[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024141087A1 - 一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系、方法及应用 - Google Patents

一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系、方法及应用 Download PDF

Info

Publication number
WO2024141087A1
WO2024141087A1 PCT/CN2023/143616 CN2023143616W WO2024141087A1 WO 2024141087 A1 WO2024141087 A1 WO 2024141087A1 CN 2023143616 W CN2023143616 W CN 2023143616W WO 2024141087 A1 WO2024141087 A1 WO 2024141087A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acids
kluyveromyces
pichia
protein
unnatural amino
Prior art date
Application number
PCT/CN2023/143616
Other languages
English (en)
French (fr)
Inventor
郭敏
郑莉
徐丽琼
房鹏飞
于雪
Original Assignee
康码(上海)生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康码(上海)生物科技有限公司 filed Critical 康码(上海)生物科技有限公司
Publication of WO2024141087A1 publication Critical patent/WO2024141087A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • the present invention relates to the field of biotechnology, and preferably, to an in vitro cell-free protein synthesis system for inserting unnatural amino acids.
  • Gene transcription refers to the process of synthesizing an RNA strand using one strand of DNA as a template, under the catalysis of DNA-dependent RNA polymerase (RNP or RNAP), and using four NTPs (ATP, CTP, GTP and UTP) as raw materials according to the principle of base complementary pairing.
  • RNP DNA-dependent RNA polymerase
  • RNA can also guide the synthesis of RNA.
  • the commonly used biosynthetic systems at present are the in vivo biosynthetic system and the in vitro biosynthetic system.
  • the in vivo biosynthetic system refers to the synthesis process of various compounds catalyzed by enzymes in the in vivo system of the organism, that is, the general term for assimilation reactions in the organism, including photosynthesis, gluconeogenesis, biosynthesis of nucleotides, nucleic acids and proteins.
  • protein synthesis is the most important in terms of quantity.
  • Protein biosynthesis is also called translation, which is the process of converting the base sequence in the mRNA molecule into the amino acid sequence in the protein or polypeptide chain. Protein biosynthesis is divided into five stages: activation of amino acids, initiation of polypeptide chain synthesis, extension of peptide chains, termination and release of peptide chains, and processing and modification after protein synthesis.
  • In vitro biosynthesis system refers to the efficient in vitro synthesis of specific chemical molecules or biomacromolecules (DNA, RNA, protein) by adding exogenously encoded nucleic acids DNA, RNA, substrates and energy sources in the lysis system of bacteria, fungi, plant cells or animal cells.
  • the most common in vitro biosynthesis system is the in vitro protein synthesis system, that is, the cell-free protein synthesis system, which uses exogenous mRNA or DNA templates and cell lysates to complete the rapid and efficient translation of exogenous recombinant proteins.
  • non-natural amino acids play an important role in the process of various proteins exercising their physiological and pathological functions.
  • the modification of non-natural amino acids may not only enhance the efficacy of peptide drugs and reduce drug toxicity, but also greatly reduce the immunogenicity of peptide drugs and immune rejection due to the incorporation of non-natural amino acids.
  • some proteases may no longer recognize peptides incorporated with non-natural amino acids, allowing the drugs to remain in the body for a longer time without being degraded, thereby extending the half-life of the drugs and eliminating the drawbacks of continuous injection of peptide drugs.
  • peptide drugs can be "carried" with other chemical attachments, leading to the emergence of new methods for treating diseases.
  • the object of the present invention is to provide a reaction system, a kit and a reaction method for improving the efficiency of protein synthesis containing unnatural amino acids.
  • the stop codon is mutated to TAG.
  • two or more amino acid codons in the target protein gene sequence are mutated into stop codons.
  • the yeast cell extract does not contain yeast endogenous long-chain nucleic acid molecules.
  • the centrifugation is performed in a liquid state.
  • the centrifugation condition is 5000-100000g, preferably, 8000-30000g.
  • the R 1 is selected from substituted or unsubstituted C2-C10 alkynyl.
  • the substituents are common substituents in the art, such as aryl, heteroaryl, alkyl, cycloalkyl, aryloxy, heteroaryloxy, alkyloxy, cycloalkyloxy, hydroxyl, thiol, ester, carboxyl, cyano, halogen, nitro, sulfonic acid, azido, alkenyl, alkynyl, phosphate, etc.
  • the concentration of the enzyme relative to the reaction system ranges from 0.001 to 1 mmol/L, preferably from 0.005 to 0.1 mmol/L, and more preferably from 0.005 to 0.05 mmol/L.
  • the buffer is selected from the group consisting of Tris-HCl, Tris base, HEPES, Tris-citric acid, citric acid-citrate, Tris-citrate or a combination thereof.
  • the phosphate is selected from orthophosphate, dihydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate, or a combination thereof; preferably orthophosphate.
  • the second aspect of the present invention provides a kit, characterized in that the kit contains (a) a container, and (b) the synthesis system according to any one of the first aspects of the present invention located in the container.
  • the third aspect of the present invention provides a method for synthesizing a protein containing unnatural amino acids using a cell-free system, which is prepared using the synthesis system described in any one of the first aspect of the present invention or the kit described in the second aspect of the present invention.
  • the fourth aspect of the present invention provides use of the system described in the first aspect of the present invention or the kit provided in the second aspect of the present invention in synthesizing proteins containing non-natural amino acids.
  • Figure 1 shows a schematic diagram of the construction of the MaPylRS pET28a plasmid constructed in the present invention.
  • FIG. 2 is a schematic diagram of the pET28a-tRNA Pyl CUA plasmid constructed in the present invention.
  • FIG3 shows the constructed single-site incorporation reporter gene.
  • Figure 4 is a schematic diagram of the dual fluorescence reporter gene involved in the present invention. The purpose is to detect the insertion efficiency and authenticity of non-natural amino acids.
  • OTS orthogonal translation system, representing the bio-orthogonal protein translation system
  • ncAA noncanonical amino acid, representing non-natural amino acids
  • F represents the natural amino acid Phe
  • X noncanonical amino acid, representing non-natural amino acids.
  • Figure 5 shows the protein factory of the present invention, which inserts non-natural amino acid reporter genes and different OTS components, and the expression supernatant is purified by nickel column.
  • NC represents only ncaa
  • PC represents positive control
  • ETC on the left represents ncaa reporter gene + OTS
  • ET represents ncaa reporter gene + o-aars + o-tRNA
  • EC represents ncaa reporter gene + O-aars + ncaa
  • ETC on the right represents repeated use of ncaa reporter gene + OTS (o-aars + o-tRNA + ncaa).
  • Figure 6.1 shows the estimated expression level of the target protein with unnatural amino acids based on protein factory-OTS.
  • Figure 6.2 shows the SDS-PAGE electrophoresis of the target protein after purification and the estimation of expression level using ImageJ software.
  • the gray value of the eGFP-ncaa-scarlet protein band is about 0.357 times that of the input O-aaRs.
  • the concentration of the input O-aaRs is known to be 1.2mg/ml. Therefore, it can be calculated that the expression level of the eGFP-ncaa-scarlet protein is about 0.43mg/ml.
  • FIG. 7 shows the results of mass spectrometry analysis of proteins labeled with non-natural amino acids.
  • the results of mass spectrometry analysis show that the relative content of proteins labeled with non-natural amino acids is 99.81%.
  • FIG8 shows the fluorescence values of purified proteins labeled with unnatural amino acids.
  • FIG. 9 shows that the concentration (mg/ml) of the purified protein was estimated by the BCA standard curve, and the total amount of expressed protein was inferred by the fluorescence value of the purified protein.
  • Figure 10 shows the detection result of click chemistry reaction labeling of the reporter gene inserted by POCK.
  • the purified reporter gene protein was used to react with azide-CY5 in click chemistry experiment.
  • the fluorescence photo shows that the target protein was labeled with red fluorescence after the reaction.
  • A is a dyeing photo
  • B is a fluorescence photo
  • 1 and 3 represent denatured samples after labeling
  • 2 and 4 represent non-denatured samples after labeling
  • 5 represents denatured samples before labeling.
  • red is cy5 protein (610nm) and blue is GFP protein (435nm).
  • FIG. 12 shows the structure and effect diagram of the protein synthesized by the present invention with double insertion of NCAA.
  • Figure 13 shows the three-site insertion gene of ncaa constructed by the present invention, and the third insertion site is selected as K at position 2.
  • the third insertion site of the unnatural amino acid is selected as 105Tyr, which is also located outside the EGFP barrel result and does not affect the fluorescence characteristics.
  • the sequencing results prove that the mutation is correct and meets the expected design.
  • TEV enzyme-TEV cleavage site with TAG mutation
  • the purpose of the present invention is to establish an in vitro translation and site-directed modification system based on eukaryotic cell proteins.
  • the basic technical route is to add a bio-orthogonal translation system OTS (orthogonal translation system) to the Protein Factory system.
  • OTS includes non-classical aminoacyl tRNA synthetases (O-aaRs) with non-natural amino acids (ncaa) as substrates, and O-tRNA recognized by ncaaRS.
  • O-tRNA is bio-orthogonal to the natural aminoacyl tRNA synthetases of cells and cannot be used as substrates for aminoacylation.
  • O-aaRs can specifically catalyze the aminoacylation reaction between o-tRNA and ncaa.
  • the anticodon of o-tRNA can be modified to pair with the amber stop codon (TAG), so that the mRNA signal terminated in the natural state can be recognized and translated into non-natural amino acids.
  • TAG amber stop codon
  • the chemically active groups of these non-natural amino acids can further form covalent bonds with probe molecules or other molecules through click chemistry to achieve specific modification of the target protein.
  • the expression system of the present invention can be used interchangeably, all referring to the in vitro protein expression system of the present invention, and other descriptions can also be used, such as: protein in vitro synthesis system, in vitro protein synthesis system, cell-free system, cell-free system, cell-free protein synthesis system, cell-free in vitro protein synthesis system, in vitro cell-free protein synthesis system, in vitro cell-free synthesis system, CFS system (cell-free system), CFPS system (cell-free protein synthesis system) and other descriptions.
  • the reaction mechanism can include an in vitro translation system (which can be abbreviated as IVT system, a mR2P system), an in vitro transcription translation system (which can be abbreviated as IVTT system, a D2P system), an in vitro replication transcription translation system (which can be abbreviated as IVDTT system, a D2P system), etc.
  • the IVTT system is preferred.
  • the in vitro protein synthesis system a "protein synthesis factory" ("Protein Factory” or “proteinfactory” or “protein factory”).
  • the in vitro protein synthesis system provided by the present invention adopts an open description method for its components.
  • the final concentrations of the components in the Protein Factory of the present invention are: 80% (v/v) Kluyveromyces lactis extract, 15 mM glucose, 320 mM maltodextrin (measured in molar concentration of glucose monomers), 24 mM tripotassium phosphate, 1.8 mM nucleoside triphosphate mixture (adenosine triphosphate, guanosine triphosphate, cyto ...cytosine triphosphate, cytosine triphosphate, cytosine triphosphate, cytosine triphosphate, cytosine triphosphate, cytosine triphosphate, cytosine triphosphate, cytosine triphosphate, cytosine triphosphate, cytosine triphosphate, cytosine triphosphate, A mixture of nucleoside triphosphates and uridine triphosphates, each of which has a final concentration of 1.8 mM), 0.7 mM amino acid mixture (glycine, alanine,
  • the lactic acid Kluyveromyces extract includes endogenously expressed T7 RNA polymerase.
  • the preparation process of the lactic acid Kluyveromyces cell extract adopts conventional technical means, and is prepared by the method described in reference CN109593656A.
  • the preparation steps generally include: providing an appropriate amount of fermented Kluyveromyces lactis cells as raw material, freezing the cells with liquid nitrogen, breaking the cells, and collecting the supernatant by centrifugation to obtain a cell extract.
  • the protein concentration in the obtained Kluyveromyces lactis cell extract is 20 to 40 mg/mL.
  • the PylRSs (pyrrolysyl-tRNA synthetase) from Candidatus Methanomethylophilus alvus (anaerobic ammonia-oxidizing methanol methylophilus alvus), gene sequence number WP_015505008, was synthesized (Biological Engineering) and cloned into the Escherichia coli expression vector pET28a vector NcoI/BamH I site (see Figure 1).
  • 1.4 MaPyLRs concentration Combine the eluted proteins and concentrate them using ultrafiltration centrifugal concentrators (millipore). After concentration, dialyze the sample against Buffer A overnight.
  • tRNA pyl CUA gene sequence Genebank number: CP017686.1
  • the target fragment was amplified by PCR, GGGGGACGGTCCGGCGACCAGCGGGTCTCTAAAACCTAGCcAGCGGGGTTCGACACCCCGGTCTCTCGcca (SEQ ID No: 2)
  • the termination codon TAG and the Flag tag were first inserted between the 8His tag and the reporter gene by PCR; secondly, the 8His tag in the original template was replaced with the Stag tag to stabilize the reporter gene, and finally a reporter gene as shown in Figure 3 was constructed.
  • Primer1 ACCACCACCACCACGGTTAGGGTGGGGACTACAAGGATCACGACG (SEQ ID No:3)
  • Primer2 ctccatggctGGATCCCTTATCGTCGTCATCCTTGTAATCG (SEQ ID No:4)
  • Primer3 TTGTAGTCCCCACCCTAACCGTGGTGGTGGTGGTG (SEQ ID No:5)
  • Primer4 TACAAGGATGACGACGATAAGGGATCCagccatggaggaag (SEQ ID No:6)
  • Primer 7 cagcggtttccttCTTACCAGAGTGAGAAGATAGATCT
  • the final reporter gene has the sequence: SEQ ID No:11.
  • Protein Factory was dissolved with ddH 2 O.
  • Plasmid template amplification After culturing the correctly sequenced bacteria overnight, extract the plasmid using a small amount of plasmid extraction kit;
  • the product After PCR amplification, the product can be directly used for protein translation in cell-free system without purification and concentration.
  • Protein Factory was dissolved with ddH 2 O.
  • the codons at three sites of GFP were mutated.
  • Thr at position 105 of EGFP was mutated to the stop codon TAG.
  • Protein Factory was dissolved with ddH 2 O.
  • Example 10 Further verification experiments of non-natural amino acid insertion into proteins.
  • the sample was divided into two equal parts, one of which was added with 1/10 volume of DNA loading buffer. The other was added with 1/4 volume of 5*SDS-PAGE loading buffer, 95°C, 5min, as denatured sample and non-denatured sample respectively. 8-16% gradient precast gel (Wansheng Haotian, GSH2001-816T) was used for electrophoresis separation. After electrophoresis of the non-denatured sample, the expression of EGFP protein was confirmed on the gel imager using the cy3 channel in the fluorescence shooting mode.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

提供一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,所述反应体系包括:(1)酵母细胞提取液;(2)非天然氨基酸;(3)外源正交氨酰tRNA合成酶/正交tRNA对(4)包含目的蛋白基因序列的模板,所述目的蛋白基因序列中的至少一个编码氨基酸的密码子被突变为终止密码子;采用所述反应体系,能够提高非天然氨基酸的插入效率以及非天然氨基酸蛋白质的表达量。

Description

一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系、方法及应用 技术领域
本发明涉及生物技术领域,较佳地,涉及一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系。
背景技术
蛋白质是细胞中的重要分子,几乎参与了细胞所有功能的执行。蛋白的序列和结构不同,决定了其功能的不同。在细胞内,蛋白可以作为酶类催化各种生化反应,可以作为信号分子协调生物体的各种活动,可以支持生物形态,储存能量,运输分子,并使生物体运动。在生物医学领域,蛋白质抗体作为靶向药物,是治疗癌症等疾病的重要手段。
在细胞中,蛋白质的制造包括基因转录和mRNA翻译两部分。
基因转录是指以DNA的一条链为模板,在DNA依赖的RNA聚合酶(RNP或RNAP)催化作用下,以4种NTP(ATP、CTP、GTP和UTP)为原料,按照碱基互补配对原则,合成一条RNA的过程。对于有些RNA病毒,RNA也可以指导合成RNA。
mRNA翻译成蛋白质是指以mRNA为模板,tRNA为运载工具,在有关酶、辅助因子的作用下将活化的氨基酸在核糖体(亦称核蛋白体)上装配为蛋白质多肽链的过程。
蛋白质合成的调节在应对营养缺失等外界压力,细胞发育与分化等很多过程中发挥重要作用,包括转录调控和翻译调控。
转录调控是指以DNA为模板合成RNA的调控,所有的细胞都具有大量序列特异的DNA结合蛋白(反式作用因子),这些蛋白能准确地识别并结合到特异的DNA序列(顺式作用元件),在转录水平上起着开关的作用。转录水平调控是真核基因表达调控的重要环节。根据真核基因表达是否受环境影响可分为:发育调控和瞬时调控。其中发育调控是指真核生物为确保自身生长、发育、分化等对基因表达按“预定”和“有序”的程序进行的调控,是不可逆的过程;瞬时调控是指真核生物在内、外环境的刺激下所做出的适应性转录调控,是可逆过程。
翻译调控的四个过程包括翻译起始、翻译延伸、翻译终止和核糖体再循环,其中翻译起始是受调控最多的一个过程。在翻译起始阶段,核糖体小亚基(40S)结合 (tRNA)iMet,并在翻译起始因子的作用下识别mRNA 5’末端。小亚基向下游移动,并在起始密码子(AUG)位置与核糖体大亚基(60S)结合,形成完整核糖体,并进入翻译延伸阶段。
目前常用的生物合成系统是体内生物合成系统和体外生物合成系统。体内生物合成系统是指在生物体内体系中,酶催化的各种化合物的合成过程,即生物体内进行同化反应的总称,包括光合作用,糖异生,核苷酸、核酸及蛋白质的生物合成。细胞生物合成中,蛋白质合成是数量上最重要的。蛋白质生物合成亦称为翻译,即把mRNA分子中碱基排列顺序转变为蛋白质或多肽链中的氨基酸排列顺序过程。蛋白质生物合成分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰。
体外生物合成系统(in vitro biosynthesis system)是指在细菌、真菌、植物细胞或动物细胞的裂解体系中,通过加入外源编码的核酸DNA、RNA、底物和能量源,完成特定化学分子或生物大分子(DNA,RNA,蛋白质)的体外高效合成。常见的体外生物合成系统是体外蛋白质合成系统(in vitro protein synthesis system),即无细胞蛋白质合成系统,是通过外源mRNA或者DNA模板、利用细胞裂解物,完成外源重组蛋白的快速高效翻译。
无细胞系统可以最早追溯到Buchner在1897年提出生物合成可以在体外进行,他通过酵母无细胞系统证明了生物乙醇的产生。然而,由于三磷酸腺苷(ATP)失衡,该系统不适用大规模应用。Welch和Scopes于1985年通过多种探索解决了上述问题,获得了高产量的乙醇,但是该系统也存在两大缺陷:需要额外添加高成本的酶和无法耐受温度的变化。
然而,目前该技术存在一些固有的难以解决的问题:如可逆性、不稳定性、渗漏、失活、酶的循环使用,缺乏稳定的酶、酶复合物及辅助因子等。
商业上常见的体外蛋白质合成系统是体外转录-翻译偶联的体系(in vitro transcription-translation system,简称IVTT),通过DNA模板、经RNA聚合酶转录出mRNA中间体,再利用氨基酸和ATP等组分,完成外源蛋白的一步高效翻译。目前,常见的商业化体外蛋白表达系统包括大肠杆菌系统(Escherichia coli extract,ECE)、兔网织红细胞(Rabbit reticuLocyte lysate,RRL)系统、麦胚(Wheat germ extract,WGE)系统、昆虫(Insect cell extract,ICE)系统和人源系统。
与传统的体内重组表达系统相比,蛋白质的体外无细胞合成系统具有多种优点,如可表达对细胞有毒害作用或含有非天然氨基酸(如D-氨基酸)的特殊蛋白质,能够 直接以PCR产物作为模板同时平行合成多种蛋白质,开展高通量药物筛选和蛋白质组学的研究。
作为蛋白质的翻译后修饰的重要位点以及多种酶活性中心的关键残基,非天然氨基酸在多种蛋白质行使其生理病理功能的过程中扮演重要的角色。对于蛋白质,特别是多肽药物,非天然氨基酸的修饰,不仅可能增强多肽药物的药效,降低药物毒性,还由于非天然氨基酸的掺入,使得多肽药物大大降低免疫原性,减少免疫排异反应,而且某些蛋白酶可能不再识别掺入非天然氨基酸的多肽物,使得药物在体内维系更长时间不被降解,从而延长药物半衰期,以革除多肽类药物不断注射给药的弊端;并且还有望通过修饰,使多肽药物“搭载”其它化学附件,从而导致疾病治疗新方法的出现。
利用非天然氨基酸定位修饰完成的蛋白翻译后修饰,对于特殊多肽或蛋白的合成以及化学修饰的氨基酸对蛋白结构功能的影响等具有十分重要的意义。
目前对非天然氨基酸定位修饰的蛋白类物质人工合成而言较为成熟技术是化学多肽合成技术,可以通过液相或固相合成法实现一些短片段的合成,但是此类方法具有较明显的局限性。液相合成法主要靠氨基酸在反应体系中自发发生偶联,因此效率无法保证,最终要分离反应体系中的原料、活化剂等,获得纯的多肽产物也较为困难。
发明内容
本发明的目的在于提供一种提高含有非天然氨基酸的蛋白质合成效率的反应体系、试剂盒以及反应方法。
本发明第一方面提供了一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,其特征在于,所述反应体系包括:
(1)细胞提取物;
(2)非天然氨基酸;
(3)外源正交氨酰tRNA合成酶/正交tRNA对;
(4)包含目的蛋白基因序列的模板,所述目的蛋白基因序列中的编码氨基酸的至少一个密码子被突变为终止密码子。
在一另优选例中,所述终止密码子被突变为TAG。
在一另优选例中,所述目的蛋白基因序列中有一个氨基酸的密码子被突变为终止密码子。
在一另优选例中,所述目的蛋白基因序列中有两个或多个氨基酸的密码子被突变为终止密码子。
在一另优选例中,所述所述细胞提取物,优选选自以下任一种来源:大肠杆菌、酵母细胞、哺乳动物细胞、植物细胞、昆虫细胞、或者其组合。
在一另优选例中,所述细胞提取物,更优选选自以下任一种来源:大肠杆菌、乳酸克鲁维酵母、麦胚细胞、Spodoptera frugiperda昆虫细胞、兔网织红细胞、CHO细胞、COS细胞、VERO细胞、BHK细胞、人纤维肉瘤HT1080细胞、或者其组合。
在一另优选例中,所述酵母细胞,优选选自毕赤酵母、芬兰毕赤酵母(Pichia finlandica)、喜海藻糖毕赤酵母(Pichia trehalophila)、科克拉马毕赤酵母(Pichia koclamae)、膜醭毕赤酵母(Pichiamembranaefaciens)、微小毕赤酵母(Pichia minuta)(甲醇诱导型酵母(Ogataeaminuta)、林氏毕赤酵母(Pichia lindneri))、仙人掌毕赤酵母(Pichia opuntiae)、耐热毕赤酵母(Pichiathermotolerans)、柳毕赤酵母(Pichia salictaria)、松栎毕赤酵母(Pichia g uercuum)、皮杰普毕赤酵母(Pichiapijperi)、树干毕赤酵母(Pichiastiptis)、甲醇毕赤酵母(Pichiamethanolica)、毕赤酵母菌(Pichia sp.)、酿酒酵母(Saccharomyces cerevisiae)、酵母菌(Saccharomyces sp.)、多形汉逊酵母(Hansenulapolymorpha)、克鲁维酵母、乳酸克鲁维酵母(Kluyveromyces,K.lactis)、马克斯克鲁维酵母(Kluyveromyces marxianus)、Kluyveromyces marxianus var.lactis、Kluyveromyces marxianus var.marxianus、Kluyveromyces marxianus var.vanudenii、多布克鲁维酵母(Kluyveromyces dobzhanskii)、海泥克鲁维酵母(Kluyveromyces aestuarii)、非发酵克鲁维酵母(Kluyveromyces nonfermentans)、威克海姆克鲁维酵母(Kluyveromyces wickerhamii)、耐热克鲁维酵母(Kluyveromyces thermotolerans)、脆壁克鲁维酵母(Kluyveromyces fragilis)、湖北克鲁维酵母(Kluyveromyces hubeiensis)、多孢克鲁维酵母(Kluyveromyces polysporus)、暹罗克鲁维酵母(Kluyveromyces siamensis)、亚罗克鲁维酵母(Kluyveromyces yarrowii)之一或其组合。在一另优选例中,所述克鲁维酵母属酵母更佳地选自马克斯克鲁维酵母、和/或乳酸克鲁维酵母。
在另一优选例中,所述的酵母细胞提取物为对酵母细胞的水性提取物。
在另一优选例中,所述酵母细胞提取物不含酵母内源性的长链核酸分子。
在另一优选例中,所述的酵母细胞提取物是用包括以下步骤的方法制备:
(i)提供酵母细胞;
(ii)对酵母细胞进行洗涤处理,获得经洗涤的酵母细胞;
(iii)对经洗涤的酵母细胞进行破细胞处理,从而获得酵母粗提物;和
(iv)对所述酵母粗提物进行固液分离,获得液体部分,即为酵母细胞提取物。
在另一优选例中,在液态下进行离心。
在另一优选例中,所述离心条件为5000-100000g,较佳地,8000-30000g。
在另一优选例中,所述离心时间为0.5min–2h,较佳地,20–50min。
在另一优选例中,所述离心在1-10℃下进行,较佳地,在2-6℃下进行。
在另一优选例中,所述的洗涤处理采用洗涤液在pH为7-8(较佳地,7.4)下进行处
在另一优选例中,所述洗涤液选自下组:4-羟乙基哌嗪乙磺酸钾、醋酸钾、醋酸镁、或其组合。
在另一优选例中,所述的破细胞处理包括高压破碎、冻融(如液氮低温)破碎。
在另一优选例中,所述的非天然氨基酸的结构式为式(I)化合物
其中n选自1-20的自然数,R1选自取代或未取代的C5-C60的芳基或杂芳基、取代或未取代的C1-C20的烷基、取代或未取代的C2-C20的烯基或取代或未取代的C2-C20的炔基,A选自O或-CH2-。
在另一优选例中,n选自1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20.
在另一优选例中,n选自1-10的自然数。
在另一优选例中,n选自1、2、3、4、5、6、7、8、9或10。
在另一优选例中,n选自1-6的自然数。
在另一优选例中,n选自1、2、3、4、5或6。
在另一优选例中,所述的R1选自取代或未取代的C5-C30的芳基或杂芳基。
在另一优选例中,所述的R1选自取代或未取代的苯基。
在另一优选例中,所述的R1选自取代或未取代的C2-C20的烯基。
在另一优选例中,所述的R1选自取代或未取代的C2-C10的烯基。
在另一优选例中,所述的R1选自取代或未取代的C2-C6的烯基。
在另一优选例中,所述的R1选自或取代或未取代的C2-C20的炔基。
在另一优选例中,所述的R1选自或取代或未取代的C2-C10的炔基。
在另一优选例中,所述的R1选自或取代或未取代的C2-C6的炔基。
在另一优选例中,所述的A选自O。
在另一优选例中,所述的A选自-CH2-。
在另一优选例中,所述的取代基为本领域常见的取代基团,如芳基、杂芳基、烷基、环烷基、芳基氧基、杂芳基氧基、烷基氧基、环烷基氧基、羟基、巯基、酯基、羧基、氰基、卤素、硝基、磺酸基、叠氮基、烯基、炔基、磷酸基等。
在另一优选例中,所述的非天然氨基酸的结构式选自如下的之一或组合:
在另一优选例中,所述非天然氨基酸相对于反应体系的浓度范围为0.1~1000mmol/L,优选0.5~500mmol/L,更优选.5~100mmol/L。
在另一优选例中,所述的外源正交氨酰tRNA合成酶选自天然或突变的Pyl-tRNA合成酶(PylRS)、Leu-tRNA合成酶(LeuRS)、Tyr-tRNA合成酶(TyrRS)、Phe-tRNA合成酶(PheRS)或TrP-tRNA合成酶(TrpRS);所述的tRNA选自天然或突变的tRNAPyl、tRNALeu、tRNATyr、tRNAPhe或tRNATrp。
在另一优选例中,所述的外源正交氨酰tRNA合成酶选自天然或突变的MaPylRS、MmPylRS、MbPylRS、EcTyrRS、MjTyrRS、EcLeuRS、ScPheRS、ScTrpRS、BsTrpRS,优选MaPylRS。
在另一优选例中,所述酶相对于反应体系的浓度范围为0.001~1mmol/L,优选0.005~0.1mmol/L,更优选0.005~0.05mmol/L。
在另一优选例中,所述tRNA相对于反应体系的浓度范围为0.001~1mmol/L,优选0.005~0.1mmol/L,更优选0.02~0.1mmol/L。
在另一优选例中,所述的目的蛋白选自荧光素蛋白、荧光素酶、绿色荧光蛋白、黄色荧光蛋白、红色荧光蛋白、甘油醛-3-磷酸脱氢酶、过氧化氢酶、肌动蛋白、抗体的可变区域、萤光素酶突变、α-淀粉酶、肠道菌素A、丙型肝炎病毒E2糖蛋白、胰岛素前体、干扰素αA、白细胞介素-1β、溶菌酶素、血清白蛋白、单链抗体段(scFV)、甲状腺素运载蛋白、酪氨酸酶、木聚糖酶、或其组合。
在另一优选例中,所述体系进一步包括:所述体系还包括缓冲剂、钾离子、镁离子、聚乙二醇、任选的水性溶剂及磷酸盐中的一种或多种成分。
在另一优选例中,所述缓冲剂选自下组:Tris-HCl、Tris碱、HEPES、Tris-柠檬酸、柠檬酸-柠檬酸盐、Tris-柠檬酸盐之一或者组合。
在另一优选例中,所述钾离子来源于钾离子源,没有特别限制,所述钾离子源选自下组:醋酸钾、谷氨酸钾、柠檬酸钾之一或其组合。
在另一优选例中,所述钾离子浓度为30-210mM,较佳地,30-150mM,更佳地,30-80mM。
在另一优选例中,所述镁离子来源于镁离子源,没有特别限制,所述镁离子源选自下组:醋酸镁、谷氨酸镁、柠檬酸镁、天门冬氨酸镁之一或其组合。
在另一优选例中,所述聚乙二醇选自下组:PEG3000、PEG8000、PEG6000、PEG3350、或其组合。
在另一优选例中,所述磷酸盐选自正磷酸盐、磷酸二氢盐、磷酸氢二盐、偏磷酸盐、焦磷酸盐、或其组合;优选正磷酸盐。
在另一优选例中,所述细胞提取物的浓度v/v为20~80%。
在另一优选例中,所述聚乙二醇的的浓度(w/v)为0.1-8%,较佳地,0.5-4%,更佳地,1-2%。
本发明第二方面提供了一种试剂盒,其特征在于,所述试剂盒含有(a)容器,以及(b)位于所述容器内的本发明第一方面中任一项所述的合成体系。
本发明第三方面提供了一种采用无细胞系统合成含有非天然氨基酸的蛋白质的方法,其采用本发明第一方面中任一项所述的合成体系或本发明第二方面所述的试剂盒进行制备。
本发明第四方面提供了本发明第一方面所述的体系或本发明第二方面提供的试剂盒在合成含有非天然氨基酸的蛋白质中的应用。
本发明第五方面提供了含有非天然氨基酸的蛋白质,其是由本发明第一方面任一项所述的合成体系或本发明第二方面所述的试剂盒或本发明第三方面所述的方法制备得到。
本发明第六方面提供了含有本发明第五方面提供的非天然氨基酸的蛋白质在点击化学修饰中的应用。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1表示的是本发明构建的构建MaPylRS pET28a质粒示意图。
图2表示的是本发明构建的pET28a-tRNAPyl CUA质粒示意图。
图3表示的是构建的单位点掺入报道基因。
图4是本发明所涉及的双荧光报告基因的示意图。目的在于检测非天然氨基酸的插入效率以及真实性。OTS:orthogonal translation system,代表生物正交的蛋白翻译系统;ncAA:noncanonical amino acid,代表非天然氨基酸;F:代表天然氨基酸Phe;X:noncanonical amino acid,代表非天然氨基酸。
图5表示的是本发明Protein factory非天然氨基酸插入报告基因以及不同的OTS成份,表达上清液经过镍柱纯化。其中NC表示只有ncaa,PC表示阳性对照,左面的ETC表示含有ncaa报告基因+OTS,ET表示含有ncaa报告基因+o-aars+o-tRNA,EC表示ncaa报告基因+O-aars+ncaa,右面的ETC表示重复使用的ncaa报告基因+OTS(o-aars+o-tRNA+ncaa)。
图6.1表示的是基于protein factory-OTS的带有非天然氨基酸的目的蛋白表达量估计。
图6.2表示的是目的蛋白纯化后SDS-PAGE电泳并利用ImageJ软件估算表达水平,eGFP-ncaa-scarlet蛋白条带的灰度值约为投入的O-aaRs的0.357倍。投入的O-aaRs的浓度已知为1.2mg/ml。因此可以算出eGFP-ncaa-scarlet蛋白的表达量约为0.43mg/ml。
图7表示的是带有非天然氨基酸标记的蛋白质的质谱分析结果,质谱分析结果:带有非天然氨基酸标记的蛋白相对含量为99.81%。
图8表示的是经纯化的带有非天然氨基酸标记的蛋白的荧光值。
图9表示的是通过BCA标准曲线推测纯化后蛋白的浓度(mg/ml),再用纯化蛋白的荧光值反推表达蛋白的总量。
图10是对POCK插入的报道基因进行点击化学反应标记的检测结果,利用纯化的报道基因蛋白进行点击化学实验与azide-CY5反应,荧光照片显示反应后目的蛋白被红色荧光标记。A为考染照片,B为荧光照片,1,3表示标记后变性样品,2,4表示标记后非变性样品,5表示标记前变性样品。其中,红色为cy5蛋白(610nm),蓝色为GFP蛋白(435nm)。
图11表示的是本发明构建的ncaa双位点插入基因,将GFP151位Y的密码子突变为TAG,检测非天然氨基酸的插入。第一个插入位点位于两个标签(8*His tag)和(3*Flag)之间,位于整个GFP蛋白的N端,对结构以及荧光强度影响较少;第二个插入位点为151Try,根据EGFP的结构151Tyr位于桶状结构的外出,推测对结构的影响较小。测序结果表明突变符合预期。
图12表示的是本发明合成的ncaa双位点插入的蛋白质的结构及效果图。
图13表示的是本发明构建的ncaa三位点插入基因,将第三个插入位点选择了第2位的K。第三个非天然氨基酸的插入位点选择为105Tyr,同样位于EGFP桶状结果外侧,不影响荧光特征。测序结果证明突变正确,符合预期设计。
图14表示的是ncaa三位点插入基因合成的蛋白质的荧光图;1为带有三个位点TAG(3sites)的GFP基因在无细胞体外正交翻译系统的表达上清(MW=35Kda);2为融合有TEV酶-TEV酶切位点(其中有TAG突变)-EGFP基因的表达上清(MW=58.5KDa),此构建中有一个非天然氨基酸的插入位点,只有当非天然氨基被插入到合成的多肽链中GFP才能够表达,具有绿色荧光,同时由于TEV酶切位点中有非天然氨基酸的突变,因此不能被TEV识别,融合蛋白分子量为58.5KDa;3为1经过Ni柱纯化后的样品;4为2经过Ni柱纯化后的样品。由此可以看出,结果显示带有3个TAG终止密码子的GFP基因同样可以在无细胞体外正交翻译系统中表达。带有TEV标签的融合蛋白同样也说明TAG可以将非天然氨基酸引入到蛋白质多肽链中。
具体实施方式
经过广泛而深入的研究,通过大量筛选和摸索,首次意外地发现了一种可提高含有非天然氨基酸的蛋白质合成效率的反应体系,在乳酸克鲁维酵母细胞体外合成体系中,标准蛋白(eGFP)单位点非天然氨基酸(POCK,或Pock,或pock,即化合物 Proclys)的插入效率可达到99.81%,且此nacc掺入后目的蛋白的蛋白的表达量可以达到0.43mg/ml。另外通过实验可以进一步证实含有非天然氨基酸蛋白能够进行点击化学修饰。
本发明的目的是建立基于真核细胞蛋白质体外翻译与定点修饰系统。基本的技术路线是在Protein Factory体系中加入生物正交的翻译体系OTS(orthogonal translation system)。OTS包含以非天然氨基酸(noncanonical amino acid,ncaa)为底物的非经典氨酰tRNA合成酶(O-aaRs),以及ncaaRS所识别的O-tRNA,O-tRNA与细胞天然的氨酰tRNA合成酶结合生物正交,不能被用作底物发生氨酰基化。O-aaRs可以特异性催化o-tRNA与ncaa发生氨酰基化反应,通常o-tRNA的反密码子经过改造可与琥珀终止密码子(TAG)配对结合,使天然状态下被终止的mRNA信号被识别并翻译成非天然氨基酸。这些非天然氨基酸所具有的化学活性基团可以进一步通过点击化学的方式与探针分子或其他分子形成共价键结合,实现对目的蛋白特异性修饰。
在以下实施例中,选择以(即POCK)作为ncaa的代表,但是并不限定本申请的ncaa仅仅指的就是POCK。
“本发明的表达系统”、“本发明的体外表达系统”、“体外无细胞表达系统”、“体外无细胞表达体系”可互换使用,均指本发明的体外蛋白表达体系,也可采用其它描述方式,如:蛋白质体外合成系统、体外蛋白合成体系、无细胞系统、无细胞体系、无细胞蛋白合成体系、无细胞体外蛋白合成体系、体外无细胞蛋白合成体系、体外无细胞合成体系、CFS体系(cell-free system)、CFPS体系(cell-free protein synthesis system)等描述方式。根据反应机理,可包括体外翻译体系(可简记为IVT体系,一种mR2P体系)、体外转录翻译体系(可简记为IVTT体系,一种D2P体系)、体外复制转录翻译体系(可简记为IVDTT体系,一种D2P体系)等。本发明中,优选IVTT体系。我们还将体外蛋白合成系统称为“蛋白质合成工厂”(“Protein Factory”或“proteinfactory”或“protein factory”)。本发明提供的体外蛋白合成系统,对其组分是采用开放式的描述方式的。
本发明所述的Protein Factory中各组分的终浓度分别为:80%(v/v)乳酸克鲁维酵母提取物、15mM葡萄糖、320mM麦芽糊精(以葡糖糖单体计量摩尔浓度)、24mM磷酸三钾、1.8mM核苷三磷酸混合物(腺嘌呤核苷三磷酸、鸟嘌呤核苷三磷酸、胞嘧啶 核苷三磷酸和尿嘧啶核苷三磷酸的混合物,每种核苷三磷酸的终浓度均为1.8mM)、0.7mM氨基酸混合物(甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸、色氨酸、丝氨酸、酪氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸、天冬氨酸、谷氨酸、赖氨酸、精氨酸和组氨酸,每种氨基酸的终浓度均为0.7mM)、L-天门冬氨酸镁、80mM醋酸钾、2%(w/v)聚乙二醇8000、9.78mMpH8.0Tris·HCl缓冲液、6%(w/v)海藻糖。其中,所述乳酸克鲁维酵母提取物中包括内源性表达的T7RNA聚合酶。乳酸克鲁维酵母细胞提取物的制备过程采用常规技术手段,参考CN109593656A记载的方法制备。制备步骤概括而言,包括:提供经发酵培养的乳酸克鲁维酵母细胞的适量原料,用液氮将细胞速冻,将细胞打碎,离心收集上清液,即可得到细胞提取物。所得乳酸克鲁维酵母细胞提取物中的蛋白浓度为20~40mg/mL。
实施例1:MaPylRs蛋白纯化
1.1构建MaPylRS pET28a质粒
将来自于Candidatus Methanomethylophilus alvus(腹腔厌氧氨氧化甲醇嗜甲基菌PylRSs(吡咯赖氨酰tRNA合成酶),基因序列编号WP_015505008。经过基因密码子偏爱性优化,合成(生工)后克隆至大肠杆菌表达载体pET28a载体NcoI/BamH I位点(参见图1)。
1.2 MaPyLRs诱导表达:将pET28a-MaPylRs质粒转化至大肠杆菌感受态细胞BL(DE3)细胞中,
挑取单克隆细胞,在100ml含有50mg/ml卡那霉素的LB培养基中过夜培养,进行扩大培养,1L含有50mg/ml卡那霉素的LB培养基中加入1000ul上述培养液,37℃过夜培养,细菌密度OD600=0.6时加入终浓度为0.2mM的IPTD并转入16℃继续培养20hr。
1.3 MaPyLRs纯化:经过诱导表达后的菌体离心收集,高压均质机破碎菌体,12000rpm离心出去沉淀后,上清经过HisTrp FF(GE)纯化后。平衡缓存液BufferA:25mMTrisHCL(pH7.6)20mM imidazole 5%glycerol,洗脱缓冲液BfferB:25mM TrisHCL(pH7.6),250mM imidazole,5%glycerol。按照通常的纯化过程梯度洗脱。
1.4 MaPyLRs浓缩:合并洗脱后的蛋白,用超滤离心浓缩管浓缩(millipore)。浓缩后样品对Buffer A透析过夜。
1.5用BCA法对蛋白浓度进行定量。
得到的MaPylRS
实施例2:tRNAPyl CUA体外转录
2.1构建pET28a-tRNAPyl CUA质粒
tRNApyl CUA基因序列:Genebank号:CP017686.1通过PCR扩增目的片段,GGGGGACGGTCCGGCGACCAGCGGGTCTCTAAAACCTAGCcAGCGGGGTTCGACACCCCGGTCTCTCGcca(SEQ ID No:2)
连接到PET28a载体上T7启动子下游(参见图2)。
实施例3:构建单位点掺入报道基因
以pD2P8His-EGFP为模板,首先通过PCR方法在8His标签和报告基因之间插入终止密码子TAG以及Flag标签;第二部,用Stag标签替换原模板中的8His标签。以稳定报告基因的稳定性,最终构建成如图3的报告基因。
引物:
插入TAG-Flag标签:
Primer1:ACCACCACCACGGTTAGGGTGGGGACTACAAGGATCACGACG(SEQ ID No:3)
Primer2:ctccatggctGGATCCCTTATCGTCGTCATCCTTGTAATCG(SEQ ID No:4)
对应的载体PCR引物:
primer3:TTGTAGTCCCCACCCTAACCGTGGTGGTGGTGGTG(SEQ ID No:5)
Primer4:TACAAGGATGACGACGATAAGGGATCCagccatggaggaag(SEQ ID No:6)
插入stag标签并替换8His标签:
Primer5:ACTCTGGTAAGaaggaaaccgctgctgctaaattcgaacgccagc(SEQ ID No:7)
Primer6:CCCCACCCTAACCgctgtccatgtgctggcgttcgaatttagcagc(SEQ ID No:8)
对应的载体PCR引物:
Primer 7:cagcggtttccttCTTACCAGAGTGAGAGAAGATAGATCT
GAATGG(SEQ ID No:9)
Primer 8:cgccagcacatggacagcGGTTAGGGTGGGGACTACAAGGATCAC(SEQ ID No:10)
最终得到的报告基因,其序列为:SEQ ID No:11。
实施例4:在EGFP多肽链的中插入非天然氨基酸(Pock)
无细胞体外翻译条件:
Protein Factory加ddH2O溶解,
1ml protein factory
10ul 500mM pock(终浓度5mM)
20uM MaPylRs(终浓度)
20uM tRNApyl CUA(终浓度)
目的基因模板PCR产物30ul
28℃,反应过夜
得到目的蛋白。
实施例5:检测非天然氨基酸的插入效率以及真实性
为了检测非天然氨基酸的插入效率以及真实性我们设计了两个双荧光报告基因(图4)。
用于非天然氨基酸引入的终止密码子的读通效率用RRE(relative read through efficiency)表示:其中:rfp(TAG+ncaa)、rfp(positive control):分别表示加入了正交翻译系统的TAG报告基因以及阳性对照组(天然氨基酸)C-端荧光蛋白的表达水平;gfp(TAG+ncaa)、gfp(positive control):分别表示加入了正交翻译系统的TAG报告基因以及阳性对照组(天然氨基酸)N-端荧光蛋白的表达水平。
RRE越接近1表明非天然氨基酸插入的效率与天然氨基越接近。产物中目标位点的天然氨基酸错误引入频率MMF(maxium mistranslation frequency)表示。
相应的,非天然氨基酸在该位点的占比即为1-MMF。
理想状态下在没有非天然氨基酸加入时C-端荧光蛋白的表达为零,即RRE(TAG-ncaa)=0,所以MMF越趋近于0,说明非天然氨基酸引入比例越高,目的蛋白的特定位点只有预期的非天然氨基酸的插入。
实验结果:
在protein factory中添加OTS实现了对终止密码子的通读(read through)
1,只有添加了完整的OTS后ncaa-reporter TAG密码子后方的scarlet(红色)才能够被成功翻译表达,如图5,细胞上清由绿色转为红色(图5中的ETC样品),因此这个过程是特异性的。
基于protein factory-OTS的带有非天然氨基酸的目的蛋白表达量估计(图6.1),目的蛋白纯化后SDS-PAGE电泳并利用ImageJ软件估算表达水平(图6.2),eGFP-ncaa-scarlet蛋白条带的灰度值约为投入的O-aaRs的0.357倍。投入的O-aaRs的浓度已知为1.2mg/ml。因此eGFP-ncaa-scarlet蛋白的表达量越为0.43mg/ml。
对带有非天然氨基酸标记的蛋白质的质谱分析结果,质谱分析结果:带有非天然氨基酸标记的蛋白相对含量为99.81%(图7)。
蛋白纯化后,通过BCA法测得非天然氨基酸掺入蛋白产率278μg/ml(图8和图9)。
实施例5:含有非天然氨基酸的蛋白质在点击化学修饰中的应用
(一)储液的制备:
1,20mM CuSO4:31mgCuSO4加10ml无菌ddH2O溶解,分装,-20℃保存;
2,50mM THPTA:1mgTHPTA(cas 760952-88-3sigma)溶于46ulddH2O-20℃保存;
3,100mM BTTAA:4.3mg BTTAAHY-100486MCE,溶于100ul DMSO,-20℃保存;
4,1mM Cy5-azide,1mg Cy5-azide(sigma-aldrich 777323)溶于1ml DMSO,避光,-20℃保持:
5,100mM aminoguaidin(CAS号:1937-19-5Sigma-Aldrich)0.11g aminoguidin溶于10ml ddH2O,分装-20℃保存。
6,100mM Sodium L-ascorbate(sigma-Aldirich A7631)0.198g溶于10ml ddH2O,分装-20℃保存。
(二)实验方法一:
1,配置CuSO4-THPTA预混液:
10ul 20mM CuSO4
20ul 50mM THPTA
混合
2,配置反应液:
200ul经过纯化的带有非天然氨基酸的蛋白,浓度≈30uM
120ul 1mM cy5-azide
9ul CuSO4-THPTA预混液
30ul 100mM Aminoguaidin(cas1937-19-5伊诺凯)
220ul PBS
30ul 100m Sodium L-ascorbate(cas 134-03-2生工)
按顺序加入,轻柔混合后,密封。
4℃避光,放混匀器上,反应过夜。
(三)验证
利用纯化的含有非天然氨基酸蛋白进行点击化学实验与cy5-azide反应。荧光照片显示反应后目的蛋白被红色荧光标记。但是非变性样品显示还有部分蛋白未被标记(参见图10)。说明含有非天然氨基酸蛋白能够通过点击化学与cy5-azide反应从而进行化学修饰。
实施例6
构建双位点掺入报道基因
引物9:TAG2F:(SEQ ID No:12)
引物10:TAG2R:(SEQ ID No:13)
引物11:(SEQ ID No:14)
TAG151F:AACTCTCACAACGTTTAGATCACCGCTGACAAGCAAAAGAACG
引物12:TAG151R:(SEQ ID No:15)
以pD2PeGFP的DNA序列(SEQ ID No:16)为模板进行PCR扩增,经过连接转化后,挑取单克隆,进行序列鉴定。
首先构建单一位点插入报告基因:
(1)、PCR扩增利用诺唯赞Max Super-Fidelity DNA Polymerase试剂盒进行扩增,
PCR反应体系:

PCR反应程序:
电泳检测PCR产物分子量的正确性。
(2)、PCR产物连接:
分别取10μl载体与插入的PCR扩增产物,混合,加入1μl DpnI(NEB R0176S),37℃15min。
(3)、连接产物转化,
30μL感受态细胞DH5α(唯第生物DL1001)加3μL连接产物,冰浴30min,42℃45s,加200μL LB培养基,37℃复苏1hr,涂含有1μg/mL氨苄抗性的LB琼脂平板,37℃,培养过夜。挑取单克隆,送生工生物测序。测序引物T7和T7terminal。制备得到模板质粒pD2P-8his-egfp 10(SEQ ID No:17)。
进一步,以上述序列正确的质粒为模板,用引物11和引物12:TAG151R按照相同的方法,进行PCR扩增、连接并转化DH5α感受态细胞。挑取单克隆,送生工生物测序。获得序列正确的双位点插入的报告基因质粒。
实施例7合成具有双位点掺入报道基因的目的蛋白
7.1质粒模板扩增,将测序正确细菌经过过夜培养后,用小量质粒提取试剂盒抽提质粒;
7.2目的基因的扩增
引物13,PD2PF:GGTGATGTCGGCGATATAGGCGCC(SEQ ID No:18)
引物14,PD2PR:TGCTCAGCGGTGGCAGCAGCCAAC(SEQ ID No:19)
PCR产物扩增后直接可用于无细胞体系蛋白质翻译,不需要纯化以及浓缩
4.3无细胞体系中在EGFP多肽链的两个位点中插入非天然氨基酸(Pock)
体外翻译条件:
Protein Factory加ddH2O溶解,
1mL protein factory
10μL 500mM pock(终浓度5mM)
20uM MaPylRs(终浓度)
20uM tRNApyl CUA(终浓度)
目的基因模板PCR产物30μL
28℃,反应过夜
得到目的蛋白,参见图11。
实施例8构建三位点掺入报道基因
对GFP三个位点的密码子进行突变。
以双位点插入报告基因为模板,将EGFP 105位Thr突变为终止密码子TAG。
引物:
引物15 105TAGF:
引物16 105TAGR:(SEQ ID No:21)
PCR反应以及连接产物转化操作同实施例3,得到三位点突变模板序列(SEQ ID No:1)。
实施例9合成具有三位点掺入报道基因的目的蛋白
6.1在无细胞体系中实现GFP蛋白三个位点的非天然氨基酸插入。
体外翻译条件:
Protein Factory加ddH2O溶解,
1ml protein factory
10μL 500mM pock(终浓度5mM)
20μM MaPylRs(终浓度)
20μM tRNApyl CUA(终浓度)
目的基因模板PCR产物30μL
28℃,反应过夜,合成具有三位点掺入报道基因的目的蛋白(参见图13)
实施例10非天然氨基酸插入蛋白的进一步验证实验。
1、将非天然氨基酸导入后的表达产物(实施例7和9),离心15000rpm 15min,取上清,加入100μl His Monster Beads(康码PROTN_HMBN1V00001)4℃孵育30min,用磁力架吸附磁珠,用wash buffer:50mM Tris-HCI pH 8.0,500mM NaCl,20mM Imidazole洗涤磁珠3次,最后用50μL elution buffer:50mM Tris-HCI pH8.0,500mM NaCI,250mM Imidazole洗脱样品。
样品等分两份,其中一份加入1/10体积的DNA loading buffer。另一份加入1/4体积的5*SDS-PAGE loading buffer,95℃,5min,分别作为变性样品以及非变性样品。利用8-16%梯度预制胶(万生昊天,GSH2001-816T),电泳分离。非变性样品电泳后在凝胶成像仪上,用荧光拍摄模式下cy3通道,确认EGFP蛋白的表达。
变性样品电泳经过考马斯亮蓝染色、脱色,将分子量正确的条带,切下进行LC-MS/MS质谱检测,可以确认非天然氨基酸的插入(图12和图13)。
2、对三位点插入的效果进行进一步验证,如图6所示,其表示的是ncaa三位点插入基因合成的蛋白质的荧光图;1为带有三个位点TAG(3sites)的GFP基因在无细胞体外正交翻译系统的表达上清(MW=35Kda);2为融合有TEV酶-TEV酶切位点(其中有TAG突变)-EGFP基因的表达上清(MW=58.5KDa),此构建中有一个非天然氨基酸的插入位点,只有当非天然氨基被插入到合成的多肽链中GFP才能够表达,具有绿色荧光,同时由于TEV酶切位点中有非天然氨基酸的突变,因此不能被TEV识别,融合蛋白分子量为58.5KDa;3为1经过Ni柱纯化后的样品;4为2经过Ni柱纯化后的样品。由此可以看出,结果显示带有3个TAG终止密码子的GFP基因同样可以在无细胞体外正交翻译系统中表达。带有TEV标签的融合蛋白同样也说明TAG可以将非天然氨基酸引入到蛋白质多肽链中。

Claims (16)

  1. 一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,其特征在于,所述反应体系包括:
    (1)细胞提取物;
    (2)非天然氨基酸;
    (3)外源正交氨酰tRNA合成酶/正交tRNA对;(4)包含目的蛋白基因序列的模板,所述目的蛋白基因序列中的至少一个编码氨基酸的密码子被突变为终止密码子。
  2. 根据权利要求1所述的一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,其特征在于,所述终止密码子为TAG。
  3. 根据权利要求1或2所述的一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,所述细胞提取物,优选选自以下任一种来源:大肠杆菌、酵母细胞、哺乳动物细胞、植物细胞、昆虫细胞、或者其组合;所述酵母细胞,优选选自毕赤酵母、芬兰毕赤酵母(Pichia finlandica)、喜海藻糖毕赤酵母(Pichia trehalophila)、科克拉马毕赤酵母(Pichiakoclamae)、膜醭毕赤酵母(Pichia membranaefaciens)、微小毕赤酵母(Pichiaminuta)(甲醇诱导型酵母(Ogataeaminuta)、林氏毕赤酵母(Pichia lindneri))、仙人掌毕赤酵母(Pichia opuntiae)、耐热毕赤酵母(Pichiathermotolerans)、柳毕赤酵母(Pichia salictaria)、松栎毕赤酵母(Pichia g uercuum)、皮杰普毕赤酵母(Pichiapijperi)、树干毕赤酵母(Pichiastiptis)、甲醇毕赤酵母(Pichiamethanolica)、毕赤酵母菌(Pichia sp.)、酿酒酵母(Saccharomyces cerevisiae)、酵母菌(Saccharomyces sp.)、多形汉逊酵母(Hansenulapolymorpha)、克鲁维酵母、乳酸克鲁维酵母(Kluyveromyces,K.lactis)、马克斯克鲁维酵母(Kluyveromyces marxianus)、Kluyveromyces marxianus var.lactis、Kluyveromyces marxianus var.marxianus、Kluyveromyces marxianus var.vanudenii、多布克鲁维酵母(Kluyveromyces dobzhanskii)、海泥克鲁维酵母(Kluyveromyces aestuarii)、非发酵克鲁维酵母(Kluyveromyces nonfermentans)、威克海姆克鲁维酵母(Kluyveromyces wickerhamii)、耐热克鲁维酵母(Kluyveromyces thermotolerans)、脆壁克鲁维酵母(Kluyveromyces fragilis)、湖北克鲁维酵母(Kluyveromyces hubeiensis)、多孢克鲁维酵母(Kluyveromyces polysporus)、暹罗克鲁维酵母(Kluyveromyces siamensis)、亚罗克鲁维酵母(Kluyveromyces yarrowii)之一或其组合。
  4. 根据权利要求1-3任一项所述的一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,所述的非天然氨基酸的结构式为式(I)化合物
    其中n选自1-20的自然数,R1选自取代或未取代的C5-C60的芳基或杂芳基、取代或未取代的C1-C20的烷基、取代或未取代的C2-C20的烯基或取代或未取代的C2-C20的炔基,A选自O或-CH2-。
  5. 根据权利要求4所述的一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,所述的n选自1-10的自然数,所述的R1选自取代或未取代的C2-C20的烯基或取代或未取代的C2-C20的炔基;优选地,所述的n选自1-6的自然数,所述的R1选自取代或未取代的C2-C10的烯基或取代或未取代的C2-C10的炔基;进一步优选地,所述的R1选自取代或未取代的C2-C6的炔基。
  6. 根据权利要求4或5所述的一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,所述的非天然氨基酸的结构式选自如下的之一或组合:
  7. 根据权利要求1-6任一项所述的一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,所述的外源正交氨酰tRNA合成酶选自天然或突变的Pyl-tRNA合成酶(PylRS)、Leu-tRNA合成酶(LeuRS)、Tyr-tRNA合成酶(TyrRS)、Phe-tRNA合成酶(PheRS)或TrP-tRNA合成酶(TrpRS);所述的tRNA选自天然或突变的tRNAPyl、tRNALeu、tRNATyr、tRNAPhe或tRNATrp
  8. 根据权利要求1-7任一项所述的一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,所述的外源正交氨酰tRNA合成酶选自天然或突变的MaPylRS、MmPylRS、MbPylRS、EcTyrRS、MjTyrRS、EcLeuRS、ScPheRS、ScTrpRS、BsTrpRS;优选为MaPylRS。
  9. 根据权利要求1-8任一项所述的一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,所述的目的蛋白选自荧光素蛋白、荧光素酶、绿色荧光蛋白、黄色荧光蛋白、红色荧光蛋白、甘油醛-3-磷酸脱氢酶、过氧化氢酶、肌动蛋白、抗体的可变区域、萤光素酶突变、α-淀粉酶、肠道菌素A、丙型肝炎病毒E2糖蛋白、胰岛素前体、干扰素αA、白细胞介素-1β、溶菌酶素、血清白蛋白、单链抗体段(scFV)、甲状腺素运载蛋白、酪氨酸酶、木聚糖酶、或其组合。
  10. 根据权利要求1-9任一项所述的一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,所述体系进一步包括:所述体系还包括缓冲剂、钾离子、镁离子、聚乙二醇、任选的水性溶剂及磷酸盐中的一种或多种成分。
  11. 根据权利要求10所述的一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系,还具有以下特征中的一个或多个:
    (1)所述细胞提取物的相对反应体系的v/v为20~80%;
    (2)还包括聚乙二醇,所述聚乙二醇的相对反应体系的(w/v)为0.1-8%,较佳地,0.5-4%,更佳地,1-2%;
    (3)所述外源正交氨酰tRNA合成酶相对于反应体系的浓度范围为0.001~1mmol/L,优选0.005~0.1mmol/L,更优选0.005~0.05mmol/L;
    (4)所述正交tRNA相对于反应体系的浓度范围为0.001~1mmol/L,优选0.005~0.1mmol/L,更优选0.02~0.1mmol/L。
  12. 一种试剂盒,其特征在于,所述试剂盒含有权利要求1-11任一项所述的反应体系。
  13. 一种采用体外无细胞系统合成含有非天然氨基酸的蛋白质的方法,其采用权利要求1-11任一项所述的合成体系或权利要求12所述的试剂盒进行制备。
  14. 权利要求1-11任一项所述的体系或权利要求12所述的试剂盒在合成含有非天然氨基酸的蛋白质中的应用。
  15. 含有非天然氨基酸的蛋白质,其是由权利要求1-11任一项所述的合成体系或权利要求12所述的试剂盒或权利要求13所述的方法制备得到。
  16. 权利要求15所述的含有非天然氨基酸的蛋白质在点击化学修饰中的应用。
PCT/CN2023/143616 2022-12-31 2023-12-29 一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系、方法及应用 WO2024141087A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211740484 2022-12-31
CN202211740484.4 2022-12-31
CN202310000322.5 2023-01-02
CN202310000322 2023-01-02

Publications (1)

Publication Number Publication Date
WO2024141087A1 true WO2024141087A1 (zh) 2024-07-04

Family

ID=91716564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/143616 WO2024141087A1 (zh) 2022-12-31 2023-12-29 一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系、方法及应用

Country Status (1)

Country Link
WO (1) WO2024141087A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030082575A1 (en) * 2001-04-19 2003-05-01 The Scripps Research Institute In vivo incorporation of unnatural amino acids
CN101479379A (zh) * 2006-06-29 2009-07-08 利兰·斯坦福青年大学托管委员会 含有非天然氨基酸的蛋白质的无细胞合成
CN104880441A (zh) * 2015-05-14 2015-09-02 上海皓拓生物技术有限公司 β-分泌酶特异性抑制剂的筛选方法及其筛选系统
CN110366428A (zh) * 2016-12-30 2019-10-22 Sutrovax公司 具有非天然氨基酸的多肽-抗原缀合物
CN114634958A (zh) * 2021-12-22 2022-06-17 清华大学 使用无细胞蛋白质合成体系插入非天然氨基酸的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030082575A1 (en) * 2001-04-19 2003-05-01 The Scripps Research Institute In vivo incorporation of unnatural amino acids
CN101479379A (zh) * 2006-06-29 2009-07-08 利兰·斯坦福青年大学托管委员会 含有非天然氨基酸的蛋白质的无细胞合成
CN104880441A (zh) * 2015-05-14 2015-09-02 上海皓拓生物技术有限公司 β-分泌酶特异性抑制剂的筛选方法及其筛选系统
CN110366428A (zh) * 2016-12-30 2019-10-22 Sutrovax公司 具有非天然氨基酸的多肽-抗原缀合物
CN114634958A (zh) * 2021-12-22 2022-06-17 清华大学 使用无细胞蛋白质合成体系插入非天然氨基酸的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Master’s Theses ", 5 May 2016, ZHEJIANG UNIVERSITY, China, article ZHUANG, BINGJIA: "Preparation and Characterization of P-propargyloxyphenylalanine Incorporated Aquaporins", pages: 1 - 95, XP009555667 *
BLIGHT, S.K. ET AL.: "Direct charging of tRNACUA with pyrrolysine in vitro and in vivo", NATURE, vol. 431, 25 August 2004 (2004-08-25), pages 333 - 335, XP003007828, DOI: 10.1038/nature02895 *
DATABASE Protein 28 February 2022 (2022-02-28), "pyrrolysine--tRNA(Pyl) ligase large subunit [Methanomethylophilus alvi]", XP093187069, Database accession no. WP_015505008 *
GAO WEI, BU NING, LU YUAN: "Efficient Incorporation of Unnatural Amino Acids into Proteins with a Robust Cell-Free System", METHODS AND PROTOCOLS, vol. 2, no. 1, 12 February 2019 (2019-02-12), pages 16, XP093187062, ISSN: 2409-9279, DOI: 10.3390/mps2010016 *
RANJI CHARNA ARNAZ, DES SOYE BENJAMIN J., NTAI IOANNI, KELLEHER NEIL L., JEWETT MICHAEL C.: "An efficient cell‐free protein synthesis platform for producing proteins with pyrrolysine‐based noncanonical amino acids", BIOTECHNOLOGY JOURNAL, WILEY-VCH VERLAG, WEINHEIM, DE, vol. 17, no. 9, 1 September 2022 (2022-09-01), DE , XP093187066, ISSN: 1860-6768, DOI: 10.1002/biot.202200096 *

Similar Documents

Publication Publication Date Title
US8188260B2 (en) Versatile acylation catalytic RNAs and uses thereof
Dedkova et al. Construction of modified ribosomes for incorporation of D-amino acids into proteins
US20180171321A1 (en) Platform for a non-natural amino acid incorporation into proteins
JP7246100B2 (ja) 新規融合タンパク質の調製およびそのタンパク質合成の向上における使用
CN110408636B (zh) 多重标签串联的dna序列及其在蛋白质表达纯化系统的应用
CN110093284B (zh) 一种在细胞中提高蛋白合成效率的方法
CN110408635B (zh) 一种含有链霉亲和素元件的核酸构建物在蛋白质表达、纯化中的应用
CN113528574B (zh) 信号肽相关序列及其在蛋白质合成中的应用
WO2018161374A1 (zh) 一种用于体外蛋白质合成的蛋白合成体系、试剂盒及其制备方法
WO2014119600A1 (ja) Flexible Display法
US20130078671A1 (en) Incorporation of two different noncanonical amino acids into a single protein
CN111378708B (zh) 一种体外无细胞蛋白合成体系及其应用
CN110551745A (zh) 一种多重组氨酸序列标签及其在蛋白质表达、纯化中的应用
JP7028986B2 (ja) タンパク質合成効率を高めることができるタンデムdnaエレメント
WO2024141087A1 (zh) 一种用于插入非天然氨基酸的体外无细胞蛋白质合成体系、方法及应用
EP4067492A1 (en) Polypeptide tag and application thereof in in vitro protein synthesis
WO2024051855A1 (zh) 一种核酸构建物以及在ivtt体系中的应用
US20240263209A1 (en) Composition of transfer rnas and use in production of proteins containing non-standard amino acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23911000

Country of ref document: EP

Kind code of ref document: A1