WO2024148470A1 - 极片、电极组件、电池单体、电池和用电设备 - Google Patents
极片、电极组件、电池单体、电池和用电设备 Download PDFInfo
- Publication number
- WO2024148470A1 WO2024148470A1 PCT/CN2023/071396 CN2023071396W WO2024148470A1 WO 2024148470 A1 WO2024148470 A1 WO 2024148470A1 CN 2023071396 W CN2023071396 W CN 2023071396W WO 2024148470 A1 WO2024148470 A1 WO 2024148470A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pole piece
- battery
- electrode sheet
- conductive
- electrode assembly
- Prior art date
Links
- 239000011149 active material Substances 0.000 claims description 27
- 238000002955 isolation Methods 0.000 claims description 21
- 238000003466 welding Methods 0.000 claims description 18
- 239000010949 copper Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000013543 active substance Substances 0.000 abstract 4
- 238000004804 winding Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 230000000712 assembly Effects 0.000 description 9
- 238000000429 assembly Methods 0.000 description 9
- 210000005069 ears Anatomy 0.000 description 8
- 239000007773 negative electrode material Substances 0.000 description 7
- 239000011888 foil Substances 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- -1 polypropylene Polymers 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- FDLZQPXZHIFURF-UHFFFAOYSA-N [O-2].[Ti+4].[Li+] Chemical compound [O-2].[Ti+4].[Li+] FDLZQPXZHIFURF-UHFFFAOYSA-N 0.000 description 1
- RLJDSHNOFWICBY-UHFFFAOYSA-N [P]=O.[Fe].[Li] Chemical compound [P]=O.[Fe].[Li] RLJDSHNOFWICBY-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/533—Electrode connections inside a battery casing characterised by the shape of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/213—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/534—Electrode connections inside a battery casing characterised by the material of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/536—Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/538—Connection of several leads or tabs of wound or folded electrode stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present application relates to the field of battery technology, and in particular to a pole piece, an electrode assembly, a battery cell, a battery and an electrical device.
- the present application provides a pole piece, an electrode assembly, a battery cell, a battery and an electrical device, which can improve the safety performance of the battery.
- a pole piece comprising: a current collector, an active material layer and a conductive structure; wherein the current collector comprises a main body portion and a pole ear portion arranged along a first direction, the main body portion is covered with the active material layer, the pole ear portion is not covered with the active material layer, and the conductive structure extends along the first direction and is connected to the pole ear portion to form a connection area; in a second direction, the size of the connection area is larger than the thickness of the main body area of the pole piece, so that the connection areas of adjacent layers are attached to each other after the electrode assembly is wound, wherein the second direction is the thickness direction of the pole piece, the second direction is perpendicular to the first direction, and the main body area of the pole piece is the area corresponding to the main body portion covered with the active material layer.
- the size of the connection area in the second direction is greater than the thickness of the main area of the pole piece, so that the connection areas of adjacent layers of the electrode assembly formed by winding the pole piece are attached to each other, so that there is no gap between the adjacent layers.
- the mutually attached connection areas can prevent the laser from passing through the gap between the conductive structures and burning the isolation film; it can also prevent foreign matter such as metal burrs generated during battery processing from entering the gap, damaging the isolation film or causing an internal short circuit, thereby improving the safety performance of the battery.
- the conductive structure includes a first conductive portion and a second conductive portion, and the first conductive portion and the second conductive portion are respectively connected to two sides of the pole ear portion in the second direction.
- the current collector includes an insulating layer and a first conductive layer and a second conductive layer disposed on both sides of the insulating layer, and the first conductive portion and the second conductive portion are connected to the first conductive layer and the second conductive layer, respectively.
- the insulating layer in the current collector is heated to produce a short-circuit effect, which can improve the safety of the battery cell.
- the first conductive part and the second conductive part can collect the current on the first conductive layer and the second conductive layer, thereby improving the current carrying capacity.
- connection area is a weld mark area formed by welding the conductive structure and the pole ear portion.
- the conductive structure can be tightly connected to the pole ear portion, and the size of the connection area is easy to control and the processing difficulty is low.
- the size D of the connection area satisfies: D ⁇ d1+d2+2d3, wherein d1 is the thickness of the main area of the pole piece, d2 is the thickness of the main area of the pole piece of opposite polarity that forms an electrode assembly with the pole piece, and d3 is the thickness of the isolation membrane that forms an electrode assembly with the pole piece.
- the thickness of the connection area can be controlled within a suitable range, and the gaps between the electrode assemblies can be filled.
- the size D of the connection area is less than the limit of the above formula, on the one hand, the thickness of the connection area is too small to prevent the isolation film from being burned when the electrode assembly is wound and welded to the top cover.
- the size D of the connection area should not be too small.
- a dimension H of the connection area is 2 mm-9 mm.
- a size H1 of the connection area is 3 mm-11 mm.
- connection area in the first direction can be made appropriate, so as not to affect the winding of the electrode assembly and not to occupy too much space, thereby taking into account both safety performance and energy density.
- a size H2 of the conductive structure is 3 mm-12 mm.
- the material of the conductive structure is at least one of copper and aluminum.
- the material of the conductive structure is easy to obtain and has low cost, and is convenient for processing and preparing the conductive structure.
- an electrode assembly comprising: a positive electrode sheet, a separator and a negative electrode sheet, wherein the separator is arranged between the positive electrode sheet and the negative electrode sheet, the positive electrode sheet, the separator and the negative electrode sheet are wound together, and the positive electrode sheet and/or the negative electrode sheet are respectively the electrode sheets in the first aspect or any possible embodiment of the first aspect.
- the pole ear portion of the positive electrode sheet and the pole ear portion of the negative electrode sheet are arranged opposite to each other along the first direction.
- the conductive structure of the outermost layer of the positive electrode sheet is coated with an insulating film.
- a battery cell comprising an electrode assembly as in the second aspect or any possible embodiment of the second aspect; a shell having openings at both ends, the shell being used to accommodate the electrode assembly; and a top cover connected to an end of the conductive structure away from the main body and covering the opening.
- a battery comprising a battery cell as in the third aspect or any possible embodiment of the third aspect.
- an electrical device comprising a battery as in the fourth aspect or any possible implementation of the fourth aspect, wherein the battery is used to provide electrical energy to the electrical device.
- FIG1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
- FIG2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application.
- FIG3 is a schematic diagram of an exploded structure of a battery cell disclosed in an embodiment of the present application.
- FIG4 is a schematic diagram of the structure of a pole piece disclosed in an embodiment of the present application.
- FIG5 is a schematic diagram of the structure of a pole piece disclosed in another embodiment of the present application.
- FIG6 is a partial cross-sectional view of an electrode assembly disclosed in an embodiment of the present application.
- FIG7 is a top view of an electrode assembly disclosed in an embodiment of the present application.
- FIG8 is a schematic diagram of the structure of an electrode assembly and a top cover after welding according to an embodiment of the present application.
- figure numbers are explained as follows: 1-vehicle, 10-battery, 20-controller, 30-motor, 100-battery cell, 300-casing, 301-upper casing, 302-lower casing, 110-shell, 120-electrode assembly, 121-first pole piece, 122-second pole piece, 123-isolation membrane, 130-end cover assembly, 131-end cover, 132-electrode terminal, 200-pole piece, 201-current collector, 201a-main body, 201b-ear part, 202-active material layer, 203-conductive structure, 204-connection area, insulating layer-2011, first conductive layer-2012, second conductive layer-2013.
- the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
- a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
- the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
- multiple refers to more than two (including two).
- multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
- a battery refers to a physical module that includes one or more battery cells to provide electrical energy.
- the battery mentioned in this application may include a battery module or a battery pack.
- a battery generally includes a box for encapsulating one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
- the battery cell may include a lithium-ion secondary battery, a lithium-ion primary battery, a lithium-sulfur battery, a sodium-lithium-ion battery, a sodium-ion battery or a magnesium-ion battery, etc., which is not limited in the embodiments of the present application.
- multiple battery cells in the battery can be connected in series, in parallel or in hybrid connection, where hybrid connection refers to a mixture of series and parallel connection.
- multiple battery cells can be connected in series, in parallel or in hybrid connection to form a battery module, and multiple battery modules can be connected in series, in parallel or in hybrid connection to form a battery.
- multiple battery cells can be directly formed into a battery, or they can be first formed into a battery module, and the battery module can then be formed into a battery.
- the battery is further arranged in an electrical device to provide electrical energy for the electrical device.
- the battery cell includes an electrode assembly and an electrolyte.
- the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
- the battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
- the positive electrode sheet includes a positive electrode collector and a positive electrode active material layer.
- the positive electrode active material layer is coated on the surface of the positive electrode collector.
- the positive electrode collector not coated with the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer.
- the positive electrode collector not coated with the positive electrode active material layer serves as the positive electrode tab.
- the positive electrode collector and the negative electrode collector can be collectively referred to as the current collector.
- the material of the positive electrode collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide.
- the negative electrode sheet includes a negative electrode collector and a negative electrode active material layer.
- the negative electrode active material layer is coated on the surface of the negative electrode collector.
- the current collector not coated with the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer.
- the current collector not coated with the negative electrode active material layer serves as the negative electrode tab.
- the negative electrode current collector may be made of copper, and the negative electrode active material may be graphite, carbon or silicon. In order to ensure that a large current can pass without melting, the positive electrode tabs are multiple and stacked together, and the negative electrode tabs are multiple and stacked together.
- the material of the separator may be polypropylene (PP) or polyethylene (PE).
- Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields.
- electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields.
- the market demand is also constantly expanding.
- multiple cylindrical battery cells are often used in new energy vehicles to form battery modules.
- Batteries can be divided into single-pole ears, bipolar ears, multi-pole ears and full-pole ears according to the number and area of the pole ears.
- the full-pole ear structure is a common structure of cylindrical batteries.
- the full-pole ear structure refers to the entire positive and negative electrode current collectors as pole ears, and the current collectors are connected to the battery shell or the battery top cover in the entire area.
- the full pole ears of the positive and negative electrodes of the wound electrode assembly need to be shaped, squeezed into a plane and higher than the diaphragm by a certain distance, so as to facilitate welding with the top cover in the subsequent process, that is, welding with the current collector in the top cover.
- Many problems may occur during the flattening process. For example, when the flattening speed is too fast, the pole piece may turn outward, resulting in a short circuit in the shell. When the flattening speed is too slow, the production efficiency is low.
- the metal scraps generated during the flattening enter the electrode assembly or the pole ear is inserted during the flattening process, which may cause problems such as internal short circuits in the electrode assembly.
- the flattening process is not suitable.
- the laser may penetrate the isolation membrane through the gap between the pole ears, affecting the safety performance of the battery.
- an embodiment of the present application provides a pole piece, comprising: a current collector, an active material layer and a conductive structure; wherein the current collector comprises a main body portion and a pole ear portion arranged along a first direction, the main body portion is covered with the active material layer, the pole ear portion is not covered with the active material layer, and the conductive structure extends along the first direction and is connected to the pole ear portion to form a connection area; in the second direction, the size of the connection area is greater than the thickness of the main body area of the pole piece, so that the connection areas of adjacent layers are attached to each other after the electrode assembly is wound, wherein the second direction is the thickness direction of the pole piece, the second direction is perpendicular to the first direction, and the main body area of the pole piece is the area corresponding to the main body portion covered with the active material layer.
- the pole piece in the embodiment of the present application makes the size of the connection area in the second direction larger than the thickness of the main area of the pole piece, so that the connection areas of adjacent layers of the electrode assembly formed by winding the pole piece are attached to each other, so that there is no gap between the adjacent layers.
- the mutually attached connection areas can prevent the laser from passing through the gap between the conductive structures and burning the isolation film; it can also prevent foreign matter such as metal burrs generated during battery processing from entering the gap, damaging the isolation film or causing an internal short circuit, thereby improving the safety performance of the battery.
- Electrical equipment may be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys, and electric tools, etc.
- Vehicles may be fuel vehicles, gas vehicles, or new energy vehicles, and new energy vehicles may be pure electric vehicles, hybrid vehicles, or extended-range vehicles, etc.
- spacecraft include airplanes, rockets, space shuttles, and spacecraft, etc.
- electric toys include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, and electric airplane toys, etc.
- electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools, and railway electric tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, and electric planers, etc.
- the embodiments of the present application do not impose any special restrictions on the above-mentioned electrical equipment.
- FIG1 is a schematic diagram of the structure of a vehicle 1 provided in one embodiment of the present application.
- the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle.
- the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
- a motor 30, a controller 20 and a battery 10 may be provided inside the vehicle 1.
- the controller 20 is used to control the battery 10 to supply power to the motor 30.
- a battery 10 may be provided at the bottom, front or rear of the vehicle 1.
- the battery 10 may be used to supply power to the vehicle 1.
- the battery 10 may be used as an operating power source for the vehicle 1, for the circuit system of the vehicle 1, for example, for the working power requirements during the start-up, navigation and operation of the vehicle 1.
- the battery 10 may not only be used as an operating power source for the vehicle 1, but also as a driving power source for the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
- the battery 10 may include multiple battery cells.
- Figure 2 is a schematic diagram of the decomposed structure of a battery 10 according to an embodiment of the present application.
- the battery 10 may include multiple battery cells 100.
- the number of battery cells 100 can be set to any value.
- Multiple battery cells 100 can be connected in series, parallel or mixed to achieve a larger capacity or power, wherein mixed means that multiple battery cells 100 are both connected in series and in parallel.
- Multiple battery cells 100 can be directly connected in series, in parallel or mixed together, and then the whole formed by multiple battery cells 100 is accommodated in the box 300.
- the battery 10 may also include other structures, such as a confluence component (not shown in the figure), which is used to achieve electrical connection between multiple battery cells 100.
- the battery 10 may also include a case 300 (or a cover), the interior of the case 300 is a hollow structure, and a plurality of battery cells 100 are accommodated in the case 300.
- the case 300 may include two parts, which are respectively referred to as an upper case 301 and a lower case 302, and the upper case 301 and the lower case 302 are buckled together.
- the shapes of the upper case 301 and the lower case 302 may be determined according to the shapes of the combination of the plurality of battery cells 100, and at least one of the upper case 301 and the lower case 302 may have an opening.
- the upper case 301 and the lower case 302 included in the case 300 may be a hollow shell with an opening, and the other may be in a plate shape to cover the opening on the shell.
- the lower box 302 is a hollow shell with only one face as an open face
- the upper box 301 is a plate-shaped example.
- the upper box 301 covers the opening of the lower box 302 to form a box 300 with a closed chamber, which can be used to accommodate multiple battery cells 100.
- the upper box 301 and the lower box 302 included in the box 300 in the embodiment of the present application can also have other shapes.
- the upper box 301 and the lower box 302 can both be hollow shells and each have only one face as an open face.
- the opening of the upper box 301 and the opening of the lower box 302 are arranged oppositely, and the upper box 301 and the lower box 302 are buckled together to form a box 300 with a closed chamber.
- Multiple battery cells 100 are connected in parallel, in series, or in a mixed combination and are placed in the box formed by buckling the upper box 301 and the lower box 302.
- the box body 300 can be set to different shapes such as a cuboid, a cylinder, etc. according to the number and structure type of the battery cells 100 it accommodates, and the present application does not limit this.
- Each battery cell 100 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
- FIG3 is a schematic diagram of the exploded structure of a battery cell 100 provided in some embodiments of the present application.
- the battery cell 100 may include a shell 110, an electrode assembly 120 and a top cover 130.
- the shell 110 and the top cover 130 form a shell or a battery box, and the wall of the shell 110 and the wall of the top cover 130 are both called the wall of the battery cell 100.
- the shell 110 is determined according to the shape of one or more electrode assemblies 120 after combination.
- the shell 110 may be a hollow cylinder as shown in FIG3, or, if the battery cell 100 is a blade-type battery cell, the shell 110 may be a rectangular parallelepiped with a longer length.
- the shell 110 has an opening so that one or more electrode assemblies 120 are placed in the shell 110.
- the end face of the shell 110 is an open face, that is, the end face does not have a wall body so that the shell 110 communicates with the inside and outside.
- the cylindrical battery cell 100 has two circular end faces, between which there is a cylinder, and the cylinder portion may include an electrode assembly 120.
- the top cover 130 covers the opening and is connected to the housing 110 to form a closed cavity to prevent the electrode assembly 120.
- the housing 110 is filled with an electrolyte, such as an electrolyte.
- the top cover 130 includes an end cover 131 and an electrode terminal 132.
- the electrode terminal 132 may be disposed on the end cover 131.
- the top cover 130 also includes a connecting member, or may also be referred to as a current collecting member, for electrically connecting the electrode assembly 120 and the electrode terminal 132.
- Each electrode assembly 120 may have two tabs, for example, a first tab and a second tab, the first tab and the second tab having opposite polarities. For example, when the first tab is a positive tab, the second tab is a negative tab.
- the first tab of one or more electrode assemblies 120 is connected to an electrode terminal via a connecting member, and the second tab of one or more electrode assemblies 120 is connected to another electrode terminal via another connecting member.
- the two electrode terminals may be simultaneously disposed on the same end face of the battery cell 100, or may be respectively disposed on two end faces of the battery cell 100.
- the electrode assembly 120 may be provided as a single electrode assembly or multiple electrode assemblies according to actual use requirements. For example, one electrode assembly 120 is provided in the battery cell 100 shown in FIG. 3 .
- FIG. 4 is a schematic diagram of the structure of the pole piece 200 provided in the embodiment of the present application.
- the pole piece 200 includes a current collector 201, an active material layer 202 and a conductive structure 203; wherein the current collector 201 includes a main body 201a and a pole ear 201b arranged along a first direction X, the main body 201a is covered with an active material layer 202, and the pole ear 201b is not covered with the active material layer 202; the conductive structure 203 extends along the first direction X and is connected to the pole ear 201b to form a connection area 204, and in the second direction, the size of the connection area 204 is greater than the thickness of the main body 201a of the pole piece 200, so that the connection areas 204 of adjacent layers are attached to each other after the electrode assembly 120 is wound, wherein the second direction Y is the thickness direction of
- connection areas 204 of adjacent layers of the electrode assembly 120 formed by winding the pole piece 200 are attached to each other, so that there is no gap between the adjacent layers.
- the mutually attached connection areas 204 can prevent the laser from passing through the gap between the conductive structures and burning the isolation membrane 123; it can also prevent foreign matter such as metal burrs generated during battery processing from entering the gap, damaging the isolation membrane 123 or causing an internal short circuit, thereby improving the safety performance of the battery.
- the main body 201a of the current collector 201 is covered with an active material layer 202.
- the current collector 201 is used to collect the current generated by the active material in the active material layer 202 so as to form a larger current output.
- the current collector 201 should be in full contact with the active material, and the internal resistance should be as small as possible.
- the pole piece 200 shown in Figure 4 can be a negative pole piece or a positive pole piece, and this application does not limit this.
- the active material layer 202 can include lithium nickel oxide, lithium cobalt oxide, lithium titanium oxide, nickel cobalt multi-element oxide, lithium manganese oxide, lithium iron phosphorus oxide, etc.
- the active material layer 202 can include carbon materials, such as graphite, soft carbon (such as coke), hard carbon, etc., and can also include non-carbon materials, such as nitrides, PAS, tin-based oxides, tin alloys, nano-negative electrode materials, and some other intermetallic compounds.
- carbon materials such as graphite, soft carbon (such as coke), hard carbon, etc.
- non-carbon materials such as nitrides, PAS, tin-based oxides, tin alloys, nano-negative electrode materials, and some other intermetallic compounds.
- the conductive structure 203 is used to connect with the pole ear portion 201b of the current collector 201 to ensure the current capacity of the battery.
- the conductive structure 203 can be used for welding with the top cover to lead out the electric energy of the battery cell.
- the size of the connection area 204 formed by the connection between the conductive structure 203 and the pole ear portion 201b in the second direction is greater than the thickness of the main area of the pole piece 200, so that the connection areas 204 of adjacent layers of the electrode assembly 120 formed by winding the pole piece 200 are attached to each other, so that the mutually attached connection areas 204 can cover the isolation film 123 between the pole pieces 200.
- the size of the connection area 204 in the second direction Y is greater than the thickness of the main area of the pole piece 200, so that the connection areas 204 of the adjacent coils of the electrode assembly 120 formed by winding the pole piece 200 are attached to each other, so that there is no gap between the adjacent coils.
- the mutually attached connection areas 204 can prevent the laser from passing through the gap between the conductive structures 203 and burning through the isolation film, and can also prevent foreign objects such as metal burrs generated during battery processing from entering the gap and causing internal short circuits, thereby improving the safety performance of the battery.
- the flattening process can be omitted, thereby avoiding the problems of burrs generated during the flattening process entering the interior of the electrode assembly and the insertion of the pole ear.
- the conductive structure 203 includes a first conductive portion 203a and a second conductive portion 203b, and the first conductive portion 203a and the second conductive portion 203b are respectively connected to both sides of the pole ear portion 201b in the second direction Y.
- the current carrying capacity of the pole ear portion 201b can be improved.
- FIG5 shows a schematic diagram of the structure of a pole piece provided in another embodiment of the present application.
- the current collector 201 includes an insulating layer 2011 and a first conductive layer 2012 and a second conductive layer 2013 arranged on both sides of the insulating layer 2011, and the first conductive portion 203a and the second conductive portion 203b are respectively connected to the first conductive layer 2012 and the second conductive layer 2013.
- the first conductive layer 2012, the insulating layer 2011 and the second conductive layer 2013 can be stacked in sequence along the second direction Y.
- the insulating layer 2011 can be a polymer material such as polypropylene (PP) or thermoplastic polyester (PET), and the first conductive layer 2012 and the conductive layer can be metal materials, for example, copper, or aluminum.
- the first conductive layer 2012 and the second conductive layer 2013 can be connected to the insulating layer 2011 by vacuum coating. Furthermore, the first conductive layer 2012 and the second conductive layer 2013 are partially coated with the active material layer 202 on the surface away from the insulating layer 2011.
- the first conductive portion 203a is connected to the partial area of the surface of the first conductive layer 2012 away from the insulating layer 2011 that is not coated with the active material layer 202
- the second conductive portion 203b is connected to the partial area of the surface of the second conductive layer 2013 away from the insulating layer 2011 that is not coated with the active material layer 202.
- the first conductive portion 203a and the second conductive portion 203b can be connected by integral molding, welding, bonding, etc.
- the first conductive part 203a and the second conductive part 203b are connected by an integral molding method
- the first conductive part 203a and the second conductive part 203b are equivalent to the first conductive part 203a and the second conductive part 203b, which can be made of metal foil
- the first conductive part 203a and the second conductive part 203b are respectively welded on the first conductive layer 2012 and the second conductive layer 2013.
- the first conductive part and the second conductive part can collect the current on the first conductive layer and the second conductive layer, thereby improving the current capacity of the battery.
- the thickness of the first conductive layer 2012 and the second conductive layer 2013 can be reduced under the premise that the thickness of the current collector 201 remains unchanged.
- the burrs generated in the first conductive layer 2012 and the second conductive layer 2013 at the part pierced by the foreign object are relatively small, which increases the difficulty of piercing the isolation membrane 123, thereby avoiding short circuits and improving the safety performance of the battery.
- the insulating layer 2011 in the current collector 201 is heated to produce a circuit-breaking effect, which can also avoid short circuits and improve the safety performance of the battery cell.
- connection area 204 in the embodiment of the present application may be a weld mark area formed by welding the conductive structure 203 and the pole ear portion 201b. Forming the connection area 204 by welding can make the conductive structure 203 and the pole ear portion 201b tightly connected, and the size of the connection area 204 is easy to control, and the processing difficulty is low.
- the weld mark area can be formed by roller welding. By using the roller welding processing method to form the weld mark area, the weld mark area can be formed at one time, further reducing the complexity of processing.
- FIG6 is a partial cross-sectional structural diagram of an electrode assembly 120 formed by winding a pole piece 200 provided in an embodiment of the present application
- FIG7 is a top view of an electrode assembly 120 formed by winding a pole piece 200 provided in an embodiment of the present application.
- the electrode assembly 120 includes: a first pole piece 121, a second pole piece 122, and a separator 123, wherein the first pole piece 121 and the second pole piece 122 have opposite polarities, that is, the first pole piece 121 is a positive pole piece, and the second pole piece 122 is a negative pole piece, or the first pole piece 121 is a negative pole piece, and the second pole piece 122 is a positive pole piece, and the present application does not limit this, and the separator 123 is arranged between the first pole piece 121 and the second pole piece 122 to prevent a short circuit between the positive and negative pole pieces.
- the first pole piece 121, the separator 123, and the second pole piece 122 are stacked and wound in sequence to form a wound electrode assembly 120.
- the first pole piece 121 and the second pole piece 122 are respectively the pole pieces 200 provided in the embodiments of the present application, and the pole ear regions of the first pole piece 121 and the second pole piece 122 are arranged opposite to each other along the first direction X.
- the coil layer of the electrode assembly 120 is composed of the main body of the first pole piece 121, the main body of the second pole piece 122, and the isolation film 123, wherein, therefore, in order to enable the connection area 204 to play a role in preventing the laser from burning the isolation film 123, in the second direction Y, the minimum thickness of each coil layer is at least the sum of the thickness of the main area of the first pole piece 121, the thickness of the main area of the second pole piece 122, and the thickness of the two layers of isolation film 123.
- connection area 204 in the second direction Y is too small, the connection area 204 of the adjacent coil layers after winding cannot be overlapped, and the isolation film 123 cannot be prevented from being burned when the electrode assembly 120 after winding is welded to the top cover.
- the size of the connection area 204 satisfies: D ⁇ d1+d2+2d3, wherein d1 is the thickness of the main area of the pole piece 200, d2 is the thickness of the main area of the pole piece of the opposite polarity that forms the electrode assembly 120 with the pole piece, and d3 is the thickness of the isolation film 123 that forms the electrode assembly 120 with the pole piece.
- the thickness of the main area of the pole piece 200 is the sum of the thickness of the current collector 201 and the thickness of the active material layer 202 on both sides of the current collector 201.
- the thickness of the connection area 204 is too small.
- the size D of the connection area 204 should not be too small.
- the dimension H of the connection area 204 is 2 mm-9 mm. If the dimension of the connection area 204 in the second direction Y is too small, for example, less than 2 mm, it is difficult for the connection area 204 to meet the requirements of overlapping each other after winding, and it is difficult to prevent the isolation film from being burned when the electrode assembly is welded to the top cover after winding, and it will increase the processing difficulty of the connection area 204 and the pole piece 200.
- connection area 204 in the second direction Y is too large, for example, greater than 9 mm, it will cause gaps between the coils after winding, and the volume of the connection area 204 is too large, resulting in low energy density of the battery, or causing the problem of winding bulging edge during the winding process of the pole piece 200, affecting the production efficiency of the battery.
- the size H1 of the connection area 204 is 3mm-11mm. If the size of the connection area 204 in the first direction X is too small, on the one hand, the possibility of the connection area 204 being burned through when the conductive structure 203 is welded to the top cover will increase, affecting the conductivity and long-term stability of the current collector 201. On the other hand, the processing difficulty of the connection area 204 will increase, affecting the process stability of the battery. If the size of the connection area 204 in the first direction X is too large, for example, greater than 11mm, it will affect the winding of the electrode assembly 120, occupy too much space, and affect the energy density of the battery. Therefore, limiting the size H1 of the connection area 204 in the first direction X to within the above range can take into account both the safety performance and energy density of the battery.
- the size H2 of the conductive structure 203 is 3 mm-12 mm. If the size of the conductive structure 203 in the first direction X is too small, it will affect the conductivity and long-term stability of the current collector 201, and it is not easy to weld. If the size of the conductive structure 203 in the first direction X is too large, the energy density of the battery will be reduced. Therefore, limiting the size H2 of the conductive structure 203 in the first direction X to the above range can ensure normal conductive function and facilitate welding without taking up too much space, thereby ensuring the energy density of the battery.
- the material of the conductive structure 203 may include at least one of copper and aluminum.
- the conductive structure 203 may be made of a metal foil, such as a Cu/Al foil.
- the conductive structure 203 is a Cu/Al foil, the Cu/Al foil is welded to the metal layer of the current collector 201, and the current generated by the metal layer of the current collector 201 can be gradually introduced into the battery's tabs, electrode columns and other structures through the Cu/Al foil.
- the embodiment of the present application also provides an electrode assembly, which may be the electrode assembly 120 as shown in FIG6 , the electrode assembly 120 includes a positive electrode sheet, a separator and a negative electrode sheet, the separator is arranged between the positive electrode sheet and the negative electrode sheet, the positive electrode sheet, the separator and the negative electrode sheet are wound, wherein the positive electrode sheet and/or the negative electrode sheet are respectively the electrode sheet 200 provided in the embodiment of the present application, and the ear portion of the positive electrode sheet and the ear portion of the negative electrode sheet are arranged relatively along the first direction X.
- the electrode assembly may be the electrode assembly 120 shown in FIG6 .
- the description of the positive electrode sheet and the negative electrode sheet is the same as that of the aforementioned electrode sheet 200, and will not be repeated here.
- the separator may be polypropylene or polyethylene (PE).
- the conductive structure 203 of the outermost circle of the positive electrode sheet 21 is coated with an insulating film. Covering the conductive structure of the outermost circle of the positive electrode sheet 21 with an insulating film can prevent the electrode assembly from contacting the battery shell or the conductive structure outside the electrode assembly, affecting the safety of the battery.
- the present application also provides a battery cell, which may be the battery cell 100 shown in FIG. 3 , and the battery cell 100 includes the shell 110, the electrode assembly 120 and the top cover 130 described above, the shell 110 has openings at both ends, the shell 110 is used to accommodate the electrode assembly 120, and the top cover 130 is connected to the end of the conductive structure 203 away from the main body 201a, and covers the opening of the shell 110.
- the production process of the above-mentioned battery cell 100 may include coating, cold pressing, roller welding, gluing, striping, winding, and laser welding of the top cover 130 in sequence.
- FIG. 7 is a schematic diagram of the structure after welding the electrode assembly 120 and the top cover 130 provided in an embodiment of the present application. As shown in FIG. 7 , a welding area 134 is formed after welding the electrode assembly 120 and the top cover 130.
- the present application also provides a battery 10, which may be the battery 10 shown in FIG. 2.
- the battery 10 includes the battery cell 100 described above, and the battery 10 also includes a box 300, wherein the box 300 is used to accommodate the battery cell 100.
- the number of the battery cell 100 may be one or more, which is not limited in the present application.
- the present application also provides an electrical device, including the battery 10 described above, and the battery 10 is used to supply power to the electrical device.
- the electrical device can be a vehicle 1 shown in FIG. 1 , and the vehicle can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
- a motor 30, a controller 20 and a battery 10 can be arranged inside the vehicle, and the controller 20 is used to control the battery 10 to supply power to the motor 30.
- a battery 10 can be arranged at the bottom or the front or rear of the vehicle.
- the battery 10 can be used to power the vehicle, for example, the battery 10 can be used as an operating power source for the vehicle, for the circuit system of the vehicle, for example, for the working power requirements during the start-up, navigation and operation of the vehicle.
- the battery 10 can not only be used as an operating power source for the vehicle, but also as a driving power source for the vehicle, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本申请实施例提供一种极片,包括:集流体、活性物质层及导电结构;其中,集流体包括沿第一方向设置的主体部和极耳部,主体部覆盖有活性物质层,极耳部未覆盖有活性物质层,导电结构沿第一方向延伸且连接于极耳部形成连接区;在第二方向上,连接区的尺寸大于极片的主体区域的厚度,以使电极组件卷绕后相邻圈层的连接区相互附接,其中,第二方向为极片的厚度方向,第二方向垂直于所述第一方向,极片的主体区域为覆盖有活性物质层的主体部对应的区域。本申请实施例提供的极片能够提升电池的安全性能。本申请还提供包括上述极片的电极组件、电池单体、电池和用电设备。
Description
本申请涉及电池技术领域,特别是涉及一种极片、电极组件、电池单体、电池和用电设备。
随着环境污染的日益加剧,新能源产业越来越受到人们的关注。在新能源产业中,电池技术是关乎其发展的一项重要因素。
在电池技术的发展过程中,如何提高电池的安全性能,是电池技术中一个亟需解决的问题。
发明内容
鉴于上述问题,本申请提供一种极片、电极组件、电池单体、电池和用电设备,可以提高电池的安全性能。
第一方面,提供了一种极片,包括:集流体、活性物质层及导电结构;其中,该集流体包括沿第一方向设置的主体部和极耳部,该主体部覆盖有活性物质层,该极耳部未覆盖有活性物质层,该导电结构沿该第一方向延伸且连接于该极耳部形成连接区;在第二方向上,该连接区的尺寸大于该极片的主体区域的厚度,以使电极组件卷绕后相邻圈层的该连接区相互附接,其中,该第二方向为该极片的厚度方向,该第二方向垂直于该第一方向,该极片的主体区域为覆盖有该活性物质层的该主体部对应的区域。
通过以上实施方式,连接区在第二方向上的尺寸大于极片主体区域的厚度,从而使得由极片卷绕而成的电极组件的相邻圈层的连接区相互附接,能够使得相邻圈层之间无缝隙,当导电结构与顶盖激光焊接时,相互附接的连接区能够防止激光穿过导电结构之间的缝隙灼伤隔离膜;也能够防止电池加工时产生的金属毛刺等异物进入缝隙,损伤隔离膜或者导致内部短路,从而提升电池的安全性能。
在第一方面的一些可能的实施方式中,该导电结构包括第一导电部和第二导电部,该第一导电部和该第二导电部分别连接于该极耳部的该第二方向上的两侧。通过以上实施方式,能够提高极耳部的过流能力。
在第一方面的一些可能的实施方式中,该集流体包括绝缘层和设置在绝缘层两侧的第一导电层和第二导电层,该第一导电部和该第二导电部分别与该第一导电层和该第二导电层连接。
通过以上实施方式,在电池单体发生热失控时,集流体中的绝缘层受热发生断路效应,可以提高电池单体的安全性,同时,第一导电部和第二导电部能够将第一导电层和第二导电层上的电流汇集,从而提高过流能力。
在第一方面的一些可能的实施方式中,该连接区为该导电结构与该极耳部焊接形成的焊印区。
通过以上实施方式,能够使得导电结构与极耳部紧密连接,且连接区的尺寸易于控制,加工难度低。
在第一方面的一些可能的实施方式中,在该第二方向上,该连接区的尺寸D满足:D≥d1+d2+2d3,其中,d1为该极片的主体区域的厚度,d2为与该极片形成电极组件的相反极性极片的主体区域的厚度,d3为与该极片形成电极组件的隔离膜的厚度。
通过以上实施方式,能够将连接区的厚度控制在合适的范围内, 能够填充电极组件之间的缝隙。当连接区的尺寸D小于上述公式的限制时,一方面连接区的厚度过小,难以起到防止电极组件卷绕后与顶盖焊接时灼伤隔离膜的作用,另一方面,电极组件卷绕后相邻圈层的该连接区之间会存在缝隙,电池加工过程中可能会有异物进入电极组件,影响电池的安全性能,因此该连接区的尺寸D不宜过小。
在第一方面的一些可能的实施方式中,在该第二方向上,该连接区的尺寸H为2mm-9mm。
通过以上实施方式,可以兼顾连接区的体积和安全性能。
在第一方面的一些可能的实施方式中,在该第一方向上,该连接区的尺寸H1为3mm-11mm。
通过以上实施方式,能够使得连接区在第一方向上的尺寸合适,不影响电极组件的卷绕,同时不会占用过多空间,从而能够兼顾安全性能和能量密度。
在第一方面的一些可能的实施方式中,在该第一方向上,该导电结构的尺寸H2为3mm-12mm。
通过以上实施方式,既可以保证导电功能正常和便于焊接,又不会占用过多空间,保证能量密度。
在第一方面的一些可能的实施方式中,该导电结构的材料为铜、铝中的至少一种。
通过以上实施方式,导电结构的材料便于获取,成本低廉,便于导电结构的加工制备。
第二方面,提供了一种电极组件,包括:正极片、隔离膜和负极片,其中,该隔离膜设置在该正极片和该负极片之间,该正极片、该隔离膜和该负极片卷绕设置,该正极片和/或该负极片分别为如第一方面或第一方面任意可能的实施方式中的极片。
在第二方面一些可能的实施方式中,该正极片的极耳部和该负极片的极耳部沿该第一方向相对设置。
在第二方面一些可能的实施方式中,该正极片最外侧的圈层的该导电结构包覆有绝缘膜。
通过以上实施方式,能够防止电极组件与壳体发生短路,提高电池的安全性能。
第三方面,提供了一种电池单体,包括如第二方面或第二方面任意可能的实施方式中的电极组件;壳体,该壳体的两端具有开口,该壳体用于容纳该电极组件;顶盖,该顶盖与该导电结构的远离该主体部的一端连接,并盖合该开口。
第四方面,公开了一种电池,包括如第三方面或第三方面任意可能的实施方式中的电池单体。
第五方面,公开了一种用电设备,包括如第四方面或第四方面任意可能的实施方式中的电池,该电池用于为该用电设备提供电能。
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池单体的分解结构示意图;
图4是本申请一实施例公开的一种极片的结构示意图;
图5是本申请另一实施例公开的一种极片的结构示意图;
图6是本申请一实施例公开的一种电极组件的局部剖视图;
图7是本申请一实施例公开的一种电极组件的俯视图;
图8是本申请一实施例公开的一种电极组件与顶盖焊接后的结构示意图。
在附图中,附图并未按照实际的比例绘制。
其中,附图标记说明如下:1-车辆,10-电池,20-控制器,30-马达,100-电池单体,300-箱体,301-上箱体,302-下箱体,110-壳体,120-电极组件,121-第一极片,122-第二极片,123-隔离膜,130-端盖组件,131-端盖,132-电极端子,200-极片,201-集流体,201a-主体部,201b-极耳部,202-活性物质层,203-导电结构,204-连接区,绝缘层-2011,第一导电层-2012,第二导电层-2013。
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的 具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语 “安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
本申请中,电池是指包括一个或多个电池单体以提供电能的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
可选地,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。
为了满足不同的电力需求,电池中的多个电池单体之间可以串联、并联或混联,其中混联是指串联和并联的混合。可选地,多个电池单体可以先串联、并联或混联组成电池模块,多个电池模块再串联、并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。电池再进一步设置于用电设备中,为用电设备提供电能。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移 动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。正极集流体和负极集流体可以统称为集流体。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为石墨、碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。例如,新能源汽车中常用多个圆柱形电池单体组成电池模块。电池根据极耳数量和面积差异可以分为单极耳、双极耳、多极耳以及全极耳等类型。其中,全极耳结构为圆柱形电池的常用结构。全极耳结构是指将整个正负极集流体全部作为极耳,通过集流体与电池壳体或电池顶盖进行全面积连接。全极耳结构的圆柱形电池的加工过程中,需要将卷绕好的电极组件正负极的全极耳整形,揉挤成平面且高出隔膜一定距离,便于后续过程中与顶盖焊接,即与顶盖中的集流盘焊接。揉平过程中可能产生诸多问题,例如,当揉平速度过快时,极片可能会发生外翻,从而导致壳体短路,当揉平速度过慢时,生产效率低;揉平时产 生的金属屑进入电极组件或揉平过程中极耳发生了内插,会导致电极组件内部短路等问题。而对于部分种类的电极组件,例如采用复合集流体的大圆柱电极组件,则不宜采用揉平工艺,这种电极组件在与顶盖进行激光焊接时,激光可能会透过极耳之间的缝隙穿透隔离膜,影响电池的安全性能。
鉴于此,本申请实施例提供了一种极片,包括:集流体、活性物质层及导电结构;其中,该集流体包括沿第一方向设置的主体部和极耳部,该主体部覆盖有活性物质层,该极耳部未覆盖有活性物质层,该导电结构沿该第一方向延伸且连接于该极耳部形成连接区;在第二方向上,该连接区的尺寸大于该极片的主体区域的厚度,以使电极组件卷绕后相邻圈层的该连接区相互附接,其中,该第二方向为该极片的厚度方向,该第二方向垂直于该第一方向,该极片的主体区域为覆盖有该活性物质层的该主体部对应的区域。本申请实施例中的极片,通过使连接区在第二方向上的尺寸大于极片的主体区域的厚度,使得由极片卷绕而成的电极组件的相邻圈层的连接区相互附接,能够使得相邻圈层之间无缝隙,当导电结构与顶盖激光焊接时,相互附接的连接区能够防止激光穿过导电结构之间的缝隙灼伤隔离膜;也能够防止电池加工时产生的金属毛刺等异物进入缝隙,损伤隔离膜或者导致内部短路,从而提升电池的安全性能。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备。用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、 电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
图1为本申请一个实施例提供的一种车辆1的结构示意图,如图1所示,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达30,控制器20以及电池10,控制器20用来控制电池10为马达30的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体。图2为本申请一个实施例的一种电池10的分解结构示意图,如图2所示,电池10可以包括多个电池单体100。根据不同的电力需求,电池单体100的数量可以设置为任意数值。多个电池单体100可通过串联、并联或混联的方式连接以实现较大的容量或功率,其中,混联是指多个电池单体100之间既有串联又有并联。多个电池单体100之间可直接串联、并联或混联在一起,再将多个电池单体100构成的整体容纳于箱体300内,电池10还可以包括其他结构,例如汇流部件(图中未示出),用于实现多个电池单体100之间的电连接。
除电池单体100外,电池10还可以包括箱体300(或称罩体),箱体300的内部为中空结构,多个电池单体100容纳于箱体300内。如图2所示,箱体300可以包括两部分,这里分别称为上箱体301和下箱体302, 上箱体301和下箱体302扣合在一起。上箱体301和下箱体302的形状可以根据多个电池单体100组合的形状而定,上箱体301和下箱体302中至少一个部件具有一个开口。例如,箱体300包括的上箱体301和下箱体302中可以仅有一个为具有开口的中空壳体,而另一个为板状,以盖合壳体上的开口。例如图2所示,这里以下箱体302为中空壳体且只有一个面为开口面,上箱体301为板状为例,上箱体301盖合在下箱体302的开口处以形成具有封闭腔室的箱体300,该腔室可以用于容纳多个电池单体100。可选地,本申请实施例中的箱体300包括的上箱体301和下箱体302还可以具有其他形状,例如,上箱体301和下箱体302均可以为中空壳体且各自只有一个面为开口面,上箱体301的开口和下箱体302的开口相对设置,并且上箱体301和下箱体302相互扣合形成具有封闭腔室的箱体300。多个电池单体100相互并联或串联或混联组合后置于上箱体301和下箱体302扣合后形成的箱体内。箱体300可以根据其容纳的电池单体100的数量和结构类型设置为长方体、圆柱体等不同形状,对比,本申请不作限定。
其中,每个电池单体100可以是二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。
图3为本申请一些实施例提供的一种电池单体100的分解结构示意图。如图3所示,该电池单体100可以包括壳体110、电极组件120和顶盖130。壳体110和顶盖130形成外壳或电池盒,壳体110的壁和顶盖130的壁均称为电池单体100的壁。壳体110根据一个或多个电极组件120组合后的形状而定。例如,壳体110可以为图3所示的中空的圆柱体,或者,若电池单体100为刀片式电池单体,壳体110可以为长度较长的长方体。并且壳体110的至少一个面具有开口以便一个或多个电极组件120放置于壳体110内。例如,当壳体110为中空的圆柱体时,壳体110的端面 为开口面,即该端面不具有壁体而使得壳体110内外相通。从图3可以看出,圆柱形电池单体100具有两个圆形端面,该两个圆形端面之间为柱体,柱体部分可以包括电极组件120。顶盖130覆盖开口并且与壳体110连接,以形成防止电极组件120的封闭的腔体。壳体110内填充有电解质,例如电解液。
该顶盖130包括端盖131和电极端子132,电极端子132可以设置在端盖131上。顶盖130还包括连接构件,或者也可以称为集流构件,用于将电极组件120和电极端子132实现电连接。
每个电极组件120可以具有两个极耳,例如,具有第一极耳和第二极耳,第一极耳和第二极耳的极性相反。例如,当第一极耳为正极极耳时,第二极耳为负极极耳。一个或多个电极组件120的第一极耳通过一个连接构件与一个电极端子连接,一个或多个电极组件120的第二极耳通过另一个连接构件与另一个电极端子连接。可选地,两个电极端子可以同时设置于电池单体100的同一端面上,也可以分别设置于电池单体100的两个端面上。
在该电池单体100中,根据实际使用需求,电极组件120可设置为单个或多个,例如图3所示的电池单体100内设置有一个电极组件120。
以下示例性地,结合图4和图5对本申请实施例提供的极片的结构进行说明。图4为本申请实施例提供的极片200的结构示意图。如图4所示,极片200包括集流体201、活性物质层202及导电结构203;其中,集流体201包括沿第一方向X设置的主体部201a和极耳部201b,该主体部201a覆盖有活性物质层202,极耳部201b未覆盖有活性物质层202;导电结构203沿该第一方向X延伸且连接于该极耳部201b形成连接区204,在第二方向上,连接区204的尺寸大于极片200的主体部201a的厚度,以使电极组件120卷绕后相邻圈层的连接区204相互附接,其中,第二方向 Y为极片200的厚度方向,第二方向Y垂直于第一方向X,极片200的主体区域为覆盖有活性物质层202的主体部201a对应的区域。
由于极片200的连接区204在第二方向Y上的尺寸大于极片主体部201a的厚度,从而使得由极片200卷绕而成的电极组件120的相邻圈层的连接区204相互附接,能够使得相邻圈层之间无缝隙,当导电结构203与顶盖激光焊接时,相互附接的连接区204能够防止激光穿过导电结构之间的缝隙灼伤隔离膜123;也能够防止电池加工时产生的金属毛刺等异物进入缝隙,损伤隔离膜123或者导致内部短路,从而提升电池的安全性能。
集流体201的主体部201a覆盖有活性物质层202,集流体201用于将活性物质层202中的活性物质产生的电流汇集起来以便形成较大的电流对外输出,集流体201应与活性物质充分接触,且内阻应尽可能小为宜。图4所示的极片200可以为负极片,也可以为正极片,本申请对此不作限定。当极片200为正极片时,活性物质层202可以包括锂镍氧化物,锂钴氧化物,锂钛氧化物,镍钴多元氧化物,锂锰氧化物,锂铁磷氧化物等。当极片200为负极片时,活性物质层202可以包括碳素材料,比如,石墨、软碳(如焦炭)等、硬碳等,也可以包括非碳材料,比如,氮化物、PAS、锡基氧化物、锡合金、纳米负极材料,以及其他的一些金属间化合物等。
导电结构203用于与集流体201的极耳部201b连接,保证电池的过流能力。导电结构203可以用于与顶盖焊接,以将电池单体的电能引出。导电结构203与极耳部201b连接形成的连接区204在第二方向上的尺寸大于极片200的主体区域的厚度,以使由极片200卷绕形成的电极组件120的相邻圈层的连接区204相互附接,从而使相互附接的连接区204能够覆盖住极片200间的隔离膜123。
因此,本申请实施例中,连接区204在第二方向Y上的尺寸大于极片200的主体区域的厚度,从而使得由极片200卷绕而成的电极组件 120的相邻圈层的连接区204相互附接,能够使得相邻圈层之间无缝隙,当导电结构203与顶盖激光焊接时,相互附接的连接区204能够防止激光穿过导电结构203之间的缝隙烧穿隔离膜,也能够防止电池加工时产生的金属毛刺等异物进入缝隙而导致内部短路等现象,从而提升电池的安全性能。同时可以省去揉平工序,从而避免了揉平过程中产生的毛刺进入电极组件内部和极耳内插等问题。
可选地,本申请的实施例中,导电结构203包括第一导电部203a和第二导电部203b,第一导电部203a和第二导电部203b分别连接于极耳部201b的第二方向Y上的两侧。通过在极耳部201b两侧分别连接第一导电部203a和第二导电部203b,能够提高极耳部201b的过流能力。
图5示出了本申请另一实施例提供的极片的结构示意图。可选地,如图5所示,在本申请的一些实施例中,集流体201包括绝缘层2011和设置在绝缘层2011两侧的第一导电层2012和第二导电层2013,第一导电部203a和该第二导电部203b分别与该第一导电层2012和第二导电层2013连接。该第一导电层2012、绝缘层2011和第二导电层2013可以沿第二方向Y依次层叠设置。其中,绝缘层2011可以是聚丙烯(polypropylene,PP)或热塑性聚酯(polyethylene terephthalate,PET)等高分子材料,第一导电层2012和导电层可以是金属材料,例如,铜,或者,铝。第一导电层2012和第二导电层2013可以通过真空镀膜的方式与绝缘层2011连接。并且,第一导电层2012和第二导电层2013远离绝缘层2011的表面的部分区域涂覆活性物质层202。第一导电部203a与第一导电层2012远离绝缘层2011的表面的未涂覆活性物质层202的部分区域相连,第二导电部203b与第二导电层2013远离绝缘层2011的表面的未涂覆活性物质层202的部分区域相连。需要说明的是,第一导电部203a和第二导电部203b可以通过一体成型的方式连接,也可以通过焊接、粘结等方式连接。
需要说明的是,当第一导电部203a和第二导电部203b通过一体成型的方式连接时,第一导电部203a和第二导电部203b等同第一导电部203a和第二导电部203b可以由金属箔片制成,第一导电部203a和第二导电部203b分别焊接在第一导电层2012和第二导电层2013上。通过以上实施方式,在电池单体100正常工作时,第一导电部和第二导电部能够将第一导电层和第二导电层上的电流汇集,提高电池的过流能力。且由于集流体201中设置了绝缘层2011,在集流体201厚度不变的前提下,可以减小第一导电层2012和第二导电层2013的厚度,当有异物刺穿极片200时,由于第一导电层2012和第二导电层2013的厚度较小,因此第一导电层2012和第二导电层2013在被异物刺穿的部位产生的毛刺较小,增大了刺破隔离膜123的难度,从而避免短路,提高电池的安全性能,且当电池单体发生热失控时,集流体201中的绝缘层2011受热发生断路效应,也可以避免短路,提高电池单体的安全性能。
可选地,本申请实施例中的连接区204可以为导电结构203与极耳部201b焊接形成的焊印区。通过焊接方式形成连接区204,能够使得导电结构203和极耳部201b紧密连接,且连接区204的尺寸易于控制,加工难度低。可选地,该焊印区可以通过辊焊方式形成,采用辊焊的加工方式形成焊印区,焊印区可以一次成型,进一步降低加工的复杂度。
图6为本申请实施例提供的极片200卷绕而成的电极组件120的局部截面结构图,图7为本申请实施例提供的极片200卷绕而成的电极组件120的俯视图。如图6所示,该电极组件120包括:第一极片121、第二极片122和隔离膜123,其中,第一极片121与第二极片122极性相反,即第一极片121为正极片,第二极片122为负极片,或者第一极片121为负极片,第二极片122为正极片,对此,本申请不作限定,隔离膜123设置在第一极片121和第二极片122之间,防止正负极片之间发生短路。第 一极片121、隔离膜123和第二极片122依次层叠卷绕设置,形成卷绕式的电极组件120。其中第一极片121和第二极片122分别为本申请实施例提供的极片200,第一极片121和第二极片122的极耳区域沿第一方向X相对设置。
如图6所示,电极组件120的圈层由第一极片121的主体部、第二极片122的主体部以及隔离膜123组成,其中,因此,为使得连接区204能够起到阻挡激光烧伤隔离膜123的作用,在第二方向Y上,每一圈层的最小厚度至少为第一极片121的主体区域的厚度、第二极片122的主体区域的厚度以及两层隔离膜123的厚度之和。若连接区204在第二方向Y上的尺寸过小,则卷绕后的相邻圈层的连接区204无法搭接,起不到防止卷绕后的电极组件120与顶盖焊接时灼伤隔离膜123的作用。
因此,可选地,本申请实施例中,在第二方向Y上,连接区204的尺寸满足:D≥d1+d2+2d3,其中,d1为极片200的主体区域的厚度,d2为与该极片形成电极组件120的相反极性极片的主体区域的厚度,d3为与该极片形成电极组件120的隔离膜123的厚度。其中,极片200的主体区域的厚度为集流体201的厚度与集流体201两侧的活性物质层202的厚度之和。当连接区的尺寸D小于上述公式的限制时,连接区204的厚度过小,一方面难以起到防止电极组件120卷绕后与顶盖焊接时灼伤隔离膜123的作用,另一方面,电极组件120卷绕后相邻圈层的该连接区之间会存在缝隙,电池加工过程中可能会有异物进入电极组件120,影响电池的安全性能,因此该连接区204的尺寸D不宜过小。
可选地,在第二方向Y上,连接区204的尺寸H为2mm-9mm。若连接区204的第二方向Y尺寸过小,例如小于2mm,则连接区204难以满足卷绕后相互搭接的要求,难以起到防止卷绕后的电极组件焊接顶盖时灼伤隔离膜的作用,且会增大连接区204和极片200的加工难度。若连接 区204在第二方向Y上的尺寸过大,例如大于9mm,则会导致卷绕后各圈层之间存在间隙,且连接区204的体积过大,导致电池的能量密度低,或导致极片200的卷绕过程中出现收卷鼓边的问题,影响电池的生产效率。
可选地,在第一方向X上,连接区204的尺寸H1为3mm-11mm。若连接区204在第一方向X上的尺寸过小,一方面会增大导电结构203与顶盖焊接时连接区204被烧穿的可能性,影响集流体201的导电性和长期稳定性,另一方面会增大连接区204的加工难度,影响电池的工艺稳定性。若连接区204在第一方向X上的尺寸过大,例如大于11mm,则会影响电极组件120的卷绕,会占用过多空间,影响电池的能量密度。因此,将连接区204在第一方向X上的尺寸H1限制在上述范围内,能够兼顾电池的安全性能和能量密度。
可选地,在第一方向X上,导电结构203的尺寸H2为3mm-12mm。若导电结构203在第一方向X上的尺寸过小,则会影响集流体201的导电性和长期稳定性,且不易焊接。若导电结构203在第一方向X上的尺寸过大,则会降低电池的能量密度。因此,将导电结构203在第一方向X上的尺寸H2限制在上述范围内,既可以保证导电功能正常和便于焊接,又不会占用过多空间,保证电池的能量密度。
在本发明实施例中,导电结构203的材料可以包括铜、铝中的至少一种。可选地,导电结构203可以由金属箔片,例如Cu/Al箔制成。导电结构203为Cu/Al箔时,Cu/Al箔与集流体201的金属层焊接,可以将集流体201的金属层产生的电流通过Cu/Al箔逐步导入至电池的极耳、电极柱等结构。
本申请实施例还提供一种电极组件,该电极组件可以是如图6所示的电极组件120,该电极组件120包括正极片、隔离膜和负极片,隔离膜设置在正极片和负极片之间,正极片、隔离膜和负极片卷绕设置,其中, 正极片和/或负极片分别为本申请实施例提供的极片200,正极片的极耳部和负极片的极耳部沿第一方向X相对设置。该电极组件可以是图6中所示的电极组件120。其中,正电极极片和负电极极片的描述与前述的极片200相同,在此不再赘述。隔离膜可以是聚丙烯或者聚乙烯(polyethylene,PE)。
可选地,正极片21最外侧的圈层的导电结构203包覆有绝缘膜。在正极片21最外侧的圈层的导电结构上覆盖绝缘膜能够防止电极组件和电池的壳体或与电极组件以外的导电结构接触,影响电池的安全性。
本申请还提供了一种电池单体,该电池单体可以为图3中所示的电池单体100,该电池单体100包括上文所述的壳体110、电极组件120和顶盖130,壳体110的两端具有开口,壳体110用于容纳电极组件120,顶盖130与导电结构203的远离主体部201a的一端连接,并盖合壳体110的开口。在实际生产过程中,上述电池单体100的生产过程可以依次包括涂布、冷压、辊焊、涂胶、分条、卷绕、激光焊接顶盖130。图7为本申请一实施例提供的电极组件120与顶盖130焊接后的结构示意图,如图7所示,电极组件120与顶盖130焊接后形成焊接区134。
本申请还提供了一种电池10,该电池10可以是图2中所示的电池10,如图2所示,电池10包括上文所述电池单体100,电池10还包括箱体300,其中箱体300用于容纳电池单体100。其中,电池单体100的数量可以是一个或多个,本申请不作限定。
本申请还提供了一种用电设备,包括上文所述的电池10,电池10用于向用电设备供电。用电设备可以为图1中所示的车辆1,车辆可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆的内部可以设置马达30,控制器20以及电池10,控制器20用来控制电池10为马达30供电。例如,在车辆的 底部或车头或车尾可以设置电池10。电池10可以用于车辆的供电,例如,电池10可以作为车辆的操作电源,用于车辆的电路系统,例如,用于车辆的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆的操作电源,还可以作为车辆的驱动电源,替代或部分地替代燃油或天然气为车辆提供驱动动力。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
Claims (15)
- 一种极片,其特征在于,包括:集流体(201)、活性物质层(202)及导电结构(203);其中,所述集流体(201)包括沿第一方向(X)设置的主体部(201a)和极耳部(201b),所述主体部(201a)覆盖有活性物质层(202),所述极耳部(201b)未覆盖有活性物质层(202),所述导电结构(203)沿所述第一方向(X)延伸且连接于所述极耳部(201b)形成连接区(204);在第二方向(Y)上,所述连接区(204)的尺寸大于所述极片(200)的主体区域的厚度,以使电极组件(120)卷绕后相邻圈层的所述连接区(204)相互附接,其中,所述第二方向(Y)为所述极片(200)的厚度方向,所述第二方向(Y)垂直于所述第一方向(X),所述极片(200)的主体区域为覆盖有所述活性物质层(202)的所述主体部(201a)对应的区域。
- 根据权利要求1所述的极片,其特征在于,所述导电结构(203)包括第一导电部(203a)和第二导电部(203b),所述第一导电部(203a)和所述第二导电部(203b)分别连接于所述极耳部(201b)的所述第二方向(Y)上的两侧。
- 根据权利要求2所述的极片,其特征在于,所述集流体(201)包括绝缘层(123)和设置在绝缘层(123)两侧的第一导电层(121)和第二导电层(122),所述第一导电部(203a)和所述第二导电部(203b)分别与所述第一导电层(121)和所述第二导电层(122)连接。
- 根据权利要求1至3中任一项所述的极片,其特征在于,所述连接区(204)为所述导电结构(203)与所述极耳部(201b)焊接形成的焊印区。
- 根据权利要求1至4中任一项所述的极片,其特征在于,在所述第二方向上,所述连接区(204)的尺寸D满足:D≥d1+d2+2d3;其中,d1为所述极片(200)的主体区域的厚度,d2为与所述极片(200)形成电极组件(120)的相反极性极片的主体区域的厚度,d3为与所述极片形成电极组件(120)的隔离膜(123)的厚度。
- 根据权利要求1至5中任一项所述的极片,其特征在于,在所述第二方向(Y)上,所述连接区(204)的尺寸H为2mm-9mm。
- 根据权利要求1至6中任一项所述的极片,其特征在于,在所述第一方向(X)上,所述连接区(204)的尺寸H1为3mm-11mm。
- 根据权利要求1至7中任一项所述的极片,其特征在于,在所述第一方向(X)上,所述导电结构(203)的尺寸H2为3-12mm。
- 根据权利要求1至8中任一项所述的极片,其特征在于,所述导电结构(203)的材料包括铜和铝中的至少一种。
- 一种电极组件,其特征在于,包括:正极片、隔离膜(123)和负极片,其中,所述隔离膜(123)设置在所述正极片和所述负极片之间,所述正极片、所述隔离膜(123)和所述负极片卷绕设置,所述正极片和/或所述负极片分别为权利要求1至9中任一项所述的极片(200)。
- 根据权利要求10所述的电极组件,其特征在于,所述正极片的极耳部(201b)和所述负极片的极耳部(201b)沿所述第一方向(X)相对设置。
- 根据权利要求10或11所述的电极组件,其特征在于,所述正极片最外侧的圈层的所述导电结构(203)包覆有绝缘膜(124)。
- 一种电池单体,其特征在于,包括:根据权利要求10至12中任一项所述的电极组件(120);壳体(110),所述壳体(110)的两端具有开口,所述壳体(110)用于容纳所述电极组件(120);顶盖(130),所述顶盖(130)与所述导电结构(203)的远离所述主体部(201a)的一端连接,并盖合所述开口。
- 一种电池,其特征在于,包括根据权利要求13所述的电池单体(120)。
- 一种用电设备,其特征在于,包括根据权利要求14所述的电池(10),所述电池(10)用于为所述用电设备提供电能。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23864159.1A EP4432454A1 (en) | 2023-01-09 | 2023-01-09 | Electrode sheet, electrode assembly, battery cell, battery, and electrical device |
CN202380011218.4A CN118633205A (zh) | 2023-01-09 | 2023-01-09 | 极片、电极组件、电池单体、电池和用电设备 |
PCT/CN2023/071396 WO2024148470A1 (zh) | 2023-01-09 | 2023-01-09 | 极片、电极组件、电池单体、电池和用电设备 |
US18/743,130 US20240332541A1 (en) | 2023-01-09 | 2024-06-14 | Electrode plate, electrode assembly, battery cell, battery, and electric device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/071396 WO2024148470A1 (zh) | 2023-01-09 | 2023-01-09 | 极片、电极组件、电池单体、电池和用电设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/743,130 Continuation US20240332541A1 (en) | 2023-01-09 | 2024-06-14 | Electrode plate, electrode assembly, battery cell, battery, and electric device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024148470A1 true WO2024148470A1 (zh) | 2024-07-18 |
Family
ID=91897544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/071396 WO2024148470A1 (zh) | 2023-01-09 | 2023-01-09 | 极片、电极组件、电池单体、电池和用电设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240332541A1 (zh) |
EP (1) | EP4432454A1 (zh) |
CN (1) | CN118633205A (zh) |
WO (1) | WO2024148470A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209183628U (zh) * | 2018-10-11 | 2019-07-30 | 宁德时代新能源科技股份有限公司 | 二次电池及其极片 |
CN115036648A (zh) * | 2022-08-15 | 2022-09-09 | 江苏时代新能源科技有限公司 | 电极组件、电池单体、电池及用电装置 |
CN217740571U (zh) * | 2022-07-21 | 2022-11-04 | 宁德时代新能源科技股份有限公司 | 极片、电极组件、电池单体、电池及用电装置 |
CN217768425U (zh) * | 2022-05-09 | 2022-11-08 | 宁德时代新能源科技股份有限公司 | 极片、电池单体、电池以及用电装置 |
CN218004916U (zh) * | 2022-05-10 | 2022-12-09 | 比亚迪股份有限公司 | 极片、电芯结构及具有其的电池、电子设备 |
-
2023
- 2023-01-09 WO PCT/CN2023/071396 patent/WO2024148470A1/zh active Application Filing
- 2023-01-09 CN CN202380011218.4A patent/CN118633205A/zh active Pending
- 2023-01-09 EP EP23864159.1A patent/EP4432454A1/en active Pending
-
2024
- 2024-06-14 US US18/743,130 patent/US20240332541A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209183628U (zh) * | 2018-10-11 | 2019-07-30 | 宁德时代新能源科技股份有限公司 | 二次电池及其极片 |
CN217768425U (zh) * | 2022-05-09 | 2022-11-08 | 宁德时代新能源科技股份有限公司 | 极片、电池单体、电池以及用电装置 |
CN218004916U (zh) * | 2022-05-10 | 2022-12-09 | 比亚迪股份有限公司 | 极片、电芯结构及具有其的电池、电子设备 |
CN217740571U (zh) * | 2022-07-21 | 2022-11-04 | 宁德时代新能源科技股份有限公司 | 极片、电极组件、电池单体、电池及用电装置 |
CN115036648A (zh) * | 2022-08-15 | 2022-09-09 | 江苏时代新能源科技有限公司 | 电极组件、电池单体、电池及用电装置 |
Also Published As
Publication number | Publication date |
---|---|
EP4432454A1 (en) | 2024-09-18 |
CN118633205A (zh) | 2024-09-10 |
US20240332541A1 (en) | 2024-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024093100A1 (zh) | 电极极片、电极组件、电池单体、电池和用电设备 | |
WO2022088824A1 (zh) | 电极组件、电池单体、电池以及用电装置 | |
CN217788451U (zh) | 极片、电极组件、电池单体、电池及用电设备 | |
CN115413379B (zh) | 电极组件、电池单体、电池及电极组件的制造方法和设备 | |
US20240055646A1 (en) | Wound electrode assembly, battery cell, battery, and electrical device | |
JP2000260478A (ja) | 非水系二次電池 | |
WO2023186034A1 (zh) | 端盖、电池单体、电池及用电设备 | |
US20240097287A1 (en) | Battery cell, method and system for manufacture same, battery, and power consuming device | |
JP2001283824A (ja) | リチウム二次電池 | |
CN219144431U (zh) | 电极组件、电池单体、电池及用电装置 | |
WO2023168954A1 (zh) | 电芯、电芯的制造方法、电池单体、电池及用电设备 | |
WO2024148470A1 (zh) | 极片、电极组件、电池单体、电池和用电设备 | |
CN116745926A (zh) | 电极组件及其制造方法、电池单体、电池和用电装置 | |
WO2024148474A1 (zh) | 电池的极片、电极组件、电池单体、电池和用电设备 | |
WO2024040503A1 (zh) | 电极组件、制备方法、电池单体、电池及用电装置 | |
WO2024159413A1 (zh) | 电池单体、电池和用电设备 | |
WO2023206949A1 (zh) | 圆柱电极组件、电池单体、电池、用电设备和制造方法 | |
EP4432447A1 (en) | Electrode assembly, battery cell, battery, and electric apparatus | |
CN220400841U (zh) | 电池连接巴片、电池和用电装置 | |
CN221447301U (zh) | 电池单体、电池及用电设备 | |
WO2023092459A1 (zh) | 电极组件、电池单体、电池以及用电装置 | |
WO2024031353A1 (zh) | 极片、电极组件、电池单体、电池及用电设备 | |
CN220306459U (zh) | 电池单体、电池、用电装置及工装 | |
CN218215488U (zh) | 端盖组件、电池单体、电池及用电设备 | |
CN221427778U (zh) | 电池极片及电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202380011218.4 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2023864159 Country of ref document: EP Effective date: 20240322 |