[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024152813A1 - 一种通信方法、装置、存储介质以及芯片系统 - Google Patents

一种通信方法、装置、存储介质以及芯片系统 Download PDF

Info

Publication number
WO2024152813A1
WO2024152813A1 PCT/CN2023/138869 CN2023138869W WO2024152813A1 WO 2024152813 A1 WO2024152813 A1 WO 2024152813A1 CN 2023138869 W CN2023138869 W CN 2023138869W WO 2024152813 A1 WO2024152813 A1 WO 2024152813A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
path loss
terminal device
reference signal
multiple cells
Prior art date
Application number
PCT/CN2023/138869
Other languages
English (en)
French (fr)
Inventor
于莹洁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024152813A1 publication Critical patent/WO2024152813A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method, device, storage medium and chip system.
  • the positioning group includes multiple base stations and multiple terminal devices, and the terminal devices in the group send positioning signals through multicast for positioning.
  • the relevant technology proposes to control the power of the signal sent by the terminal device, so as to ensure the quality of the signal and minimize the interference to the system and other users, and extend the battery life of the terminal device.
  • the power control mechanism currently used is that the terminal device calculates the output power through the path loss of the downlink signal of the service cell. Under the multicast positioning mechanism, this power control scheme cannot ensure that multiple base stations and other terminal devices in the positioning group can detect the positioning signal, resulting in a decrease in positioning accuracy.
  • Embodiments of the present application provide a communication method, apparatus, storage medium, and chip system for improving the positioning accuracy of a terminal device.
  • the present application proposes a communication method, which is applied to a first terminal device; the method includes: obtaining path loss reference configuration information of multiple cells; the path loss reference configuration information is used to indicate the configuration parameters of the downlink reference signals of the multiple cells; determining the path loss value corresponding to each cell in the multiple cells according to the path loss reference configuration information of each cell in the multiple cells; determining the target transmission power according to the path loss value corresponding to each cell in the multiple cells, and using the target transmission power to transmit a positioning reference signal.
  • the transmission power of the first terminal device is determined only by the path loss value of the service cell, and the distance between the first terminal device and the service cell is relatively close, so the determined transmission power is relatively small, so that the signal sent by the first terminal device cannot be detected by all network devices and terminal devices that provide positioning services for it. Therefore, the present application proposes that the first terminal device jointly determine the target transmission power in combination with the path loss values of the downlink paths of multiple cells, and adjust the transmission power of the first terminal device within a reasonable range, so that the signal sent by the first terminal device can be detected by more network devices and terminal devices, so that more network devices and terminal devices can jointly locate the first terminal device, thereby improving the positioning accuracy of the first terminal device.
  • the plurality of cells are cells used to provide positioning services for the first terminal device.
  • the first terminal device and the multiple cells are located in the same positioning group.
  • the positioning group can be a default one or configured by a network device.
  • the first terminal device is capable of receiving downlink reference signals sent by the multiple cells.
  • the multiple cells include a service cell for the first terminal device, and other cells among the multiple cells except the service cell for the first terminal device are neighboring cells of the service cell.
  • the multiple cells include a service cell of the first terminal device, and other cells among the multiple cells except the service cell of the first terminal device have an association relationship with the service cell; wherein the association relationship is indicated by a network device to which the service cell belongs.
  • the path loss reference configuration information of the first cell includes at least one of the following:
  • the type of downlink reference signal sent by the first cell is any one of the multiple cells.
  • determining the path loss value corresponding to the first cell includes: receiving a downlink reference signal from the first cell based on resource information used by the first cell to send the downlink reference signal; and determining the path loss value corresponding to the first cell based on the transmission power of the downlink reference signal sent by the first cell and the reception power of the downlink reference signal received from the first cell.
  • the terminal device can successfully receive the downlink reference signal sent by the cell according to the type, identifier and resource information of the downlink reference signal included in the path loss reference configuration information, and then calculate the downlink path loss value of the cell according to the transmission power of the downlink reference signal included in the path loss reference configuration information.
  • determining the target transmission power according to the path loss value corresponding to each of the multiple cells includes: determining the target transmission power according to a maximum path loss value among the path loss values respectively corresponding to the multiple cells.
  • the present application proposes to calculate the target transmit power by the maximum value of the path loss values of multiple cells, so that the positioning reference signal sent with the target transmit power can be received by more cells, which helps to improve the positioning accuracy of the terminal equipment.
  • the path loss reference configuration information of each cell among the multiple cells includes the priority of each cell; determining the target transmission power according to the path loss value corresponding to each cell among the multiple cells includes: determining the target transmission power according to the path loss value corresponding to the cell with the highest priority.
  • the priority of the cell can represent the measurement accuracy of the network equipment to which the cell belongs, or the accuracy of the location of the network equipment to which the cell belongs. Therefore, the present application proposes that if the path loss reference configuration information includes the priority of each cell, the path loss value corresponding to the cell with the highest priority is used to calculate the target transmit power, so that the positioning reference signal sent with the target transmit power can be received by the cell with the highest priority. Using the cell with the highest priority to locate the terminal device can effectively improve the positioning accuracy of the terminal device.
  • the path loss reference configuration information of the first cell includes that the type of the downlink reference signal sent by the first cell is a first type, and the receiving of the downlink reference signal from the first cell includes: receiving a downlink reference signal of the first type from the first cell.
  • the number of downlink reference signals belonging to the first type is N, where N is an integer greater than 1; determining the path loss value corresponding to the first cell based on the sending power of the downlink reference signal sent by the first cell and the receiving power of the downlink reference signal received by the first cell includes: subtracting the maximum value of the receiving powers of N downlink reference signals from the sending power of the downlink reference signal sent by the first cell to obtain the path loss value corresponding to the first cell.
  • the present application proposes that a certain type of signal from a cell can be received according to the type of downlink reference signal included in the path loss reference configuration information, and the path loss value of the cell can be calculated according to the maximum value of the received power corresponding to the signal of this type.
  • obtaining the path loss reference configuration information of the multiple cells includes: receiving the path loss reference configuration information of the multiple cells from the service cell of the first terminal device among the multiple cells; or, receiving the path loss reference configuration information of the multiple cells from any terminal device other than the first terminal device among the multiple terminal devices included in the coverage area of the multiple cells; or, receiving the path loss reference configuration information of the multiple cells from the positioning management unit LMF.
  • the positioning group when the multiple cells and the first terminal device are located in the same positioning group, the positioning group also includes multiple terminal devices and LMF other than the first terminal device; the first terminal device obtains the path loss reference configuration information of the multiple cells, including: receiving the path loss reference configuration information of the multiple cells from any terminal device among the multiple terminal devices; or, receiving the path loss reference configuration information of the multiple cells from the LMF.
  • the present application proposes a plurality of methods for configuring cell path loss reference configuration information, so that as many terminal devices as possible can receive path loss reference configuration information of multiple cells.
  • the multiple cells are located in the user center positioning area UCPA of the first terminal device; the method also includes: determining that the service cell of the first terminal device is switched from the first cell to the second cell; wherein the first cell and the second cell are any two cells among the multiple cells.
  • the multiple cells share an SRS resource set, and the SRS resource set includes SRS resource information corresponding to each cell in the multiple cells; the use of the target transmit power to transmit a positioning reference signal includes: according to the SRS resource information corresponding to the second cell, sending the SRS to the second cell with the target transmit power.
  • the terminal device does not change the transmission power of the SRS when moving in the UCPA area, so the SRS sent by the terminal device cannot be received by all cells in the area.
  • the solution of this application proposes that when the terminal device switches the service cell during the movement in the UCPA area, the target transmission power for sending the SRS will be readjusted according to the path loss reference configuration information of the cells in the UCPA area to ensure that more cells in the area can detect the SRS sent by the terminal device, thereby improving the positioning accuracy of the terminal device.
  • the present application proposes a communication device, which is a first terminal device, or the communication device may be a component (such as a chip or circuit) used in the first terminal device.
  • the device includes:
  • the processing unit is used to obtain the path loss reference configuration information of the multiple cells, determine the path loss value corresponding to each cell according to the path loss reference configuration information of each cell in the multiple cells, and determine the target transmission power according to the path loss value corresponding to each cell in the multiple cells.
  • the path loss reference configuration information is used to characterize the configuration parameters of the downlink reference signals of multiple cells.
  • the path loss reference configuration information of the first cell is introduced.
  • the path loss reference configuration information of the first cell includes at least one of the following: the type of downlink reference signal sent by the first cell, the identifier of the downlink reference signal sent by the first cell, the resource information used by the first cell to send the downlink reference signal, the transmission power of the downlink reference signal sent by the first cell, and the priority of the first cell.
  • the first cell is any cell among the multiple cells.
  • the processing unit may receive the path loss reference configuration information of multiple cells from the service cell of the first terminal device in the multiple cells through the communication unit.
  • the processing unit may also receive the path loss reference configuration information of the multiple cells from any terminal device other than the first terminal device among the multiple terminal devices included in the coverage of the multiple cells through the communication unit; or, the processing unit may also receive the path loss reference configuration information of the multiple cells from the LMF through the communication unit.
  • the processing unit may also calculate the path loss value of each cell according to the path loss reference configuration information.
  • the processing unit determines the path loss value corresponding to the first cell: according to the resource information used by the first cell to send a downlink reference signal, instruct the communication unit to receive a downlink reference signal from the first cell.
  • the path loss value corresponding to the first cell is determined according to the transmission power of the downlink reference signal sent by the first cell and the reception power of the downlink reference signal received by the first cell.
  • the processing unit when the path loss reference configuration information of the first cell includes that the type of the downlink reference signal sent by the first cell is the first type, the processing unit is used to instruct the communication unit to receive the downlink reference signal of the first type from the first cell.
  • the number of downlink reference signals of the first type is N, and N is an integer greater than 1; when the processing unit determines the path loss value corresponding to the first cell, it is used to subtract the maximum value of the received powers of the N downlink reference signals from the transmit power of the downlink reference signal sent by the first cell to obtain the path loss value corresponding to the first cell.
  • the processing unit determines the path loss value of the first cell, it may also determine the target transmission power according to the path loss value of the first cell.
  • the processing unit when determining the target transmit power, is configured to determine the target transmit power according to a maximum path loss value among the path loss values respectively corresponding to the plurality of cells.
  • the path loss reference configuration information of each cell in the multiple cells includes the priority of each cell; when determining the target transmit power, the processing unit is used to determine the target transmit power according to the path loss value corresponding to the cell with the highest priority.
  • multiple cells within the UCPA share an SRS resource set, and the SRS resource set includes SRS resource information corresponding to each of the multiple cells.
  • the communication unit is configured to send an SRS to the second cell at a target transmission power according to the SRS resource information corresponding to the second cell.
  • the present application proposes another communication device, comprising a processor and a memory; the memory is used to store programs; the processor is used to execute the programs stored in the memory, so that the device implements the method described in any possible design of the first aspect above.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a program code.
  • the program code runs on the computer, the computer executes the method described in any possible design of the first aspect above.
  • an embodiment of the present application provides a computer program product, which, when executed on a computer, enables the computer to execute the method described in any possible design of the first aspect.
  • an embodiment of the present application provides a chip system, which includes a processor coupled to a memory and used to call a computer program or computer instructions stored in the memory so that the processor executes the method described in the possible design of the first aspect above.
  • an embodiment of the present application provides a processor for calling a computer program or computer instructions stored in a memory so that the processor executes the method described in the possible design of the first aspect above.
  • FIG1A is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG1B is a schematic diagram of the architecture of another communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a Sidelink physical layer structure
  • FIG3 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of an architecture of an application scenario provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of another communication device provided in an embodiment of the present application.
  • the technical solution provided in the embodiment of the present application is applicable to a wireless communication system.
  • the wireless communication system may comply with the wireless communication standard of the third generation partnership project (3GPP).
  • 3GPP third generation partnership project
  • the solution provided in the embodiment of the present application may be applied to a fourth generation (4G) communication system, such as a long term evolution (LTE) communication system, or to a fifth generation (5G) communication system, such as a 5G new radio (NR) communication system, or to various future communication systems, such as a sixth generation (6G) communication system.
  • 4G fourth generation
  • 5G fifth generation
  • NR 5G new radio
  • 6G sixth generation
  • the technical solution provided in the embodiment of the present application may also comply with other wireless communication standards, such as the wireless communication standards of the 802 series (such as 802.11, 802.15, or 802.20) of the Institute of Electrical and Electronics Engineers (IEEE).
  • IEEE Institute of Electrical and Electronics Engineers
  • the method provided in the embodiment of the present application can also be applied to a Bluetooth system, a WiFi system, a LoRa system or a vehicle to everything (V2X) system.
  • the method provided in the embodiment of the present application can also be applied to a satellite communication system, wherein the satellite communication system can be integrated with the above communication system.
  • FIG. 1A it is a schematic diagram of the architecture of a communication system proposed in the present application, which includes network devices and terminal devices, and a close range communication 5 (prose communication 5, PC5) connection is established between the terminal devices, and each terminal device is connected to the network device respectively. That is, all terminal devices in the scenario shown in FIG. 1A are within the coverage of the network device.
  • FIG. 1A is only used as an example, and the present application does not limit the number of network devices and terminal devices included in the communication system, and each terminal device included in the communication system can be connected to the same base station or to different base stations.
  • FIG. 1A only exemplarily shows the case where each terminal device is connected to the same base station.
  • a connection can be established between the terminal device and the base station through the Uu interface.
  • FIG. 1B a schematic diagram of the architecture of another communication system provided in an embodiment of the present application, including network devices and terminal devices.
  • a PC5 connection is established between the terminal devices.
  • some terminal devices are connected to the network devices, while the other part is not connected to the network devices.
  • FIG. 1B is only an example, and the present application does not limit the number of network devices and terminal devices included in the communication system.
  • the terminal device included in the communication system shown in FIG1A and FIG1B may also be referred to as user equipment (UE), mobile station (MS), mobile terminal (MT), etc., and is a device that provides voice and/or data connectivity to users.
  • the terminal device may include a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • the terminal device can be: device-to-device communication (D2D) terminal equipment, vehicle to everything (V2X) terminal equipment (V2X can specifically include vehicle-to-vehicle (V2V), vehicle-to-roadside infrastructure (V2I), vehicle-to-pedestrian (V2P) direct communication, and vehicle-to-network (V2N) communication interaction and other application requirements.), machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of Things (IoT) terminal equipment, subscriber unit, subscriber station, mobile station, remote station, access point (AP), remote terminal equipment, access terminal equipment, user terminal equipment
  • the terminal device may be a tablet computer or a computer with wireless transceiver function.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, a wireless network, and a wireless communication service.
  • the wireless terminals include wireless terminals in smart cities, wireless terminals in smart homes, etc. It also includes limited devices, such as devices with low power consumption, devices with limited storage capacity, or devices with limited computing power, etc. For example, it includes information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning systems (GPS), laser scanners, etc.
  • RFID radio frequency identification
  • GPS global positioning systems
  • wearable smart devices include full-featured, large-size, and independent of smartphones to achieve complete or partial functions, such as smart watches or smart glasses, etc., as well as those that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets, smart helmets, and smart jewelry for vital sign monitoring.
  • the various terminal devices introduced above if located on a vehicle (for example, placed in a vehicle or installed in a vehicle), can be considered as vehicle-mounted terminal devices, and vehicle-mounted terminal devices are also called on-board units (OBU).
  • the terminal device of the embodiment of the present application can also be an on-board module, on-board module, on-board component, on-board chip or on-board unit built into the vehicle as one or more components or units.
  • the vehicle can implement the method of the present application through the built-in on-board module, on-board module, on-board component, on-board chip or on-board unit.
  • the terminal device may include a location management component (LMC), where the LMC is a component or application deployed on the terminal device with partial location management function (LMF) function, and is used to support positioning services of the PC5 interface.
  • LMC location management component
  • LMF partial location management function
  • the terminal device may also include a relay.
  • a relay any device that can communicate data with the base station.
  • the terminal device in the embodiment of the present application can be understood as a device, or it can also be a module for realizing the functions of the terminal device.
  • the module can be set in the terminal device, or it can be set independently of the terminal device.
  • the module is, for example, a chip system, etc.
  • the network devices in the systems shown in FIG. 1A and FIG. 1B may include access network devices and/or core network devices.
  • An access network (AN) device may refer to a device in an access network that communicates with a wireless terminal device through one or more cells at an air interface.
  • the access network device may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in an LTE system or long term evolution-advanced (LTE-A), or may also include a next generation node B (gNB) in a 5G NR system, or may also include a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (Cloud RAN) system, which is not limited in the embodiments of the present application.
  • NodeB or eNB or e-NodeB, evolutional Node B in an LTE system or long term evolution-advanced (LTE-A)
  • gNB next generation node B
  • 5G NR 5G NR
  • CU centralized unit
  • DU distributed unit
  • Cloud RAN cloud radio access network
  • An eNB may include various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, wearable devices, and vehicle-mounted devices.
  • An eNB may also be a transmission and reception point (TRP).
  • a gNB may include various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, wearable devices, and vehicle-mounted devices.
  • gNB can also be TRP, transmission measurement function (TMF).
  • TMF transmission measurement function
  • gNB can include CU and DU integrated on gNB.
  • the terminal device can communicate with the serving base station through the Uu link, for example, it can communicate with Ng-eNB through the LTE-Uu link, and can communicate with gNB through the NR-Uu link.
  • Ng-eNB is an LTE base station
  • gNB is an NR base station.
  • Base stations can communicate with each other through the Xn interface.
  • the network elements related to positioning in the core network mainly include: access and mobility management function (AMF) network element, LMF network element, etc.
  • the core network can also include evolutionary server mobile location center (E-SMLC) network element, unified data management (UDM) network element, and application function (AF) network element.
  • E-SMLC evolutionary server mobile location center
  • UDM unified data management
  • AF application function
  • the base station and AMF network element can communicate through the NG-C interface, and the AMF network element can be equivalent to the router for communication between gNB and LMF.
  • the location management function network element LMF can be used to determine the location of the UE, obtain downlink location measurement or location estimation from the UE, etc.
  • the location management function network element for example, in 5G, the LMF is shown in Figure 3, and in future communication systems, such as 6G, the location management function network element can still be an LMF network element, or have other names, which is not limited in this application.
  • the above introduces two communication systems applicable to the present application. It should be noted that the solution of the present application is not limited to the above two communication systems.
  • the following introduces the transmission mode between terminal devices in combination with the system shown in Figures 1A and 1B.
  • the transmission mode between terminal devices currently supported by the standard protocol, includes broadcast mode, multicast mode, and unicast mode.
  • Broadcast mode means that the terminal device as the sender uses the broadcast mode to send data, and multiple terminal devices are Able to receive sidelink control information (SCI) or sidelink shared channel (SSCH) from the transmitter.
  • SCI sidelink control information
  • SSCH sidelink shared channel
  • the way to ensure that all terminal devices can parse the control information from the transmitter is that the transmitter does not scramble the control information, or the transmitter scrambles the control information using a scrambling code known to all terminal devices.
  • Multicast mode The multicast mode is similar to broadcast transmission.
  • the terminal device as the transmitter uses the broadcast mode to send data.
  • a group of terminal devices can parse SCI or SSCH.
  • Unicast mode is a terminal device sending data to another terminal device, and the other terminal devices do not need or cannot parse the data.
  • the sidelink is a link between terminal devices and the uplink is a link between terminal devices and network devices.
  • the positioning scenarios mainly include: enhanced mobile broadband (eMBB) outdoor, eMBB indoor, ultra-reliable and low latency communications (URLLC) and massive machine type communications (mMTC)/Internet of things (IOT). It is also required to have high security, scalability, high availability and accuracy assurance in high-speed applications.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low latency communications
  • mMTC massive machine type communications
  • IOT Internet of things
  • Positioning methods include uplink positioning, downlink positioning, uplink and downlink positioning, and sidelink positioning.
  • uplink positioning is that the network equipment detects the signal sent by the terminal equipment (such as the sounding reference signal (SRS))
  • downlink positioning is that the terminal equipment detects the signal sent by the network equipment (such as the positioning reference signal (PRS)).
  • SRS sounding reference signal
  • PRS positioning reference signal
  • Uplink and downlink positioning require both the terminal equipment and the network equipment to perform detection.
  • Sidelink positioning refers to the direct communication between terminal devices. The relative position relationship is obtained by calculating the relative distance and angle between each other, and the absolute position is calculated based on the terminal device with a known fixed position.
  • the main reference channels include the physical sidelink shared channel (PSSCH), the physical sidelink control channel (PSCCH) and the physical sidelink feedback channel (PSFCH).
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • PSFCH physical sidelink feedback channel
  • FIG. 2 is a schematic diagram of the physical layer structure of Sidelink.
  • PSCCH is mapped starting from the lowest physical resource block (PRB) of PSSCH.
  • PRB physical resource block
  • PSCCH can occupy the same symbol as part of PSSCH but occupy different frequency domain resources.
  • PSSCH will occupy the remaining frequency domain resources in the same symbol as PSCCH to send data and demodulation reference signal (DMRS). Therefore, in order to ensure uniform power allocation, the existing Sidelink positioning power control schemes are divided into two categories: the first category is a scheme without PSCCH, and the second category is a scheme with PSCCH. The following introduces these two types of power control schemes respectively.
  • min(a, b) means taking the minimum value of parameter a and parameter b.
  • parameter a and parameter b as an example to explain the meaning of min.
  • dBm means decibel relative to one milliwatt (dBm).
  • P PSSCH (i) in formula (1) can also be understood as the transmission power of the SL bandwidth part (BWP) b of the carrier f at the transmission timing i.
  • PCMAX indicates the maximum transmit power of a terminal device, and its value is subject to the hardware configuration of the terminal device.
  • P MAX,CBR represents the maximum transmission power of the terminal device under the conditions of the network congestion rate (Channel Busy Ratio, CBR) and transmission priority of the resource pool corresponding to the side positioning reference signal.
  • P PSSCH,D (i) represents the power calculated by the downlink path loss value estimated by the terminal device.
  • P PSSCH,SL (i) represents the power calculated by the path loss value of the Sidelink detected by the terminal device, and exists only in the unicast communication mode.
  • the parameter P PSSCH,D (i) in formula (1) can be determined using the following formula (2):
  • P PSSCH,D (i) represents the power calculated by the downlink path loss value of the serving cell estimated by the terminal device.
  • P 0,D indicates the initial power control value of the downlink path loss of the terminal device.
  • P 0,D is indicated by a parameter sent by the network device.
  • the parameter may have multiple names, for example, the parameter may be called dl-P0-PSSCH-PSCCH.
  • represents a preset value.
  • ⁇ D indicates the downlink path loss adjustment value, which can be indicated by the dl-Alpha-PSSCH-PSCCH parameter sent by the network device. If the network device does not indicate it, the value is 1.
  • PL D represents a downlink path loss.
  • PL D PL b,f,c (q d ), which represents a downlink path loss value of a serving cell estimated by a terminal device according to a reference signal resource index q d .
  • dBm stands for decibel milliwatt.
  • the parameter P PSSCH,SL (i) in formula (1) can be determined using the following formula (3):
  • P PSSCH,SL (i) represents the power calculated from the path loss value of the Sidelink detected by the terminal equipment.
  • P 0,SL represents the initial value of the side path loss power control of the terminal device, which can be indicated by a parameter sent by the network device.
  • the parameter may have multiple names, for example, the parameter may be called sl-P0-PSSCH-PSCCH.
  • represents a preset value.
  • ⁇ SL represents the side path loss adjustment value, which can be indicated by the sl-Alpha-PSSCH-PSCCH parameter sent by the network device. If the network device does not indicate it, the value is 1.
  • dBm stands for decibel milliwatt.
  • the transmit power of the terminal device can be converted according to the power and RB ratio calculated in the above solution (1).
  • the transmit power of the PSSCH channel can be calculated using the following formula (4):
  • P PSSCH2 (i) represents the transmission power of PSSCH when PSCCH is present
  • P PSSCH (i) represents the transmission power of PSSCH when PSCCH is not present.
  • the transmit power of the PSCCH can be calculated using the following formula (5):
  • P PSCCH (i) represents the transmission power of PSCCH.
  • P PSSCH (i) represents the transmission power of PSSCH in the absence of PSCCH. Indicates the number of resources occupied by the sideline positioning reference signal in the PSCCH channel. The meanings of the remaining parameters in formula (5) can be found in the relevant contents in the above formula (1) to formula (3), which will not be repeated here.
  • the terminal device transmission power control is determined by the downlink path loss value of the terminal device's service cell.
  • This power control scheme has the following problems: when locating a terminal device using the uplink, downlink and sidelink joint positioning method, since the distance between the terminal device and other terminal devices and network devices is different, if the transmission power of the terminal device is determined only by the downlink path loss of its service cell, some network devices and other terminal devices far away from the terminal device will not be able to detect the signal of the terminal device, resulting in a small number of devices providing positioning services for the terminal device, which reduces the positioning accuracy of the terminal device.
  • the present application proposes to obtain the path loss reference configuration information of multiple cells, calculate the corresponding path loss value for each cell, and combine the calculated multiple path loss values to jointly determine the transmission power of the terminal device, so that the transmission power of the terminal device is increased within a reasonable range, so that the signal sent by the terminal device can be detected by more network devices and terminal devices, which helps to improve the positioning accuracy.
  • the sideline signal can be a sideline PRS, SRS, channel status information reference signal (CSI-RS), DMRS and other signals.
  • the sideline signal can be transmitted through the PSCCH channel or the PSSCH channel.
  • FIG3 exemplarily shows a possible flow chart of a communication method provided in an embodiment of the present application.
  • the method is demonstrated by taking the execution subject as the first terminal device as an example.
  • the first terminal device is not a specific terminal device, but any terminal device that needs to be located.
  • the scheme executed on the first terminal device side can also be executed by a unit, module or chip inside the first terminal device.
  • the first terminal device in FIG3 can be a terminal device in each of the scenarios of the aforementioned FIG1A and FIG1B.
  • the first terminal device can be a terminal device located within the network coverage in FIG1A, or the first terminal device can be a terminal device located within or outside the network coverage in FIG1B.
  • the communication method shown in FIG3 specifically includes:
  • the first terminal device obtains path loss reference configuration information of multiple cells.
  • the path loss reference configuration information of any cell is used to indicate the configuration parameters of the downlink reference signal of the cell.
  • the downlink reference signal can be any of the types of signals such as synchronization signal block (SSB), PRS and CSI-RS sent by the cell.
  • the downlink reference signal sent by the cell can be understood as the downlink reference signal sent by the access network device to which the cell belongs.
  • multiple cells are cells for providing positioning services for the first terminal device.
  • the first terminal device and the multiple cells may be located in the same positioning group.
  • the positioning group may be a default one or may be configured by a network device.
  • the positioning group may also include other terminal devices and other access network devices and/or core network devices, which is not limited in the embodiment of the present application.
  • the first terminal device can receive downlink reference signals sent by multiple cells, that is, the first terminal device can obtain the path loss reference configuration information of the cell in which it can receive the downlink reference signal.
  • the multiple cells may include the service cell of the first terminal device, and the other cells in the multiple cells except the service cell are the neighboring cells of the service cell.
  • the multiple cells may include the service cell of the first terminal device, and the network device to which the service cell belongs may configure the association relationship between the service cell and other cells in the multiple cells, and the cell having an association relationship with the service cell of the first terminal device may provide positioning services for the first terminal device.
  • the following embodiments will be described by taking the case where the first terminal device and the multiple cells are located in the same positioning group as an example.
  • the first terminal device determines the path loss value corresponding to each cell according to the path loss reference configuration information of each cell.
  • the path loss reference configuration information of any cell may include information for indicating the resource location of the cell for sending a downlink reference signal, and information for the transmission power of the downlink reference signal.
  • the first terminal device may receive downlink reference signals from each cell according to the resource location indicated by the path loss reference configuration information, detect the reception power of the downlink reference signal of each cell, and calculate the path loss value corresponding to each cell by using the detected reception power and the transmission power indicated in the path loss reference configuration information.
  • the first terminal device determines a target transmission power according to a path loss value corresponding to each cell, and transmits a positioning reference signal using the target transmission power.
  • the present application proposes that the first terminal device jointly determine the target transmission power in combination with the path loss values of the downlink paths of multiple cells, and adjust the transmission power of the first terminal device within a reasonable range, so that the signal sent by the first terminal device can be detected by more network devices and terminal devices in the positioning group, so that more network devices and terminal devices can jointly locate the first terminal device, thereby improving the positioning accuracy of the first terminal device.
  • the following describes the contents included in the path loss reference configuration information of the cell obtained by the first terminal device.
  • the first cell is any one of the multiple cells included in the positioning group, and the path loss reference configuration information of the first cell includes at least one of the following: the type of downlink reference signal sent by the first cell, the identifier of the downlink reference signal sent by the first cell, the resource information used by the first cell to send the downlink reference signal, the transmission power of the downlink reference signal sent by the first cell, the priority of the first cell or the identifier of the first cell.
  • the type of downlink reference signal sent by the first cell used to indicate that any one type of signal among the types of signals such as SSB, PRS and CSI-RS sent by the first cell is used as the downlink reference signal. Therefore, when the first terminal device detects the downlink reference signal from the first cell, it can accurately identify the signal that can be used to calculate the path loss value of the first cell from the signal sent by the first cell according to the type of the downlink reference signal.
  • the signal type pre-set in the positioning group can be used for detection. For example, the positioning group can be pre-configured to use a PRS signal as the downlink reference signal.
  • the first terminal device can determine that the path loss reference configuration information of the first cell does not include the downlink reference signal sent by the first cell.
  • the information of the reference signal type is used, a PRS signal from the first cell is received to calculate the path loss value of the first cell.
  • Identifier of the downlink reference signal sent by the first cell used to indicate the index of the downlink reference signal.
  • the first terminal device determines that a certain type of signal sent by the first cell is used as the downlink reference signal according to the information in item (1) above, it can further specifically determine the downlink reference signal sent by the first cell according to the identifier of the downlink reference signal.
  • the identifier of the downlink reference signal sent by the first cell can adopt the ID of the downlink reference signal, or can adopt the resource set ID and/or resource ID of the downlink reference signal.
  • the first terminal device can detect all signals of the type indicated by the information in item (1) above, and calculate the corresponding path loss values respectively, and select the largest path loss value as the path loss value corresponding to the first cell.
  • the path loss reference configuration information of the first cell includes that the type of the downlink reference signal sent by the first cell is the first type, but does not indicate the identifier of the downlink reference signal sent by the first cell.
  • the first terminal device can detect all downlink reference signals of the first type from the first cell, and obtain the path loss values corresponding to multiple downlink reference signals of the first type, and take the maximum value therebetween as the path loss value corresponding to the first cell.
  • Resource information used by the first cell to send a downlink reference signal used to indicate the time domain and frequency domain resource positions occupied by the first cell to send a downlink reference signal.
  • the resource information used by the first cell to send a downlink reference signal may include information such as a sending period, a center frequency, a start and end symbol, a number of occupied symbols, and a comb type.
  • the first terminal device may receive a downlink reference signal from the first cell on the corresponding time domain and frequency domain resources according to the indication of the path loss reference configuration information.
  • the first terminal device may determine the resource information of the downlink reference signal according to the information in item (2) above (the identifier of the downlink reference signal). For example, when the information in item (2) above received by the first terminal device is a resource ID, the first terminal device may determine the resource information of the downlink reference signal according to the resource information corresponding to the resource ID specified in the communication protocol. In other embodiments, when the path loss reference configuration information of the first cell does not include the resource information used to send a downlink reference signal, the first terminal device may also use the resource information agreed in advance with the first cell to receive the downlink reference signal sent by the first cell.
  • the first terminal device can measure the received power of the downlink reference signal, and calculate the path loss value of the first cell according to the received power and the transmit power of the downlink reference signal included in the path loss reference configuration information of the first cell. In some embodiments, if the transmit power of the downlink reference signal is not included in the path loss reference configuration information of the first cell, the first terminal device can use the transmit power agreed in advance with the first cell to calculate the path loss value.
  • the priority of the first cell is used to characterize the accuracy of the location of the network device to which the first cell belongs.
  • a priority is set for each network device to characterize the degree of location deviation of the network device. The greater the location deviation, the lower the priority of the network device.
  • the priority of the first cell is used to characterize the measurement accuracy of the network equipment to which the first cell belongs. Since there may be differences in the specifications or actual installation of the network equipment, such as poor line installation resulting in errors in angle measurement or delay measurement, resulting in deviations in the measurement accuracy of the network equipment.
  • the priority is used to characterize the degree of deviation in accuracy. Among them, the lower the measurement accuracy, the lower the priority of the network equipment.
  • This parameter is used by the first terminal device to calculate the target transmit power. For example, if the first cell has the highest priority among the multiple cells included in the positioning group, the first terminal device can use the path loss value corresponding to the first cell to calculate the target transmit power.
  • the priority information may not be included in the path loss reference configuration information of the first cell.
  • the first terminal device can calculate the path loss value of each cell in the positioning group separately, and select the maximum value from the multiple calculated path loss values to calculate the target transmit power.
  • Identifier of the first cell used to indicate the index of the first cell.
  • the identifier of the TRP may also be used, for example, the PRS ID may be used as the identifier of the TRP.
  • the positioning group proposed in this application may include LMF in addition to multiple network devices, the first terminal device and multiple other terminal devices.
  • the terminal device may obtain it in the following ways:
  • Method 1 Receive path loss reference configuration information of multiple cells sent by the service cell of the first terminal device.
  • the serving cell of the first terminal device may send the path loss reference configuration information of the plurality of cells to the first terminal device through a radio resource control (RRC) message.
  • RRC radio resource control
  • the list of the plurality of cells included in the positioning group and the list of the plurality of terminal devices and the path loss reference configuration information of the plurality of cells may be stored in each of the plurality of cells included in the positioning group.
  • the information may be stored in the access device to which each cell belongs.
  • the information may be sent in advance by the device responsible for establishing the positioning group to each cell included in the positioning group.
  • the device that establishes the positioning group may be an LMF, a network device, or a terminal device.
  • each cell in the positioning group may obtain the path loss reference configuration information of multiple cells based on its own stored content or the content sent by the device that establishes the positioning group, and send the path loss reference configuration information of multiple cells to the terminal devices within its coverage.
  • Method 2 Receive path loss reference configuration information of multiple cells sent by the second terminal device.
  • the second terminal device is any terminal device other than the first terminal device among the multiple terminal devices included in the positioning group.
  • the second terminal device may send the path loss reference configuration information of multiple cells to the first terminal device via a PC5RRC message or a media access control element (MAC CE) message.
  • the device responsible for establishing the positioning group may send a list of multiple cells and multiple terminal devices included in the positioning group and the path loss reference configuration information of multiple cells to the second terminal device, and the second terminal device may send the path loss reference configuration information of multiple cells to the first terminal device via the PC5 interface.
  • method two even if the first terminal device is not within the network coverage, it can still receive the path loss reference configuration information of multiple cells. Therefore, method two can ensure that all terminal devices in the positioning group can receive the path loss reference configuration information of multiple cells.
  • Method 3 Receive the path loss reference configuration information of multiple cells sent by LMF.
  • the LMF may send the path loss reference configuration information of multiple cells to the first terminal device via an LTE positioning protocol (LPP) message.
  • LTP LTE positioning protocol
  • the device responsible for establishing the positioning group reports the list of multiple cells and multiple terminal devices included in the positioning group and the path loss reference configuration information of the multiple cells to the LMF, and the LMF sends the path loss reference configuration information of the multiple cells to the first terminal device.
  • the LMF is the device responsible for establishing the positioning group, the path loss reference configuration information of the multiple cells may be directly sent to the first terminal device.
  • the manner in which the first terminal device obtains the path loss reference configuration information is not limited to the above three.
  • the first terminal device After acquiring the path loss reference configuration information of multiple cells, the first terminal device can determine the target transmission power according to the path loss reference configuration information.
  • the first terminal device may receive a downlink reference signal from the first cell based on the resource information used by the first cell to send a downlink reference signal, the type of downlink reference signal, and the identifier of the downlink reference signal included in the path loss reference configuration information of the first cell (the following description still takes the first cell as an example, and it should be noted that the first cell is any one of the multiple cells included in the positioning group). Furthermore, the first terminal device may detect the received downlink reference signal, determine the reference signal receiving power (RSRP) of the downlink reference signal, and calculate the path loss value corresponding to the first cell based on the detected receiving power and the transmission power of the downlink reference signal sent by the first cell included in the path loss reference configuration information of the first cell. Further, the first terminal device may select the maximum value from the path loss values corresponding to the multiple cells included in the positioning group to calculate the target transmission power.
  • RSRP reference signal receiving power
  • the first terminal device can select the cell with the highest priority from the multiple cells, detect the downlink reference signal of the cell with the highest priority, calculate the path loss value corresponding to the cell with the highest priority, and use the path loss value of the cell with the highest priority to calculate the target transmit power.
  • the target transmission power is calculated by using the path loss value corresponding to the first cell, and the downlink reference signal sent by the first cell is defined as a PRS signal.
  • the path loss value corresponding to the first cell is set to the maximum value of the path loss values corresponding to multiple cells, or the first cell is set to the cell with the highest priority among multiple cells.
  • P PRS (i) represents the target transmission power.
  • P PRS,D (i) represents the power calculated according to the path loss value corresponding to the first cell.
  • the parameter P PRS,D (i) in formula (6) can be determined by the following formula (7):
  • P PRS,D (i) represents the power calculated according to the path loss value corresponding to the first cell. is the initial value of power control.
  • represents the preset value. represents the number of resources occupied by the first side positioning reference signal.
  • ⁇ D represents the downlink path loss adjustment value.
  • PL D represents the path loss value corresponding to the first cell.
  • dBm represents the unit of decibel milliwatt.
  • the network device may indicate the parameter through a parameter, for example, the parameter used for indication may be a dl-P0-SLPRS parameter.
  • the parameter used for indication may be a dl-P0-SLPRS parameter.
  • the meaning of each parameter in the formula may refer to the aforementioned formula (1) to formula (3). The content will not be repeated here.
  • the first terminal device may use the target transmission power to send a positioning reference signal to multiple cells, multiple terminal devices and LMF included in the positioning group.
  • FIG4 is a schematic diagram of an application scenario applicable to the present application scheme.
  • FIG4 exemplarily shows a positioning group, which includes three network devices (network device A, network device B and network device C) and two terminal devices (a first terminal device and a second terminal device).
  • the first terminal device calculates its own target transmission power
  • the path loss values corresponding to the three network devices can be calculated according to the path loss reference configuration information of network device A, network device B and network device C respectively.
  • the first terminal device will calculate its own target transmission power according to the path loss value of network device C, and use the target transmission power to send a positioning reference signal to the positioning group.
  • the coverage range of the positioning reference signal sent by the first terminal device through the target transmission power can refer to the dotted line range shown in FIG4.
  • the path loss values corresponding to the three network devices can be calculated according to the path loss reference configuration information of network device A, network device B and network device C respectively.
  • the second terminal device will calculate its own target transmission power according to the path loss value of network device A, and use the target transmission power to send a positioning reference signal to the positioning group.
  • the coverage range of the positioning reference signal sent by the second terminal device at the target transmission power can be seen in the solid line range shown in Figure 4.
  • the target transmission power calculated by using the maximum path loss value can improve the coverage range of the terminal device sending the positioning reference signal.
  • the solution of the present application helps to improve the positioning accuracy of the terminal device.
  • the existing standard TS38.213 defines the uplink positioning scheme of the user-centric positioning area (UE-Centric Positioning Area, UCPA).
  • UCPA User-Centric Positioning Area
  • the purpose of UCPA is to merge the cell where the terminal device is located and the adjacent cells into a virtualized logical cell.
  • the SRS is always sent with the same SRS resource set, thereby ensuring that the terminal device can send SRS in an inactive state when moving between cells in the UCPA area, without having to re-access the cell to reacquire SRS resources, eliminating the process of SRS resource acquisition during inter-cell movement, thereby achieving the purpose of reducing the power consumption of the terminal device.
  • the relevant technology also proposes a power control scheme based on the UCPA scenario, which can be specifically referred to in the following formula (8):
  • PCMAX,f,c (i) represents the maximum transmission power of the terminal device at the carrier frequency f of the serving cell.
  • qs represents the SRS resource set index.
  • represents the preset value.
  • M SRS,b,f,c (i) represents the number of resources contained in the SRS bandwidth, which can be determined by the currently activated BWP b bandwidth and the subcarrier spacing configuration.
  • ⁇ SRS,b,f,c ( qs ) is configured by the network device through the parameter alpha.
  • PL b,f,c ( qd ) represents the downlink path loss value.
  • min(a,b) means taking the minimum value of parameter a and parameter b.
  • the meaning of min is introduced by taking parameter a and parameter b as an example.
  • dBm represents the unit decibel milliwatt.
  • the terminal device when the terminal device switches the serving cell while moving in the UCPA area, it still continues to send SRS for positioning at the original transmission power, which may cause some cells in the UCPA to be unable to receive the SRS sent by the terminal device, thereby causing the positioning accuracy of the terminal device to decrease.
  • the present application proposes that when a terminal device switches its service cell while moving within a UCPA area, the terminal device can obtain the path loss reference configuration information of multiple cells within the UCPA, respectively calculate the path loss values of these multiple cells, and jointly determine the target transmission power of the terminal device for sending SRS based on the calculated multiple path loss values.
  • the reference configuration information of the path loss of each cell please refer to the relevant introduction in the above embodiment, which will not be repeated here.
  • it when configuring the reference configuration information of the path loss of multiple cells in the UCPA scenario, it can be configured based on different SRS resource set configuration methods of UCPA:
  • multiple cells within the UCPA area share a set of SRS resource sets, and this set of SRS resource sets includes SRS resource information corresponding to each cell.
  • the UCPA area includes four cells, namely, cell A, cell B, cell C, and cell D.
  • the SRS resource set includes SRS resource information corresponding to cells A-D.
  • a set of path loss reference configuration information can be configured for cells A-D respectively. That is to say, each cell within the UCPA area has different path loss reference configuration information and corresponds to different SRS resource information.
  • the terminal device can respectively Calculate the path loss values corresponding to the multiple cells in the UCPA area, determine its own target transmission power according to the calculated multiple path loss values (the process of calculating the path loss value and determining the target transmission power can refer to the relevant introduction in the above embodiment, which will not be repeated here), and send SRS to the second cell at the target transmission power according to the resource information of the second cell.
  • the service cell of the terminal device is switched from cell A to cell C, calculate the path loss values corresponding to the four cells from cell A to cell D respectively.
  • the terminal device can calculate the target transmission power according to the path loss value of cell D. Furthermore, the terminal device can send SRS to cell C at the target transmission power according to the resource information of cell C (i.e., the current service cell of the terminal device) in the SRS resource set.
  • the resource information of cell C i.e., the current service cell of the terminal device
  • multiple cells in the UCPA area share a type of SRS resource information.
  • a path loss reference configuration information can be configured for multiple cells. That is, the SRS resource information used by multiple cells in the UCPA area is the same, and multiple cells correspond to the same path loss reference configuration information.
  • the terminal device when the service cell of the terminal device is switched from the first cell to the second cell, the terminal device can calculate the path loss values corresponding to the multiple cells based on a path loss reference configuration information shared by the multiple cells, and determine its own target transmission power based on the calculated path loss value (for example, the target transmission power can be determined by formula (8) introduced in the above embodiment), and send SRS at the target transmission power based on the SRS resource information shared by the multiple cells.
  • the terminal device can re-access the second cell and re-acquire the SRS resource configuration of the second cell.
  • the terminal device does not change the transmission power of the SRS when moving in the UCPA area, so the SRS sent by the terminal device cannot be received by all cells in the area.
  • the solution of this application proposes that when the terminal device switches the service cell during the movement in the UCPA area, the target transmission power for sending the SRS will be readjusted according to the path loss reference configuration information of the cells in the UCPA area to ensure that more cells in the area can detect the SRS sent by the terminal device, thereby improving the positioning accuracy of the terminal device.
  • the communication device may include a processing unit 501 and a communication unit 502.
  • a storage unit may also be included, which can be used to store instructions (codes or programs) and/or data.
  • the processing unit 501 and the communication unit 502 can be coupled to the storage unit.
  • the processing unit 501 can read the instructions (codes or programs) and/or data in the storage unit to implement the corresponding method.
  • the above-mentioned units can be set independently or partially or fully integrated.
  • the communication device 500 can correspond to the implementation of the behaviors and functions of the terminal device (such as the first terminal device or the second terminal device) in the above method embodiments.
  • the communication device 500 can be a terminal device, or a component (such as a chip or a circuit) applied to the terminal device.
  • the communication unit 502 can be used to perform all receiving or sending operations performed by the terminal device in the above embodiments.
  • the communication unit 502 can be used to perform the operation of sending a positioning reference signal performed by the first terminal device in the embodiment shown in Figure 3 above, wherein the processing unit 501 can be used to perform all operations except the receiving and sending operations performed by the first terminal device in the embodiment shown in Figure 3, and/or to support other processes of the technology described herein.
  • the processing unit 501 is used to obtain the path loss reference configuration information of multiple cells, and is also used to determine the path loss value corresponding to each cell according to the path loss reference configuration information of each cell in the multiple cells, and determine the target transmission power according to the path loss value corresponding to each cell in the multiple cells; wherein the path loss reference configuration information is used to indicate the configuration parameters of the downlink reference signals of the multiple cells; the communication unit 502 is used to transmit the positioning reference signal using the target transmission power.
  • each functional unit in the embodiments of the present application may be integrated in a processing unit 501, or each unit may exist physically separately, or two or more units may be integrated in one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application can essentially be embodied in the form of a software product, or the part that contributes to the prior art or all or part of the technical solution.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) or a processor to execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: USB flash drive, mobile
  • Various media that can store program codes include dynamic hard disks, read-only memory (ROM), random access memory (RAM), disks or optical disks, etc.
  • the processing unit 501 in the embodiment of the present application can be implemented by a processor or a processor-related circuit component
  • the communication unit 502 can be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • the communication device in the above embodiment can also take the form shown in Figure 6.
  • the device 600 shown in Figure 6 includes at least one processor 610, a memory 620, and optionally, a communication interface 630.
  • connection medium between the processor 610 and the memory 620 is not limited in the embodiment of the present application.
  • a communication interface 630 is also included.
  • the processor 610 communicates with other devices, it can transmit signals through the communication interface 630.
  • the communication interface 630 can be used to send a positioning reference signal or an SRS signal externally, and can also be used to receive a downlink reference signal sent by a cell.
  • the processor 610 in FIG. 6 can call the computer execution instructions stored in the memory 620 so that the device 600 can execute the method executed by the communication device in any of the above method embodiments.
  • An embodiment of the present application also provides a chip system, which includes a processor for calling a computer program or computer instruction stored in a memory so that the processor executes the method of any of the above embodiments.
  • the processor is coupled to the memory through an interface.
  • the chip system also includes a memory, in which a computer program or computer instructions are stored.
  • An embodiment of the present application also relates to a processor, which is used to call a computer program or computer instruction stored in a memory so that the processor executes the method described in any of the above embodiments.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application can adopt the form of complete hardware embodiments, complete software embodiments, or embodiments in combination with software and hardware. Moreover, the present application can adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置、存储介质以及芯片系统,用以提升终端设备的定位精度。该方法应用于第一终端设备,第一终端设备获取多个小区的路损参考配置信息,路损参考配置信息用于指示多个小区的下行参考信号的配置参数;根据每个小区的路损参考配置信息确定每个小区对应的路损值,并根据多个路损值共同确定用于发送定位参考信号的目标发送功率。本申请的方案通过多个小区分别对应的路损值共同确定目标发送功率,以使第一终端设备采用目标发送功率发送的定位参考信号可以被更多的小区检测到,从而提升第一终端设备的定位精度。

Description

一种通信方法、装置、存储介质以及芯片系统
相关申请的交叉引用
本申请要求在2023年01月19日提交中国专利局、申请号为202310104265.5、申请名称为“一种通信方法、装置、存储介质以及芯片系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、存储介质以及芯片系统。
背景技术
随着通信技术的快速发展,高精度定位也逐步被确定为通信系统中的重要研究项目。目前常见的定位方式包括上行定位、下行定位和侧行链路(sidelink)定位。目前通讯方式分为单播、广播和组播。在组播通信机制下,定位群组内包括多个基站和多个终端设备,组内的终端设备通过组播发送定位信号来进行定位。为了保证定位的精度,也为了尽可能降低终端设备之间的干扰,相关技术中提出了对于终端设备发出的信号的功率进行控制,从而既可以保证信号的质量,又尽可能地减少对系统和其他用户的干扰,延长终端设备的电池的使用时间。目前采用的功率控制机制为,终端设备通过服务小区的下行信号的路损来计算输出功率,在组播定位机制下,这种功控方案无法保证定位群组内的多个基站和其他的终端设备均能够检测到定位信号,从而导致定位精度下降。
发明内容
本申请实施例提供一种通信方法、装置、存储介质以及芯片系统,用于提升终端设备的定位精度。
第一方面,本申请提出了一种通信方法,该方法应用于第一终端设备;所述方法包括:获取多个小区的路损参考配置信息;所述路损参考配置信息用于指示所述多个小区的下行参考信号的配置参数;根据所述多个小区中每个小区的路损参考配置信息确定所述每个小区对应的路损值;根据所述多个小区中每个小区对应的路损值确定目标发送功率,并采用所述目标发送功率发射定位参考信号。
由于在现有技术中仅通过服务小区的路损值确定第一终端设备的发送功率,而第一终端设备与服务小区的距离较近,因此导致确定的发送功率比较小,从而第一终端设备发送的信号并不能够被为其提供定位服务的所有网络设备和终端设备检测到。因此,本申请提出第一终端设备结合多个小区的下行路径的路损值共同确定目标发送功率,在合理的范围内调整第一终端设备的发送功率,使得第一终端设备发送的信号能够被更多的网络设备和终端设备检测到,从而更多的网络设备和终端设备可以共同为第一终端设备进行定位,提升了第一终端设备的定位精度。
在一些实施例中,所述多个小区为用于提供所述第一终端设备定位服务的小区。
在一些实施例中,所述第一终端设备和所述多个小区位于同一定位群组内。定位群组可以是默认的,也可以是由网络设备配置的。
在一些实施例中,所述第一终端设备能够接收到所述多个小区发送的下行参考信号。
在一些实施例中,所述多个小区中包括所述第一终端设备的服务小区,所述多个小区中除所述第一终端设备的服务小区外的其他小区为所述服务小区的邻区。
在一些实施例中,所述多个小区中包括所述第一终端设备的服务小区,所述多个小区中除所述第一终端设备的服务小区外的其他小区与所述服务小区具有关联关系;其中,所述关联关系为所述服务小区所属的网络设备指示的。
在一些实施例中,第一小区的路损参考配置信息包括如下至少一项:
所述第一小区发送的下行参考信号的类型、所述第一小区发送的下行参考信号的标识、所述第一小区发送下行参考信号所使用的资源信息、所述第一小区发送下行参考信号的发送功率以及所述第一小区的优先级;其中,所述第一小区为所述多个小区中的任一小区。
在一些实施例中,确定第一小区对应的路损值包括:根据所述第一小区发送下行参考信号所使用的资源信息,接收来自所述第一小区的下行参考信号;根据所述第一小区发送下行参考信号的发送功率和接收所述第一小区的下行参考信号的接收功率确定所述第一小区对应的路损值。
基于上述方案,终端设备可以根据路损参考配置信息中包括的下行参考信号的类型、标识以及资源信息成功接收到小区发送的下行参考信号,进而可以根据路损参考配置信息包括的下行参考信号的发送功率计算出小区的下行路损值。
在一些实施例中,所述根据所述多个小区中每个小区对应的路损值确定目标发送功率,包括:根据所述多个小区分别对应的路损值中的最大路损值确定所述目标发送功率。
基于上述方案,本申请提出通过多个小区分别的路损值中的最大值来计算目标发送功率,从而使得采用目标发送功率发送的定位参考信号可以被更多的小区接收到,有助于提升终端设备的定位精度。
在一些实施例中,所述多个小区中每个小区的路损参考配置信息中包括所述每个小区的优先级;所述根据所述多个小区中每个小区对应的路损值确定目标发送功率,包括:根据所述优先级最高的小区对应的路损值确定所述目标发送功率。
基于上述方案,小区的优先级可以表征小区所属的网络设备的测量的准确度,或表征小区所属的网络设备的位置的准确度,因此本申请提出若路损参考配置信息中包括每个小区的优先级,则采用优先级最高的小区对应的路损值计算目标发送功率,使得采用目标发送功率发送的定位参考信号可以被优先级最高的小区接收到,采用优先级最高的小区对终端设备进行定位可以有效提升终端设备的定位精度。
在一些实施例中,所述第一小区的路损参考配置信息包括所述第一小区发送的下行参考信号的类型为第一类型,所述接收来自所述第一小区的下行参考信号,包括:接收来自所述第一小区的属于所述第一类型的下行参考信号。
在一些实施例中,所述属于所述第一类型的下行参考信号的数量为N,N为大于1的整数;所述根据所述第一小区发送下行参考信号的发送功率和接收所述第一小区的下行参考信号的接收功率确定所述第一小区对应的路损值,包括:将所述第一小区发送下行参考信号的发送功率减去N个下行参考信号的接收功率中的最大值,以得到所述第一小区对应的路损值。
基于上述方案,本申请提出可以根据路损参考配置信息中包括的下行参考信号的类型接收来自小区的某一类的信号,并根据该类信号分别对应的接收功率中的最大值来计算小区的路损值。
在一些实施例中,所述获取所述多个小区的路损参考配置信息,包括:接收来自所述多个小区中所述第一终端设备的服务小区的所述多个小区的路损参考配置信息;或者,接收来自所述多个小区覆盖范围内包括的多个终端设备中除第一终端设备外的任一终端设备的所述多个小区的路损参考配置信息;或者,接收来自定位管理单元LMF的所述多个小区的路损参考配置信息。
在一些实施例中,当所述多个小区与所述第一终端设备位于同一定位群组时,所述定位群组中还包括除第一终端设备之外的多个终端设备和LMF;所述第一终端设备获取所述多个小区的路损参考配置信息,包括:接收来自所述多个终端设备中任一终端设备的所述多个小区的路损参考配置信息;或者,接收来自所述LMF的所述多个小区的路损参考配置信息。
基于上述方案,本申请提出了多种配置小区路损参考配置信息的方法,使得尽可能多的终端设备能够接收到多个小区的路损参考配置信息。
在一些实施例中,所述多个小区位于所述第一终端设备的用户中心定位区域UCPA;所述方法还包括:确定所述第一终端设备的服务小区由第一小区切换到第二小区;其中,所述第一小区和所述第二小区为所述多个小区中的任两个小区。
在一些实施例中,所述多个小区共用SRS资源集,所述SRS资源集中包括所述多个小区中每个小区对应的SRS资源信息;所述采用所述目标发送功率发射定位参考信号,包括:根据所述第二小区对应的SRS资源信息,以所述目标发送功率向所述第二小区发送SRS。
由于现有的UCPA场景中,终端设备在UCPA区域内移动时不会改变发送SRS的发送功率,因此导致终端设备发送的SRS并不能够被区域内所有的小区接收到。本申请的方案中提出了终端设备在UCPA区域内移动过程中切换了服务小区时,会重新根据UCPA区域内的小区的路损参考配置信息调整用于发送SRS的目标发送功率,以保证区域内更多的小区可以检测到终端设备发送的SRS,从而提升终端设备的定位精度。
第二方面,本申请提出了一种通信装置,该通信装置为第一终端设备,或者该通信装置可以为应用于第一终端设备中的部件(例如芯片或者电路)。该装置包括:
处理单元,用于获取多个小区的路损参考配置信息,根据多个小区中每个小区的路损参考配置信息确定每个小区对应的路损值,并根据多个小区中每个小区对应的路损值确定目标发送功率。通信单元, 用于采用目标发送功率发射定位参考信号。其中,路损参考配置信息用于表征多个小区的下行参考信号的配置参数。
在一些实施例中,以多个小区中的第一小区为例,介绍第一小区的路损参考配置信息。第一小区的路损参考配置信息包括如下至少一项:第一小区发送的下行参考信号的类型、第一小区发送的下行参考信号的标识、第一小区发送下行参考信号所使用的资源信息、第一小区发送下行参考信号的发送功率以及第一小区的优先级。其中,第一小区为多个小区中的任一小区。
在一些实施例中,处理单元在获取多个小区的路损参考配置信息时,可以通过通信单元接收来自多个小区中第一终端设备的服务小区的多个小区的路损参考配置信息。或者,处理单元还可以通过通信单元接收来自所述多个小区覆盖范围内包括的多个终端设备中除第一终端设备外的任一终端设备的所述多个小区的路损参考配置信息;或者,处理单元还可以通过通信单元接收来自LMF的所述多个小区的路损参考配置信息。
在获取路损参考配置信息后,处理单元还可以根据路损参考配置信息计算每个小区的路损值。
在一些实施例中,以多个小区中的第一小区为例,介绍处理单元确定第一小区对应的路损值:根据第一小区发送下行参考信号所使用的资源信息,指示通信单元接收来自第一小区的下行参考信号。根据第一小区发送下行参考信号的发送功率和接收第一小区的下行参考信号的接收功率确定第一小区对应的路损值。
在一些实施例中,当第一小区的路损参考配置信息包括第一小区发送的下行参考信号的类型为第一类型时,处理单元,用于指示通信单元接收来自第一小区的属于第一类型的下行参考信号。在一些实施例中,属于第一类型的下行参考信号的数量为N,N为大于1的整数;处理单元确定第一小区对应的路损值时,用于将第一小区发送下行参考信号的发送功率减去N个下行参考信号的接收功率中的最大值,以得到第一小区对应的路损值。
处理单元确定第一小区的路损值之后,还可以根据第一小区的路损值确定目标发送功率。
在一些实施例中,处理单元在确定目标发送功率时,用于根据多个小区分别对应的路损值中的最大路损值确定目标发送功率。
在一些实施例中,多个小区中每个小区的路损参考配置信息中包括每个小区的优先级;处理单元在确定目标发送功率时,用于根据优先级最高的小区对应的路损值确定目标发送功率。
在一些实施例中,多个小区位于第一终端设备的用户中心定位区域UCPA;处理单元,还用于确定第一终端设备的服务小区由第一小区切换到第二小区。其中,第一小区和第二小区为多个小区中的任两个小区。
在一些实施例中,UCPA内的多个小区共用SRS资源集,SRS资源集中包括多个小区中每个小区对应的SRS资源信息。通信单元,用于根据第二小区对应的SRS资源信息,以目标发送功率向第二小区发送SRS。
第三方面,本申请提出了另一种通信装置,包括处理器和存储器;所述存储器用于存储程序;所述处理器用于执行所述存储器所存储的程序,以使所述装置实现如上第一方面任一可能的设计所述的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序代码,当所述程序代码在所述计算机上运行时,使得计算机执行上述第一方面任一可能的设计所述的方法。
第五方面,本申请实施例提供了一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得计算机执行上述第一方面任一可能的设计所述的方法。
第六方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,该处理器与存储器耦合,用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述第一方面可能的设计所述的方法。
第七方面,本申请实施例提供了一种处理器,该处理器用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述第一方面可能的设计所述的方法。
本申请实施例在上述各方面提供的实现的基础上,还可以进行进一步组合以提供更多实现。
上述第二方面至第七方面中任一方面中的任一可能设计可以达到的技术效果,可以相应参照上述第一方面中的任一可能设计可以达到的技术效果描述,重复之处不予论述。
附图说明
图1A为本申请实施例提供的一种通信系统的架构示意图;
图1B为本申请实施例提供的另一种通信系统的架构示意图;
图2为一种Sidelink物理层结构示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的一种应用场景的架构示意图;
图5为本申请实施例提供的一种通信装置的结构示意图;
图6为本申请实施例提供的另一种通信装置的结构示意。
具体实施方式
本申请实施例提供的技术方案适用于无线通信系统。该无线通信系统可以遵从第三代合作伙伴计划(third generation partnership project,3GPP)的无线通信标准。比如,本申请实施例提供的方案可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)通信系统,也可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR)通信系统,或应用于未来的各种通信系统,例如第六代(6th generation,6G)通信系统。本申请实施例提供的技术方案也可以遵从其他无线通信标准,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列(如802.11,802.15,或者802.20)的无线通信标准。
本申请实施例提供的方法还可以应用于蓝牙系统、WiFi系统、LoRa系统或车联网(vehicle to everything,V2X)系统中。本申请实施例提供的方法还可以应用于卫星通信系统其中,卫星通信系统可以与上述通信系统相融合。
为了便于理解本申请提出的通信方案,首先对本申请适用的应用场景进行介绍。
参见图1A,为本申请提出的一种通信系统的架构示意图,其中包括网络设备和终端设备,终端设备之间建立近距离通信5(prose communication5,PC5)连接,同时各个终端设备分别与网络设备建立连接。即,图1A所示的场景中的所有终端设备均在网络设备的覆盖范围内。需要说明的是,图1A仅作为一种示例,本申请对于通信系统中包括的网络设备和终端设备的数量不做限定,并且,通信系统中包括的各个终端设备可以连接到同一个基站也可以连接到不同的基站,图1A仅示例性地展示了各终端设备了连接同一基站这一种情况。本申请实施例中,终端设备与基站之间可以通过Uu接口建立连接。
参见图1B,为本申请实施例提供的另一种通信系统的架构示意图,其中包括网络设备和终端设备。终端设备之间建立PC5连接,图1B所示的通信系统中有部分终端设备与网络设备建立连接,另一部分未与网络设备建立连接。需要说明的是,图1B仅作为一种示例,本申请对于通信系统中包括的网络设备和终端设备的数量不做限定。
图1A和图1B所示的通信系统中包括的终端设备,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,所述终端设备可以包括具有无线连接功能的手持式设备、车载设备等。目前,所述终端设备可以是:设备到设备通信(device-to-device,D2D)终端设备、车辆与其他装置的通讯(vehicle to everything,V2X)终端设备(V2X具体可以包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互等几种应用需求。)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。终端设备还可以是平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网 中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。本申请实施例的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
可选的,终端设备中可以包括定位管理组件(location management component,LMC),所述LMC,是一种部署于终端设备上的具有部分位置管理功能(location management function,LMF)功能的组件或应用,用于支持PC5接口的定位业务。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中的终端设备可以理解为设备,或者也可以是用于实现终端设备的功能的模块,该模块可以设置在终端设备中,或者也可以与终端设备彼此独立设置,该模块例如为芯片系统等。
图1A和图1B所示系统中的网络设备可以包括接入网设备和/或核心网设备。
接入网(access network,AN)设备(例如基站)可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,例如,接入网设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。eNB可以包括各种形式的宏基站、微基站(也称为小站)、中继站、接入点,可穿戴设备,车载设备。eNB还可以是传输接收节点(Transmission and Reception Point,TRP)。gNB可以包括各种形式的宏基站、微基站(也称为小站)、中继站、接入点,可穿戴设备,车载设备。gNB还可以是TRP、传输测量功能(Transmission measurement function,TMF)。gNB可以包括集成于gNB上的CU和DU。终端设备与服务基站可以通过Uu链路进行通信,比如可以通过LTE-Uu链路与Ng-eNB进行通信,可以通过NR-Uu链路与gNB进行通信。Ng-eNB是LTE的基站,gNB是NR的基站。基站间可以通过Xn接口进行通信。
核心网内与定位相关的网元主要包括:接入和移动管理功能(access and mobility management function,AMF)网元、LMF网元等。核心网还可以包括演进服务移动定位中心(evolutional server mobile location center,E-SMLC)网元、统一数据管理(unified data management,UDM)网元、应用功能(application function,AF)网元。基站与AMF网元之间可以通过NG-C接口进行通信,AMF网元可以相当于gNB与LMF通信的路由器。
其中,位置管理功能网元LMF,可以用于确定UE的位置、从UE获得下行链路位置测量或位置估计等。位置管理功能网元,例如,在5G中,所述LMF如图3所示,在未来通信系统中,如6G中,所述位置管理功能网元仍可以是LMF网元,或有其它的名称,本申请不做限定。
以上介绍了本申请适用的两种通信系统,需要知道的是,本申请的方案并不限于上述两种通信系统中。以下,结合图1A和图1B所示的系统对终端设备之间的传输模式进行介绍。终端设备和终端设备之间的传输模式,当前标准协议支持的有广播方式,组播方式,和单播方式。
广播方式:广播方式是指作为发送端的终端设备采用广播的模式进行数据发送,多个终端设备端均 能接收来自发送端的侧行链路控制信息(sidelink control information,SCI)或侧行链路共享信道(sidelink shared channel,SSCH)。在侧行链路中,保证所有的终端设备都解析来自发送端的控制信息的方式是,发送端不对控制信息不加扰,或者发送端使用所有的终端设备都已知的扰码对控制信息加扰。
组播方式:组播方式和广播发送相似,作为发送端的终端设备采用广播的模式进行数据发送,一组终端设备均能解析SCI或SSCH。
单播方式:单播方式是一个终端设备向另外一个终端设备发送数据,其它终端设备不需要或者不能够解析该数据。
其中,侧行链路(sidelink),是指终端设备和终端设备之间的链路。上行链路,是指终端设备和网络设备之间的链路。
目前,随着通信技术的快速发展,高精度定位也逐步被确定为3GPP、5G等通信系统中的重要研究项目。在NR系统中,定位的场景主要包括:增强移动宽带(enhanced mobile broadband,eMBB)室外、eMBB室内、高可靠低时延(ultra-reliable and low latency communications,URLLC)和海量机器类通信(massive machine type of communication,mMTC)/物联网(internet of things,IOT)。还要求具有高安全性、可扩展性、高可用性以及高速应用中精度保证等特点。在3GPP标准中,支持下行到达时间差(down link-time difference of arrival,DL-TDOA)、下行离开角(down link-angle of departure,DL-AOD)、上行到达时间差(up link-time difference of arrival,UL-TDOA)、上行到达角(up link-angle of arrival,UL-AOA)、多用户巡回往返时延(multi-round trip time,multi-RTT)等多种定位技术。定位方式包括上行定位、下行定位、上下行定位和Sidelink定位。其中,上行定位是网络设备对终端设备发送的信号(比如探测参考信号(sounding reference signal,SRS))进行检测,下行定位时终端设备对网络设备发送的信号(比如定位参考信号(positioning reference signal,PRS))进行检测,上下行定位则是要求终端设备和网络设备都做检测,Sidelink定位指的是终端设备之间直连通信,通过相互之间计算相对的距离和角度得到相对位置关系,并根据已知固定位置的终端设备计算出绝对位置。
在Sidelink通信中,主要的参考信道包括物理侧行共享信道(physical sidelink shared channel,PSSCH)、物理侧行控制信道(physical sidelink control channel,PSCCH)和物理副链路反馈信道(physical sidelink feedback channel,PSFCH)。为了保证需要定位的终端设备之间的连接以及容量需求的同时,尽可能降低对其他终端设备的干扰,相关技术中提出了对使用Sidelink定位方式终端设备进行功率控制。
在描述功率控制之前,首先对Sidelink的物理层结构进行介绍。参见图2,为一种Sidelink物理层结构示意图,在Sidelink时频资源内,PSCCH是从PSSCH的最低物理资源块(physical resource block,PRB)开始映射。PSCCH可以与部分PSSCH占用相同符号但是占用不同的频域资源。在PSCCH发完之后,PSSCH将占用与PSCCH相同的符号中剩余的频域资源发送数据和解调参考信号(demodulation reference signal,DMRS)。因此,为了保证功率分配均匀,现有的Sidelink定位功率控制方案分为两类:第一类是不存在PSCCH的方案,第二类是存在PSCCH的方案。以下,分别针对这两类功率控制方案进行介绍。
(1)不存在PSCCH的方案。
在这种情况下,终端设备的发送功率可以参见如下公式(1):
PPSSCH(i)=min(PCMAX,PMAX,CBR,min(PPSSCH,D(i),PPSSCH,SL(i)))[dBm]  公式(1)
其中:
min(a,b)表示取参数a和参数b中的最小值,此处以参数a和参数b为例介绍min的含义。dBm表示单位分贝毫瓦(decibel relative to one milliwatt,dBm)。
公式(1)中的PPSSCH(i)也可以理解为载波f的SL带宽部分(bandwidth part,BWP)b在发送时机i时的发送功率。
PCMAX表示终端设备的最大发送功率,取值受终端设备的硬件配置限制。
PMAX,CBR表示终端设备在基于侧行定位参考信号对应的资源池的网络拥塞率(Channel Busy Ratio,CBR)和传输优先级的条件下的最大发送功率。一些实施例中,PMAX,CBR可由网络设备下发的参数进行指示,比如参数可以称为sl-MaxTxPower,若PCMAX没有配置,可以采用PMAX,CBR=PCMAX
PPSSCH,D(i)表示由终端设备估计的下行路损值计算出的功率。
PPSSCH,SL(i)表示由终端设备检测的Sidelink的路损值计算出的功率,仅在单播的通信模式下存在。
针对公式(1)中的参数PPSSCH,D(i)可以采用如下公式(2)确定:
其中:
PPSSCH,D(i)表示由终端设备估计的服务小区的下行路损值计算出的功率。
P0,D表示终端设备的下行路损的功控初始值。P0,D由网络设备下发的参数进行指示,该参数的名称可能有多种,比如该参数可以称为dl-P0-PSSCH-PSCCH。
μ表示预设的值。
表示侧行定位参考信号占用的资源的数量。αD表示下行路径损耗调整值,可以由网络设备下发的dl-Alpha-PSSCH-PSCCH参数进行指示,若网络设备未进行指示,则取值为1。
PLD表示下行路径损耗。一些实施例中,PLD=PLb,f,c(qd),表示由终端设备根据参考信号资源索引qd估计的服务小区的下行路损值。
dBm表示单位分贝毫瓦。
针对公式(1)中的参数PPSSCH,SL(i)可以采用如下公式(3)确定:
其中:
PPSSCH,SL(i)表示由终端设备检测的Sidelink的路损值计算出的功率。
P0,SL表示终端设备的侧行路损功控初始值,可以由网络设备下发的参数进行指示,该参数的名称可能有多种,比如该参数可以称为sl-P0-PSSCH-PSCCH。μ表示预设的值。
表示侧行定位参考信号占用的资源的数量。
αSL表示侧行路径损耗调整值,可以由网络设备下发的sl-Alpha-PSSCH-PSCCH参数进行指示,若网络设备未进行指示,则取值为1。
PLSL表示侧行路径损耗。
dBm表示单位分贝毫瓦。
(2)存在PSCCH的方案。
在这种情况下,终端设备的发送功率按照上述方案(1)中计算的功率和RB占比进行折算即可。比如,可以采用下方公式(4)计算得到PSSCH信道的发送功率:
在公式(4)中,PPSSCH2(i)表示有PSCCH情况下的PSSCH的发送功率。PPSSCH(i)表示无PSCCH情况下的PSSCH的发送功率。表示侧行定位参考信号在PSCCH信道占用的资源的数量。公式(4)中其余各项参数的含义可以参见上述公式(1)-公式(3)中的相关内容,不再赘述。
进一步地,可以采用下方公式(5)计算得到PSCCH的发送功率:
在公式(5)中,PPSCCH(i)表示PSCCH的发送功率。PPSSCH(i)表示无PSCCH情况下的PSSCH的发送功率。表示侧行定位参考信号在PSCCH信道占用的资源的数量。公式(5)中其余各项参数的含义可以参见上述公式(1)-公式(3)中的相关内容,不再赘述。
可以看出,在目前的定位方案中,对于终端设备发送功率控制方面,均是通过终端设备的服务小区的下行路损值确定的。这种功率控制方案存在如下问题:由于在采用上行、下行和Sidelink联合定位方式为某一个终端设备进行定位时,由于该终端设备与其他和终端设备以及网络设备之间的距离不同,因此若该终端设备的发送功率仅由其服务小区的下行路损来确定,则会导致一些距离该终端设备较远的网络设备和其他的终端设备无法检测到该终端设备的信号,从而导致为该终端设备提供定位服务的设备数量较少,使得该终端设备的定位精度下降。
为了解决这种问题,本申请提出获取多个小区的路损参考配置信息,针对每一个小区均计算对应的路损值,并结合计算出的多个路损值来共同确定终端设备的发送功率,使得终端设备的发送功率在合理的范围内增大,从而终端设备发送的信号可以被更多的网络设备和终端设备检测到,有助于提升定位精度。
需要说明的是,Sidelink定位过程中,本申请对于终端设备发送的用于定位的侧行信号的类型不作 限定,对于侧行信号的传输信道也不作限定。比如侧行信号可以为侧行的PRS,也可以为SRS,还可以是信道状态信息参考信号(channel status information reference signal,CSI-RS)、DMRS等信号。侧行信号可以通过PSCCH信道传输,也可以通过PSSCH信道传输。
图3示例性示出了本申请实施例提供的一种通信方法的可能的流程示意图。该方法以执行主体为第一终端设备为例进行展示,需要说明的是,第一终端设备并非特指的终端设备,而是任一需要进行定位的终端设备。实际应用中,第一终端设备侧执行的方案也可以由第一终端设备内部的单元、模块或芯片执行。图3中的第一终端设备可以为前述图1A和图1B的各个场景中的终端设备,比如本申请实施例中第一终端设备可以为图1A中位于网络覆盖范围内的终端设备,或者第一终端设备可以为图1B中位于网络覆盖范围内或网络覆盖范围外的终端设备。图3所示的通信方法具体包括:
301,第一终端设备获取多个小区的路损参考配置信息。
其中,任一小区的路损参考配置信息用于指示该小区的下行参考信号的配置参数。
本申请对于小区发送的下行参考信号的类型不作限定,比如下行参考信号可以采用小区发送的同步信号-广播信道资源块(synchronization signal block,SSB)、PRS和CSI-RS等类型的信号中的任一种。小区发送的下行参考信号,可理解为小区所属的接入网设备发送的下行参考信号。
示例性地,多个小区为用于为第一终端设备提供定位服务的小区。比如,第一终端设备和多个小区可以位于同一个定位群组内。定位群组可以是默认的,也可以是由网络设备配置的。当然,该定位群组内还可以包括其他的终端设备和其他的接入网设备和/或核心网设备,本申请实施例对此不作限定。再比如,第一终端设备能够接收到多个小区发送的下行参考信号,即,第一终端设备可以获取其能够收到下行参考信号的小区的路损参考配置信息。再比如,多个小区中可以包括第一终端设备的服务小区,多个小区中除了该服务小区之外的其他的小区为该服务小区的邻区。再比如,多个小区中可以包括第一终端设备的服务小区,服务小区所属的网络设备可以配置服务小区与多个小区中其他小区之间的关联关系,与第一终端设备的服务小区具有关联关系的小区可以为第一终端设备提供定位服务。为了便于描述,在后续实施例中以第一终端设备与多个小区位于同一定位群组这种情况为例继续进行介绍。
302,第一终端设备根据每个小区的路损参考配置信息确定每个小区对应的路损值。
示例性地,任一小区的路损参考配置信息可以包括用于指示该小区发送下行参考信号的资源位置的信息,和发送下行参考信号的发送功率的信息。第一终端设备可以根据路损参考配置信息指示的资源位置接收来自各个小区下行参考信号,检测每个小区下行参考信号的接收功率,并通过检测的接收功率和路损参考配置信息中指示的发送功率计算各小区对应的路损值。
303,第一终端设备根据每个小区对应的路损值确定目标发送功率,并采用目标发送功率发射定位参考信号。
由于在现有技术中仅通过服务小区的路损值确定第一终端设备的发送功率,而第一终端设备与服务小区的距离较近,因此导致确定的发送功率比较小,从而第一终端设备发送的信号并不能够被定位群组内包括的所有网络设备和终端设备检测到。因此,本申请提出第一终端设备结合多个小区的下行路径的路损值共同确定目标发送功率,在合理的范围内调整第一终端设备的发送功率,使得第一终端设备发送的信号能够被定位群组内更多的网络设备和终端设备检测到,从而更多的网络设备和终端设备可以共同为第一终端设备进行定位,提升了第一终端设备的定位精度。
如下针对第一终端设备获取的小区的路损参考配置信息包括的内容进行描述。以定位群组内的多个小区中的第一小区为例,对第一小区的路损参考配置信息包括的内容进行介绍。其中第一小区为定位群组包括的多个小区中的任意一个,第一小区的路损参考配置信息包括如下至少一项:第一小区发送的下行参考信号的类型、第一小区发送的下行参考信号的标识、第一小区发送下行参考信号所使用的资源信息、第一小区发送下行参考信号的发送功率、第一小区的优先级或者第一小区的标识。
以下,对第一小区的各项路损参考配置信息进行具体介绍:
(1)第一小区发送的下行参考信号的类型:用于指示采用第一小区发送的SSB、PRS和CSI-RS等类型的信号中的任意一种类型的信号作为下行参考信号。从而第一终端设备在检测来自第一小区的下行参考信号时,可以根据下行参考信号的类型从第一小区发送的信号中准确识别出可以用于计算第一小区路损值的信号。在一些实施例中,若第一小区的路损参考配置信息中不包括下行参考信号的类型,则可以采用定位群组中预先设置的信号类型进行检测。比如,定位群组中可以预先配置采用PRS信号作为下行参考信号,第一终端设备可以在确定第一小区的路损参考配置信息中不包括第一小区发送的下行 参考信号的类型这一项信息时,接收来自第一小区的PRS信号,用于计算第一小区的路损值。
(2)第一小区发送的下行参考信号的标识:用于指示下行参考信号的索引。第一终端设备在根据上述第(1)项信息确定第一小区发送的某一类信号作为下行参考信号后,可以进一步地根据下行参考信号的标识具体确定第一小区发送的下行参考信号。示例性地,第一小区发送的下行参考信号的标识可以采用下行参考信号的ID,也可以采用下行参考信号的资源集ID和/或资源ID。一些实施例中,若第一小区的路损参考配置信息中不包括下行参考信号的标识这一项,则第一终端设备可以将上述第(1)项信息指示的类型的信号均进行检测,并分别计算对应的路损值,从中选取最大的路损值作为第一小区对应的路损值。比如,第一小区的路损参考配置信息包括的第一小区发送的下行参考信号的类型为第一类型,但是并未指示第一小区发送的下行参考信号的标识,在这种情况下第一终端设备可以将来自第一小区的属于第一类型的下行参考信号均进行检测,得到属于第一类型的多个下行参考信号分别对应的路损值,将其中的最大值作为第一小区对应的路损值。
(3)第一小区发送下行参考信号所使用的资源信息:用于指示第一小区发送下行参考信号占用的时域、频域资源位置。比如,第一小区发送下行参考信号所使用的资源信息可以包括发送周期、中心频点、起止符号、占用符号数量以及梳齿类型等信息。第一终端设备可以根据该项路损参考配置信息的指示在对应的时域和频域资源上接收来自第一小区的下行参考信号。在一些实施例中,当第一小区的路损参考配置信息中不包括发送下行参考信号所使用的资源信息时,第一终端设备可以根据上述第(2)项信息(下行参考信号的标识)确定下行参考信号的资源信息。比如,当第一终端设备接收到的上述第(2)项信息为资源ID时,第一终端设备可以根据通信协议中规定的该资源ID对应的资源信息确定下行参考信号的资源信息。在另一些实施例中,当第一小区的路损参考配置信息中不包括发送下行参考信号所使用的资源信息时,第一终端设备还可以采用预先与第一小区约定的资源信息来接收第一小区发送的下行参考信号。
(4)第一小区发送下行参考信号的发送功率:用于指示第一小区发送下行参考信号的发送功率。第一终端设备可以在接收到第一小区发送的下行参考信号后,测量下行参考信号的接收功率,根据接收功率和第一小区的路损参考配置信息包括的下行参考信号的发送功率计算第一小区的路损值。在一些实施例中,若第一小区的路损参考配置信息中不包括下行参考信号的发送功率,则第一终端设备可以采用预先与第一小区约定好的发送功率来计算路损值。
(5)第一小区的优先级:
一种方式中,第一小区的优先级用于表征第一小区所属的网络设备的位置的准确度。在建造网络设备时,由于实际地理位置的影响,导致网络设备实际的位置与预设的位置之间存在偏差,因此会为每个网络设备设置优先级,用于表征网络设备的位置偏差程度。其中,位置偏差越大,网络设备的优先级越低。
另一种方式中,第一小区的优先级用于表征第一小区所属网络设备的测量的准确度。由于网络设备规格或实际安装可能存在区别,比如线路安装不理想导致测角或测时延存在误差,导致网络设备测量准确度存在偏差。该优先级用于表征准确度的偏差程度。其中,测量准确度越低,网络设备的优先级越低。该项参数用于第一终端设备计算目标发送功率,比如,若在定位群组包括的多个小区中,第一小区的优先级最高,则第一终端设备可以采用第一小区对应的路损值来计算目标发送功率。在一些实施例中,第一小区的路损参考配置信息中可以不包括优先级这一项信息,在这种情况下,第一终端设备可以分别计算定位群组内每个小区的路损值,并从计算得到的多个路损值中选取最大值用于计算目标发送功率。
(6)第一小区的标识:用于指示第一小区的索引。也可以采用TRP的标识,比如可以采用PRS ID作为TRP的标识。
在一些场景下,本申请提出的定位群组中除了多个网络设备、第一终端设备和其他多个终端设备之外,还可以包括LMF。在执行上述步骤301,获取多个小区的路损参考配置信息时,终端设备可以通过如下几种方式获取:
方式一:接收第一终端设备的服务小区发送的多个小区的路损参考配置信息。
在一些实施例中,第一终端设备的服务小区可以通过无线资源控制(radio resource control,RRC)消息向第一终端设备发送多个小区的路损参考配置信息。示例性地,定位群组中包含的多个小区的列表和多个终端设备的列表以及该多个小区的路损参考配置信息可以存储在定位群组包括的多个小区中每 个小区所属的接入设备内。或者也可以由负责建立定位群组的设备提前发送给定位群组中包括的各个小区。比如,建立定位群组的设备可以是LMF、网络设备或者终端设备。进而,定位群组内每个小区可以根据自身存储的内容或者根据建立定位群组的设备下发的内容,获取多个小区的路损参考配置信息,并向其覆盖范围内的终端设备发送多个小区的路损参考配置信息。
方式二:接收第二终端设备发送的多个小区的路损参考配置信息。
其中,第二终端设备为定位群组中包括的多个终端设备中除第一终端设备之外的任意一个终端设备。
在一些实施例中,第二终端设备可以通过PC5RRC消息或者媒体接入控制控制元素(media access control control element,MAC CE)消息将多个小区的路损参考配置信息发送给第一终端设备。示例性地,负责建立定位群组的设备在建立定位群组后,可以将定位群组中包含的多个小区和多个终端设备的列表以及多个小区的路损参考配置信息发送给第二终端设备,第二终端设备可以通过PC5接口将多个小区的路损参考配置信息发送给第一终端设备。在方式二中,即使第一终端设备未处于网络覆盖范围内,仍可以接收到多个小区的路损参考配置信息。因此通过方式二可以保证定位群组内的所有终端设备均可以接收到多个小区的路损参考配置信息。
方式三:接收LMF发送的多个小区的路损参考配置信息。
在一些实施例中,LMF可以通过LTE定位协议(LTE positioning protocol,LPP)消息将多个小区的路损参考配置信息发送给第一终端设备。示例性地,负责建立定位群组的设备在建立定位群组后,将定位群组中包括的多个小区和多个终端设备的列表以及多个小区的路损参考配置信息上报到LMF,由LMF将多个小区的路损参考配置信息发送给第一终端设备。或者,若LMF为负责建立定位群组的设备,则可以直接将多个小区的路损参考配置信息发送给第一终端设备。
需要说明的是,第一终端设备获取路损参考配置信息的方式并不限于上述三种。
第一终端设备在获取到多个小区的路损参考配置信息之后,则可以根据路损参考配置信息确定目标发送功率。
一种可能的实现方式中,第一终端设备可以根据第一小区(以下描述仍以第一小区为例进行介绍,需要说明的是,第一小区为定位群组中包括的多个小区中的任意一个)的路损参考配置信息中包括的第一小区发送下行参考信号所使用的资源信息、下行参考信号的类型和下行参考信号的标识,接收来自第一小区的下行参考信号。进一步地,第一终端设备可以对接收到的下行参考信号进行检测,确定下行参考信号的接收功率(reference signal receiving power,RSRP),并根据检测到的接收功率以及第一小区的路损参考配置信息中包括的第一小区发送下行参考信号的发送功率,计算第一小区对应的路损值。再进一步地,第一终端设备可以从定位群组包括的多个小区分别对应的路损值中选取最大值来计算目标发送功率。
另一种可能实现的方式中,若多个小区的路损参考配置信息中包括每个小区的优先级,则第一终端设备可以从多个小区中选取优先级最高的小区,检测优先级最高的小区的下行参考信号,计算优先级最高的小区对应的路损值,并采用优先级最高的小区应的路损值计算目标发送功率。
以下,为了便于描述,对采用第一小区对应的路损值计算目标发送功率,且定义第一小区发送的下行参考信号为PRS信号为例进行介绍。这里设定第一小区对应的路损值为多个小区分别对应的路损值中的最大值,或者设定第一小区为多个小区中优先级最高的小区。示例性地,本申请提出可以采用如下公式(6)来计算第一小区发送PRS信号的目标发送功率:
PPRS(i)=min(PCMAX,PMAX,CBR,PPRS,D(i))[dBm]      公式(6)
在公式(6)中,PPRS(i)表示目标发送功率。PPRS,D(i)表示根据第一小区对应的路损值计算得到的功率。公式(6)中其余的参数的含义可以参见上述公式(1)-公式(3)中的相关介绍,不再赘述。
作为一种可选的方式,公式(6)中的参数PPRS,D(i)可以通过如下公式(7)确定:
公式(7)中,PPRS,D(i)表示根据第一小区对应的路损值计算得到的功率。为功率控制初始值。μ表示预设的值。表示第一侧行定位参考信号占用的资源的数量。αD表示下行路径损耗调整值。PLD表示第一小区对应的路损值。dBm表示单位分贝毫瓦。
在一些实施例中,公式(7)中的可以由网络设备通过参数指示,比如指示所用的参数可以为dl-P0-SLPRS参数,一些情况下,若网络设备未指示该参数,则可以通过公式PPRS,D(i)=min(PCMAX,PMAX,CBR)[dBm]表示,该公式中各个参数的含义可以参见前述公式(1)-公式(3) 的内容,不再赘述。
在确定目标发送功率之后,第一终端设备可以采用目标发送功率向定位群组中包括的多个小区、多个终端设备以及LMF发送定位参考信号。
以下,结合具体的应用场景进行说明,参见图4,为本申请方案适用的一种应用场景示意图,图4示例性地展示了一个定位群组,定位群组中包括三个网络设备(网络设备A、网络设备B和网络设备C)和两个终端设备(第一终端设备和第二终端设备)。当第一终端设备计算自身的目标发送功率时,可以分别根据网络设备A、网络设备B和网络设备C的路损参考配置信息计算这三个网络设备分别对应的路损值。以第一终端设备计算得到的网络设备C的路损值最大为例,第一终端设备会根据网络设备C的路损值计算自身的目标发送功率,并采用目标发送功率向定位群组内发送定位参考信号,示例性地,第一终端设备通过目标发送功率发送的定位参考信号的覆盖范围可以参见图4中所示的虚线范围。同理,当第二终端设备计算自身的目标大发送功率时,可以分别根据网络设备A、网络设备B和网络设备C的路损参考配置信息计算这三个网络设备分别对应的路损值。以第二终端设备计算得到的网络设备A的路损值最大为例,第二终端设备会根据网络设备A的路损值计算自身的目标发送功率,并采用目标发送功率向定位群组内发送定位参考信号,示例性地,第二终端设备通过目标发送功率发送的定位参考信号的覆盖范围可以参见图4中所示的实线范围。可以看出,采用最大路损值计算得到的目标发送功率可以提升终端设备发送定位参考信号的覆盖范围,相较于现有技术中采用服务小区的路损值计算目标发送功率,本申请的方案有助于提升终端设备的定位精度。
现有的标准TS38.213中定义了用户为中心的定位区域(UE-Centric Positioning Area,UCPA)的上行定位方案,UCPA的目的是将终端设备所在的小区以及相邻的小区合并为一个虚拟化的逻辑小区,终端设备在UCPA区域内移动时,无论有无切换小区的情况,始终以相同的SRS资源集发送SRS,从而保证终端设备在UCPA区域内的小区间移动时可以在非激活(inactive)态下发送SRS,而不需要再次接入小区重新获取SRS资源,省去了小区间移动过程中SRS资源获取的过程,从而达到降低终端设备功耗的目的。相关技术中还提出了基于UCPA场景的功率控制方案,具体可以参见下方公式(8):
在公式(8)中,PCMAX,f,c(i)表示终端设备在服务小区的载频f的最大发送功率。表示功率控制初始值,与网络设备指示的SRS-ResourceSet和SRS-ResourceSetId等参数有关。qs表示SRS资源集(resource set)索引。μ表示预设的值。MSRS,b,f,c(i)表示SRS带宽所包含的资源数量,可以由当前激活BWP b带宽以及子载波间隔配置决定。αSRS,b,f,c(qs)由网络设备通过参数alpha配置。PLb,f,c(qd)表示下行路损值。min(a,b)表示取参数a和参数b中的最小值,此处以参数a和参数b为例介绍min的含义。dBm表示单位分贝毫瓦。
根据公式(8)可以看出,终端设备在UCPA区域内移动过程中切换了服务小区时,仍然以原发送功率继续发送SRS进行定位,这可能会导致UCPA内的一些小区无法接收到终端设备发送的SRS,因此导致终端设备的定位精度下降。
基于上述问题,本申请提出,当终端设备在UCPA区域内移动的过程中切换了服务小区时,终端设备可以获取UCPA内的多个小区的路损参考配置信息,分别计算这多个小区的路损值,并根据计算出的多个路损值共同确定终端设备发送SRS的目标发送功率。
关于各个小区的路损参考配置信息可以参见上述实施例中的相关介绍,此处不再赘述。示例性地,UCPA场景内配置多个小区的路损参考配置信息时,可以基于UCPA的不同SRS资源集配置方式进行配置:
在一种可选的配置方式中,UCPA区域内的多个小区共用一套SRS资源集,这一套SRS资源集中包括每个小区分别对应的SRS资源信息,比如UCPA区域内包括小区A、小区B、小区C和小区D共四个小区,那么SRS资源集中包括小区A-小区D分别对应的SRS资源信息。在这种情况下,可以为小区A-小区D分别配置一份路损参考配置信息,也就是说,UCPA区域内的每个小区具有不同的路损参考配置信息,且对应不同的SRS资源信息。在采用这种配置方式的情况下,当终端设备的服务小区由第一小区切换为第二小区(第一小区和第二小区均为UCPA区域内的小区)时,终端设备可以分别 计算UCPA区域内的多个小区分别对应的路损值,根据计算得到的多个路损值确定自身的目标发送功率(其中计算路损值以及确定目标发送功率的过程可以参加上述实施例中的相关介绍,在此不再赘述),并根据第二小区的资源信息以目标发送功率向第二小区发送SRS。继续上述的举例进行说明,当终端设备的服务小区由小区A切换为小区C时,分别计算小区A-小区D这四个小区分别对应的路损值。这里假设计算得到的小区D的路损值最大,则终端设备可以根据小区D的路损值计算目标发送功率。进一步地,终端设备可以根据SRS资源集中小区C(即终端设备当前的服务小区)的资源信息,以目标发送功率向小区C发送SRS。
在另一种可选地配置方式中,UCPA区域内的多个小区共用一种SRS资源信息,本申请提出在这种情况下可以为多个小区配置一份路损参考配置信息,也就是说,UCPA区域内的多个小区使用的SRS资源信息相同,且多个小区对应相同的路损参考配置信息。在采用这种配置方式的情况下,当终端设备的服务小区由第一小区切换为第二小区时,终端设备可以根据多个小区共享的一份路损参考配置信息计算多个小区共同对应的路损值,并根据计算得到的路损值确定自身的目标发送功率(比如可以采用上述实施例中介绍的公式(8)来确定目标发送功率),并根据多个小区共用的SRS资源信息以目标发送功率发送SRS。
在一种可选的场景中,若终端设备的服务小区由第一小区切换为第二小区,第二小区不属于UCPA区域内的小区时,则终端设备可以重新接入第二小区并重新获取第二小区的SRS资源配置。
由于现有的UCPA场景中,终端设备在UCPA区域内移动时不会改变发送SRS的发送功率,因此导致终端设备发送的SRS并不能够被区域内所有的小区接收到。本申请的方案中提出了终端设备在UCPA区域内移动过程中切换了服务小区时,会重新根据UCPA区域内的小区的路损参考配置信息调整用于发送SRS的目标发送功率,以保证区域内更多的小区可以检测到终端设备发送的SRS,从而提升终端设备的定位精度。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图5为本申请实施例提供的通信装置500的示意性框图,该通信装置500可以对应实现上述各个方法实施例中由终端设备或网络设备实现的功能或者步骤。该通信装置可以包括处理单元501和通信单元502。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理单元501和通信单元502可以与该存储单元耦合,例如,处理单元501可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
在一些可能的实施方式中,通信装置500能够对应实现上述方法实施例中终端设备(比如第一终端设备或第二终端设备)的行为和功能。例如通信装置500可以为终端设备,也可以为应用于终端设备中的部件(例如芯片或者电路)。通信单元502可以用于执行上述实施例中由终端设备所执行的全部接收或发送操作。比如通信单元502可以用于执行上述图3所示的实施例中第一终端设备执行的发送定位参考信号的操作,其中,处理单元501可以用于执行图3所示实施例中由第一终端设备所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。
例如,处理单元501,用于获取多个小区的路损参考配置信息,还用于根据所述多个小区中每个小区的路损参考配置信息确定所述每个小区对应的路损值,并根据所述多个小区中每个小区对应的路损值确定目标发送功率;其中所述路损参考配置信息用于指示所述多个小区的下行参考信号的配置参数;通信单元502,用于采用所述目标发送功率发射定位参考信号。
有关处理单元501和通信单元502所执行的其他操作,可以参见前述方法实施例的相关描述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元501中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移 动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
应理解,本申请实施例中的处理单元501可以由处理器或处理器相关电路组件实现,通信单元502可以由收发器或收发器相关电路组件或者通信接口实现。例如,上述实施例中的通信装置也可采用图6所示的形式。如图6所示的装置600,包括至少一个处理器610、存储器620,可选的,还可以包括通信接口630。
本申请实施例中不限定上述处理器610以及存储器620之间的具体连接介质。
在如图6的装置中,还包括通信接口630,处理器610在与其他设备进行通信时,可以通过通信接口630进行信号传输,比如,通信接口630可以用于向外发送定位参考信号或者SRS信号,还可以用于接收小区发送的下行参考信号。
当通信装置采用图6所示的形式时,图6中的处理器610可以通过调用存储器620中存储的计算机执行指令,使得装置600可以执行上述任一方法实施例中通信装置执行的方法。
本申请实施例还提供一种芯片系统,该芯片系统包括处理器,用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述任一实施例的方法。
在一种可能的实现方式中,该处理器通过接口与存储器耦合。
在一种可能的实现方式中,该芯片系统还包括存储器,该存储器中存储有计算机程序或计算机指令。
本申请实施例还涉及一种处理器,该处理器用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述任一实施例所述的方法。
应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种通信方法,其特征在于,所述方法应用于第一终端设备,所述方法包括:
    获取多个小区的路损参考配置信息;所述路损参考配置信息用于指示所述多个小区的下行参考信号的配置参数;
    根据所述多个小区中每个小区的路损参考配置信息确定所述每个小区对应的路损值;
    根据所述多个小区中每个小区对应的路损值确定目标发送功率,并采用所述目标发送功率发射定位参考信号。
  2. 根据权利要求1所述的方法,其特征在于,第一小区的路损参考配置信息包括如下至少一项:
    所述第一小区发送的下行参考信号的类型、所述第一小区发送的下行参考信号的标识、所述第一小区发送下行参考信号所使用的资源信息、所述第一小区发送下行参考信号的发送功率以及所述第一小区的优先级;
    其中,所述第一小区为所述多个小区中的任一小区。
  3. 根据权利要求2所述的方法,其特征在于,确定第一小区对应的路损值:
    根据所述第一小区发送下行参考信号所使用的资源信息,接收来自所述第一小区的下行参考信号;
    根据所述第一小区发送下行参考信号的发送功率和接收所述第一小区的下行参考信号的接收功率确定所述第一小区对应的路损值。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据所述多个小区中每个小区对应的路损值确定目标发送功率,包括:
    根据所述多个小区分别对应的路损值中的最大路损值确定所述目标发送功率。
  5. 根据权利要求2或3所述的方法,其特征在于,所述多个小区中每个小区的路损参考配置信息中包括所述每个小区的优先级;所述根据所述多个小区中每个小区对应的路损值确定目标发送功率,包括:
    根据所述优先级最高的小区对应的路损值确定所述目标发送功率。
  6. 根据权利要求3所述的方法,其特征在于,所述第一小区的路损参考配置信息包括所述第一小区发送的下行参考信号的类型为第一类型,所述接收来自所述第一小区的下行参考信号,包括:
    接收来自所述第一小区的属于所述第一类型的下行参考信号。
  7. 根据权利要求6所述的方法,其特征在于,所述属于所述第一类型的下行参考信号的数量为N,N为大于1的整数;所述根据所述第一小区发送下行参考信号的发送功率和接收所述第一小区的下行参考信号的接收功率确定所述第一小区对应的路损值,包括:
    将所述第一小区发送下行参考信号的发送功率减去N个下行参考信号的接收功率中的最大值,以得到所述第一小区对应的路损值。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述获取所述多个小区的路损参考配置信息,包括:
    接收来自所述多个小区中所述第一终端设备的服务小区的所述多个小区的路损参考配置信息;或者,
    接收来自所述多个小区覆盖范围内包括的多个终端设备中除第一终端设备外的任一终端设备的所述多个小区的路损参考配置信息;或者,
    接收来自定位管理单元LMF的所述多个小区的路损参考配置信息。
  9. 根据权利要求1-8任一项所述方法,其特征在于,所述多个小区位于所述第一终端设备的用户中心定位区域UCPA;所述方法还包括:
    确定所述第一终端设备的服务小区由第一小区切换到第二小区;
    其中,所述第一小区和所述第二小区为所述多个小区中的任两个小区。
  10. 根据权利要求9所述的方法,其特征在于,所述多个小区共用SRS资源集,所述SRS资源集中包括所述多个小区中每个小区对应的SRS资源信息;所述采用所述目标发送功率发射定位参考信号,包括:
    根据所述第二小区对应的SRS资源信息,以所述目标发送功率向所述第二小区发送SRS。
  11. 一种通信装置,其特征在于,所述装置为第一终端设备,或者所述装置应用于所述第一终端设备;所述装置包括:
    处理单元,用于获取多个小区的路损参考配置信息;所述路损参考配置信息用于指示所述多个小区的下行参考信号的配置参数;
    所述处理单元,还用于根据所述多个小区中每个小区的路损参考配置信息确定所述每个小区对应的路损值,并根据所述多个小区中每个小区对应的路损值确定目标发送功率;
    通信单元,用于采用所述目标发送功率发射定位参考信号。
  12. 根据权利要求11所述的装置,其特征在于,第一小区的路损参考配置信息包括如下至少一项:
    所述第一小区发送的下行参考信号的类型、所述第一小区发送的下行参考信号的标识、所述第一小区发送下行参考信号所使用的资源信息、所述第一小区发送下行参考信号的发送功率以及所述第一小区的优先级;
    其中,所述第一小区为所述多个小区中的任一小区。
  13. 根据权利要求12所述的装置,其特征在于,所述处理单元,在确定所述第一小区对应的路损值时,具体用于:
    根据所述第一小区发送下行参考信号所使用的资源信息,指示所述通信单元接收来自所述第一小区的下行参考信号;
    根据所述第一小区发送下行参考信号的发送功率和接收所述第一小区的下行参考信号的接收功率确定所述第一小区对应的路损值。
  14. 根据权利要求11-13任一项所述的装置,其特征在于,所述处理单元,具体用于:
    根据所述多个小区分别对应的路损值中的最大路损值确定所述目标发送功率。
  15. 根据权利要求12或13所述的装置,其特征在于,所述多个小区中每个小区的路损参考配置信息中包括所述每个小区的优先级;所述处理单元,具体用于:
    根据所述优先级最高的小区对应的路损值确定所述目标发送功率。
  16. 根据权利要求13所述的装置,其特征在于,所述第一小区的路损参考配置信息包括所述第一小区发送的下行参考信号的类型为第一类型,所述处理单元,具体用于:
    指示所述通信单元接收来自所述第一小区的属于所述第一类型的下行参考信号。
  17. 根据权利要求16所述的装置,其特征在于,所述属于所述第一类型的下行参考信号的数量为N,N为大于1的整数;所述处理单元,具体用于:
    将所述第一小区发送下行参考信号的发送功率减去N个下行参考信号的接收功率中的最大值,以得到所述第一小区对应的路损值。
  18. 根据权利要求11-17任一项所述的装置,其特征在于,所述处理单元,具体用于:
    通过所述通信单元接收来自所述多个小区中所述第一终端设备的服务小区的所述多个小区的路损参考配置信息;或者,
    通过所述通信单元接收来自所述多个小区覆盖范围内包括的多个终端设备中除第一终端设备外的任一终端设备的所述多个小区的路损参考配置信息;或者,
    通过所述通信单元接收来自定位管理单元LMF的所述多个小区的路损参考配置信息。
  19. 根据权利要求11-18任一项所述的装置,其特征在于,所述多个小区位于所述第一终端设备的用户中心定位区域UCPA;所述处理单元,还用于:
    确定所述第一终端设备的服务小区由第一小区切换到第二小区;
    其中,所述第一小区和所述第二小区为所述多个小区中的任两个小区。
  20. 根据权利要求19所述的装置,其特征在于,所述多个小区共用SRS资源集,所述SRS资源集中包括所述多个小区中每个小区对应的SRS资源信息;所述通信单元,具体用于:
    根据所述第二小区对应的SRS资源信息,以所述目标发送功率向所述第二小区发送SRS。
  21. 一种通信装置,其特征在于,包括:处理器和存储器;
    所述存储器用于存储程序;
    所述处理器用于执行所述存储器所存储的程序,以使所述装置实现如所述权利要求1-10中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被电子装置调用时,使所述电子装置执行如权利要求1-10中任一项所述的方法。
  23. 一种芯片系统,其特征在于,包括通信接口和处理器:
    所述通信接口,用于输入和/或输出信令或数据;
    所述处理器,用于执行计算机可执行程序,使得安装有所述芯片系统的设备执行如权利要求1-10任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-10中任一项所述的方法。
PCT/CN2023/138869 2023-01-19 2023-12-14 一种通信方法、装置、存储介质以及芯片系统 WO2024152813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310104265.5A CN118368713A (zh) 2023-01-19 2023-01-19 一种通信方法、装置、存储介质以及芯片系统
CN202310104265.5 2023-01-19

Publications (1)

Publication Number Publication Date
WO2024152813A1 true WO2024152813A1 (zh) 2024-07-25

Family

ID=91879099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138869 WO2024152813A1 (zh) 2023-01-19 2023-12-14 一种通信方法、装置、存储介质以及芯片系统

Country Status (2)

Country Link
CN (1) CN118368713A (zh)
WO (1) WO2024152813A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020181441A1 (zh) * 2019-03-08 2020-09-17 华为技术有限公司 通信方法、装置及系统
CN112787780A (zh) * 2019-11-07 2021-05-11 维沃移动通信有限公司 Srs发射设置方法、信息配置方法、定位方法和相关设备
CN114390656A (zh) * 2020-10-16 2022-04-22 大唐移动通信设备有限公司 一种功率确定方法、装置、终端及网络侧设备
CN115552984A (zh) * 2022-08-04 2022-12-30 北京小米移动软件有限公司 一种侧行链路sl定位参考信号prs的发送方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020181441A1 (zh) * 2019-03-08 2020-09-17 华为技术有限公司 通信方法、装置及系统
CN112787780A (zh) * 2019-11-07 2021-05-11 维沃移动通信有限公司 Srs发射设置方法、信息配置方法、定位方法和相关设备
CN114390656A (zh) * 2020-10-16 2022-04-22 大唐移动通信设备有限公司 一种功率确定方法、装置、终端及网络侧设备
CN115552984A (zh) * 2022-08-04 2022-12-30 北京小米移动软件有限公司 一种侧行链路sl定位参考信号prs的发送方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on Physical-Layer Procedures for NR Positioning", 3GPP TSG RAN WG1 #99, R1-1911850, 8 November 2019 (2019-11-08), XP051819871 *

Also Published As

Publication number Publication date
CN118368713A (zh) 2024-07-19

Similar Documents

Publication Publication Date Title
US10334422B2 (en) Methods and apparatus for wireless discovery location and ranging within a neighborhood aware network
EP3806505B1 (en) Communication method and apparatus, and storage medium
JP7575566B2 (ja) 情報送信方法および装置
KR101692661B1 (ko) 슬롯 기반의 d2d 통신 방법 및 장치
WO2022141184A1 (zh) 一种上行参考信号资源的配置方法及相关装置
WO2024032260A1 (zh) 一种通信方法、装置、存储介质以及芯片系统
WO2024152813A1 (zh) 一种通信方法、装置、存储介质以及芯片系统
CN114747289A (zh) 基于单时机周期值来适配最大允许的cca失败
WO2024212754A1 (zh) 一种通信方法、装置、存储介质以及芯片系统
WO2023184308A1 (en) Sidelink transfer and round trip time positioning
WO2023184333A1 (en) Positioning reference signal priority and zero power signals in sidelink
WO2023184319A1 (en) Reference signaling design and configuration mapping
WO2024152789A1 (zh) 通信的方法和装置
WO2023155887A1 (zh) 一种定位信息传输方法、装置、存储介质和芯片系统
US20240323910A1 (en) Wireless communication of positioning through sidelink
CN118985155A (zh) 参考信令设计和配置映射
TW202345633A (zh) 管理用於無線網路的跳變目標喚醒時間
CN117254893A (zh) 一种通信方法及装置
CN117643171A (zh) 多卡场景下的mg配置方法、装置、设备及存储介质
CN117956553A (zh) 业务通信方法、装置、设备及存储介质
CN118765527A (zh) 具有用于定位的资源配置的无线通信

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23917280

Country of ref document: EP

Kind code of ref document: A1