[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024140164A1 - 电极极片、制备方法、电池和电子装置 - Google Patents

电极极片、制备方法、电池和电子装置 Download PDF

Info

Publication number
WO2024140164A1
WO2024140164A1 PCT/CN2023/138119 CN2023138119W WO2024140164A1 WO 2024140164 A1 WO2024140164 A1 WO 2024140164A1 CN 2023138119 W CN2023138119 W CN 2023138119W WO 2024140164 A1 WO2024140164 A1 WO 2024140164A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
present disclosure
layer
current collector
battery
Prior art date
Application number
PCT/CN2023/138119
Other languages
English (en)
French (fr)
Inventor
宁海龙
温鹏超
Original Assignee
蔚来电池科技(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来电池科技(安徽)有限公司 filed Critical 蔚来电池科技(安徽)有限公司
Publication of WO2024140164A1 publication Critical patent/WO2024140164A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of energy storage technology, and in particular to an electrode sheet, a method for preparing the electrode sheet, and a battery and an electronic device comprising the electrode sheet.
  • the content distribution of active materials, binders, conductive agents, porosity, etc. in the thickness direction of the electrode can be adjusted by adjusting the two layers of materials, so as to achieve the purpose of improving the adhesion between the active material and the current collector, improving the conductivity of the electrode, constructing ion transmission channels and improving the wettability of the electrode.
  • the porosity of the first material layer is b 1 %
  • the porosity of the second material layer is b 1 %.
  • the porosity of is b2 %, wherein b1 and b2 satisfy the following relationship: 40> b2 > b1 >5.
  • the first material layer and the second material layer each contain a conductive agent, and based on the total weight of the first material layer, the weight percentage of the conductive agent in the first material layer is c1 %; based on the total weight of the second material layer, the weight percentage of the conductive agent in the second material layer is c2 %, wherein c1 and c2 satisfy the following relationship: 0.1 ⁇ c1 + c2 ⁇ 5.
  • the battery provided by the present disclosure is a lithium-ion battery.
  • the present disclosure provides an electronic device, wherein the electronic device comprises the above-mentioned battery.
  • the negative electrode active materials in the first material layer and the second material layer may be the same material, and the mass percentages of the materials may be different.
  • the weight percentage of the negative electrode active material in the first material layer is n 3 %; based on the total weight of the second material layer, the weight percentage of the negative electrode active material in the second material layer is n 4 %, wherein n 3 and n 4 satisfy the following relationship: 90 ⁇ n 1 ⁇ 98, 70 ⁇ n 2 ⁇ 95.
  • the diaphragm layer in the electrode plate provided by the present disclosure can separate the positive electrode and the negative electrode of the lithium battery, and at the same time allow lithium ions to pass through to form a charge and discharge circuit, playing the role of the diaphragm of the lithium battery in the prior art.
  • compositions and materials can form ion channels.
  • the coating die comprises three slurry extrusion slits, two of which are slurry extrusion slits for the first material layer and the second material layer, and the other slit is a slurry extrusion slit for the diaphragm layer.
  • the three slurry extrusion slits are sequentially a slurry extrusion slit for the diaphragm layer, a slurry extrusion slit for the second material layer, and a slurry extrusion slit for the first material layer.
  • a battery electrode coating having different functionalities can be obtained by changing the composition and material of the first active material layer and the second active material layer.
  • the lithium battery and the electrochemical device including the same disclosed in the present invention play the role of a separator by coating a composite insulating layer and a solid electrolyte layer, thereby eliminating the need for an external separator and simplifying the process.
  • the preparation method of simultaneously coating the first active material layer, the second active material layer and the separator layer on the surface of the current collector through the coating die of the present disclosure increases production efficiency.
  • FIG1 shows a schematic diagram of a coating die provided by the present disclosure, wherein 101 is a coating die, 102 is a slit for extruding the slurry of the first material layer, 103 is a slit for extruding the slurry of the second material layer, 104 is a slit for extruding the slurry of the separator layer, and 105 is a current collector;
  • FIG2 shows a schematic diagram of an electrode plate provided by the present disclosure, wherein 201 is a current collector, 202 is a first material layer, 203 is a second material layer, 204 is a diaphragm layer, and 205 is an ion channel in the second material layer;
  • FIG. 3 shows a specific structural diagram of the positive and negative electrode sheets and the battery cell provided by the present disclosure, wherein 301 is a negative electrode sheet, 303 is a positive electrode sheet, 301b is a negative electrode tab, 303b is a positive electrode tab, 301a and 302a are negative electrode separator layers, 303a and 304a are positive electrode separator layers, 302b is a negative electrode second material layer, 302c is a negative electrode first material layer, 302d is a negative electrode current collector, 304b is a positive electrode second material layer, 304c is a positive electrode first material layer, 304d is a positive electrode current collector, 305 and 306 are battery cells, 306a is a negative electrode sheet, and 306b is a positive electrode sheet;
  • FIG4 shows another specific structure diagram of positive and negative electrode sheets and a battery cell provided by the present disclosure, wherein 401 is a negative electrode sheet, 403 is a positive electrode sheet, 401b is a negative electrode tab, 403b is a positive electrode tab, 403a and 404a are positive electrode separators.
  • layer, 402a is the negative electrode second material layer, 402b is the negative electrode first material layer, 402c is the negative electrode collector, 404b is the positive electrode second material layer, 404c is the positive electrode first material layer, 404d is the positive electrode collector, 405 and 406 are battery cells, 406a is the negative electrode plate, and 406b is the positive electrode plate.
  • any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with other lower limits to form an unspecified range, and any upper limit can be combined with any other upper limit to form an unspecified range.
  • each separately disclosed point or single value can itself be combined as a lower limit or upper limit with any other point or single value or with other lower limits or upper limits to form an unspecified range.
  • orientations or positional relationships indicated by terms such as “upper”, “lower”, “top”, “bottom”, “inside” and “outside” are based on the orientations or positional relationships shown in the accompanying drawings and are only for the convenience of describing the present disclosure and simplifying the description. They do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation on the present disclosure.
  • the term "about” is used to describe and account for small variations.
  • the term may refer to instances where the event or circumstance occurred exactly as well as instances where the event or circumstance occurred very approximately.
  • the term may refer to a range of variation of less than or equal to ⁇ 10% of the numerical value, such as less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • amounts, ratios, and other numerical values are sometimes presented herein in a range format.
  • the term "ion channel” refers to a path that allows lithium ions to be quickly transported in an electrode material under the action of an electric field.
  • the negative electrode may include a negative electrode current collector, a first material layer, a second material layer, and a separator layer.
  • the first material layer and the second material layer of the negative electrode each contain a negative electrode active material.
  • the negative electrode current collector may be selected from copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
  • the negative electrode plate includes a negative electrode current collector, a first material layer disposed on the surface of the negative electrode current collector, and a second material layer disposed on the surface of the first material layer away from the current collector; and the first material layer and the second material layer each contain a binder, and based on the total weight of the first material layer, the weight percentage of the binder in the first material layer is a 1 %; based on the total weight of the second material layer, the weight percentage of the binder in the second material layer is a 2 %, wherein a 1 and a 2 satisfy the following relationship: 0.1 ⁇ a 1 ⁇ 5, 0.2 ⁇ a 2 ⁇ 20.
  • the positive electrode may include a positive electrode current collector, a first material layer, a second material layer, and a separator layer.
  • the positive electrode may include a current collector and a positive electrode active material layer disposed on the current collector.
  • the first material layer and the second material layer of the positive electrode each contain a positive electrode active material.
  • the positive electrode active material includes a compound that reversibly intercalates and deintercalates lithium ions.
  • the positive electrode active material may include a composite oxide containing lithium and at least one element selected from cobalt, manganese, and nickel.
  • the positive electrode active material may have a coating layer on the surface, or may be mixed with another compound having a coating layer.
  • the coating may include at least one coating element compound selected from an oxide of a coating element, a hydroxide of a coating element, an oxyhydroxide of a coating element, an oxycarbonate of a coating element, and a hydroxycarbonate of a coating element.
  • the compound used for the coating may be amorphous or crystalline.
  • the coating element contained in the coating may include Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or a mixture thereof.
  • the coating may be applied by any method as long as the method does not adversely affect the performance of the positive active material.
  • the method may include any coating method well known to those of ordinary skill in the art, such as transfer coating, extrusion coating, spraying, dipping, and the like.
  • the positive electrode active material layer further includes a binder, and optionally also includes a conductive material.
  • the binder improves the bonding between the positive electrode active material particles and also improves the bonding between the positive electrode active material and the current collector.
  • the positive electrode active material layer includes a conductive material to impart conductivity to the electrode.
  • the conductive material may include any conductive material as long as it does not cause chemical changes.
  • Non-limiting examples of conductive materials include carbon-based materials (e.g., natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, etc.), metal-based materials (e.g., metal powder, metal fiber, etc., including, for example, copper, nickel, aluminum, silver, etc.), conductive polymers (e.g., polyphenylene derivatives) and mixtures thereof.
  • the positive electrode current collector may be aluminum (Al), but is not limited thereto.
  • the positive electrode sheet includes a positive current collector, a first material layer disposed on the surface of the positive current collector, and a second material layer disposed on the surface of the first material layer away from the current collector; and the first material layer and the second material layer each contain an adhesive, and based on the total weight of the first material layer, the weight percentage of the adhesive in the first material layer is a 1 %; based on the total weight of the second material layer, the weight percentage of the adhesive in the second material layer is a 1%.
  • the weight percentage is a 2 %, wherein a 1 and a 2 satisfy the following relationship: 0.1 ⁇ a 1 ⁇ 5, 0.2 ⁇ a 2 ⁇ 20.
  • lithium batteries and electrochemical devices containing the same are provided with a diaphragm between the positive electrode and the negative electrode to prevent short circuit.
  • a diaphragm layer coated on the positive electrode and/or negative electrode plate is obtained by coating a composite insulating layer and a solid electrolyte layer, which plays the role of a diaphragm, thereby simplifying the process.
  • At most one of the positive electrode sheet or the negative electrode sheet may not include a separator layer.
  • the material of the separator layer includes a polymer or an inorganic substance formed of a material that is stable to the electrolyte of the present application.
  • the diaphragm layer may include a substrate layer and a surface treatment layer.
  • the substrate layer is a non-woven fabric, a film or a composite film with a porous structure, and the material of the substrate layer is selected from at least one of polyethylene, polypropylene, polyethylene terephthalate and polyimide.
  • a polypropylene porous membrane a polyethylene porous membrane, a polypropylene non-woven fabric, a polyethylene non-woven fabric or a polypropylene-polyethylene-polypropylene porous composite membrane may be used.
  • a surface treatment layer is disposed on at least one surface of the substrate layer.
  • the surface treatment layer may be a polymer layer or an inorganic layer, or a layer formed by mixing a polymer and an inorganic layer.
  • the inorganic layer comprises an inorganic solid electrolyte or other inorganic particles and a binder.
  • the inorganic particles are selected from one or a combination of aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, cerium dioxide, nickel oxide, zinc oxide, calcium oxide, zirconium oxide, yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, and barium sulfate.
  • the binder is selected from one or a combination of polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene, and polyhexafluoropropylene.
  • the polymer layer contains polymers, and the material of the polymer is selected from at least one of polyethylene oxide, polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, polyvinylidene fluoride, and poly(vinylidene fluoride-hexafluoropropylene).
  • the battery involved in the present disclosure is a lithium ion battery.
  • the lithium-ion battery involved in the present disclosure includes the above-mentioned positive electrode sheet, negative electrode sheet, separator, electrolyte, etc., but is not limited thereto.
  • the lithium-ion battery involved in the present disclosure is made by stacking the above-mentioned positive and negative electrode sheets.
  • the composition of the first material layer is as follows: graphite + 15% SiO x : CNT + SP: CMC + SBR mass ratio is 96:2:2, the composition of the second material layer is as follows: graphite: CNT + SP: CMC + SBR mass ratio is 94:2:4, and the separator layer material is LLZTO.
  • the above three material layers are simultaneously coated on the copper foil current collector through a coating die to obtain a negative electrode sheet.
  • the positive and negative electrode sheets are stacked to form a battery cell.
  • compositions of Examples 1-4 are shown in Table 1.
  • the composition of each material layer in Table 1 is the mass ratio of active material: conductive agent: binder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本公开涉及一种电极极片,所述电极极片包括集流体、设置于所述集流体表面的第一材料层、设置于所述第一材料层远离所述集流体一侧表面的第二材料层;并且所述第一材料层和第二材料层各自包含粘合剂,基于所述第一材料层的总重量,所述第一材料层中的粘合剂的重量百分含量为a1%;基于所述第二材料层的总重量,所述第二材料层中的粘合剂的重量百分含量为a2%,其中,a1和a2满足以下关系:0.1<a1<5,0.2<a2<20。

Description

电极极片、制备方法、电池和电子装置 技术领域
本公开涉及储能技术领域,具体涉及一种电极极片、电极极片的制备方法以及包含电极极片的电池和电子装置。
背景技术
能量密度是电池的一项重要性能指标,因此备受研究人员关注。提高电极厚度是提高电池能量密度的有效手段之一,然而增加电极厚度的同时,也会使得极片浸润性差、掉料等问题。
通过多层涂布工艺,可以通过对两层材料的调节,从而调节极片厚度方向上的活性物质、粘结剂、导电剂、孔隙率等的含量分布,以达到提高活性物质与集流体的粘附性、提高电极导电性、构筑离子传输通道以及改善极片的浸润性的目的。
另外,传统的电芯组装过程,需要使用独立的隔膜将正负极分开,如果可以直接在极片上,通过涂布复合一层绝缘层或固态电解质层,起到隔膜的作用,从而省略外加隔膜的使用,则可以大大简化工艺,提高生产效率。
发明内容
针对现有技术中存在的问题,本公开提供了一种电极极片,其中,所述电极极片包括集流体、设置于所述集流体表面的第一材料层、设置于所述第一材料层远离所述集流体一侧表面的第二材料层。
在本公开内容的一个方面,所述第一材料层和第二材料层各自包含粘合剂,基于所述第一材料层的总重量,所述第一材料层中的粘合剂的重量百分含量为a1%;基于所述第二材料层的总重量,所述第二材料层中的粘合剂的重量百分含量为a2%,其中,a1和a2满足以下关系:0.1<a1<5,0.2<a2<20。
在本公开内容的一个方面,其中,所述电极极片还包括设置于所述第二材料层远离所述第一材料层表面的隔膜层。
在本公开内容的一个方面,其中,所述第一材料层的孔隙率为b1%,所述第二材料层 的孔隙率为b2%,其中,b1和b2满足以下关系:40>b2>b1>5。
在本公开内容的一个方面,其中,所述第一材料层和第二材料层各自包含导电剂,基于所述第一材料层的总重量,所述第一材料层中的导电剂的重量百分含量为c1%;基于所述第二材料层的总重量,所述第二材料层中的导电剂的重量百分含量为c2%,其中,c1和c2满足以下关系:0.1<c1+c2<5。
在本公开内容的一个方面,其中,所述第一材料层的固含量为d1%,所述第二材料层的固含量为d2%,其中,d1和d2满足以下关系:40<d1<85,20<d2<80。
本公开提供了一种制备上述电极极片的制备方法,其中,所述制备方法包括通过涂布模头将所述第一材料层、第二材料层和隔膜层中的至少二者同时涂布于所述集流体上。
在本公开内容的一个方面,其中,所述涂布模头包括至少两个狭缝,所述狭缝分别用于将制备所述第一材料层、第二材料层和隔膜层中的至少二者的浆料涂布于所述集流体上。
本公开提供了一种电池,其中,所述电池包括上述电极极片。
在本公开内容的一个方面,其中,本公开所提供的电池为锂离子电池。
本公开提供了一种电子装置,其中,所述电子装置包括上述电池。
在本公开内容的一个方面,其中,本公开所提供的电极极片包括正极极片和负极极片。
在本公开内容的一个方面,其中,所述第一材料层和第二材料层各自包含正极活性材料,所述第一材料层和第二材料层中的正极活性材料的种类可以相同或不同,其可以各自独立地选自:磷酸铁锂、镍钴锰三元材料、镍钴铝三元材料、锰酸锂、钴酸锂、镍酸锂、镍锰酸锂等材料中的至少一种,但不限于此。
在本公开内容的一个方面,其中,所述第一材料层和第二材料层中的正极活性材料可以为相同的材料,所述材料的质量百分含量可以不一样。
在本公开内容的一个方面,其中,所述第一材料层和第二材料层中的一者可以包含镍钴锰三元材料或镍钴铝三元材料,另一者可以包含磷酸铁锂材料。
在本公开内容的一个方面,其中,所述第一材料层和第二材料层各自包含负极活性材料,所述第一材料层和第二材料层中的负极活性材料的种类可以相同或不同,其可以各自独立地选自:人造石墨、天然石墨、中间相碳微球、软碳、硬碳、钛酸锂、惰性锂金属粉末、硅基负极材料、锡基负极材料等材料中的至少一种,但不限于此。
在本公开内容的一个方面,其中,所述第一材料层和第二材料层中的负极活性材料可以为相同的材料,所述材料的质量百分含量可以不一样。
在本公开内容的一个方面,其中,所述第一材料层和第二材料层中的一者可以包含硅基材料,另一者可以包含石墨基材料。
在本公开内容的一个方面,其中,基于所述第一材料层的总重量,所述第一材料层中的正极活性材料的重量百分含量为n1%;基于所述第二材料层的总重量,所述第二材料层中的正极活性材料的重量百分含量为n2%,其中,n1和n2满足以下关系:90<n1<98,80<n2<98。
在本公开内容的一个方面,其中,基于所述第一材料层的总重量,所述第一材料层中的负极活性材料的重量百分含量为n3%;基于所述第二材料层的总重量,所述第二材料层中的负极活性材料的重量百分含量为n4%,其中,n3和n4满足以下关系:90<n1<98,70<n2<95。
在本公开内容的一个方面,其中,在所述第一材料层中,所述正极活性材料的Dv50为s1,其中,在所述第二材料层中,所述正极活性材料的Dv50为s2,其中,s1和s2满足以下关系:s1为2-20μm,s2为5-30μm。
在本公开内容的一个方面,其中,在所述第一材料层中,所述负极活性材料的Dv50为s3,其中,在所述第二材料层中,所述负极活性材料的Dv50为s4,其中,s3和s4满足以下关系:s3为5-25μm,s4为10-35μm。
在本公开内容的一个方面,其中,本公开内容所涉及的导电剂选自:导电炭黑、碳纳米管、石墨烯、导电石墨、碳纤维等材料中的至少一种,但不限于此。
在本公开内容的一个方面,其中,本公开内容所涉及的粘合剂选自:聚偏氟乙烯(PVDF)、羟甲基纤维素钠(CMC)、丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚四氟乙烯(PTFE)、聚乙烯醇(PVA)、聚丙烯酸丁脂(PBA)、聚丙烯腈(PA)等材料中的至少一种,但不限于此。
在本公开内容的一个方面,其中,本公开所提供电极极片中的隔膜层可以将锂电池的正极和负极隔开,同时能够让锂离子通过,形成充放电回路,起到现有技术中锂电池的隔膜的作用。
在本公开内容的一个方面,其中,本公开所提供的隔膜层的材料选自聚合物材料、无机陶瓷绝缘材料、固态电解质材料中的至少一种,但不限于此。
在本公开内容的一个方面,其中,通过改变第一活性材料层和第二活性材料层的组 成和材料,可以形成离子通道。
在本公开内容的一个方面,其中,所述涂布模头包括三个浆料挤出狭缝,其中两个狭缝为第一材料层和第二材料层的浆料挤出狭缝,另一个狭缝为隔膜层的浆料挤出狭缝。
在本公开内容的另一个方面,其中,沿涂布方向,在涂布模头上,所述三个浆料挤出狭缝依次为隔膜层的浆料挤出狭缝、第二材料层的浆料挤出狭缝和第一材料层的浆料挤出狭缝。
有益效果:
(1)在本公开内容中,可以通过改变第一活性材料层和第二活性材料层的组成和材料,获得功能性不同的电池电极涂层。
(2)本公开的锂电池和包含其的电化学装置中通过涂布复合绝缘层和固态电解质层,起到隔膜的作用,从而可以省略外加隔膜的使用,可以简化工艺。
(3)在本公开内容中,第二活性材料层的存在可以避免正极活性材料和负极活性材料进入隔膜层,以避免短路。
(4)在本公开内容中,通过本公开内容的涂布模头将第一活性材料层、第二活性材料层和隔膜层同时涂覆于集流体表面的制备方法增加了生产效率。
附图说明
图1示出了本公开所提供的涂布模头的示意图,其中,101为涂布模头,102为第一材料层的浆料挤出狭缝,103为第二材料层的浆料挤出狭缝,104为隔膜层的浆料挤出狭缝,105为集流体;
图2示出了本公开所提供的电极极片的示意图,其中,201为集流体,202为第一材料层,203为第二材料层,204为隔膜层,205为第二材料层中的离子通道;
图3示出了本公开所提供的正负极极片和电芯的具体结构图,其中,301为负极极片,303为正极极片,301b为负极极耳,303b为正极极耳,301a和302a为负极隔膜层,303a和304a为正极隔膜层,302b为负极第二材料层,302c为负极第一材料层,302d为负极集流体,304b为正极第二材料层,304c为正极第一材料层,304d为正极集流体,305和306为电芯,306a为负极极片,306b为正极极片;
图4示出了本公开所提供的另一正负极极片和电芯的具体结构图,其中,401为负极极片,403为正极极片,401b为负极极耳,403b为正极极耳,403a和404a为正极隔膜 层,402a为负极第二材料层,402b为负极第一材料层,402c为负极集流体,404b为正极第二材料层,404c为正极第一材料层,404d为正极集流体,405和406为电芯,406a为负极极片,406b为正极极片。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合实施例对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。在此所描述的有关实施例为说明性质的且用于提供对本公开的基本理解。本公开的实施例不应该被解释为对本公开的限制。
I.术语:
为了简明,本文仅具体地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,每个单独公开的点或单个数值自身可以作为下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
在本文中,需要理解的是,术语“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本文的描述中,除非另有说明,“以上”、“以下”包含本数。
除非另有说明,本公开中使用的术语具有本领域技术人员通常所理解的公知含义。除非另有说明,本公开中提到的各参数的数值可以用本领域常用的各种测量方法进行测量(例如,可以按照在本公开的实施例中给出的方法进行测试)。
术语“约”用以描述及说明小的变化。当与事件或情形结合使用时,所述术语可指代其中事件或情形精确发生的例子以及其中事件或情形极近似地发生的例子。举例来说,当 结合数值使用时,术语可指代小于或等于所述数值的±10%的变化范围,例如小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%、或小于或等于±0.05%。另外,有时在本文中以范围格式呈现量、比率和其它数值。应理解,此类范围格式是用于便利及简洁起见,且应灵活地理解,不仅包含明确地指定为范围限制的数值,而且包含涵盖于所述范围内的所有个别数值或子范围,如同明确地指定每一数值及子范围一般。
术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个组分或多个组分。项目B可包含单个组分或多个组分。项目C可包含单个组分或多个组分。
在本公开中,术语“离子通道”是指:可以使锂离子在电场作用下,在电极材料中快速传输的路径。
下面结合具体实施方式,进一步阐述本公开。应理解,这些具体实施方式仅用于说明本公开而不用于限制本公开的范围。
II.具体实施方式:
负极:
在本公开的一些实施方式中,负极可以包括负极集流体、第一材料层、第二材料层和隔膜层。
在本公开的一些实施方式中,负极可以包括集流体和设置在集流体上的负极活性材料层。
在本公开的一些实施方式中,负极的第一材料层和第二材料层各自包含负极活性材料。
负极活性材料的具体种类均不受到具体的限制,可根据需求进行选择。具体地,所述负极活性材料选自天然石墨、人造石墨、中间相微碳球(简称为MCMB)、硬碳、软碳、硅、硅-碳复合物、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO2、尖晶石结构的锂化TiO2-Li4Ti5O12、Li-Al合金中的一种或几种。碳材料的非限制性示例包括结晶碳、非晶碳和它们的混合物。结晶碳可以是无定形的或片形的、小片形的、球形的或纤维状的天然石墨或人造石墨。非晶碳可以是软碳、硬碳、中间相沥青碳化物、煅烧焦等。
在本公开的一些实施方式中,负极活性材料层可以包括粘合剂,并且可选地还包括导电材料。粘合剂提高负极活性材料颗粒彼此间的结合和负极活性材料与集流体的结合。
在本公开的一些实施方式中,粘合剂的非限制性示例包括聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂、尼龙等。
在本公开的一些实施方式中,负极活性材料层包括导电材料,从而使电极具有导电性。该导电材料可以包括任何导电物质,只要其不引起化学变化。导电物质的非限制性示例包括基于碳的材料(例如,天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维等)、基于金属的材料(例如,金属粉、金属纤维等,例如铜、镍、铝、银等)、导电聚合物(例如,聚亚苯基衍生物)和它们的混合物。
在本公开的一些实施方式中,本公开负极极片包括负极活性材料、粘结剂和导电剂。
在本公开的一些实施方式中,本公开负极活性材料也可选自其他可以电化学性的吸留、放出锂离子等金属离子的材料。具体可选自碳质材料、硅质材料、合金系材料、含锂金属符合氧化物材料等。它们可以单独使用1种,也可以任何的组合并用2种以及2种以上。
在本公开的一些实施方式中,负极集流体可以选自于铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜、覆有导电金属的聚合物基底以及它们的组合。
在本公开的一些实施方式中,负极极片包括负极集流体、设置于负极集流体表面的第一材料层、设置于第一材料层远离集流体一侧表面的第二材料层;并且第一材料层和第二材料层各自包含粘合剂,基于所述第一材料层的总重量,所述第一材料层中的粘合剂的重量百分含量为a1%;基于所述第二材料层的总重量,所述第二材料层中的粘合剂的重量百分含量为a2%,其中,a1和a2满足以下关系:0.1<a1<5,0.2<a2<20。
正极:
在本公开的一些实施方式中,正极可以包括正极集流体、第一材料层、第二材料层和隔膜层。
在本公开的一些实施方式中,正极可以包括集流体和设置在集流体上的正极活性材料层。
在本公开的一些实施方式中,正极的第一材料层和第二材料层各自包含正极活性材料。
正极活性材料包括可逆地嵌入和脱嵌锂离子的化合物。正极活性材料可以包括复合氧化物,该复合氧化物含有锂以及从钴、锰和镍中选择的至少一种元素。
在本公开的一些实施方式中,正极活性材料可以在表面上具有涂层,或者可以与具有涂层的另一化合物混合。
在本公开的一些实施方式中,该涂层可以包括从涂覆元素的氧化物、涂覆元素的氢氧化物、涂覆元素的羟基氧化物、涂覆元素的碳酸氧盐和涂覆元素的羟基碳酸盐中所选择的至少一种涂覆元素化合物。用于涂层的化合物可以是非晶的或结晶的。在涂层中含有的涂覆元素可以包括Mg、Al、Co、K、Na、Ca、Si、Ti、V、Sn、Ge、Ga、B、As、Zr或它们的混合物。可以通过任何方法来施加涂层,只要该方法不对正极活性材料的性能产生不利影响即可。例如,该方法可以包括对本领域普通技术人员来说众所周知的任何涂覆方法,例如转移式涂覆、挤压式涂覆、喷涂、浸渍等。
在本公开的一些实施方式中,正极活性材料层还包括粘合剂,并且可选地还包括导电材料。粘合剂提高正极活性材料颗粒彼此间的结合,并且还提高正极活性材料与集流体的结合。
在本公开的一些实施方式中,粘合剂的非限制性示例包括聚乙烯醇、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂、尼龙等。
在本公开的一些实施方式中,正极活性材料层包括导电材料,从而赋予电极导电性。该导电材料可以包括任何导电物质,只要它不引起化学变化。导电物质的非限制性示例包括基于碳的材料(例如,天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维等)、基于金属的材料(例如,金属粉、金属纤维等,包括例如铜、镍、铝、银等)、导电聚合物(例如,聚亚苯基衍生物)和它们的混合物。
在本公开的一些实施方式中,正极集流体可以是铝(Al),但不限于此。
在本公开的一些实施方式中,正极极片包括正极集流体、设置于正极集流体表面的第一材料层、设置于第一材料层远离集流体一侧表面的第二材料层;并且第一材料层和第二材料层各自包含粘合剂,基于所述第一材料层的总重量,所述第一材料层中的粘合剂的重量百分含量为a1%;基于所述第二材料层的总重量,所述第二材料层中的粘合剂的 重量百分含量为a2%,其中,a1和a2满足以下关系:0.1<a1<5,0.2<a2<20。
隔膜层:
在现有技术中,锂电池以及包含其的电化学装置在正极与负极之间设有隔膜以防止短路,本公开的锂电池和包含其的电化学装置中通过涂布复合绝缘层和固态电解质层得到涂覆于正极和/或负极极片上的隔膜层,起到隔膜的作用,从而可以简化工艺。
在本公开的一些实施例中,正极极片或负极极片中的至多一者可以不包含隔膜层。
在本公开的一些实施例中,隔膜层的材料包括由对本申请的电解液稳定的材料形成的聚合物或无机物等。
在本公开的一些实施例中,隔膜层可包括基材层和表面处理层。基材层为具有多孔结构的无纺布、膜或复合膜,基材层的材料选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。
具体的,可选用聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。
基材层的至少一个表面上设置有表面处理层,表面处理层可以是聚合物层或无机物层,也可以是混合聚合物与无机物所形成的层。
无机物层包括无机固态电解质或其他无机颗粒和粘结剂,无机固态电解质选自氧化物固态电解质(钠超离子导体结构(NASICON)的Li1.5Al0.5Ge1.5(PO4)3(LAGP)、Li1.4Al0.4Ti1.6(PO4)3(LATP),钙钛矿结构的Li3xLa2/3-xTiO3(LLTO),以及石榴石结构的Li6.4La3Zr1.4Ta0.6O12(LLZTO))、硫化物固态电解质(Li2S—GeS2、Li2S—P2S5、Li2S—SiS2等二元化合物与Li2S—MeS2—P2S5(Me=Si,Ge,Sn,Al等)三元化合物等)、卤化物固态电解质(Li3MX6,M为金属元素,X为卤素)中的一种或几种的组合。无机颗粒选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的一种或几种的组合。粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的一种或几种的组合。
聚合物层中包含聚合物,聚合物的材料选自聚环氧乙烷、聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯、聚(偏氟乙烯-六氟丙烯)中的至少一种。
电解液:
本公开内容涉及的电池和电化学装置还包括电解液。
在一些实施方式中,本公开所涉及的电池为锂离子电池,其中,电解液包括锂盐和溶剂。
在一些实施方式中,所述锂盐包括有机锂盐或无机锂盐中的至少一种。在一些实施方式中,所述锂盐包括,但不限于:六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、二氟磷酸锂(LiPO2F2)、双三氟甲烷磺酰亚胺锂LiN(CF3SO2)2(LiTFSI)、双(氟磺酰)亚胺锂Li(N(SO2F)2)(LiFSI)、双草酸硼酸锂LiB(C2O4)2(LiBOB)或二氟草酸硼酸锂LiBF2(C2O4)(LiDFOB)。
在一些实施方式中,溶剂可选自碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸亚丁酯(BC)、氟代碳酸亚乙酯(FEC)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)及二乙砜(ESE)中的一种或几种。
在一些实施方式中,电解液中还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂,也可以包括正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温性能的添加剂、改善电池低温性能的添加剂等。
电池:
在本公开的一些实施方式中,本公开所涉及的电池为锂离子电池。
在本公开的一些实施方式中,本公开涉及的锂离子电池包含上述正极极片、负极极片、隔膜、电解液等,但不限于此。
在本公开的一些实施方式中,本公开涉及的锂离子电池通过将上述正负极极片叠片制成。
在本公开的一些实施方式中,本公开涉及的锂离子电池可包括外包装,所述外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是铝塑膜,或塑料,如聚丙烯(PP)、聚对苯二甲酸丁二醇酯(PBT)、聚丁二酸丁二醇酯(PBS)等中的一种或几种。
在一些实施方式中,本公开还提供了一种电池模块。该电池模块包括上述锂离子电 池。本公开的电池模块采用了上述锂离子电池,因此至少具有与所述锂离子电池相同的优势。本公开的电池模块所含锂离子电池的数量可以为多个,具体数量可根据电池模块的应用和容量来调节。
在一些实施方式中,本公开还提供了一种电池包、其包括上述电池模块。所述电池包所含电池模块的数量可以根据电池包的应用和容量进行调节。
装置:
本公开还提供了一种装置,所述装置包括上述电池、电池模块或电池包中的至少一种。
在一些实施方式中,所述装置包括,但不限于:电动车辆、混合动力电动车辆、插电式混合动力电动车辆、蓄电系统等。为了满足该装置对锂离子电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
在另一些实施方式中,装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用锂离子电池作为电源。
下面结合实施例,进一步阐述本公开。应理解,这些实施例仅用于说明本公开而不用于限制本公开的范围。
III.实验方法与实施例
实验方法:
电池首次库伦效率:首次放电容量与首次充电容量的百分比。
循环500圈时容量保持率:在25℃下,以1C充电/1C放电的条件,循环500次后的容量与电池初始容量的百分比,其中初始容量为第6-15次循环的放电容量的平均值。
倍率性能测试:1C充/1C放电容量为以1C充电/1C放电的条件循环15次,取第6-15次放电容量的平均值;1C充/2C放电容量保持率为以1C充电/2C放电的条件,循环5次,取放电容量的平均值与1C充/1C放电容量的百分比;1C充/5C放电容量保持率为以1C充电/5C放电的条件,循环5次,取放电容量的平均值与1C充/1C放电容量的百分比。
实施例1:
在实施例1中,通过如图1所示的涂布模头将第一材料层、第二材料层和隔膜层涂布在集流体上,第一材料层设置于集流体表面,第二材料层设置于第一材料层远离集流体一侧表面,其中,101为涂布模头,102为第一材料层的浆料挤出狭缝,103为第二材料层的浆料挤出狭缝,104为隔膜层的浆料挤出狭缝,105为集流体,所制备的电极极片 如图2所示,其中,201为集流体,202为第一材料层,203为第二材料层,204为隔膜层,205为第二材料层中的离子通道;并且,第一材料层中的粘合剂的重量百分含量a1%和第二材料层中的粘合剂的重量百分含量a2%满足以下关系:0.1<a1<5,0.2<a2<20。
其中,如图3所示,对于正极极片,其中,第一材料层(侧视图302c)的组成如下:NCM622:CNT+SP:PVDF质量比为96:2:2;第二材料层(侧视图302b)的组成如下:NCM622:CNT+SP:PVDF质量比为93:2:5;隔膜层(正视图301a,侧视图302a)材料为氧化铝。上述三层材料层通过涂布模头同时涂覆于铝箔集流体(侧视图302d)上,正视图301b为极片的极耳。
对于负极极片,第一材料层(侧视图304c)的组成如下:石墨:CNT+SP:CMC+SBR质量比为95:3:2,第二材料层(侧视图304b)的组成如下:石墨:CNT+SP:CMC+SBR质量比为92:3:5,隔膜层材料为氧化铝(正视图303a,侧视图304a)。上述三层材料层通过涂布模头同时涂覆于铜箔集流体(侧视图304d)上,正视图303b为极片的极耳。
如正视图305和侧视图306所示,正负极极片通过堆叠组成电芯(正视图305,侧视图306),其中,306a、306b分别为正负极极片。
实施例2:
如图4所示,对于正极极片,第一材料层(侧视图402b)的组成如下:NCM811:CNT+SP:PVDF质量比为97:1:2,第二材料层(侧视图402a)的组成如下:NCM811:CNT+SP:PVDF质量比为90:2:8,实施例2的正极极片没有隔膜层;上述两层材料层通过涂布模头同事涂覆于铝箔集流体(侧视图402c)上,正视图401b为极片的极耳。
对于负极极片,第一材料层(侧视图404c)的组成如下:石墨+10%SiOx:CNT+SP:CMC+SBR质量比为96:2:2,第二材料层(侧视图404b)的组成如下石墨+10%SiOx:CNT+SP:CMC+SBR质量比为90:3:7,隔膜层材料为聚环氧乙烷(正视图403a,侧视图404a)。上述三层材料层通过涂布模头同时涂覆于铜箔集流体(侧视图404d)上,正视图403b为极片的极耳。如图405和406,正负极极片通过堆叠,组成电芯(正视图405,侧视图406),其中,406a、406b分别为正负极极片。
实施例3
对于正极极片,第一材料层的组成如下:NCM811:CNT+SP:PVDF质量比为95:2.5:2.5,第二材料层的组成如下:NCM622:CNT+SP:PVDF质量比为90:5:5,隔膜层材料为LLZTO;上述三层材料层通过涂布模头同时涂覆于铝箔集流体上,得到正极极片。
对于负极极片,第一材料层的组成如下:石墨+15%SiOx:CNT+SP:CMC+SBR质量比为96:2:2,第二材料层的组成如下石墨:CNT+SP:CMC+SBR质量比为94:2:4,隔膜层材料为LLZTO。上述三层材料层通过涂布模头同时涂覆于铜箔集流体上,得到负极极片。正负极极片通过堆叠,组成电芯。
实施例4
对于正极极片,第一材料层的组成如下:NCM811:CNT+SP:PVDF质量比为95:3:2,第二材料层的组成如下:NCM811:CNT+SP:PVDF质量比为92:4:4,隔膜层材料为Li2S-P2S5;上述三层材料层通过涂布模头同时涂覆于铝箔集流体上,得到正极极片。
对于负极极片,第一材料层的组成如下:石墨+15%SiOx:CNT+SP:CMC+SBR质量比为97:1:2,第二材料层的组成如下:石墨+15%SiOx:CNT+SP:CMC+SBR质量比为95:2:3,隔膜层材料为Li2S-P2S5。上述三层材料层通过涂布模头同时涂覆于铜箔集流体上,得到负极极片。正负极极片通过堆叠,组成电芯。
实施例1-4的具体组成如表1所示,表1中各材料层的组成均为活性物质:导电剂:粘结剂的质量比。
表1
实施例1-4的电化学实验数据如表2所示:
表2
由此可见,可以通过改变第一活性材料层和第二活性材料层的组成和材料,获得功能性不同的锂离子电池电极涂层,同时,可以选择性地涂布复合绝缘层和固态电解质层来起到隔膜的作用,从而可以省略外加隔膜的使用,可以简化工艺。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本公开的限制,并且可以在不脱离本公开的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (9)

  1. 一种电极极片,其特征在于,所述电极极片包括集流体、设置于所述集流体表面的第一材料层、设置于所述第一材料层远离所述集流体一侧表面的第二材料层;并且
    所述第一材料层和第二材料层各自包含粘合剂,基于所述第一材料层的总重量,所述第一材料层中的粘合剂的重量百分含量为a1%;基于所述第二材料层的总重量,所述第二材料层中的粘合剂的重量百分含量为a2%,其中,a1和a2满足以下关系:0.1<a1<5,0.2<a2<20。
  2. 根据权利要求1所述的电极极片,其中,所述电极极片还包括设置于所述第二材料层远离所述第一材料层表面的隔膜层。
  3. 根据权利要求1所述的电极极片,其中,所述第一材料层的孔隙率为b1%,所述第二材料层的孔隙率为b2%,其中,b1和b2满足以下关系:40>b2>b1>5。
  4. 根据权利要求1所述的电极极片,其中,所述第一材料层和第二材料层各自包含导电剂,基于所述第一材料层的总重量,所述第一材料层中的导电剂的重量百分含量为c1%;基于所述第二材料层的总重量,所述第二材料层中的导电剂的重量百分含量为c2%,其中,c1和c2满足以下关系:0.1<c1+c2<5。
  5. 根据权利要求1所述的电极极片,其中,所述第一材料层的固含量为d1%,所述第二材料层的固含量为d2%,其中,d1和d2满足以下关系:40<d1<85,20<d2<80。
  6. 一种制备权利要求1-5中任一项所述的电极极片的制备方法,其特征在于,所述制备方法包括通过涂布模头将所述第一材料层、第二材料层和隔膜层中的至少二者同时涂布于所述集流体上。
  7. 根据权利要求6所述的制备方法,其中,所述涂布模头包括至少两个狭缝,所述狭缝分别用于将制备所述第一材料层、第二材料层和隔膜层中的至少二者的浆料涂布于所述集流体上。
  8. 一种电池,其特征在于,所述电池包括权利要求1-5所述的电极极片。
  9. 一种电子装置,其特征在于,所述电子装置包括权利要求8所述的电池。
PCT/CN2023/138119 2022-12-30 2023-12-12 电极极片、制备方法、电池和电子装置 WO2024140164A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211724155.0 2022-12-30
CN202211724155.0A CN115939311A (zh) 2022-12-30 2022-12-30 电极极片、制备方法、电池和电子装置

Publications (1)

Publication Number Publication Date
WO2024140164A1 true WO2024140164A1 (zh) 2024-07-04

Family

ID=86650886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138119 WO2024140164A1 (zh) 2022-12-30 2023-12-12 电极极片、制备方法、电池和电子装置

Country Status (2)

Country Link
CN (1) CN115939311A (zh)
WO (1) WO2024140164A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115939311A (zh) * 2022-12-30 2023-04-07 蔚来电池科技(安徽)有限公司 电极极片、制备方法、电池和电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560249A (zh) * 2018-11-30 2019-04-02 中国科学院过程工程研究所 一种双层结构正极极片、及其制备方法和用途
CN110431694A (zh) * 2017-11-30 2019-11-08 株式会社Lg化学 多层电极及其制造方法
CN111293274A (zh) * 2018-12-10 2020-06-16 广州汽车集团股份有限公司 一种负极极片及其制备方法、锂离子电池
CN112271270A (zh) * 2020-10-22 2021-01-26 天目湖先进储能技术研究院有限公司 锂离子电池电极及其制备方法和锂离子电池
CN113498558A (zh) * 2020-12-31 2021-10-12 东莞新能源科技有限公司 一种电化学装置和电子装置
CN113540393A (zh) * 2021-07-12 2021-10-22 昆山宝创新能源科技有限公司 固态复合正极及其制备方法和电池
CN115939311A (zh) * 2022-12-30 2023-04-07 蔚来电池科技(安徽)有限公司 电极极片、制备方法、电池和电子装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200108B (zh) * 2018-11-16 2021-03-19 宁德时代新能源科技股份有限公司 一种电池
CN115148960A (zh) * 2021-03-31 2022-10-04 宁德新能源科技有限公司 负极极片及包含该负极极片的电化学装置、电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431694A (zh) * 2017-11-30 2019-11-08 株式会社Lg化学 多层电极及其制造方法
CN109560249A (zh) * 2018-11-30 2019-04-02 中国科学院过程工程研究所 一种双层结构正极极片、及其制备方法和用途
CN111293274A (zh) * 2018-12-10 2020-06-16 广州汽车集团股份有限公司 一种负极极片及其制备方法、锂离子电池
CN112271270A (zh) * 2020-10-22 2021-01-26 天目湖先进储能技术研究院有限公司 锂离子电池电极及其制备方法和锂离子电池
CN113498558A (zh) * 2020-12-31 2021-10-12 东莞新能源科技有限公司 一种电化学装置和电子装置
CN113540393A (zh) * 2021-07-12 2021-10-22 昆山宝创新能源科技有限公司 固态复合正极及其制备方法和电池
CN115939311A (zh) * 2022-12-30 2023-04-07 蔚来电池科技(安徽)有限公司 电极极片、制备方法、电池和电子装置

Also Published As

Publication number Publication date
CN115939311A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
US11682765B2 (en) Electrode and electrochemical device including the same
CN110754009B (zh) 锂二次电池
KR101829528B1 (ko) 전극, 비수전해질 전지 및 전지 팩
US20240113394A1 (en) Lithium metal anode structure, electrochemical device comprising same, and method for manufacturing lithium metal anode structure
JP7177921B2 (ja) 負極に用いられる組成物、並びにこれを含む保護膜、負極及び装置
CN110875452A (zh) 用于可再充电锂电池的隔板和包含其的可再充电锂电池
KR20210143980A (ko) 이차전지
WO2023087213A1 (zh) 一种电池包及其用电装置
CN111095618B (zh) 蓄电装置用电极和其制造方法
CA3040031C (en) Battery module for starting a power equipment
CN111342129A (zh) 一种电解液及电化学装置
WO2023070992A1 (zh) 电化学装置及包括其的电子装置
JP2018147769A (ja) 電気化学素子用セパレータおよび非水電解質電池
WO2024140164A1 (zh) 电极极片、制备方法、电池和电子装置
KR20090084693A (ko) 비수 전해질 전지 및 부극과 이들의 제조 방법
KR101527532B1 (ko) 리튬 확산성이 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
CN113812018B (zh) 用于制造锂二次电池用的负极的方法
KR20210095504A (ko) 음극의 제조방법
JP7197104B2 (ja) リチウムイオン二次電池
JP7507849B2 (ja) 電池システム、その使用方法、およびそれを含む電池パック
WO2022257146A1 (zh) 复合正极材料及其制备方法、二次电池及包含该二次电池的电池组和用电装置
KR20210083098A (ko) 음극 활물질의 제조방법
US20240097180A1 (en) Lithium-ion rechargeable battery
WO2024212052A1 (zh) 隔离膜及其相关的二次电池和用电装置
WO2024207458A1 (zh) 集流体及其制备方法、二次电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23910094

Country of ref document: EP

Kind code of ref document: A1