[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024154498A1 - Winding switching system, control device, control method, and computer program - Google Patents

Winding switching system, control device, control method, and computer program Download PDF

Info

Publication number
WO2024154498A1
WO2024154498A1 PCT/JP2023/044894 JP2023044894W WO2024154498A1 WO 2024154498 A1 WO2024154498 A1 WO 2024154498A1 JP 2023044894 W JP2023044894 W JP 2023044894W WO 2024154498 A1 WO2024154498 A1 WO 2024154498A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
winding switching
phase
current
state
Prior art date
Application number
PCT/JP2023/044894
Other languages
French (fr)
Japanese (ja)
Inventor
弘樹 篠倉
Original Assignee
住友電気工業株式会社
住友電装株式会社
株式会社オートネットワーク技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電装株式会社, 株式会社オートネットワーク技術研究所 filed Critical 住友電気工業株式会社
Publication of WO2024154498A1 publication Critical patent/WO2024154498A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays

Definitions

  • This disclosure relates to a winding switching system, a control device, a control method, and a computer program.
  • This application claims priority to Japanese Application No. 2023-004994, filed on January 17, 2023, and incorporates all of the contents of said Japanese application by reference.
  • Patent Document 1 discloses a diagnostic system for a variable characteristic type vehicle motor that changes the switching characteristics of the windings using a switch.
  • the diagnostic system detects abnormalities using a switch state sensor that detects abnormalities in the switch, and if an abnormality is determined, it discloses that it takes emergency action such as cutting off the power supply.
  • a winding switching system includes a winding switching unit that switches the connection state of a plurality of windings in an AC motor having a stator for each phase, a measurement unit that measures a physical quantity related to the rotation of the AC motor, and an anomaly detection unit that determines whether the currents flowing through each phase of the AC motor are balanced based on the physical quantity measured by the measurement unit.
  • the present disclosure can be realized not only as a winding switching system having the above-mentioned characteristic configuration, but also as a control device included in the winding switching system, or as a control method for a vehicle motor having steps corresponding to characteristic processes in the control device.
  • the present disclosure can be realized as a computer program that causes a computer to function as a control device, or as a semiconductor integrated circuit as part or all of the control device.
  • FIG. 1 is a diagram illustrating an example of the configuration of a winding switching system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a hardware configuration of the control device.
  • FIG. 3 is a circuit diagram showing an example of the configuration of the winding switching device according to the first embodiment.
  • FIG. 4 is a diagram for explaining an example of an unbalanced state of the motor.
  • FIG. 5 is a diagram showing failure patterns of relays.
  • FIG. 6 shows an example of a simulation of the phase currents, relay currents, and d- and q-axis currents when the motor is in an unbalanced state.
  • FIG. 1 is a diagram illustrating an example of the configuration of a winding switching system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a hardware configuration of the control device.
  • FIG. 3 is a circuit diagram showing an example of the configuration of the winding switching device according to the first embodiment.
  • FIG. 4 is a
  • FIG. 7 shows an example of a simulation of the phase currents, relay currents, and d- and q-axis currents when the motor is in an unbalanced state.
  • FIG. 8 shows an example of a simulation of the phase currents, relay currents, and d- and q-axis currents when the motor is in an unbalanced state.
  • FIG. 9 is a flowchart showing an example of a winding switching process performed by the control device according to the first embodiment.
  • FIG. 10 is a circuit diagram showing an example of the configuration of a winding switching device according to the second embodiment.
  • FIG. 11 is a flowchart showing an example of a winding switching process performed by the control device according to the second embodiment.
  • FIG. 12 is a flowchart showing an example of a winding switching process performed by the control device according to the third embodiment.
  • FIG. 13 is a circuit diagram showing an example of the configuration of a winding switching system according to the fourth embodiment.
  • FIG. 14 is a flowchart showing an example of a winding switching process performed by the control device according to the fourth embodiment.
  • FIG. 15 is a circuit diagram showing an example of the configuration of a winding switching system according to the fifth embodiment.
  • FIG. 16 is a circuit diagram showing an example of the configuration of a winding switching system according to the sixth embodiment.
  • FIG. 17 is a flowchart showing an example of a winding switching process performed by the control device according to the sixth embodiment.
  • FIG. 18 is a circuit diagram showing an example of the configuration of a modified example of a winding switching device.
  • abnormalities such as the relay that switches the windings becoming stuck can be detected based on the motor's equilibrium state.
  • the winding switching system includes a winding switching unit that switches the connection state of multiple windings in an AC motor that includes multiple windings in a stator for each phase, a measurement unit that measures a physical quantity related to the rotation of the AC motor, and an abnormality detection unit that determines whether or not the current flowing through each phase of the AC motor is balanced based on the physical quantity measured by the measurement unit. This makes it possible to detect an abnormality in the winding switching unit that switches the windings based on the balanced state of the motor.
  • the winding switching unit may switch the connection state of the multiple windings using multiple relays. This makes it possible to detect an abnormality in the winding switching unit that switches the windings using relays based on the balanced state of the motor.
  • the abnormality detection unit may detect an abnormality occurring in the multiple relays by determining whether or not the currents flowing through each phase of the AC motor are balanced. This makes it possible to detect an abnormality in a winding switching unit that switches windings using relays by determining whether or not the currents flowing through each phase of the motor are balanced.
  • the measurement unit may include a current sensor, which measures the current flowing through each of the phases, and the abnormality detection unit may determine that the current flowing through each of the phases is not balanced when the current measured by the current sensor exceeds a threshold value. In this way, when the current measured by the current sensor exceeds the threshold value, it is determined that an unbalanced state has occurred, and an abnormality in the winding switching unit can be detected based on this.
  • the current sensor may measure the phase current flowing through the stator of each phase. In this way, when the phase current measured by the current sensor exceeds a threshold, it is determined that an unbalanced state exists, and an abnormality in the winding switching unit can be detected based on this.
  • At least one of the plurality of relays may be a relay that is set on in a first connection state and set off in a second connection state, and the current sensor may measure the current (relay current) flowing through the relay that is set on.
  • the relay current measured by the current sensor exceeds a threshold, it is determined that an unbalanced state has occurred, and an abnormality in the winding switching unit can be detected based on this.
  • the AC motor may be a drive motor that drives the wheels of a vehicle
  • the abnormality detection unit may change the threshold value based on the output required of the AC motor. In this way, the threshold value is changed based on the output required of the motor, which is determined by the accelerator opening, the required speed, the required torque, etc., so that the balanced state of the motor can be appropriately determined and an abnormality in the winding switching unit can be detected.
  • the measurement unit may include a current sensor that measures the phase current flowing through the stator of each phase, and measure the d-axis current and the q-axis current flowing through the AC motor based on the phase current.
  • the abnormality detection unit may compare a target d-axis current, which is a target value of the d-axis current, and a target q-axis current, which is a target value of the q-axis current, with a measured d-axis current, which is a measurement value of the d-axis current, and a measured q-axis current, which is a measurement value of the q-axis current, and determine that the currents flowing through each phase are not balanced when at least one of a first condition that the difference between the target d-axis current and the measured d-axis current is equal to or greater than a first threshold value and a second condition that the difference between the target q-axis current and the measured q-axis current is equal
  • the AC motor is a drive motor that drives the wheels of a vehicle
  • the abnormality detection unit may change at least one of the first threshold value and the second threshold value based on the output required of the AC motor.
  • the threshold value is changed based on the output required of the motor, which is determined by the accelerator opening, the required speed, the required torque, etc., and the balanced state of the motor can be appropriately determined.
  • the abnormality detection unit may determine that the currents flowing through the phases are not balanced when at least one of the period during which the first condition is satisfied and the period during which the second condition is satisfied exceeds a reference value. This makes it possible to eliminate erroneous determinations and properly determine the balanced state of the motor by determining that an unbalanced state exists when the difference is equal to or greater than a threshold value and continues for a predetermined period or longer, even in a situation where noise is suddenly introduced.
  • the abnormality detection unit may change the reference value based on the rotation speed of the rotor of the AC motor. This makes it possible to appropriately determine the balanced state of the motor even when the rotor rotation speed decreases and the measured d-axis and q-axis currents fluctuate slowly.
  • the measurement unit may include a voltage sensor that measures the voltages of the multiple windings. This makes it possible to determine the balanced state of the motor based on the voltages of the windings.
  • the measurement unit may include a sensor that measures the output torque or rotation speed of the AC motor. This makes it possible to determine the equilibrium state of the motor based on the torque or rotation speed of the motor.
  • the winding switching system may further include a return unit that returns the winding switching unit to the connection state before switching when the abnormality detection unit determines that the currents flowing through the phases of the AC motor are not balanced in response to the winding switching unit switching the connection state. In this way, when an abnormality is detected in the winding switching unit that switches the windings, the winding switching unit is returned to the connection state before switching, and the motor can continue to operate.
  • the winding switching system may further include a notification unit that notifies a user of the occurrence of an abnormality when the abnormality detection unit determines that the currents flowing through the phases of the AC motor are not balanced. This allows the user of the motor to know that the motor is unbalanced.
  • the winding switching system includes a winding switching unit that switches the connection state of a plurality of windings of an AC motor capable of switching the connection state of the plurality of windings included in the stator of each phase, a measurement unit that measures a physical quantity related to the rotation of the AC motor, and an equilibrium determination unit that determines whether or not the current flowing through each phase of the AC motor is balanced based on the physical quantity measured by the measurement unit, and a return unit that causes the winding switching unit to switch the connection state from the second state to the first connection state when the balance determination unit's determination changes from a determination that the current flowing through each phase is balanced to a determination that the current flowing through each phase is not balanced in response to the connection state being switched from the first connection state to the second connection state.
  • the control device includes a winding switching unit that switches the connection state of multiple windings of an AC motor that includes a stator for each phase; a measurement unit that includes a sensor that measures a physical quantity related to the rotation of the AC motor; and an abnormality detection unit that determines whether or not the current flowing through each phase of the AC motor is balanced based on the physical quantity measured by the measurement unit.
  • the control method for the winding switching device includes a winding switching step of switching the connection state of a plurality of windings of an AC motor including a stator of each phase, a measurement step of measuring a physical quantity related to the rotation of the AC motor, and an anomaly detection step of determining whether or not the current flowing through each phase of the AC motor is balanced based on the physical quantity measured in the measurement step. This makes it possible to detect an anomaly in the winding switching unit that switches the windings based on the balanced state of the motor.
  • the computer program according to this embodiment is a computer program used by a control device that controls a winding switching device, and causes a computer to execute a winding switching step of switching the connection state of multiple windings of an AC motor capable of switching the connection state of the multiple windings included in the stator of each phase, a measurement step of measuring a physical quantity related to the rotation of the AC motor, and an abnormality detection step of determining whether or not the current flowing through each phase of the AC motor is balanced based on the physical quantity measured in the measurement step. This makes it possible to detect an abnormality in the winding switching unit that switches the windings based on the balanced state of the motor.
  • FIG. 1 is a diagram illustrating an example of the configuration of a winding switching system according to the first embodiment.
  • the winding switching system 10 is mounted on a vehicle (hereinafter referred to as an "electric vehicle") that is propelled by a motor, such as an electric vehicle or a plug-in hybrid vehicle.
  • the winding switching system 10 includes a motor 20, a power converter 30, a battery 40, a control device 50, and a winding switching device 100.
  • Motor 20 is a driving motor that generates the propulsion force for the electric vehicle.
  • motor 20 is connected to wheels 60 and is a drive motor that drives wheels 60.
  • Motor 20 is driven by three-phase AC power.
  • Motor 20 is a non-commutator type AC motor that does not have a commutator and drives a stator to generate a rotating magnetic field, which then rotates the rotor.
  • Non-commutator type AC motors include, for example, synchronous motors, reluctance motors, and induction motors.
  • the battery 40 is a battery that supplies power to drive the motor 20.
  • the battery 40 is a secondary battery, for example a lithium ion battery.
  • the power converter 30 is an inverter that converts DC power supplied from the battery 40 into three-phase AC power.
  • the power converter 30 may also have the function of converting the three-phase AC power output when the motor 20 functions as a generator into DC power and charging the battery 40.
  • the power converter 30 includes legs for the U, V, and W phases.
  • the U-phase leg includes switches 31u and 32u
  • the V-phase leg includes switches 31v and 32v
  • the W-phase leg includes switches 31w and 32w.
  • the switches 31u, 32u, 31v, 32v, 31w, and 32w perform switching to convert DC power into three-phase AC power.
  • the switches 31u, 32u, 31v, 32v, 31w, and 32w are, for example, IGBTs (Insulated Gate Bipolar Transistors) or MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors).
  • Power line 35u corresponding to U phase extends from the U phase leg
  • power line 35v corresponding to V phase extends from the V phase leg
  • power line 35w corresponding to W phase extends from the W phase leg.
  • current sensor 33u is provided on power line 35u
  • current sensor 33v is provided on power line 35v
  • current sensor 33w is provided on power line 35w.
  • Current sensor 33u detects the current value of current Iu of U phase.
  • Current sensor 33v detects the current value of current Iv of V phase.
  • Current sensor 33w detects the current value of current Iw of W phase.
  • Current sensors 33u, 33v, 33w can detect the current values of currents Iu, Iv, Iw flowing through power lines 35u, 35v, 35w, including DC and AC components.
  • the current sensors 33u, 33v, and 33w are, for example, DC current sensors using Hall sensors or shunt resistors.
  • the winding switching device 100 is disposed between the motor 20 and the power converter 30.
  • the power converter 30 and the winding switching device 100 are connected by power lines 35u, 35v, and 35w, and the winding switching device 100 and the motor 20 are connected by a plurality of power lines 25.
  • the winding switching device 100 switches the connection state of the multiple windings of the motor 20. The configuration of the winding switching device 100 will be described later.
  • the three-phase AC currents Iu, Iv, and Iw output from the power converter 30 are supplied to the motor 20 via the winding switching device 100.
  • the measuring device 26 measures physical quantities related to the rotation of the motor 20.
  • Examples of physical quantities related to the rotation of the motor include, but are not limited to, the current flowing through each winding of the motor 20, the voltage of each winding, and the torque of the output shaft of the motor 20.
  • the measuring device 26 is provided at a location corresponding to the measurement target.
  • the measuring device 26 is provided on the power lines 212u, 221u, 212v, 221v, 212w, and 221w connecting the winding switching device 100 and the motor 20.
  • the measuring device 26 is provided on the output shaft of the motor 20.
  • the current is measured by a current sensor.
  • the current sensor is, for example, a DC current sensor using a Hall sensor.
  • the voltage is measured by a voltage sensor.
  • the voltage sensor is, for example, an AD converter.
  • the first terminal of the winding and the reference voltage point (the body of the vehicle) are connected to the first terminal and the second terminal of the input terminal of the AD converter, respectively. If the processor 501 described below has an AD converter built in, the first and second terminals of the winding may be connected to the first and second input terminals of the AD converter of the processor 501.
  • the torque is measured by a torque sensor, such as a strain gauge.
  • the control device 50 controls the motor 20. Specifically, the control device 50 controls the motor 20 by controlling the power converter 30 and the winding switching device 100. Signal lines extend from the control device 50 to each of the switches 31u, 32u, 31v, 32v, 31w, and 32w, and the control device 50 controls the on/off timing of the switches 31u, 32u, 31v, 32v, 31w, and 32w. A signal line extends from the control device 50 to the winding switching device 100, and the control device 50 outputs a switching command signal to the winding switching device 100 to command the switching of the winding connection state.
  • the control device 50 may be configured to vector control the motor 20.
  • Vector control is a method of decomposing the current flowing through the U-phase, V-phase, and W-phase of the AC motor stator into a current component that generates magnetic flux and a current component that generates torque, and controlling each current component independently. This makes it possible to control the direction and magnitude of the magnetic flux of the rotating magnetic field of the motor as a vector quantity.
  • the current component that generates magnetic flux may be called the d-axis current, and the current component that generates torque may be called the q-axis current.
  • the current flowing through the U-phase, V-phase, and W-phase of the motor stator may be measured, and the d-axis current and q-axis current may be calculated based on the measured current.
  • the control device 50 compares the target d-axis current, which is the target value of the d-axis current, and the target q-axis current, which is the target value of the q-axis current, with the measured d-axis current, which is the measured value of the d-axis current, and the measured q-axis current, which is the measured value of the q-axis current, and controls the power converter 30 so that the measured d-axis current and the measured q-axis current become the target d-axis current and the target q-axis current, respectively.
  • the target d-axis current and target q-axis current are determined, for example, based on the output (rotational speed, torque) required of the motor 20.
  • the control device 50 is connected to a sensor 71 that detects the amount of depression of the brake pedal 70, and receives a detection signal output from the sensor 71.
  • the control device 50 is connected to a sensor 81 that detects the amount of depression of the accelerator pedal 80, and receives a detection signal output from the sensor 81.
  • a rotation sensor 201 that detects the rotation speed of the motor 20 and a torque sensor 202 that detects the output torque of the motor 20 are attached to the output shaft of the motor 20.
  • the rotation sensor 201 and the torque sensor 202 are connected to the control device 50.
  • the control device 50 receives the detection signal output from the rotation sensor 201 and receives the detection signal output from the torque sensor 202.
  • the control device 50 is connected to a gear shift indicator 90.
  • the gear shift indicator 90 is an input device that allows the driver to input gear shift instructions.
  • the gear shift indicator 90 is, for example, a shift lever.
  • the gear shift indicator 90 is a switch that allows the driver to instruct shifting up or down.
  • the gear shift indicator 90 outputs a gear shift instruction signal in response to the driver's operation.
  • the control device 50 receives the gear shift instruction signal output from the gear shift indicator 90.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the control device.
  • the control device 50 includes a processor 501, a non-volatile memory 502, a volatile memory 503, and an interface (I/F) 504.
  • I/F interface
  • the volatile memory 503 is, for example, a semiconductor memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory).
  • the non-volatile memory 502 is, for example, a flash memory, a hard disk, or a ROM (Read Only Memory).
  • the non-volatile memory 502 stores a motor control program 510, which is a computer program, and data used to execute the motor control program 510. Each function of the control device 50 is achieved by the motor control program 510 being executed by the processor 501.
  • the motor control program 510 can be stored in a recording medium such as a flash memory, a ROM, or a CD-ROM.
  • the processor 501 controls the power converter 30 and the winding switching device 100 using the motor control program 510.
  • the processor 501 is, for example, a CPU (Central Processing Unit). However, the processor 501 is not limited to a CPU.
  • the processor 501 may be a GPU (Graphics Processing Unit).
  • the processor 501 is, for example, a multi-core processor.
  • the processor 501 may be a single-core processor.
  • the processor 501 may be, for example, an ASIC (Application Specific Integrated Circuit), or a programmable logic device such as a gate array or an FPGA (Field Programmable Gate Array). In this case, the ASIC or the programmable logic device is configured to be capable of executing the same processing as the motor control program 510.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the I/F 504 is connected to the rotation sensor 201, the torque sensor 202, the sensor 71, the sensor 81, and the gear shift indicator 90.
  • the I/F 504 is, for example, an input/output interface or a communication interface.
  • the I/F 504 receives a detection signal of the rotation speed of the motor 20 output from the rotation sensor 201.
  • the I/F 504 receives a detection signal of the output torque of the motor 20 output from the torque sensor 202.
  • the I/F 504 receives a detection signal of the brake pedal depression amount output from the sensor 71.
  • the I/F 504 receives a detection signal of the accelerator pedal depression amount output from the sensor 81.
  • the I/F 504 receives a gear shift indicator signal output from the gear shift indicator 90.
  • FIG. 3 is a circuit diagram showing an example of the configuration of the winding switching device according to the first embodiment.
  • the motor 20 includes a plurality of windings 21u, 22u, 21v, 22v, 21w, and 22w.
  • the windings 21u and 22u correspond to the U phase
  • the windings 21v and 22v correspond to the V phase
  • the windings 21w and 22w correspond to the W phase.
  • the number of windings for each phase is not limited to two, and may be three or more.
  • the windings 22u, 22v, and 22w are connected at a neutral point 23.
  • the winding switching device 100 switches the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w for each phase between a two windings connected in series state and a one winding connected state.
  • the winding switching device 100 includes control circuits 103u, 103v, and 103w, and switching circuits 104u, 104v, and 104w.
  • the two windings connected in series state may be referred to as the series state
  • the one winding connected state may be referred to as the single state.
  • the switching circuits 104u, 104v, and 104w switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w between a series state and an independent state under control of the control device 50.
  • the series state is an example of a first connection state
  • the independent state is an example of a second connection state.
  • the power line 35u is connected to a first terminal of the winding 21u.
  • the power line 212u extends from a second terminal of the winding 21u.
  • the power line 221u extends from a first terminal of the winding 22u.
  • the switching circuit 104u includes a relay 111u and a relay 112u.
  • the relay 111u and the relay 112u are, for example, mechanical (electromagnetic) relays, but are not limited to this and may be semiconductor relays.
  • the relay is divided into an input side and an output side.
  • the output side of the relay includes a switch that controls the current to be on or off, and the switch is set to on/off by inputting a predetermined control signal to the input side.
  • the input side is composed of an electromagnetic coil.
  • the output side is composed of a mechanical switch including a movable segment and a fixed segment. The movable segment and the fixed segment each have a contact.
  • the movable segment is attracted in one direction by an elastic body such as a spring, and is attracted in the other direction by the electromagnetic coil.
  • the contact is configured to be in a conductive state when the electromagnetic coil attracts the movable segment in the other direction.
  • the input side is composed of a light-emitting diode
  • the output side is composed of a light-receiving element, a MOSFET, and an IGBT.
  • the power line 35u is drawn into the winding switching device 100. Inside the winding switching device 100, the power line 35u branches at a midpoint and is connected to a first terminal of a relay 111u. The second terminal of the relay 111u is connected to a first terminal of a relay 112u.
  • the power lines 212u, 221u, and 222u extend from the motor 20 and are drawn into the winding switching device 100.
  • the power line 221u extending from the winding 22u is connected to the connection point between the second terminal of the relay 111u and the first terminal of the relay 112u.
  • the power line 212u extending from the winding 21u is connected to the second terminal of the relay 112u.
  • winding 21u and winding 22u are in a series state.
  • winding 21u is in an isolated state.
  • a signal line extending from the control circuit 103u is connected to each of the input sides (electromagnetic coil side) of the relay 112u and the relay 111u.
  • the control circuit 103u is connected to a signal line extending from the control device 50.
  • the signal line communicates instructions indicating which connection state the windings should be in. This signal is sometimes called a switching instruction. For example, a LOW level of the signal line indicates a series state, and a HIGH level indicates a single state. Alternatively, data communication may be performed via the signal line to send and receive information indicating which relay to set on or off.
  • the control circuit 103u controls the on/off of the relays 112u and 111u by applying control signals to the input sides of the relays 112u and 111u individually. Specifically, when the control circuit 103u receives an instruction from the control device 50 to switch the connection state of the windings 21u, 22u from a series state to an independent state, the control circuit 103u sets the relay 111u to an on state and the relay 112u to an off state. When the control circuit 103u receives an instruction from the control device 50 to switch the connection state of the windings 21u, 22u from a series state to an independent state, the control circuit 103u sets the relay 111u to an off state and the relay 112u to an on state.
  • the control circuit 103u is, for example, configured with multiple logic circuits (AND circuits, NOT circuits, latch circuits, etc.). In another example, the control circuit 103u is configured with a processor. For example, the control circuit 103u is configured with a one-chip microcomputer. The control circuit 103u may also be configured with a programmable logic device such as an ASIC or FPGA.
  • the measuring device 26 is provided, for example, on the power line connecting the winding switching device 100 and the motor 20.
  • the measuring device 26 includes, for example, a phase current sensor and a relay current sensor.
  • the phase current sensor 261u is provided on the power line 221u, and the relay current sensor 262u is provided on the power line 212u.
  • the phase current sensor 261u measures the current flowing through the U phase when the windings 21u and 22u are in series and alone.
  • the current measured by the phase current sensor may be referred to as the phase current.
  • the phase current sensor 261u sends a signal or information indicating the value of the measured current to the control device 50.
  • the relay current sensor 262u measures the current flowing through the power line 212u connected to the second terminal of the relay 112u.
  • the relay current sensor 262u measures the current of the power line 212u that the relay 112u, which is set to off, is attempting to cut off.
  • the current measured by the relay current sensor may be referred to as the relay current.
  • the relay current sensor 262u sends a signal or information indicating the value of the measured current to the control device 50.
  • a phase current sensor 261v is provided on the power line 221v
  • a relay current sensor 262v is provided on the power line 212v
  • a phase current sensor 261w is provided on the power line 221w
  • a relay current sensor 262w is provided on the power line 212w. Note that, although an example has been described in which the measuring device 26 is provided on the power line connecting the winding switching device 100 and the motor 20, the measuring device 26 may be provided in the winding switching device 100 or in the motor 20.
  • the control device 50 has the functions of a winding switching unit 511, a measurement unit 512, and an abnormality detection unit 513.
  • the processor 501 executes the motor control program 510 to realize each of the functions of the winding switching unit 511, the measurement unit 512, and the abnormality detection unit 513.
  • the winding switching unit switches the connection states of the windings of an AC motor including a stator for each phase.
  • the winding switching unit also switches the connection states of the windings by a plurality of relays. At least one of the plurality of relays is set to on in a first connection state and set to off in a second connection state.
  • the winding switching unit 511 switches the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w for each phase between a state in which two windings are connected in series and a state in which one winding is connected.
  • the winding switching device 100 includes control circuits 103u, 103v, and 103w and switching circuits 104u, 104v, and 104w.
  • the winding switching unit 511 causes the switching circuits 104u, 104v, and 104w to switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w between a series state and a single state.
  • the winding switching unit 511 transmits a switching instruction to the control circuits 103u, 103v, and 103w. For example, a low level of the switching command indicates a series state, and a high level indicates a single state.
  • the measurement unit 512 measures a physical quantity related to the rotation of the AC motor.
  • An example of the physical quantity related to the rotation of the motor is the current flowing through each phase of the motor 20.
  • the measurement unit 512 includes a current sensor, and the current sensor measures the current flowing through each phase.
  • the current sensor measures the phase current flowing through the stator of each phase. Specifically, in the U phase, the phase current sensor 261u measures the current flowing through the power line 221u. 512 measures the phase current flowing through the U-phase stator.
  • the current sensor also measures the current flowing through the relay switch. Specifically, in the U phase, the relay current sensor 262u measures the current flowing through the power line 212u, and the measurement unit 512 measures the relay current of the U phase.
  • phase current sensor 261u and the relay current sensor 262u send a signal or information indicating the measured current value to the control device 50.
  • the measurement unit 512 of the control device 50 receives the signal or information indicating the measured current value and measures a physical quantity related to the rotation of the AC motor. The same is true for the V phase and the W phase.
  • the abnormality detection unit 513 judges whether or not the currents flowing through each phase of the AC motor are balanced based on the physical quantities measured by the measurement unit 512.
  • the currents flowing through each phase of the motor 20 are not balanced means that the balance of the currents flowing through the U phase, V phase, and W phase is different from one another.
  • the state in which the currents flowing through each phase of the motor 20 are not balanced is sometimes referred to as an unbalanced state, and the state in which the currents flowing through each phase of the motor 20 are balanced is sometimes referred to as a balanced state.
  • Motor Unbalance 4 is a diagram for explaining an example of an unbalanced state of the motor 20.
  • the U-phase windings 21u, 22u and relays 111u, 112u necessary for the explanation are shown.
  • the state before the winding switching device 100 switches the winding connection state is assumed to be an isolated state.
  • the relay 111u is set to on, and the relay 112u is set to off (FIG. 4. Isolated state).
  • the relay 111u is set to off, and if the relays are normal, the relay 112u is set to on (FIG. 4. Series state).
  • Figure 5 shows types of relay failures. Possible relay failure patterns include when the output contacts become stuck and remain connected (fixed on), and when the relay's electromagnetic coil becomes disconnected and the output contacts remain open (fixed off). In Figure 5, off is represented by “0" and on by "1". Figure 5 shows when the winding connection state is switched from an isolated state to a series state, and when the winding connection state is switched from a series state to an isolated state. Figure 5 also shows the state of the relay current and the states of the d- and q-axis currents.
  • relay 111u is fixed on, relays 111u and 112u are both set on, and winding 21u is short-circuited; (2) relay 112u is fixed off, relays 111u and 112u are both set off, and no current flows through U-phase windings 21u and 22u; or (3) relay 111u is fixed on, relay 112u is fixed off, and although the V-phase and W-phase windings have switched to a series state, U-phase remains in an isolated state.
  • relay 112u is fixed on, relays 111u and 112u are both set on, and winding 21u is short-circuited; (2) relay 111u is fixed off, relays 111u and 112u are both set off, and no current flows through U-phase windings 21u and 22u; or (3) relay 111u is fixed off, relay 112u is fixed on, and although the V-phase and W-phase windings have been switched to an independent state, the U-phase remains in a series state.
  • Figures 6, 7, and 8 are examples of simulations of the phase currents, relay currents, and d- and q-axis currents when one of the relays that change the winding connection state fails and the motor 20 becomes unbalanced.
  • the winding connection state is switched at 0.015 s on the time axis.
  • each current shows a normal state, but after 0.015 s on the time axis, one of the currents becomes abnormal.
  • the abnormality detection unit 513 detects this abnormal value and determines that the motor 20 is unbalanced.
  • phase current or relay current shows a case where the U-phase relays 112u and 111u are both turned on when the connection state changes from the single state to the series state.
  • both ends of the winding 21u are short-circuited and the rotor of the motor 20 is rotating, so the winding 21u functions as a generator and a large current circulates through the winding 21u.
  • This large current is larger than the relay current that flows under normal conditions.
  • the windings 21u and 22u are connected in series, so the relay current and the phase current flow approximately equal to each other.
  • Figure 7 shows the case where the U-phase relays 112u and 111u are both turned off when the connection state changes from an isolated state to a series state. In this case, no phase current or relay current flows through the U-phase. On the other hand, a current larger than the current that flows normally flows through the V-phase and W-phase.
  • the abnormality detection unit 513 determines whether the currents flowing through each phase of the motor 20 are in a balanced state based on the signal indicating this large current measured by the measurement unit 512. Specifically, the abnormality detection unit 513 determines that the currents flowing through each phase are not in balance when the currents measured by the current sensors exceed a threshold value.
  • the abnormality detection unit 513 may determine that motor 20 is in an unbalanced state based on this current.
  • the abnormality detection unit 513 may also change the threshold value based on the output required of the motor 20. This is because the current that flows normally increases according to the required motor output. This allows the balanced state of the motor 20 to be appropriately determined. If the motor 20 is a drive motor that drives the wheels of the vehicle, the required output is determined based on, for example, the accelerator opening, the speed required by the vehicle, and the torque required by the vehicle.
  • the anomaly detection unit 513 determines whether the currents flowing through each phase are balanced.
  • [In the case of d- and q-axis currents] 8 shows a case where the U-phase relay 111u is turned on and the relay 112u is turned off when the connection state changes from the isolated state to the series state. In this state, the V-phase and W-phase are in series, but only the U-phase is in an isolated state. In this case, the phase currents of the U-phase, V-phase, and W-phase flow substantially the same as in a normal state. For this reason, it is difficult to determine whether the motor 20 is in a balanced state based on the phase currents alone. On the other hand, currents flowing through the d- and q-axis are clearly different from those flowing in a normal state. As a result, an unbalanced state can be determined based on the d- and q-axis currents calculated from the phase currents flowing through the U-phase, V-phase, and W-phase.
  • the abnormality detection unit 513 compares the target d-axis current, which is the target value of the d-axis current, and the target q-axis current, which is the target value of the q-axis current, with the measured d-axis current, which is the measured value of the d-axis current, and the measured q-axis current, which is the measured value of the q-axis current, and determines that the currents flowing through each phase are not balanced when at least one of the following conditions is met: a first condition that the difference between the target d-axis current and the measured d-axis current is equal to or greater than a first threshold value, and a second condition that the difference between the target q-axis current and the measured q-axis current is equal to or greater than a second threshold value.
  • the first threshold value and the second threshold value may be the same value or may be different values.
  • the abnormality detection unit 513 determines that the motor 20 is in an unbalanced state, thereby making it possible to more appropriately determine the balanced state of the motor 20.
  • the reference value may also be changed based on the rotation speed of the rotor of the motor 20. Since the d- and q-axis currents fluctuate in response to the rotation of the rotor, the d- and q-axis currents fluctuate slowly when the rotation speed of the rotor of the motor 20 decreases. For this reason, it is preferable to lengthen the specified period as the rotation speed of the rotor decreases. This allows the balanced state of the motor 20 to be appropriately determined.
  • the first and second thresholds may be changed, for example, according to the output required of the motor 20. This is because the current that flows normally increases according to the required motor output. This allows the balanced state of the motor 20 to be appropriately determined. If the motor 20 is a drive motor that drives the wheels of a vehicle, the required output is determined based on, for example, the accelerator opening, the speed required by the vehicle, and the torque required by the vehicle.
  • the anomaly detection unit 513 determines whether the currents flowing through each phase are balanced.
  • the control device 50 executes a winding switching process by the processor 501 executing the motor control program 510.
  • FIG. 9 is a flowchart showing an example of a winding switching process performed by the control device according to the first embodiment.
  • the winding switching unit 511 switches the connection state of the multiple windings of an AC motor including multiple windings in a stator of each phase (step S101). For example, the winding switching unit 511 switches the connection state of the windings from an independent state to a series state. Specifically, the winding switching unit 511 transmits a switching instruction to the control circuits 103u, 103v, and 103w to switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w from an independent state to a series state.
  • the control circuit 103u that has received the switching instruction to switch the connection state from an independent state to a series state sets the relay 112u on and the relay 111u off. Similarly, the control circuit 103v sets the relay 112v on and the relay 111v off.
  • the control circuit 103w sets the relay 112w on and the relay 111w off. Then, the process proceeds to step S102.
  • relay 111u is stuck, so relays 111u and 112u are set to on. This causes both ends of winding 21u to be shorted, causing a large relay current to flow through winding 21u as shown in Figure 6.
  • the measurement unit 512 measures a physical quantity related to the rotation of the AC motor (step S102). Specifically, the phase current sensor 261u measures the phase current and transmits a signal indicating the value of the phase current to the control device 50.
  • the relay current sensor 262u measures the relay current and transmits a signal indicating the value of the relay current to the control device 50. In this example, the relay current sensor 262u measures a large current circulating through the winding 21u and transmits a signal indicating the value of this current.
  • the measurement unit 512 measures the phase current and relay current, which are physical quantities related to the rotation of the motor 20. Then, the process proceeds to step S103.
  • Step S103 the abnormality detection unit 513 judges whether or not the currents flowing through each phase of the motor 20 are balanced based on the physical quantities measured by the measurement unit 512. Specifically, the abnormality detection unit 513 compares the phase currents or relay currents measured by the measurement unit 512 with a threshold value (step S103). If the threshold value is exceeded (YES in step S103), the process proceeds to step S104. On the other hand, if the threshold value is not exceeded (NO in step S103), the process proceeds to step S105.
  • the control device 50 receives a signal indicating a large current value circulating through the winding 21u.
  • the abnormality detection unit 513 of the control device 50 compares the received relay current value with a threshold value. Since the relay current value indicates a large current value, it exceeds the threshold value, and the abnormality detection unit 513 determines that the motor 20 is in an unbalanced state.
  • Step S104 If the phase current or relay current exceeds the threshold value, the abnormality detection unit 513 determines that the currents flowing through the phases of the motor 20 are not balanced (step S104), and the winding switching process is terminated.
  • Step S105 On the other hand, if the phase current and the relay current do not exceed the threshold value, the abnormality detection unit 513 determines that the currents flowing through the phases of the motor 20 are balanced (step S105), and ends the winding switching process.
  • Step S101 Next, it is assumed that the winding switching unit 511 switches the connection state of the windings from a series state to an independent state (step S101).
  • the relay 112u is set to OFF, and the relay 111u is set to ON. If the relays 112u and 111u are normal, a predetermined current flows through the U-phase winding 22u. However, since the relay 111u is fixed to OFF, the U-phase relays 112u and 111u are both set to OFF, and no current flows through the U-phase winding. On the other hand, as shown in FIG. 7, a large current flows through the V-phase and W-phase windings 22v and 22w.
  • the measurement unit 512 measures the phase currents of the U-phase, V-phase, and W-phase of the motor 20 using the phase current sensors 261u, 261v, and 261w. Specifically, the phase current sensor 261u transmits a signal indicating that the current value is zero to the control device 50. The phase current sensors 261v and 261w transmit signals indicating large current values of the V-phase and W-phase to the control device 50. When the control device 50 receives such signals, the measurement unit 512 measures the phase currents. Then, the process proceeds to step S103.
  • the abnormality detection unit 513 judges whether the currents flowing through each phase of the motor 20 are balanced based on the physical quantities measured by the measurement unit 512.
  • the value of the phase current of the V phase indicates a large current and therefore exceeds the threshold (YES in step S103), and the abnormality detection unit 513 judges that the motor 20 is in an unbalanced state (step S104).
  • the abnormality detection unit 513 may make the judgment based on the phase current of the W phase.
  • the abnormality detection unit 513 may make the judgment based on the phase current of the U phase.
  • step S105 the abnormality detection unit 513 judges that the motor 20 is in a balanced state.
  • Step S101 the winding switching unit 511 switches the connection state of the windings from the single state to the series state (step S101).
  • the control circuit 103u sets the relay 112u on and attempts to set the relay 111u off.
  • the connection state of the U-phase winding does not switch to the series state and remains in the single state.
  • the connection states of the V-phase and W-phase windings are switched to the series state. In this connection state, as shown in FIG. 8, the phase current or relay current does not become significantly large. Meanwhile, when attention is paid to the d-axis and q-axis currents, they fluctuate significantly. Then, the process proceeds to step S102.
  • Step S102 the measurement unit 512 measures the phase currents of the U-phase, V-phase, and W-phase of the motor 20 using the phase current sensors 261u, 261v, and 261w, and outputs a signal indicating the measured phase currents.
  • the control device 50 receives this signal, the measurement unit 512 measures the phase currents (step S102). Then, the process proceeds to step S103.
  • the abnormality detection unit 513 compares the target d-axis current, which is the target value of the d-axis current, and the target q-axis current, which is the target value of the q-axis current, with the measured d-axis current, which is the measured value of the d-axis current, and the measured q-axis current, which is the measured value of the q-axis current, and determines that the currents flowing through each phase are not balanced (step S104) when at least one of a first condition that the difference between the target d-axis current and the measured d-axis current is equal to or greater than a first threshold value and a second condition that the difference between the target q-axis current and the measured q-axis current is equal to or greater than a second threshold value is satisfied (YES in step S103).On the other hand, when the threshold values are not exceeded (NO in step S103), the abnormality detection unit 513 determines that the motor 20
  • the abnormality detection unit 513 determines that the motor 20 is in an unbalanced state (step S104). If neither the first condition nor the second condition is satisfied (NO in step S103), the abnormality detection unit 513 determines that the motor 20 is in a balanced state (step S105).
  • the abnormality detection unit 513 may also determine that the currents flowing through the phases are not balanced if at least one of the period during which the first condition is satisfied and the period during which the second condition is satisfied exceeds a reference value.
  • the abnormality detection unit 513 judges whether the period during which the difference between the target d-axis current and the measured d-axis current is equal to or greater than a first threshold is longer than a predetermined period. Second, the abnormality detection unit 513 judges whether the period during which the difference between the target q-axis current and the measured q-axis current is equal to or greater than a second threshold is longer than a predetermined period. Then, when at least one of the first and second judgments is satisfied (YES in step S103), the abnormality detection unit 513 judges that the motor 20 is in an unbalanced state (step S104). On the other hand, when neither the first nor the second judgment is satisfied (NO in step S103), the abnormality detection unit 513 judges that the motor 20 is in a balanced state (step S105).
  • the measurement unit of the winding switching system according to the second embodiment includes a voltage sensor, which measures the voltages of the multiple windings.
  • the second embodiment differs from the first embodiment in the configuration of the measurement device 26, but the other configurations are the same. Descriptions of the same configurations as in the first embodiment will be omitted, and only the different parts will be described, with the same reference numerals used for the same configurations.
  • FIG. 10 is a circuit diagram showing an example of the configuration of a winding switching device according to the second embodiment. Although only the U phase is shown in detail, the V phase and the W phase are similar.
  • a voltage Vpu between a power line 212u connecting the winding 21u and the relay 112u and a reference voltage point and a voltage Vru between a power line 221u connecting the relay 112u and the winding 22u and a reference voltage point are measured.
  • the reference voltage point is, for example, the body of a vehicle.
  • the measurement points are the same as those in the first embodiment, but are not limited to this.
  • the voltage is measured by a voltage sensor.
  • the voltage sensor is, for example, an AD converter.
  • a first terminal of the input of the AD converter is connected to the power line 212u, and a second terminal is connected to a reference voltage point.
  • the voltage sensor is not limited to an AD converter, and may be a photocoupler, etc.
  • the control device 50 executes a winding switching process by the processor 501 executing the motor control program 510.
  • FIG. 11 is a flowchart showing an example of a winding switching process performed by the control device according to the second embodiment.
  • Step S201 First, the winding switching unit 511 switches the connection state of the windings from an independent state to a serial state. Specifically, the control device 50 transmits a switching instruction to the control circuits 103u, 103v, and 103w to switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w from an independent state to a serial state (step S201).
  • the control circuit 103u which has received the switching instruction to switch the connection state from an independent state to a serial state, sets the relay 112u to on and the relay 111u to off.
  • the control circuit 103v sets the relay 112v to on and the relay 113v to off.
  • the control circuit 103w sets the relay 112w to on and the relay 113w to off. Then, the process proceeds to step S202.
  • relay 112u is fixed off, so relays 112u and 111u are set off. Under normal circumstances, relay 112u is set on and windings 21u and 22u are connected in series. Vpu or Vru, which is the voltage at the midpoint of windings 21u and 22u connected in series, is approximately half the voltage of power line 35u and neutral point 23. However, because relay 112u is fixed off, Vpu or Vru becomes a voltage that is completely different from the normal situation. For example, if the rotor is a permanent magnet, a voltage is generated by the rotating permanent magnet in windings 21u and 22u, and this voltage is completely different from the normal situation.
  • relay 112u is set to on, so the voltage between the first and second terminals on the output side (contact side) of relay 112u is zero. However, because relay 112u is fixed to off, a voltage greater than zero is generated between the first and second terminals on the output side (contact side) of relay 112u.
  • the measurement unit 512 measures a physical quantity related to the rotation of the motor 20 (step S202).
  • the measurement unit 512 measures the physical quantity related to the rotation using a voltage sensor that measures the voltages of multiple windings.
  • the voltage sensor measures Vpu and Vpr, and transmits a signal indicating Vpu and Vpr to the control device 50.
  • the control device 50 receives this signal, the measurement unit 512 measures Vpu and Vpr. Then, the process proceeds to step S203.
  • the abnormality detection unit 513 determines the balanced state of the motor 20 (steps S203 to S205).
  • the abnormality detection unit 513 compares Vpu and Vpr measured by the measurement unit 512 with a threshold value, and if the threshold value is exceeded (YES in step S203), it determines that the motor 20 is unbalanced (step S204). Then, the winding switching process ends.
  • step S203 If the threshold value is not exceeded (NO in step S203), it is determined that the motor 20 is in a balanced state (step S205). Then, the winding switching process ends.
  • Vpu and Vpr are completely different values from normal and therefore exceed the threshold value, and the abnormality detection unit 513 determines that the motor 20 is unbalanced.
  • the determination may also be made based on the difference between Vpu and Vru.
  • the voltage across both ends of the relay 112u is measured.
  • the relay 112u is set on, the voltage across both ends of the relay 112u is zero.
  • the relay 112u is set off, the voltage across both ends of the relay 112u is greater than zero.
  • the motor's balanced state can be determined using the voltage sensor.
  • the measurement unit of the winding switching system according to the third embodiment measures the torque or rotation speed of the output shaft of an AC motor using a sensor that measures the torque or rotation speed.
  • the third embodiment differs from the first embodiment in the configuration of the measurement device 26, but the other configurations are the same. Descriptions of configurations similar to those of the first embodiment will be omitted, and only different parts will be described, with the same reference numerals used for the same configurations. The case of a torque sensor will be described below.
  • the control device 50 executes a winding switching process by the processor 501 executing the motor control program 510.
  • FIG. 12 is a flowchart showing an example of a winding switching process performed by the control device according to the third embodiment.
  • Step S301 the winding switching unit 511 switches the connection state of the windings from an independent state to a serial state.
  • the control device 50 transmits a switching instruction to the control circuits 103u, 103v, and 103w to switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w from an independent state to a serial state (step S301).
  • the control circuit 103u that receives the switching instruction to switch the connection state from an independent state to a serial state sets the relay 112u to on and the relay 111u to off.
  • the control circuit 103v sets the relay 112v to on and the relay 113v to off.
  • the control circuit 103w sets the relay 112w to on and the relay 113w to off. Then, the process proceeds to step S302.
  • relay 112u is fixed to off, so relays 112u and 111u are set to off.
  • no current flows through U-phase windings 21u and 22u.
  • V-phase and W-phase are in series and a large current flows through them, but they are excited.
  • the rotating magnetic field generated by the U-phase, V-phase, and W-phase windings is distorted, and the torque generated by the rotor, which obtains torque from the rotating magnetic field, fluctuates greatly.
  • the torque pulsates greatly in synchronization with the rotation of the rotor.
  • the measurement unit 512 measures the state of the motor 20 (step S302). Specifically, the torque of the output shaft of the motor 20 is measured by the torque sensor 202, and a signal indicating the torque is transmitted to the control device 50. In this example, a signal indicating, for example, a large pulsating torque is transmitted. When the control device 50 receives this signal, the measurement unit 512 measures the torque. Then, the process proceeds to step S303.
  • the abnormality detection unit 513 determines the balanced state of the motor 20 .
  • the measurement unit 512 receives a signal indicating the torque of the output shaft of the motor 20 output by the torque sensor.
  • the abnormality detection unit 513 compares the value of the signal indicating the torque measured by the measurement unit 512 with a threshold value (step S303), and if the value exceeds the threshold value (YES in step S303), it determines that the motor 20 is unbalanced (step S304). Then, the winding switching process ends.
  • step S303 If the threshold value is not exceeded (NO in step S303), it is determined that the motor 20 is in a balanced state (step S305). Then, the winding switching process ends.
  • the torque normally exhibits a constant value.
  • the torque in an abnormal state, the torque pulsates significantly at a frequency corresponding to the rotation speed of the motor 20. For example, a frequency component corresponding to the rotation speed is extracted from the measured torque value, and the intensity is measured. This intensity is then compared with a threshold value. If the threshold value is exceeded, the abnormality detection unit 513 may determine that the motor 20 is unbalanced.
  • the torque sensor can determine the motor's balanced state and detect abnormalities in the winding switching section that switches the windings.
  • a physical quantity related to the rotation of the motor 20 may also be measured using a rotation sensor 201 that measures the rotation speed of the output shaft of the motor 20. This is because when the torque pulsates significantly in sync with the rotation of the rotor, the rotation speed of the output shaft of the motor 20 also fluctuates during one rotation of the output shaft.
  • the winding switching system further includes a restoration unit that restores the winding switching unit to the connection state before switching when the abnormality detection unit determines that the currents flowing through the phases of the AC motor are not balanced in response to the winding switching unit switching the connection state.
  • FIG. 13 is a circuit diagram showing an example of the configuration of a winding switching system according to the fourth embodiment.
  • the fourth embodiment differs from the first embodiment in that a return section 514 is further provided, but the other configurations are the same. Explanations of the configurations similar to those of the first embodiment will be omitted, and only the different parts will be explained, with the same reference numerals being used for the same configurations.
  • the motor 20 operates normally when in the connection state before the connection state is switched. Therefore, by the return unit 514 returning the connection state of the windings to the connection state before the switch, the motor 20 continues to operate even if some kind of failure occurs in the relay. If the motor 20 is a drive motor that drives the wheels of a vehicle, the vehicle can continue to run.
  • Steps S401 to S405 are the same as steps S101 to S105 in the first embodiment, and therefore will not be described. It is assumed that the winding is connected in a single state.
  • Step S406 When the abnormality detection unit determines that the currents flowing through the phases of the AC motor are not balanced in response to the winding switching unit switching the connection state, the return unit 514 returns the winding switching unit to the state before the connection state was switched. For example, when the winding switching unit 511 attempts to switch from the single state to the series state and the abnormality detection unit 513 determines that the motor 20 is unbalanced (YES in step S403), the process proceeds to step S404, and then the return unit 514 causes the winding switching unit 511 to switch the connection state back to the connection state before the switching (step S406). Then, the winding switching process ends.
  • the winding switching unit 511 was attempting to switch the connection state of the windings from an isolated state to a series state, so the connection state before switching was an isolated state. Therefore, the return unit 514 causes the winding switching unit 511 to return the connection state to the isolated state. Even if the relay 111u is stuck in the isolated state, the return to the isolated state sets the relay 112u to off, and the large current flowing through the winding 21u stops.
  • the V and W phases also return to the isolated state, and the U, V, and W phases are all in the isolated state, so the motor 20 is in a balanced state and continues to operate normally. If the motor 20 was installed in a vehicle, the vehicle can continue to run.
  • the winding switching system further includes a notification unit 516.
  • the notification unit 516 notifies the user of the occurrence of an abnormality.
  • FIG. 15 is a circuit diagram showing an example of the configuration of a winding switching system according to the fifth embodiment.
  • the signal notified by the notification unit 516 is, for example, sound, light, or radio waves.
  • the sound is notified, for example, by a speaker.
  • the light is notified, for example, by a light-emitting diode.
  • the notification may be by a liquid crystal display.
  • the radio is notified, for example, by a radio.
  • the radio communicates with a smartphone and notifies via the smartphone.
  • the speaker, light-emitting diode, liquid crystal display, and radio are provided, for example, in the vehicle.
  • the vehicle user can be notified that the motor 20 is in an unbalanced state by sound, light, or via a smartphone.
  • the user who knows that the motor 20 is in an unbalanced state can take appropriate measures, such as inspecting and repairing it.
  • a winding switching system includes a winding switching unit that switches connection states of a plurality of windings of an AC motor capable of switching connection states of the plurality of windings included in a stator of each phase; a measurement unit that measures a physical quantity related to the rotation of the AC motor; a balance determination unit that determines whether or not currents flowing through each phase of the AC motor are balanced based on the physical quantity measured by the measurement unit; and a return unit that causes the winding switching unit to switch the connection state from the second state to the first connection state when the determination by the balance determination unit changes from a determination that the currents flowing through each phase are balanced to a determination that the currents flowing through each phase are not balanced in response to the connection state being switched from a first connection state to a second connection state.
  • FIG. 16 is a circuit diagram showing an example of the configuration of a winding switching system according to the sixth embodiment.
  • the sixth embodiment differs from the first embodiment in that an equilibrium determination unit 515 is provided instead of an abnormality detection unit 513, and a recovery unit 514 is also provided, but the other configurations are the same. Explanations of configurations similar to those of the first embodiment will be omitted, and only the different parts will be explained, with the same reference numerals used for the same configurations.
  • the balance determination unit 515 determines whether or not the currents flowing through the phases of the AC motor are balanced based on the physical quantities measured by the measurement units.
  • the abnormality detection unit 513 of the first embodiment detects an abnormality occurring in the winding switching device 100 by determining whether or not the currents flowing through the phases of the AC motor are balanced.
  • the balance determination unit 515 of this embodiment is not configured to detect an abnormality.
  • the return unit 514 is the same as the return unit 514 of the fourth embodiment.
  • Steps S501 to S502 are the same as steps S101 to S102 in the first embodiment, and therefore will not be described. It should be noted that the initial state is that the winding is connected in a single state.
  • the balance determination unit 515 determines whether or not the currents flowing through each phase of the motor 20 are balanced based on the physical quantities measured by the measurement unit 512. For example, the balance determination unit 515 compares the received signals indicating the phase current values output by the phase current sensors 261u, 261v, and 261w and the received signals indicating the relay current values output by the relay current sensors 262u, 262v, and 262w with a threshold value (step S503). If the threshold value is exceeded (YES in step S503), the balance determination unit 515 determines that the motor 20 is unbalanced. Then, the process proceeds to step S504. On the other hand, if the threshold value is not exceeded (NO in step S503), the balance determination unit 515 determines that the motor 20 is in a balanced state. Then, the winding switching process is terminated.
  • Step S504 When the balance determination unit changes the determination from that the currents flowing through the respective phases are balanced to that the currents flowing through the respective phases are not balanced in response to the switching of the connection state from the first connection state to the second connection state, the recovery unit 514 causes the winding switching unit 511 to switch the connection state from the second connection state to the first connection state (step S504). For example, when the winding switching unit 511 attempts to switch from the single state to the series state and the balance determination unit 515 determines that the motor 20 is unbalanced (YES in step S503), the recovery unit 514 causes the winding switching unit 511 to switch the connection state to the first connection state. Then, the winding switching process is terminated.
  • the winding switching unit 511 was attempting to switch the connection state of the windings from an isolated state to a series state, so the connection state before switching is the isolated state. Therefore, the return unit 514 returns the connection state to the isolated state. Even if the relay 111u is stuck in the isolated state, the return to the isolated state sets the relay 112u to off, and the large current flowing through the winding 21u stops.
  • the V and W phases also return to the isolated state, and the U, V, and W phases are all in the isolated state, so the motor 20 is in a balanced state and continues to operate normally. If the motor 20 was installed in a vehicle, the vehicle can continue to run.
  • FIG. 18 is a modified example of the winding switching device 100.
  • FIG. 18 shows only the U-phase, but the VW-phase is similar.
  • a relay 113u is added.
  • the relay 113u is set to on/off at the same timing as the relay 111u.
  • the addition of the relay 113u allows the winding 21u and the winding 22u to be connected in parallel.
  • the case of parallel connection may be referred to as a parallel state.
  • the relays 111u and 113u are set on, and the relay 112u is set off.
  • the relays 111u and 113u are set off, and the relay 112u is set on.
  • the winding switching device 100 switches the connection state of the windings of the motor 20 from a series state to a parallel state, or from a parallel state to a series state.
  • the return unit 514 returns the connection state of the windings to a series state.
  • the return unit 514 returns the connection state of the windings to a parallel state.
  • the return unit 514 returns it to the parallel state or the series state, but it may also return it to the single state. For example, it may be configured to return to the single state if the motor imbalance is not resolved even when switched to either the parallel state or the series state. To return to the single state, the relay 112u is set off and one of the relays 111u and 113u is set on. Also, if the imbalance of the motor 20 is not resolved even when one of the relays 111u and 113u is set on, the other relay may be set on.
  • Winding switching system 20 Motor (drive motor) 21u, 22u, 21v, 22v, 21w, 22w Winding 23 Neutral point 25 Power line 26 Measuring device 30 Power converter 31u, 32u, 31v, 32v, 31w, 32w Switch 33u, 33v, 33w Current sensor 35u, 35v, 35w Power line 40 Battery 50 Control device 501 Processor 502 Non-volatile memory 503 Volatile memory 504 Interface (I/F) 510 Motor control program 511 Winding switching unit 512 Measurement unit 513 Abnormality detection unit 514 Recovery unit 515 Balance determination unit 516 Notification unit 60 Wheel 70 Brake pedal 71 Sensor 80 Accelerator pedal 81 Sensor 90 Gear shift indicator 100 Winding switching device 103u, 103v, 103w Control circuit 104u, 104v, 104w Switching circuit 111u, 112u, 113u, 111v, 112v, 113v, 111w, 112w, 113w Relay 201 Rotation sensor 202 Torque sensor 212u

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

This winding switching system comprises a winding switching unit, a measuring unit, and an abnormality detection unit. The winding switching unit switches the connection status of a plurality of windings in an AC motor, which includes the plurality of windings on a stator of each phase. The measuring unit measures a physical quantity relating to rotation of the AC motor. The abnormality detection unit assesses, on the basis of the physical quantity measured by the measuring unit, whether current flowing in each phase of the AC motor is balanced.

Description

巻線切替システム、制御装置、制御方法、及びコンピュータプログラムWinding switching system, control device, control method, and computer program
 本開示は、巻線切替システム、制御装置、制御方法、及びコンピュータプログラムに関する。本出願は、2023年1月17日出願の日本出願第2023-004994号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This disclosure relates to a winding switching system, a control device, a control method, and a computer program. This application claims priority to Japanese Application No. 2023-004994, filed on January 17, 2023, and incorporates all of the contents of said Japanese application by reference.
 特許文献1には、スイッチにより巻線の切り替え特性を変化させる可変特性型の車両用モータの診断システムが開示されている。当該診断システムは、スイッチの異常を検出するスイッチ状態センサにより異常を検出し、異常であると判定された場合には、電源を遮断する等の緊急動作を行うことが開示されている。 Patent Document 1 discloses a diagnostic system for a variable characteristic type vehicle motor that changes the switching characteristics of the windings using a switch. The diagnostic system detects abnormalities using a switch state sensor that detects abnormalities in the switch, and if an abnormality is determined, it discloses that it takes emergency action such as cutting off the power supply.
国際公開第2016/088265号International Publication No. 2016/088265
 本開示の一態様に係る巻線切替システムは、各相の固定子に複数の巻線を含む交流モータの、前記複数の巻線の接続状態を切り替える巻線切替部と、前記交流モータの回転に関する物理量を測定する測定部と、前記測定部によって測定された物理量に基づき前記交流モータの各相を流れる電流が平衡しているか否かを判定する異常検出部と、を備える。 A winding switching system according to one aspect of the present disclosure includes a winding switching unit that switches the connection state of a plurality of windings in an AC motor having a stator for each phase, a measurement unit that measures a physical quantity related to the rotation of the AC motor, and an anomaly detection unit that determines whether the currents flowing through each phase of the AC motor are balanced based on the physical quantity measured by the measurement unit.
 本開示は、上記のような特徴的な構成を備える巻線切替システムとして実現することができるだけでなく、巻線切替システムに含まれる制御装置として実現したり、制御装置における特徴的な処理をステップとする車両用モータの制御方法として実現したりすることができる。本開示は、コンピュータを制御装置として機能させるコンピュータプログラムとして実現したり、制御装置の一部又は全部を半導体集積回路として実現したりすることができる。 The present disclosure can be realized not only as a winding switching system having the above-mentioned characteristic configuration, but also as a control device included in the winding switching system, or as a control method for a vehicle motor having steps corresponding to characteristic processes in the control device. The present disclosure can be realized as a computer program that causes a computer to function as a control device, or as a semiconductor integrated circuit as part or all of the control device.
図1は、第1実施形態に係る巻線切替システムの構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of the configuration of a winding switching system according to the first embodiment. 図2は、制御装置のハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a hardware configuration of the control device. 図3は、第1実施形態に係る巻線切替装置の構成の一例を示す回路図である。FIG. 3 is a circuit diagram showing an example of the configuration of the winding switching device according to the first embodiment. 図4は、モータの不平衡の状態の例を説明するための図である。FIG. 4 is a diagram for explaining an example of an unbalanced state of the motor. 図5は、リレーの故障パターンを示す図である。FIG. 5 is a diagram showing failure patterns of relays. 図6は、モータが不平衡の状態となったときの相電流、リレー電流及びd、q軸電流をシミュレーションした例である。FIG. 6 shows an example of a simulation of the phase currents, relay currents, and d- and q-axis currents when the motor is in an unbalanced state. 図7は、モータが不平衡の状態となったときの相電流、リレー電流及びd、q軸電流をシミュレーションした例である。FIG. 7 shows an example of a simulation of the phase currents, relay currents, and d- and q-axis currents when the motor is in an unbalanced state. 図8は、モータが不平衡の状態となったときの相電流、リレー電流及びd、q軸電流をシミュレーションした例である。FIG. 8 shows an example of a simulation of the phase currents, relay currents, and d- and q-axis currents when the motor is in an unbalanced state. 図9は、第1実施形態に係る制御装置による巻線切替処理の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of a winding switching process performed by the control device according to the first embodiment. 図10は、第2実施形態に係る巻線切替装置の構成の一例を示す回路図である。FIG. 10 is a circuit diagram showing an example of the configuration of a winding switching device according to the second embodiment. 図11は、第2実施形態に係る制御装置による巻線切替処理の一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of a winding switching process performed by the control device according to the second embodiment. 図12は、第3実施形態に係る制御装置による巻線切替処理の一例を示すフローチャートである。FIG. 12 is a flowchart showing an example of a winding switching process performed by the control device according to the third embodiment. 図13は、第4実施形態に係る巻線切替システムの構成の一例を示す回路図である。FIG. 13 is a circuit diagram showing an example of the configuration of a winding switching system according to the fourth embodiment. 図14は、第4実施形態に係る制御装置による巻線切替処理の一例を示すフローチャートである。FIG. 14 is a flowchart showing an example of a winding switching process performed by the control device according to the fourth embodiment. 図15は、第5実施形態に係る巻線切替システムの構成の一例を示す回路図である。FIG. 15 is a circuit diagram showing an example of the configuration of a winding switching system according to the fifth embodiment. 図16は、第6実施形態に係る巻線切替システムの構成の一例を示す回路図である。FIG. 16 is a circuit diagram showing an example of the configuration of a winding switching system according to the sixth embodiment. 図17は、第6実施形態に係る制御装置による巻線切替処理の一例を示すフローチャートである。FIG. 17 is a flowchart showing an example of a winding switching process performed by the control device according to the sixth embodiment. 図18は、巻線切替装置の変形例の構成の一例を示す回路図である。FIG. 18 is a circuit diagram showing an example of the configuration of a modified example of a winding switching device.
 <発明が解決しようとする課題>
 巻線を切り替えるスイッチに異常が発生した場合、特許文献1に開示された診断システムは、スイッチの異常を検出するスイッチ状態センサにより異常を検出し、電源を遮断する等の緊急動作を行う。このため、別途スイッチ状態センサを設ける必要がある。
 <発明の効果>
<Problem to be solved by the invention>
When an abnormality occurs in the switch that switches the windings, the diagnostic system disclosed in Patent Document 1 detects the abnormality using a switch status sensor that detects the switch abnormality and takes emergency action such as cutting off the power supply, etc. For this reason, it is necessary to provide a separate switch status sensor.
<Effects of the Invention>
 本開示によれば、巻線を切り替えるリレーが固着する等の異常を、モータの平衡状態に基づき検出することができる。 According to this disclosure, abnormalities such as the relay that switches the windings becoming stuck can be detected based on the motor's equilibrium state.
 <本開示の実施形態の概要>
 以下、本開示の実施形態の概要を列記して説明する。
Overview of the embodiments of the present disclosure
Below, an overview of the embodiments of the present disclosure will be listed and described.
 (1) 本実施形態に係る巻線切替システムは、各相の固定子に複数の巻線を含む交流モータの、前記複数の巻線の接続状態を切り替える巻線切替部と、前記交流モータの回転に関する物理量を測定する測定部と、前記測定部によって測定された物理量に基づき前記交流モータの各相を流れる電流が平衡しているか否かを判定する異常検出部と、を備える。これにより、巻線を切り替える巻線切替部の異常を、モータの平衡状態に基づき検出することができる。 (1) The winding switching system according to this embodiment includes a winding switching unit that switches the connection state of multiple windings in an AC motor that includes multiple windings in a stator for each phase, a measurement unit that measures a physical quantity related to the rotation of the AC motor, and an abnormality detection unit that determines whether or not the current flowing through each phase of the AC motor is balanced based on the physical quantity measured by the measurement unit. This makes it possible to detect an abnormality in the winding switching unit that switches the windings based on the balanced state of the motor.
 (2) 上記(1)において、前記巻線切替部は、複数のリレーにより前記複数の巻線の接続状態を切り替えてもよい。これにより、リレーにより巻線を切り替える巻線切替部の異常を、モータの平衡状態に基づき検出することができる。 (2) In the above (1), the winding switching unit may switch the connection state of the multiple windings using multiple relays. This makes it possible to detect an abnormality in the winding switching unit that switches the windings using relays based on the balanced state of the motor.
 (3) 上記(2)において、前記異常検出部は、前記交流モータの各相を流れる電流が平衡しているか否かを判定することにより、前記複数のリレーに生じる異常を検出してもよい。これにより、リレーにより巻線を切り替える巻線切替部の異常を、モータの各相を流れる電流が平衡しているか否かを判定することにより検出することができる。 (3) In the above (2), the abnormality detection unit may detect an abnormality occurring in the multiple relays by determining whether or not the currents flowing through each phase of the AC motor are balanced. This makes it possible to detect an abnormality in a winding switching unit that switches windings using relays by determining whether or not the currents flowing through each phase of the motor are balanced.
 (4) 上記(1)から上記(3)のいずれか一つの巻線切替システムにおいて、前記測定部は、電流センサを含み、前記電流センサにより前記各相を流れる電流を測定し、前記異常検出部は、前記電流センサによって測定された電流が閾値を超えたときに、各相を流れる電流が平衡していないと判定してもよい。これにより、電流センサによって測定された電流が閾値を超えたとき不平衡状態と判定し、これに基づき巻線切替部の異常を検出することができる。 (4) In any one of the winding switching systems described in (1) to (3) above, the measurement unit may include a current sensor, which measures the current flowing through each of the phases, and the abnormality detection unit may determine that the current flowing through each of the phases is not balanced when the current measured by the current sensor exceeds a threshold value. In this way, when the current measured by the current sensor exceeds the threshold value, it is determined that an unbalanced state has occurred, and an abnormality in the winding switching unit can be detected based on this.
 (5) 上記(4)において、前記電流センサは、前記各相の固定子を流れる相電流を測定してもよい。これにより、電流センサが測定した相電流が閾値を超えたとき不平衡状態と判定し、これに基づき巻線切替部の異常を検出することができる。 (5) In the above (4), the current sensor may measure the phase current flowing through the stator of each phase. In this way, when the phase current measured by the current sensor exceeds a threshold, it is determined that an unbalanced state exists, and an abnormality in the winding switching unit can be detected based on this.
 (6) 上記(4)において、前記複数のリレーの内少なくとも1つは、第1接続状態のときにオンにセットされ、第2接続状態のときにオフにセットされるリレーであり、前記電流センサは、オンにセットされた前記リレーを流れる電流(リレー電流)を測定してもよい。これにより、電流センサが測定したリレー電流が閾値を超えたとき、不平衡状態と判定しこれに基づき巻線切替部の異常を検出することができる。 (6) In the above (4), at least one of the plurality of relays may be a relay that is set on in a first connection state and set off in a second connection state, and the current sensor may measure the current (relay current) flowing through the relay that is set on. In this way, when the relay current measured by the current sensor exceeds a threshold, it is determined that an unbalanced state has occurred, and an abnormality in the winding switching unit can be detected based on this.
 (7) 上記(4)から(6)のいずれか一つにおいて、前記交流モータは、車両の車輪を駆動する駆動モータであり、前記異常検出部は、前記交流モータに要求される出力に基づき前記閾値を変更してもよい。これにより、アクセル開度、要求速度、要求トルク等により決められるモータに要求される出力に基づき閾値が変更されことで、モータの平衡状態を適切に判定し、巻線切替部の異常を検出することができる。 (7) In any one of (4) to (6) above, the AC motor may be a drive motor that drives the wheels of a vehicle, and the abnormality detection unit may change the threshold value based on the output required of the AC motor. In this way, the threshold value is changed based on the output required of the motor, which is determined by the accelerator opening, the required speed, the required torque, etc., so that the balanced state of the motor can be appropriately determined and an abnormality in the winding switching unit can be detected.
 (8) 上記(1)から(3)のいずれか一つにおいて、前記測定部は、各相の固定子を流れる相電流を測定する電流センサを含み、前記相電流に基づいて、前記交流モータを流れるd軸電流及びq軸電流を測定し、前記異常検出部は、前記d軸電流の目標値である目標d軸電流及び前記q軸電流の目標値である目標q軸電流と、前記d軸電流の測定値である測定d軸電流及び前記q軸電流の測定値である測定q軸電流とを比較し、前記目標d軸電流と前記測定d軸電流との差が第1閾値以上である第1条件、及び前記目標q軸電流と前記測定q軸電流との差が第2閾値以上である第2条件の少なくとも1つが成立するときに、各相を流れる電流が平衡していないと判定してもよい。これにより、相電流あるいはリレー電流に基づいてモータの平衡状態を判定しずらい場合であっても、モータの平衡状態を判定することができる。 (8) In any one of (1) to (3) above, the measurement unit may include a current sensor that measures the phase current flowing through the stator of each phase, and measure the d-axis current and the q-axis current flowing through the AC motor based on the phase current. The abnormality detection unit may compare a target d-axis current, which is a target value of the d-axis current, and a target q-axis current, which is a target value of the q-axis current, with a measured d-axis current, which is a measurement value of the d-axis current, and a measured q-axis current, which is a measurement value of the q-axis current, and determine that the currents flowing through each phase are not balanced when at least one of a first condition that the difference between the target d-axis current and the measured d-axis current is equal to or greater than a first threshold value and a second condition that the difference between the target q-axis current and the measured q-axis current is equal to or greater than a second threshold value is satisfied. This makes it possible to determine the balanced state of the motor even when it is difficult to determine the balanced state of the motor based on the phase current or relay current.
 (9) 上記(8)において、前記交流モータは、車両の車輪を駆動する駆動モータであり、前記異常検出部は、前記交流モータに要求される出力に基づき、前記第1閾値及び前記第2閾値の少なくとも1つを変更してもよい。これにより、アクセル開度、要求速度、要求トルク等により決められるモータに要求される出力に基づき閾値が変更されことで、モータの平衡状態を適切に判定することができる。 (9) In the above (8), the AC motor is a drive motor that drives the wheels of a vehicle, and the abnormality detection unit may change at least one of the first threshold value and the second threshold value based on the output required of the AC motor. In this way, the threshold value is changed based on the output required of the motor, which is determined by the accelerator opening, the required speed, the required torque, etc., and the balanced state of the motor can be appropriately determined.
 (10) 上記(8)において、前記異常検出部は、前記第1条件が成立している期間、及び前記第2条件が成立している期間の少なくとも1つが基準値を超える場合に、前記各相を流れる電流が平衡していないと判定してもよい。これにより、突発的にノイズが入るような状況であっても、差が閾値以上の状況が所定期間以上続く場合に不平衡の状態と判定することで、誤判定を排除しモータの平衡状態を適切に判定することができる。 (10) In the above (8), the abnormality detection unit may determine that the currents flowing through the phases are not balanced when at least one of the period during which the first condition is satisfied and the period during which the second condition is satisfied exceeds a reference value. This makes it possible to eliminate erroneous determinations and properly determine the balanced state of the motor by determining that an unbalanced state exists when the difference is equal to or greater than a threshold value and continues for a predetermined period or longer, even in a situation where noise is suddenly introduced.
 (11) 上記(10)において、前記異常検出部は、前記交流モータの回転子の回転数に基づき前記基準値を変更してもよい。これにより、回転子の回転数が下がり、測定d、q軸電流がゆっくり変動する場合であっても、モータの平衡状態を適切に判定することができる。 (11) In the above (10), the abnormality detection unit may change the reference value based on the rotation speed of the rotor of the AC motor. This makes it possible to appropriately determine the balanced state of the motor even when the rotor rotation speed decreases and the measured d-axis and q-axis currents fluctuate slowly.
 (12) 上記(1)から(3)のいずれか一つにおいて、前記測定部は、前記複数の巻線の電圧を測定する電圧センサを含でもよい。これにより、巻線の電圧に基づきモータの平衡状態を判定することができる。 (12) In any one of (1) to (3) above, the measurement unit may include a voltage sensor that measures the voltages of the multiple windings. This makes it possible to determine the balanced state of the motor based on the voltages of the windings.
 (13) 上記(1)から(3)のいずれか一つにおいて、前記測定部は、前記交流モータの出力トルクまたは回転速度を測定するセンサを含んでもよい。これにより、モータのトルクまたは回転速度に基づきモータの平衡状態を判定するすることができる。 (13) In any one of (1) to (3) above, the measurement unit may include a sensor that measures the output torque or rotation speed of the AC motor. This makes it possible to determine the equilibrium state of the motor based on the torque or rotation speed of the motor.
 (14) 上記(1)から(13)のいずれか一つにおいて、巻線切替システムは、前記巻線切替部が前記接続状態を切り替えたことに応じて、前記異常検出部が前記交流モータの各相を流れる電流が平衡していないと判定した場合に、切替前の前記接続状態へ前記巻線切替部に復帰させる復帰部、を更に含んでもよい。これにより、巻線を切り替える巻線切替部の異常を検出した場合に、巻線切替部に切替前の接続状態へ復帰させ、モータの動作を続けることができる。 (14) In any one of (1) to (13) above, the winding switching system may further include a return unit that returns the winding switching unit to the connection state before switching when the abnormality detection unit determines that the currents flowing through the phases of the AC motor are not balanced in response to the winding switching unit switching the connection state. In this way, when an abnormality is detected in the winding switching unit that switches the windings, the winding switching unit is returned to the connection state before switching, and the motor can continue to operate.
 (15) 上記(1)から(14)のいずれか一つにおいて、前記巻線切替システムは、前記異常検出部が前記交流モータの各相を流れる電流が平衡していないと判定したときに、前記異常の発生をユーザへ通知する通知部をさらに備えてもよい。これにより、モータのユーザはモータが不平衡であることを知るができる。 (15) In any one of (1) to (14) above, the winding switching system may further include a notification unit that notifies a user of the occurrence of an abnormality when the abnormality detection unit determines that the currents flowing through the phases of the AC motor are not balanced. This allows the user of the motor to know that the motor is unbalanced.
 (16) 本実施形態に係る巻線切替システムは、各相の固定子に含まれる複数の巻線の接続状態を切り替えることが可能な交流モータの前記複数の巻線の接続状態を切り替える巻線切替部と、前記交流モータの回転に関する物理量を測定する測定部と前記測定部によって測定された物理量に基づき前記交流モータの各相を流れる電流が平衡しているか否かを判定する平衡判定部と、前記接続状態が第1接続状態から第2接続状態に切り替えられたことに応じて、前記平衡判定部による判定が、各相を流れる電流が平衡しているという判定から、各相を流れる電流が平衡していないという判定へと変化した場合に、前記接続状態を前記第2状態から前記第1接続状態へ前記巻線切替部に切り替えさせる復帰部と、を含む。これにより、巻線を切り替える巻線切替部の異常を検出した場合に、巻線切替部を切替前の接続状態へ復帰させ、モータの動作を続けることができる。 (16) The winding switching system according to this embodiment includes a winding switching unit that switches the connection state of a plurality of windings of an AC motor capable of switching the connection state of the plurality of windings included in the stator of each phase, a measurement unit that measures a physical quantity related to the rotation of the AC motor, and an equilibrium determination unit that determines whether or not the current flowing through each phase of the AC motor is balanced based on the physical quantity measured by the measurement unit, and a return unit that causes the winding switching unit to switch the connection state from the second state to the first connection state when the balance determination unit's determination changes from a determination that the current flowing through each phase is balanced to a determination that the current flowing through each phase is not balanced in response to the connection state being switched from the first connection state to the second connection state. As a result, when an abnormality is detected in the winding switching unit that switches the windings, the winding switching unit is returned to the connection state before switching, and the motor can continue to operate.
 (17) 本実施形態に係る制御装置は、各相の固定子に複数の巻線を含む交流モータの、前記複数の巻線の接続状態を切り替える巻線切替部と、前記交流モータの回転に関する物理量を測定するセンサを含む測定部と、前記測定部により測定された前記物理量に基づき前記交流モータの各相を流れる電流が平衡しているか否かを判定する異常検出部と、を備える。これにより、巻線を切り替えるリレーが固着する等の故障が発生し、モータが不平衡状態となった場合であっても、モータを平衡状態に復帰させ、モータは動作を続けることができる。これにより、巻線を切り替える巻線切替部の異常を、モータの平衡状態に基づき検出することができる。 (17) The control device according to this embodiment includes a winding switching unit that switches the connection state of multiple windings of an AC motor that includes a stator for each phase; a measurement unit that includes a sensor that measures a physical quantity related to the rotation of the AC motor; and an abnormality detection unit that determines whether or not the current flowing through each phase of the AC motor is balanced based on the physical quantity measured by the measurement unit. As a result, even if a failure occurs in a relay that switches windings, such as sticking, and the motor becomes unbalanced, the motor can be returned to a balanced state and the motor can continue to operate. As a result, an abnormality in the winding switching unit that switches the windings can be detected based on the balanced state of the motor.
 (18) 本実施形態に係る巻線切替装置の制御方法は、各相の固定子に複数の巻線を含む交流モータの、前記複数の巻線の接続状態を切り替える巻線切替ステップと、前記交流モータの回転に関する物理量を測定する測定ステップと、前記測定ステップによって測定された物理量に基づき前記交流モータの各相を流れる電流が平衡しているか否かを判定する異常検出ステップと、を含む。これにより、巻線を切り替える巻線切替部の異常を、モータの平衡状態に基づき検出することができる。 (18) The control method for the winding switching device according to this embodiment includes a winding switching step of switching the connection state of a plurality of windings of an AC motor including a stator of each phase, a measurement step of measuring a physical quantity related to the rotation of the AC motor, and an anomaly detection step of determining whether or not the current flowing through each phase of the AC motor is balanced based on the physical quantity measured in the measurement step. This makes it possible to detect an anomaly in the winding switching unit that switches the windings based on the balanced state of the motor.
 (19) 本実施形態に係るコンピュータプログラムは、巻線切替装置を制御する制御装置によって用いられるコンピュータプログラムであって、コンピュータに、各相の固定子に含まれる複数の巻線の接続状態を切り替えることが可能な交流モータの前記複数の巻線の接続状態を切り替える巻線切替ステップと、前記交流モータの回転に関する物理量を測定する測定ステップと、前記測定ステップにおいて測定された物理量に基づき前記交流モータの各相を流れる電流が平衡しているか否かを判定する異常検出ステップと、を実行させる。これにより、巻線を切り替える巻線切替部の異常を、モータの平衡状態に基づき検出することができる。 (19) The computer program according to this embodiment is a computer program used by a control device that controls a winding switching device, and causes a computer to execute a winding switching step of switching the connection state of multiple windings of an AC motor capable of switching the connection state of the multiple windings included in the stator of each phase, a measurement step of measuring a physical quantity related to the rotation of the AC motor, and an abnormality detection step of determining whether or not the current flowing through each phase of the AC motor is balanced based on the physical quantity measured in the measurement step. This makes it possible to detect an abnormality in the winding switching unit that switches the windings based on the balanced state of the motor.
 <本開示の実施形態の詳細>
 以下、図面を参照しつつ、本開示の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
<Details of the embodiment of the present disclosure>
Hereinafter, the details of the embodiments of the present disclosure will be described with reference to the drawings. Note that at least some of the embodiments described below may be combined in any combination.
[1.第1実施形態]
[1-1.巻線切替システム]
 図1は、第1実施形態に係る巻線切替システムの構成の一例を示す図である。
[1. First embodiment]
[1-1. Winding switching system]
FIG. 1 is a diagram illustrating an example of the configuration of a winding switching system according to the first embodiment.
 巻線切替システム10は、電気自動車、プラグインハイブリッド車等のモータで推進する車両(以下、「電動車」という)に搭載される。巻線切替システム10は、モータ20と、電力変換器30と、バッテリ40と、制御装置50と、巻線切替装置100とを含む。 The winding switching system 10 is mounted on a vehicle (hereinafter referred to as an "electric vehicle") that is propelled by a motor, such as an electric vehicle or a plug-in hybrid vehicle. The winding switching system 10 includes a motor 20, a power converter 30, a battery 40, a control device 50, and a winding switching device 100.
 モータ20は、電動車の推進力を発生する走行用のモータである。すなわち、モータ20は、車輪60に接続されており、車輪60を駆動する駆動モータである。モータ20は、三相交流電力によって駆動される。モータ20は整流子を持たず、固定子を駆動して回転磁界を発生させ、回転磁界により回転子を回転させる非整流子型交流モータである。非整流子型交流モータには例えばシンクロナスモータ、リラクタンスモータ、インダクションモータが含まれる。 Motor 20 is a driving motor that generates the propulsion force for the electric vehicle. In other words, motor 20 is connected to wheels 60 and is a drive motor that drives wheels 60. Motor 20 is driven by three-phase AC power. Motor 20 is a non-commutator type AC motor that does not have a commutator and drives a stator to generate a rotating magnetic field, which then rotates the rotor. Non-commutator type AC motors include, for example, synchronous motors, reluctance motors, and induction motors.
 バッテリ40は、モータ20を駆動するための電力を供給するための電池である。バッテリ40は、二次電池であり、例えばリチウムイオンバッテリである。 The battery 40 is a battery that supplies power to drive the motor 20. The battery 40 is a secondary battery, for example a lithium ion battery.
 電力変換器30は、バッテリ40から供給される直流電力を三相交流電力に変換するインバータである。電力変換器30は、モータ20が発電機として機能したときに出力する三相交流電力を直流電力に変換し、バッテリ40を充電する機能を有してもよい。 The power converter 30 is an inverter that converts DC power supplied from the battery 40 into three-phase AC power. The power converter 30 may also have the function of converting the three-phase AC power output when the motor 20 functions as a generator into DC power and charging the battery 40.
 電力変換器30は、U相、V相、及びW相それぞれのレグを含む。U相のレグは、スイッチ31u,32uを含み、V相のレグは、スイッチ31v,32vを含み、W相のレグは、スイッチ31w,32wを含む。スイッチ31u,32u,31v,32v,31w,32wがスイッチングを行うことにより、直流電力が三相交流電力に変換される。スイッチ31u,32u,31v,32v,31w,32wは、例えば、IGBT(Insulated Gate Bipolar Transistor)又はMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)である。 The power converter 30 includes legs for the U, V, and W phases. The U-phase leg includes switches 31u and 32u, the V-phase leg includes switches 31v and 32v, and the W-phase leg includes switches 31w and 32w. The switches 31u, 32u, 31v, 32v, 31w, and 32w perform switching to convert DC power into three-phase AC power. The switches 31u, 32u, 31v, 32v, 31w, and 32w are, for example, IGBTs (Insulated Gate Bipolar Transistors) or MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors).
 U相のレグからは、U相に対応する電力線35uが延び、V相のレグからは、V相に対応する電力線35vが延び、W相のレグからは、W相に対応する電力線35wが延びている。電力変換器30において、電力線35uには電流センサ33uが設けられ、電力線35vには電流センサ33vが設けられ、電力線35wには電流センサ33wが設けられる。電流センサ33uは、U相の電流Iuの電流値を検出する。電流センサ33vは、V相の電流Ivの電流値を検出する。電流センサ33wは、W相の電流Iwの電流値を検出する。電流センサ33u,33v,33wは、直流成分及び交流成分を含め、電力線35u,35v,35wに流れる電流Iu,Iv,Iwの電流値を検出することができる。電流センサ33u,33v,33wは、例えば、ホールセンサを利用したDCカレントセンサ(直流カレントセンサ)又はシャント抵抗である。 Power line 35u corresponding to U phase extends from the U phase leg, power line 35v corresponding to V phase extends from the V phase leg, and power line 35w corresponding to W phase extends from the W phase leg. In power converter 30, current sensor 33u is provided on power line 35u, current sensor 33v is provided on power line 35v, and current sensor 33w is provided on power line 35w. Current sensor 33u detects the current value of current Iu of U phase. Current sensor 33v detects the current value of current Iv of V phase. Current sensor 33w detects the current value of current Iw of W phase. Current sensors 33u, 33v, 33w can detect the current values of currents Iu, Iv, Iw flowing through power lines 35u, 35v, 35w, including DC and AC components. The current sensors 33u, 33v, and 33w are, for example, DC current sensors using Hall sensors or shunt resistors.
 巻線切替装置100は、モータ20と電力変換器30との間に配置される。電力変換器30と巻線切替装置100とは電力線35u,35v,35wによって接続されており、巻線切替装置100とモータ20とは複数の電力線25によって接続されている。巻線切替装置100は、モータ20の複数の巻線の接続状態を切り替える。巻線切替装置100の構成については後述する。電力変換器30から出力される三相交流電流Iu,Iv,Iwは、巻線切替装置100を経由してモータ20に供給される。 The winding switching device 100 is disposed between the motor 20 and the power converter 30. The power converter 30 and the winding switching device 100 are connected by power lines 35u, 35v, and 35w, and the winding switching device 100 and the motor 20 are connected by a plurality of power lines 25. The winding switching device 100 switches the connection state of the multiple windings of the motor 20. The configuration of the winding switching device 100 will be described later. The three-phase AC currents Iu, Iv, and Iw output from the power converter 30 are supplied to the motor 20 via the winding switching device 100.
 測定装置26はモータ20の回転に関する物理量を測定する。モータの回転に関する物理量としては例えばモータ20の各巻線を流れる電流、各巻線の電圧、モータ20の出力軸のトルクであるがこれらに限定されるものではない。測定装置26は測定対象に対応する場所に設けられる。巻線切替装置100とモータ20を接続する電力線の電流あるいは電圧を測定する場合には巻線切替装置100とモータ20との間を接続する電力線212u、221u、212v、221v、212w、221wに設けられる。モータ20の出力軸のトルク、回転速度を測定する場合にはモータ20の出力軸に設けられる。電流は電流センサによって測定される。電流センサは、例えばホールセンサを利用したDCカレントセンサである。電圧は電圧センサによって測定される。電圧センサは、例えばADコンバータである。巻線の第1端子及び基準電圧点(車両のボディ)がそれぞれADコンバータの入力端子の第1端子、第2端子に接続される。後述するプロセッサ501がADコンバータを内蔵している場合には巻線の第1端子、第2端子をプロセッサ501のADコンバータの入力端子の第1端子、第2端子へ接続してもよい。トルクはトルクセンサによって測定され、例えばひずみゲージである。 The measuring device 26 measures physical quantities related to the rotation of the motor 20. Examples of physical quantities related to the rotation of the motor include, but are not limited to, the current flowing through each winding of the motor 20, the voltage of each winding, and the torque of the output shaft of the motor 20. The measuring device 26 is provided at a location corresponding to the measurement target. When measuring the current or voltage of the power line connecting the winding switching device 100 and the motor 20, the measuring device 26 is provided on the power lines 212u, 221u, 212v, 221v, 212w, and 221w connecting the winding switching device 100 and the motor 20. When measuring the torque and rotation speed of the output shaft of the motor 20, the measuring device 26 is provided on the output shaft of the motor 20. The current is measured by a current sensor. The current sensor is, for example, a DC current sensor using a Hall sensor. The voltage is measured by a voltage sensor. The voltage sensor is, for example, an AD converter. The first terminal of the winding and the reference voltage point (the body of the vehicle) are connected to the first terminal and the second terminal of the input terminal of the AD converter, respectively. If the processor 501 described below has an AD converter built in, the first and second terminals of the winding may be connected to the first and second input terminals of the AD converter of the processor 501. The torque is measured by a torque sensor, such as a strain gauge.
 制御装置50は、モータ20を制御する。具体的には、制御装置50は、電力変換器30及び巻線切替装置100を制御することにより、モータ20を制御する。制御装置50からスイッチ31u,32u,31v,32v,31w,32wのそれぞれに信号線が延びており、制御装置50はスイッチ31u,32u,31v,32v,31w,32wのオン/オフタイミングを制御する。制御装置50から巻線切替装置100に信号線が延びており、制御装置50は巻線切替装置100へ巻線の接続状態の切替を指令するための切替指令信号を出力する。 The control device 50 controls the motor 20. Specifically, the control device 50 controls the motor 20 by controlling the power converter 30 and the winding switching device 100. Signal lines extend from the control device 50 to each of the switches 31u, 32u, 31v, 32v, 31w, and 32w, and the control device 50 controls the on/off timing of the switches 31u, 32u, 31v, 32v, 31w, and 32w. A signal line extends from the control device 50 to the winding switching device 100, and the control device 50 outputs a switching command signal to the winding switching device 100 to command the switching of the winding connection state.
 制御装置50はモータ20をベクトル制御するように構成されていてもよい。ベクトル制御は交流モータ固定子のU相、V相、W相を流れる電流を、磁束を発生する電流成分とトルクを発生する電流成分とに分解し、それぞれの電流成分を独立に制御する方式である。これにより電動機の回転磁界の磁束の方向と大きさをベクトル量として制御できるようになる。磁束を発生する電流成分をd軸電流と呼び、トルクを発生する電流成分をq軸電流と呼ぶ場合がある。モータ固定子のU相、V相、W相を流れる電流を測定し、測定された電流に基づき計算によりd軸電流、q軸電流を求ることができる。例えば制御装置50は、d軸電流の目標値である目標d軸電流及びq軸電流の目標値である目標q軸電流と、d軸電流の測定値である測定d軸電流及びq軸電流の測定値である測定q軸電流とを比較し、測定d軸電流、測定q軸電流それぞれが目標d軸電流、目標q軸電流となるように、電力変換器30を制御する。目標d軸電流、目標q軸電流は例えばモータ20に要求される出力(回転速度、トルク)に基づき決定される。 The control device 50 may be configured to vector control the motor 20. Vector control is a method of decomposing the current flowing through the U-phase, V-phase, and W-phase of the AC motor stator into a current component that generates magnetic flux and a current component that generates torque, and controlling each current component independently. This makes it possible to control the direction and magnitude of the magnetic flux of the rotating magnetic field of the motor as a vector quantity. The current component that generates magnetic flux may be called the d-axis current, and the current component that generates torque may be called the q-axis current. The current flowing through the U-phase, V-phase, and W-phase of the motor stator may be measured, and the d-axis current and q-axis current may be calculated based on the measured current. For example, the control device 50 compares the target d-axis current, which is the target value of the d-axis current, and the target q-axis current, which is the target value of the q-axis current, with the measured d-axis current, which is the measured value of the d-axis current, and the measured q-axis current, which is the measured value of the q-axis current, and controls the power converter 30 so that the measured d-axis current and the measured q-axis current become the target d-axis current and the target q-axis current, respectively. The target d-axis current and target q-axis current are determined, for example, based on the output (rotational speed, torque) required of the motor 20.
 制御装置50は、ブレーキペダル70の踏込量を検出するセンサ71に接続されており、センサ71から出力される検出信号を受信する。制御装置50は、アクセルペダル80の踏込量を検出するセンサ81に接続されており、センサ81から出力される検出信号を受信する。 The control device 50 is connected to a sensor 71 that detects the amount of depression of the brake pedal 70, and receives a detection signal output from the sensor 71. The control device 50 is connected to a sensor 81 that detects the amount of depression of the accelerator pedal 80, and receives a detection signal output from the sensor 81.
 モータ20の出力軸には、モータ20の回転数を検出する回転センサ201及びモータ20の出力トルクを検出するトルクセンサ202が取り付けられている。回転センサ201及びトルクセンサ202は、制御装置50に接続されている。制御装置50は、回転センサ201から出力される検出信号を受信し、トルクセンサ202から出力される検出信号を受信する。 A rotation sensor 201 that detects the rotation speed of the motor 20 and a torque sensor 202 that detects the output torque of the motor 20 are attached to the output shaft of the motor 20. The rotation sensor 201 and the torque sensor 202 are connected to the control device 50. The control device 50 receives the detection signal output from the rotation sensor 201 and receives the detection signal output from the torque sensor 202.
 制御装置50は、変速指示器90に接続されている。変速指示器90は、運転者が変速指示を入力するための入力装置である。変速指示器90は、例えば、シフトレバーである。他の例では、変速指示器90は、運転者がシフトアップ又はシフトダウンを指示するためのスイッチである。変速指示器90は、運転者の操作に応じて変速指示信号を出力する。制御装置50は、変速指示器90から出力される変速指示信号を受信する。 The control device 50 is connected to a gear shift indicator 90. The gear shift indicator 90 is an input device that allows the driver to input gear shift instructions. The gear shift indicator 90 is, for example, a shift lever. In another example, the gear shift indicator 90 is a switch that allows the driver to instruct shifting up or down. The gear shift indicator 90 outputs a gear shift instruction signal in response to the driver's operation. The control device 50 receives the gear shift instruction signal output from the gear shift indicator 90.
 図2は、制御装置のハードウェア構成の一例を示すブロック図である。制御装置50は、プロセッサ501と、不揮発性メモリ502と、揮発性メモリ503と、インタフェース(I/F)504とを含む。 FIG. 2 is a block diagram showing an example of the hardware configuration of the control device. The control device 50 includes a processor 501, a non-volatile memory 502, a volatile memory 503, and an interface (I/F) 504.
 揮発性メモリ503は、例えばSRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)等の半導体メモリである。不揮発性メモリ502は、例えばフラッシュメモリ、ハードディスク、ROM(Read Only Memory)等である。不揮発性メモリ502には、コンピュータプログラムであるモータ制御プログラム510及びモータ制御プログラム510の実行に使用されるデータが格納される。制御装置50の各機能は、モータ制御プログラム510がプロセッサ501によって実行されることで発揮される。モータ制御プログラム510は、フラッシュメモリ、ROM、CD-ROMなどの記録媒体に記憶させることができる。プロセッサ501は、モータ制御プログラム510によって、電力変換器30及び巻線切替装置100を制御する。 The volatile memory 503 is, for example, a semiconductor memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory). The non-volatile memory 502 is, for example, a flash memory, a hard disk, or a ROM (Read Only Memory). The non-volatile memory 502 stores a motor control program 510, which is a computer program, and data used to execute the motor control program 510. Each function of the control device 50 is achieved by the motor control program 510 being executed by the processor 501. The motor control program 510 can be stored in a recording medium such as a flash memory, a ROM, or a CD-ROM. The processor 501 controls the power converter 30 and the winding switching device 100 using the motor control program 510.
 プロセッサ501は、例えばCPU(Central Processing Unit)である。ただし、プロセッサ501は、CPUに限られない。プロセッサ501は、GPU(Graphics Processing Unit)であってもよい。プロセッサ501は、例えば、マルチコアプロセッサである。プロセッサ501は、シングルコアプロセッサであってもよい。プロセッサ501は、例えば、ASIC(Application Specific Integrated Circuit)であってもよいし、ゲートアレイ、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスであってもよい。この場合、ASIC又はプログラマブルロジックデバイスは、モータ制御プログラム510と同一の処理を実行可能に構成される。 The processor 501 is, for example, a CPU (Central Processing Unit). However, the processor 501 is not limited to a CPU. The processor 501 may be a GPU (Graphics Processing Unit). The processor 501 is, for example, a multi-core processor. The processor 501 may be a single-core processor. The processor 501 may be, for example, an ASIC (Application Specific Integrated Circuit), or a programmable logic device such as a gate array or an FPGA (Field Programmable Gate Array). In this case, the ASIC or the programmable logic device is configured to be capable of executing the same processing as the motor control program 510.
 I/F504は、回転センサ201,トルクセンサ202,センサ71,センサ81及び変速指示器90に接続されている。I/F504は、例えば入出力インタフェース又は通信インタフェースである。I/F504は、回転センサ201から出力されたモータ20の回転数の検出信号を受信する。I/F504は、トルクセンサ202から出力されたモータ20の出力トルクの検出信号を受信する。I/F504は、センサ71から出力されたブレーキペダル踏込量の検出信号を受信する。I/F504は、センサ81から出力されたアクセルペダル踏込量の検出信号を受信する。I/F504は、変速指示器90から出力された変速指示信号を受信する。 The I/F 504 is connected to the rotation sensor 201, the torque sensor 202, the sensor 71, the sensor 81, and the gear shift indicator 90. The I/F 504 is, for example, an input/output interface or a communication interface. The I/F 504 receives a detection signal of the rotation speed of the motor 20 output from the rotation sensor 201. The I/F 504 receives a detection signal of the output torque of the motor 20 output from the torque sensor 202. The I/F 504 receives a detection signal of the brake pedal depression amount output from the sensor 71. The I/F 504 receives a detection signal of the accelerator pedal depression amount output from the sensor 81. The I/F 504 receives a gear shift indicator signal output from the gear shift indicator 90.
[1-2.巻線切替装置の構成]
 図3は、第1実施形態に係る巻線切替装置の構成の一例を示す回路図である。モータ20は、複数の巻線21u,22u,21v,22v,21w,22wを含む。巻線21u,22uはU相に対応し、巻線21v,22vはV相に対応し、巻線21w,22wはW相に対応する。ただし、各相の巻線数は2つに限られず、3以上であってもよい。巻線22u,22v,22wは、中性点23において接続されている。
[1-2. Configuration of the winding switching device]
3 is a circuit diagram showing an example of the configuration of the winding switching device according to the first embodiment. The motor 20 includes a plurality of windings 21u, 22u, 21v, 22v, 21w, and 22w. The windings 21u and 22u correspond to the U phase, the windings 21v and 22v correspond to the V phase, and the windings 21w and 22w correspond to the W phase. However, the number of windings for each phase is not limited to two, and may be three or more. The windings 22u, 22v, and 22w are connected at a neutral point 23.
 巻線切替装置100は、相毎に、巻線21u,22u,21v,22v,21w,22wの接続状態を、巻線2個直列接続状態と巻線1個接続状態との間で切り替える。巻線切替装置100は、制御回路103u,103v,103wと、切替回路104u,104v,104wとを含む。以下巻線2個直列状態を直列状態、巻線1個接続状態を単独状態と呼ぶ場合がある。 The winding switching device 100 switches the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w for each phase between a two windings connected in series state and a one winding connected state. The winding switching device 100 includes control circuits 103u, 103v, and 103w, and switching circuits 104u, 104v, and 104w. Hereinafter, the two windings connected in series state may be referred to as the series state, and the one winding connected state may be referred to as the single state.
 切替回路104u,104v,104wは、制御装置50からの制御にしたがって、巻線21u,22u,21v,22v,21w,22wの接続状態を直列状態と単独状態との間で切り替える。直列状態は第1接続状態の一例であり、単独状態は第2接続状態の一例である。 The switching circuits 104u, 104v, and 104w switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w between a series state and an independent state under control of the control device 50. The series state is an example of a first connection state, and the independent state is an example of a second connection state.
 以下、U相について、巻線切替装置100と、電力線35uと、モータ20との接続関係を代表して説明する。V相及びW相については同様であるので、説明を省略する。 Below, the connection relationship between the winding switching device 100, the power line 35u, and the motor 20 will be explained for the U phase. The same applies to the V and W phases, so the explanation will be omitted.
 電力線35uは、巻線21uの第1端子に接続されている。巻線21uの第2端子からは電力線212uが延びている。巻線22uの第1端子からは電力線221uが延びている。 The power line 35u is connected to a first terminal of the winding 21u. The power line 212u extends from a second terminal of the winding 21u. The power line 221u extends from a first terminal of the winding 22u.
 切替回路104uは、リレー111u及びリレー112uを含む。リレー111u及びリレー112uは、例えばメカニカル(電磁)リレーであるがこれに限られず半導体リレーであってもよい。リレーは入力側と出力側に分かれている。リレーは出力側には電流をオンまたはオフにコントロールするスイッチを含み、入力側に所定の制御信号が入力されることでスイッチがオン/オフにセットされる。メカニカルリレーの場合、例えば入力側は電磁コイルで構成される。出力側は可動切片及び固定切片を含むメカニカルなスイッチで構成される。可動切片及び固定切片はそれぞれ接点を有する。可動切片はばね等の弾性体により一の方向に引き寄せられ、電磁コイルによって他の方向に引き寄せられる。A接点リレーの場合、電磁コイルが可動切片を他の方向に引き寄せたときに接点が導通状態となるように構成される。半導体リレーの場合、例えば入力側は発光ダイオードで構成され、出力側は受光素子、MOSFET、IGBTで構成されている。 The switching circuit 104u includes a relay 111u and a relay 112u. The relay 111u and the relay 112u are, for example, mechanical (electromagnetic) relays, but are not limited to this and may be semiconductor relays. The relay is divided into an input side and an output side. The output side of the relay includes a switch that controls the current to be on or off, and the switch is set to on/off by inputting a predetermined control signal to the input side. In the case of a mechanical relay, for example, the input side is composed of an electromagnetic coil. The output side is composed of a mechanical switch including a movable segment and a fixed segment. The movable segment and the fixed segment each have a contact. The movable segment is attracted in one direction by an elastic body such as a spring, and is attracted in the other direction by the electromagnetic coil. In the case of an A-contact relay, the contact is configured to be in a conductive state when the electromagnetic coil attracts the movable segment in the other direction. In the case of a semiconductor relay, for example, the input side is composed of a light-emitting diode, and the output side is composed of a light-receiving element, a MOSFET, and an IGBT.
 電力線35uは、巻線切替装置100の内部に引き込まれる。巻線切替装置100内において、電力線35uは中間点で分岐し、リレー111uの第1端子に接続されている。リレー111uの第2端子は、リレー112uの第1端子に接続されている。電力線212u,221u,222uは、モータ20から延び、巻線切替装置100の内部に引き込まれている。リレー111uの第2端子とリレー112uの第1端子の間の接続点には、巻線22uから延びる電力線221uが接続されている。リレー112uの第2端子は、巻線21uから延びる電力線212uが接続されている。 The power line 35u is drawn into the winding switching device 100. Inside the winding switching device 100, the power line 35u branches at a midpoint and is connected to a first terminal of a relay 111u. The second terminal of the relay 111u is connected to a first terminal of a relay 112u. The power lines 212u, 221u, and 222u extend from the motor 20 and are drawn into the winding switching device 100. The power line 221u extending from the winding 22u is connected to the connection point between the second terminal of the relay 111u and the first terminal of the relay 112u. The power line 212u extending from the winding 21u is connected to the second terminal of the relay 112u.
 リレー111uがオフ状態であり、リレー112uがオン状態である場合、巻線21u及び巻線22uは直列状態である。リレー111uがオン状態であり、リレー112uがオフ状態である場合、巻線21uは単独状態である。 When relay 111u is in the off state and relay 112u is in the on state, winding 21u and winding 22u are in a series state. When relay 111u is in the on state and relay 112u is in the off state, winding 21u is in an isolated state.
 リレー112u及びリレー111uの入力側(電磁コイル側)のそれぞれには、制御回路103uから延びる信号線が接続されている。制御回路103uは制御装置50から延びる信号線が接続されている。信号線は巻線の接続状態をいずれにするかを示す指示を通信する。この信号を切替指示という場合がある。信号線は例えばLOWレベルのときには直列状態を指示することを表し、HIGHレベルのときのときには単独状態を指示することを表している。あるいは信号線介してデータ通信を行い、いずれのリレーをオンあるいはオフにセットするかを表す情報を送受信してもよい。 A signal line extending from the control circuit 103u is connected to each of the input sides (electromagnetic coil side) of the relay 112u and the relay 111u. The control circuit 103u is connected to a signal line extending from the control device 50. The signal line communicates instructions indicating which connection state the windings should be in. This signal is sometimes called a switching instruction. For example, a LOW level of the signal line indicates a series state, and a HIGH level indicates a single state. Alternatively, data communication may be performed via the signal line to send and receive information indicating which relay to set on or off.
 制御回路103uは、リレー112u及びリレー111uの入力側に制御信号を個別に印加することにより、リレー112u及びリレー111uをオン/オフ制御する。具体的には、制御回路103uは、制御装置50から巻線21u,22uの接続状態の直列状態から単独状態への切替指示を受信した場合に、リレー111uをオン状態にセットし、リレー112uをオフ状態にセットする。制御回路103uは、制御装置50から巻線21u,22uの接続状態を直列状態から単独状態への切替指示を受信した場合に、リレー111uをオフ状態にセットし、リレー112uをオン状態にセットする。 The control circuit 103u controls the on/off of the relays 112u and 111u by applying control signals to the input sides of the relays 112u and 111u individually. Specifically, when the control circuit 103u receives an instruction from the control device 50 to switch the connection state of the windings 21u, 22u from a series state to an independent state, the control circuit 103u sets the relay 111u to an on state and the relay 112u to an off state. When the control circuit 103u receives an instruction from the control device 50 to switch the connection state of the windings 21u, 22u from a series state to an independent state, the control circuit 103u sets the relay 111u to an off state and the relay 112u to an on state.
 制御回路103uは、例えば、複数の論理回路(AND回路、NOT回路、ラッチ回路等)によって構成されている。他の例では、制御回路103uは、プロセッサによって構成されている。例えば、制御回路103uは、1チップマイクロコンピュータによって構成されている。制御回路103uは、ASIC、FPGA等のプログラマブルロジックデバイスによって構成されていてもよい。 The control circuit 103u is, for example, configured with multiple logic circuits (AND circuits, NOT circuits, latch circuits, etc.). In another example, the control circuit 103u is configured with a processor. For example, the control circuit 103u is configured with a one-chip microcomputer. The control circuit 103u may also be configured with a programmable logic device such as an ASIC or FPGA.
 測定装置26が例えば巻線切替装置100とモータ20とを接続する電力線に設けられている。測定装置26は例えば相電流センサ及びリレー電流センサを含む。相電流センサ261uが電力線221uに設けられ、リレー電流センサ262uが電力線212uに設けられている。相電流センサ261uは巻線21u及び巻線22uが直列状態及び単独状態のときのU相を流れる電流を測定する。以下相電流センサが測定する電流を相電流と呼ぶ場合がある。相電流センサ261uは測定した電流の値を示す信号あるいは情報を制御装置50へ送る。 The measuring device 26 is provided, for example, on the power line connecting the winding switching device 100 and the motor 20. The measuring device 26 includes, for example, a phase current sensor and a relay current sensor. The phase current sensor 261u is provided on the power line 221u, and the relay current sensor 262u is provided on the power line 212u. The phase current sensor 261u measures the current flowing through the U phase when the windings 21u and 22u are in series and alone. Hereinafter, the current measured by the phase current sensor may be referred to as the phase current. The phase current sensor 261u sends a signal or information indicating the value of the measured current to the control device 50.
 リレー電流センサ262uはリレー112uの第2端子接続された電力線212uを流れる電流を測定する。巻線21u,22uが接続状態を直列状態から単独状態へ切り替えられたときには、リレー電流センサ262uはオフにセットされるリレー112uが遮断しようとする電力線212uの電流を測定する。以下リレー電流センサが測定する電流をリレー電流と呼ぶ場合がある。リレー電流センサ262uは測定した電流の値を示す信号あるいは情報を制御装置50へ送る。 The relay current sensor 262u measures the current flowing through the power line 212u connected to the second terminal of the relay 112u. When the connection state of the windings 21u, 22u is switched from a series state to an independent state, the relay current sensor 262u measures the current of the power line 212u that the relay 112u, which is set to off, is attempting to cut off. Hereinafter, the current measured by the relay current sensor may be referred to as the relay current. The relay current sensor 262u sends a signal or information indicating the value of the measured current to the control device 50.
 同様にV相にも相電流センサ261vが電力線221vに設けられ、リレー電流センサ262vが電力線212vに設けられている。W相にも相電流センサ261wが電力線221wに設けられ、リレー電流センサ262wが電力線212wに設けられている。なお、測定装置26が、巻線切替装置100とモータ20とを接続する電力線に設けられている例で説明したが、測定装置26は巻線切替装置100内に設けられてもよいし、モータ20内に設けられてもよい。 Similarly, for the V phase, a phase current sensor 261v is provided on the power line 221v, and a relay current sensor 262v is provided on the power line 212v. For the W phase, a phase current sensor 261w is provided on the power line 221w, and a relay current sensor 262w is provided on the power line 212w. Note that, although an example has been described in which the measuring device 26 is provided on the power line connecting the winding switching device 100 and the motor 20, the measuring device 26 may be provided in the winding switching device 100 or in the motor 20.
[1-3.制御装置の機能]
 図1に戻り、制御装置50の機能について説明する。制御装置50は、巻線切替部511、測定部512、及び異常検出部513の機能を有する。プロセッサ501がモータ制御プログラム510を実行することにより、巻線切替部511、測定部512、及び異常検出部513の各機能が実現される。
[1-3. Functions of the control device]
Returning to Fig. 1, the functions of the control device 50 will be described. The control device 50 has the functions of a winding switching unit 511, a measurement unit 512, and an abnormality detection unit 513. The processor 501 executes the motor control program 510 to realize each of the functions of the winding switching unit 511, the measurement unit 512, and the abnormality detection unit 513.
 [1-3-1.巻線切替部]
 巻線切替部は、各相の固定子に複数の巻線を含む交流モータの、複数の巻線の接続状態を切り替える。また、巻線切替部は、複数のリレーにより複数の巻線の接続状態を切り替える。複数のリレーの内少なくとも1つは、第1接続状態のときにオンにセットされ、第2接続状態のときにオフにセットされるリレーである。
[1-3-1. Winding switching section]
The winding switching unit switches the connection states of the windings of an AC motor including a stator for each phase. The winding switching unit also switches the connection states of the windings by a plurality of relays. At least one of the plurality of relays is set to on in a first connection state and set to off in a second connection state.
 具体的には、巻線切替部511は、相毎に、巻線21u,22u,21v,22v,21w,22wの接続状態を、2個の巻線が直列に接続された状態と1個の巻線が接続された状態との間で切り替える。巻線切替装置100は、制御回路103u,103v,103wと、切替回路104u,104v,104wとを含む。巻線切替部511は、切替回路104u,104v,104wに、巻線21u,22u,21v,22v,21w,22wの接続状態を直列状態と単独状態との間で切り替えさせる。具体的には、巻線切替部511は切替指示を制御回路103u,103v,103wへ送信する。切替指示は例えばLOWレベルのときには直列状態を指示することを表し、HIGHレベルのときのときには単独状態を指示することを表している。 Specifically, the winding switching unit 511 switches the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w for each phase between a state in which two windings are connected in series and a state in which one winding is connected. The winding switching device 100 includes control circuits 103u, 103v, and 103w and switching circuits 104u, 104v, and 104w. The winding switching unit 511 causes the switching circuits 104u, 104v, and 104w to switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w between a series state and a single state. Specifically, the winding switching unit 511 transmits a switching instruction to the control circuits 103u, 103v, and 103w. For example, a low level of the switching command indicates a series state, and a high level indicates a single state.
 [1-3-2.測定部]
 測定部512は交流モータの回転に関する物理量を測定する。モータの回転に関する物理量としては例えばモータ20の各相を流れる電流である。測定部512は電流センサを含み、電流センサにより各相を流れる電流を測定する。そして電流センサは、前記各相の固定子を流れる相電流を測定する、具体的にはU相においては、相電流センサ261uが電力線221uを流れる電流を測定することで、測定部512はU相の固定子を流れる相電流を測定する。
[1-3-2. Measuring part]
The measurement unit 512 measures a physical quantity related to the rotation of the AC motor. An example of the physical quantity related to the rotation of the motor is the current flowing through each phase of the motor 20. The measurement unit 512 includes a current sensor, and the current sensor measures the current flowing through each phase. The current sensor measures the phase current flowing through the stator of each phase. Specifically, in the U phase, the phase current sensor 261u measures the current flowing through the power line 221u. 512 measures the phase current flowing through the U-phase stator.
 また、電流センサは、リレーのスイッチを流れる電流を測定する。具体的にはU相においては、リレー電流センサ262uが電力線212uを流れる電流を測定することで、測定部512はU相のリレー電流を測定する。 The current sensor also measures the current flowing through the relay switch. Specifically, in the U phase, the relay current sensor 262u measures the current flowing through the power line 212u, and the measurement unit 512 measures the relay current of the U phase.
 そして、相電流センサ261u、リレー電流センサ262uは測定した電流の値を示す信号あるいは情報を制御装置50へ送る。制御装置50の測定部512は測定された電流の値を示す信号あるいは情報を受け取り、交流モータの回転に関する物理量を測定する。V相、W相についても同様である。 Then, the phase current sensor 261u and the relay current sensor 262u send a signal or information indicating the measured current value to the control device 50. The measurement unit 512 of the control device 50 receives the signal or information indicating the measured current value and measures a physical quantity related to the rotation of the AC motor. The same is true for the V phase and the W phase.
 [1-3-3.異常検出部]
 異常検出部513は、測定部512によって測定された物理量に基づき交流モータの各相を流れる電流が平衡しているか否かを判定する。モータ20の各相を流れる電流が平衡していないとはU相、V相、W相を流れる電流の平衡相互に異なる状態のことである。モータ20の各相を流れる電流が平衡していないことを不平衡状態といい、モータ20の各相を流れる電流が平衡していることを平衡状態いう場合がある。
[1-3-3. Anomaly detection unit]
The abnormality detection unit 513 judges whether or not the currents flowing through each phase of the AC motor are balanced based on the physical quantities measured by the measurement unit 512. The currents flowing through each phase of the motor 20 are not balanced means that the balance of the currents flowing through the U phase, V phase, and W phase is different from one another. The state in which the currents flowing through each phase of the motor 20 are not balanced is sometimes referred to as an unbalanced state, and the state in which the currents flowing through each phase of the motor 20 are balanced is sometimes referred to as a balanced state.
 [モータの不平衡状態]
 図4はモータ20の不平衡の状態の例を説明するための図である。説明に必要なU相の巻線21u、22u、リレー111u、112uを図示している。巻線切替装置100が巻線の接続状態を切り替える前の状態は単独状態であるとする。このときリレー111uはオンにセットされ、リレー112uはオフにセットされる(図4.単独状態)。次に巻線切替装置100が巻線の接続状態を単独状態から直列状態に切り替えたときには、リレー111uはオフにセットされ、リレーが正常であればリレー112uはオンにセットされる(図4.直列状態)。
Motor Unbalance
4 is a diagram for explaining an example of an unbalanced state of the motor 20. The U-phase windings 21u, 22u and relays 111u, 112u necessary for the explanation are shown. The state before the winding switching device 100 switches the winding connection state is assumed to be an isolated state. At this time, the relay 111u is set to on, and the relay 112u is set to off (FIG. 4. Isolated state). Next, when the winding switching device 100 switches the winding connection state from the isolated state to the series state, the relay 111u is set to off, and if the relays are normal, the relay 112u is set to on (FIG. 4. Series state).
 しかし例えばリレー111uが故障して固着し、オンに固定さていた場合には、リレー112uはオンにセットされるが、リレー111uはオフにセットされずオン状態が継続する(図4.異常状態)。このため巻線21uの両端は短絡する。そしてモータ20の回転子は回転しているため、巻線21uは発電機として機能し、巻線21uに異常な大電流が流れる。異常検出部513はこの異常な大電流を基づきモータ20は不平衡の状態であると判定する。 However, for example, if relay 111u fails and sticks, remaining on, relay 112u is set on, but relay 111u is not set off and remains on (Figure 4: Abnormal state). This causes both ends of winding 21u to be short-circuited. Because the rotor of motor 20 is rotating, winding 21u functions as a generator, and an abnormally large current flows through winding 21u. Based on this abnormally large current, abnormality detection unit 513 determines that motor 20 is in an unbalanced state.
 図5はリレーの故障の類型を示す図である。リレーが故障するパターンとしては、出力側の接点が固着等して出力側の接点が接続状態(オンに固定)のままとなる場合とリレーの電磁コイルが断線等して出力側の接点が開放状態(オフに固定)のままとなる場合が考えられる。図5においてオフは「0」で、オンは「1」で表わされている。図5は巻線の接続状態が単独状態から直列状態に切り替えられた場合と巻線の接続状態が直列状態から単独状態に切り替えられた場合とについて示している。なお図5はリレー電流の状態及びd、q軸電流の状態についても示している。 Figure 5 shows types of relay failures. Possible relay failure patterns include when the output contacts become stuck and remain connected (fixed on), and when the relay's electromagnetic coil becomes disconnected and the output contacts remain open (fixed off). In Figure 5, off is represented by "0" and on by "1". Figure 5 shows when the winding connection state is switched from an isolated state to a series state, and when the winding connection state is switched from a series state to an isolated state. Figure 5 also shows the state of the relay current and the states of the d- and q-axis currents.
 巻線の接続状態が単独状態から直列状態に切り替えられた場合には、故障の類型としては、(1)リレー111uがオンに固定され、リレー111u、112uが共にオンにセットされ、巻線21uが短絡する場合、(2)リレー112uがオフに固定され、リレー111u、112uが共にオフにセットされ、U相の巻線21u、22uに電流が流れなくなった場合、(3)リレー111uがオンに固定され、リレー112uがオフに固定され、V相、W相の巻線は直列状態に切り替わっているのに、U相は単独状態のままである場合がある。 When the winding connection state is switched from an isolated state to a series state, the following types of faults may occur: (1) relay 111u is fixed on, relays 111u and 112u are both set on, and winding 21u is short-circuited; (2) relay 112u is fixed off, relays 111u and 112u are both set off, and no current flows through U-phase windings 21u and 22u; or (3) relay 111u is fixed on, relay 112u is fixed off, and although the V-phase and W-phase windings have switched to a series state, U-phase remains in an isolated state.
 巻線の接続状態が直列状態から単独状態に切り替えられた場合には、故障の類型としては、(1)リレー112uがオンに固定され、リレー111u、112uが共にオンにセットされ、巻線21uが短絡する場合、(2)リレー111uがオフに固定され、リレー111u、112uが共にオフにセットされ、U相の巻線21u、22uに電流が流れなくなった場合、(3)リレー111uがオフに固定され、リレー112uがオンに固定され、V相、W相の巻線は単独状態に切り替わっているのに、U相は直列状態のままである場合がある。 When the winding connection state is switched from a series state to an independent state, the following types of faults may occur: (1) relay 112u is fixed on, relays 111u and 112u are both set on, and winding 21u is short-circuited; (2) relay 111u is fixed off, relays 111u and 112u are both set off, and no current flows through U-phase windings 21u and 22u; or (3) relay 111u is fixed off, relay 112u is fixed on, and although the V-phase and W-phase windings have been switched to an independent state, the U-phase remains in a series state.
 図6、図7、図8は巻線の接続状態を変えるいずれかのリレーが故障し、モータ20が不平衡の状態となったときの相電流、リレー電流及びd、q軸電流をシミュレーションした例である。いずれも時間軸timesの0.015sのタイミングで巻線の接続状態が切替えられている。時間軸0sから0.015sの期間において各電流は正常な状態を示しているが、時間軸0.015s以降においていずれかの電流が異常な状態となっている。 Figures 6, 7, and 8 are examples of simulations of the phase currents, relay currents, and d- and q-axis currents when one of the relays that change the winding connection state fails and the motor 20 becomes unbalanced. In all cases, the winding connection state is switched at 0.015 s on the time axis. In the period from 0 s to 0.015 s on the time axis, each current shows a normal state, but after 0.015 s on the time axis, one of the currents becomes abnormal.
 リレーが故障しモータ20が不平衡となったときには、リレー電流、相電流、及びd、q軸電流のいずれかが異常な値となる。異常検出部513はこの異常な値を捉えてモータ20が不平衡であると判定する。 When the relay fails and the motor 20 becomes unbalanced, any of the relay current, phase current, and d-axis and q-axis currents will have abnormal values. The abnormality detection unit 513 detects this abnormal value and determines that the motor 20 is unbalanced.
 [相電流またはリレー電流による場合]
 図6は接続状態が単独状態から直列状態となったときにU相のリレー112u、111uが共にオン状態となった場合である。この場合には上述したように巻線21uの両端は短絡しモータ20の回転子は回転しているため、巻線21uは発電機として機能し、巻線21uを循環する大電流が流れる。この大電流は正常時に流れるリレー電流に比して大きな電流である。正常時には巻線21uと巻線22uとは直列に接続されているので、リレー電流及び相電流は略同じ電流が流れる。
[In the case of phase current or relay current]
6 shows a case where the U-phase relays 112u and 111u are both turned on when the connection state changes from the single state to the series state. In this case, as described above, both ends of the winding 21u are short-circuited and the rotor of the motor 20 is rotating, so the winding 21u functions as a generator and a large current circulates through the winding 21u. This large current is larger than the relay current that flows under normal conditions. Under normal conditions, the windings 21u and 22u are connected in series, so the relay current and the phase current flow approximately equal to each other.
 図7は接続状態が単独状態から直列状態となったときにU相のリレー112u、111uが共にオフ状態となった場合である。この場合にはU相の相電流、リレー電流が流れない。一方、V相、W相には正常時に流れる電流に比して大きな電流が流れる。 Figure 7 shows the case where the U-phase relays 112u and 111u are both turned off when the connection state changes from an isolated state to a series state. In this case, no phase current or relay current flows through the U-phase. On the other hand, a current larger than the current that flows normally flows through the V-phase and W-phase.
 異常検出部513は、測定部512が測定したこの大きな電流を示す信号に基づき、モータ20の各相を流れる電流が平衡状態であるか否かを判定する。具体的には、異常検出部513は、電流センサによって測定された電流が閾値を超えたときに、各相を流れる電流が平衡していないと判定する。 The abnormality detection unit 513 determines whether the currents flowing through each phase of the motor 20 are in a balanced state based on the signal indicating this large current measured by the measurement unit 512. Specifically, the abnormality detection unit 513 determines that the currents flowing through each phase are not in balance when the currents measured by the current sensors exceed a threshold value.
 例えば、相電流センサ261vまたは相電流センサ261wが測定した相電流が閾値を超えていた場合に、またはリレー電流センサ262vまたはリレー電流センサ262wが測定したリレー電流が閾値超えていた場合に、モータ20が不平衡状態であると判定する。なお、U相には正常時に流れる電流が流れていないので、異常検出部513はこの電流に基づきモータ20は不平衡状態であると判定してもよい。 For example, if the phase current measured by phase current sensor 261v or phase current sensor 261w exceeds the threshold, or if the relay current measured by relay current sensor 262v or relay current sensor 262w exceeds the threshold, it is determined that motor 20 is in an unbalanced state. Note that since no current flows through the U phase under normal conditions, the abnormality detection unit 513 may determine that motor 20 is in an unbalanced state based on this current.
 また、異常検出部513は、モータ20に要求される出力に基づき閾値を変更してもよい。要求されるモータ出力に応じて正常時に流れる電流も増加するからである。これによりモータ20の平衡状態を適切に判定することができる。モータ20は、車両の車輪を駆動する駆動モータである場合には、要求される出力は、例えばアクセル開度、車両が要求する速度、車両が要求するトルクに基づき決定される。 The abnormality detection unit 513 may also change the threshold value based on the output required of the motor 20. This is because the current that flows normally increases according to the required motor output. This allows the balanced state of the motor 20 to be appropriately determined. If the motor 20 is a drive motor that drives the wheels of the vehicle, the required output is determined based on, for example, the accelerator opening, the speed required by the vehicle, and the torque required by the vehicle.
 以上により、異常検出部513は、各相を流れる電流が平衡しているか否かを判定する。 In this way, the anomaly detection unit 513 determines whether the currents flowing through each phase are balanced.
 [d、q軸電流による場合]
 図8は接続状態が単独状態から直列状態となったときにU相のリレー111uオン、リレー112uがオフ状態となった場合である。この状態はV相、W相は直列状態であるが、U相のみ単独状態である。この場合にはU相、V相、W相の相電流は、正常時とほぼ同じ電流が流れる。このため相電流だけではモータ20が平衡した状態であるか否かは判定が難しい。一方d、q軸電流には正常時とは明確に異なる電流が流れる。これにより、U相、V相、W相を流れる相電流から計算により求められるd、q軸電流に基づき不平衡状態を判定し得る。
[In the case of d- and q-axis currents]
8 shows a case where the U-phase relay 111u is turned on and the relay 112u is turned off when the connection state changes from the isolated state to the series state. In this state, the V-phase and W-phase are in series, but only the U-phase is in an isolated state. In this case, the phase currents of the U-phase, V-phase, and W-phase flow substantially the same as in a normal state. For this reason, it is difficult to determine whether the motor 20 is in a balanced state based on the phase currents alone. On the other hand, currents flowing through the d- and q-axis are clearly different from those flowing in a normal state. As a result, an unbalanced state can be determined based on the d- and q-axis currents calculated from the phase currents flowing through the U-phase, V-phase, and W-phase.
 具体的には異常検出部513は、d軸電流の目標値である目標d軸電流及びq軸電流の目標値である目標q軸電流と、d軸電流の測定値である測定d軸電流及びq軸電流の測定値である測定q軸電流とを比較し、目標d軸電流と測定d軸電流との差が第1閾値以上である第1条件、及び目標q軸電流と測定q軸電流との差が第2閾値以上である第2条件の少なくとも1つが成立するときに、各相を流れる電流が平衡していないと判定する。第1閾値と第2閾値とは同じ値であってもよいし、異なっていてもよい。 Specifically, the abnormality detection unit 513 compares the target d-axis current, which is the target value of the d-axis current, and the target q-axis current, which is the target value of the q-axis current, with the measured d-axis current, which is the measured value of the d-axis current, and the measured q-axis current, which is the measured value of the q-axis current, and determines that the currents flowing through each phase are not balanced when at least one of the following conditions is met: a first condition that the difference between the target d-axis current and the measured d-axis current is equal to or greater than a first threshold value, and a second condition that the difference between the target q-axis current and the measured q-axis current is equal to or greater than a second threshold value. The first threshold value and the second threshold value may be the same value or may be different values.
 測定部512が測定したU相、V相、W相の相電流に基づき計算により測定d電流及び測定q軸電流を求めた場合、突発的に閾値を超えるおそれがある。このため、第1条件が成立している期間、及び第2条件が成立している期間の少なくとも1つが、基準値超える場合に、各相を流れる電流が平衡していないと判定してもよい。d軸電流またはq軸電流が閾値を超える期間が所定の期間より長く続いた場合に、異常検出部513がモータ20が不平衡の状態であると判定することで、より適切にモータ20の平衡状態を判定することができる。 When the measured d-axis current and the measured q-axis current are calculated based on the phase currents of the U, V, and W phases measured by the measurement unit 512, there is a risk that the threshold value may be suddenly exceeded. For this reason, if at least one of the periods during which the first condition is satisfied and the period during which the second condition is satisfied exceeds a reference value, it may be determined that the currents flowing through each phase are not balanced. If the period during which the d-axis current or the q-axis current exceeds the threshold value continues for longer than a specified period, the abnormality detection unit 513 determines that the motor 20 is in an unbalanced state, thereby making it possible to more appropriately determine the balanced state of the motor 20.
 またモータ20の回転子の回転数に基づきに基準値を変更してもよい。d、q電流の変動は回転子の回転に対応して変動するので、モータ20の回転子の回転数が下がるとd、q軸電流はゆっくり変動する。このため所定の期間は、回転子の回転数が下がるにつれて長くすることが好ましい。これにより適切にモータ20の平衡状態を判定することができる。 The reference value may also be changed based on the rotation speed of the rotor of the motor 20. Since the d- and q-axis currents fluctuate in response to the rotation of the rotor, the d- and q-axis currents fluctuate slowly when the rotation speed of the rotor of the motor 20 decreases. For this reason, it is preferable to lengthen the specified period as the rotation speed of the rotor decreases. This allows the balanced state of the motor 20 to be appropriately determined.
 また、第1閾値、第2閾値は、例えばモータ20に要求される出力に応じて変更してもよい。要求されるモータ出力に応じて正常時に流れる電流も増加するからである。これによりモータ20の平衡状態を適切に判定することができる。モータ20は、車両の車輪を駆動する駆動モータである場合には、要求される出力は、例えばアクセル開度、車両が要求する速度、車両が要求するトルクに基づき決定さられる。 The first and second thresholds may be changed, for example, according to the output required of the motor 20. This is because the current that flows normally increases according to the required motor output. This allows the balanced state of the motor 20 to be appropriately determined. If the motor 20 is a drive motor that drives the wheels of a vehicle, the required output is determined based on, for example, the accelerator opening, the speed required by the vehicle, and the torque required by the vehicle.
 以上により、異常検出部513は、各相を流れる電流が平衡しているか否かを判定する。 In this way, the anomaly detection unit 513 determines whether the currents flowing through each phase are balanced.
[1-4.巻線切替システムの動作]
 次に、巻線切替装置100の動作について説明する。制御装置50は、プロセッサ501がモータ制御プログラム510を実行することにより、巻線切替処理を実行する。
[1-4. Operation of the Winding Switching System]
Next, a description will be given of the operation of the winding switching device 100. The control device 50 executes a winding switching process by the processor 501 executing the motor control program 510.
 図9は、第1実施形態に係る制御装置による巻線切替処理の一例を示すフローチャートである。 FIG. 9 is a flowchart showing an example of a winding switching process performed by the control device according to the first embodiment.
[1-4-1.リレーがオンに固定された場合]
 この場合例えば巻線切替処理の開始時点において、モータ20の巻線21u,22u,21v,22v,21w,22wが単独状態に接続されているとする。接続状態が単独状態にあるときにはリレー112u、112v、112wはオフにセットされ、リレー111u、111v、111wはオンにセットされる。このためリレー111u、112uの故障の態様によっては例えばリレー111uが固着した場合には、オンにセットされている点において正常時と変わりないので、モータ20が単独状態で動作する限りモータ20は正常に動作する。以下、V相、W相のリレー111v、111w、112v、112wは正常にオン/オフにセットできるものとする。
[1-4-1. When the relay is fixed on]
In this case, for example, at the start of the winding switching process, it is assumed that the windings 21u, 22u, 21v, 22v, 21w, and 22w of the motor 20 are connected in an isolated state. When the connection state is in an isolated state, the relays 112u, 112v, and 112w are set to off, and the relays 111u, 111v, and 111w are set to on. Therefore, depending on the type of failure of the relays 111u and 112u, for example, if the relay 111u is stuck, the relay is set to on, which is the same as in a normal state, so that the motor 20 operates normally as long as it operates in an isolated state. Hereinafter, it is assumed that the V-phase and W- phase relays 111v, 111w, 112v, and 112w can be set normally on/off.
 [ステップS101]
 まず巻線切替部511は、各相の固定子に複数の巻線を含む交流モータの、前記複数の巻線の接続状態を切り替える(ステップS101)。例えば、巻線切替部511は巻線の接続状態を単独状態から直列状態に切り替える。具体的には、巻線切替部511は制御回路103u、103v、103wに巻線21u,22u,21v,22v,21w,22wの接続状態を単独状態から直列状態に切り替える切替指示を送信する。接続状態を単独状態から直列状態に切り替える切替指示を受信した制御回路103uはリレー112uをオンにセットし、リレー111uをオフにセットする。同様に制御回路103vはリレー112vをオンにセットし、リレー111vをオフにセットする。制御回路103wはリレー112wをオンにセットし、リレー111wをオフにセットする。そしてステップS102に進む。
[Step S101]
First, the winding switching unit 511 switches the connection state of the multiple windings of an AC motor including multiple windings in a stator of each phase (step S101). For example, the winding switching unit 511 switches the connection state of the windings from an independent state to a series state. Specifically, the winding switching unit 511 transmits a switching instruction to the control circuits 103u, 103v, and 103w to switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w from an independent state to a series state. The control circuit 103u that has received the switching instruction to switch the connection state from an independent state to a series state sets the relay 112u on and the relay 111u off. Similarly, the control circuit 103v sets the relay 112v on and the relay 111v off. The control circuit 103w sets the relay 112w on and the relay 111w off. Then, the process proceeds to step S102.
 この例ではリレー111uが固着しているので、リレー111u、112uがオンにセットされる。このため巻線21uの両端は短絡され、図6に示したように巻線21uを循環する大きなリレー電流が流れることとなる。 In this example, relay 111u is stuck, so relays 111u and 112u are set to on. This causes both ends of winding 21u to be shorted, causing a large relay current to flow through winding 21u as shown in Figure 6.
 [ステップS102]
 次に測定部512は、交流モータの回転に関する物理量を測定する(ステップS102)。具体的には相電流センサ261uは相電流を測定し、相電流の値を示す信号を示す信号を制御装置50に送信する。リレー電流センサ262uはリレー電流を測定し、リレー電流の値を示す信号を制御装置50に送信する。この例ではリレー電流センサ262uは巻線21uを循環する大きな電流を測定し、この電流の値を示す信号を送信する。制御装置50がかかる信号を受信することで、測定部512はモータ20の回転に関する物理量である相電流及びリレー電流を測定する。そしてステップS103に進む。
[Step S102]
Next, the measurement unit 512 measures a physical quantity related to the rotation of the AC motor (step S102). Specifically, the phase current sensor 261u measures the phase current and transmits a signal indicating the value of the phase current to the control device 50. The relay current sensor 262u measures the relay current and transmits a signal indicating the value of the relay current to the control device 50. In this example, the relay current sensor 262u measures a large current circulating through the winding 21u and transmits a signal indicating the value of this current. When the control device 50 receives this signal, the measurement unit 512 measures the phase current and relay current, which are physical quantities related to the rotation of the motor 20. Then, the process proceeds to step S103.
 [ステップS103]
 次に異常検出部513は測定部512によって測定された物理量に基づきモータ20の各相を流れる電流が平衡しているか否かを判定する。具体的には異常検出部513は測定部512によって測定された相電流またはリレー電流と閾値とを比較する(ステップS103)。閾値を超えている場合には(ステップS103のYES)ステップS104へ進む。一方閾値を超えていない場合には(ステップS103のNO)ステップS105へ進む。
[Step S103]
Next, the abnormality detection unit 513 judges whether or not the currents flowing through each phase of the motor 20 are balanced based on the physical quantities measured by the measurement unit 512. Specifically, the abnormality detection unit 513 compares the phase currents or relay currents measured by the measurement unit 512 with a threshold value (step S103). If the threshold value is exceeded (YES in step S103), the process proceeds to step S104. On the other hand, if the threshold value is not exceeded (NO in step S103), the process proceeds to step S105.
 この例では巻線21uを循環する大きな電流の値を示す信号を制御装置50は受信する。制御装置50の異常検出部513は受信したリレー電流の値閾値と比較する。リレー電流の値は大きな電流の値を示しているので閾値を超え、異常検出部513はモータ20が不平衡状態であると判定する。 In this example, the control device 50 receives a signal indicating a large current value circulating through the winding 21u. The abnormality detection unit 513 of the control device 50 compares the received relay current value with a threshold value. Since the relay current value indicates a large current value, it exceeds the threshold value, and the abnormality detection unit 513 determines that the motor 20 is in an unbalanced state.
 [ステップS104]
 相電流またはリレー電流が閾値を超えている場合には、異常検出部513はモータ20の各相を流れる電流が平衡していないと判定する(ステップS104)。そして巻線切替処理を終了する。
[Step S104]
If the phase current or relay current exceeds the threshold value, the abnormality detection unit 513 determines that the currents flowing through the phases of the motor 20 are not balanced (step S104), and the winding switching process is terminated.
 [ステップS105]
 一方、相電流とリレー電流とが閾値を超えていない場合には、異常検出部513はモータ20の各相を流れる電流が平衡していると判定する(ステップS105)。そして巻線切替処理を終了する。
[Step S105]
On the other hand, if the phase current and the relay current do not exceed the threshold value, the abnormality detection unit 513 determines that the currents flowing through the phases of the motor 20 are balanced (step S105), and ends the winding switching process.
 以上により、モータの平衡状態を判定することができる。 The above allows the motor's equilibrium state to be determined.
 [1-4-2.リレーがオフに固定された場合]
 例えばリレー111uの電磁コイルが切断等してオフに固定されたとする。この場合には、巻線の接続状態が直列状態である限りモータ20は正常に動作する。直列状態の場合、リレー112uがオンにセットされ、リレー111uがオフにセットされるが、リレー111uに着目すれば故障時と正常時で差がないからである。初期状態として、巻線の接続状態は直列状態であるとする。
[1-4-2. When the relay is fixed at OFF]
For example, suppose that the electromagnetic coil of the relay 111u is disconnected and fixed to OFF. In this case, the motor 20 operates normally as long as the windings are connected in series. In the case of a series connection, the relay 112u is set to ON and the relay 111u is set to OFF, but if we focus on the relay 111u, there is no difference between a fault and a normal state. As an initial state, the windings are connected in series.
 [ステップS101]
 次に、巻線切替部511は巻線の接続状態を直列状態から単独状態に切り替えたとする(ステップS101)。リレー112uはオフにセットされ、リレー111uはオンにセットされる。リレー112u、111uが正常であればU相の巻線22uには所定の電流が流れる。しかしリレー111uはオフに固定されているので、U相のリレー112u、111uはともにオフにセットされ、U相の巻線には電流は流れない。一方図7に示すようにV相、W相の巻線22v、22wには大きな電流が流れる。
[Step S101]
Next, it is assumed that the winding switching unit 511 switches the connection state of the windings from a series state to an independent state (step S101). The relay 112u is set to OFF, and the relay 111u is set to ON. If the relays 112u and 111u are normal, a predetermined current flows through the U-phase winding 22u. However, since the relay 111u is fixed to OFF, the U-phase relays 112u and 111u are both set to OFF, and no current flows through the U-phase winding. On the other hand, as shown in FIG. 7, a large current flows through the V-phase and W- phase windings 22v and 22w.
 [ステップS102]
 次に、測定部512は相電流センサ261u、261v、261wによりモータ20のU相、V相、W相の相電流を測定する。具体的には、相電流センサ261uは電流の値がゼロであることを示す信号を制御装置50に送信する。相電流センサ261v、261wは、V相、W相の大きな電流の値を示す信号を制御装置50に送信する。制御装置50がかかる信号を受信することで、測定部512は相電流を測定する。そしてステップS103に進む。
[Step S102]
Next, the measurement unit 512 measures the phase currents of the U-phase, V-phase, and W-phase of the motor 20 using the phase current sensors 261u, 261v, and 261w. Specifically, the phase current sensor 261u transmits a signal indicating that the current value is zero to the control device 50. The phase current sensors 261v and 261w transmit signals indicating large current values of the V-phase and W-phase to the control device 50. When the control device 50 receives such signals, the measurement unit 512 measures the phase currents. Then, the process proceeds to step S103.
 [ステップS103]
 次に、異常検出部513は、測定部512によって測定された物理量に基づきモータ20の各相を流れる電流が平衡しているか否かを判定する。V相の相電流の値は大きな電流を示しているので閾値を超え(ステップS103のYES)、異常検出部513はモータ20が不平衡の状態であると判定する(ステップS104)。あるいは異常検出部513はW相の相電流に基づき判定してもよい。あるいはU相の相電流に基づき判定してもよい。上述したようにU相の相電流はゼロであるので、相電流センサ261uが出力する信号が示す電流の値は閾値を超え、異常検出部513はモータ20が不平衡の状態であると判定する。一方閾値を超えていない場合(ステップS103のNO)にはモータ20が平衡状態であると判定する(ステップS105)。
[Step S103]
Next, the abnormality detection unit 513 judges whether the currents flowing through each phase of the motor 20 are balanced based on the physical quantities measured by the measurement unit 512. The value of the phase current of the V phase indicates a large current and therefore exceeds the threshold (YES in step S103), and the abnormality detection unit 513 judges that the motor 20 is in an unbalanced state (step S104). Alternatively, the abnormality detection unit 513 may make the judgment based on the phase current of the W phase. Alternatively, the abnormality detection unit 513 may make the judgment based on the phase current of the U phase. As described above, since the phase current of the U phase is zero, the current value indicated by the signal output by the phase current sensor 261u exceeds the threshold, and the abnormality detection unit 513 judges that the motor 20 is in an unbalanced state. On the other hand, if the current does not exceed the threshold (NO in step S103), the abnormality detection unit 513 judges that the motor 20 is in a balanced state (step S105).
 [1-4-3.2個のリレーが動作しなくなった場合]
 この場合例えばリレー111uは固着してオンに固定されたとする。加えてリレー112uの電磁コイルが切断してオフに固定されたとする。この場合には、巻線の接続状態が単独状態である限りモータ20は正常に動作する。単独状態の場合リレー111uがオンにセットされ、リレー112uがオフにセットされるが、故障時と正常時で差がないからである。初期状態として、巻線の接続状態は単独状態であるとする。
[1-4-3. When two relays fail]
In this case, for example, it is assumed that the relay 111u is stuck and fixed to ON. In addition, it is assumed that the electromagnetic coil of the relay 112u is disconnected and fixed to OFF. In this case, the motor 20 operates normally as long as the connection state of the windings is in the isolated state. In the isolated state, the relay 111u is set to ON and the relay 112u is set to OFF, because there is no difference between the normal state and the failed state. As the initial state, it is assumed that the connection state of the windings is in the isolated state.
 [ステップS101]
 次に巻線切替部511は巻線の接続状態を単独状態から直列状態に切り替える(ステップS101)。制御回路103uはリレー112uをオンにセットし、リレー111uをオフにセットしようとする。しかしリレー112uがオフに固定され、リレー111uがオンに固定されているので、U相の巻線の接続状態は直列状態に切り替わらず単独状態が維持される。一方V相、W相の巻線の接続状態は直列状態に切り替えられる。このような接続状態では図8に示すように相電流あるいはリレー電流は顕著に大きな電流とはならない。一方d、q軸電流に着目すると顕著に大きく変動するようになる。そしてステップS102へ進む。
[Step S101]
Next, the winding switching unit 511 switches the connection state of the windings from the single state to the series state (step S101). The control circuit 103u sets the relay 112u on and attempts to set the relay 111u off. However, since the relay 112u is fixed off and the relay 111u is fixed on, the connection state of the U-phase winding does not switch to the series state and remains in the single state. Meanwhile, the connection states of the V-phase and W-phase windings are switched to the series state. In this connection state, as shown in FIG. 8, the phase current or relay current does not become significantly large. Meanwhile, when attention is paid to the d-axis and q-axis currents, they fluctuate significantly. Then, the process proceeds to step S102.
 [ステップS102]
 次に測定部512は相電流センサ261u、261v、261wによりモータ20のU相、V相、W相の相電流を測定し、測定した相電流を示す信号を出力する。制御装置50がかかる信号を受信することで、測定部512は相電流を測定する(ステップS102)。そしてステップS103に進む。
[Step S102]
Next, the measurement unit 512 measures the phase currents of the U-phase, V-phase, and W-phase of the motor 20 using the phase current sensors 261u, 261v, and 261w, and outputs a signal indicating the measured phase currents. When the control device 50 receives this signal, the measurement unit 512 measures the phase currents (step S102). Then, the process proceeds to step S103.
 [ステップS103からステップS105]
 次に異常検出部513は、d軸電流の目標値である目標d軸電流及びq軸電流の目標値である目標q軸電流と、d軸電流の測定値である測定d軸電流及びq軸電流の測定値である測定q軸電流とを比較し、目標d軸電流と測定d軸電流との差が第1閾値以上である第1条件、及び目標q軸電流と測定q軸電流との差が第2閾値以上である第2条件の少なくとも1つが成立するときに(ステップS103のYES)、各相を流れる電流が平衡していないと判定する(ステップS104)。一方閾値を超えていない場合(ステップS103のNO)にはモータ20が平衡状態であると判定する(ステップS105)。
[Steps S103 to S105]
Next, the abnormality detection unit 513 compares the target d-axis current, which is the target value of the d-axis current, and the target q-axis current, which is the target value of the q-axis current, with the measured d-axis current, which is the measured value of the d-axis current, and the measured q-axis current, which is the measured value of the q-axis current, and determines that the currents flowing through each phase are not balanced (step S104) when at least one of a first condition that the difference between the target d-axis current and the measured d-axis current is equal to or greater than a first threshold value and a second condition that the difference between the target q-axis current and the measured q-axis current is equal to or greater than a second threshold value is satisfied (YES in step S103).On the other hand, when the threshold values are not exceeded (NO in step S103), the abnormality detection unit 513 determines that the motor 20 is in a balanced state (step S105).
 具体的には、制御装置50は相電流センサ261u、261v、261wからU相、V相、W相の相電流を示す信号を受信し、受信したU相、V相、W相の相電流に基づき計算により測定d電流及び測定q軸電流求める。そして目標d軸電流と測定d軸電流との差、及び目標q軸電流と測定q軸電流との差を求め、d軸電流の差が第1閾値を超える場合、及びq軸電流の差が第2閾値を超える場合の少なくとも一方が成立する場合(ステップS103のYES)には異常検出部513はモータ20が不平衡状態であると判定する(ステップS104)。第1条件及び第2条件の両方が成立しない場合(ステップS103のNO)には異常検出部513はモータ20が平衡状態であると判定する(ステップS105)。 Specifically, the control device 50 receives signals indicating the phase currents of the U, V, and W phases from the phase current sensors 261u, 261v, and 261w, and calculates the measured d-axis current and the measured q-axis current based on the received phase currents of the U, V, and W phases. Then, the difference between the target d-axis current and the measured d-axis current, and the difference between the target q-axis current and the measured q-axis current are calculated. If the difference in the d-axis current exceeds the first threshold value, or if the difference in the q-axis current exceeds the second threshold value, at least one of these conditions is satisfied (YES in step S103), the abnormality detection unit 513 determines that the motor 20 is in an unbalanced state (step S104). If neither the first condition nor the second condition is satisfied (NO in step S103), the abnormality detection unit 513 determines that the motor 20 is in a balanced state (step S105).
 また、異常検出部513は、第1条件が成立している期間、及び第2条件が成立している期間の少なくとも1つが、基準値超える場合に、前記各相を流れる電流が平衡していないと判定してもよい。 The abnormality detection unit 513 may also determine that the currents flowing through the phases are not balanced if at least one of the period during which the first condition is satisfied and the period during which the second condition is satisfied exceeds a reference value.
 具体的には、第1に、異常検出部513は、目標d軸電流と測定d軸電流との差が第1閾値以上である期間が所定の期間より長いか否かを判定する。第2に、異常検出部513は、目標q軸電流と測定q軸電流との差が第2閾値以上である期間が所定の期間より長いか否かを判定する。そして、第1の判定及び第2の判定の少なくとも一方が成立(ステップS103のYES)するとき、異常検出部513は不平衡状態であると判定する(ステップS104)。一方、第1の判定及び第2の判定のいずれもが成立していない場合(ステップS103のNO)にはモータ20が平衡状態であると判定する(ステップS105) Specifically, first, the abnormality detection unit 513 judges whether the period during which the difference between the target d-axis current and the measured d-axis current is equal to or greater than a first threshold is longer than a predetermined period. Second, the abnormality detection unit 513 judges whether the period during which the difference between the target q-axis current and the measured q-axis current is equal to or greater than a second threshold is longer than a predetermined period. Then, when at least one of the first and second judgments is satisfied (YES in step S103), the abnormality detection unit 513 judges that the motor 20 is in an unbalanced state (step S104). On the other hand, when neither the first nor the second judgment is satisfied (NO in step S103), the abnormality detection unit 513 judges that the motor 20 is in a balanced state (step S105).
[2.第2実施形態]
 第2実施形態に係る巻線切替システムの測定部は電圧センサを含み、電圧センサは複数の巻線の電圧を測定する。第2実施形態は第1実施形態とは測定装置26の構成が異なるが他の構成は同じである。第1実施形態と同様の構成についてはその説明を省略し、異なる部分についてのみ説明し、同一の構成に対しては同一の符号を用いる。
[2. Second embodiment]
The measurement unit of the winding switching system according to the second embodiment includes a voltage sensor, which measures the voltages of the multiple windings. The second embodiment differs from the first embodiment in the configuration of the measurement device 26, but the other configurations are the same. Descriptions of the same configurations as in the first embodiment will be omitted, and only the different parts will be described, with the same reference numerals used for the same configurations.
 [2-1.巻線切替装置の構成]
 図10は、第2実施形態に係る巻線切替装置の構成の一例を示す回路図である。U相のみ詳細に示しているがV相、W相も同様である。この例では巻線21uとリレー112uとを接続する電力線212uと基準電圧点との間の電圧Vpu及びリレー112uと巻線22uとを接続する電力線221uと基準電圧点との間の電圧Vruが測定される。基準電圧点は例えば車両のボディである。測定点は第1実施形態と同じであるが、これに限定されるものではない。
[2-1. Configuration of the winding switching device]
10 is a circuit diagram showing an example of the configuration of a winding switching device according to the second embodiment. Although only the U phase is shown in detail, the V phase and the W phase are similar. In this example, a voltage Vpu between a power line 212u connecting the winding 21u and the relay 112u and a reference voltage point and a voltage Vru between a power line 221u connecting the relay 112u and the winding 22u and a reference voltage point are measured. The reference voltage point is, for example, the body of a vehicle. The measurement points are the same as those in the first embodiment, but are not limited to this.
 電圧は電圧センサによって測定される。電圧センサは例えばADコンバータである。ADコンバータの入力の第1端子が電力線212uに接続され、第2端子が基準電圧点に接続される。電圧センサはADコンバータに限定されるものではなくフォトカプラ等であってもよい。 The voltage is measured by a voltage sensor. The voltage sensor is, for example, an AD converter. A first terminal of the input of the AD converter is connected to the power line 212u, and a second terminal is connected to a reference voltage point. The voltage sensor is not limited to an AD converter, and may be a photocoupler, etc.
[2-2.巻線切替装置の動作]
 次に、巻線切替装置100の動作について説明する。制御装置50は、プロセッサ501がモータ制御プログラム510を実行することにより、巻線切替処理を実行する。
[2-2. Operation of the Winding Switching Device]
Next, a description will be given of the operation of the winding switching device 100. The control device 50 executes a winding switching process by the processor 501 executing the motor control program 510.
 図11は、第2実施形態に係る制御装置による巻線切替処理の一例を示すフローチャートである。 FIG. 11 is a flowchart showing an example of a winding switching process performed by the control device according to the second embodiment.
 この場合例えば巻線切替処理の開始時点において、モータ20の巻線21u,22u,21v,22v,21w,22wが単独状態に接続されているとする。接続状態が単独状態にあるときにはリレー111u、111v、111wはオンにセットされ、リレー112u、112v、112wはオフにセットされる。このためリレー112u、111uの故障の態様によっては例えばリレー112uの電磁コイルが断線しオフに固定された場合には、オフにセットされている点において正常時と変わりないので、モータ20が単独状態で動作する限りモータ20は正常に動作する。以下、V相、W相のリレー111v、111w、112v、112wは正常にオン/オフにセットできるものとする。 In this case, for example, at the start of the winding switching process, it is assumed that windings 21u, 22u, 21v, 22v, 21w, and 22w of motor 20 are connected in an isolated state. When the connection state is in an isolated state, relays 111u, 111v, and 111w are set to on, and relays 112u, 112v, and 112w are set to off. For this reason, depending on the type of failure of relays 112u and 111u, for example, if the electromagnetic coil of relay 112u is disconnected and fixed to off, it is set to off as normal, so as long as motor 20 operates in an isolated state, motor 20 operates normally. Below, it is assumed that V-phase and W- phase relays 111v, 111w, 112v, and 112w can be set on/off normally.
 [ステップS201]
 まず巻線切替部511は、巻線の接続状態を単独状態から直列状態に切り替える。具体的には、制御装置50は制御回路103u、103v、103wに巻線21u,22u,21v,22v,21w,22wの接続状態を単独状態から直列状態に切り替える切替指示を送信する(ステップS201)。接続状態を単独状態から直列状態に切り替える切替指を受信した制御回路103uはリレー112uをオンにセットし、リレー111uオフにセットする。同様に制御回路103vはリレー112vをオンにセットし、リレー113vオフにセットする。制御回路103wはリレー112wをオンにセットし、リレー113wオフにセットする。そしてステップS202に進む。
[Step S201]
First, the winding switching unit 511 switches the connection state of the windings from an independent state to a serial state. Specifically, the control device 50 transmits a switching instruction to the control circuits 103u, 103v, and 103w to switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w from an independent state to a serial state (step S201). The control circuit 103u, which has received the switching instruction to switch the connection state from an independent state to a serial state, sets the relay 112u to on and the relay 111u to off. Similarly, the control circuit 103v sets the relay 112v to on and the relay 113v to off. The control circuit 103w sets the relay 112w to on and the relay 113w to off. Then, the process proceeds to step S202.
 この例では、リレー112uがオフに固定されているので、リレー112u、111uがオフにセットされる。正常時であればリレー112uはオンにセットされ巻線21uと22uは直列に接続される。直列接続された巻線21u、22uの中間点の電圧であるVpuあるいはVruは電力線35uと中性点23のおよそ2分の1の電圧となる。しかしリレー112uオフに固定されているためVpuあるいはVruは正常時とは全く異なる電圧となる。例えば回転子が永久磁石である場合には回転する永久磁石によって発生した電圧が巻線21u、22uに発生し、この電圧は正常時とは全く異なる。 In this example, relay 112u is fixed off, so relays 112u and 111u are set off. Under normal circumstances, relay 112u is set on and windings 21u and 22u are connected in series. Vpu or Vru, which is the voltage at the midpoint of windings 21u and 22u connected in series, is approximately half the voltage of power line 35u and neutral point 23. However, because relay 112u is fixed off, Vpu or Vru becomes a voltage that is completely different from the normal situation. For example, if the rotor is a permanent magnet, a voltage is generated by the rotating permanent magnet in windings 21u and 22u, and this voltage is completely different from the normal situation.
 また正常時であればリレー112uはオンにセットされるため、リレー112uの出力側(接点側)の第1端子、第2端子間の電圧はゼロである。しかしリレー112uはオフに固定されているため、リレー112uの出力側(接点側)の第1端子、第2端子間の電圧はゼロよりも大きな電圧が生じる。 In addition, under normal circumstances, relay 112u is set to on, so the voltage between the first and second terminals on the output side (contact side) of relay 112u is zero. However, because relay 112u is fixed to off, a voltage greater than zero is generated between the first and second terminals on the output side (contact side) of relay 112u.
 [ステップS202]
 次に測定部512はモータ20の回転に関する物理量を測定する(ステップS202)。第2実施形態では、測定部512は複数の巻線の電圧を測定する電圧センサにより、回転に関する物理量を測定する。電圧センサはVpu、Vprを測定し、Vpu、Vprを示す信号を制御装置50に送信する。制御装置50がかかる信号を受信することで、測定部512はVpu、Vprを測定する。そしてステップS203に進む。
[Step S202]
Next, the measurement unit 512 measures a physical quantity related to the rotation of the motor 20 (step S202). In the second embodiment, the measurement unit 512 measures the physical quantity related to the rotation using a voltage sensor that measures the voltages of multiple windings. The voltage sensor measures Vpu and Vpr, and transmits a signal indicating Vpu and Vpr to the control device 50. When the control device 50 receives this signal, the measurement unit 512 measures Vpu and Vpr. Then, the process proceeds to step S203.
 [ステップS203からステップS205]
 次に異常検出部513はモータ20の平衡状態を判定する(ステップS203からステップS205)。
[Steps S203 to S205]
Next, the abnormality detection unit 513 determines the balanced state of the motor 20 (steps S203 to S205).
 具体的には、異常検出部513は測定部512が測定したVpu、Vprと閾値を比較し、閾値を超えている場合(ステップS203のYES)にはモータ20が不平衡であると判定する(ステップS204)。そして巻線切替処理を終了する。 Specifically, the abnormality detection unit 513 compares Vpu and Vpr measured by the measurement unit 512 with a threshold value, and if the threshold value is exceeded (YES in step S203), it determines that the motor 20 is unbalanced (step S204). Then, the winding switching process ends.
 一方閾値を超えていない場合(ステップS203のNO)にはモータ20が平衡状態であると判定する(ステップS205)。そして巻線切替処理を終了する。 If the threshold value is not exceeded (NO in step S203), it is determined that the motor 20 is in a balanced state (step S205). Then, the winding switching process ends.
 この例ではVpu、Vprは正常時とは全く異なる値であるので閾値を超え、異常検出部513はモータ20が不平衡であると判定する。なお、Vpu、Vruの差分に基づき判定してもよい。この時にはリレー112uの両端の電圧を測定することとなる。リレー112uがオンにセットされたときには、リレー112uの両端の電圧はゼロである。一方リレー112uがオフにセットされたときには、リレー112uの両端の電圧はゼロより大きな値となる。 In this example, Vpu and Vpr are completely different values from normal and therefore exceed the threshold value, and the abnormality detection unit 513 determines that the motor 20 is unbalanced. The determination may also be made based on the difference between Vpu and Vru. In this case, the voltage across both ends of the relay 112u is measured. When the relay 112u is set on, the voltage across both ends of the relay 112u is zero. On the other hand, when the relay 112u is set off, the voltage across both ends of the relay 112u is greater than zero.
 以上により、電圧センサによりモータの平衡状態を判定することができる。 As a result, the motor's balanced state can be determined using the voltage sensor.
 [3.第3実施形態]
 第3実施形態に係る巻線切替システムの測定部は、トルクまたは回転速度を測定するセンサにより、交流モータの出力軸のトルクまたは回転速度を測定する。第3実施形態は第1実施形態とは測定装置26の構成が異なるが他の構成は同じである。第1実施形態と同様の構成についてはその説明を省略し、異なる部分についてのみ説明し、同一の構成に対しては同一の符号を用いる。以下トルクセンサの場合について説明する。
[3. Third embodiment]
The measurement unit of the winding switching system according to the third embodiment measures the torque or rotation speed of the output shaft of an AC motor using a sensor that measures the torque or rotation speed. The third embodiment differs from the first embodiment in the configuration of the measurement device 26, but the other configurations are the same. Descriptions of configurations similar to those of the first embodiment will be omitted, and only different parts will be described, with the same reference numerals used for the same configurations. The case of a torque sensor will be described below.
 [3-1.巻線切替装置の動作]
 次に、巻線切替装置100の動作について説明する。制御装置50は、プロセッサ501がモータ制御プログラム510を実行することにより、巻線切替処理を実行する。
[3-1. Operation of the Winding Switching Device]
Next, a description will be given of the operation of the winding switching device 100. The control device 50 executes a winding switching process by the processor 501 executing the motor control program 510.
 図12は、第3実施形態に係る制御装置による巻線切替処理の一例を示すフローチャートである。 FIG. 12 is a flowchart showing an example of a winding switching process performed by the control device according to the third embodiment.
 この場合例えば巻線切替処理の開始時点において、モータ20の巻線21u,22u,21v,22v,21w,22wが単独状態に接続されているとする。接続状態が単独状態にあるときにはリレー112u、112v、112wはオフにセットされ、リレー111u、113v、113wはオンにセットされる。このためリレー112u、111uの故障の態様によっては例えばリレー112uの電磁コイルが断線しオフに固定された場合には、オフにセットされている点において正常時と変わりないので、モータ20が単独状態で動作する限りモータ20は正常に動作する。以下、V相、W相のリレー112v、112w、113v、113wは正常にオン及びオフにセットできるものとする。 In this case, for example, at the start of the winding switching process, it is assumed that windings 21u, 22u, 21v, 22v, 21w, and 22w of motor 20 are connected in an isolated state. When the connection state is in an isolated state, relays 112u, 112v, and 112w are set to off, and relays 111u, 113v, and 113w are set to on. For this reason, depending on the type of failure of relays 112u and 111u, for example, if the electromagnetic coil of relay 112u is disconnected and fixed to off, it is set to off as normal, so as long as motor 20 operates in an isolated state, motor 20 operates normally. Below, it is assumed that V-phase and W- phase relays 112v, 112w, 113v, and 113w can be set on and off normally.
 [ステップS301]
 まず巻線切替部511は、巻線の接続状態を単独状態から直列状態に切り替える。具体的には、制御装置50は制御回路103u、103v、103wに巻線21u,22u,21v,22v,21w,22wの接続状態を単独状態から直列状態に切り替える切替指示を送信する(ステップS301)。接続状態を単独状態から直列状態に切り替える切替指示を受信した制御回路103uはリレー112uをオンにセットし、リレー111uオフにセットする。同様に制御回路103vはリレー112vをオンにセットし、リレー113vオフにセットする。制御回路103wはリレー112wをオンにセットし、リレー113wオフにセットする。そしてステップS302に進む。
[Step S301]
First, the winding switching unit 511 switches the connection state of the windings from an independent state to a serial state. Specifically, the control device 50 transmits a switching instruction to the control circuits 103u, 103v, and 103w to switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w from an independent state to a serial state (step S301). The control circuit 103u that receives the switching instruction to switch the connection state from an independent state to a serial state sets the relay 112u to on and the relay 111u to off. Similarly, the control circuit 103v sets the relay 112v to on and the relay 113v to off. The control circuit 103w sets the relay 112w to on and the relay 113w to off. Then, the process proceeds to step S302.
 この例ではリレー112uがオフに固定されているので、リレー112u、111uがオフにセットされる。このためU相の巻線21u、22uには電流は流れない。一方V相、W相は直列状態にあり大きな電流は流れるものの励磁はされる。このためU相、V相、W相の巻線によって生成された回転磁界はひずみ、回転磁界によってトルクを得ている回転子が発生するトルクは大きく変動する。トルクは例えば回転子の回転に同期し大きく脈動する。 In this example, relay 112u is fixed to off, so relays 112u and 111u are set to off. As a result, no current flows through U-phase windings 21u and 22u. On the other hand, V-phase and W-phase are in series and a large current flows through them, but they are excited. As a result, the rotating magnetic field generated by the U-phase, V-phase, and W-phase windings is distorted, and the torque generated by the rotor, which obtains torque from the rotating magnetic field, fluctuates greatly. For example, the torque pulsates greatly in synchronization with the rotation of the rotor.
 [ステップS302]
 次に測定部512はモータ20の状態を測定する(ステップS302)。具体的にはトルクセンサ202によってモータ20の出力軸のトルクを測定し、トルクを示す信号を制御装置50に送信する。この例では例えば大きく脈動するトルクを示す信号を送信する。制御装置50がかかる信号を受信することで、測定部512はトルクを測定する。そしてステップS303に進む。
[Step S302]
Next, the measurement unit 512 measures the state of the motor 20 (step S302). Specifically, the torque of the output shaft of the motor 20 is measured by the torque sensor 202, and a signal indicating the torque is transmitted to the control device 50. In this example, a signal indicating, for example, a large pulsating torque is transmitted. When the control device 50 receives this signal, the measurement unit 512 measures the torque. Then, the process proceeds to step S303.
 [ステップS303からステップS305]
 次に異常検出部513はモータ20の平衡状態を判定する。
[Steps S303 to S305]
Next, the abnormality detection unit 513 determines the balanced state of the motor 20 .
 具体的には測定部512はトルクセンサが出力するモータ20の出力軸のトルクを示す信号を受信する。異常検出部513は測定部512が測定したトルクを示す信号の値と閾値とを比較し(ステップS303)、閾値を超えている場合(ステップS303のYES)にはモータ20が不平衡であると判定する(ステップS304)。そして巻線切替処理を終了する。 Specifically, the measurement unit 512 receives a signal indicating the torque of the output shaft of the motor 20 output by the torque sensor. The abnormality detection unit 513 compares the value of the signal indicating the torque measured by the measurement unit 512 with a threshold value (step S303), and if the value exceeds the threshold value (YES in step S303), it determines that the motor 20 is unbalanced (step S304). Then, the winding switching process ends.
 一方閾値を超えていない場合(ステップS303のNO)にはモータ20が平衡した状態であると判定する(ステップS305)。そして巻線切替処理を終了する。 If the threshold value is not exceeded (NO in step S303), it is determined that the motor 20 is in a balanced state (step S305). Then, the winding switching process ends.
 具体的には、正常時にはトルクは一定の値を示す。一方異常時には、モータ20の回転速度に応じた周波数で大きく脈動する。例えば、測定されたトルクの測定値から、回転速度に応じた周波数の成分を取り出し、強度を測定する。そして、この強度と閾値とを比較する。閾値を超えている場合には、異常検出部513はモータ20が不平衡であると判定してもよい。 Specifically, the torque normally exhibits a constant value. On the other hand, in an abnormal state, the torque pulsates significantly at a frequency corresponding to the rotation speed of the motor 20. For example, a frequency component corresponding to the rotation speed is extracted from the measured torque value, and the intensity is measured. This intensity is then compared with a threshold value. If the threshold value is exceeded, the abnormality detection unit 513 may determine that the motor 20 is unbalanced.
 以上により、トルクセンサによりモータの平衡状態を判定し、巻線を切り替える巻線切替部の異常を検出することができる。 As a result, the torque sensor can determine the motor's balanced state and detect abnormalities in the winding switching section that switches the windings.
 なお、上記はトルクセンサで説明したが、モータ20の出力軸の回転速度を測定する回転センサ201によってモータ20の回転に関する物理量を測定してもよい。回転子の回転に同期しトルクが大きく脈動するような時には、出力軸が1回転する間にモータ20の出力軸の回転速度も変動するからである。 Although the above description was given using a torque sensor, a physical quantity related to the rotation of the motor 20 may also be measured using a rotation sensor 201 that measures the rotation speed of the output shaft of the motor 20. This is because when the torque pulsates significantly in sync with the rotation of the rotor, the rotation speed of the output shaft of the motor 20 also fluctuates during one rotation of the output shaft.
 [4.第4実施形態]
 第4実施形態に係る巻線切替システムは更に復帰部を備える。復帰部は、巻線切替部が接続状態を切り替えたことに応じて、異常検出部が交流モータの各相を流れる電流が平衡していないと判定した場合に、切替前の接続状態へ巻線切替部に復帰させる。
[4. Fourth embodiment]
The winding switching system according to the fourth embodiment further includes a restoration unit that restores the winding switching unit to the connection state before switching when the abnormality detection unit determines that the currents flowing through the phases of the AC motor are not balanced in response to the winding switching unit switching the connection state.
 図13は、第4実施形態に係る巻線切替システムの構成の一例を示す回路図である。第4実施形態はさらに復帰部514が設けられている点が第1実施形態と異なるが、他の構成は同じである。第1実施形態と同様の構成についてはその説明を省略し、異なる部分についてのみ説明し、同一の構成に対しては同一の符号を用いる。 FIG. 13 is a circuit diagram showing an example of the configuration of a winding switching system according to the fourth embodiment. The fourth embodiment differs from the first embodiment in that a return section 514 is further provided, but the other configurations are the same. Explanations of the configurations similar to those of the first embodiment will be omitted, and only the different parts will be explained, with the same reference numerals being used for the same configurations.
 [4-1.復帰部の機能]
 例えば、モータ20は接続状態が切り替えられる前は正常に動作し、巻線切替部511が接続状態を単独状態から直列状態に切り替えたとする。この時、異常検出部513がモータ20は不平衡であると判定した場合には、復帰部514は巻線切替部511に切り替え前の単独状態へ切り替えさせる。逆に巻線切替部511が接続状態を直列状態から単独状態に切り替えたときに、異常検出部513がモータ20は不平衡であると判定した場合には、復帰部514は巻線切替部511に接続状態を切り替え前の直列状態へ切り替えさせる。
[4-1. Function of the return section]
For example, assume that the motor 20 operates normally before the connection state is switched, and the winding switching unit 511 switches the connection state from the single state to the series state. At this time, if the abnormality detection unit 513 determines that the motor 20 is unbalanced, the recovery unit 514 causes the winding switching unit 511 to switch back to the single state before the switching. Conversely, if the abnormality detection unit 513 determines that the motor 20 is unbalanced when the winding switching unit 511 switches the connection state from the series state to the single state, the recovery unit 514 causes the winding switching unit 511 to switch the connection state back to the series state before the switching.
 すなわち、モータ20は接続状態が切り替えられる前の接続状態のときには正常に動作している。このため復帰部514が巻線の接続状態を切り替え前の接続状態に復帰させることで、リレーに何らかの故障が生じた場合であってもモータ20は動作を続ける。モータ20が車両の車輪を駆動する駆動モータである場合には、当該車両は走行を続けることができる。 In other words, the motor 20 operates normally when in the connection state before the connection state is switched. Therefore, by the return unit 514 returning the connection state of the windings to the connection state before the switch, the motor 20 continues to operate even if some kind of failure occurs in the relay. If the motor 20 is a drive motor that drives the wheels of a vehicle, the vehicle can continue to run.
 [4-2.巻線切替システムの動作]
 図14は、第4実施形態に係る制御装置による巻線切替処理の一例を示すフローチャートである。ステップS401からステップS405までは各々第1実施形態のステップS101からステップS105とおなじであるので説明を省略する。なお、巻線の接続状態は単独状態であったとする。
[4-2. Operation of the Winding Switching System]
14 is a flow chart showing an example of a winding switching process by the control device according to the fourth embodiment. Steps S401 to S405 are the same as steps S101 to S105 in the first embodiment, and therefore will not be described. It is assumed that the winding is connected in a single state.
 [ステップS406]
 復帰部514は、巻線切替部が接続状態を切り替えたことに応じて、異常検出部が交流モータの各相を流れる電流が平衡していないと判定した場合に、巻線切替部を接続状態の切替前に復帰させる。例えば、巻線切替部511が単独状態から直列状態に切り替えようとし、異常検出部513がモータ20が不平衡であると判定した場合には(ステップS403のYES)、ステップS404に進んだのち、復帰部514は、接続状態を切り替え前の接続状態へ巻線切替部511に切り替えさせる(ステップS406)。そして巻線切替処理を終了する。
[Step S406]
When the abnormality detection unit determines that the currents flowing through the phases of the AC motor are not balanced in response to the winding switching unit switching the connection state, the return unit 514 returns the winding switching unit to the state before the connection state was switched. For example, when the winding switching unit 511 attempts to switch from the single state to the series state and the abnormality detection unit 513 determines that the motor 20 is unbalanced (YES in step S403), the process proceeds to step S404, and then the return unit 514 causes the winding switching unit 511 to switch the connection state back to the connection state before the switching (step S406). Then, the winding switching process ends.
 この例では、巻線切替部511は巻線の接続状態を単独状態から直列状態に切り替えようとしていたので、切替前の接続状態は単独状態である。よって復帰部514は、巻線切替部511に接続状態を単独状態へ復帰させる。単独状態であればリレー111uが固着した場合であっても、単独状態に戻ることでリレー112uはオフにセットされ、巻線21uを流れる大電流は止まる。V相、W相も単独状態に戻りU相、V相、W相すべてが単独状態となるのでモータ20は平衡した状態となり、モータ20は正常に動作を続ける。モータ20が車両に搭載されていた場合には当該車両は走行を続けることができる。 In this example, the winding switching unit 511 was attempting to switch the connection state of the windings from an isolated state to a series state, so the connection state before switching was an isolated state. Therefore, the return unit 514 causes the winding switching unit 511 to return the connection state to the isolated state. Even if the relay 111u is stuck in the isolated state, the return to the isolated state sets the relay 112u to off, and the large current flowing through the winding 21u stops. The V and W phases also return to the isolated state, and the U, V, and W phases are all in the isolated state, so the motor 20 is in a balanced state and continues to operate normally. If the motor 20 was installed in a vehicle, the vehicle can continue to run.
 [5.第5実施形態]
 第4実施形態に係る巻線切替システムは更に通知部を備える。通知部516は、異常検出部513により交流モータの各相を流れる電流が平衡していないと判定されたときに、異常の発生をユーザへ通知する。
[5. Fifth embodiment]
The winding switching system according to the fourth embodiment further includes a notification unit 516. When the abnormality detection unit 513 determines that the currents flowing through the phases of the AC motor are not balanced, the notification unit 516 notifies the user of the occurrence of an abnormality.
 図15は、第5実施形態に係る巻線切替システムの構成の一例を示す回路図である。通知部516が通知する信号は例えば音、光、電波である。音は例えばスピーカーによって通知する。光は例えば発光ダイオードによって通知する。あるいは液晶ディスプレイによって通知してもよい。電波は例えば無線機によって通知する。無線機はスマートフォンと通信し、スマートフォンを介して通知する。スピーカー、発光ダイオード、液晶ディスプレイ、無線機は例えば車両に設けられる。 FIG. 15 is a circuit diagram showing an example of the configuration of a winding switching system according to the fifth embodiment. The signal notified by the notification unit 516 is, for example, sound, light, or radio waves. The sound is notified, for example, by a speaker. The light is notified, for example, by a light-emitting diode. Alternatively, the notification may be by a liquid crystal display. The radio is notified, for example, by a radio. The radio communicates with a smartphone and notifies via the smartphone. The speaker, light-emitting diode, liquid crystal display, and radio are provided, for example, in the vehicle.
 巻線切替システムが車両に搭載されている場合には、車両のユーザは音、光、あるいはスマートフォンを介してモータ20が不平衡の状態であることを知ることができる。モータ20が不平衡の状態であることを知ったユーザは点検修理をするなど適切な措置を取ることができる。 If the winding switching system is installed in a vehicle, the vehicle user can be notified that the motor 20 is in an unbalanced state by sound, light, or via a smartphone. The user who knows that the motor 20 is in an unbalanced state can take appropriate measures, such as inspecting and repairing it.
 [6.第6実施形態]
 第6実施形態に係る巻線切替システムは、各相の固定子に含まれる複数の巻線の接続状態を切り替えることが可能な交流モータの前記複数の巻線の接続状態を切り替える巻線切替部と、前記交流モータの回転に関する物理量を測定する測定部と、前記測定部によって測定された物理量に基づき前記交流モータの各相を流れる電流が平衡しているか否かを判定する平衡判定部と、前記接続状態が第1接続状態から第2接続状態に切り替えられたことに応じて、前記平衡判定部による判定が、各相を流れる電流が平衡しているという判定から、各相を流れる電流が平衡していないという判定へと変化した場合に、前記接続状態を前記第2状態から前記第1接続状態へ前記巻線切替部に切り替えさせる復帰部と、を含む。
[6. Sixth embodiment]
A winding switching system according to a sixth embodiment includes a winding switching unit that switches connection states of a plurality of windings of an AC motor capable of switching connection states of the plurality of windings included in a stator of each phase; a measurement unit that measures a physical quantity related to the rotation of the AC motor; a balance determination unit that determines whether or not currents flowing through each phase of the AC motor are balanced based on the physical quantity measured by the measurement unit; and a return unit that causes the winding switching unit to switch the connection state from the second state to the first connection state when the determination by the balance determination unit changes from a determination that the currents flowing through each phase are balanced to a determination that the currents flowing through each phase are not balanced in response to the connection state being switched from a first connection state to a second connection state.
 図16は、第6実施形態に係る巻線切替システムの構成の一例を示す回路図である。第6実施形態は、異常検出部513の代わりに平衡判定部515が設けられて、さらに復帰部514が設けられている点が第1実施形態と異なるが、他の構成は同じである。第1実施形態と同様の構成についてはその説明を省略し、異なる部分についてのみ説明し、同一の構成に対しては同一の符号を用いる。 FIG. 16 is a circuit diagram showing an example of the configuration of a winding switching system according to the sixth embodiment. The sixth embodiment differs from the first embodiment in that an equilibrium determination unit 515 is provided instead of an abnormality detection unit 513, and a recovery unit 514 is also provided, but the other configurations are the same. Explanations of configurations similar to those of the first embodiment will be omitted, and only the different parts will be explained, with the same reference numerals used for the same configurations.
 [6-1.平衡判定部の機能]
 平衡判定部515は、測定部によって測定された物理量に基づき交流モータの各相を流れる電流が平衡しているか否かを判定する。第1実施形態の異常検出部513は、交流モータの各相を流れる電流が平衡しているか否かを判定することにより、巻線切替装置100に生じる異常を検出する。一方、本実施形態の平衡判定部515は異常を検出する構成がない。また、復帰部514は第4実施形態の復帰部514と同じである。
[6-1. Functions of the balance determination unit]
The balance determination unit 515 determines whether or not the currents flowing through the phases of the AC motor are balanced based on the physical quantities measured by the measurement units. The abnormality detection unit 513 of the first embodiment detects an abnormality occurring in the winding switching device 100 by determining whether or not the currents flowing through the phases of the AC motor are balanced. On the other hand, the balance determination unit 515 of this embodiment is not configured to detect an abnormality. Furthermore, the return unit 514 is the same as the return unit 514 of the fourth embodiment.
 [6-2.巻線切替システムの動作]
 図17は、第6実施形態に係る制御装置による巻線切替処理の一例を示すフローチャートである。ステップS501からステップS502までは各々第1実施形態のステップS101からステップS102とおなじであるので説明を省略する。なお、初期状態は巻線の接続状態は単独状態であったとする。
[6-2. Operation of the Winding Switching System]
17 is a flowchart showing an example of a winding switching process by the control device according to the sixth embodiment. Steps S501 to S502 are the same as steps S101 to S102 in the first embodiment, and therefore will not be described. It should be noted that the initial state is that the winding is connected in a single state.
 [ステップS503]
 平衡判定部515は測定部512によって測定された物理量に基づきモータ20の各相を流れる電流が平衡しているか否かを判定する。例えば、受信した相電流センサ261u、261v、261wが出力する相電流の値を示す信号、リレー電流センサ262u、262v、262wが出力するリレー電流の値を示す信号を、平衡判定部515は測定部512によって測定された相電流またはリレー電流と閾値とを比較する(ステップS503)。閾値を超えている場合(ステップS503のYES)にはモータ20が不平衡であると判定する。そしてステップS504に進む。一方閾値を超えていない場合(ステップS503のNO)にはモータ20が平衡状態であると判定する。そして巻線切替処理を終了する。
[Step S503]
The balance determination unit 515 determines whether or not the currents flowing through each phase of the motor 20 are balanced based on the physical quantities measured by the measurement unit 512. For example, the balance determination unit 515 compares the received signals indicating the phase current values output by the phase current sensors 261u, 261v, and 261w and the received signals indicating the relay current values output by the relay current sensors 262u, 262v, and 262w with a threshold value (step S503). If the threshold value is exceeded (YES in step S503), the balance determination unit 515 determines that the motor 20 is unbalanced. Then, the process proceeds to step S504. On the other hand, if the threshold value is not exceeded (NO in step S503), the balance determination unit 515 determines that the motor 20 is in a balanced state. Then, the winding switching process is terminated.
 [ステップS504]
 復帰部514は、前記接続状態が第1接続状態から第2接続状態に切り替えられたことに応じて、前記平衡判定部による判定が、各相を流れる電流が平衡しているという判定から、各相を流れる電流が平衡していないという判定へと変化した場合に、前記接続状態を前記第2状態から前記第1接続状態へ前記巻線切替部に切り替えさせる(ステップS504)。例えば、巻線切替部511が単独状態から直列状態に切り替えようとし、平衡判定部515がモータ20が不平衡であると判定した場合には(ステップS503のYES)、復帰部514は、接続状態を第1接続状態へ巻線切替部511に切り替えさせる。そして巻線切替処理を終了する。
[Step S504]
When the balance determination unit changes the determination from that the currents flowing through the respective phases are balanced to that the currents flowing through the respective phases are not balanced in response to the switching of the connection state from the first connection state to the second connection state, the recovery unit 514 causes the winding switching unit 511 to switch the connection state from the second connection state to the first connection state (step S504). For example, when the winding switching unit 511 attempts to switch from the single state to the series state and the balance determination unit 515 determines that the motor 20 is unbalanced (YES in step S503), the recovery unit 514 causes the winding switching unit 511 to switch the connection state to the first connection state. Then, the winding switching process is terminated.
 この例では、巻線切替部511は巻線の接続状態を単独状態から直列状態に切り替えようとしていたので、切替前の接続状態は単独状態である。よって復帰部514は接続状態を単独状態に復帰させる。単独状態であればリレー111uが固着した場合であっても、単独状態に戻ることでリレー112uはオフにセットされ、巻線21uを流れる大電流は止まる。V相、W相も単独状態に戻りU相、V相、W相すべてが単独状態となるのでモータ20は平衡した状態となり、モータ20は正常に動作を続ける。モータ20が車両に搭載されていた場合には当該車両は走行を続けることができる。 In this example, the winding switching unit 511 was attempting to switch the connection state of the windings from an isolated state to a series state, so the connection state before switching is the isolated state. Therefore, the return unit 514 returns the connection state to the isolated state. Even if the relay 111u is stuck in the isolated state, the return to the isolated state sets the relay 112u to off, and the large current flowing through the winding 21u stops. The V and W phases also return to the isolated state, and the U, V, and W phases are all in the isolated state, so the motor 20 is in a balanced state and continues to operate normally. If the motor 20 was installed in a vehicle, the vehicle can continue to run.
 [7.変形例]
 図18は、巻線切替装置100の変形例である。図18はU相のみ図示しているが、VW相も同様である。第1実施形態に比べてリレー113uが追加されている。リレー113uはリレー111uと同じタイミングでオン/オフにセットされる。リレー113uが追加されることによって巻線21uと巻線22uは並列に接続できるようになる。以下、並列に接続する場合を並列状態と呼ぶ場合がある。並列に接続する場合にはリレー111u、113uをオンにセットし、リレー112uをオフにセットする。一方、直列に接続する場合には、リレー111u、113uをオフにセットし、リレー112uをオンにセットする。
7. Modifications
FIG. 18 is a modified example of the winding switching device 100. FIG. 18 shows only the U-phase, but the VW-phase is similar. Compared to the first embodiment, a relay 113u is added. The relay 113u is set to on/off at the same timing as the relay 111u. The addition of the relay 113u allows the winding 21u and the winding 22u to be connected in parallel. Hereinafter, the case of parallel connection may be referred to as a parallel state. When connecting in parallel, the relays 111u and 113u are set on, and the relay 112u is set off. On the other hand, when connecting in series, the relays 111u and 113u are set off, and the relay 112u is set on.
 巻線切替装置100はモータ20の巻線の接続状態を直列状態から並列状態に切り替える。あるいは並列状態から直列状態に切り替える。巻線が直列状態から並列状態に切り替えられ、異常検出部513によってモータ20は不平衡であると判定された場合には、復帰部514は巻線の接続状態を直列状態に復帰させる。一方、巻線が並列状態から直列状態に切り替えられ、異常検出部513によってモータ20は不平衡であると判定された場合には、復帰部514は巻線の接続状態を並列状態に復帰させる。 The winding switching device 100 switches the connection state of the windings of the motor 20 from a series state to a parallel state, or from a parallel state to a series state. When the windings are switched from a series state to a parallel state and the abnormality detection unit 513 determines that the motor 20 is unbalanced, the return unit 514 returns the connection state of the windings to a series state. On the other hand, when the windings are switched from a parallel state to a series state and the abnormality detection unit 513 determines that the motor 20 is unbalanced, the return unit 514 returns the connection state of the windings to a parallel state.
 なお、異常検出部513がモータ20は不平衡の状態であると判定したときには、復帰部514は並列状態あるいは直列状態に復帰させていたが、単独状態に復帰させてもよい。例えば並列状態、直列状態のいずれに切り替えてもモータの不平衡が解消しない場合に単独状態に復帰するように構成してもよい。単独状態に復帰させる場合にはリレー112uをオフにセットし、リレー111u、113uの一方をオンにセットする。またリレー111u、113uの一方をオンにセットしてもモータ20の不平衡が解消しない場合には他方のリレーをオンにセットするように構成してもよい。 When the abnormality detection unit 513 determines that the motor 20 is in an unbalanced state, the return unit 514 returns it to the parallel state or the series state, but it may also return it to the single state. For example, it may be configured to return to the single state if the motor imbalance is not resolved even when switched to either the parallel state or the series state. To return to the single state, the relay 112u is set off and one of the relays 111u and 113u is set on. Also, if the imbalance of the motor 20 is not resolved even when one of the relays 111u and 113u is set on, the other relay may be set on.
 [6.補記]
 今回開示された実施の形態はすべての点で例示であって、制限的ではない。本発明の権利範囲は、上述の実施形態ではなく請求の範囲によって示され、請求の範囲と均等の意味及びその範囲内でのすべての変更が含まれる。
[6. Supplementary Notes]
The embodiments disclosed herein are illustrative in all respects and are not restrictive. The scope of the present invention is defined by the claims, not the above-described embodiments, and includes the meaning equivalent to the claims and all modifications within the scope thereof.
 10 巻線切替システム
 20 モータ(駆動モータ)
 21u,22u,21v,22v,21w,22w 巻線
 23 中性点
 25 電力線
 26 測定装置
 30 電力変換器
 31u,32u,31v,32v,31w,32w スイッチ
 33u,33v,33w 電流センサ
 35u,35v,35w 電力線
 40 バッテリ
 50 制御装置
 501 プロセッサ
 502 不揮発性メモリ
 503 揮発性メモリ
 504 インタフェース(I/F)
 510 モータ制御プログラム
 511 巻線切替部
 512 測定部
 513 異常検出部
 514 復帰部
 515 平衡判定部
 516 通知部
 60 車輪
 70 ブレーキペダル
 71 センサ
 80 アクセルペダル
 81 センサ
 90 変速指示器
 100 巻線切替装置
 103u,103v,103w 制御回路
 104u,104v,104w 切替回路
 111u,112u,113u,111v,112v,113v,111w,112w,113w リレー
 201 回転センサ
 202 トルクセンサ
 212u,221u,212v,221v,212w,221w, 電力線
 24u,25u,24v,25v,24w,25w 巻線
 261u、261v、261w 相電流センサ
 262u、262v、262w リレー電流センサ
10 Winding switching system 20 Motor (drive motor)
21u, 22u, 21v, 22v, 21w, 22w Winding 23 Neutral point 25 Power line 26 Measuring device 30 Power converter 31u, 32u, 31v, 32v, 31w, 32w Switch 33u, 33v, 33w Current sensor 35u, 35v, 35w Power line 40 Battery 50 Control device 501 Processor 502 Non-volatile memory 503 Volatile memory 504 Interface (I/F)
510 Motor control program 511 Winding switching unit 512 Measurement unit 513 Abnormality detection unit 514 Recovery unit 515 Balance determination unit 516 Notification unit 60 Wheel 70 Brake pedal 71 Sensor 80 Accelerator pedal 81 Sensor 90 Gear shift indicator 100 Winding switching device 103u, 103v, 103w Control circuit 104u, 104v, 104w Switching circuit 111u, 112u, 113u, 111v, 112v, 113v, 111w, 112w, 113w Relay 201 Rotation sensor 202 Torque sensor 212u, 221u, 212v, 221v, 212w, 221w, Power line 24u, 25u, 24v, 25v, 24w, 25w Windings 261u, 261v, 261w Phase current sensors 262u, 262v, 262w Relay current sensors

Claims (19)

  1.  各相の固定子に複数の巻線を含む交流モータの、前記複数の巻線の接続状態を切り替える巻線切替部と、
     前記交流モータの回転に関する物理量を測定する測定部と、
     前記測定部によって測定された物理量に基づき前記交流モータの各相を流れる電流が平衡しているか否かを判定する異常検出部と、
     を備える、
     巻線切替システム。
    a winding switching unit for switching a connection state of a plurality of windings in a stator of each phase of an AC motor;
    A measurement unit that measures a physical quantity related to the rotation of the AC motor;
    an abnormality detection unit that determines whether or not the currents flowing through the phases of the AC motor are balanced based on the physical quantity measured by the measurement unit;
    Equipped with
    Winding switching system.
  2.  前記巻線切替部は、
      複数のリレーにより前記複数の巻線の接続状態を切り替える、
     請求項1に記載の巻線切替システム。
    The winding switching unit includes:
    A plurality of relays are used to switch the connection states of the plurality of windings.
    The winding switching system according to claim 1 .
  3.  前記異常検出部は、
      前記交流モータの各相を流れる電流が平衡しているか否かを判定することにより、前記複数のリレーに生じる異常を検出する、
     請求項2に記載の巻線切替システム。
    The abnormality detection unit
    detecting an abnormality occurring in the plurality of relays by determining whether or not the currents flowing through the respective phases of the AC motor are balanced;
    The winding switching system according to claim 2 .
  4.  前記測定部は、電流センサを含み、前記電流センサにより前記各相を流れる電流を測定し、
     前記異常検出部は、前記電流センサによって測定された電流が閾値を超えたときに、各相を流れる電流が平衡していないと判定する、
     請求項1から請求項3のいずれかに記載の巻線切替システム。
    The measurement unit includes a current sensor, and measures a current flowing through each of the phases by the current sensor;
    The abnormality detection unit determines that the currents flowing through the phases are not balanced when the currents measured by the current sensors exceed a threshold value.
    The winding switching system according to any one of claims 1 to 3.
  5.  前記電流センサは、前記各相の固定子を流れる相電流を測定する、請求項4に記載の巻線切替システム。 The winding switching system of claim 4, wherein the current sensor measures the phase current flowing through the stator of each phase.
  6.  前記複数のリレーの内少なくとも1つは、第1接続状態のときにオンにセットされ、第2接続状態のときにオフにセットされるリレーであり、
     前記電流センサは、オンにセットされた前記リレーを流れる電流を測定する、
     請求項4に記載の巻線切替システム。
    At least one of the plurality of relays is a relay that is set to ON in a first connection state and set to OFF in a second connection state;
    The current sensor measures the current through the relay when it is set on.
    The winding switching system according to claim 4.
  7.  前記交流モータは、車両の車輪を駆動する駆動モータであり、
     前記異常検出部は、
      前記交流モータに要求される出力に基づき前記閾値を変更する、請求項4から請求項6のいずれか1項に記載の巻線切替システム。
    the AC motor is a drive motor that drives wheels of a vehicle,
    The abnormality detection unit
    The winding switching system according to claim 4 , wherein the threshold value is changed based on an output required for the AC motor.
  8.  前記測定部は、各相の固定子を流れる相電流を測定する電流センサを含み、前記相電流に基づいて、前記交流モータを流れるd軸電流及びq軸電流を測定し、
     前記異常検出部は、
      前記d軸電流の目標値である目標d軸電流及び前記q軸電流の目標値である目標q軸電流と、前記d軸電流の測定値である測定d軸電流及び前記q軸電流の測定値である測定q軸電流とを比較し、前記目標d軸電流と前記測定d軸電流との差が第1閾値以上である第1条件、及び前記目標q軸電流と前記測定q軸電流との差が第2閾値以上である第2条件の少なくとも1つが成立するときに、各相を流れる電流が平衡していないと判定する、請求項1から請求項3のいずれか1項に記載の巻線切替システム。
    the measurement unit includes a current sensor that measures a phase current flowing through a stator of each phase, and measures a d-axis current and a q-axis current flowing through the AC motor based on the phase currents;
    The abnormality detection unit
    4. The winding switching system according to claim 1, wherein a target d-axis current that is a target value of the d-axis current and a target q-axis current that is a target value of the q-axis current are compared with a measured d-axis current that is a measurement value of the d-axis current and a measured q-axis current that is a measurement value of the q-axis current, and when at least one of a first condition that a difference between the target d-axis current and the measured d-axis current is equal to or greater than a first threshold and a second condition that a difference between the target q-axis current and the measured q-axis current is equal to or greater than a second threshold is satisfied, it is determined that the currents flowing through the phases are not balanced.
  9.  前記交流モータは、車両の車輪を駆動する駆動モータであり、
     前記異常検出部は、
      前記交流モータに要求される出力に基づき、前記第1閾値及び前記第2閾値の少なくとも1つを変更する、請求項8に記載の巻線切替システム。
    the AC motor is a drive motor that drives wheels of a vehicle,
    The abnormality detection unit
    9. The winding switching system according to claim 8, wherein at least one of the first threshold value and the second threshold value is changed based on an output required for the AC motor.
  10.  前記異常検出部は、
      前記第1条件が成立している期間、及び前記第2条件が成立している期間の少なくとも1つが基準値を超える場合に、前記各相を流れる電流が平衡していないと判定する、請求項8に記載の巻線切替システム。
    The abnormality detection unit
    9. The winding switching system according to claim 8, wherein the currents flowing through the phases are determined to be unbalanced when at least one of a period during which the first condition is satisfied and a period during which the second condition is satisfied exceeds a reference value.
  11.  前記異常検出部は、
      前記交流モータの回転子の回転数に基づき前記基準値を変更する、請求項10に記載の巻線切替システム。
    The abnormality detection unit
    The winding switching system according to claim 10 , wherein the reference value is changed based on a rotation speed of a rotor of the AC motor.
  12.  前記測定部は、
      前記複数の巻線の電圧を測定する電圧センサを含む、請求項1から請求項3のいずれか1項に記載の巻線切替システム。
    The measurement unit includes:
    The winding switching system according to claim 1 , further comprising a voltage sensor for measuring voltages of the plurality of windings.
  13.  前記測定部は、
      前記交流モータの出力トルクまたは回転速度を測定するセンサを含む、請求項1から請求項3のいずれか1項に記載の巻線切替システム。
    The measurement unit includes:
    The winding switching system according to claim 1 , further comprising a sensor for measuring an output torque or a rotation speed of the AC motor.
  14.  巻線切替システムは、
     前記巻線切替部が前記接続状態を切り替えたことに応じて、前記異常検出部が前記交流モータの各相を流れる電流が平衡していないと判定した場合に、切替前の前記接続状態へ前記巻線切替部に復帰させる復帰部、
     を更に含む、
     請求項1から請求項13のいずれか1項に記載の巻線切替システム。
    The winding switching system is
    a return unit that returns the winding switching unit to the connection state before switching when the abnormality detection unit determines that the currents flowing through the phases of the AC motor are not balanced in response to the winding switching unit switching the connection state;
    Further comprising:
    A winding switching system according to any one of claims 1 to 13.
  15.  前記巻線切替システムは、
      前記異常検出部が前記交流モータの各相を流れる電流が平衡していないと判定したときに、前記異常の発生をユーザへ通知する通知部をさらに備える、請求項1から請求項14のいずれか1項に記載の巻線切替システム。
    The winding switching system includes:
    15. The winding switching system according to claim 1, further comprising a notification unit that notifies a user of the occurrence of the abnormality when the abnormality detection unit determines that the currents flowing through the phases of the AC motor are not balanced.
  16.  各相の固定子に含まれる複数の巻線の接続状態を切り替えることが可能な交流モータの前記複数の巻線の接続状態を切り替える巻線切替部と、
     前記交流モータの回転に関する物理量を測定する測定部と、
     前記測定部によって測定された物理量に基づき前記交流モータの各相を流れる電流が平衡しているか否かを判定する平衡判定部と、
     前記接続状態が第1接続状態から第2接続状態に切り替えられたことに応じて、前記平衡判定部による判定が、各相を流れる電流が平衡しているという判定から、各相を流れる電流が平衡していないという判定へと変化した場合に、前記接続状態を前記第2状態から前記第1接続状態へ前記巻線切替部に切り替えさせる復帰部と、
     を含む、
     巻線切替システム。
    a winding switching unit that switches a connection state of a plurality of windings included in a stator of each phase of an AC motor, the winding switching unit switching the connection state of the plurality of windings;
    A measurement unit that measures a physical quantity related to the rotation of the AC motor;
    an equilibrium determination unit that determines whether or not the currents flowing through the respective phases of the AC motor are balanced based on the physical quantities measured by the measurement unit;
    a return unit that switches the connection state from the second connection state to the first connection state by the winding switching unit when a determination by the balance determination unit changes from a determination that the currents flowing through the respective phases are balanced to a determination that the currents flowing through the respective phases are not balanced in response to the connection state being switched from the first connection state to the second connection state;
    including,
    Winding switching system.
  17.  各相の固定子に複数の巻線を含む交流モータの、前記複数の巻線の接続状態を切り替える巻線切替部と、
      前記交流モータの回転に関する物理量を測定するセンサを含む測定部と、
      前記測定部により測定された前記物理量に基づき前記交流モータの各相を流れる電流が平衡しているか否かを判定する異常検出部と、
     を備える、
     制御装置。
    a winding switching unit for switching a connection state of a plurality of windings in a stator of each phase of an AC motor;
    a measurement unit including a sensor for measuring a physical quantity related to the rotation of the AC motor;
    an abnormality detection unit that determines whether or not the currents flowing through the phases of the AC motor are balanced based on the physical quantity measured by the measurement unit;
    Equipped with
    Control device.
  18.  各相の固定子に複数の巻線を含む交流モータの、前記複数の巻線の接続状態を切り替える巻線切替ステップと、
      前記交流モータの回転に関する物理量を測定する測定ステップと、
      前記測定ステップによって測定された物理量に基づき前記交流モータの各相を流れる電流が平衡しているか否かを判定する異常検出ステップと、
     を含む、
     巻線切替装置の制御方法。
    a winding switching step of switching a connection state of a plurality of windings in an AC motor including a stator for each phase;
    a measuring step of measuring a physical quantity related to the rotation of the AC motor;
    an abnormality detection step of determining whether or not the currents flowing through the respective phases of the AC motor are balanced based on the physical quantities measured in the measurement step;
    including,
    A method for controlling a winding switching device.
  19.  巻線切替装置を制御する制御装置によって用いられるコンピュータプログラムであって、
     コンピュータに、
      各相の固定子に含まれる複数の巻線の接続状態を切り替えることが可能な交流モータの前記複数の巻線の接続状態を切り替える巻線切替ステップと、
      前記交流モータの回転に関する物理量を測定する測定ステップと、
      前記測定ステップにおいて測定された物理量に基づき前記交流モータの各相を流れる電流が平衡しているか否かを判定する異常検出ステップと、
     を実行させるための、
     コンピュータプログラム。
     
     
    A computer program used by a control device that controls a winding switching device,
    On the computer,
    a winding switching step of switching a connection state of a plurality of windings included in a stator of each phase of an AC motor capable of switching a connection state of the plurality of windings;
    a measuring step of measuring a physical quantity related to the rotation of the AC motor;
    an anomaly detection step of determining whether or not the currents flowing through the respective phases of the AC motor are balanced based on the physical quantities measured in the measurement step;
    In order to execute
    Computer program.

PCT/JP2023/044894 2023-01-17 2023-12-14 Winding switching system, control device, control method, and computer program WO2024154498A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-004994 2023-01-17
JP2023004994 2023-01-17

Publications (1)

Publication Number Publication Date
WO2024154498A1 true WO2024154498A1 (en) 2024-07-25

Family

ID=91955821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044894 WO2024154498A1 (en) 2023-01-17 2023-12-14 Winding switching system, control device, control method, and computer program

Country Status (1)

Country Link
WO (1) WO2024154498A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228513A (en) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp Motor drive device and driving method, and refrigerating and air-conditioning device
JP2012067722A (en) * 2010-09-27 2012-04-05 Hitachi Appliances Inc Compressor and sealed rotary electric machine
WO2019008756A1 (en) * 2017-07-07 2019-01-10 三菱電機株式会社 Motor drive system and air conditioner
WO2019163125A1 (en) * 2018-02-26 2019-08-29 三菱電機株式会社 Electric motor drive device and refrigeration cycle application apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228513A (en) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp Motor drive device and driving method, and refrigerating and air-conditioning device
JP2012067722A (en) * 2010-09-27 2012-04-05 Hitachi Appliances Inc Compressor and sealed rotary electric machine
WO2019008756A1 (en) * 2017-07-07 2019-01-10 三菱電機株式会社 Motor drive system and air conditioner
WO2019163125A1 (en) * 2018-02-26 2019-08-29 三菱電機株式会社 Electric motor drive device and refrigeration cycle application apparatus

Similar Documents

Publication Publication Date Title
US7372712B2 (en) Multiple inverter system with single controller and related operating method
CN102957334B (en) Methods, systems and apparatus for controlling a multi-phase inverter
US10097129B2 (en) Drive controller and drive control method for electric motor
CN110460254B (en) Control circuit for power converter
KR101622011B1 (en) Method and apparatus for controlling of 3-phase ac motor
CN102195551A (en) Methods, systems and apparatus for synchronous current regulation of a five-phase machine
CN111293955B (en) Vehicle drive device
US10333311B2 (en) Electric motor control device
JP2016165199A (en) Failure diagnosis device for inverter, and failure diagnosis method
JP2010110176A (en) Power conversion device for vehicle
US20230412102A1 (en) Flexible control for a six-phase machine
JP2005160136A (en) Inverter device and automobile equipped with it
Basler et al. Fault-tolerant strategies for double three-phase PMSM used in Electronic Power Steering systems
KR101916046B1 (en) Voltage sensor default detecting method
JP6878617B2 (en) Motor control device
CN111656669B (en) Control device
JP2006184160A (en) Current detection apparatus for three-phase a.c. motor with failure detection function
CN111610441A (en) Method for determining a characteristic value of a drive train, control device and motor vehicle
US11777437B2 (en) Fault tolerant operations of a six-phase machine
WO2024154498A1 (en) Winding switching system, control device, control method, and computer program
JPH11160101A (en) Rotation sensor, control device of permanent magnet type synchronous machine using rotation sensor, and failure judging of rotating sensor
JP7162194B2 (en) Rotating machine control device and control method
JPWO2018092261A1 (en) Abnormality detection device
de Lillo et al. Emulation of faults and remedial control strategies in a multiphase power converter drive used to analyse fault tolerant drive systems for Aerospace applications
JPH1175392A (en) Failure diagnostic method and device for load driving circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23917709

Country of ref document: EP

Kind code of ref document: A1