WO2024142621A1 - Reflection device - Google Patents
Reflection device Download PDFInfo
- Publication number
- WO2024142621A1 WO2024142621A1 PCT/JP2023/040580 JP2023040580W WO2024142621A1 WO 2024142621 A1 WO2024142621 A1 WO 2024142621A1 JP 2023040580 W JP2023040580 W JP 2023040580W WO 2024142621 A1 WO2024142621 A1 WO 2024142621A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reflective
- target
- reflection
- retroreflective
- light
- Prior art date
Links
- 239000000758 substrate Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01F—ADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
- E01F9/00—Arrangement of road signs or traffic signals; Arrangements for enforcing caution
- E01F9/60—Upright bodies, e.g. marker posts or bollards; Supports for road signs
- E01F9/604—Upright bodies, e.g. marker posts or bollards; Supports for road signs specially adapted for particular signalling purposes, e.g. for indicating curves, road works or pedestrian crossings
- E01F9/619—Upright bodies, e.g. marker posts or bollards; Supports for road signs specially adapted for particular signalling purposes, e.g. for indicating curves, road works or pedestrian crossings with reflectors; with means for keeping reflectors clean
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
- G01C15/02—Means for marking measuring points
- G01C15/06—Surveyors' staffs; Movable markers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/12—Reflex reflectors
- G02B5/122—Reflex reflectors cube corner, trihedral or triple reflector type
- G02B5/124—Reflex reflectors cube corner, trihedral or triple reflector type plural reflecting elements forming part of a unitary plate or sheet
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F13/00—Illuminated signs; Luminous advertising
- G09F13/16—Signs formed of or incorporating reflecting elements or surfaces, e.g. warning signs having triangular or other geometrical shape
Definitions
- the present invention relates to a reflecting device, and in particular to a reflecting device capable of retroreflecting light incident from a wide range.
- reflecting devices have been used in vehicles, road signs, surveying, etc.
- targets such as highly reflective reflective sheets or triangular prisms are placed at the target position of the survey object, and light reflected from the target is automatically captured by a surveying instrument with an automatic aiming function.
- the intensity of the reflected light depends on the angle between the line of sight for the target and the reflecting surface or prism surface of the reflective sheet.
- the limit of the angle at which automatic aiming is possible is approximately ⁇ 20° for reflective sheets and approximately ⁇ 20° for triangular prisms.
- target devices based on triangular prisms that can be automatically aimed in all directions at an angle of 360°, as disclosed in Patent Document 1, have been developed in recent years.
- target devices based on triangular prisms that can be automatically aimed are very expensive and have a structure that is easily damaged, so they must be handled with care.
- the range in which reflective sheets and triangular prisms can be automatically aimed is limited, so in order to make the most of the automatic aiming function, it is necessary to change the position of the surveying instrument every time. Every time the position of the surveying instrument is changed, work such as transporting, assembling, and leveling the instrument is required, which hinders the continuous capture of the survey target.
- reflectors used on vehicles and road signs have a limited angle of incidence of light that allows recognition, so it is preferable that they be capable of being recognized from a wider range of angles.
- An object of the present invention is to provide a reflecting device capable of retroreflecting light incident from a wide range.
- the configuration of the reflection device is a reflection device that retroreflects irradiated light, and includes a retroreflecting section configured by arranging retroreflectors that enable the retroreflection, and the retroreflecting section is configured to include a plurality of reflective areas in which the direction of retroreflection is set to different directions.
- the retroreflector is made of microprisms, it becomes easier to obtain retroreflected light having a light flux required for, for example, visual recognition, surveying, and the like.
- the retroreflection section is provided on a base, and an air layer is formed between the retroreflection section and the base, so that the reflecting device can be manufactured inexpensively and easily. Furthermore, by configuring the base to include a fixing means for fixing the reflecting device, the work of installing the reflecting device can be facilitated.
- the reflecting device is a reflecting device that is attached to an object to be surveyed and retroreflects light irradiated from a surveying instrument, and includes a retroreflecting section configured by arranging retroreflectors that enable the retroreflection, and the retroreflecting section has a plurality of reflective areas in which the direction of retroreflection is set in different directions, and when the reflecting device is attached to the object to be surveyed, the reflective areas with the same direction of retroreflection are arranged in symmetrical positions. According to this configuration, it is possible to continuously capture the survey object by utilizing the automatic collimation function of the surveying instrument, thereby improving the efficiency of the surveying work.
- the reflecting device can be used, for example, as a surveying target 1.
- the reflecting device will be described using the surveying target 1.
- the target 1 according to this embodiment is attached to an object to be surveyed and is used to measure the position, orientation, etc. of the object to be surveyed by irradiating distance measuring light from the surveying instrument, and is configured to facilitate attachment to the object to be surveyed when it is attached to multiple locations on one object to be surveyed or multiple targets to be surveyed, and to enable surveying of multiple measurement positions from one location, for example, when the surveying instrument has an automatic collimation function.
- the surveying instrument 4 is described as having an automatic collimation function.
- Fig. 1 is a plan view showing an example of a target 1 according to the present embodiment.
- Fig. 2 is an exploded perspective view showing the configuration of the target 1 according to the present embodiment.
- FIG. 3 is a cross-sectional view showing the relationship between the base member 10 and the reflecting member 20 when the base member 10 and the reflecting member 20 are integrated to form the target 1.
- the target 1 has an up-down direction that defines the orientation for mounting the target on a survey object.
- the directions are specified as up-down, left-right, and front-rear directions as shown by the arrows in the figure.
- Target 1 is formed in a square shape when viewed from above (see FIG. 1(a)) and in a flat plate shape when viewed from the side (see FIG. 1(b)), and is configured to include, for example, a base member 10 and a reflecting member 20.
- the base member 10 forms one side of target 1
- the reflecting member 20 forms the other side of target 1.
- the base member 10 is formed in a box shape that is open on one side (front) and has a square-shaped substrate 10A and a frame 10B that rises to surround the outer periphery of the substrate 10A.
- the substrate 10A is formed, for example, in the shape of a flat plate with a constant thickness.
- the frame 10B is formed, for example, in the shape of a plate with a constant thickness that rises at a uniform height toward one side of the substrate 10A.
- the base member 10 can be made of a material such as resin or polyethylene, and can be colored, for example, in white or black, and configured so as not to allow light to pass through.
- the reflective member 20 is made of a material such as a light-transmitting resin. As shown in FIG. 3, the reflective member 20 is made by arranging a plurality of retroreflectors 50, which enable the retroreflection of light, on a support layer 22. In the following description, a collection of a plurality of arranged retroreflectors 50 may be referred to as the reflective structure 20A. The support layer 22 and the retroreflectors 50 are integrally formed as the reflective member 20.
- the support layer 22 is formed, for example, in a square plate shape that matches the outer peripheral dimensions (external shape) of the frame 10B of the base member 10 in a plan view so that it can be superimposed on the base member 10.
- the multiple retroreflectors 50 are aligned on one side so that they are included within the inner peripheral dimensions of the frame 10B when the support layer 22 is superimposed on the base member 10.
- the reflective member 20 is configured with a reflective structure 20A with one flat surface and multiple retroreflectors 50 protruding from the other surface.
- the reflective structure 20A is formed on the support layer 22, for example, in an area that can be accommodated within the frame 10B of the base member 10, and arranged to form a square that follows the shape of the inside of the frame 10B of the base member 10.
- the target 1 is constructed by integrating the base member 10 and the reflective member 20, for example, so that when the support layer 22 of the reflective member 20 is brought into contact with and superimposed on the frame 10B of the base member 10, an air layer 30 is formed between the reflective structure 20A protruding from the support layer 22 of the reflective member 20 and the substrate 10A of the base member 10.
- the base member 10 and the reflective member 20 can be integrated together using a fixing means such as adhesive or fitting.
- the flat surface 20a of the reflecting member 20 functions as the irradiation surface 1a on which the collimation light and distance measurement light emitted from the surveying instrument are incident
- the flat surface 10a of the base member 10 functions as the mounting surface 1b for mounting the target 1 to the surveying object.
- the irradiation surface 1a and the mounting surface 1b are parallel to each other.
- the target 1 may also be configured in such a way that a member in which the reflecting member 20 and the base member 10 are integrated into n equal parts is fixed to a base.
- the mounting surface 1b may be provided with a fixing means (not shown) for easily attaching the target 1 to the object to be surveyed.
- the fixing means may be, for example, double-sided tape, a magnet, adhesive, etc. This makes it easier to set up the target 1 when, for example, surveying the erection accuracy of steel frames, etc. Note that the use of the target 1 in this embodiment is not limited to this.
- the corner cube retroreflector 50 has one vertex forming a cube, which is the vertex 51A of a triangular pyramid, cut out along a plane passing through the three vertices 51B, 51C, and 51D adjacent to this vertex.
- the triangular pyramid that constitutes the retroreflector 50 is formed such that the side surfaces 52a, 52b, and 52c intersect at right angles with each other and have the same length.
- the retroreflector 50 is arranged such that the base surfaces 52d of triangular pyramids cut out from a cube as corner cubes face the support layer 22, and is formed integrally with the support layer 22 to form a reflective structure (retroreflector) 20A.
- the reflective member 20 in this embodiment is configured to be capable of retroreflecting light toward a surveying instrument even when the angle of incidence of collimation light emitted from the surveying instrument is large.
- the reflective structure 20A is configured to have multiple reflective regions formed so that the retroreflecting direction is different. In this embodiment, it is configured to have five types of reflective regions R1, R2, R3, R4, and R5 (see Figure 1).
- the direction of retroreflection in each of the reflection regions R1, R2, R3, R4, and R5 is realized by tilting the retroreflectors 50 constituting the reflection regions R1, R2, R3, R4, and R5.
- the tilted arrangement is based on the case where the retroreflectors 50 are arranged so that the reflection axis J is the normal N of the irradiation surface 1a as shown in FIG. 3.
- the reflection axis J refers to the direction in which light is most brightly retroreflected when it is incident on the retroreflector 50, and in this embodiment, it is defined by a line that is perpendicular to the bottom surface 52d of the retroreflector 50 and passes through the vertex 51A of the retroreflector 50.
- the retroreflection by each of the reflective regions R1, R2, R3, R4, and R5 is not limited to the direction of the reflection axis J, but allows the incidence of light from a certain range (angle) (for example, ⁇ 20°).
- the reflective regions R1, R2, R3, R4, and R5 are arranged so that the inclination of the reflective axis J of the retroreflector 50 is the same within the same region.
- the retroreflectors 50 constituting the different reflective regions R1, R2, R3, R4, and R5 are formed on the reflective member 20 so that the angles at which the reflective axis J is inclined are different.
- the reflective region R1 is disposed in the center of the reflective structure 20A, the reflective regions R2 and R3 are disposed so as to surround the reflective region R1, and the reflective regions R4 and R5 are disposed so as to surround the reflective regions R2 and R3.
- the reflection region R1 is disposed so that the center of the square defined as the reflection region R1 coincides with the center O of the target 1.
- the reflection region R2 is disposed above, below, left, and right of the reflection region R1 so as to be in contact with the four sides of the reflection region R1, and the reflection region R3 is disposed at four diagonal positions of the reflection region R1 so as to be adjacent to the vertices of the reflection region R1.
- the reflection region R4 is disposed outside the reflection regions R2 and R3 surrounding the reflection region R1, at the above, below, left, right, and diagonal positions of the reflection region R1, and the reflection region R5 is disposed between the reflection regions R4 provided outside the reflection regions R2 and R3 surrounding the reflection region R1.
- FIGS. 5 and 6 are plan views showing the arrangement of the retroreflectors 50 in each of the reflection regions R1 to R5.
- FIG. 5 shows the arrangement of the retroreflectors 50 in each of the reflection regions R1 to R5 when the target 1 is viewed from above
- FIG. 6 shows the arrangement of the retroreflectors 50 in each of the reflection regions R1 to R5 when the target 1 is viewed from the side. Note that FIGS. 5 and 6 do not show everything that can be seen from the side or above, but rather show only a portion of the retroreflectors 50 that are lined up in a row.
- the reflective region R1 is arranged by tilting the retroreflector 50 so that the reflective axis J is inclined 0° in the left-right direction (see FIG. 5(a)) and 15° downward in the up-down direction (see FIG. 6(a)) with respect to the normal N of the irradiation surface 1a.
- the reflective region R2 is positioned by tilting the retroreflector 50 so that the reflective axis J is inclined 15° to the left in the left-right direction (see FIG. 5(b)) and 15° down in the up-down direction (see FIG. 6(b)) with respect to the normal N of the irradiation surface 1a.
- the reflective region R4 is positioned by tilting the retroreflector 50 so that the reflective axis J is tilted 30° to the left in the left-right direction (see FIG. 5(d)) and 30° down in the up-down direction (see FIG. 6(d)) with respect to the normal N of the irradiation surface 1a.
- the reflective region R5 is arranged by tilting the retroreflector 50 so that the reflective axis J is inclined 30° to the right in the left-right direction (see FIG. 5(e)) and 30° down in the up-down direction (see FIG. 6(e)) with respect to the normal N of the irradiation surface 1a.
- the reflection area R1 is configured to reflect most brightly when the collimated light irradiated from the surveying instrument is incident on the irradiation surface 1a at a direction angle of 0° and a dip angle of 15°.
- the reflection area R2 is configured to reflect the most brightly when the collimated light emitted from the surveying instrument is incident on the irradiation surface 1a at a direction angle of 15° to the left and a dip angle of 15°.
- FIG. 7 is a diagram showing the function of target 1.
- target 1 according to this embodiment is configured with reflection regions R1 to R5 with different orientations of reflection axis J, and can be arranged in a range such as that shown in FIG. 7.
- 1(a) indicates a target placed at a direction angle of 0° and an elevation angle of 15° as viewed from the surveying instrument 4
- 1(b) indicates a target placed at a direction angle of 15° to the left and an elevation angle of 15° as viewed from the surveying instrument 4
- 1(c) indicates a target placed at a direction angle of 15° to the right and an elevation angle of 15° as viewed from the surveying instrument 4
- 1(d) indicates a target placed at a direction angle of 30° to the left and an elevation angle of 30° as viewed from the surveying instrument 4
- 1(e) indicates a target placed at a direction angle of 30° to the right and an elevation angle of 30° as viewed from the surveying instrument 4.
- targets 1(a) to 1(e) are identical.
- the collimation light when the collimation light is irradiated toward a direction angle of 0° and an elevation angle of 15° by the collimation function of the surveying instrument 4, the collimation light is reflected most brightly toward the surveying instrument 4 from the reflection region R1 in which the reflection axis J in the target 1 (a) has a direction angle of 0° and an elevation angle of 15°.
- the collimation light when the collimation light is irradiated toward a direction angle of 15° to the left and an elevation angle of 15° by the collimation function of the surveying instrument 4, the collimation light is reflected most brightly toward the surveying instrument 4 from the four reflection areas R3 in the target 1 (c) whose reflection axis J is at a direction angle of 15° to the left and an elevation angle of 15°.
- the collimation light when the collimation light is irradiated toward a direction angle of 30° to the right and an elevation angle of 30° by the collimation function of the surveying instrument 4, the collimation light is reflected most brightly toward the surveying instrument 4 from eight reflection areas R4 in which the reflection axis J is at a direction angle of 30° to the right and an elevation angle of 30° in the target 1 (d).
- the collimation light when the collimation light is irradiated toward a direction angle of 30° to the left and an elevation angle of 30° by the collimation function of the surveying instrument 4, the collimation light is reflected most brightly toward the surveying instrument 4 from the eight reflection areas R5 in the target 1 (e) whose reflection axis J is at a direction angle of 30° to the left and an elevation angle of 30°.
- one type of target can be commonly used as shown in Figure 7, which makes it easier to install the target 1 and allows targets 1 installed in multiple locations to be continuously sighted and surveyed without moving the position of the surveying instrument 4.
- the surveying instrument 4 is positioned on the reflection axis J set on the target 1, but the target 1 does not necessarily need to be positioned so that the collimation light emitted from the surveying instrument 4 coincides with the reflection axis J.
- the retroreflectors 50 that make up each of the reflection regions R1 to R5 allow the retroreflection of light that is shifted from the reflection axis J, centered on the reflection axis J, making automatic collimation possible over a wider range.
- the orientation of the reflection axis J set in each of the reflection areas R1 to R5 described above is not limited to the angles in the above embodiment, and may be changed as appropriate.
- the reflection areas can be set so that the reflection axis J changes more with respect to the direction angle than with respect to the elevation angle
- the target 1 can be configured by setting the reflection areas so that the reflection axis J changes more with respect to the elevation angle than with respect to the direction angle.
- the shape of the target 1 has been described as a square, but this is not limited to this.
- the shape of the target 1 may be, for example, a rectangle or a polygon other than a rectangle, or a circle or an ellipse.
- the shape of the target 1 here refers to the planar shape of the target 1 and the planar shape of the reflective structure portion 20A in the target 1.
- the key to forming the target 1 is to have a configuration in which the reflective structure 20A is provided with multiple (two or more) types of reflective regions R with different inclinations of the reflective axis J.
- the reflective regions R with the same inclination of the reflective axis J should be provided at least symmetrically with respect to the up-down direction set on the target 1.
- the reflection device according to the present invention has been described using the surveying target 1, the subject matter is not limited to this. For example, it may be used on vehicles or road signs. In this case, unlike the surveying target 1, it is not necessary to arrange multiple reflection areas with different retroreflection directions symmetrically, but it is sufficient to set the direction of retroreflection in each reflection area so that light incident from a wide range can be retroreflected.
- the direction of retroreflection set between each reflective area may be within the range of retroreflection in one reflective area, but by setting it outside the range of retroreflection in one reflective area, it is possible to retroreflect light incident from a wider range.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Optical Elements Other Than Lenses (AREA)
- Road Signs Or Road Markings (AREA)
- Illuminated Signs And Luminous Advertising (AREA)
Abstract
[Problem] To provide a reflection device that can retroreflect light incident thereon from a wide range. [Solution] This reflection device for retroreflecting light with which the reflection device is irradiated comprises a retroreflective unit formed by arranging retroreflective reflectors enabling the retroreflection. The retroreflective unit comprises a plurality of reflective regions in which the direction of retroreflection is set to different directions.
Description
本発明は、反射装置に関し、特に、広い範囲から入射した光を再帰反射可能な反射装置に関する。
The present invention relates to a reflecting device, and in particular to a reflecting device capable of retroreflecting light incident from a wide range.
従来、反射装置は、車両や道路標識、測量等に利用されている。例えば、測地測量、土木工事測量及び建築測量では、測量対象物の目標位置に、反射度の大きい反射シートや三角プリズム等の標的(ターゲット)を配置し、自動視準機能を有する測量機によりターゲットから反射された光を自動的に捕捉することでなされている。反射された光の強度は、目標物に対する視準線と、反射シートの反射面又はプリズム面とのなす角度により左右される。例えば、自動視準可能な角度は、反射シートでは約±20°、三角プリズムで約±20°の範囲がそれぞれ限界とされている。このため、近年では、特許文献1に開示されるような、全方向、360°の角度において自動視準可能な三角プリズムを主体とするターゲット装置が開発されている。
Traditionally, reflecting devices have been used in vehicles, road signs, surveying, etc. For example, in geodetic surveys, civil engineering surveys, and architectural surveys, targets such as highly reflective reflective sheets or triangular prisms are placed at the target position of the survey object, and light reflected from the target is automatically captured by a surveying instrument with an automatic aiming function. The intensity of the reflected light depends on the angle between the line of sight for the target and the reflecting surface or prism surface of the reflective sheet. For example, the limit of the angle at which automatic aiming is possible is approximately ±20° for reflective sheets and approximately ±20° for triangular prisms. For this reason, target devices based on triangular prisms that can be automatically aimed in all directions at an angle of 360°, as disclosed in Patent Document 1, have been developed in recent years.
しかしながら、自動視準可能な三角プリズムを主体とするターゲット装置は、非常に高価であり、破損しやすい構造となっており、取り扱いに注意が必要とされる。また、反射シートや三角プリズムは、前述のように自動視準可能な範囲に制限があるため、自動視準機能を生かすには、測量機械の位置を都度変更する必要が生じていた。測量機械の位置を変更する都度、測量機械の運搬、組み立て、整準操作などの作業が発生し、測量対象物の連続的な捕捉を阻害している。
また、車両や道路標識に用いられている反射装置も、認識に至る光の入射角度が限定的であるため、より広範な角度からの認識が可能とされることが好ましい。
本発明は、広い範囲から入射した光を再帰反射可能な反射装置を提供することを目的とする。 However, target devices based on triangular prisms that can be automatically aimed are very expensive and have a structure that is easily damaged, so they must be handled with care. In addition, as mentioned above, the range in which reflective sheets and triangular prisms can be automatically aimed is limited, so in order to make the most of the automatic aiming function, it is necessary to change the position of the surveying instrument every time. Every time the position of the surveying instrument is changed, work such as transporting, assembling, and leveling the instrument is required, which hinders the continuous capture of the survey target.
Furthermore, reflectors used on vehicles and road signs have a limited angle of incidence of light that allows recognition, so it is preferable that they be capable of being recognized from a wider range of angles.
An object of the present invention is to provide a reflecting device capable of retroreflecting light incident from a wide range.
また、車両や道路標識に用いられている反射装置も、認識に至る光の入射角度が限定的であるため、より広範な角度からの認識が可能とされることが好ましい。
本発明は、広い範囲から入射した光を再帰反射可能な反射装置を提供することを目的とする。 However, target devices based on triangular prisms that can be automatically aimed are very expensive and have a structure that is easily damaged, so they must be handled with care. In addition, as mentioned above, the range in which reflective sheets and triangular prisms can be automatically aimed is limited, so in order to make the most of the automatic aiming function, it is necessary to change the position of the surveying instrument every time. Every time the position of the surveying instrument is changed, work such as transporting, assembling, and leveling the instrument is required, which hinders the continuous capture of the survey target.
Furthermore, reflectors used on vehicles and road signs have a limited angle of incidence of light that allows recognition, so it is preferable that they be capable of being recognized from a wider range of angles.
An object of the present invention is to provide a reflecting device capable of retroreflecting light incident from a wide range.
上記課題を解決するための反射装置の構成として、照射された光を再帰反射する反射装置であって、前記再帰反射を可能とする再帰性反射体を配列して構成された再帰反射部を備え、前記再帰反射部は、再帰反射の方向が異なる方向に設定された複数の反射領域を備える構成とした。
本構成によれば、広い範囲から入射した光を再帰反射させることができる。
また、前記再帰性反射体は、マイクロプリズムで構成されたことにより、例えば、視認や測量等に必要とされる光束を有する再帰反射光が得やすくなる。
また、前記再帰反射部は、基盤に設けられ、該再帰反射部と基板との間に空気層を形成する構成としたことにより、反射装置を安価、かつ容易に製造することができる。
また、前記基盤は、前記反射装置を固定するための固定手段を備えた構成とすることにより、反射装置の設置作業を容易にすることができる。
また、反射装置の他の構成として、測量対象物に設けられ、測量機から照射される光を再帰反射する反射装置であって、前記再帰反射を可能とする再帰性反射体を配列して構成された再帰反射部を備え、前記再帰反射部は、再帰反射の方向が異なる方向に設定された複数の反射領域を有し、測量対象物に取り付けられたときに、再帰反射の方向が同じ反射領域が左右対称の位置に設けられた構成とした。
本構成によれば、測量機の自動視準機能を利用した測量対象物の連続的な捕捉が可能となり、測量作業の効率を向上させることができる。 In order to solve the above problems, the configuration of the reflection device is a reflection device that retroreflects irradiated light, and includes a retroreflecting section configured by arranging retroreflectors that enable the retroreflection, and the retroreflecting section is configured to include a plurality of reflective areas in which the direction of retroreflection is set to different directions.
According to this configuration, light incident from a wide range can be retroreflected.
Furthermore, since the retroreflector is made of microprisms, it becomes easier to obtain retroreflected light having a light flux required for, for example, visual recognition, surveying, and the like.
Furthermore, the retroreflection section is provided on a base, and an air layer is formed between the retroreflection section and the base, so that the reflecting device can be manufactured inexpensively and easily.
Furthermore, by configuring the base to include a fixing means for fixing the reflecting device, the work of installing the reflecting device can be facilitated.
Another configuration of the reflecting device is a reflecting device that is attached to an object to be surveyed and retroreflects light irradiated from a surveying instrument, and includes a retroreflecting section configured by arranging retroreflectors that enable the retroreflection, and the retroreflecting section has a plurality of reflective areas in which the direction of retroreflection is set in different directions, and when the reflecting device is attached to the object to be surveyed, the reflective areas with the same direction of retroreflection are arranged in symmetrical positions.
According to this configuration, it is possible to continuously capture the survey object by utilizing the automatic collimation function of the surveying instrument, thereby improving the efficiency of the surveying work.
本構成によれば、広い範囲から入射した光を再帰反射させることができる。
また、前記再帰性反射体は、マイクロプリズムで構成されたことにより、例えば、視認や測量等に必要とされる光束を有する再帰反射光が得やすくなる。
また、前記再帰反射部は、基盤に設けられ、該再帰反射部と基板との間に空気層を形成する構成としたことにより、反射装置を安価、かつ容易に製造することができる。
また、前記基盤は、前記反射装置を固定するための固定手段を備えた構成とすることにより、反射装置の設置作業を容易にすることができる。
また、反射装置の他の構成として、測量対象物に設けられ、測量機から照射される光を再帰反射する反射装置であって、前記再帰反射を可能とする再帰性反射体を配列して構成された再帰反射部を備え、前記再帰反射部は、再帰反射の方向が異なる方向に設定された複数の反射領域を有し、測量対象物に取り付けられたときに、再帰反射の方向が同じ反射領域が左右対称の位置に設けられた構成とした。
本構成によれば、測量機の自動視準機能を利用した測量対象物の連続的な捕捉が可能となり、測量作業の効率を向上させることができる。 In order to solve the above problems, the configuration of the reflection device is a reflection device that retroreflects irradiated light, and includes a retroreflecting section configured by arranging retroreflectors that enable the retroreflection, and the retroreflecting section is configured to include a plurality of reflective areas in which the direction of retroreflection is set to different directions.
According to this configuration, light incident from a wide range can be retroreflected.
Furthermore, since the retroreflector is made of microprisms, it becomes easier to obtain retroreflected light having a light flux required for, for example, visual recognition, surveying, and the like.
Furthermore, the retroreflection section is provided on a base, and an air layer is formed between the retroreflection section and the base, so that the reflecting device can be manufactured inexpensively and easily.
Furthermore, by configuring the base to include a fixing means for fixing the reflecting device, the work of installing the reflecting device can be facilitated.
Another configuration of the reflecting device is a reflecting device that is attached to an object to be surveyed and retroreflects light irradiated from a surveying instrument, and includes a retroreflecting section configured by arranging retroreflectors that enable the retroreflection, and the retroreflecting section has a plurality of reflective areas in which the direction of retroreflection is set in different directions, and when the reflecting device is attached to the object to be surveyed, the reflective areas with the same direction of retroreflection are arranged in symmetrical positions.
According to this configuration, it is possible to continuously capture the survey object by utilizing the automatic collimation function of the surveying instrument, thereby improving the efficiency of the surveying work.
以下、発明の実施形態を通じて本発明を詳説するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明される特徴の組み合わせのすべてが発明の解決手段に必須であるとは限らず、選択的に採用される構成を含むものである。
The present invention will be described in detail below through embodiments of the invention, but the following embodiments do not limit the invention as claimed, and not all of the combinations of features described in the embodiments are necessarily essential to the solution of the invention, and include configurations that are selectively adopted.
本発明に係る反射装置は、例えば、測量用のターゲット1として利用することができる。以下の説明では、反射装置について測量用のターゲット1を用いて説明する。
本実施形態に係るターゲット1は、測量対象物に取り付けられ、測量機から測距光を照射して測量対象物の位置や向き等の測量に利用されるものであって、例えば、一つの測量対象物の複数箇所に取り付けたり、複数の測量対象物に複数取り付けたりしたときに、測量対象物への取り付けを容易にするとともに、例えば、測量機が自動視準機能を備えている場合には、一つ箇所から複数の測定位置の測量を可能に構成されている。以下の説明では、測量機4は、自動視準機能を有しているものとして説明する。 The reflecting device according to the present invention can be used, for example, as asurveying target 1. In the following description, the reflecting device will be described using the surveying target 1.
Thetarget 1 according to this embodiment is attached to an object to be surveyed and is used to measure the position, orientation, etc. of the object to be surveyed by irradiating distance measuring light from the surveying instrument, and is configured to facilitate attachment to the object to be surveyed when it is attached to multiple locations on one object to be surveyed or multiple targets to be surveyed, and to enable surveying of multiple measurement positions from one location, for example, when the surveying instrument has an automatic collimation function. In the following explanation, the surveying instrument 4 is described as having an automatic collimation function.
本実施形態に係るターゲット1は、測量対象物に取り付けられ、測量機から測距光を照射して測量対象物の位置や向き等の測量に利用されるものであって、例えば、一つの測量対象物の複数箇所に取り付けたり、複数の測量対象物に複数取り付けたりしたときに、測量対象物への取り付けを容易にするとともに、例えば、測量機が自動視準機能を備えている場合には、一つ箇所から複数の測定位置の測量を可能に構成されている。以下の説明では、測量機4は、自動視準機能を有しているものとして説明する。 The reflecting device according to the present invention can be used, for example, as a
The
図1は、本実施形態に係るターゲット1の一例を示す平面図である。図2は、本実施形態に係るターゲット1の構成を示す分解斜視図である。
図3は、ベース部材10と反射部材20を一体化させてターゲット1を構成したときのベース部材10と反射部材20の関係を示す断面図である。
なお、ターゲット1には、測量対象物へ取り付けるための向きを規定する上下方向が設定されている。以下の説明では、例えば、ターゲット1を柱などに取り付けられたときを想定し、図中矢印で示すように、上下方向、左右方向、前後方向として方向を特定して説明する。 Fig. 1 is a plan view showing an example of atarget 1 according to the present embodiment. Fig. 2 is an exploded perspective view showing the configuration of the target 1 according to the present embodiment.
FIG. 3 is a cross-sectional view showing the relationship between thebase member 10 and the reflecting member 20 when the base member 10 and the reflecting member 20 are integrated to form the target 1. As shown in FIG.
Thetarget 1 has an up-down direction that defines the orientation for mounting the target on a survey object. In the following explanation, it is assumed that the target 1 is mounted on a pillar or the like, and the directions are specified as up-down, left-right, and front-rear directions as shown by the arrows in the figure.
図3は、ベース部材10と反射部材20を一体化させてターゲット1を構成したときのベース部材10と反射部材20の関係を示す断面図である。
なお、ターゲット1には、測量対象物へ取り付けるための向きを規定する上下方向が設定されている。以下の説明では、例えば、ターゲット1を柱などに取り付けられたときを想定し、図中矢印で示すように、上下方向、左右方向、前後方向として方向を特定して説明する。 Fig. 1 is a plan view showing an example of a
FIG. 3 is a cross-sectional view showing the relationship between the
The
ターゲット1は、平面視において正方形状(図1(a)参照)、側方視において平板状(図1(b)参照)に形成され、例えば、ベース部材10と、反射部材20とを備えた構成とされる。ベース部材10は、ターゲット1における一面側をなし、反射部材20は、ターゲット1における他面側をなすように構成されている。
Target 1 is formed in a square shape when viewed from above (see FIG. 1(a)) and in a flat plate shape when viewed from the side (see FIG. 1(b)), and is configured to include, for example, a base member 10 and a reflecting member 20. The base member 10 forms one side of target 1, and the reflecting member 20 forms the other side of target 1.
図1,図2に示すように、ベース部材10は、正方形状に形成された基板10Aと、該基板10Aの外周を囲むように立ち上がる枠10Bを有する一方(前方)側が開口する箱型に形成されている。基板10Aは、例えば、厚みが一定の平板状に形成されている。枠10Bは、例えば、基板10Aの一方側に向けて均一の高さで立ち上がり、厚みが一定の板状に形成されている。
As shown in Figures 1 and 2, the base member 10 is formed in a box shape that is open on one side (front) and has a square-shaped substrate 10A and a frame 10B that rises to surround the outer periphery of the substrate 10A. The substrate 10A is formed, for example, in the shape of a flat plate with a constant thickness. The frame 10B is formed, for example, in the shape of a plate with a constant thickness that rises at a uniform height toward one side of the substrate 10A.
ベース部材10は、例えば、樹脂材、ポリエチレン材等を素材として構成することができ、例えば、白や黒などに着色され、光の透過を許容しないように構成することができる。
The base member 10 can be made of a material such as resin or polyethylene, and can be colored, for example, in white or black, and configured so as not to allow light to pass through.
反射部材20は、光透過性を有する樹脂等を素材として構成される。図3に示すように、反射部材20は、光の再帰反射を可能とする再帰性反射体50を支持層22上に複数配置して構成される。以下の説明では、複数配列された再帰性反射体50の集合を反射構造部20Aという場合がある。支持層22及び再帰性反射体50は、反射部材20として一体的に形成されている。
The reflective member 20 is made of a material such as a light-transmitting resin. As shown in FIG. 3, the reflective member 20 is made by arranging a plurality of retroreflectors 50, which enable the retroreflection of light, on a support layer 22. In the following description, a collection of a plurality of arranged retroreflectors 50 may be referred to as the reflective structure 20A. The support layer 22 and the retroreflectors 50 are integrally formed as the reflective member 20.
支持層22は、ベース部材10との重ね合わせが可能となるように、例えば、平面視においてベース部材10の枠10Bの外周寸法(外形形状)に一致する正方形の板状に形成される。複数の再帰性反射体50は、支持層22をベース部材10に重ね合わせたときに、枠10Bの内周寸法内に含まれるように一面側に整列して設けられる。
The support layer 22 is formed, for example, in a square plate shape that matches the outer peripheral dimensions (external shape) of the frame 10B of the base member 10 in a plan view so that it can be superimposed on the base member 10. The multiple retroreflectors 50 are aligned on one side so that they are included within the inner peripheral dimensions of the frame 10B when the support layer 22 is superimposed on the base member 10.
即ち、反射部材20は、一方の面が平面、他方の面に複数の再帰性反射体50が突出する反射構造部20Aを備えた構成とされている。反射構造部20Aは、例えば、ベース部材10の枠10B内に収容可能な範囲、ベース部材10の枠10Bの内側の形状に沿う正方形を描くように配列して支持層22に形成されている。
In other words, the reflective member 20 is configured with a reflective structure 20A with one flat surface and multiple retroreflectors 50 protruding from the other surface. The reflective structure 20A is formed on the support layer 22, for example, in an area that can be accommodated within the frame 10B of the base member 10, and arranged to form a square that follows the shape of the inside of the frame 10B of the base member 10.
ターゲット1は、例えば、反射部材20の支持層22をベース部材10の枠10B上に接触させ、重ね合わせたときに、反射部材20の支持層22から突出する反射構造部20Aと、ベース部材10の基板10Aとの間に空気層30が形成されるように、ベース部材10及び反射部材20を一体化して構成される。
The target 1 is constructed by integrating the base member 10 and the reflective member 20, for example, so that when the support layer 22 of the reflective member 20 is brought into contact with and superimposed on the frame 10B of the base member 10, an air layer 30 is formed between the reflective structure 20A protruding from the support layer 22 of the reflective member 20 and the substrate 10A of the base member 10.
なお、反射部材20の支持層22から突出する反射構造部20Aと、ベース部材10の基板10Aとの間は、空気層30に限定されない。例えば、空気層30に代えて反射部材20よりも屈折率の小さい物質を充填するようにしても良く、また、反射部材20の反射構造部20Aに対してベース部材10の基板10Aが合致するようにベース部材10を形成しても良い。
The space between the reflective structure 20A protruding from the support layer 22 of the reflective member 20 and the substrate 10A of the base member 10 is not limited to the air layer 30. For example, the air layer 30 may be replaced with a material having a smaller refractive index than the reflective member 20, and the base member 10 may be formed so that the substrate 10A of the base member 10 matches the reflective structure 20A of the reflective member 20.
ベース部材10及び反射部材20は、例えば、接着剤や嵌め合い等の固定手段を利用して一体化することができる。
The base member 10 and the reflective member 20 can be integrated together using a fixing means such as adhesive or fitting.
ベース部材10及び反射部材20が一体化されたターゲット1は、反射部材20における平面20a部分が測量機から照射された視準光や測距光が入射する照射面1a、ベース部材10における平面10a部分がターゲット1を測量対象物に取り付けるための取付面1bとして機能する。照射面1a及び取付面1bは、互いに平行とされている。また、ターゲット1は、n等分された反射部材20とベース部材10が一体化された部材を基盤に固定した構成であっても良い。
In the target 1, in which the base member 10 and the reflecting member 20 are integrated, the flat surface 20a of the reflecting member 20 functions as the irradiation surface 1a on which the collimation light and distance measurement light emitted from the surveying instrument are incident, and the flat surface 10a of the base member 10 functions as the mounting surface 1b for mounting the target 1 to the surveying object. The irradiation surface 1a and the mounting surface 1b are parallel to each other. The target 1 may also be configured in such a way that a member in which the reflecting member 20 and the base member 10 are integrated into n equal parts is fixed to a base.
取付面1bには、例えば、ターゲット1の測量対象物への取り付けを容易にするための固定手段(図外)を予め備えた構成としておくと良い。固定手段には、例えば、両面テープやマグネット、接着剤等を利用することができる。これにより、例えば、鉄骨などの建ち精度などを測量するときのターゲット1の設置作業を容易にすることができる。なお、本実施形態に係るターゲット1の利用はこれに限定されない。
The mounting surface 1b may be provided with a fixing means (not shown) for easily attaching the target 1 to the object to be surveyed. The fixing means may be, for example, double-sided tape, a magnet, adhesive, etc. This makes it easier to set up the target 1 when, for example, surveying the erection accuracy of steel frames, etc. Note that the use of the target 1 in this embodiment is not limited to this.
図4は、本実施形態に係る再帰性反射体50を示す図である。
本実施形態では、再帰性反射体50は、図4に示すようなコーナーキューブ型のマイクロプリズムとして説明するが、再帰反射を可能とするものであれば、ガラスビーズ等の他のマイクロプリズムであっても良い。再帰性反射体50には、マイクロプリズムを用いることにより、自動視準機能に必要とされる光束が得やすくなる。 FIG. 4 is a diagram showing aretroreflector 50 according to this embodiment.
In this embodiment, theretroreflector 50 is described as a corner cube type microprism as shown in Fig. 4, but other microprisms such as glass beads may be used as long as they enable retroreflection. By using a microprism for the retroreflector 50, it becomes easier to obtain the light flux required for the automatic collimation function.
本実施形態では、再帰性反射体50は、図4に示すようなコーナーキューブ型のマイクロプリズムとして説明するが、再帰反射を可能とするものであれば、ガラスビーズ等の他のマイクロプリズムであっても良い。再帰性反射体50には、マイクロプリズムを用いることにより、自動視準機能に必要とされる光束が得やすくなる。 FIG. 4 is a diagram showing a
In this embodiment, the
図4に示すように、コーナーキューブ型の再帰性反射体50は、立方体を形成するうちの一つの頂点を三角錐の頂点51Aとし、この頂点に隣接する3つの頂点51B,51C,51Dを通る平面で切り出した形状とされる。
As shown in FIG. 4, the corner cube retroreflector 50 has one vertex forming a cube, which is the vertex 51A of a triangular pyramid, cut out along a plane passing through the three vertices 51B, 51C, and 51D adjacent to this vertex.
即ち、再帰性反射体50とされる三角錐は、図4に示すように、側面52a,52b,52cが互いに直角に交差し、側辺の長さが同じ長さに形成される。
再帰性反射体50は、図3に示すように、コーナーキューブとして立方体から切り出された三角錐の底面52dを支持層22に向けて配列され、支持層22とともに一体的に形成されることで反射構造部(再帰反射部)20Aを形成する。 That is, as shown in FIG. 4, the triangular pyramid that constitutes theretroreflector 50 is formed such that the side surfaces 52a, 52b, and 52c intersect at right angles with each other and have the same length.
As shown in Figure 3, theretroreflector 50 is arranged such that the base surfaces 52d of triangular pyramids cut out from a cube as corner cubes face the support layer 22, and is formed integrally with the support layer 22 to form a reflective structure (retroreflector) 20A.
再帰性反射体50は、図3に示すように、コーナーキューブとして立方体から切り出された三角錐の底面52dを支持層22に向けて配列され、支持層22とともに一体的に形成されることで反射構造部(再帰反射部)20Aを形成する。 That is, as shown in FIG. 4, the triangular pyramid that constitutes the
As shown in Figure 3, the
反射構造部20Aを構成する(配列された)一つ一つの再帰性反射体50は、支持層22を通過し、底面52dから入射した光(入射光)を、3つの側面(のうちの内面)52a,52b,52cで1回ずつ正反射したのち、再び底面52dから入射方向に反射する(再帰反射)プリズムとして機能する。
なお、再帰性反射体50は、前述のように支持層22に一体に形成されるため、図3乃至図6に示した底面52dは、説明の便宜上明示した仮想的な面である。 Each of the (arranged) retroreflectors 50 that make up thereflective structure 20A functions as a (retroreflective) prism that reflects light (incident light) that passes through the support layer 22 and enters from the bottom surface 52d, specularly once each from the three side surfaces (the inner surfaces of which) 52a, 52b, and 52c, and then reflects it again in the incident direction from the bottom surface 52d.
As described above, theretroreflector 50 is formed integrally with the support layer 22, and therefore the bottom surface 52d shown in FIGS. 3 to 6 is an imaginary surface shown for the sake of convenience of explanation.
なお、再帰性反射体50は、前述のように支持層22に一体に形成されるため、図3乃至図6に示した底面52dは、説明の便宜上明示した仮想的な面である。 Each of the (arranged) retroreflectors 50 that make up the
As described above, the
本実施形態に係る反射部材20は、測量機から照射される視準光の入射角度が大きな場合であっても測量機に向けた再帰反射を可能に構成されている。具体的には、反射構造部20Aは、再帰反射の方向が異なる方向となるように形成された複数の反射領域を有するように構成されている。本実施形態では、5種類の反射領域R1,R2,R3,R4,R5(図1参照)を有するように構成されている。
The reflective member 20 in this embodiment is configured to be capable of retroreflecting light toward a surveying instrument even when the angle of incidence of collimation light emitted from the surveying instrument is large. Specifically, the reflective structure 20A is configured to have multiple reflective regions formed so that the retroreflecting direction is different. In this embodiment, it is configured to have five types of reflective regions R1, R2, R3, R4, and R5 (see Figure 1).
各反射領域R1,R2,R3,R4,R5における再帰反射の方向は、各反射領域R1,R2,R3,R4,R5を構成する再帰性反射体50を傾けて配置することで実現される。傾けて配置とは、図3に示すように反射軸Jが照射面1aの法線Nとなるように配置したときを基準としている。反射軸Jとは、再帰性反射体50に光が入射したときに最も明るく再帰反射する方向をいい、本実施形態では、再帰性反射体50の底面52dに直交し、再帰性反射体50の頂点51Aを通る線により定義した。
なお、各反射領域R1,R2,R3,R4,R5による再帰反射は、反射軸Jの方向のみに限るものではなく、ある程度(例えば±20°)の範囲(角度)からの光の入射が許容される。 The direction of retroreflection in each of the reflection regions R1, R2, R3, R4, and R5 is realized by tilting theretroreflectors 50 constituting the reflection regions R1, R2, R3, R4, and R5. The tilted arrangement is based on the case where the retroreflectors 50 are arranged so that the reflection axis J is the normal N of the irradiation surface 1a as shown in FIG. 3. The reflection axis J refers to the direction in which light is most brightly retroreflected when it is incident on the retroreflector 50, and in this embodiment, it is defined by a line that is perpendicular to the bottom surface 52d of the retroreflector 50 and passes through the vertex 51A of the retroreflector 50.
The retroreflection by each of the reflective regions R1, R2, R3, R4, and R5 is not limited to the direction of the reflection axis J, but allows the incidence of light from a certain range (angle) (for example, ±20°).
なお、各反射領域R1,R2,R3,R4,R5による再帰反射は、反射軸Jの方向のみに限るものではなく、ある程度(例えば±20°)の範囲(角度)からの光の入射が許容される。 The direction of retroreflection in each of the reflection regions R1, R2, R3, R4, and R5 is realized by tilting the
The retroreflection by each of the reflective regions R1, R2, R3, R4, and R5 is not limited to the direction of the reflection axis J, but allows the incidence of light from a certain range (angle) (for example, ±20°).
即ち、反射領域R1,R2,R3,R4,R5は、同一の領域内では、再帰性反射体50の反射軸Jの傾きが同じとなるように配置される。また、異なる反射領域R1,R2,R3,R4,R5を構成する再帰性反射体50は、反射軸Jが傾斜する角度が異なるように反射部材20に形成されている。
In other words, the reflective regions R1, R2, R3, R4, and R5 are arranged so that the inclination of the reflective axis J of the retroreflector 50 is the same within the same region. In addition, the retroreflectors 50 constituting the different reflective regions R1, R2, R3, R4, and R5 are formed on the reflective member 20 so that the angles at which the reflective axis J is inclined are different.
実施形態では、例えば、図1(a)に示すように、平面視において上下、左右方向に均等な間隔で反射構造部20Aを25個の領域に区画され、各区画が正方形状とされている。正方形状に区画された領域には、反射領域R1,R2,R3,R4,R5が形成されている。
In the embodiment, as shown in FIG. 1(a), for example, the reflective structure 20A is divided into 25 regions at equal intervals in the vertical and horizontal directions in a plan view, and each region is square-shaped. Reflective regions R1, R2, R3, R4, and R5 are formed in the square-shaped regions.
反射領域R1は、反射構造部20Aの中央に配置され、反射領域R1を囲むように反射領域R2,R3が配置され、反射領域R2,R3を囲むように反射領域R4,R5が配置される。
詳細には、反射領域R1として区画された正方形の中心と、ターゲット1における中心Oとが一致するように配置される。また、反射領域R2は、反射領域R1の4辺に接するように反射領域R1の上下左右に配置され、反射領域R3は、反射領域R1の頂点で隣接するように反射領域R1の4つの対角位置に配置されている。また、反射領域R4は、反射領域R1を取り囲む反射領域R2,R3の外側において、反射領域R1の上下左右及び対角の位置に配置され、反射領域R5は、反射領域R1を取り囲む反射領域R2,R3の外側に設けられた反射領域R4の間に配置される。 The reflective region R1 is disposed in the center of thereflective structure 20A, the reflective regions R2 and R3 are disposed so as to surround the reflective region R1, and the reflective regions R4 and R5 are disposed so as to surround the reflective regions R2 and R3.
Specifically, the reflection region R1 is disposed so that the center of the square defined as the reflection region R1 coincides with the center O of thetarget 1. The reflection region R2 is disposed above, below, left, and right of the reflection region R1 so as to be in contact with the four sides of the reflection region R1, and the reflection region R3 is disposed at four diagonal positions of the reflection region R1 so as to be adjacent to the vertices of the reflection region R1. The reflection region R4 is disposed outside the reflection regions R2 and R3 surrounding the reflection region R1, at the above, below, left, right, and diagonal positions of the reflection region R1, and the reflection region R5 is disposed between the reflection regions R4 provided outside the reflection regions R2 and R3 surrounding the reflection region R1.
詳細には、反射領域R1として区画された正方形の中心と、ターゲット1における中心Oとが一致するように配置される。また、反射領域R2は、反射領域R1の4辺に接するように反射領域R1の上下左右に配置され、反射領域R3は、反射領域R1の頂点で隣接するように反射領域R1の4つの対角位置に配置されている。また、反射領域R4は、反射領域R1を取り囲む反射領域R2,R3の外側において、反射領域R1の上下左右及び対角の位置に配置され、反射領域R5は、反射領域R1を取り囲む反射領域R2,R3の外側に設けられた反射領域R4の間に配置される。 The reflective region R1 is disposed in the center of the
Specifically, the reflection region R1 is disposed so that the center of the square defined as the reflection region R1 coincides with the center O of the
即ち、ターゲット1は、反射軸Jの傾きが同じ領域が、反射構造部20Aの中心O周りに対称となるように配置されている。このように反射軸Jの傾きが同じ反射領域R1~R5を反射構造部20Aの中心O周りに対称となるように配置することにより、各反射領域R1~R5から反射された光からターゲット1の中心Oの位置を検出することができ、測量における精度を維持することができる。
In other words, the target 1 is arranged so that the areas with the same inclination of the reflection axis J are symmetrical around the center O of the reflection structure 20A. By arranging the reflection areas R1 to R5 with the same inclination of the reflection axis J symmetrical around the center O of the reflection structure 20A in this way, the position of the center O of the target 1 can be detected from the light reflected from each of the reflection areas R1 to R5, and the accuracy of the surveying can be maintained.
図5,図6は、各反射領域R1~R5における再帰性反射体50の配列を示す平面図である。詳細には、図5は、ターゲット1を上方から見たときの各反射領域R1~R5における再帰性反射体50の配列状態を示し、図6は、ターゲット1を側方から見たときの各反射領域R1~R5における再帰性反射体50の配列状態を示している。なお、図5,図6では、側方や上方から見えるすべてを記載したものではなく、一列に並ぶ再帰性反射体50の一部を抽出して示したものである。
FIGS. 5 and 6 are plan views showing the arrangement of the retroreflectors 50 in each of the reflection regions R1 to R5. In detail, FIG. 5 shows the arrangement of the retroreflectors 50 in each of the reflection regions R1 to R5 when the target 1 is viewed from above, and FIG. 6 shows the arrangement of the retroreflectors 50 in each of the reflection regions R1 to R5 when the target 1 is viewed from the side. Note that FIGS. 5 and 6 do not show everything that can be seen from the side or above, but rather show only a portion of the retroreflectors 50 that are lined up in a row.
反射領域R1は、照射面1aの法線Nに対して、反射軸Jが左右方向には0°(図5(a)参照)、上下方向には下に15°(図6(a)参照)傾斜するように再帰性反射体50を傾けて配置される。
The reflective region R1 is arranged by tilting the retroreflector 50 so that the reflective axis J is inclined 0° in the left-right direction (see FIG. 5(a)) and 15° downward in the up-down direction (see FIG. 6(a)) with respect to the normal N of the irradiation surface 1a.
反射領域R2は、照射面1aの法線Nに対して、反射軸Jが左右方向には左に15°(図5(b)参照)、上下方向には下に15°(図6(b)参照)傾斜するように再帰性反射体50を傾けて配置される。
The reflective region R2 is positioned by tilting the retroreflector 50 so that the reflective axis J is inclined 15° to the left in the left-right direction (see FIG. 5(b)) and 15° down in the up-down direction (see FIG. 6(b)) with respect to the normal N of the irradiation surface 1a.
反射領域R3は、照射面1aの法線Nに対して、反射軸Jが左右方向には右に15°(図5(c)参照)、上下方向には下に15°(図6(c)参照)傾斜するように再帰性反射体50を傾けて配置される。
The reflective region R3 is positioned by tilting the retroreflector 50 so that the reflective axis J is inclined 15° to the right in the left-right direction (see FIG. 5(c)) and 15° down in the up-down direction (see FIG. 6(c)) with respect to the normal N of the irradiation surface 1a.
反射領域R4は、照射面1aの法線Nに対して、反射軸Jが左右方向には左に30°(図5(d)参照)、上下方向には下に30°(図6(d)参照)傾斜するように再帰性反射体50を傾けて配置される。
The reflective region R4 is positioned by tilting the retroreflector 50 so that the reflective axis J is tilted 30° to the left in the left-right direction (see FIG. 5(d)) and 30° down in the up-down direction (see FIG. 6(d)) with respect to the normal N of the irradiation surface 1a.
反射領域R5は、照射面1aの法線Nに対して、反射軸Jが左右方向には右に30°(図5(e)参照)、上下方向には下に30°(図6(e)参照)傾斜するように再帰性反射体50を傾けて配置される。
The reflective region R5 is arranged by tilting the retroreflector 50 so that the reflective axis J is inclined 30° to the right in the left-right direction (see FIG. 5(e)) and 30° down in the up-down direction (see FIG. 6(e)) with respect to the normal N of the irradiation surface 1a.
即ち、ターゲット1を鉛直方向に延びる柱等の測量対象物の表面に取り付けたときに、反射領域R1は、測量機から照射された視準光が方向角0°、伏角15°で、照射面1aから入射したときに最も明るく反射するように構成されている。
また、反射領域R2は、測量機から照射された視準光が方向角左に15°、伏角15°で、照射面1aから入射したときに最も明るく反射するように構成されている。
また、反射領域R3は、測量機から照射された視準光が方向角右に15°、伏角15°で、照射面1aから入射したときに最も明るく反射するように構成されている。
また、反射領域R4は、測量機から照射された視準光が方向角左に30°、伏角30°で、照射面1aから入射したときに最も明るく反射するように構成されている。
また、反射領域R5は、測量機から照射された視準光が方向角右に30°、伏角30°で、照射面1aから入射したときに最も明るく反射するように構成されている。 In other words, when thetarget 1 is attached to the surface of a surveying object such as a pillar extending in the vertical direction, the reflection area R1 is configured to reflect most brightly when the collimated light irradiated from the surveying instrument is incident on the irradiation surface 1a at a direction angle of 0° and a dip angle of 15°.
The reflection area R2 is configured to reflect the most brightly when the collimated light emitted from the surveying instrument is incident on theirradiation surface 1a at a direction angle of 15° to the left and a dip angle of 15°.
The reflection area R3 is configured to reflect the most brightly when the collimated light emitted from the surveying instrument is incident on theirradiation surface 1a at a direction angle of 15° to the right and a dip angle of 15°.
The reflection area R4 is configured to reflect the most brightly when the collimated light emitted from the surveying instrument is incident on theirradiation surface 1a at a direction angle of 30° to the left and a dip angle of 30°.
The reflection area R5 is configured to reflect the most brightly when the collimated light emitted from the surveying instrument is incident on theirradiation surface 1a at a direction angle of 30° to the right and a dip angle of 30°.
また、反射領域R2は、測量機から照射された視準光が方向角左に15°、伏角15°で、照射面1aから入射したときに最も明るく反射するように構成されている。
また、反射領域R3は、測量機から照射された視準光が方向角右に15°、伏角15°で、照射面1aから入射したときに最も明るく反射するように構成されている。
また、反射領域R4は、測量機から照射された視準光が方向角左に30°、伏角30°で、照射面1aから入射したときに最も明るく反射するように構成されている。
また、反射領域R5は、測量機から照射された視準光が方向角右に30°、伏角30°で、照射面1aから入射したときに最も明るく反射するように構成されている。 In other words, when the
The reflection area R2 is configured to reflect the most brightly when the collimated light emitted from the surveying instrument is incident on the
The reflection area R3 is configured to reflect the most brightly when the collimated light emitted from the surveying instrument is incident on the
The reflection area R4 is configured to reflect the most brightly when the collimated light emitted from the surveying instrument is incident on the
The reflection area R5 is configured to reflect the most brightly when the collimated light emitted from the surveying instrument is incident on the
図7は、ターゲット1の作用を示す図である。本実施形態に係るターゲット1は、前述したように反射軸Jの向きが異なる反射領域R1~R5を備えた構成とされていることから、例えば、図7に示すような範囲に配置に対応することができる。
FIG. 7 is a diagram showing the function of target 1. As described above, target 1 according to this embodiment is configured with reflection regions R1 to R5 with different orientations of reflection axis J, and can be arranged in a range such as that shown in FIG. 7.
図7に示す1(a)は測量機4から見て方向角0°,仰角15°に配置されたターゲットを示し、1(b)は測量機4から見て方向角左15°、仰角15°に配置されたターゲットを示し、1(c)は測量機4から見て方向角右15°、仰角15°に配置されたターゲットを示し、1(d)は測量機4から見て方向角左30°、仰角30°に配置されたターゲットを示し、1(e)は測量機4から見て方向角右30°、仰角30°に配置されたターゲットを示している。なお、ターゲット1(a)~1(e)は、同一のものである。
In Figure 7, 1(a) indicates a target placed at a direction angle of 0° and an elevation angle of 15° as viewed from the surveying instrument 4, 1(b) indicates a target placed at a direction angle of 15° to the left and an elevation angle of 15° as viewed from the surveying instrument 4, 1(c) indicates a target placed at a direction angle of 15° to the right and an elevation angle of 15° as viewed from the surveying instrument 4, 1(d) indicates a target placed at a direction angle of 30° to the left and an elevation angle of 30° as viewed from the surveying instrument 4, and 1(e) indicates a target placed at a direction angle of 30° to the right and an elevation angle of 30° as viewed from the surveying instrument 4. Note that targets 1(a) to 1(e) are identical.
即ち、測量機4の視準機能により視準光が方向角0°,仰角15°に向けて照射されたときに、ターゲット1(a)において反射軸Jが方向角0°,伏角15°とされた反射領域R1から最も明るく測量機4に向けて視準光を反射する。
また、測量機4の視準機能により視準光が方向角右15°,仰角15°に向けて照射されたときに、ターゲット1(b)において反射軸Jが方向角右15°,伏角15°とされた4つの反射領域R2から最も明るく測量機4に向けて視準光を反射する。
また、測量機4の視準機能により視準光が方向角左15°,仰角15°に向けて照射されたときに、ターゲット1(c)において反射軸Jが方向角左15°,伏角15°とされた4つの反射領域R3から最も明るく測量機4に向けて視準光を反射する。
また、測量機4の視準機能により視準光が方向角右30°,仰角30°に向けて照射されたときに、ターゲット1(d)において反射軸Jが方向角右30°,伏角30°とされた8つの反射領域R4から最も明るく測量機4に向けて視準光を反射する。
また、測量機4の視準機能により視準光が方向角左30°,仰角30°に向けて照射されたときに、ターゲット1(e)において反射軸Jが方向角左30°,伏角30°とされた8つの反射領域R5から最も明るく測量機4に向けて視準光を反射する。 In other words, when the collimation light is irradiated toward a direction angle of 0° and an elevation angle of 15° by the collimation function of the surveyinginstrument 4, the collimation light is reflected most brightly toward the surveying instrument 4 from the reflection region R1 in which the reflection axis J in the target 1 (a) has a direction angle of 0° and an elevation angle of 15°.
In addition, when the collimation light is irradiated toward a direction angle of 15° to the right and an elevation angle of 15° by the collimation function of the surveyinginstrument 4, the collimation light is reflected most brightly toward the surveying instrument 4 from the four reflection areas R2 in the target 1 (b) whose reflection axis J is at a direction angle of 15° to the right and an elevation angle of 15°.
In addition, when the collimation light is irradiated toward a direction angle of 15° to the left and an elevation angle of 15° by the collimation function of the surveyinginstrument 4, the collimation light is reflected most brightly toward the surveying instrument 4 from the four reflection areas R3 in the target 1 (c) whose reflection axis J is at a direction angle of 15° to the left and an elevation angle of 15°.
In addition, when the collimation light is irradiated toward a direction angle of 30° to the right and an elevation angle of 30° by the collimation function of the surveyinginstrument 4, the collimation light is reflected most brightly toward the surveying instrument 4 from eight reflection areas R4 in which the reflection axis J is at a direction angle of 30° to the right and an elevation angle of 30° in the target 1 (d).
In addition, when the collimation light is irradiated toward a direction angle of 30° to the left and an elevation angle of 30° by the collimation function of the surveyinginstrument 4, the collimation light is reflected most brightly toward the surveying instrument 4 from the eight reflection areas R5 in the target 1 (e) whose reflection axis J is at a direction angle of 30° to the left and an elevation angle of 30°.
また、測量機4の視準機能により視準光が方向角右15°,仰角15°に向けて照射されたときに、ターゲット1(b)において反射軸Jが方向角右15°,伏角15°とされた4つの反射領域R2から最も明るく測量機4に向けて視準光を反射する。
また、測量機4の視準機能により視準光が方向角左15°,仰角15°に向けて照射されたときに、ターゲット1(c)において反射軸Jが方向角左15°,伏角15°とされた4つの反射領域R3から最も明るく測量機4に向けて視準光を反射する。
また、測量機4の視準機能により視準光が方向角右30°,仰角30°に向けて照射されたときに、ターゲット1(d)において反射軸Jが方向角右30°,伏角30°とされた8つの反射領域R4から最も明るく測量機4に向けて視準光を反射する。
また、測量機4の視準機能により視準光が方向角左30°,仰角30°に向けて照射されたときに、ターゲット1(e)において反射軸Jが方向角左30°,伏角30°とされた8つの反射領域R5から最も明るく測量機4に向けて視準光を反射する。 In other words, when the collimation light is irradiated toward a direction angle of 0° and an elevation angle of 15° by the collimation function of the surveying
In addition, when the collimation light is irradiated toward a direction angle of 15° to the right and an elevation angle of 15° by the collimation function of the surveying
In addition, when the collimation light is irradiated toward a direction angle of 15° to the left and an elevation angle of 15° by the collimation function of the surveying
In addition, when the collimation light is irradiated toward a direction angle of 30° to the right and an elevation angle of 30° by the collimation function of the surveying
In addition, when the collimation light is irradiated toward a direction angle of 30° to the left and an elevation angle of 30° by the collimation function of the surveying
このように、ターゲット1が複数の反射軸Jを備えた構成とすることにより、図7に示すように1種類のターゲットを共通して利用することができるので、ターゲット1の設置作業を容易にすることができるとともに、測量機4の位置を動かすことなく、複数箇所に設置されたターゲット1を連続的に視準し、測量できる。
In this way, by configuring the target 1 to have multiple reflection axes J, one type of target can be commonly used as shown in Figure 7, which makes it easier to install the target 1 and allows targets 1 installed in multiple locations to be continuously sighted and surveyed without moving the position of the surveying instrument 4.
図7に係る説明では、説明の便宜上ターゲット1に設定された反射軸J上に測量機4が位置するものとしたが、ターゲット1は、必ずしも測量機4から照射される視準光が反射軸Jに一致するように配置されている必要はない。各反射領域R1~R5を構成する再帰性反射体50は、反射軸Jを中心として、反射軸Jからずれた光の再帰反射を許容するので、より幅広い範囲での自動視準が可能とされる。
In the explanation of FIG. 7, for convenience of explanation, the surveying instrument 4 is positioned on the reflection axis J set on the target 1, but the target 1 does not necessarily need to be positioned so that the collimation light emitted from the surveying instrument 4 coincides with the reflection axis J. The retroreflectors 50 that make up each of the reflection regions R1 to R5 allow the retroreflection of light that is shifted from the reflection axis J, centered on the reflection axis J, making automatic collimation possible over a wider range.
前述した各反射領域R1~R5に設定される反射軸Jの向きは、上記実施形態の角度に限定されず、適宜変更しても良い。例えば、仰角が低く、方向角が広い測量に好適にターゲット1を構成する場合には、仰角に比べて方向角について反射軸Jが多く変化するように反射領域を設定すれば良く、仰角が高く、方向角が狭い測量に好適にターゲット1を構成する場合には、方向角に比べて仰角について反射軸Jが多く変化するように反射領域を設定するなどしてターゲット1を構成すれば良い。
The orientation of the reflection axis J set in each of the reflection areas R1 to R5 described above is not limited to the angles in the above embodiment, and may be changed as appropriate. For example, if the target 1 is configured to be suitable for surveying with a low elevation angle and a wide direction angle, the reflection areas can be set so that the reflection axis J changes more with respect to the direction angle than with respect to the elevation angle, and if the target 1 is configured to be suitable for surveying with a high elevation angle and a narrow direction angle, the target 1 can be configured by setting the reflection areas so that the reflection axis J changes more with respect to the elevation angle than with respect to the direction angle.
上記実施形態では、ターゲット1の形状を正方形として説明したが、これに限定されない。ターゲット1の形状は、例えば、長方形や矩形以外の多角形、或いは円や楕円であっても良い。ここで言うターゲット1の形状とは、ターゲット1の平面形状やターゲット1における反射構造部20Aの平面形状を意味する。
In the above embodiment, the shape of the target 1 has been described as a square, but this is not limited to this. The shape of the target 1 may be, for example, a rectangle or a polygon other than a rectangle, or a circle or an ellipse. The shape of the target 1 here refers to the planar shape of the target 1 and the planar shape of the reflective structure portion 20A in the target 1.
ターゲット1の形成において肝要なのは、反射軸Jの傾きが異なる反射領域Rを複数(2以上)種類、反射構造部20Aに備えた構成とすると良い。また、反射軸Jの傾きが同じ反射領域Rは、ターゲット1に設定される上下方向に対して少なくとも左右対称に設けると良い。
The key to forming the target 1 is to have a configuration in which the reflective structure 20A is provided with multiple (two or more) types of reflective regions R with different inclinations of the reflective axis J. In addition, the reflective regions R with the same inclination of the reflective axis J should be provided at least symmetrically with respect to the up-down direction set on the target 1.
また、上記実施形態では、ターゲット1は、複数の反射領域を一つの反射部材20に形成するものとして説明したが、反射軸Jの傾きが異なる反射領域毎に反射部材を個別に形成し、個別に形成した複数の反射部材をベース部材10によって一体化するように構成しても良い。
In the above embodiment, the target 1 has been described as having multiple reflective areas formed on a single reflective member 20, but it may also be configured such that a reflective member is formed separately for each reflective area with a different inclination of the reflective axis J, and the multiple individually formed reflective members are integrated by the base member 10.
本発明に係る反射装置について測量用のターゲット1に用いて説明したが、その対象は限定されない。例えば、車両用や道路標識等であっても良い。この場合、測量用のターゲット1のように、再帰反射の方向が異なる方向に設定された複数の反射領域が左右対称の位置に配置されている必要はなく、広い範囲から入射した光を再帰反射可能となるように、各反射領域における再帰反射の方向を設定すれば良い。
Although the reflection device according to the present invention has been described using the surveying target 1, the subject matter is not limited to this. For example, it may be used on vehicles or road signs. In this case, unlike the surveying target 1, it is not necessary to arrange multiple reflection areas with different retroreflection directions symmetrically, but it is sufficient to set the direction of retroreflection in each reflection area so that light incident from a wide range can be retroreflected.
また、各反射領域間に設定される再帰反射の方向は、1つの反射領域における再帰反射の範囲内にあっても良いが、1つの反射領域における再帰反射の範囲外とすることにより、より広い範囲から入射した光について再帰反射を可能とすることができる。
In addition, the direction of retroreflection set between each reflective area may be within the range of retroreflection in one reflective area, but by setting it outside the range of retroreflection in one reflective area, it is possible to retroreflect light incident from a wider range.
1 (測量用)ターゲット、1a 照射面、4 測量機、
10 ベース部材、20 反射部材、20A 反射構造部(再帰反射部)、
22 支持層、30 空気層、50 再帰性反射体、J 反射軸、
R1,R2,R3,R4,R5 反射領域。
1 (surveying) target, 1a irradiation surface, 4 surveying instrument,
10 Base member, 20 Reflective member, 20A Reflective structure portion (retroreflective portion),
22 Support layer, 30 Air layer, 50 Retroreflector, J Reflection axis,
R1, R2, R3, R4, R5: Reflection areas.
10 ベース部材、20 反射部材、20A 反射構造部(再帰反射部)、
22 支持層、30 空気層、50 再帰性反射体、J 反射軸、
R1,R2,R3,R4,R5 反射領域。
1 (surveying) target, 1a irradiation surface, 4 surveying instrument,
10 Base member, 20 Reflective member, 20A Reflective structure portion (retroreflective portion),
22 Support layer, 30 Air layer, 50 Retroreflector, J Reflection axis,
R1, R2, R3, R4, R5: Reflection areas.
Claims (5)
- 照射された光を再帰反射する反射装置であって、
前記再帰反射を可能とする再帰性反射体を配列して構成された再帰反射部を備え、
前記再帰反射部は、再帰反射の方向が異なる方向に設定された複数の反射領域を備えることを特徴とする反射装置。 A reflecting device that retroreflects irradiated light,
A retroreflective section is provided in which the retroreflective members that enable retroreflection are arranged,
The reflection device is characterized in that the retroreflective portion has a plurality of reflection areas each having a different retroreflective direction. - 前記再帰性反射体は、マイクロプリズムであることを特徴とする請求項1に記載の反射装置。 The reflecting device according to claim 1, characterized in that the retroreflector is a microprism.
- 前記再帰反射部は、基盤に設けられ、該再帰反射部と基盤との間に空気層を形成することを特徴とする請求項1に記載の反射装置。 The reflecting device according to claim 1, characterized in that the retroreflective portion is provided on a base, and an air layer is formed between the retroreflective portion and the base.
- 前記基盤は、反射装置を固定するための固定手段を備えたことを特徴とする請求項3に記載の反射装置。 The reflecting device according to claim 3, characterized in that the base is provided with a fixing means for fixing the reflecting device.
- 測量対象物に設けられ、測量機から照射される光を再帰反射する反射装置であって、
前記再帰反射を可能とする再帰性反射体を配列して構成された再帰反射部を備え、
前記再帰反射部は、再帰反射の方向が異なる方向に設定された複数の反射領域を有し、
測量対象物に取り付けられたときに、再帰反射の方向が同じ反射領域が左右対称の位置に設けられたことを特徴とする反射装置。 A reflecting device that is provided on a surveying object and retroreflects light irradiated from a surveying instrument,
A retroreflective section is provided in which the retroreflective members that enable retroreflection are arranged,
The retroreflective portion has a plurality of reflective regions in which the retroreflective directions are set in different directions,
A reflecting device characterized in that, when attached to an object to be surveyed, reflecting areas having the same retroreflective direction are provided at symmetrical positions.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-209695 | 2022-12-27 | ||
JP2022209695A JP7498767B1 (en) | 2022-12-27 | 2022-12-27 | Reflector |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024142621A1 true WO2024142621A1 (en) | 2024-07-04 |
Family
ID=91377715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/040580 WO2024142621A1 (en) | 2022-12-27 | 2023-11-10 | Reflection device |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP7498767B1 (en) |
WO (1) | WO2024142621A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4202600A (en) * | 1978-04-24 | 1980-05-13 | Avery International Corporation | Diced retroreflective sheeting |
JPH06265355A (en) * | 1993-03-12 | 1994-09-20 | Aikoushiya:Kk | Surveying target, surveying method and steel tower for power transmission |
JPH0719706U (en) * | 1993-09-17 | 1995-04-07 | 株式会社小糸製作所 | Vehicle reflector |
JPH0742932U (en) * | 1993-12-29 | 1995-08-11 | 株式会社ソキア | Cat's eye type reflector device for surveying instrument |
JP2001525555A (en) * | 1997-12-01 | 2001-12-11 | リフレキサイト・コーポレーション | Multi-directional retroreflective sheet |
-
2022
- 2022-12-27 JP JP2022209695A patent/JP7498767B1/en active Active
-
2023
- 2023-11-10 WO PCT/JP2023/040580 patent/WO2024142621A1/en unknown
-
2024
- 2024-05-31 JP JP2024088780A patent/JP2024105733A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4202600A (en) * | 1978-04-24 | 1980-05-13 | Avery International Corporation | Diced retroreflective sheeting |
JPH06265355A (en) * | 1993-03-12 | 1994-09-20 | Aikoushiya:Kk | Surveying target, surveying method and steel tower for power transmission |
JPH0719706U (en) * | 1993-09-17 | 1995-04-07 | 株式会社小糸製作所 | Vehicle reflector |
JPH0742932U (en) * | 1993-12-29 | 1995-08-11 | 株式会社ソキア | Cat's eye type reflector device for surveying instrument |
JP2001525555A (en) * | 1997-12-01 | 2001-12-11 | リフレキサイト・コーポレーション | Multi-directional retroreflective sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2024093367A (en) | 2024-07-09 |
JP2024105733A (en) | 2024-08-06 |
JP7498767B1 (en) | 2024-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100245174B1 (en) | Retroreflective material with improved angularity | |
RU2380730C2 (en) | Metal coated angle sheet retroreflector with high brighness coefficient during daytime, and method of making said retroreflector | |
US11505903B2 (en) | Methods and apparatus for ultra wide entrance angle reflective articles for use with autonomous vehicle machine vision systems | |
KR100354377B1 (en) | Directed reflection optical device | |
US20110285965A1 (en) | Display device | |
CA2623979C (en) | Two-sided reflector and two-sided target object | |
US20180164596A1 (en) | Image display device | |
US20030193717A1 (en) | Wide-angle sensor system with a cube corner reflector, and production of the molds | |
JPH0785016B2 (en) | Survey targets and transmission towers | |
US6185055B1 (en) | 360-degree all-around reflector | |
US9243898B2 (en) | Positioning device comprising a light beam | |
WO2024142621A1 (en) | Reflection device | |
EP0147333A2 (en) | Object discrimination and position determination system | |
US9664823B2 (en) | Reflective target for surveying instruments | |
US20020154423A1 (en) | Reflective mirror structure comprised of a multiplicity of prisms | |
JP3787360B2 (en) | A device that retroreflects light flux using multiple triangular prisms | |
TW202434861A (en) | Reflection device | |
US20130301271A1 (en) | Optimization of a Conical Lens/Cap System for Producing a Standard Light Plane | |
JP2023057538A (en) | Surveying target | |
JP2019138782A (en) | Reflective prism and measurement targets | |
JP2594878Y2 (en) | Cat's eye type reflector for surveying instruments | |
CN112859433A (en) | Surface light source device and display device | |
JPH032811Y2 (en) | ||
JP2023116855A (en) | Surveying target and measurement method | |
JP2005195936A (en) | Reflecting prism and light-projecting device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23911405 Country of ref document: EP Kind code of ref document: A1 |