen from the dielectric layer 16, and possibly from the trapping layer 14.
  • the layer dielectric 16 has a lower hydrogen concentration of 10 20 at/cm 3 and the trapping layer 14 has a lower hydrogen concentration of 10 18 at/cm 3 , preferably 10 1 7 at/cm 3 .
  • a nitrogen concentration of between 5.10 20 at/cm 3 and 10 22 at/cm 3 allows, in combination with a trapping layer with roughness less than 800 nm, preferably less than 400 nm, preferably less than 100 nm, in peak-valley measurement, to obtain a sufficient barrier effect of the dielectric layer to develop on the substrate thus obtained devices capable to operate at high frequencies.
  • the high values of the above ranges do not constitute an upper limit to the nitrogen concentration to obtain a barrier effect, but ensure a sufficiently low nitrogen concentration to be able to apply the structure according to the invention to known devices without risking to negatively influence their performance.
  • each peak 310 of roughness of the trapping layer 14 creates one or more preferred paths (represented by straight arrows) for the migration of species through the dielectric layer 16 due to a local thinning of the dielectric layer 16 at the level of these peaks 310. is only a schematic representation used for explanatory purposes and in no way a realistic representation of the layers in a real device.
  • a peak-valley measurement consists of measuring the sum Sum of a maximum depth S1 of a trough (the deepest valley) in a Surf surface considered and of a maximum height S2 of a peak (the deepest projection high) of this surface, the depth and height being measured relative to an average altitude Avg of this surface, for example on a given surface of the sample.
  • a measurement by atomic force microscopy we can for example consider an observation surface corresponding to a square of 30 ⁇ m side, but we could alternatively consider a square of 5 ⁇ m side or more to establish the peak-valley measurement.
  • the thickness of the oxide layer forming the dielectric layer 16 is measured between the average depth of the charge trapping layer and the surface of the oxide layer.
  • dose we mean the quantity of atoms of a given chemical species over the thickness of the layer, that is to say the quantity contained in a volume defined by a given surface area on the surface of the layer and the projection of this surface perpendicular to the layer.
  • a dose can be expressed in number of atoms per unit surface area of the layer.
  • Tk of the oxide layer expressed in nanometers
  • on the ordinate is the roughness in peak-valley measurement of the charge trapping layer indicated by PV and expressed in nanometers.
  • the curves identified by [N] 1 , [N] 2 , [N] 3 and [N] 4 represent the minimum thicknesses of the oxide layer according to PV to obtain a maximum acceptable lithium dose set at 5.10 11 lithium atoms per square centimeter in the charge trapping layer, respectively for nitrogen concentrations of approximately 10 20 , 1.10 2 1 , 3.10 21 and 10 2 2 at/cm 3 , respectively.
  • a PV value of 0 corresponds to a perfectly smooth charge trapping layer, which gives the minimum thickness of oxide to be deposited to sufficiently limit the diffusion of chemical species in the layer, lithium in particular, for a concentration of given nitrogen of this oxide.
  • the oxide layer forming the dielectric layer 16 has a proportion between the concentrations of nitrogen and hydrogen which is favorable for blocking the diffusion of hydrogen, with an excess of nitrogen relative to the quantity of hydrogen, that is to say a ratio between the concentrations of nitrogen and hydrogen which is strictly greater than 1, preferably greater than 1.5, and even more preferably greater than 3, for concentrations measured by a SIMS method (Secondary Ion Mass Spectrometry in English terminology).
  • the hydrogen concentration in the dielectric layer is preferably less than about 10 22 at/cm 3 , more preferably less than about 10 21 at/cm 3 , even more preferably less than about 10 20 at/cm 3 .
  • the dielectric layer 16 is formed on the trapping layer 14, and these two layers have been deposited at relatively low temperature as has just been explained, it is not necessary to apply respectively the first and second annealing after each deposition step. It is possible to carry out a single annealing, under conditions similar to the first and second annealing, after the formation of the dielectric layer 16 at low temperature on the trapping layer 14. In other words, it is not necessary in this case to apply a specific annealing of the trapping layer 14 before the deposition of the dielectric layer 16.
  • this embodiment it is generally preferred to place the dielectric layer 16 on the support 12 (via the trapping layer 14) rather than on the donor substrate 200.
  • this support 12 may have a weakening plane, or be composed of a ferroelectric material having a Curie temperature relatively low or include components, which, in each of these cases, limits the thermal budget applicable to it to a few hundred degrees for a relatively short time, less than 1 hour.
  • the invention does not exclude that, in certain favorable cases, the dielectric layer 16 may be formed at least in part on the donor substrate 200.
  • hydrogen ions are implanted in a ferroelectric donor substrate 200 of lithium tantalate through a first 210 of its faces in order to form a buried weakening plane 220.
  • a ferroelectric donor substrate 200 of lithium tantalate Parallel to the preparation of the substrate 10, hydrogen ions are implanted in a ferroelectric donor substrate 200 of lithium tantalate through a first 210 of its faces in order to form a buried weakening plane 220.
  • the donor substrate obtained at this stage is illustrated in (b) of the .
  • the donor substrate 200 is assembled with the silicon oxide layer 16 placed on the support 12 as illustrated in (c) of the , and the donor substrate 200 is then fractured at the weakening plane 220 using a moderate heat treatment of around 400°C.
  • the complementary layer 22 is released from the donor substrate to expose a free face 230 of this layer which can then be prepared to improve its crystalline quality and surface condition.
  • This preparation includes a step of thinning the first layer by mechanical-chemical polishing and a heat treatment step at 500°C in a neutral atmosphere for 1 hour.
  • the structure obtained, indicated in (d) of the is that of the .
  • ferroelectric layer of lithium tantalate used as surface layer 20
  • other types of ferroelectric or piezoelectric materials such as lithium niobate could be used.
  • a semiconductor surface layer such as a layer of silicon or comprising silicon such as monocrystalline silicon could be used.
  • the manufacturing process detailed above therefore makes it possible to obtain a structure whose pollution of the trapping layer by damaging species, in particular hydrogen and lithium, remains sufficiently limited to develop devices capable of operating satisfactorily. at high frequencies.
  • a nitrogen content between 5.10 20 at/cm 3 and 10 22 at/cm 3 for an oxide layer of sufficient thickness placed directly on a surface of a trapping layer 14 of roughness less than 300 nm in peak-valley measurement results in maintenance in the charge trapping layer 14 of lithium dose at less than 5.10 11 at/cm 2 , and hydrogen concentrations at less than 10 20 at /cm 3 , preferably less than 10 19 at/cm 3 , even more preferably less than 10 18 at/cm 3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Device comprising a ferroelectric surface layer (20) containing lithium; a dielectric layer (16) comprising an oxide and arranged in contact with the ferroelectric surface layer; and a substrate (10) in contact with the dielectric layer, the substrate comprising a charge trapping layer (14) arranged on a support (12), the charge trapping layer (14) being arranged between the support (12) and the dielectric layer (16), the dielectric layer (16) having a thickness of between 150 nm and 500 nm, preferably between 150 nm and 300 nm; and a nitrogen concentration in the dielectric layer (16) and a surface roughness of the charge trapping layer (14) being such that the charge trapping layer (14) has a lithium content of less than 5x1011at/cm2.

Description

STRUCTURE COMPRENANT UNE COUCHE SUPERFICIELLE REPORTEE SUR UN SUPPORT MUNI D’UNE COUCHE DE PIEGEAGE DE CHARGES A CONTAMINATION LIMITEE ET PROCEDE DE FABRICATIONSTRUCTURE COMPRISING A SURFACE LAYER TRANSFERRED ON A SUPPORT PROVIDED WITH A CHARGE TRAPPING LAYER WITH LIMITED CONTAMINATION AND MANUFACTURING METHOD DOMAINE TECHNIQUE DE L’INVENTIONTECHNICAL FIELD OF THE INVENTION
L'invention concerne une structure comprenant une couche superficielle reportée sur un support muni d’une couche de piégeage de charges, la structure étant capable de limiter la pollution de la couche de piégeage de charges par des contaminants. L’invention s’étend à un procédé de fabrication de cette structure.The invention relates to a structure comprising a surface layer transferred onto a support provided with a charge trapping layer, the structure being capable of limiting pollution of the charge trapping layer by contaminants. The invention extends to a method of manufacturing this structure.
ARRIERE PLAN TECHNOLOGIQUETECHNOLOGICAL BACKGROUND
Les dispositifs intégrés sont usuellement élaborés sur des substrats en forme de plaquettes, qui servent principalement de support à leur fabrication. Toutefois, l’accroissement du degré d’intégration et des performances attendues de ces dispositifs entrainent un couplage de plus en plus important entre leurs performances et les caractéristiques du substrat sur lequel ils sont formés. C’est particulièrement le cas des dispositifs radiofréquences (RF), traitant des signaux dont la fréquence est comprise entre environ 3kHz et 300GHz, qui trouvent notamment leur application dans le domaine des télécommunications (téléphonie, Wi-Fi, Bluetooth…).Integrated devices are usually produced on wafer-shaped substrates, which mainly serve as support for their manufacturing. However, the increase in the degree of integration and the expected performances of these devices lead to an increasingly important coupling between their performances and the characteristics of the substrate on which they are formed. This is particularly the case for radio frequency (RF) devices, processing signals whose frequency is between approximately 3kHz and 300GHz, which find their application in particular in the field of telecommunications (telephony, Wi-Fi, Bluetooth, etc.).
A titre d’exemple de couplage dispositif/substrat, les champs électromagnétiques, issus des signaux hautes fréquences se propageant dans les dispositifs, pénètrent dans la profondeur du substrat et interagissent avec les éventuels porteurs de charges électriques qui s’y trouvent. Il s’en suit une consommation inutile d’une partie de l’énergie du signal par perte d’insertion et des influences possibles entre composants par diaphonie (« crosstalk » selon la terminologie anglo-saxonne). As an example of device/substrate coupling, the electromagnetic fields, resulting from high frequency signals propagating in the devices, penetrate into the depth of the substrate and interact with any electrical charge carriers found there. This results in unnecessary consumption of part of the signal energy through insertion loss and possible influences between components through crosstalk (“crosstalk” according to Anglo-Saxon terminology).
On connaît ainsi les substrats de silicium sur isolant hautement résistif (HR SOI, pour « High Resistivity Silicon On Insulator » selon la terminologie anglo-saxonne habituellement employée) comprenant un substrat support en silicium présentant une résistivité supérieure à 1 kOhm.cm, une couche diélectrique sur le substrat support, et une couche superficielle de silicium disposée sur la couche diélectrique. Le substrat support peut également comporter une couche de piégeage de charges qui sera disposée du côté de la couche diélectrique, préférablement en contact avec celle-ci. La couche de piégeage peut comprendre du silicium polycristallin non dopé. La fabrication de ce type de substrat est par exemple décrite dans les documents FR2860341, FR2933233, FR2953640, US2015115480, US7268060, US6544656 ou WO20211008742.We thus know silicon substrates on highly resistive insulator (HR SOI, for “High Resistivity Silicon On Insulator” according to the Anglo-Saxon terminology usually used) comprising a silicon support substrate having a resistivity greater than 1 kOhm.cm, a layer dielectric on the support substrate, and a surface layer of silicon disposed on the dielectric layer. The support substrate may also include a charge trapping layer which will be placed on the side of the dielectric layer, preferably in contact with it. The trapping layer may include undoped polycrystalline silicon. The manufacture of this type of substrate is for example described in documents FR2860341, FR2933233, FR2953640, US2015115480, US7268060, US6544656 or WO20211008742.
On connait également des dispositifs à ondes élastiques de surface (SAW pour Surface Acoustic Wave en terminologie anglaise) à structures composites intégrant une couche superficielle de matériau ferroélectrique et une couche de piégeage de charge, formant un substrat similaire à celui décrit dans le paragraphe précédent, comme détaillé par exemple dans le document WO 2020/200986. Ces dispositifs sont employés dans de nombreuses applications, et en particulier dans les applications électroniques où ils forment l’élément central de filtres, d’oscillateurs, de lignes de retard ou encore de transformateurs.We also know surface elastic wave devices (SAW for Surface Acoustic Wave in English terminology) with composite structures integrating a surface layer of ferroelectric material and a charge trapping layer, forming a substrate similar to that described in the previous paragraph, as detailed for example in document WO 2020/200986. These devices are used in many applications, and in particular in electronic applications where they form the central element of filters, oscillators, delay lines and even transformers.
Lorsqu'un signal électrique alternatif est appliqué à un transducteur formé d’une ou plusieurs électrodes en contact avec le matériau ferroélectrique, outre une onde électrique telle que décrite plus haut, un signal mécanique correspondant (c'est-à-dire une oscillation ou une vibration) est généré au niveau de ce matériau : le signal électrique est traduit en un signal mécanique présentant une dépendance en fréquence par rapport au signal électrique alternatif, dépendance qui est fonction des caractéristiques de la ou des électrodes, des propriétés du matériau ferroélectrique et d'autres facteurs dont les caractéristiques du support semiconducteur du dispositif.When an alternating electrical signal is applied to a transducer formed of one or more electrodes in contact with the ferroelectric material, in addition to an electric wave as described above, a corresponding mechanical signal (that is to say an oscillation or a vibration) is generated at this material: the electrical signal is translated into a mechanical signal having a frequency dependence in relation to the alternating electrical signal, a dependence which is a function of the characteristics of the electrode(s), the properties of the ferroelectric material and other factors including the characteristics of the semiconductor support of the device.
Or, les dispositifs à ondes élastiques exploitent cette dépendance pour fournir une ou plusieurs fonctions dépendantes de la fréquence, et donc des caractéristiques du support. Une couche diélectrique interposée entre la couche ferroélectrique et son support permettent d’améliorer le comportement mécanique du transducteur, et plus particulièrement de limiter l’apparition de réponses parasites, les pertes induites liés aux propriétés du substrat et des effets d’interfaces au sein de l’empilement. Augmenter les fréquences de travail peut nécessiter un amincissement de la couche diélectrique pour des raisons purement mécaniques.However, elastic wave devices exploit this dependence to provide one or more functions dependent on the frequency, and therefore on the characteristics of the support. A dielectric layer interposed between the ferroelectric layer and its support makes it possible to improve the mechanical behavior of the transducer, and more particularly to limit the appearance of parasitic responses, induced losses linked to the properties of the substrate and interface effects within stacking. Increasing working frequencies may require thinning of the dielectric layer for purely mechanical reasons.
Que l’on considère des substrats semiconducteurs ou des substrats ferroélectriques, la problématique est la même : La couche de piégeage de charge, en capturant d’éventuels porteurs de charges électriques, limite les interactions avec les champs électromagnétiques issus des signaux hautes fréquences issus des dispositifs formés sur le substrat et permet a ces dispositif d’atteindre de hauts niveaux de performances.Whether we consider semiconductor substrates or ferroelectric substrates, the problem is the same: The charge trapping layer, by capturing possible electric charge carriers, limits interactions with the electromagnetic fields resulting from high frequency signals from the devices formed on the substrate and allows these devices to achieve high levels of performance.
Cependant, une tendance continue dans l’évolution de ces dispositifs est d’employer des fréquences de travail de plus en plus élevées, qui nécessitent des couches diélectriques, interposées entre la couche superficielle et la couche de piégeage, de plus en plus minces.However, a continuing trend in the evolution of these devices is to use increasingly high working frequencies, which require increasingly thin dielectric layers, interposed between the surface layer and the trapping layer.
Or, l’amincissement des couches diélectriques favorise la diffusion vers la couche de piégeage de charges d’espèces contaminantes telles que l’hydrogène inclus originellement dans la couche superficielle ou apporté lors de de la fabrication des dispositifs ou le lithium dans le cas de couche superficielles ferroélectriques faites de de niobate de lithium ou de tantalate de lithium.However, the thinning of the dielectric layers promotes the diffusion towards the trapping layer of charges of contaminating species such as hydrogen originally included in the surface layer or brought during the manufacture of the devices or lithium in the case of layer ferroelectric surface plates made of lithium niobate or lithium tantalate.
Par diffusion à travers la couche diélectrique, ces espèces contaminantes occupent les sites de piégeages de charges électriques de la couche de piégeage, réduisant l’efficacité de cette dernière et compromettant les performances générales des dispositifs.By diffusion through the dielectric layer, these contaminating species occupy the electrical charge trapping sites of the trapping layer, reducing the efficiency of the latter and compromising the general performance of the devices.
La présente invention a pour but de traiter, au moins en partie, ce problème de contamination de la couche de piégeage de charges électriques exacerbée par la minceur de la couche diélectrique. Elle vise plus particulièrement à proposer une structure comprenant une couche superficielle reportée sur un support muni d’une couche de piégeage de charges électriques limitant la contamination de cette dernière ainsi qu’un procédé permettant la fabrication d’une telle structure.The present invention aims to address, at least in part, this problem of contamination of the electrical charge trapping layer exacerbated by the thinness of the dielectric layer. It aims more particularly to propose a structure comprising a surface layer transferred to a support provided with an electrical charge trapping layer limiting contamination of the latter as well as a process allowing the manufacture of such a structure.
En vue de la réalisation de ce but, l’objet de l’invention est un dispositif comprenant une couche superficielle ferroélectrique contenant du lithium ; une couche diélectrique comprenant un oxyde et disposée en contact avec la couche superficielle ferroélectrique ; et un substrat en contact avec la couche diélectrique, le substrat comprenant une couche de piégeage de charges disposée sur un support, la couche de piégeage de charges étant disposée entre le support et la couche diélectrique, dispositif dans lequel la couche diélectrique présente une épaisseur comprise entre 150 nm et 500 nm, de préférence entre 150 nm et 300 nm ; et une concentration d’azote dans la couche diélectrique et une rugosité de surface de la couche de piégeage de charges sont telles que la couche de piégeage de charges présente une dose de lithium inférieure à 5.1011 at/cm2.With a view to achieving this goal, the object of the invention is a device comprising a ferroelectric surface layer containing lithium; a dielectric layer comprising an oxide and disposed in contact with the ferroelectric surface layer; and a substrate in contact with the dielectric layer, the substrate comprising a charge trapping layer disposed on a support, the charge trapping layer being disposed between the support and the dielectric layer, device in which the dielectric layer has a thickness comprised between 150 nm and 500 nm, preferably between 150 nm and 300 nm; and a concentration of nitrogen in the dielectric layer and a surface roughness of the charge trapping layer are such that the charge trapping layer has a lithium dose of less than 5.10 11 at/cm 2 .
Un avantage de la structure selon l’invention est de maintenir l’efficacité de la fonction de piégeage de la couche de piégeage de charges électriques même lorsque la couche diélectrique séparant la couche de piégeage de charges de la couche superficielle est amincie, ceci en évitant sa contamination par des espèces chimiques susceptible de passiver les sites de piégeage de charge, en particulier l’hydrogène et le lithium présent dans la couche superficielle.An advantage of the structure according to the invention is to maintain the effectiveness of the trapping function of the electrical charge trapping layer even when the dielectric layer separating the charge trapping layer from the surface layer is thinned, this avoiding its contamination by chemical species likely to passivate charge trapping sites, in particular hydrogen and lithium present in the surface layer.
En conséquence, la structure selon l’invention permet de fournir des substrats en vue de la fabrication de composants comprenant des couches piézoélectriques et conçus pour fonctionner à hautes fréquences et présentant d’excellentes performances.Consequently, the structure according to the invention makes it possible to provide substrates for the manufacture of components comprising piezoelectric layers and designed to operate at high frequencies and having excellent performance.
Selon des caractéristiques additionnelles non-limitative du premier aspect de l’invention, considérées individuellement ou selon toute combinaison techniquement réalisable :
  • la concentration en azote de la couche diélectrique peut être comprise entre 5.1020 at/cm3 et 1022 at/cm3 ; et la rugosité de surface de la couche de piégeage peut être inférieure, en mesure pic-vallée, à 800 nm, de préférence inférieure à 400 nm, et encore plus préférentiellement inférieure à 100 nm ;
According to additional non-limiting characteristics of the first aspect of the invention, considered individually or according to any technically feasible combination:
  • the nitrogen concentration of the dielectric layer can be between 5.10 20 at/cm 3 and 10 22 at/cm 3 ; and the surface roughness of the trapping layer may be less, in peak-valley measurement, than 800 nm, preferably less than 400 nm, and even more preferably less than 100 nm;
- la couche diélectrique peut présenter une épaisseur comprise entre 150 nm et 250 nm ;- the dielectric layer may have a thickness of between 150 nm and 250 nm;
- la concentration en azote de la couche diélectrique peut être comprise entre 1021 at/cm3 et 6.1021 at/cm3;- the nitrogen concentration of the dielectric layer can be between 10 21 at/cm 3 and 6.10 21 at/cm 3 ;
- la couche diélectrique peut être une couche d’oxyde de silicium et une concentration en hydrogène de la couche diélectrique peut être strictement inférieure à la concentration en azote de la couche diélectrique ;- the dielectric layer may be a layer of silicon oxide and a hydrogen concentration of the dielectric layer may be strictly lower than the nitrogen concentration of the dielectric layer;
- une concentration en hydrogène de la couche diélectrique (16) peut être au moins trois fois inférieure à la concentration en azote de la couche diélectrique ;- a hydrogen concentration of the dielectric layer (16) can be at least three times lower than the nitrogen concentration of the dielectric layer;
- une concentration en hydrogène dans la couche diélectrique peut être inférieure à 1022 at/cm3 ;- a hydrogen concentration in the dielectric layer may be less than 10 22 at/cm 3 ;
- la dose en lithium dans la couche de piégeage de charges peut être inférieure à 1011 at/cm2 ;- the lithium dose in the charge trapping layer may be less than 10 11 at/cm 2 ;
- la couche superficielle ferroélectrique peut comprendre du niobate de lithium ou du tantalate de lithium ;- the ferroelectric surface layer may comprise lithium niobate or lithium tantalate;
- la couche de piégeage de charges peut comprendre du silicium polycristallin ;- the charge trapping layer may comprise polycrystalline silicon;
- la couche superficielle ferroélectrique peut être constituée d’un matériau monocristallin.- the ferroelectric surface layer may consist of a monocrystalline material.
Un second aspect de l’invention porte sur un procédé de fabrication d’un dispositif comprenant une couche ferroélectrique, comprenant les étapes de former une couche de piégeage de charges sur un support pour former un substrat ; lisser une surface exposée de la couche de piégeage de manière à réduire une rugosité de cette surface exposée sous une rugosité seuil ; former une couche diélectrique au moins sur la couche de piégeage de charges lissée et optionnellement sur un substrat donneur comprenant un matériau ferroélectrique, la couche diélectrique présentant une épaisseur comprise entre 150 nm et 500 nm ; assembler le substrat donneur et le substrat par l’intermédiaire de la couche diélectrique ; éliminer une partie du substrat donneur pour former une couche superficielle ferroélectrique, la rugosité seuil et une concentration d’azote dans une couche d’oxyde comprise dans la couche diélectrique étant choisies de sorte que la dose en lithium dans la couche de piégeage de charges soit inférieure à 5.1011 at/cm2 à l’issue du procédé de fabrication.A second aspect of the invention relates to a method of manufacturing a device comprising a ferroelectric layer, comprising the steps of forming a charge trapping layer on a support to form a substrate; smoothing an exposed surface of the trapping layer so as to reduce a roughness of this exposed surface below a threshold roughness; forming a dielectric layer at least on the smoothed charge trapping layer and optionally on a donor substrate comprising a ferroelectric material, the dielectric layer having a thickness of between 150 nm and 500 nm; assembling the donor substrate and the substrate via the dielectric layer; removing part of the donor substrate to form a ferroelectric surface layer, the threshold roughness and a concentration of nitrogen in an oxide layer included in the dielectric layer being chosen so that the dose of lithium in the charge trapping layer is less than 5.10 11 at/cm 2 at the end of the manufacturing process.
Selon des caractéristiques additionnelles non-limitative du second aspect de l’invention, considérées individuellement ou selon toute combinaison techniquement réalisable :According to additional non-limiting characteristics of the second aspect of the invention, considered individually or according to any technically feasible combination:
- la concentration en azote de la couche diélectrique peut être comprise entre 5.1020 at/cm3 et 1022 at/cm3 ; et la rugosité de surface de la couche de piégeage peut être inférieure, en mesure pic-vallée, à 800 nm, de préférence inférieure à 400 nm, et encore plus préférentiellement inférieure à 100 nm ;- the nitrogen concentration of the dielectric layer can be between 5.10 20 at/cm 3 and 10 22 at/cm 3 ; and the surface roughness of the trapping layer may be less, in peak-valley measurement, than 800 nm, preferably less than 400 nm, and even more preferably less than 100 nm;
- l’étape de lissage peut comprendre le polissage mécano-chimique de la couche de piégeage de charges ;- the smoothing step may include mechanical-chemical polishing of the charge trapping layer;
- la couche de piégeage de charges peut comprendre du silicium polycristallin ;- the charge trapping layer may comprise polycrystalline silicon;
- le procédé de fabrication peut comprendre la formation d’un plan de fragilisation par implantation d’espèces légères dans le substrat donneur pour y définir la couche superficielle, et l’étape d’élimination d’une partie du substrat donneur peut comprendre le détachement de la couche superficielle au niveau du plan de fragilisation.- the manufacturing process may include the formation of a weakening plane by implantation of light species in the donor substrate to define the surface layer, and the step of eliminating part of the donor substrate may include detachment of the surface layer at the level of the weakening plane.
BREVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES
D’autres caractéristiques et avantages de l’invention ressortiront de la description détaillée de l’invention qui va suivre en référence aux figures annexées sur lesquels :Other characteristics and advantages of the invention will emerge from the detailed description of the invention which follows with reference to the appended figures in which:
La représente une structure faisant l’objet de la présente description ; There represents a structure which is the subject of this description;
La illustre une procédé de fabrication de la structure représentée en  ; There illustrates a manufacturing process for the structure shown in ;
La schématise un mécanisme de diffusion d’espèces chimiques et le concept de mesure pic-vallée dans la structure selon l’invention ; There schematizes a mechanism for diffusion of chemical species and the concept of peak-valley measurement in the structure according to the invention;
La représente un graphique indiquant une épaisseur nécessaire d’oxyde dans la structure de la . There represents a graph indicating a necessary thickness of oxide in the structure of the .
DESCRIPTION DETAILLEE DE L’INVENTIONDETAILED DESCRIPTION OF THE INVENTION
La représente une structure 1 comprenant un substrat 10 intégrant un support 12 et une couche 14 de piégeage de charges électrique sur le support, une couche superficielle 20 disposée sur le substrat 10, et une couche diélectrique 16 interposée entre la couche superficielle 20 et le substrat 10, de préférence en contact direct avec la couche superficielle 20 et la couche 14 de piégeage de charges.There represents a structure 1 comprising a substrate 10 integrating a support 12 and a layer 14 for trapping electrical charges on the support, a surface layer 20 placed on the substrate 10, and a dielectric layer 16 interposed between the surface layer 20 and the substrate 10 , preferably in direct contact with the surface layer 20 and the charge trapping layer 14.
La couche superficielle 20 est une couche permettant de donner des fonctions, par exemple piézoélectriques, à un dispositif élaboré sur ou dans la structure 1.The surface layer 20 is a layer making it possible to give functions, for example piezoelectric, to a device developed on or in the structure 1.
De manière conventionnelle, la structure 1 peut se présenter sous la forme d'une plaquette circulaire dont le diamètre peut être de 100, 200, 300 voire même 450mm.Conventionally, structure 1 can be in the form of a circular plate whose diameter can be 100, 200, 300 or even 450mm.
Ainsi que cela est présenté dans les documents formant l'état de la technique présenté en préambule, la structure 1 peut être réalisée de multiples manières. Très généralement, la structure 1 peut être réalisée par un procédé de fabrication comprenant l’assemblage du substrat 10 et d’un substrat donneur, la couche diélectrique 16 étant intercalée entre ces deux éléments, suivi d’une étape d’élimination d’une partie du substrat donneur pour former la couche superficielle 20. L’étape d’élimination d’une partie du substrat donneur peut être réalisée par amincissement mécano-chimique de ce substrat. Cependant, la structure 1 est préférentiellement fabriquée par application de la technologie Smart Cut™, selon laquelle une couche destinée à former la couche superficielle 20 est délimitée par l’intermédiaire d’un plan de fragilisation formé par implantation d’espèces légères telles que de l’hydrogène dans le substrat donneur. Cette couche est ensuite séparée du substrat donneur collé au support via la couche diélectrique 16, par fracture au niveau du plan de fragilisation, la couche superficielle 20 restant fixée sur le substrat 10 muni de la couche de piégeage 14, avec la couche diélectrique 16 interposée entre eux.As presented in the documents forming the state of the art presented in the preamble, structure 1 can be produced in multiple ways. Very generally, structure 1 can be produced by a manufacturing process comprising the assembly of the substrate 10 and a donor substrate, the dielectric layer 16 being interposed between these two elements, followed by a step of eliminating a part of the donor substrate to form the surface layer 20. The step of eliminating part of the donor substrate can be carried out by mechanical-chemical thinning of this substrate. However, the structure 1 is preferentially manufactured by application of Smart Cut™ technology, according to which a layer intended to form the surface layer 20 is delimited by means of a weakening plane formed by implantation of light species such as hydrogen in the donor substrate. This layer is then separated from the donor substrate stuck to the support via the dielectric layer 16, by fracture at the level of the weakening plane, the surface layer 20 remaining fixed on the substrate 10 provided with the trapping layer 14, with the dielectric layer 16 interposed between them.
La fabrication d’une telle structure amène à introduire de l’hydrogène dans les couches en raison par exemple d’une implantation d’hydrogène au cours du procédé Smart Cut et de la production d’hydrogène lors du collage intervenant entre la couche superficielle et le substrat via la couche diélectrique. En outre, lorsque la couche superficielle est une couche ferroélectrique contenant du niobate de lithium ou du titanate de lithium, on a également présence de lithium dans les couches. Ces deux éléments, hydrogène et lithium, peuvent diffuser jusque la couche de piégeage, occuper les sites de piégeage des charges et donc les passiver, pouvant ainsi réduire drastiquement l’utilité de la couche de piégeage.The manufacture of such a structure leads to the introduction of hydrogen into the layers due for example to an implantation of hydrogen during the Smart Cut process and the production of hydrogen during the bonding occurring between the surface layer and the substrate via the dielectric layer. In addition, when the surface layer is a ferroelectric layer containing lithium niobate or lithium titanate, lithium is also present in the layers. These two elements, hydrogen and lithium, can diffuse into the trapping layer, occupy the charge trapping sites and therefore passivate them, thus being able to drastically reduce the usefulness of the trapping layer.
Le substrat 10 présente typiquement une épaisseur de plusieurs centaines de microns. Préférentiellement, le substrat présente une résistivité élevée, supérieure à 1000 ohm.centimètre, et plus préférentiellement encore, supérieure à 2000 ohm.centimètre. On limite de la sorte la densité des charges, trous ou électrons, qui sont susceptibles de se déplacer dans le substrat. Cependant, l’invention n’est pas limitée à un substrat 10 présentant une telle résistivité, et elle procure également des avantages de performance RF lorsque le substrat présente une résistivité plus conforme, de l’ordre de quelques centaines d’ohm.centimètre, par exemple inférieure à 1000 ohm.cm, ou à 500 ohm.cm voire même à 10 ohm.cm.The substrate 10 typically has a thickness of several hundred microns. Preferably, the substrate has a high resistivity, greater than 1000 ohm.centimeter, and even more preferably, greater than 2000 ohm.centimeter. This limits the density of charges, holes or electrons, which are likely to move in the substrate. However, the invention is not limited to a substrate 10 having such a resistivity, and it also provides RF performance advantages when the substrate has a more consistent resistivity, of the order of a few hundred ohm.centimeter, for example less than 1000 ohm.cm, or 500 ohm.cm or even 10 ohm.cm.
Pour des raisons de disponibilité et de coût, le support 12 est préférentiellement en silicium monocristallin. Il peut s'agir par exemple d'un substrat de silicium CZ à faible teneur en oxygène interstitiel comprise entre 6 et 10 ppm, ou d’un substrat de silicium FZ qui présente notamment une teneur en oxygène interstitiel naturellement très faible. Il peut également s'agir d'un substrat de silicium CZ présentant une quantité élevée d'oxygène interstitiel (désigné par l'expression « High Oi ») supérieure à 26 ppm. Le support 12 peut alternativement être formé d'un autre matériau : il peut s'agir par exemple de saphir, de verre, de quartz, de carbure de silicium… Dans certaines circonstances, et notamment lorsque la couche de piégeage 14 présente une épaisseur suffisante, par exemple supérieure à 30 microns, le support 12 peut présenter une résistivité standard, inférieure à 1 kohm.cm.For reasons of availability and cost, the support 12 is preferably made of monocrystalline silicon. It may for example be a CZ silicon substrate with a low interstitial oxygen content of between 6 and 10 ppm, or an FZ silicon substrate which notably has a naturally very low interstitial oxygen content. It may also be a CZ silicon substrate having a high amount of interstitial oxygen (referred to as “High Oi”) greater than 26 ppm. The support 12 can alternatively be formed from another material: it can for example be sapphire, glass, quartz, silicon carbide, etc. In certain circumstances, and in particular when the trapping layer 14 has a sufficient thickness , for example greater than 30 microns, the support 12 can have a standard resistivity, less than 1 kohm.cm.
La couche de piégeage 14 peut être de natures très variées, ainsi que cela est reporté dans les documents formant l'état de la technique. D'une manière générale, il s'agit d'une couche non cristalline présentant des défauts structurels tels que des dislocations, des joints de grains, des zones amorphes, des interstices, des inclusions, des pores… Ces défauts structurels forment des pièges pour les charges susceptibles de circuler dans le matériau, par exemple au niveau de liaisons chimiques non complètes ou pendantes. On prévient ou on limite ainsi la conduction dans la couche de piégeage qui présente en conséquence une résistivité élevée.The trapping layer 14 can be of very varied natures, as reported in the documents forming the state of the art. Generally speaking, it is a non-crystalline layer presenting structural defects such as dislocations, grain boundaries, amorphous zones, interstices, inclusions, pores, etc. These structural defects form traps for the charges likely to circulate in the material, for example at the level of incomplete or dangling chemical bonds. This prevents or limits conduction in the trapping layer which consequently has a high resistivity.
De manière avantageuse, et pour des raisons de simplicité de mise en œuvre, cette couche de piégeage 14 est formée d'une couche de silicium polycristallin. Son épaisseur, notamment lorsqu'elle est formée sur un support 12 résistif, peut être comprise entre 0,3 et 3 µm. Mais d'autres épaisseurs inférieures ou supérieures à cet intervalle sont tout à fait envisageables, selon le niveau de performance RF attendu de la structure 1.Advantageously, and for reasons of simplicity of implementation, this trapping layer 14 is formed of a layer of polycrystalline silicon. Its thickness, particularly when it is formed on a resistive support 12, can be between 0.3 and 3 µm. But other thicknesses less than or greater than this interval are entirely possible, depending on the level of RF performance expected from structure 1.
Afin de chercher à préserver la qualité polycristalline de cette couche au cours des traitements thermiques que peut subir la structure 1, on peut avantageusement prévoir une couche amorphe, en dioxyde de silicium par exemple, sur le support 12 avant le dépôt de la couche de piégeage de charges 14.In order to seek to preserve the polycrystalline quality of this layer during the heat treatments that structure 1 may undergo, it is advantageous to provide an amorphous layer, made of silicon dioxide for example, on the support 12 before deposition of the trapping layer. of charges 14.
On peut alternativement former la couche de piégeage 14 par une implantation d’espèce lourde, tel que de l’argon, dans une épaisseur superficielle du support 12, afin d’y former les défauts structurels constituant les pièges électriques. On peut également former cette couche 14 par porosification d’une épaisseur superficielle du support 12.Alternatively, the trapping layer 14 can be formed by implantation of a heavy species, such as argon, in a superficial thickness of the support 12, in order to form the structural defects constituting the electrical traps. This layer 14 can also be formed by porosification of a surface thickness of the support 12.
La couche diélectrique est d’ordinaire constituée d’un oxyde de silicium et préférentiellement contient de l’azote, favorable pour former une couche barrière empêchant la diffusion des espèces, en particulier l’hydrogène et le lithium mentionnés ci-dessus.The dielectric layer is usually made of silicon oxide and preferably contains nitrogen, favorable for forming a barrier layer preventing the diffusion of species, in particular hydrogen and lithium mentioned above.
La couche superficielle 20 peut être de toute nature qui convient. Elle est très préférentiellement formée d’un matériau monocristallin. Lorsque la structure 1 est destinée à recevoir des composants intégrés à semi-conducteur, la couche superficielle 20 peut être ainsi composée de silicium monocristallin, ou de tout autre matériau semi-conducteur. Dans un tel cas, une contamination au lithium peut avoir pour origine l’équipement utilisé pour la fabrication de la structure. Lorsque la structure 1 est destinée à recevoir des filtres à onde acoustique de surface, la couche superficielle 20 peut être composée d’un matériau piézoélectrique et/ou ferroélectrique, tel que du tantalate de lithium ou du niobate de lithium. Dans ce cas, en plus d’éventuelles contaminations par l’extérieur, la contamination au lithium a aussi avoir pour origine la couche superficielle elle-même. La couche superficielle 20 peut également comprendre des composants intégrés finis ou semi-finis, formés sur le substrat donneur et reportés sur le substrat 10 au cours de l’étape de fabrication de la structure 1. D’une manière générale, la couche mince peut présenter une épaisseur comprise entre 10 nm et 10 µm.The surface layer 20 can be of any suitable nature. It is very preferably formed from a monocrystalline material. When structure 1 is intended to receive integrated semiconductor components, the surface layer 20 can thus be composed of monocrystalline silicon, or any other semiconductor material. In such a case, lithium contamination may originate from the equipment used to manufacture the structure. When structure 1 is intended to receive surface acoustic wave filters, surface layer 20 may be composed of a piezoelectric and/or ferroelectric material, such as lithium tantalate or lithium niobate. In this case, in addition to possible contamination from the outside, the lithium contamination also has its origin in the surface layer itself. The surface layer 20 can also include finished or semi-finished integrated components, formed on the donor substrate and transferred to the substrate 10 during the step of manufacturing the structure 1. Generally speaking, the thin layer can have a thickness between 10 nm and 10 µm.
On présente maintenant, à titre d’illustration seulement, à l’aide de la un procédé de fabrication d'une structure conforme à celle représentée sur la , dans laquelle la couche superficielle 20 est une couche ferroélectrique.We now present, for illustration purposes only, using the a process for manufacturing a structure conforming to that shown in the , in which the surface layer 20 is a ferroelectric layer.
Selon ce procédé, sur un support 12 en silicium, on forme par dépôt une couche de piégeage de charges 14 en silicium polycristallin, par exemple à l'aide d'une technique LPCVD conduite entre 600°C et 650°C. La couche piégeage 14 présente une épaisseur d'environ 500 nm, voir 1 micron.According to this process, on a silicon support 12, a charge trapping layer 14 in polycrystalline silicon is formed by deposition, for example using an LPCVD technique carried out between 600°C and 650°C. The trapping layer 14 has a thickness of approximately 500 nm, or even 1 micron.
La couche de piégeage 14 est ensuite polie par une étape de polissage mécano-chimique (ou CMP pour Chemical-Mechanical Polishing en terminologie anglaise) conduisant à un enlèvement d'environ 100 à 200 nanomètres de la couche de piégeage, résultant en une couche d’épaisseur comprise entre 500 et 1000 nanomètre pour présenter une surface de rugosité inférieure à 300 nm, préférentiellement inférieure à 140 nm, ou encore plus préférentiellement inférieure à 100 nm, en mesure pic-vallée. De manière non-limitative une rugosité pic-vallée de 800 nm peut être obtenue avec un dépôt d'une couche de piégeage de charges en silicium polycristallin de plusieurs microns (environ 4 µm). Une telle rugosité pourrait permettre d'éviter des modes parasites, en particulier présent dans une structure type POI (Piezoelectric-On-Insulator en terminologie anglaise) avec une épaisseur de la couche piézoélectrique supérieur à la longueur d’onde utilisée, dus au rayonnement de ces modes de volumes dans le volume et leur interaction avec les interfaces.The trapping layer 14 is then polished by a chemical-mechanical polishing step (or CMP for Chemical-Mechanical Polishing in English terminology) leading to a removal of approximately 100 to 200 nanometers of the trapping layer, resulting in a layer of thickness between 500 and 1000 nanometer to present a surface roughness less than 300 nm, preferably less than 140 nm, or even more preferably less than 100 nm, in peak-valley measurement. In a non-limiting manner, a peak-valley roughness of 800 nm can be obtained with a deposition of a polycrystalline silicon charge trapping layer of several microns (approximately 4 µm). Such roughness could make it possible to avoid parasitic modes, in particular present in a POI (Piezoelectric-On-Insulator) type structure with a thickness of the piezoelectric layer greater than the wavelength used, due to the radiation of these modes of volumes within the volume and their interaction with the interfaces.
Préférablement, afin de réduite le contenu en hydrogène de la couche de piégeage, on peut prévoir un premier recuit de cette couche dans une atmosphère pauvre en hydrogène (i.e. inférieur à 5 ppm) à une température comprise entre la température de dépôt et 1000°C. Avantageusement la température du premier recuit est supérieure à 620°C et préférentiellement inférieure à 900°C, pendant au moins une heure et préférentiellement pendant quelques heures. On exodiffuse efficacement dans ces conditions préférentielles de recuit l’hydrogène présent dans la couche de piégeage 3 pour réduire sa concentration sous le seuil de 1018 at/cm3, préférablement 101 7 at/cm3, sans détériorer la nature polycristalline de la couche de piégeage, par effet de recristallisation.Preferably, in order to reduce the hydrogen content of the trapping layer, a first annealing of this layer can be provided in an atmosphere poor in hydrogen (ie less than 5 ppm) at a temperature between the deposition temperature and 1000°C. . Advantageously the temperature of the first annealing is greater than 620°C and preferably less than 900°C, for at least one hour and preferably for several hours. The hydrogen present in the trapping layer 3 is effectively exodused under these preferential annealing conditions to reduce its concentration below the threshold of 10 18 at/cm 3 , preferably 10 1 7 at/cm 3 , without deteriorating the polycrystalline nature of the trapping layer, by recrystallization effect.
Sur la couche de piégeage 14 on dépose, par exemple par une technique PECVD conduite à une température comprise entre 600°C et 800°C, une couche diélectrique 16 formée d’une couche d'oxyde de silicium incluant de l’azote de 300 nm à 1000 nm d'épaisseur formant la couche diélectrique 16 de la structure 1. La couche est ensuite polie par une étape de polissage mécano-chimique (CMP) conduisant à un enlèvement d'environ 200 à 800 nanomètres de l’oxyde pour fournir une surface présentant une rugosité inférieure à 0,3 nm RMS, par exemple sur un champ de 5*5 microns ou un champ de 30*30 microns par une mesure par microscopie à force atomique. Les dimensions du champ de mesure sont adaptées par le praticien de manière à obtenir une caractérisation représentative de la couche considérée. Ici, la couche diélectrique 16 présente une épaisseur comprise entre 150 nm et 500 nm, préférentiellement entre 150 nm et 250 nm, et une concentration en hydrogène importante de plus de 1020 at/cm3 mais restant de préférence inférieure à une concentration en azote dans la couche diélectrique 16.On the trapping layer 14, a dielectric layer 16 formed of a layer of silicon oxide including nitrogen of 300 is deposited, for example by a PECVD technique carried out at a temperature between 600°C and 800°C. nm to 1000 nm thick forming the dielectric layer 16 of structure 1. The layer is then polished by a chemical mechanical polishing (CMP) step leading to a removal of approximately 200 to 800 nanometers of the oxide to provide a surface having a roughness less than 0.3 nm RMS, for example on a field of 5*5 microns or a field of 30*30 microns by measurement by atomic force microscopy. The dimensions of the measurement field are adapted by the practitioner so as to obtain a representative characterization of the layer considered. Here, the dielectric layer 16 has a thickness of between 150 nm and 500 nm, preferably between 150 nm and 250 nm, and a significant hydrogen concentration of more than 10 20 at/cm 3 but preferably remaining lower than a nitrogen concentration. in the dielectric layer 16.
Pour réduire cette concentration, on peut applique un deuxième recuit, dit « de densification », similaire au premier recuit décrit précédemment. Il s'agit donc d'un recuit sous atmosphère pauvre en hydrogène (i.e. inférieure à 5 ppm) et exposant la couche diélectrique 16 à une température supérieure à sa température de dépôt. Il peut s’agir d’une atmosphère neutre ou oxydante. Préférentiellement cette température est supérieure à 800°C, typiquement comprise entre 800°C et 900°C. Le recuit est poursuivi pendant au moins une heure, et préférentiellement pendant plusieurs heures, enfin d'exodiffuser l'hydrogène de la couche diélectrique 16, et éventuellement de la couche de piégeage 14. A l’issue de ce recuit de densification, la couche diélectrique 16 présente une concentration en hydrogène inférieure 1020 at/cm3 et la couche de piégeage 14 présente une concentration en hydrogène inférieures 1018 at/cm3, préférablement 101 7 at/cm3.To reduce this concentration, a second annealing, called “densification”, can be applied, similar to the first annealing described previously. It is therefore an annealing under an atmosphere poor in hydrogen (ie less than 5 ppm) and exposing the dielectric layer 16 to a temperature higher than its deposition temperature. It can be a neutral or oxidizing atmosphere. Preferably this temperature is greater than 800°C, typically between 800°C and 900°C. The annealing is continued for at least one hour, and preferably for several hours, finally to exo-diffuse the hydrogen from the dielectric layer 16, and possibly from the trapping layer 14. At the end of this densification annealing, the layer dielectric 16 has a lower hydrogen concentration of 10 20 at/cm 3 and the trapping layer 14 has a lower hydrogen concentration of 10 18 at/cm 3 , preferably 10 1 7 at/cm 3 .
La présence d’azote dans une couche d’oxyde de silicium améliore son effet barrière vis-à-vis de la diffusion d’espèces chimiques telles que le lithium et l’hydrogène. La demanderesse a estimé par simulations et confirmé par expériences qu’une diminution de la rugosité de la couche de piégeage s’accompagne d’une diminution de la teneur en azote nécessaire pour obtenir un effet barrière satisfaisant. Ainsi, une concentration en azote comprise entre 5.1020 at/cm3 et 1022 at/cm3, préférablement entre 1021 at/cm3 et 6.1021 at/cm3, permet, en combinaison avec une couche de piégeage de rugosité inférieure à 800 nm, préférentiellement inférieur à 400 nm, préférentiellement inférieure à 100 nm, en mesure pic-vallée, d’obtenir un effet barrière suffisant de la couche diélectrique pour élaborer sur le substrat ainsi obtenu des dispositifs capables de fonctionner en hautes fréquences. Les valeurs hautes des plages ci-dessus ne constituent pas une limite haute à la concentration en azote pour obtenir un l’effet barrière, mais assurent une concentration en azote suffisamment basse pour pouvoir appliquer la structure selon l’invention à des dispositifs connus sans risquer d’influencer négativement leurs performances.The presence of nitrogen in a layer of silicon oxide improves its barrier effect against the diffusion of chemical species such as lithium and hydrogen. The applicant has estimated by simulations and confirmed by experiments that a reduction in the roughness of the trapping layer is accompanied by a reduction in the nitrogen content necessary to obtain a satisfactory barrier effect. Thus, a nitrogen concentration of between 5.1020 at/cm3 and 1022 at/cm3, preferably between 1021 at/cm3 and 6.1021 at/cm3, allows, in combination with a trapping layer with roughness less than 800 nm, preferably less than 400 nm, preferably less than 100 nm, in peak-valley measurement, to obtain a sufficient barrier effect of the dielectric layer to develop on the substrate thus obtained devices capable to operate at high frequencies. The high values of the above ranges do not constitute an upper limit to the nitrogen concentration to obtain a barrier effect, but ensure a sufficiently low nitrogen concentration to be able to apply the structure according to the invention to known devices without risking to negatively influence their performance.
L’importance de la minimisation de la rugosité en mesure pic-vallée s’explique de manière empirique au moyen de la  : chaque pic 310 de rugosité de la couche de piégeage 14 créée un ou plusieurs chemins privilégiés (représentés par des flèches droites) pour la migration des espèces à travers la couche diélectrique 16 en raison d’un amincissement local de la couche diélectrique 16 au niveau des ces pics 310. La n’est qu’une représentation schématique utilisée à des fins explicatives et aucunement une représentation réaliste des couches dans un dispositif réel. The importance of minimizing roughness in peak-valley measurement is explained empirically by means of the : each peak 310 of roughness of the trapping layer 14 creates one or more preferred paths (represented by straight arrows) for the migration of species through the dielectric layer 16 due to a local thinning of the dielectric layer 16 at the level of these peaks 310. is only a schematic representation used for explanatory purposes and in no way a realistic representation of the layers in a real device.
Comme illustré par la , une mesure pic-vallée consiste à mesurer la somme Sum d’une profondeur S1 maximale d’un creux (la vallée la plus profonde) dans une surface Surf considérée et d’une hauteur S2 maximale d’un pic (la saillie la plus élevée) de cette surface, la profondeur et la hauteur étant mesurées par rapport à une altitude moyenne Moy de cette surface, par exemple sur une surface donnée de l’échantillon. Dans le cas d’une mesure par microscopie à force atomique , on peut par exemple considérer une surface d’observation correspondant à un carré de 30 µm de côté, mais on pourrait alternativement considérer un carré de 5 µm de côté ou plus pour établir la mesure pic-vallée.As illustrated by the , a peak-valley measurement consists of measuring the sum Sum of a maximum depth S1 of a trough (the deepest valley) in a Surf surface considered and of a maximum height S2 of a peak (the deepest projection high) of this surface, the depth and height being measured relative to an average altitude Avg of this surface, for example on a given surface of the sample. In the case of a measurement by atomic force microscopy, we can for example consider an observation surface corresponding to a square of 30 µm side, but we could alternatively consider a square of 5 µm side or more to establish the peak-valley measurement.
On peut chercher à minimiser l’épaisseur de la couche d’oxyde formant la couche diélectrique 16 en fonction de sa concentration en azote et d’une dose maximale de lithium considérée comme acceptable dans la couche de piégeage de charges. On estime ainsi l’épaisseur minimale de la couche d’oxyde comme la somme de la moitié de la rugosité en mesure pic-vallée et d’une épaisseur minimale d’oxyde dépendant de sa concentration en azote, cette épaisseur minimale diminuant avec l’augmentation de la concentration en azote. L’épaisseur de la couche diélectrique 16 est mesurée entre la profondeur moyenne de la couche de piégeage de charges et la surface de la couche d’oxyde.We can seek to minimize the thickness of the oxide layer forming the dielectric layer 16 as a function of its nitrogen concentration and a maximum dose of lithium considered acceptable in the charge trapping layer. We thus estimate the minimum thickness of the oxide layer as the sum of half of the roughness in peak-valley measurement and a minimum thickness of oxide depending on its nitrogen concentration, this minimum thickness decreasing with the increase in nitrogen concentration. The thickness of the dielectric layer 16 is measured between the average depth of the charge trapping layer and the surface of the oxide layer.
On entend par dose la quantité d’atomes d’une espèce chimique donnée sur l’épaisseur de la couche, c’est-à-dire la quantité contenue dans un volume défini par une surface donnée en surface de la couche et la projection de cette surface perpendiculairement à la couche. Une dose peut s’exprimer en nombre d’atome pour une unité de surface de la couche.By dose we mean the quantity of atoms of a given chemical species over the thickness of the layer, that is to say the quantity contained in a volume defined by a given surface area on the surface of the layer and the projection of this surface perpendicular to the layer. A dose can be expressed in number of atoms per unit surface area of the layer.
Le graphique illustré par la résume la situation. En abscisse se trouve l’épaisseur Tk de la couche d’oxyde exprimée en nanomètres, en ordonnée se trouve la rugosité en mesure pic-vallée de la couche de piégeage de charges indiquée par PV et exprimée en nanomètres. Pour ce graphique, les courbes identifiées par [N]1, [N]2, [N]3 et [N]4 représentent les épaisseurs minimales de la couche d’oxyde selon PV pour obtenir une dose maximale de lithium acceptable fixée à 5.1011 atomes de lithium par centimètre carré dans la couche de piégeage de charges, respectivement pour des concentrations en azote d’environ 1020, 1.102 1, 3.1021 et 102 2 at/cm3, respectivement. Une valeur PV de 0 correspond à une couche de piégeage de charges parfaitement lisse, ce qui donne l’épaisseur minimale d’oxyde à déposer pour limiter suffisamment la diffusion des espèces chimiques dans la couche, le lithium en particulier, pour une concentration d’azote donnée de cette oxyde.The graph illustrated by summarizes the situation. On the abscissa is the thickness Tk of the oxide layer expressed in nanometers, on the ordinate is the roughness in peak-valley measurement of the charge trapping layer indicated by PV and expressed in nanometers. For this graph, the curves identified by [N] 1 , [N] 2 , [N] 3 and [N] 4 represent the minimum thicknesses of the oxide layer according to PV to obtain a maximum acceptable lithium dose set at 5.10 11 lithium atoms per square centimeter in the charge trapping layer, respectively for nitrogen concentrations of approximately 10 20 , 1.10 2 1 , 3.10 21 and 10 2 2 at/cm 3 , respectively. A PV value of 0 corresponds to a perfectly smooth charge trapping layer, which gives the minimum thickness of oxide to be deposited to sufficiently limit the diffusion of chemical species in the layer, lithium in particular, for a concentration of given nitrogen of this oxide.
Préférablement, la couche d’oxyde formant la couche diélectrique 16 présente une proportion entre les concentrations d’azote et d’hydrogène qui soit favorable au blocage de la diffusion de l’hydrogène, avec un excès d’azote par rapport à la quantité d’hydrogène, c'est-à-dire un ratio entre les concentrations d’azote et d’hydrogène qui soit strictement supérieur à 1, préférablement supérieur à 1,5, et encore plus préférablement supérieur à 3, pour des concentrations mesurées par une méthode SIMS (Secondary Ion Mass Spectrometry en terminologie anglaise). Ainsi, la concentration en hydrogène dans la couche diélectrique est préférablement inférieure à environ 1022 at/cm3, plus préférablement inférieure à environ 1021 at/cm3, encore plus préférablement inférieure à environ 1020 at/cm3.Preferably, the oxide layer forming the dielectric layer 16 has a proportion between the concentrations of nitrogen and hydrogen which is favorable for blocking the diffusion of hydrogen, with an excess of nitrogen relative to the quantity of hydrogen, that is to say a ratio between the concentrations of nitrogen and hydrogen which is strictly greater than 1, preferably greater than 1.5, and even more preferably greater than 3, for concentrations measured by a SIMS method (Secondary Ion Mass Spectrometry in English terminology). Thus, the hydrogen concentration in the dielectric layer is preferably less than about 10 22 at/cm 3 , more preferably less than about 10 21 at/cm 3 , even more preferably less than about 10 20 at/cm 3 .
Il est à noter que, lorsque la couche diélectrique 16 est formée sur la couche de piégeage 14, et que ces deux couches ont été déposées à relativement basse température comme cela vient d'être exposé, il n'est pas nécessaire d'appliquer respectivement le premier et le deuxième recuit après chaque étape de dépôt. Il est possible de réaliser un unique recuit, dans des conditions similaires au premier et au deuxième recuit, après la formation de la couche diélectrique 16 à basse température sur la couche de piégeage 14. En d'autres termes, il n'est pas nécessaire dans ce cas d'appliquer un recuit spécifique de la couche de piégeage 14 avant le dépôt de la couche diélectrique 16.It should be noted that, when the dielectric layer 16 is formed on the trapping layer 14, and these two layers have been deposited at relatively low temperature as has just been explained, it is not necessary to apply respectively the first and second annealing after each deposition step. It is possible to carry out a single annealing, under conditions similar to the first and second annealing, after the formation of the dielectric layer 16 at low temperature on the trapping layer 14. In other words, it is not necessary in this case to apply a specific annealing of the trapping layer 14 before the deposition of the dielectric layer 16.
Comme illustré par ce mode de réalisation, on préfère généralement disposer la couche diélectrique 16 sur le support 12 (via la couche de piégeage 14) plutôt que sur le substrat donneur 200. En effet, il est généralement possible de traiter thermiquement ce support 12 à la température du premier et/ou deuxième recuit, ce qui n'est pas toujours le cas du substrat donneur 200. Par exemple, ce substrat donneur peut présenter un plan de fragilisation, ou être composé d'un matériau ferroélectrique présentant une température de Curie relativement basse ou comporter des composants, ce qui, dans chacun de ces cas, limite le budget thermique qui lui est applicable à quelques centaines de degrés pendant un temps relativement court, inférieur à 1 heure. Toutefois, l'invention n'exclut pas que, dans certains cas favorables, la couche diélectrique 16 puisse être formée au moins en partie sur le substrat donneur 200.As illustrated by this embodiment, it is generally preferred to place the dielectric layer 16 on the support 12 (via the trapping layer 14) rather than on the donor substrate 200. In fact, it is generally possible to heat treat this support 12 at the temperature of the first and/or second annealing, which is not always the case of the donor substrate 200. For example, this donor substrate may have a weakening plane, or be composed of a ferroelectric material having a Curie temperature relatively low or include components, which, in each of these cases, limits the thermal budget applicable to it to a few hundred degrees for a relatively short time, less than 1 hour. However, the invention does not exclude that, in certain favorable cases, the dielectric layer 16 may be formed at least in part on the donor substrate 200.
La structure obtenue à ce stade est illustrée en (a) de la .The structure obtained at this stage is illustrated in (a) of the .
Parallèlement à la préparation du substrat 10, des ions d’hydrogène sont implantés dans un substrat donneur 200 ferroélectrique de tantalate de lithium à travers une première 210 de ses faces afin de former un plan de fragilisation 220 enterré. On définit de la sorte une la couche superficielle 20 entre ce plan de fragilisation 220 et la première face 210 du substrat donneur et une couche complémentaire 22 comprenant le reste du substrat donneur.Parallel to the preparation of the substrate 10, hydrogen ions are implanted in a ferroelectric donor substrate 200 of lithium tantalate through a first 210 of its faces in order to form a buried weakening plane 220. We thus define the surface layer 20 between this weakening plane 220 and the first face 210 of the donor substrate and a complementary layer 22 comprising the rest of the donor substrate.
Le substrat donneur obtenu à ce stade est illustrée en (b) de la .The donor substrate obtained at this stage is illustrated in (b) of the .
On assemble le substrat donneur 200 à la couche d'oxyde de silicium 16 disposée sur le support 12 comme illustré en (c) de la , et on fracture ensuite le substrat donneur 200 au niveau du plan de fragilisation 220 à l'aide d'un traitement thermique modéré de l’ordre de 400°C. On libère la couche complémentaire 22 du substrat donneur pour exposer une face libre 230 de cette couche qui peut ensuite être préparée pour en améliorer la qualité cristalline et l’état de surface. Cette préparation comprend une étape d'amincissement de la première couche par polissage mécano-chimique et une étape de traitement thermique à 500°C dans une atmosphère neutre pendant 1h. La structure obtenue, indiquée en (d) de la est celle de la .The donor substrate 200 is assembled with the silicon oxide layer 16 placed on the support 12 as illustrated in (c) of the , and the donor substrate 200 is then fractured at the weakening plane 220 using a moderate heat treatment of around 400°C. The complementary layer 22 is released from the donor substrate to expose a free face 230 of this layer which can then be prepared to improve its crystalline quality and surface condition. This preparation includes a step of thinning the first layer by mechanical-chemical polishing and a heat treatment step at 500°C in a neutral atmosphere for 1 hour. The structure obtained, indicated in (d) of the is that of the .
Le procédé décrit ci-dessus est appliquée à une couche ferroélectrique de tantalate de lithium utilisée en tant que couche superficielle 20, mais d’autres types de matériaux ferroélectrique ou piézoélectrique tels que du niobate de lithium pourraient être employés. En outre, alternativement à une couche superficielle ferroélectrique, une couche superficielle semiconductrice comme une couche de silicium ou comprenant du silicium tel que du silicium monocristallin pourrait être employée.The method described above is applied to a ferroelectric layer of lithium tantalate used as surface layer 20, but other types of ferroelectric or piezoelectric materials such as lithium niobate could be used. Furthermore, as an alternative to a ferroelectric surface layer, a semiconductor surface layer such as a layer of silicon or comprising silicon such as monocrystalline silicon could be used.
Le procédé de fabrication détaillé ci-dessus permet donc d’obtenir une structure dont la pollution de la couche de piégeage par des espèces dommageables, en particulier l’hydrogène et le lithium, reste suffisamment limitée pour élaborer des dispositifs capables de fonctionner de manière satisfaisante en hautes fréquences. En effet, par exemple la combinaison d’une teneur en azote comprise entre 5.1020 at/cm3 et 1022 at/cm3 pour une couche d’oxyde d’une épaisseur suffisante disposée directement sur une surface d’une couche de piégeage 14 de rugosité inférieure à 300 nm en mesure pic-vallée résulte en un maintien dans la couche de piégeage de charges 14 de dose de lithium à moins de 5.1011 at/cm2, et de concentrations d’hydrogène à moins de 1020 at/cm3, préférablement moins de 1019 at/cm3, encore plus préférablement moins de 1018 at/cm3.The manufacturing process detailed above therefore makes it possible to obtain a structure whose pollution of the trapping layer by damaging species, in particular hydrogen and lithium, remains sufficiently limited to develop devices capable of operating satisfactorily. at high frequencies. Indeed, for example the combination of a nitrogen content between 5.10 20 at/cm 3 and 10 22 at/cm 3 for an oxide layer of sufficient thickness placed directly on a surface of a trapping layer 14 of roughness less than 300 nm in peak-valley measurement results in maintenance in the charge trapping layer 14 of lithium dose at less than 5.10 11 at/cm 2 , and hydrogen concentrations at less than 10 20 at /cm 3 , preferably less than 10 19 at/cm 3 , even more preferably less than 10 18 at/cm 3 .
Bien entendu l'invention n'est pas limitée aux modes de mise en œuvre décrits et on peut y apporter des variantes de réalisation sans sortir du cadre de l'invention tel que défini par les revendications.
Of course, the invention is not limited to the modes of implementation described and alternative embodiments can be made without departing from the scope of the invention as defined by the claims.

Claims (14)

  1. Dispositif comprenant :
    - une couche superficielle (20) ferroélectrique contenant du lithium ;
    - une couche diélectrique (16) comprenant un oxyde et disposée en contact avec la couche superficielle ferroélectrique ; et
    - un substrat (10) en contact avec la couche diélectrique, le substrat comprenant une couche (14) de piégeage de charges disposée sur un support (12), la couche (14) de piégeage de charges étant disposée entre le support (12) et la couche diélectrique (16),
    le dispositif étant caractérisé en ce que :
    la couche diélectrique (16) présente une épaisseur comprise entre 150 nm et 500 nm, de préférence entre 150 nm et 300 nm ;
    une concentration d’azote dans la couche diélectrique (16) et une rugosité de surface de la couche (14) de piégeage de charges sont telles que la couche (14) de piégeage de charges présente une dose de lithium inférieure à 5.1011 at/cm2 ;
    la concentration en azote de la couche diélectrique est comprise entre 5.1020 at/cm3 et 1022 at/cm3 ; et
    la rugosité de surface de la couche (14) de piégeage est inférieure, en mesure pic-vallée, à 800 nm, de préférence inférieure à 400 nm, et encore plus préférentiellement inférieure à 100 nm.
    Device comprising:
    - a ferroelectric surface layer (20) containing lithium;
    - a dielectric layer (16) comprising an oxide and placed in contact with the ferroelectric surface layer; And
    - a substrate (10) in contact with the dielectric layer, the substrate comprising a charge trapping layer (14) disposed on a support (12), the charge trapping layer (14) being disposed between the support (12) and the dielectric layer (16),
    the device being characterized in that :
    the dielectric layer (16) has a thickness of between 150 nm and 500 nm, preferably between 150 nm and 300 nm;
    a concentration of nitrogen in the dielectric layer (16) and a surface roughness of the charge trapping layer (14) are such that the charge trapping layer (14) has a lithium dose of less than 5.10 11 at/ cm 2 ;
    the nitrogen concentration of the dielectric layer is between 5.10 20 at/cm 3 and 10 22 at/cm 3 ; And
    the surface roughness of the trapping layer (14) is less, in peak-valley measurement, than 800 nm, preferably less than 400 nm, and even more preferably less than 100 nm.
  2. Le dispositif selon la revendication 1, dans lequel la couche diélectrique (16) présente une épaisseur comprise entre 150 nm et 250 nm. The device according to claim 1, wherein the dielectric layer (16) has a thickness of between 150 nm and 250 nm.
  3. Le dispositif selon la revendication 1 ou 2, dans lequel la concentration en azote de la couche diélectrique (16) est comprise entre 1021 at/cm3 et 6.1021 at/cm3. The device according to claim 1 or 2, in which the nitrogen concentration of the dielectric layer (16) is between 10 21 at/cm 3 and 6.10 21 at/cm 3 .
  4. Le dispositif selon l’une quelconque de revendications 1 à 3, dans lequel la couche diélectrique est une couche d’oxyde de silicium et une concentration en hydrogène de la couche diélectrique (16) est strictement inférieure à la concentration en azote de la couche diélectrique (16). The device according to any one of claims 1 to 3, in which the dielectric layer is a layer of silicon oxide and a hydrogen concentration of the dielectric layer (16) is strictly lower than the nitrogen concentration of the dielectric layer (16).
  5. Le dispositif selon la revendication 4, dans lequel une concentration en hydrogène de la couche diélectrique (16) est au moins trois fois inférieure à la concentration en azote de la couche diélectrique (16). The device according to claim 4, wherein a hydrogen concentration of the dielectric layer (16) is at least three times lower than the nitrogen concentration of the dielectric layer (16).
  6. Le dispositif selon l’une quelconque de revendications 1 à 5, dans lequel une concentration en hydrogène dans la couche diélectrique (16) est inférieure à 1022 at/cm3. The device according to any one of claims 1 to 5, wherein a concentration of hydrogen in the dielectric layer (16) is less than 10 22 at/cm 3 .
  7. Le dispositif selon l’une quelconque de revendications 1 à 6, dans lequel la dose en lithium dans la couche (14) de piégeage de charges est inférieure à 101 1 at/cm2. The device according to any one of claims 1 to 6, in which the dose of lithium in the charge trapping layer (14) is less than 10 1 1 at/cm 2 .
  8. Le dispositif selon l’une quelconque des revendications 1 à 7, dans lequel la couche superficielle (20) ferroélectrique comprend du niobate de lithium ou du tantalate de lithium. The device according to any one of claims 1 to 7, wherein the ferroelectric surface layer (20) comprises lithium niobate or lithium tantalate.
  9. Le dispositif selon l’une quelconque des revendications précédentes 1 à 8 dans lequel la couche (14) de piégeage de charges comprend du silicium polycristallin. The device according to any one of preceding claims 1 to 8 wherein the charge trapping layer (14) comprises polycrystalline silicon.
  10. Le dispositif selon l’une quelconque des revendications précédentes dans lequel la couche superficielle (20) ferroélectrique est constituée d’un matériau monocristallin. The device according to any one of the preceding claims in which the ferroelectric surface layer (20) consists of a monocrystalline material.
  11. Procédé de fabrication d’un dispositif comprenant les étapes suivantes :
    - former une couche (14) de piégeage de charges sur un support (12) pour former un substrat (10) ;
    - lisser une surface exposée de la couche (14) de piégeage de manière à réduire une rugosité de cette surface exposée sous une rugosité seuil ;
    - former une couche diélectrique (16) au moins sur la couche (14) de piégeage de charges lissée et optionnellement sur un substrat donneur (200) comprenant un matériau ferroélectrique contenant du lithium, la couche diélectrique (16) présentant une épaisseur comprise entre 150 nm et 500 nm;
    - assembler le substrat donneur (200) et le substrat (10) par l’intermédiaire de la couche diélectrique (16) ;
    - éliminer une partie du substrat donneur pour former une couche superficielle (20) ferroélectrique contenant du lithium,
    la rugosité seuil et une concentration d’azote dans une couche d’oxyde comprise dans la couche diélectrique (16) étant choisies de sorte que la dose en lithium dans la couche de piégeage de charges soit inférieure à 5.101 1 at/cm2 à l’issue du procédé de fabrication ; dans lequel :
    - la concentration en azote de la couche diélectrique est comprise entre 5.1020 at/cm3 et 1022 at/cm3 ; et
    - la rugosité de surface de la couche (14) de piégeage est inférieure, en mesure pic-vallée, à 800 nm, de préférence inférieure à 400 nm, et encore plus préférentiellement inférieure à 100 nm.
    Process for manufacturing a device comprising the following steps:
    - form a charge trapping layer (14) on a support (12) to form a substrate (10);
    - smooth an exposed surface of the trapping layer (14) so as to reduce a roughness of this exposed surface below a threshold roughness;
    - form a dielectric layer (16) at least on the smoothed charge trapping layer (14) and optionally on a donor substrate (200) comprising a ferroelectric material containing lithium, the dielectric layer (16) having a thickness of between 150 nm and 500 nm;
    - assemble the donor substrate (200) and the substrate (10) via the dielectric layer (16);
    - eliminate part of the donor substrate to form a ferroelectric surface layer (20) containing lithium,
    the threshold roughness and a concentration of nitrogen in an oxide layer included in the dielectric layer (16) being chosen so that the dose of lithium in the charge trapping layer is less than 5.10 1 1 at/cm 2 at the end of the manufacturing process; in which :
    - the nitrogen concentration of the dielectric layer is between 5.10 20 at/cm 3 and 10 22 at/cm 3 ; And
    - the surface roughness of the trapping layer (14) is less, in peak-valley measurement, than 800 nm, preferably less than 400 nm, and even more preferably less than 100 nm.
  12. Procédé de fabrication selon la revendication 11, dans lequel l’étape de lissage comprend le polissage mécano-chimique de la couche (14) de piégeage de charge. Manufacturing method according to claim 11, wherein the smoothing step comprises mechanical-chemical polishing of the charge trapping layer (14).
  13. Procédé de fabrication selon la revendication 11 ou 12, dans lequel la couche (14) de piégeage de charges comprend du silicium polycristallin. Manufacturing method according to claim 11 or 12, wherein the charge trapping layer (14) comprises polycrystalline silicon.
  14. Procédé de fabrication selon l’une quelconque des revendications précédentes 11 à 13, comprenant la formation d’un plan de fragilisation (220) par implantation d’espèces légères dans le substrat donneur (200) pour y définir la couche superficielle (20), et l’étape d’élimination d’une partie du substrat donneur comprend le détachement de la couche superficielle (20) au niveau du plan de fragilisation (220). Manufacturing method according to any one of preceding claims 11 to 13, comprising the formation of a weakening plane (220) by implantation of light species in the donor substrate (200) to define the surface layer (20), and the step of removing a portion of the donor substrate comprises detaching the surface layer (20) at the weakening plane (220).
PCT/EP2023/087972 2023-01-27 2023-12-29 Structure comprising a surface layer transferred to a support provided with a charge trapping layer with limited contamination and method for manufacturing same WO2024156465A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2300760 2023-01-27
FR2300760A FR3145444A1 (en) 2023-01-27 2023-01-27 STRUCTURE COMPRISING A SURFACE LAYER TRANSFERRED ON A SUPPORT PROVIDED WITH A CHARGE TRAPPING LAYER WITH LIMITED CONTAMINATION AND MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
WO2024156465A1 true WO2024156465A1 (en) 2024-08-02

Family

ID=86942393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/087972 WO2024156465A1 (en) 2023-01-27 2023-12-29 Structure comprising a surface layer transferred to a support provided with a charge trapping layer with limited contamination and method for manufacturing same

Country Status (2)

Country Link
FR (1) FR3145444A1 (en)
WO (1) WO2024156465A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544656B1 (en) 1999-03-16 2003-04-08 Shin-Etsu Handotai Co., Ltd. Production method for silicon wafer and silicon wafer
FR2860341A1 (en) 2003-09-26 2005-04-01 Soitec Silicon On Insulator METHOD FOR MANUFACTURING LOWERED LOWER MULTILAYER STRUCTURE
US7268060B2 (en) 2002-04-23 2007-09-11 S.O.I.Tec Silicon On Insulator Technologies Method for fabricating a substrate with useful layer on high resistivity support
FR2933233A1 (en) 2008-06-30 2010-01-01 Soitec Silicon On Insulator GOOD RESISTANCE HIGH RESISTIVITY SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME
FR2953640A1 (en) 2009-12-04 2011-06-10 Soitec Silicon On Insulator METHOD FOR MANUFACTURING A SEMICONDUCTOR TYPE STRUCTURE ON INSULATION, WITH REDUCED ELECTRICAL LOSSES AND CORRESPONDING STRUCTURE
US20150115480A1 (en) 2013-10-31 2015-04-30 Sunedison Semiconductor Limited (Uen201334164H) Method of manufacturing high resistivity soi wafers with charge trapping layers based on terminated si deposition
WO2020200986A1 (en) 2019-03-29 2020-10-08 Soitec Method for preparing a thin layer of ferroelectric material
WO2021008742A1 (en) 2019-07-12 2021-01-21 Soitec Method for manufacturing a structure comprising a thin layer transferred onto a support provided with a charge-trapping layer
US20210359660A1 (en) * 2020-05-15 2021-11-18 Shin-Etsu Chemical Co., Ltd. Composite substrate for surface acoustic wave device and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114981843A (en) 2019-11-26 2022-08-30 克拉瑞斯影像公司 Improved system and visualization method for intraoperative volumetric imaging of tissue samples

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544656B1 (en) 1999-03-16 2003-04-08 Shin-Etsu Handotai Co., Ltd. Production method for silicon wafer and silicon wafer
US7268060B2 (en) 2002-04-23 2007-09-11 S.O.I.Tec Silicon On Insulator Technologies Method for fabricating a substrate with useful layer on high resistivity support
FR2860341A1 (en) 2003-09-26 2005-04-01 Soitec Silicon On Insulator METHOD FOR MANUFACTURING LOWERED LOWER MULTILAYER STRUCTURE
FR2933233A1 (en) 2008-06-30 2010-01-01 Soitec Silicon On Insulator GOOD RESISTANCE HIGH RESISTIVITY SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME
FR2953640A1 (en) 2009-12-04 2011-06-10 Soitec Silicon On Insulator METHOD FOR MANUFACTURING A SEMICONDUCTOR TYPE STRUCTURE ON INSULATION, WITH REDUCED ELECTRICAL LOSSES AND CORRESPONDING STRUCTURE
US20150115480A1 (en) 2013-10-31 2015-04-30 Sunedison Semiconductor Limited (Uen201334164H) Method of manufacturing high resistivity soi wafers with charge trapping layers based on terminated si deposition
WO2020200986A1 (en) 2019-03-29 2020-10-08 Soitec Method for preparing a thin layer of ferroelectric material
WO2021008742A1 (en) 2019-07-12 2021-01-21 Soitec Method for manufacturing a structure comprising a thin layer transferred onto a support provided with a charge-trapping layer
US20220247374A1 (en) * 2019-07-12 2022-08-04 Soitec Method for manufacturing a structure comprising a thin layer transferred onto a support provided with a charge trapping layer
US20210359660A1 (en) * 2020-05-15 2021-11-18 Shin-Etsu Chemical Co., Ltd. Composite substrate for surface acoustic wave device and manufacturing method thereof

Also Published As

Publication number Publication date
FR3145444A1 (en) 2024-08-02

Similar Documents

Publication Publication Date Title
EP3997728B1 (en) Method for manufacturing a structure comprising a thin layer transferred onto a support provided with a charge-trapping layer
EP3948966B1 (en) Method for preparing a thin layer of ferroelectric material
WO2001015218A1 (en) Method for treating substrates for microelectronics and substrates obtained by said method
WO2002037556A1 (en) Method for making a stacked structure comprising a thin film adhering to a target substrate
EP4189734B1 (en) Method for transferring a thin layer onto a support substrate provided with a charge trapping layer
FR3062238A1 (en) SUPPORT FOR A SEMICONDUCTOR STRUCTURE
EP3818561A1 (en) Substrate for an integrated radiofrequency device, and process for manufacturing same
WO2024156465A1 (en) Structure comprising a surface layer transferred to a support provided with a charge trapping layer with limited contamination and method for manufacturing same
EP3766094B1 (en) Method for producing a thin film consisting of an alkaline-based ferroelectric material
EP4030467B1 (en) Method for direct hydrophilic bonding of substrates
WO2023084164A1 (en) Method for preparing a thin layer of ferroelectric material
WO2024175311A1 (en) Carrier comprising a charge-trapping layer, composite substrate comprising such a carrier, and associated production method
WO2024223276A1 (en) Method for preparing a thin layer of ferroelectric material
WO2021191303A1 (en) Process for manufacturing a piezoelectric structure for a radiofrequency device and which can be used to transfer a piezoelectric layer, and process for transferring such a piezoelectric layer
WO2024002608A1 (en) Method for manufacturing a structure comprising a barrier layer to prevent diffusion of atomic species
FR2933235A1 (en) GOOD-WAY SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME
WO2024008441A1 (en) Process for fabricating a structure comprising a layer that acts as a barrier to diffusion of atomic species
WO2024115410A1 (en) Carrier comprising a charge-trapping layer, composite substrate comprising such a carrier and associated production methods
WO2024115411A1 (en) Carrier comprising a charge-trapping layer, composite substrate comprising such a carrier and associated production methods
WO2024165363A1 (en) Substrate-mounted integrated structure comprising a ferroelectric layer with selective polarisation, and method for manufacturing same
WO2024115414A1 (en) Carrier comprising a charge-trapping layer, composite substrate comprising such a carrier and associated production methods
FR3113184A1 (en) METHOD FOR PREPARING A SUPPORT SUBSTRATE, AND METHOD FOR TRANSFERRING A THIN LAYER ONTO THIS SUPPORT SUBSTRATE
FR3141308A1 (en) METHOD FOR MANUFACTURING A PIEZOELECTRIC LAYER ON A SUBSTRATE
WO2021234277A1 (en) Method for manufacturing a semiconductor-on-insulator substrate for radiofrequency applications
WO2021234280A1 (en) Method for manufacturing a semiconductor-on-insulator substrate for radiofrequency applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23840763

Country of ref document: EP

Kind code of ref document: A1