[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024034639A1 - Region inspection apparatus, region inspection method, and program - Google Patents

Region inspection apparatus, region inspection method, and program Download PDF

Info

Publication number
WO2024034639A1
WO2024034639A1 PCT/JP2023/029102 JP2023029102W WO2024034639A1 WO 2024034639 A1 WO2024034639 A1 WO 2024034639A1 JP 2023029102 W JP2023029102 W JP 2023029102W WO 2024034639 A1 WO2024034639 A1 WO 2024034639A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
area
points
monitoring
point
Prior art date
Application number
PCT/JP2023/029102
Other languages
French (fr)
Japanese (ja)
Inventor
佳輝 小川
憲士朗 長坂
知弥 奥野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024034639A1 publication Critical patent/WO2024034639A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the present disclosure relates to an area inspection device, an area inspection method, and a program.
  • an optical safety system that displays an editing screen for creating area designation information for designating a protection area to be protected by a safety scanner (see Patent Document 1).
  • This optical safety system includes a safety scanner that detects an intruder in a protected area and outputs a detection signal, and a setting support device that generates area designation information that specifies the protected area.
  • the safety scanner includes an area designation information receiving means for receiving the area designation information from the setting support device, a light projection means for projecting detection light onto the detection area, and a light projection means for projecting detection light onto the detection area, and a light projection means for projecting detection light onto the detection area.
  • a light receiving means that receives light and generates a light reception signal, a distance calculation means that calculates the distance to the object based on the light reception signal, and a scanning means that scans the detection light in a circumferential direction around a rotation axis. and a ranging means for obtaining ranging information corresponding to the distance and the scanning angle of the detection light, area designation information received from the setting support device, and based on the ranging information obtained by the ranging means. and an intrusion detection means for determining the presence or absence of an intruder into the protected area and outputting a detection signal according to the determination result.
  • the setting support device includes an edit screen display unit that displays an edit screen for creating the area designation information, an area designation information generation unit that generates the area designation information, and receives the ranging information from the safety scanner. determining the presence or absence of an intruder into the protected area based on the distance measurement information receiving means, the area designation information before being transmitted to the safety scanner, and the distance measurement information received from the safety scanner; and pseudo determination information generation means for generating pseudo determination information indicating the result.
  • the edit screen display means displays a determination result corresponding to the pseudo determination information on the edit screen.
  • the optical safety system of Patent Document 1 can confirm that an object has entered a protected area using an indicator light or a display device (such as a computer monitor), but the optical safety system can confirm that an object has entered a protected area using a point group (detected point group) specified by each distance measurement information.
  • the interval (distance) between them is not taken into account. Therefore, even if there is a region in which the distance between point groups is large around the protected region, it is difficult to distinguish this region, and it is also difficult to present this region. Therefore, a worker or the like cannot check the quality of the monitoring area.
  • the optical safety system of Patent Document 1 does not determine whether an object existing around the protected area is a detection target used for inspection. Therefore, even if objects other than the object to be detected are present in or around the protected area during the inspection, the safety scanner may detect and record them. Therefore, an erroneous determination may be made regarding the quality of the monitoring area including the protected area.
  • the present disclosure has been made in view of the above circumstances, and it is possible to reliably determine the pass/fail of the monitored area including the protected area (improve the accuracy of pass/fail determination), and to enable operators, etc. to monitor the monitored area.
  • an area inspection device an area inspection method, and a program that allow easy confirmation of pass/fail.
  • One aspect of the present disclosure is an area inspection device that inspects a monitoring area monitored by a monitoring device, the area inspection device including a processor, and the monitoring area includes a protection area and a tolerance area formed outside the protection area.
  • the processor acquires, as a detection point group, a point group corresponding to detection light in which the projected light projected by the monitoring device is reflected or scattered at each of a plurality of time points, and At each of the plurality of time points, a detection target object is recognized based on the detection point group, and at each of the plurality of time points, one point included in the target object point group indicating the detection target object included in the detection point group is recognized.
  • a nearest neighbor point that exists within the tolerance range and is closest to the protection area is derived, and the nearest neighbor point derived at each of the plurality of points is used to determine when the monitoring area is formed.
  • the monitoring area is arranged in time series on a two-dimensional plane, and the distance between each nearest neighbor point is calculated, and the quality of the monitoring area is determined based on the distance and the minimum detectable dimension detectable by the monitoring device.
  • One aspect of the present disclosure is an area inspection method for inspecting a monitoring area monitored by a monitoring device, wherein the monitoring area includes a protection area and a tolerance area formed outside the protection area, and the monitoring area includes a plurality of tolerance areas formed outside the protection area.
  • One aspect of the present disclosure is a program for causing a computer to execute each step of the above-described area inspection method.
  • the present disclosure it is possible to improve the accuracy of determining whether the monitoring area including the protected area is good or bad, and the operator or the like can easily confirm whether the monitoring area is good or bad.
  • Schematic diagram showing a configuration example of the area inspection system in the first embodiment Block diagram showing a configuration example of the area inspection system Block diagram showing a configuration example of a monitoring device
  • Block diagram showing a configuration example of a terminal device Flowchart showing an example of operation of a terminal device Flowchart showing an example of operation of the terminal device (continuation of FIG. 3A) Flowchart showing an example of operation of the terminal device (continued from FIG. 3B) Flowchart showing an example of operation of the terminal device (continued from FIG.
  • Diagram showing an example of specifying the inspector point cloud A diagram showing an example of movement of a detection target around a protected area and an example of a screen of a display device of a terminal device.
  • Diagram for explaining a target point group corresponding to a detection target detected by a monitoring device Diagram for explaining the first recognition example of the detection target Diagram for explaining the first recognition example of the detection target Diagram for explaining a second recognition example of a detection target Diagram for explaining a second recognition example of a detection target Diagram showing an example of determining whether the monitoring area is good or bad
  • FIG. 1 is a schematic diagram showing a configuration example of the area inspection system 5 in the first embodiment.
  • the area inspection system 5 includes a monitoring device 10 and a terminal device 20.
  • the monitoring device 10 optically monitors the inside of the monitoring region MR.
  • the monitoring device 10 is placed, for example, in a factory, and monitors whether work can be performed without intruding into dangerous areas.
  • the monitoring device 10 is a lidar (LiDAR) device, and is, for example, an electro-optical lidar device, but may be a lidar device of other types.
  • the monitoring device 10 monitors according to the set monitoring region MR.
  • the monitoring device 10 is placed at the monitoring site C1.
  • a monitoring device 10 and a robot device 30 are arranged at the monitoring site C1.
  • the monitoring device 10 may be placed at any position, for example, at any position where it can monitor the monitoring region MR.
  • the robot device 30 may be fixed at a fixed location without moving, or may be movable and have a variable location.
  • workers and other objects may exist at the monitoring site C1.
  • the workers include an inspector H1 who inspects the quality of monitoring in the monitoring region MR. Further, the workers may include a supervisor who visually checks the monitoring site C1, visually checks the robot device 30, or checks a product manufactured by the robot device 30, or the like. Examples of other objects include objects and vehicles necessary for work in a factory.
  • the terminal device 20 is a device that inspects the monitoring region MR.
  • the terminal device 20 is a PC (Personal Computer), a mobile terminal, a tablet terminal, or the like.
  • the terminal device 20 is operated by the user and can inspect the setting state of the monitoring region MR desired by the user.
  • the terminal device 20 can communicate with the monitoring device 10 by wire or wirelessly.
  • the monitoring device 10 and the terminal device 20 cooperate to set the monitoring region MR and inspect the set monitoring region MR.
  • the monitoring region MR can be set, for example, based on the movable range of the robot device 30 (for example, the reachable range of the robot arm).
  • the robot device 30 is an example of a source of danger.
  • the monitoring region MR may include multiple regions.
  • the monitoring region MR includes at least a protection region MR1 and a tolerance region MR11 formed outside the protection region MR1.
  • the monitoring region MR may further include a warning region MR2.
  • the protected area MR1 is an area where entry (intrusion) is prohibited in order to protect it from the robot device 30.
  • intrusion may also be used as "intrusion,” but in this specification, it will be unified as “intrusion.”
  • the tolerance region MR11 is a region provided to increase the probability of object detection (setting only the protection region MR1 is insufficient).
  • the warning area MR2 is an area that it is recommended not to enter.
  • the tolerance region MR11 is one of the warning regions MR2.
  • the protection region MR1 is formed to include, for example, a part or all of the movable range of the robot device 30.
  • the warning region MR2 may be formed around the protection region MR1 because the distance from the robot device 30 is relatively short. In this way, the monitoring region MR can be divided and set.
  • the monitoring device 10 monitors the monitoring region MR and detects whether an object such as a worker exists within the monitoring region MR. When it is detected that an object exists in the monitoring region MR, the monitoring device 10 can output warning information (alarm output) indicating that there is an object that has entered the monitoring region MR.
  • the monitoring device 10 can operate as an area scanner (scanner device).
  • the x direction is an arbitrary direction in the xy plane parallel to the installation surface on which the monitoring device 10 is installed.
  • the y direction is a direction perpendicular to the x direction on the xy plane.
  • the z direction is a direction perpendicular to the xy plane.
  • the xy plane is, for example, parallel to the horizontal direction.
  • the z direction is, for example, parallel to the direction of gravity.
  • the positive side in the z direction is also referred to as upper, and the negative side in the z direction is also referred to as lower.
  • FIG. 2A is a diagram showing a configuration example of the area inspection system 5.
  • the area inspection system 5 includes, for example, a monitoring device 10 that detects an object 25 (for example, a detection target 50), and a terminal device 20 that inspects a set monitoring area MR.
  • the monitoring device 10 and the terminal device 20 are communicably connected by wire or wirelessly.
  • FIG. 2B is a block diagram showing a configuration example of the monitoring device 10.
  • the monitoring device 10 has a configuration including a processor 110, a rotation mechanism section 120, a memory 130, a communication device 140, a light projecting section 150, and a light receiving section 160.
  • the processor 110 executes programs stored in the memory 130 or various types of information to control various functions of the light projection control section 112, the distance calculation section 114, the distance measurement section 115, and the approach detection section 116. Has a function.
  • the processor may include an MPU (Micro Processing Unit), a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and the like.
  • the processor 110 controls the detection operation of the object 25, the rotation operation of the rotation mechanism section 120, and the like.
  • the rotation mechanism unit 120 rotates an optical system (for example, a mirror or lens not shown) along an xy plane around a rotation axis.
  • the rotation axis is, for example, an axis that passes through the center of the surface (for example, the bottom surface) of the monitoring device 10 along the xy plane and is parallel to the z-axis.
  • the optical system changes (scans) the light projecting direction by the light projecting part 150 and the light receiving direction (detection direction) by the light receiving part 160 along the xy plane by rotating the rotation mechanism part 120.
  • the optical system changes the direction in which the monitoring device 10 detects an object over the entire circumference or a part of the entire circumference of the monitoring device 10 .
  • the rotation mechanism section 120 may be able to freely change the light projection direction and the detection direction by rotating the light projecting section 150 and the light receiving section 160 along the xy plane together with or instead of the optical system. .
  • the memory 130 includes a primary storage device (eg, RAM (Random Access Memory) or ROM (Read Only Memory)).
  • the memory 130 may include a secondary storage device (eg, HDD (Hard Disk Drive) or SSD (Solid State Drive)) or a tertiary storage device (eg, optical disk, SD card).
  • Memory 130 may include other storage devices.
  • the memory 130 stores various data, information, programs, etc.
  • the memory 130 may store area setting information (region setting information) for setting the monitoring region MR.
  • the area setting information includes information on the form of the determined monitoring area (for example, the position, range, size, or shape with respect to the monitoring device 10), and the like.
  • the area setting information is acquired from the terminal device 20 via the communication device 140.
  • a plurality of monitoring areas may be set, and a plurality of area setting information may be provided.
  • the monitoring region MR here is at least the monitoring region MR to be inspected (before the inspection), and the inspection of the monitoring region MR is possible. Further, the monitoring region MR here may be a monitored region MR that has been inspected (after the inspection), and the inspected monitoring region MR is set after the inspection, and normal monitoring is possible.
  • the communication device 140 communicates data, information, signals, etc. with an external device outside the monitoring device 10 by wire or wirelessly.
  • External devices include the terminal device 20, a PLC device (Programmable Logic Controller), and the like.
  • the communication device 140 transmits the detection point group derived by the processor 110 to the terminal device 20.
  • the communication device 140 receives area setting information from the terminal device 20, for example. For example, when the communication device 140 acquires the entry detection signal from the entry detection unit 116, it transmits the entry detection signal to the PLC device.
  • the communication device 140 may transmit an alarm output signal including warning information.
  • the alarm output signal may be transmitted, for example, to an external device capable of notifying based on the alarm output signal (for example, a display, a speaker, or other notifying device). The safety of workers and the like can be ensured by the external device that can provide notification based on the alarm output signal.
  • the light projecting unit 150 includes a light emitting element such as a laser diode, and projects a predetermined light.
  • the light projecting unit 150 may project at least invisible light (for example, infrared light) and may project visible light.
  • the light (projection light, projection beam) projected by the light projection unit 150 may be reflected or scattered by the object 25, for example.
  • a plurality of light projectors 150 may be provided.
  • the light projection control section 112 controls the light projection section 150.
  • the light projection control unit 112 adjusts the projection timing of the projected light based on an encoder signal (for example, a pulse signal) from a rotary encoder.
  • the light projection control section 112 generates pulsed projected light at regular time intervals, for example, in accordance with the rotation of the optical system of the rotation mechanism section 120.
  • the light receiving section 160 includes a light receiving element such as a photodiode, and receives predetermined light.
  • the light receiving section 160 may receive at least invisible light (for example, infrared light) or may receive visible light.
  • the light received by the light receiving unit 160 may include, for example, detection light that is the projected light projected by the light projecting unit 150 and reflected or scattered by the object 25.
  • the light receiving unit 160 generates a light receiving signal from the received light.
  • the distance calculating unit 114 calculates the distance between the monitoring device 10 and the detection target 50 based on the light reception signal from the light receiving unit 160, for example, according to the TOF (Time Of Flight) method.
  • TOF Time Of Flight
  • the time required for the projected light emitted from the light projecting section 150 to be reflected or scattered by the object 25 and returned to the monitoring device 10, and to be received as detection light by the light receiving section 160 is calculated, and this time is calculated.
  • Detection distance is calculated based on time.
  • the distance calculation unit 114 may measure the light reception timing of the light reception signal based on the timing of the encoder signal of the rotary encoder.
  • the distance measurement unit 115 calculates distance measurement information corresponding to the distance (detection distance) calculated by the distance calculation unit 114 and the angle (detection angle) corresponding to the encoder signal at the time of light projection or light reception.
  • the two-dimensional position of the object 25 is specified by the ranging information.
  • the distance measuring unit 115 calculates one detection point corresponding to one detection distance (distance to the monitoring device 10) and detection angle (angle to a predetermined direction) for each detected light. Therefore, the ranging unit 115 calculates point group data (detection point group) by calculating a plurality of detection points corresponding to a plurality of detection lights.
  • the entry detection section 116 detects entry into the monitoring region MR based on the set monitoring region MR and distance measurement information from the distance measuring section 115. In this case, the entry detection unit 116 determines whether the object 25 is located within the monitoring region MR. The entry detection unit 116 detects the entry of the object 25 into the monitoring region MR when the object 25 is located within the monitoring region MR. If the object 25 is not located within the monitoring region MR, the entry detection unit 116 detects that the object 25 has not entered the monitoring region MR.
  • the entry detection unit 116 When the entry detection unit 116 detects the entry of the object 25 into the monitoring region MR, it sends an entry detection signal indicating that the entry of the object 25 has been detected to the communication device 140. Further, the entry detection unit 116 may detect entry into the protection region MR1, and may send a protection detection signal indicating that entry into the protection region MR1 has been detected as an entry detection signal to the communication device 140. Entry detection section 116 may detect entry into warning region MR2, and may send a warning detection signal indicating that entry into warning region MR2 has been detected as an entry detection signal to communication device 140.
  • FIG. 2C is a diagram showing a configuration example of the terminal device 20.
  • the terminal device 20 includes a processor 210, a communication device 220, a memory 230, an operating device 240, and a display device 250.
  • the processor 210 implements various functions by executing programs stored in the memory 230.
  • Processor 210 may include an MPU, CPU, DSP, GPU, etc.
  • the processor 210 centrally controls each part of the terminal device 20 and performs various processes.
  • the processor 210 for example, inspects the monitoring region MR including the set protection region MR1.
  • the communication device 220 communicates various data or information by wire or wirelessly. Communication methods by the communication device 220 include, for example, WAN (Wide Area Network), LAN (Local Area Network), power line communication, infrared communication, short-range wireless communication (for example, Bluetooth (registered trademark) communication), and mobile communication for mobile phones. It may include communication methods such as
  • the memory 230 includes a primary storage device (eg, RAM or ROM).
  • the memory 230 may include a secondary storage device (eg, HDD or SSD) or a tertiary storage device (eg, optical disk, SD card).
  • Memory 230 may include other storage devices.
  • the memory 230 stores various data, information, programs, etc.
  • the program includes, for example, verification test software for inspecting the monitoring region MR.
  • the operating device 240 may include a mouse, keyboard, touch pad, touch panel, microphone, or other input device.
  • the operating device 240 receives input of various data or information.
  • the display device 250 may include a liquid crystal display device, an organic EL device, or other display device.
  • the display device 250 displays various data or information.
  • the processor 210 also includes a communication control section 211, a setting section 212, a target object recognition section 213, an object presence detection section 214, an interval calculation section 215, a quality determination section 216, and a display control section 217 as functional sections.
  • the communication control unit 211 controls communication by the communication device 220.
  • the communication control unit 211 acquires the detection point group from the monitoring device 10 via the communication device 220.
  • Each point included in the detection point group indicates each detection position (based on the detection distance and detection angle) optically detected by the monitoring device 10.
  • the setting unit 212 sets various information and data.
  • the setting unit 212 sets, for example, the minimum detection dimension detectable by the monitoring device 10, the monitoring region MR (protected region MR1, tolerance region MR11) to be inspected by the terminal device 20, etc. via the operating device 240 ( specify.
  • the object recognition unit 213 recognizes whether or not the detection object 50 exists based on the detection point group. Details of the method for recognizing the detection target object 50 will be described later.
  • the object presence detection unit 214 determines whether an object exists within the set tolerance range MR11 based on the detection point group. The object here may be the detection target 50 or other objects other than the detection target 50. The object presence detection unit 214 may also determine whether an object exists in another region (protection region MR1) in the monitoring region MR.
  • the interval calculation unit 215 calculates the interval (distance) between a plurality of points included in the detection point group. For example, the interval calculation unit 215 calculates the reference point (adjacent point ) (adjacent point interval) is calculated.
  • the quality determination unit 216 determines the quality of the monitoring state in the monitoring region MR. For example, the quality determination unit 216 detects an inappropriate area that is difficult to appropriately detect by the monitoring device 10 around the set protection region MR1 based on the calculated adjacent point interval. Determine the presence or absence of.
  • the inappropriate area may be, for example, a difficult-to-detect area that is difficult to detect by the monitoring device 10, a non-detection area that is not detected by the monitoring device 10, or a low-sensitivity area or dead zone area where the detection sensitivity of the monitoring device 10 is lower than a predetermined sensitivity. I can say it.
  • the quality determination unit 216 detects the area surrounded by the two nearest points forming the adjacent points as an inappropriate area. If the interval between adjacent points is less than or equal to a predetermined threshold, the quality determining unit 216 detects the area surrounded by the two nearest points forming the adjacent points as a good area.
  • the predetermined threshold value here is, for example, the minimum detectable dimension s.
  • the display control unit 217 controls the display by the display device 250.
  • the display control unit 217 causes the display device 250 to display determination result information indicating the result of the determination by the quality determination unit 216.
  • 3A to 3D are flowcharts illustrating an example of the operation of the terminal device 20.
  • the protection area MR1 may be set, for example, by the terminal device 20, or the terminal device 20 may acquire protection area information generated by an external device and set the protection area MR1.
  • the setting unit 212 sets an inspection mode (test mode) for inspecting the protected region MR1 as the operation mode of the terminal device 20 (S11).
  • the setting unit 212 may set the inspection mode by, for example, pressing a button to start the inspection mode via the operating device 240.
  • the setting unit 212 acquires the position of the protected area MR1 from the setting information regarding the protected area MR1 held in the memory 230 (S12).
  • the setting unit 212 inputs and sets the minimum detectable dimension s via the operating device 240, for example (S13).
  • the minimum detection size s is the minimum size of an object that can be detected by the monitoring device 10, and is set assuming an object that is desired to be detected reliably before entering the protection region MR1. In other words, it is set assuming an object that is reliably detected within the tolerance range MR11.
  • the minimum detection dimension s may be set to about 30 mm.
  • the minimum detection dimension s may be set to about 70 mm.
  • the minimum detection dimension s matches a test piece (test piece) of a preset shape as the detection target 50. More specifically, as in this case, it may be made to match the diameter of the cylindrical test piece. That is, the size of the detection target object 50 may be determined based on the minimum detection dimension s.
  • the setting unit 212 inputs and sets the number of consecutive detections n, for example via the operating device 240 (S14).
  • the number of consecutive detections n is used as part of the conditions for recognizing the detection target 50, which will be described later.
  • the setting unit 212 sets a point group (examiner point group PH1) indicating the examiner H1 (S15).
  • a point group (examiner point group PH1) indicating the examiner H1 (S15).
  • the inspector H1 goes to the monitoring site C1 during or before inspecting the protected area MR1, and the inspector point group PH1 is detected as part of the detected point group PS by being detected by the monitoring device 10.
  • Ru The tester point group PH1 may be, for example, a point group showing the legs of the tester H1.
  • the setting unit 212 sets the tolerance range MR11 (S16).
  • the setting unit 212 may set the tolerance range dimension Tol, for example, via the operating device 240.
  • the setting unit 212 sets, as a tolerance region MR11, an area obtained by excluding the protection region MR1 from a region expanded by the tolerance region dimension Tol outside the protection region MR1.
  • the display control unit 217 Based on the detection point group PS and the examiner point group PH1, the display control unit 217 displays the shape of the point group (examiner detected point group PH1D) indicating the examiner H1 included in the detection point group PS, for example, according to Hough transformation. is recognized (S17). The display control unit 217 recognizes the position (current position) of the examiner H1 based on the examiner detection point group PH1D (S18).
  • the setting unit 212 determines whether to end the inspection mode (S19). For example, if the setting unit 212 detects that the inspection mode end button is pressed via the operating device 240, the setting unit 212 determines to end the inspection mode. When the setting unit 212 does not detect pressing of the end button of the inspection mode via the operation device 240, it determines that the inspection mode is to be continued.
  • the communication control unit 211 acquires the detection point group PS from the monitoring device 10 (S20).
  • the object recognition unit 213 recognizes the shape of the object based on the detected point group PS (S21).
  • the object presence detection unit 214 determines whether an object having a radius equal to half (s/2) of the minimum detection dimension s has been detected (S22). If an object having a radius equal to half (s/2) of the minimum detection dimension s is detected, the object recognition unit 213 recognizes that the object is the detection object 50, and proceeds to FIG. 3B. If an object having a radius equal to half (s/2) of the minimum detection dimension s is not detected, the object recognition unit 213 recognizes that the object is not the detection object 50 and proceeds to FIG. 3C. .
  • the object recognition unit 213 detects a point group constituting the object (that is, the detection object 50). It is determined whether the nearest point PN, which is the point closest to the protection area MR1, of the object point group (object point group PO) exists within the tolerance range MR11 (S31). If the nearest point PN exists within the tolerance range MR11, the object recognition unit 213 registers (holds) the coordinates (position information) of this one nearest point PN in the monitoring site C1 in the memory 230 (S32). .
  • the inspector H1 sequentially moves the detection object 50 along the boundary line (outer circumference) of the protected region MR1. Then, the monitoring device 10 sequentially detects the moving detection target object 50 in time series to obtain a detection point group PS. Therefore, by repeating the processes in FIGS. 3A and 3B, a plurality of nearest neighbor points PN are obtained in order in time series and are stored in the memory 230. Based on the positions of the plurality of nearest neighbor points PN held in the memory 230, the interval calculation unit 215 calculates the nearest neighbor point PN registered in step S32, another nearest neighbor point PN having the closest distance to this nearest neighbor point PN, The interval R (adjacent point interval) is calculated and stored in the memory 230 (S33).
  • the adjacent nearest points PN can be said to be the nearest points obtained at temporally adjacent points.
  • the object recognition unit 213 may cause the memory 230 to hold information on the detection time at which the nearest point Pn was detected, as well as the position information of the nearest point PN. In this case, the terminal device 20 can reliably extract two nearest points PN obtained at temporally adjacent points.
  • the quality determination unit 216 determines whether the calculated interval R is larger than the set minimum detection dimension s, that is, whether R>s is satisfied (S34). If R>s is satisfied, the display control unit 217 displays the determination result information IR on the screen of the display device 250 (S35). As the determination result information IR here, the display control unit 217 sets, for example, the area surrounded by the two nearest neighbor points PN for which the interval R has been calculated (the area between the two nearest neighbor points PN) as an inappropriate area, and sets the area as an inappropriate area. The inappropriate area may be displayed in a different display manner from areas other than the appropriate area. Further, the display control unit 217 may emphasize and display information indicating the interval R as the determination result information IR.
  • step S31 if the nearest point PN does not exist within the tolerance range MR11, the display control unit 217 displays deviation information indicating that it deviates from the tolerance range MR11 on the display device 250 as determination result information IR. (S36). Thereby, the inspector H1 can confirm that the inspection position using the detection target 50 owned by the inspector H1 deviates from the tolerance range MR11, and can adjust the position to which the detection target 50 is moved. .
  • step S35 or S36 After processing step S35 or S36, the process advances to step S17 in FIG. 3A. That is, by executing steps S17 to S35 or S36, the terminal device 20 determines the presence or absence of the inappropriate area BA based on the detection point group PS at the position of the detection target object 50 at time t, for example. Then, by executing steps S17 to S35 or S36 again, the detection target object 50 is detected in the inappropriate area BA based on the detection point group PS at the position of the detection target object 50 at the next time point t+1. Determine the presence or absence. Thereby, it is possible to continuously determine the inappropriate area BA while the detection target object 50 is moving.
  • the object recognition unit 213 detects the outer periphery of the protection region MR1 from the detection point group PS. A nearby detection point dp is detected (S41).
  • the target object recognition unit 213 emits light by the light emitter 150 of the monitoring device 10 n times in a row (n consecutive points in time), including the plurality of nearest neighbor points PN stored in the memory 230 in chronological order. It is determined whether the projected light beams are adjacent to each other with a spatial interval (projected beam interval BI) between them (S42). The projected beam interval BI is obtained in advance from the monitoring device 10 and held in the memory 230.
  • the object recognition unit 213 determines that the plurality of nearest neighbor points PN Continuously (n consecutive times), it is determined whether the position is within the tolerance range MR11 (S43). If the plurality of nearest neighbor points PN are located within the tolerance range MR11 n times in a row (Yes in S43), the object recognition unit 213 stores position information such as the coordinates of the n nearest neighbor points PN in the memory 230. Register (retain) (S44). In this case, the object recognition unit 213 recognizes the detection object 50 corresponding to the nearest point PN located within the n tolerance ranges MR11 for n consecutive times.
  • the interval calculation unit 215 Based on the positions of the plurality of nearest neighbor points PN held in the memory 230, the interval calculation unit 215 combines two nearest neighbor points PN among the plurality of nearest neighbor points PN, and calculates the interval R between each two nearest neighbor points PN. is calculated and held in the memory 230 (S45). Note that, as described above, in step S44, the interval calculation unit 215 stores information on the detection time at which each of the plurality of nearest neighbor points Pn was detected, as well as the position information of each of the plurality of nearest neighbor points PN, from the memory 230. It may be held at
  • the quality determination unit 216 determines whether the calculated interval R is larger than the set minimum detection dimension s, that is, whether R>s is satisfied (S46). If R>s is satisfied (Yes in S46), the display control unit 217 displays the determination result information IR on the screen of the display device 250 (S47). The contents of the determination result information IR here are the same as those in step S35.
  • step S42 if the plurality of nearest neighbor points PN are not adjacent to each other at the projection beam interval BI n times in a row (No in S42), or if the plurality of nearest neighbor points PN are located within the tolerance range MR11 n times in a row. If not (No in S43), the display control unit 217 causes the screen of the display device 250 to display deviation information indicating that the deviation is from the tolerance range MR11 (S47). Thereby, the inspector H1 can confirm that the inspection position using the detection target 50 owned by the inspector H1 deviates from the tolerance range MR11, and can adjust the position to which the detection target 50 is moved. .
  • step S47 or S48 the process advances to step S17 in FIG. 3A. That is, by executing steps S17 to S47 or S48, the terminal device 20 determines the presence or absence of the inappropriate area BA based on the detection point group PS at the position of the detection target object 50 at time t. Then, by executing steps S17 to S35 or S36 again, the detection target object 50 is detected in the inappropriate area BA based on the detection point group PS at the position of the detection target object 50 at the next time point t+1. Determine the presence or absence. Thereby, it is possible to continuously determine the inappropriate area BA while the detection target object 50 is moving.
  • step S19 in FIG. 3A if the inspection mode is to be ended (Yes in S19), the process proceeds to FIG. 3D.
  • the display control unit 217 selects the two most recent intervals that constitute the largest interval among the intervals less than or equal to the minimum detection dimension s among the one or more intervals R held in the memory 230.
  • the area between the neighboring points PN is displayed (eg, highlighted) as a low-density area BA2 (S51).
  • the inspector H1 can confirm the nearest points PN at relatively sparse intervals among the adjacent nearest points PN around the protected area MR1, that is, the inspector H1 can confirm the area where there is a possibility of entry into the protected area MR1. .
  • the terminal device 20 performs inspection by moving the detection target 50 around the protection region MR1 after setting the protection region MR1 of the monitoring device 10. I do.
  • the terminal device 20 can detect it as an inappropriate area BA (gap).
  • the terminal device 20 can present that if there is even one inappropriate area BA, there is a possibility that an object such as a person may enter the protected area MR1 without being detected by the monitoring device 10. .
  • the terminal device 20 can visualize this inappropriate area BA. That is, the terminal device 20 can display the inappropriate area BA on the screen to make the inspector H1 aware of it.
  • the inspector H1 can quickly take measures against the inappropriate area BA. Furthermore, the inspector H1 can move freely around the protected area MR1. Even in this case, the inspector H1 can check the display of the inspector's own current position at a predetermined point of time, and can quickly reach the inappropriate area BA.
  • FIG. 4 is a diagram showing an example of setting each information.
  • the minimum detection dimension s, the number of consecutive detections n, and the tolerance range dimension Tol are displayed on the screen of the display device 250 and set. Furthermore, when the test start button B1 is pressed via the operating device 240, the processing from step S17 onward in FIG. 3A, for example, is performed. Note that after the test start button B1 is pressed, the minimum detection dimension s, the number of consecutive detections n, and the tolerance range dimension Tol may be displayed on the display device 250 and set.
  • a protected area MR1 is set at the monitored site C1, but the protected area MR1 is not visible at the monitored site C1 because it has no landmark. Therefore, as a mark of the protected region MR1, it may be made visible using a tab tape or the like. Note that the inspection itself is possible if the inspector H1 memorizes the position of the protected area MR1, and it is not essential to visualize the protected area MR1. Furthermore, at the monitoring site C1, the detection target object 50 is movable for inspection.
  • the inspector H1 holds the terminal device 20 and the detection target object 50 and causes the monitoring device 10 to detect the detection target object 50 while moving near the boundary (near the outer periphery) of the protected region MR1. That is, the inspector H1 brings a test piece as the detection target 50 to the monitoring site C1, and the inspector H1 places the detection target 50 at an arbitrary location on the boundary line of the set protection region MR1. Once the detection point group PS including the point group of the detection target object 50 is obtained by the monitoring device 10, the detection target object 50 is moved and the detection point group PS including the point group of the detection target object 50 is obtained by the monitoring device 10 again. is obtained. Such acquisition of the point group of the detection target object 50 and movement of the detection target object 50 are repeated.
  • the monitoring region MR also includes the warning region MR2
  • the warning region MR2 is also not visible.
  • the detectable area (field of view of the monitoring device 10) that can be detected by the monitoring device 10 is also not visible.
  • the invisible area may be made visible by some means (for example, by installing a tiger tape).
  • FIG. 5A is a diagram showing an example of specifying the protected region MR1 to be inspected.
  • a plurality of protected regions MR1 MR1A, MR1B
  • the setting unit 212 specifies the protected region MR1 (for example, MR1A) to be inspected by selecting the protected region MR1 to be inspected via the operating device 240.
  • the setting unit 212 may specify the protected region MR1 to be inspected using another method.
  • the designation of the protection area MR1 may be executed before or after the detection target object 50 is brought to the monitoring site C1.
  • FIG. 5B is a diagram showing an example of specifying the inspector point group PH1.
  • the inspector H1 is located within the monitoring site C1 and is detected by the monitoring device 10. Thereby, the inspector H1 is detected as a point group included in the detected point group PS.
  • the tester point group PH1 indicating the tester H1 is, for example, a point group showing the legs of the tester H1.
  • a plurality of detection point groups PS (PS1, PS2, PS3) are displayed on the display device 250.
  • the setting unit 212 specifies the examiner point group PH1 by selecting the point group corresponding to the position where the examiner H1 is located from the plurality of detection point groups PS as the examiner point group PH1 via the operation device 240.
  • the setting unit 212 may designate the extracted point group as the inspector point group PH1 by extracting points that match a circle having a predetermined radius by Hough transformation.
  • the predetermined radius here depends on the characteristics of the inspector H1.
  • the shape of the inspector point group PH1 is not a part of a circle, but may have another shape.
  • FIG. 5C is a diagram showing an example of movement of the detection target object 50 around the protected region MR1 and an example of the screen of the display device 250 of the terminal device 20.
  • the inspector H1 goes to the monitoring site C1 carrying both the detection target object 50 and the terminal device 20, and while moving the detection target object 50 along the outer periphery of the protected area MR1, displays the display on the terminal device 20. While checking the detection status of the detection target object 50, the monitoring status of the monitoring region MR can be confirmed.
  • FIG. 6 is a diagram for explaining the object point group PO corresponding to the detection object 50 detected by the monitoring device 10.
  • the projected light beam LB does not spread from the base point of the monitoring device 10, and a large number of projected light beams LB hit the detection target 50.
  • a large number of detection lights can be received, and a large number of detection points dp can be obtained.
  • seven detection points dp are included in the object point group PO in the vicinity of the monitoring device 10.
  • the projected light beam LB spreads out from the base point of the monitoring device 10, the number of projected light beams LB hitting the detection target 50 is small, and the number of detected detection lights received is small. , and the number of detection points dp is small.
  • three detection points dp far from the monitoring device 10 are included in the object point group PO.
  • the number of detection points dp may become one.
  • the object point group PO of the detection target object 50 will inevitably become dense near the monitoring device 10, and the object point group PO of the detection target object 50 will inevitably become dense in the vicinity of the monitoring device 10.
  • the object point group PO of the detection object 50 has a low density.
  • the rotation mechanism unit 120 detects objects by high-speed scanning, for example, about 30 times per second, so that, for example, the movement of a moving person or the object to be detected 50 appears to be almost stationary.
  • FIGS. 7A and 7B are diagrams for explaining a first recognition example of the detection target object 50.
  • condition A is a condition when the object point group PO indicating the detection object 50 includes a plurality of detection points dp.
  • condition A the object recognition unit 213 recognizes the detection object 50 according to Hough transformation, for example.
  • Hough transformation points that match the circle c1 having a specified radius, that is, points on the circumference of the circle c1 are extracted.
  • the designated radius here is s/2, which is half of the minimum detection dimension s, and is the radius of the installation surface of the cylindrical test piece as the detection target 50.
  • the object recognition unit 213 recognizes the detection object 50 corresponding to this point group. As a result, the object recognition unit 213 identifies a point group consisting of nonconforming points with a radius different from the designated radius as a foreign object that is not the detection object 50 (for example, an insect, welding spark, or metal powder). Can be judged. Note that the detection target object 50 may be recognized using a matching method other than Hough transformation.
  • the object recognition unit 213 registers (retains) the nearest point information regarding the nearest point PN in the memory 230. Permission is given, and the nearest neighbor point information is registered in the memory 230.
  • the display control unit 217 displays information IR1 indicating that the nearest point PN is located within the tolerance range MR11 as the determination result information IR.
  • the target object recognition unit 213 does not permit the nearest neighbor point information to be registered in the memory 230, and the nearest neighbor point Information is not registered in memory 230.
  • the display control unit 217 displays information IR2 indicating that the nearest point PN is located outside the tolerance range MR11 and outside the protection region MR1.
  • the target object recognition unit 213 does not permit the nearest neighbor point information to be registered in the memory 230, and the nearest neighbor point information is not registered in the memory 230.
  • the display control unit 217 displays information IR3 indicating that the nearest point PN is located outside the tolerance region MR11 and within the protection region MR1.
  • FIGS. 8A and 8B are diagrams for explaining a second recognition example of the detection target object 50.
  • Condition B is a condition in which an object indicated by a point group that coincides with a circle c1 having a specified radius is not detected. That is, when the detection target 50 is not detected under condition A, recognition of the detection target 50 under condition B is attempted. Note that the object recognition unit 213 may determine whether condition B is satisfied independently of whether condition A is satisfied.
  • the detection point group PS detected at a predetermined time point includes only one detection point dp.
  • the object recognition unit 213 determines whether one detection point dp that can indicate the detection object 50 is continuously located within the tolerance range MR11.
  • the light beam LB projected by the monitoring device 10 is rotating along the xy plane with the reference position as the base point. Further, the projected light beam LB is sequentially projected at regular time intervals. Therefore, after one detection point dp has been detected, the next detection point dp is detected with an interval between adjacent projected light beams LB (projected beam interval BI) in time series.
  • next detection point dp exists on the optical path (on the next beam line) along which the projected light beam LB that can be projected by the light projecting unit 150 travels. Note that if there is one detection point dp included in the detection point group PS and this detection point dp is included in the tolerance range MR11, it is determined that this detection point dp is the nearest point PN.
  • the object recognition unit 213 When the currently acquired nearest point PN and the past nearest point PN stored in the memory 230 are arranged on the xy plane, the object recognition unit 213 emits light n times in a row (n consecutive points in time). It is determined whether the beams are arranged at a beam interval BI and are located within the tolerance range MR11 n times in a row. The object recognition unit 213 determines that the n nearest points PN are the detection object 50 when they are adjacent to each other at the projected beam interval BI n times in a row and are located within the tolerance range MR11 n times in a row. recognize.
  • the object recognition unit 213 allows the nearest neighbor point PN that is not held in the memory 230 to be registered in the memory 230 among the n nearest neighbor points PN, and registers it in the memory 230.
  • the object recognition unit 213 recognizes that It is recognized that the n nearest points PN are not the detection target object 50. Then, the object recognition unit 213 does not permit this nearest point PN to be registered in the memory 230 and does not register it in the memory 230.
  • time t-2 time t-1, and time t
  • the projection direction dr (search direction) of the projection beam LB by the monitoring device 10 changes to become the projection direction at time t-2, time t-1, and time t.
  • the nearest point PN(t-2) is detected
  • the nearest point PN(t-1) is detected
  • the nearest point PN(t) is detected.
  • the display control unit 217 may display information IR4 indicating that each nearest neighbor point PN is located within the tolerance range MR11.
  • the object recognition unit 213 detects these It is determined that the nearest points PN are not the detection object 50 that has moved in time series, and these nearest points PN are not registered in the memory 230. In other words, the object recognition unit 213 discards information on all the unregistered nearest points PN in the memory 230 because at least some of these nearest points PN are outside the tolerance range MR11.
  • the display control unit 217 may display information IR5 indicating that at least a portion of the nearest point PN is outside the tolerance range MR11.
  • condition B if the distance between the monitoring device 10 and the detection target 50 is long, and the detection point group PS corresponding to the detection target 50 which is far away from the viewpoint of the monitoring device 10 is only one detection point dp. In this case, under condition A, the shape of the detection target 50 cannot be estimated and the detection target 50 cannot be recognized. Even in this case, according to condition B, the terminal device 20 searches for the nearest point PN closest to the protection region MR1 along the light projection direction dr by the monitoring device 10.
  • the terminal device 20 determines that these nearest neighbor points PN are The detection target object 50 is detected as an indicator of the moving detection target object 50. Therefore, the terminal device 20 can recognize the detection target 50 even if the detection target 50 is located far from the monitoring device 10.
  • a tolerance region MR11 is provided outside the protection region MR1.
  • the terminal device 20 allows the monitoring device 10 to detect the object when it enters the tolerance range MR11.
  • the variation ⁇ of the measurement values (distance information) measured by the monitoring device 10 depends on the designed performance of the monitoring device 10. For example, by expanding the protection region MR1 outward by 5 ⁇ , a tolerance region MR11 is provided.
  • FIG. 9 is a diagram showing an example of determining whether the monitoring region MR is good or bad.
  • the quality determination unit 216 compares the distance R between adjacent nearest points PN located within the tolerance range MR11 at a certain time t and the time t-1 immediately before that with the minimum detection dimension s, and determines the quality of the distance R. judge.
  • the interval R may be derived, for example, by simply calculating the norm of the Euclidean distance. In the case of R ⁇ s, even if the detection target 50 whose diameter is the minimum detection dimension s tries to enter the protection region MR1, it is detected by the monitoring device 10 within the tolerance range MR11 before entering the protection region MR1. .
  • the quality determining unit 216 determines that the area is good, and determines that the area between the two nearest points PN having this interval R is not an inappropriate area BA.
  • the detection target 50 whose diameter is the minimum detection dimension s tries to enter the protection region MR1
  • the detection target 50 can pass between the two nearest points PN having the interval R.
  • the quality determining unit 216 determines that the quality is not good, and determines that the area between the two nearest points PN having this interval R is the inappropriate area BA.
  • the quality determination unit 216 performs quality determination based on the interval R for all the nearest points PN along the outer periphery of the protection region MR1, and for each of two adjacent nearest points PN in turn.
  • FIG. 10 is a diagram showing a first display example by the display device 250.
  • the display control unit 217 causes the display device 250 to display the inspection results of the monitoring region MR based on the detection point group PS detected by the monitoring device 10 during or after the inspection.
  • the display device 250 determines, based on data registered in the memory 230 (for example, one or more nearest points PN), an inappropriate area BA where the interval R is larger than the minimum detection size s, or a density smaller than the minimum detection size s. Low-density areas BA2 and the like having a larger interval R than the threshold THR are highlighted.
  • the display device 250 may display the inappropriate area BA and the low density area BA2 together with the protected area MR1. Furthermore, the display device 250 may display information indicating what kind of area the inappropriate area BA is.
  • the display device 250 may display information indicating what kind of area the low density area BA2 is. For example, as the determination result information IR, message information IR6 indicating that the interval between adjacent nearest neighbor points PN is large, or message information IR7 indicating that the density of the nearest neighbor points PN is low density that is less than or equal to a predetermined density, may be used. may be included. Further, the display device 250 may perform the display shown in FIG. 10 in the test mode during the test, or may perform the display shown in FIG. 10 in the detected point group display mode after the test. The display device 250 may display the value of the minimum detectable dimension s and the position of the monitoring device 10. Further, as shown in FIG. 10, the determination result information IR may include information IR8 in which the protection region MR1 and a plurality of nearest neighbor points PN derived at each of a plurality of time points are mapped. Further, the display device 250 may display each detection point dp.
  • the determination result information IR may include information IR8 in which the protection region MR1
  • the inspector H1 can, for example, recognize that the nearest point PN displayed during the inspection deviates from the tolerance range MR11, and can continue the inspection. You can start over.
  • the inspector H1 can confirm whether or not there is an inappropriate area BA and the position of the inappropriate area BA as a whole around the protected area MR1. Therefore, the inspector H1 can also check whether the shape of the monitoring region MR has been set correctly by displaying the determination result information IR.
  • the quality determination unit 216 not only performs a quality determination to determine whether an inappropriate area BA exists within the monitoring region MR, but also performs a quality determination to determine whether the shape of the monitoring region MR is appropriately set. May include.
  • FIG. 11 is a diagram showing a second display example by the display device 250. Here, matters that are different from the display in FIG. 10 will be mainly explained.
  • the display control unit 217 causes the display device 250 to display the inspection results of the monitoring region MR based on the detection point group PS detected by the monitoring device 10 during or after the inspection.
  • the display device 250 may display inspector position information IH1 indicating the position of the inspector H1 based on the inspector detection point group PH1D indicating the inspector H1.
  • the examiner position information IH1 may be a figure imitating the examiner H1 (for example, a humanoid illustration), the examiner detection point group PH1D itself, or a symbol indicating the position of the examiner H1. (for example, an arrow) or a message indicating the position of the examiner H1.
  • the terminal device 20 allows the display device 250 to display the inspector position information IH1 during the inspection, so that, for example, when there is a moving object other than the detection target 50 around the protected region MR1, the terminal device 20 can detect the inspector H1. and other moving objects can be easily distinguished and identified. Furthermore, since the display device 250 displays the examiner position information IH1 during the inspection, the examiner H1 can confirm the position of the examiner H1 during the inspection, and can confirm the position during the inspection in real time. Furthermore, since the display device 250 displays the inspector position information IH1 after the inspection, the inspector H1 can easily recognize the positional relationship between the inspector H1's location and the inappropriate area BA or low-density area BA2. It is possible to quickly go to the inappropriate area BA or low density area BA2 and visually check it.
  • the terminal device 20 of the present embodiment can determine the interval R between the point groups included in the detected point group PS, can determine the presence or absence of the inappropriate area BA based on the interval R, and can transmit the determination result information IR. Can be displayed. Therefore, the inspector H1 who has confirmed the determination result information IR can recognize that there is an inappropriate area BA that may allow entry into the protected area MR1. Further, the terminal device 20 can identify whether the detection point group PS is the object point group PO indicating the detection target object 50 or not. Therefore, even if another object other than the detection target object 50 enters the vicinity of the protection area MR1 during the inspection, the terminal device 20 distinguishes it from the detection target object 50 and performs an operation for determining the inappropriate area BA etc. Can be excluded from the data.
  • the terminal device 20 not only displays the inspection mode and the entry determination result into the protected area MR1, but also displays the detection point group PS detected by the monitoring device 10 and the detection point group PS detected at multiple points in time. Detection point group tracking based on a plurality of detection point groups PS is possible.
  • the terminal device 20 also determines the interval between adjacent points, recognizes the detection target 50, visualizes an undetected area (inappropriate area BA) that is difficult to monitor by the monitoring device 10, and determines the current state of the inspector H1 at the monitoring site C1. It is possible to display the location, etc.
  • the monitoring device 10 may include various functions (each component) that the processor 210 of the terminal device 20 has. Further, at least one of the operating device 240 and the display device 250 of the terminal device 20 may be provided as a device independent of the terminal device 20.
  • the detection target object 50 is a cylindrical test piece, but the detection target object 50 is not limited to this.
  • the detection target object 50 may be a test piece having a shape other than a cylinder (for example, a square prism).
  • the cylindrical test piece serving as the detection target object 50 has the minimum object size (minimum detection dimension s) that can be detected by the monitoring device 10, and is reliably detected before entering the protection area MR1. It may have any shape as long as it is set assuming the object to be detected, or it may be a test piece that is freely set by the user.
  • a three-dimensional shape with the same cross-sectional shape such as a cylinder or a polygonal prism, or more specifically, a perfect circular or regular polygonal cross-sectional shape.
  • the detection target object 50 may include a display device.
  • the detection target object 50 may have a communication device, communicate with the terminal device 20, acquire the determination result information IS, and display the inspection results.
  • the processor such as the CPU may be physically configured in any manner. Further, if a programmable processor is used, the processing content can be changed by changing the program, so the degree of freedom in designing the processor can be increased.
  • a processor may be composed of one semiconductor chip, or may be physically composed of a plurality of semiconductor chips. When configured with a plurality of semiconductor chips, each control of the above embodiments may be implemented with separate semiconductor chips. In this case, these multiple semiconductor chips can be considered to constitute one processor.
  • the processor may be constructed of a member (such as a capacitor) that has a function different from the semiconductor chip.
  • one semiconductor chip may be configured to implement the functions of the processor and other functions.
  • a plurality of processors may be configured with one semiconductor chip.
  • the area inspection device (for example, the terminal device 20) of the above embodiment inspects the monitoring area MR monitored by the monitoring device 10.
  • the area inspection device includes a processor 210.
  • the monitoring region MR includes a protection region MR1 and a tolerance region MR11 formed outside the protection region MR1.
  • the processor 210 detects, at each of a plurality of time points (for example, . . . , time t-1, time t), a point group corresponding to the detection light that is the reflected or scattered light emitted by the monitoring device 10. Obtain as a point group PS.
  • the processor 210 recognizes the detection target 50 based on the detection point group PS at each of a plurality of time points.
  • the processor 210 determines whether one or more detection points dp included in the object point group PO indicating the detection object 50 included in the detection point group PS exist within the tolerance range MR11.
  • the nearest neighbor point PN which is the point closest to the protected region MR1 is derived.
  • the processor 210 arranges the nearest points PN derived at each of a plurality of time points in time series on a two-dimensional plane (for example, an xy plane) on which the monitoring region MR is formed, and calculates the distance ( For example, the interval R) is calculated.
  • the processor 210 determines whether the monitoring region MR is good or bad based on the distance and the minimum detectable dimension s that can be detected by the monitoring device 10.
  • the processor 210 causes the display device 250 to display determination result information IR indicating the determination result.
  • the area inspection device can determine the interval R between the point groups included in the detection point group PS, can determine the presence or absence of the inappropriate area BA based on the interval R, and can display the determination result information IR. Therefore, the inspector H1 who has confirmed the determination result information IR can recognize that there is an inappropriate area BA that may allow entry into the protected area MR1. Further, the terminal device 20 can identify whether the detection point group PS is the object point group PO indicating the detection target object 50 or not. Therefore, even if another object other than the detection target object 50 enters the vicinity of the protection area MR1 during the inspection, the terminal device 20 distinguishes it from the detection target object 50 and performs an operation for determining the inappropriate area BA etc. Can be excluded from the data. In this way, the area inspection device can improve the accuracy of determining the quality of the monitoring area MR including the protected area MR1, and allows an operator or the like (for example, the inspector H1) to easily confirm the quality of the monitoring area MR.
  • the processor 210 determines that the area between the two nearest points PN for which the distance has been calculated is not an inappropriate area BA, and the distance is less than the minimum detection dimension s. If it is long, it may be determined that the area between the two nearest points PN for which the distance has been calculated is the inappropriate area BA.
  • the area inspection device can detect the presence of the inappropriate area BA in the monitoring area MR. It can be shown that there is a possibility that entry from the inappropriate area BA with a large interval cannot be prevented. When the distance is smaller than the minimum detection dimension s, it can be shown that entry into the protected area MR1 can be prevented by displaying that the inappropriate area BA does not exist.
  • the determination result information IR may include inappropriate area information that is information indicating an inappropriate area BA in the monitoring region MR.
  • the processor 210 acquires inspector position information IH1 indicating the position of the inspector H1 who moves the detection target object 50 along the outer periphery of the protected region MR1, and displays the inappropriate area information and the inspector position information IH1 on the display device 250. may be displayed.
  • the area inspection device can visualize the position of the inspector H1 himself located at the monitoring site C1. Therefore, the inspector H1 can easily grasp his or her current position and can easily determine the inappropriate area BA for the inspector H1's position. Therefore, the inspector H1 can quickly arrive at the inappropriate area BA. Furthermore, even if there are other moving objects around the protected region MR1, the area inspection device can distinguish between the inspector H1 and the other objects.
  • the processor 210 may set an examiner point group PH1 that is a point group indicating at least a portion of the examiner H1.
  • the detection point group includes an inspector detection point group PH1D that is a point group that matches the inspector point group PH1
  • the processor 210 estimates the position of the inspector H1 based on the inspector detection point group PH1D.
  • the inspector position information IH1 is acquired.
  • the area inspection device can acquire the inspector detection point group PH1D using the monitoring device 10, and can estimate the location of the inspector H1 without using other position detection means (eg, GPS).
  • position detection means eg, GPS
  • the minimum detection dimension s may be the diameter of the detection target 50.
  • the processor 210 detects the detection target object corresponding to the plurality of detection points dp. 50 may be recognized.
  • the area inspection device can recognize the detection target object 50 based on the shape formed by the plurality of detection points dp, and can determine the presence of the detection target object 50 with high accuracy.
  • the processor 210 detects that there is one detection point dp included in the detection point group PS continuously detected at a predetermined number of points in time, and that the processor 210 sequentially places the detection point dp on the two-dimensional plane in which the monitoring region MR is formed.
  • the detection points dp at adjacent points in time are adjacent on a two-dimensional plane with the projected beam interval BI from the monitoring device 10 interposed therebetween, and both detection points dp are located within the tolerance range MR11.
  • the detection target object 50 is recognized corresponding to a plurality of detection points dp that are consecutively detected at a predetermined number of time points, and each detection point dp that is consecutively detected at a predetermined number of time points is recognized. , may be the nearest neighbor point PN at each time point.
  • the area inspection device can detect the detection target 50 in a temporal and planar manner, for example, even if the detection target 50 is far away from the monitoring device 10 and the multiple detection points dp indicating the detection target 50 cannot be detected by the monitoring device 10.
  • the detection target object 50 can be estimated based on consecutive detection points.
  • the processor 210 may designate the protection region MR1 to be inspected from among the plurality of protection regions MR1, and determine whether the monitoring region MR including the designated protection region MR1 is good or bad.
  • the area inspection device can designate the desired protection area MR1 and inspect the monitoring area MR including this protection area MR1.
  • the detection target object 50 may be movable along the outer periphery of the protection region MR1.
  • the processor 210 may display the determination result information IR after the detection target object 50 has moved one round along the outer periphery of the protected region MR1. Thereby, the inspector H1 can confirm the determination results all at once after completing the inspection, and can confirm the inappropriate area BA, etc. in the entire monitoring area MR at a glance.
  • the detection target object 50 may be movable along the outer periphery of the protection region MR1.
  • the processor 210 may display the determination result information IR while the detection target object 50 is moving along the outer periphery of the protection region MR1. Thereby, the inspector H1 can sequentially confirm the determination results while inspecting, and can quickly confirm inappropriate areas BA, etc. in the monitoring area MR.
  • the determination result information IR may include information in which the protection region MR1 and a plurality of nearest neighbor points PN derived at each of a plurality of time points are mapped.
  • the area inspection device can clearly indicate the positional relationship between the derived nearest neighbor point PN and the protection region MR1 and display each nearest neighbor point PN. Therefore, the inspector H1 can quickly and intuitively confirm which position in the monitoring area MR is the inappropriate area BA.
  • the determination result information IR may include information indicating that the distance is longer than the minimum detectable dimension s.
  • the determination result information IR indicates that when the distance is less than or equal to the minimum detection dimension s and longer than the predetermined density determination threshold THR, the density of the detection point dp is low in the vicinity of the two nearest points PN from which the distance was obtained. It may also include information indicating. Thereby, the inspector H1 can confirm that although it is not undetectable by the monitoring device 10, there is a location where the distance as a detectable interval is relatively large, and the safety in the monitoring region MR may be reduced.
  • the determination result information IR may include information indicating whether the derived nearest neighbor point PN is located within the tolerance range MR11.
  • the inspector H1 can, for example, confirm that the nearest point is valid while moving during the inspection and the nearest point PN is located within the tolerance range MR11, and move the detected object 50 to the next one.
  • the inspection can be continued by moving it to the position shown below.
  • the inspector H1 can confirm that the nearest point PN is invalid and move the detection target 50 forward if the nearest point PN is not located within the tolerance range MR11. You can return to the position, re-find the nearest point, and continue testing.
  • the present disclosure is useful for an area inspection device, an area inspection method, a program, etc. that can improve the accuracy of determining the acceptability of a monitoring area including a protected area, and allow an operator etc. to easily check the acceptability of the monitored area.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

In this region inspection apparatus for inspecting a monitored region, a processor acquires a detection point group at each of a plurality of time points, recognizes a detection target object on the basis of the detection point groups, derives a nearest neighbor point that is present within an allowable difference range and is nearest to a protected region, among one or more detection points included in a target object point group included in the detection point groups, arranges the nearest neighbor points derived at the respective time points in time series on a two-dimensional plane in which the monitored region is formed, calculates the distance between the respective nearest neighbor points, determines the quality of the monitored region on the basis of the distance and a minimum detection dimension, and displays determination result information.

Description

領域検査装置、領域検査方法、及びプログラムArea inspection device, area inspection method, and program
 本開示は、領域検査装置、領域検査方法、及びプログラムに関する。 The present disclosure relates to an area inspection device, an area inspection method, and a program.
 従来、安全スキャナにより保護される保護領域を指定するためのエリア指定情報を作成するための編集画面を表示する光学安全システムが知られている(特許文献1参照)。この光学安全システムは、保護領域内の侵入物を検知して検知信号を出力する安全スキャナと、上記保護領域を指定するエリア指定情報を生成する設定支援装置とを備える。上記安全スキャナは、上記設定支援装置から上記エリア指定情報を受信するエリア指定情報受信手段と、検出エリアに対し、検出光を投光する投光手段と、上記検出エリア内の対象物からの反射光を受光して受光信号を生成する受光手段と、上記受光信号に基づいて、上記対象物までの距離を求める距離算出手段と、回転軸を中心として上記検出光を周方向に走査させる走査手段と、上記距離及び上記検出光の走査角に対応する測距情報を求める測距手段と、上記設定支援装置から受信したエリア指定情報、及び、上記測距手段により求められた測距情報に基づいて、上記保護領域への侵入物の有無を判定し、その判定結果に応じた検知信号を出力する侵入検知手段と、を有する。上記設定支援装置は、上記エリア指定情報を作成するための編集画面を表示する編集画面表示手段と、上記エリア指定情報を生成するエリア指定情報生成手段と、上記安全スキャナから上記測距情報を受信する測距情報受信手段と、上記安全スキャナに送信前の上記エリア指定情報、及び、上記安全スキャナから受信した測距情報に基づいて、上記保護領域への侵入物の有無を判定し、その判定結果を示す擬似判定情報を生成する擬似判定情報生成手段と、を有する。上記編集画面表示手段は、上記擬似判定情報に対応する判定結果を上記編集画面に表示する。 Conventionally, an optical safety system is known that displays an editing screen for creating area designation information for designating a protection area to be protected by a safety scanner (see Patent Document 1). This optical safety system includes a safety scanner that detects an intruder in a protected area and outputs a detection signal, and a setting support device that generates area designation information that specifies the protected area. The safety scanner includes an area designation information receiving means for receiving the area designation information from the setting support device, a light projection means for projecting detection light onto the detection area, and a light projection means for projecting detection light onto the detection area, and a light projection means for projecting detection light onto the detection area. A light receiving means that receives light and generates a light reception signal, a distance calculation means that calculates the distance to the object based on the light reception signal, and a scanning means that scans the detection light in a circumferential direction around a rotation axis. and a ranging means for obtaining ranging information corresponding to the distance and the scanning angle of the detection light, area designation information received from the setting support device, and based on the ranging information obtained by the ranging means. and an intrusion detection means for determining the presence or absence of an intruder into the protected area and outputting a detection signal according to the determination result. The setting support device includes an edit screen display unit that displays an edit screen for creating the area designation information, an area designation information generation unit that generates the area designation information, and receives the ranging information from the safety scanner. determining the presence or absence of an intruder into the protected area based on the distance measurement information receiving means, the area designation information before being transmitted to the safety scanner, and the distance measurement information received from the safety scanner; and pseudo determination information generation means for generating pseudo determination information indicating the result. The edit screen display means displays a determination result corresponding to the pseudo determination information on the edit screen.
日本国特開2017-150860号公報Japanese Patent Application Publication No. 2017-150860
 特許文献1の光学安全システムは、何らかの物体が保護領域に進入したことを表示灯や表示機器(例えばパソコンモニタなど)により確認できるが、各測距情報により特定される点群(検出点群)同士の間隔(距離)を加味していない。そのため、保護領域の周辺に点群同士の間隔が大きな領域が存在しても、この領域を判別することが困難であり、この領域の提示も困難である。したがって、作業者等は、監視領域の良否を確認できない。また、特許文献1の光学安全システムでは、保護領域の周辺に存在する物体が検査に用いる検出対象物であるか否かを判別していない。そのため、検査中に検出対象物以外の別の物体が保護領域内もしくはその周辺に存在しても、安全スキャナが検出して記録することがある。よって、保護領域を含む監視領域の良否について誤判定をし得る。 The optical safety system of Patent Document 1 can confirm that an object has entered a protected area using an indicator light or a display device (such as a computer monitor), but the optical safety system can confirm that an object has entered a protected area using a point group (detected point group) specified by each distance measurement information. The interval (distance) between them is not taken into account. Therefore, even if there is a region in which the distance between point groups is large around the protected region, it is difficult to distinguish this region, and it is also difficult to present this region. Therefore, a worker or the like cannot check the quality of the monitoring area. Further, the optical safety system of Patent Document 1 does not determine whether an object existing around the protected area is a detection target used for inspection. Therefore, even if objects other than the object to be detected are present in or around the protected area during the inspection, the safety scanner may detect and record them. Therefore, an erroneous determination may be made regarding the quality of the monitoring area including the protected area.
 本開示は、上記事情に鑑みてなされたものであって、保護領域を含む監視領域の良否の判定を確実に行うことができ(良否の判定精度を向上でき)、作業者等が監視領域の良否を容易に確認できる領域検査装置、領域検査方法、及びプログラムを提供する。 The present disclosure has been made in view of the above circumstances, and it is possible to reliably determine the pass/fail of the monitored area including the protected area (improve the accuracy of pass/fail determination), and to enable operators, etc. to monitor the monitored area. Provided are an area inspection device, an area inspection method, and a program that allow easy confirmation of pass/fail.
 本開示の一態様は、監視装置により監視される監視領域を検査する領域検査装置であって、プロセッサを備え、前記監視領域は、保護領域と、前記保護領域の外側に形成される許容差域と、を含み、前記プロセッサは、複数の時点のそれぞれにおいて、前記監視装置により投光された投光光が反射又は散乱された検出光に対応する点群を検出点群として取得し、前記複数の時点のそれぞれにおいて、前記検出点群に基づいて検出対象物を認識し、前記複数の時点のそれぞれにおいて、前記検出点群に含まれる前記検出対象物を示す対象物点群に含まれる1つ以上の検出点のうち、前記許容差域内に存在し且つ前記保護領域に最も近い点である最近傍点を導出し、前記複数の時点のそれぞれで導出された最近傍点を、前記監視領域が形成される二次元平面上に時系列に並べて、各々の最近傍点の間の距離を算出し、前記距離と前記監視装置により検出可能な最小検出寸法とに基づいて、前記監視領域の良否の判定を行い、前記判定の結果を示す判定結果情報を表示デバイスに表示させる、領域検査装置である。 One aspect of the present disclosure is an area inspection device that inspects a monitoring area monitored by a monitoring device, the area inspection device including a processor, and the monitoring area includes a protection area and a tolerance area formed outside the protection area. The processor acquires, as a detection point group, a point group corresponding to detection light in which the projected light projected by the monitoring device is reflected or scattered at each of a plurality of time points, and At each of the plurality of time points, a detection target object is recognized based on the detection point group, and at each of the plurality of time points, one point included in the target object point group indicating the detection target object included in the detection point group is recognized. Among the above detection points, a nearest neighbor point that exists within the tolerance range and is closest to the protection area is derived, and the nearest neighbor point derived at each of the plurality of points is used to determine when the monitoring area is formed. The monitoring area is arranged in time series on a two-dimensional plane, and the distance between each nearest neighbor point is calculated, and the quality of the monitoring area is determined based on the distance and the minimum detectable dimension detectable by the monitoring device. , is an area inspection device that causes a display device to display determination result information indicating the result of the determination.
 本開示の一態様は、監視装置により監視される監視領域を検査する領域検査方法であって、前記監視領域は、保護領域と、前記保護領域の外側に形成される許容差域を含み、複数の時点のそれぞれにおいて、前記監視装置により投光された投光光が反射又は散乱された検出光に対応する点群を検出点群として取得するステップと、前記複数の時点のそれぞれにおいて、前記検出点群に基づいて検出対象物を認識するステップと、前記複数の時点のそれぞれにおいて、前記検出点群に含まれる前記検出対象物を示す対象物点群に含まれる1つ以上の検出点のうち、前記許容差域内に存在し且つ前記保護領域に最も近い点である最近傍点を導出するステップと、前記複数の時点のそれぞれで導出された最近傍点を、前記監視領域が形成される二次元平面上に時系列に並べて、各々の最近傍点の間の距離を算出するステップと、前記距離と前記監視装置により検出可能な最小検出寸法とに基づいて、前記監視領域の良否の判定を行うステップと、前記判定の結果を示す判定結果情報を表示デバイスに表示させるステップと、を有する領域検査方法である。 One aspect of the present disclosure is an area inspection method for inspecting a monitoring area monitored by a monitoring device, wherein the monitoring area includes a protection area and a tolerance area formed outside the protection area, and the monitoring area includes a plurality of tolerance areas formed outside the protection area. At each of the plurality of time points, acquiring a point group corresponding to the detection light where the projected light projected by the monitoring device is reflected or scattered as a detection point group; a step of recognizing a detection target based on a point cloud, and at each of the plurality of time points, one or more detection points included in the target object point group indicating the detection target included in the detection point group; , deriving a nearest neighbor point that exists within the tolerance area and is closest to the protection area; arranging them in chronological order on the top and calculating the distance between each nearest neighbor point; and determining whether the monitoring area is good or bad based on the distance and the minimum detectable dimension detectable by the monitoring device. , a step of displaying judgment result information indicating the result of the judgment on a display device.
 本開示の一態様は、上記の領域検査方法の各ステップをコンピュータに実行させるためのプログラムである。 One aspect of the present disclosure is a program for causing a computer to execute each step of the above-described area inspection method.
 本開示によれば、保護領域を含む監視領域の良否の判定精度を向上でき、作業者等が監視領域の良否を容易に確認できる。 According to the present disclosure, it is possible to improve the accuracy of determining whether the monitoring area including the protected area is good or bad, and the operator or the like can easily confirm whether the monitoring area is good or bad.
第1の実施形態における領域検査システムの構成例を示す模式図Schematic diagram showing a configuration example of the area inspection system in the first embodiment 領域検査システムの構成例を示すブロック図Block diagram showing a configuration example of the area inspection system 監視装置の構成例を示すブロック図Block diagram showing a configuration example of a monitoring device 端末装置の構成例を示すブロック図Block diagram showing a configuration example of a terminal device 端末装置の動作例を示すフローチャートFlowchart showing an example of operation of a terminal device 端末装置の動作例を示すフローチャート(図3Aの続き)Flowchart showing an example of operation of the terminal device (continuation of FIG. 3A) 端末装置の動作例を示すフローチャート(図3Bの続き)Flowchart showing an example of operation of the terminal device (continued from FIG. 3B) 端末装置の動作例を示すフローチャート(図3Cの続き)Flowchart showing an example of operation of the terminal device (continued from FIG. 3C) 各情報の設定例を示す図Diagram showing an example of setting each information 検査対象の保護領域の指定例を示す図Diagram showing an example of specifying the protected area to be inspected 検査者点群の指定例を示す図Diagram showing an example of specifying the inspector point cloud 保護領域の周辺における検出対象物の移動例と、端末装置の表示デバイスの画面例と、を示す図A diagram showing an example of movement of a detection target around a protected area and an example of a screen of a display device of a terminal device. 監視装置により検出される検出対象物に対応する対象物点群を説明するための図Diagram for explaining a target point group corresponding to a detection target detected by a monitoring device 検出対象物の第1認識例を説明するための図Diagram for explaining the first recognition example of the detection target 検出対象物の第1認識例を説明するための図Diagram for explaining the first recognition example of the detection target 検出対象物の第2認識例を説明するための図Diagram for explaining a second recognition example of a detection target 検出対象物の第2認識例を説明するための図Diagram for explaining a second recognition example of a detection target 監視領域の良否の判定例を示す図Diagram showing an example of determining whether the monitoring area is good or bad 表示デバイスによる第1表示例を示す図A diagram showing a first display example by a display device. 表示デバイスによる第2表示例を示す図Diagram showing a second display example by a display device
 以下、適宜図面を参照しながら、実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。尚、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるものであり、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or explanations of substantially the same configurations may be omitted. This is to avoid unnecessary redundancy in the following description and to facilitate understanding by those skilled in the art. The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter recited in the claims.
<領域検査システムの概要>
 図1は、第1の実施形態における領域検査システム5の構成例を示す模式図である。領域検査システム5は、監視装置10と、端末装置20と、を含む構成である。
<Overview of area inspection system>
FIG. 1 is a schematic diagram showing a configuration example of the area inspection system 5 in the first embodiment. The area inspection system 5 includes a monitoring device 10 and a terminal device 20.
 監視装置10は、光学的に監視領域MR内を監視する。監視装置10は、例えば工場内に配置され、危険な領域に侵入せずに作業が行えているかを監視する。監視装置10は、ライダ(LiDAR)装置であり、例えば電動光機械式のライダ装置であるが、その他の方式のライダ装置でもよい。監視装置10は、設定された監視領域MRに従って監視する。 The monitoring device 10 optically monitors the inside of the monitoring region MR. The monitoring device 10 is placed, for example, in a factory, and monitors whether work can be performed without intruding into dangerous areas. The monitoring device 10 is a lidar (LiDAR) device, and is, for example, an electro-optical lidar device, but may be a lidar device of other types. The monitoring device 10 monitors according to the set monitoring region MR.
 監視装置10は、監視現場C1に配置される。監視現場C1には、例えば、監視装置10及びロボット装置30が配置される。監視装置10の配置位置は任意であり、例えば、監視領域MRを監視可能な任意の位置でよい。ロボット装置30は、移動せずに配置位置が固定であってもよいし、移動自在であり配置位置が可変であってもよい。 The monitoring device 10 is placed at the monitoring site C1. For example, a monitoring device 10 and a robot device 30 are arranged at the monitoring site C1. The monitoring device 10 may be placed at any position, for example, at any position where it can monitor the monitoring region MR. The robot device 30 may be fixed at a fixed location without moving, or may be movable and have a variable location.
 また、監視現場C1には、作業者やその他の物体が存在し得る。作業者には、監視領域MRにおける監視の良否を検査する検査者H1が含まれる。また、作業者には、監視現場C1の目視確認、ロボット装置30の目視確認、又は、ロボット装置30により製造された製造物の確認等を行う監視者が含まれ得る。その他の物体は、例えば工場内での作業に必要な物体や車両が考えられる。 Additionally, workers and other objects may exist at the monitoring site C1. The workers include an inspector H1 who inspects the quality of monitoring in the monitoring region MR. Further, the workers may include a supervisor who visually checks the monitoring site C1, visually checks the robot device 30, or checks a product manufactured by the robot device 30, or the like. Examples of other objects include objects and vehicles necessary for work in a factory.
 端末装置20は、監視領域MRを検査する装置である。端末装置20は、PC(Personal Computer)、携帯端末、又はタブレット端末等である。端末装置20は、ユーザによって操作され、ユーザ所望の監視領域MRの設定状態を検査可能である。端末装置20は、監視装置10との間で、有線又は無線により通信可能である。 The terminal device 20 is a device that inspects the monitoring region MR. The terminal device 20 is a PC (Personal Computer), a mobile terminal, a tablet terminal, or the like. The terminal device 20 is operated by the user and can inspect the setting state of the monitoring region MR desired by the user. The terminal device 20 can communicate with the monitoring device 10 by wire or wirelessly.
 監視装置10と端末装置20とは、協働して監視領域MRを設定し、設定された監視領域MRを検査する。例えば、作業者がロボット装置30に接近すると、ロボット装置30の動作により作業者に対して危険が生じ得る。そのため、例えばロボット装置30の動作可能範囲(例えばロボットアームが到達可能な範囲)を基に、監視領域MRが設定され得る。ロボット装置30は、危険源の一例である。 The monitoring device 10 and the terminal device 20 cooperate to set the monitoring region MR and inspect the set monitoring region MR. For example, when a worker approaches the robot device 30, the operation of the robot device 30 may pose a danger to the worker. Therefore, the monitoring region MR can be set, for example, based on the movable range of the robot device 30 (for example, the reachable range of the robot arm). The robot device 30 is an example of a source of danger.
 監視領域MRは、複数の領域を含み得る。監視領域MRは、少なくとも保護領域MR1と、保護領域MR1の外側に形成される許容差域MR11と、を含む。また、監視領域MRは、更に警告領域MR2を含んでもよい。保護領域MR1は、ロボット装置30から保護(防護)するために、進入(侵入)が禁止される領域である。ここで、「進入」とは、「侵入」を用いることもあるが、本明細書では進入として統一して説明する。許容差域MR11は、(保護領域MR1のみの設定では不十分な)物体の検出確率を上げるために設けられる領域である。警告領域MR2は、進入しないことが推奨される領域である。許容差域MR11は、警告領域MR2の1つである。例えば、保護領域MR1は、例えばロボット装置30の動作可能範囲の一部又は全部を含むように形成される。警告領域MR2は、例えば、ロボット装置30からの距離が比較的近いために、保護領域MR1の周囲に形成されてもよい。このように、監視領域MRは、分割設定できる。 The monitoring region MR may include multiple regions. The monitoring region MR includes at least a protection region MR1 and a tolerance region MR11 formed outside the protection region MR1. Furthermore, the monitoring region MR may further include a warning region MR2. The protected area MR1 is an area where entry (intrusion) is prohibited in order to protect it from the robot device 30. Here, "intrusion" may also be used as "intrusion," but in this specification, it will be unified as "intrusion." The tolerance region MR11 is a region provided to increase the probability of object detection (setting only the protection region MR1 is insufficient). The warning area MR2 is an area that it is recommended not to enter. The tolerance region MR11 is one of the warning regions MR2. For example, the protection region MR1 is formed to include, for example, a part or all of the movable range of the robot device 30. For example, the warning region MR2 may be formed around the protection region MR1 because the distance from the robot device 30 is relatively short. In this way, the monitoring region MR can be divided and set.
 監視装置10は、監視領域MR内を監視し、監視領域MR内に作業者等の物体が存在するか否かを検出する。監視領域MRに物体が存在することが検出された場合には、監視装置10は、監視領域MRに進入した物体が存在することを示す警告情報を出力(警報出力)可能である。監視装置10は、エリアスキャナ(スキャナ装置)して動作可能である。 The monitoring device 10 monitors the monitoring region MR and detects whether an object such as a worker exists within the monitoring region MR. When it is detected that an object exists in the monitoring region MR, the monitoring device 10 can output warning information (alarm output) indicating that there is an object that has entered the monitoring region MR. The monitoring device 10 can operate as an area scanner (scanner device).
 なお、本実施形態では、図1に示すように、x方向、y方向及びz方向を規定している。x方向は、監視装置10が設置される設置面に平行なxy平面における任意の方向である。y方向は、xy平面においてx方向に垂直な方向である。z方向はxy平面に垂直な方向である。xy平面は、例えば水平方向に平行である。z方向は、例えば重力方向に平行である。z方向の正側を上とも記載し、z方向の負側を下とも記載する。 Note that in this embodiment, as shown in FIG. 1, the x direction, y direction, and z direction are defined. The x direction is an arbitrary direction in the xy plane parallel to the installation surface on which the monitoring device 10 is installed. The y direction is a direction perpendicular to the x direction on the xy plane. The z direction is a direction perpendicular to the xy plane. The xy plane is, for example, parallel to the horizontal direction. The z direction is, for example, parallel to the direction of gravity. The positive side in the z direction is also referred to as upper, and the negative side in the z direction is also referred to as lower.
<領域検査システムの構成>
 図2Aは、領域検査システム5の構成例を示す図である。領域検査システム5は、例えば、物体25(例えば検出対象物50)を検出する監視装置10と、設定された監視領域MRを検査する端末装置20と、を備える。監視装置10と端末装置20は、有線又は無線により、通信可能に接続される。
<Area inspection system configuration>
FIG. 2A is a diagram showing a configuration example of the area inspection system 5. As shown in FIG. The area inspection system 5 includes, for example, a monitoring device 10 that detects an object 25 (for example, a detection target 50), and a terminal device 20 that inspects a set monitoring area MR. The monitoring device 10 and the terminal device 20 are communicably connected by wire or wirelessly.
<監視装置の構成>
 図2Bは、監視装置10の構成例を示すブロック図である。監視装置10は、プロセッサ110と、回転機構部120と、メモリ130と、通信デバイス140と、投光部150と、受光部160と、を含む構成である。
<Configuration of monitoring device>
FIG. 2B is a block diagram showing a configuration example of the monitoring device 10. The monitoring device 10 has a configuration including a processor 110, a rotation mechanism section 120, a memory 130, a communication device 140, a light projecting section 150, and a light receiving section 160.
 プロセッサ110は、メモリ130に保持されたプログラムを実行し又は各種情報を実行することで、投光制御部112と、距離算出部114と、測距部115と、進入検出部116と、の各種機能を有する。プロセッサは、MPU(Micro processing Unit)、CPU(CentralProcessing Unit)、DSP(Digital Signal Processor)、等を含んでよい。プロセッサ110は、物体25の検出動作、回転機構部120による回転動作等を制御する。 The processor 110 executes programs stored in the memory 130 or various types of information to control various functions of the light projection control section 112, the distance calculation section 114, the distance measurement section 115, and the approach detection section 116. Has a function. The processor may include an MPU (Micro Processing Unit), a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and the like. The processor 110 controls the detection operation of the object 25, the rotation operation of the rotation mechanism section 120, and the like.
 回転機構部120は、光学系(例えば図示しないミラー、レンズ)を、回転軸を中心にxy平面に沿って回転させる。回転軸は、例えば、監視装置10のxy平面に沿う面(例えば底面)における中心を通り、z軸に平行な軸である。光学系は、回転機構部120の回転により、投光部150による投光方向及び受光部160による受光方向(検出方向)を、xy平面に沿って変更する(走査する)。つまり、光学系は、監視装置10による物体の検出方向を、監視装置10の周囲の全周又は全周の一部において変更する。なお、回転機構部120は、光学系とともに、又は光学系の代わりに、投光部150及び受光部160をxy平面に沿って回転させることで、投光方向及び検出方向を変更自在としてもよい。 The rotation mechanism unit 120 rotates an optical system (for example, a mirror or lens not shown) along an xy plane around a rotation axis. The rotation axis is, for example, an axis that passes through the center of the surface (for example, the bottom surface) of the monitoring device 10 along the xy plane and is parallel to the z-axis. The optical system changes (scans) the light projecting direction by the light projecting part 150 and the light receiving direction (detection direction) by the light receiving part 160 along the xy plane by rotating the rotation mechanism part 120. In other words, the optical system changes the direction in which the monitoring device 10 detects an object over the entire circumference or a part of the entire circumference of the monitoring device 10 . Note that the rotation mechanism section 120 may be able to freely change the light projection direction and the detection direction by rotating the light projecting section 150 and the light receiving section 160 along the xy plane together with or instead of the optical system. .
 メモリ130は、一次記憶装置(例えばRAM(Random Access Memory)やROM(Read Only Memory))を含む。メモリ130は、二次記憶装置(例えばHDD(Hard Disk Drive)やSSD(Solid State Drive))や三次記憶装置(例えば光ディスク、SDカード)を含んでよい。メモリ130は、その他の記憶装置を含んでよい。メモリ130は、各種データ、情報、又はプログラム等を記憶する。 The memory 130 includes a primary storage device (eg, RAM (Random Access Memory) or ROM (Read Only Memory)). The memory 130 may include a secondary storage device (eg, HDD (Hard Disk Drive) or SSD (Solid State Drive)) or a tertiary storage device (eg, optical disk, SD card). Memory 130 may include other storage devices. The memory 130 stores various data, information, programs, etc.
 メモリ130は、監視領域MRを設定するためのエリア設定情報(領域設定情報)を記憶してもよい。エリア設定情報には、決定された監視領域の形態(例えば監視装置10に対する位置、範囲、大きさ、又は形状)の情報、等が含まれる。エリア設定情報は、通信デバイス140を介して端末装置20から取得される。監視領域は、複数設定されてもよく、エリア設定情報は複数あってもよい。ここでの監視領域MRは、少なくとも検査対象の(検査前の)監視領域MRであり、監視領域MRの検査が可能である。また、ここでの監視領域MRは、検査済みの(検査後の)監視領域MRであってもよく、検査後に検査済みの監視領域MRが設定され、通常の監視が可能である。 The memory 130 may store area setting information (region setting information) for setting the monitoring region MR. The area setting information includes information on the form of the determined monitoring area (for example, the position, range, size, or shape with respect to the monitoring device 10), and the like. The area setting information is acquired from the terminal device 20 via the communication device 140. A plurality of monitoring areas may be set, and a plurality of area setting information may be provided. The monitoring region MR here is at least the monitoring region MR to be inspected (before the inspection), and the inspection of the monitoring region MR is possible. Further, the monitoring region MR here may be a monitored region MR that has been inspected (after the inspection), and the inspected monitoring region MR is set after the inspection, and normal monitoring is possible.
 通信デバイス140は、有線又は無線によって、監視装置10の外部にある外部機器との間で、データ、情報、又は信号等を通信する。外部機器は、端末装置20やPLC装置(Programmable Logic Controller)等を含む。 The communication device 140 communicates data, information, signals, etc. with an external device outside the monitoring device 10 by wire or wirelessly. External devices include the terminal device 20, a PLC device (Programmable Logic Controller), and the like.
 通信デバイス140は、プロセッサ110により導出された検出点群を端末装置20に送信する。通信デバイス140は、例えば、端末装置20からエリア設定情報を受信する。通信デバイス140は、例えば、進入検出部116から進入検出信号を取得すると、進入検出信号をPLC装置に送信する。通信デバイス140は、進入検出部116から進入検出信号を取得すると、警告情報を含む警報出力信号を送信してもよい。警報出力信号は、例えば、警報出力信号に基づいて報知可能な外部機器(例えばディスプレイ、スピーカ、その他の報知機器)に送信されてよい。報知可能な外部機器が警報出力信号に基づいて報知することで、作業者等の安全性を確保できる。 The communication device 140 transmits the detection point group derived by the processor 110 to the terminal device 20. The communication device 140 receives area setting information from the terminal device 20, for example. For example, when the communication device 140 acquires the entry detection signal from the entry detection unit 116, it transmits the entry detection signal to the PLC device. Upon acquiring the intrusion detection signal from the intrusion detection unit 116, the communication device 140 may transmit an alarm output signal including warning information. The alarm output signal may be transmitted, for example, to an external device capable of notifying based on the alarm output signal (for example, a display, a speaker, or other notifying device). The safety of workers and the like can be ensured by the external device that can provide notification based on the alarm output signal.
 投光部150は、レーザダイオード等の発光素子を含み、所定の光を投光する。投光部150は、少なくとも不可視光(例えば赤外光)を投光し、可視光を投光してもよい。投光部150により投光される光(投光光、投光ビーム)は、例えば、物体25により反射又は散乱され得る。投光部150は、複数設けられてもよい。 The light projecting unit 150 includes a light emitting element such as a laser diode, and projects a predetermined light. The light projecting unit 150 may project at least invisible light (for example, infrared light) and may project visible light. The light (projection light, projection beam) projected by the light projection unit 150 may be reflected or scattered by the object 25, for example. A plurality of light projectors 150 may be provided.
 投光制御部112は、投光部150を制御する。投光制御部112は、ロータリーエンコーダのエンコーダ信号(例えばパルス信号)に基づいて、投光光の投光タイミングを調整する。投光制御部112は、例えば、回転機構部120の光学系の回転に応じて、パルス状の投光光を一定の時間間隔で発生させる。 The light projection control section 112 controls the light projection section 150. The light projection control unit 112 adjusts the projection timing of the projected light based on an encoder signal (for example, a pulse signal) from a rotary encoder. The light projection control section 112 generates pulsed projected light at regular time intervals, for example, in accordance with the rotation of the optical system of the rotation mechanism section 120.
 受光部160は、フォトダイオード等の受光素子を含み、所定の光を受光する。受光部160は、少なくとも不可視光(例えば赤外光)を受光してもよいし、可視光を受光してもよい。受光部160により受光される光(受光光)は、例えば、投光部150により投光された投光光が、物体25により反射又は散乱された検出光を含んでよい。受光部160は、受光光から受光信号を生成する。 The light receiving section 160 includes a light receiving element such as a photodiode, and receives predetermined light. The light receiving section 160 may receive at least invisible light (for example, infrared light) or may receive visible light. The light received by the light receiving unit 160 (received light) may include, for example, detection light that is the projected light projected by the light projecting unit 150 and reflected or scattered by the object 25. The light receiving unit 160 generates a light receiving signal from the received light.
 距離算出部114は、例えばTOF(Time Of Flight)方式に従って、受光部160からの受光信号に基づいて、監視装置10と検出対象物50との間の距離を算出する。TOF方式では、投光部150から投光された投光光が、物体25で反射又は散乱されて監視装置10に戻り、受光部160により検出光として受光されるまでの時間が計算され、この時間に基づいて検出距離が計算される。この場合、距離算出部114は、ロータリーエンコーダのエンコーダ信号のタイミングに基づいて、受光信号の受光タイミングを計時してもよい。 The distance calculating unit 114 calculates the distance between the monitoring device 10 and the detection target 50 based on the light reception signal from the light receiving unit 160, for example, according to the TOF (Time Of Flight) method. In the TOF method, the time required for the projected light emitted from the light projecting section 150 to be reflected or scattered by the object 25 and returned to the monitoring device 10, and to be received as detection light by the light receiving section 160 is calculated, and this time is calculated. Detection distance is calculated based on time. In this case, the distance calculation unit 114 may measure the light reception timing of the light reception signal based on the timing of the encoder signal of the rotary encoder.
 測距部115は、距離算出部114により算出された距離(検出距離)と、投光時又は受光時のエンコーダ信号に対応する角度(検出角度)と、に対応する測距情報を算出する。測距情報により、物体25の2次元位置が特定される。測距部115は、検出光のそれぞれについて、1つの検出距離(監視装置10に対する距離)と検出角度(所定の向きに対する角度)とに対応する1つの検出点を算出する。よって、測距部115は、複数の検出光に対応する複数の検出点を算出することで、点群データ(検出点群)を算出する。 The distance measurement unit 115 calculates distance measurement information corresponding to the distance (detection distance) calculated by the distance calculation unit 114 and the angle (detection angle) corresponding to the encoder signal at the time of light projection or light reception. The two-dimensional position of the object 25 is specified by the ranging information. The distance measuring unit 115 calculates one detection point corresponding to one detection distance (distance to the monitoring device 10) and detection angle (angle to a predetermined direction) for each detected light. Therefore, the ranging unit 115 calculates point group data (detection point group) by calculating a plurality of detection points corresponding to a plurality of detection lights.
 進入検出部116は、設定された監視領域MRと、測距部115の測距情報に基づいて、監視領域MR内への進入を検出する。この場合、進入検出部116は、監視領域MR内に物体25が所在するか否かを判定する。進入検出部116は、監視領域MR内に物体25が所在する場合、監視領域MR内への物体25の進入を検出する。進入検出部116は、監視領域MR内に物体25が所在しない場合、監視領域MR内へ物体25が進入していないことを検出する。 The entry detection section 116 detects entry into the monitoring region MR based on the set monitoring region MR and distance measurement information from the distance measuring section 115. In this case, the entry detection unit 116 determines whether the object 25 is located within the monitoring region MR. The entry detection unit 116 detects the entry of the object 25 into the monitoring region MR when the object 25 is located within the monitoring region MR. If the object 25 is not located within the monitoring region MR, the entry detection unit 116 detects that the object 25 has not entered the monitoring region MR.
 進入検出部116は、監視領域MR内への物体25の進入を検出した場合に、物体25の進入が検出されたことを示す進入検出信号を通信デバイス140に送る。また、進入検出部116は、保護領域MR1への進入を検出し、進入検出信号として、保護領域MR1への進入が検出されたことを示す防護検出信号を通信デバイス140に送ってもよい。進入検出部116は、警告領域MR2への進入を検出し、進入検出信号として、警告領域MR2への進入が検出されたことを示す警戒検出信号を通信デバイス140に送ってもよい。 When the entry detection unit 116 detects the entry of the object 25 into the monitoring region MR, it sends an entry detection signal indicating that the entry of the object 25 has been detected to the communication device 140. Further, the entry detection unit 116 may detect entry into the protection region MR1, and may send a protection detection signal indicating that entry into the protection region MR1 has been detected as an entry detection signal to the communication device 140. Entry detection section 116 may detect entry into warning region MR2, and may send a warning detection signal indicating that entry into warning region MR2 has been detected as an entry detection signal to communication device 140.
<端末装置の構成>
 図2Cは端末装置20の構成例を示す図である。端末装置20は、プロセッサ210、通信デバイス220、メモリ230、操作デバイス240、及び表示デバイス250を備える。
<Terminal device configuration>
FIG. 2C is a diagram showing a configuration example of the terminal device 20. The terminal device 20 includes a processor 210, a communication device 220, a memory 230, an operating device 240, and a display device 250.
 プロセッサ210は、メモリ230に保持されたプログラムを実行することで、各種機能を実現する。プロセッサ210は、MPU、CPU、DSP、GPU、等を含んでよい。プロセッサ210は、端末装置20の各部を統括的に制御し、各種処理を行う。プロセッサ210は、例えば、設定された保護領域MR1を含む監視領域MRを検査する。 The processor 210 implements various functions by executing programs stored in the memory 230. Processor 210 may include an MPU, CPU, DSP, GPU, etc. The processor 210 centrally controls each part of the terminal device 20 and performs various processes. The processor 210, for example, inspects the monitoring region MR including the set protection region MR1.
 通信デバイス220は、有線又は無線により、各種データ又は情報等を通信する。通信デバイス220による通信方式は、例えば、WAN(Wide Area Network)、LAN(Local Area Network)、電力線通信、赤外線通信、近距離無線通信(例えばBluetooth(登録商標)通信)、携帯電話用のモバイル通信等の通信方式を含んでよい。 The communication device 220 communicates various data or information by wire or wirelessly. Communication methods by the communication device 220 include, for example, WAN (Wide Area Network), LAN (Local Area Network), power line communication, infrared communication, short-range wireless communication (for example, Bluetooth (registered trademark) communication), and mobile communication for mobile phones. It may include communication methods such as
 メモリ230は、一次記憶装置(例えばRAMやROM)を含む。メモリ230は、二次記憶装置(例えばHDDやSSD)や三次記憶装置(例えば光ディスク、SDカード)を含んでよい。メモリ230は、その他の記憶装置を含んでよい。メモリ230は、各種データ、情報、又はプログラム等を記憶する。プログラムは、例えば、監視領域MRを検査する検証テスト用ソフトウェアを含む。 The memory 230 includes a primary storage device (eg, RAM or ROM). The memory 230 may include a secondary storage device (eg, HDD or SSD) or a tertiary storage device (eg, optical disk, SD card). Memory 230 may include other storage devices. The memory 230 stores various data, information, programs, etc. The program includes, for example, verification test software for inspecting the monitoring region MR.
 操作デバイス240は、マウス、キーボード、タッチパッド、タッチパネル、マイクロホン、又はその他の入力デバイスを含んでよい。操作デバイス240は、各種データ又は情報等の入力を受け付ける。 The operating device 240 may include a mouse, keyboard, touch pad, touch panel, microphone, or other input device. The operating device 240 receives input of various data or information.
 表示デバイス250は、液晶表示デバイス、有機ELデバイス、又はその他の表示デバイスを含んでよい。表示デバイス250は、各種データ又は情報等を表示する。 The display device 250 may include a liquid crystal display device, an organic EL device, or other display device. The display device 250 displays various data or information.
 また、プロセッサ210は、機能部として、通信制御部211、設定部212、対象物認識部213、物体存在検出部214、間隔算出部215、良否判定部216、表示制御部217を有する。 The processor 210 also includes a communication control section 211, a setting section 212, a target object recognition section 213, an object presence detection section 214, an interval calculation section 215, a quality determination section 216, and a display control section 217 as functional sections.
 通信制御部211は、通信デバイス220による通信を制御する。通信制御部211は、通信デバイス220を介して監視装置10から検出点群を取得する。検出点群に含まれるそれぞれの点は、監視装置10により光学的に検出された各検出位置(検出距離と検出角度に基づく)を示している。 The communication control unit 211 controls communication by the communication device 220. The communication control unit 211 acquires the detection point group from the monitoring device 10 via the communication device 220. Each point included in the detection point group indicates each detection position (based on the detection distance and detection angle) optically detected by the monitoring device 10.
 設定部212は、各種情報やデータの設定を行う。設定部212は、例えば、操作デバイス240を介して、監視装置10により検出可能な最小検出寸法、端末装置20による検査対象の監視領域MR(保護領域MR1、許容差域MR11)、等を設定(指定)する。 The setting unit 212 sets various information and data. The setting unit 212 sets, for example, the minimum detection dimension detectable by the monitoring device 10, the monitoring region MR (protected region MR1, tolerance region MR11) to be inspected by the terminal device 20, etc. via the operating device 240 ( specify.
 対象物認識部213は、検出点群に基づいて、検出対象物50が存在するか否かを認識する。検出対象物50の認識方法の詳細については後述する。物体存在検出部214は、検出点群に基づいて、設定された許容差域MR11内に物体が存在するか否かを判定する。ここでの物体は、検出対象物50もあり得るし、検出対象物50以外のその他の物体もあり得る。物体存在検出部214は、また、監視領域MRにおける他の領域(保護領域MR1)に物体が存在するか否かを判定してもよい。 The object recognition unit 213 recognizes whether or not the detection object 50 exists based on the detection point group. Details of the method for recognizing the detection target object 50 will be described later. The object presence detection unit 214 determines whether an object exists within the set tolerance range MR11 based on the detection point group. The object here may be the detection target 50 or other objects other than the detection target 50. The object presence detection unit 214 may also determine whether an object exists in another region (protection region MR1) in the monitoring region MR.
 間隔算出部215は、検出点群に含まれる複数の点同士の間隔(距離)を算出する。例えば、間隔算出部215は、複数の時点のそれぞれで検出された検出対象物50の基準点(例えば後述する最近傍点)について、それぞれ隣り合う(隣接する)検出対象物50の基準点(隣接点)の間隔(隣接点間隔)を算出する。 The interval calculation unit 215 calculates the interval (distance) between a plurality of points included in the detection point group. For example, the interval calculation unit 215 calculates the reference point (adjacent point ) (adjacent point interval) is calculated.
 良否判定部216は、監視領域MRにおける監視状態の良否を判定する。良否判定部216は、例えば、例えば、良否判定部216は、算出された隣接点間隔に基づいて、設定された保護領域MR1の周辺における監視装置10により適切に検出することが困難な不適切領域の有無を判定する。不適切領域は、例えば、監視装置10により検出が困難な検出困難領域、監視装置10により検出されない不検出領域、又は監視装置10による検出の感度が所定感度よりも低い低感度領域や不感帯領域とも言える。例えば、良否判定部216は、隣接点間隔が所定閾値より大きい場合、隣接点を構成する2つの最近傍点で囲まれる領域を、不適切領域として検出する。良否判定部216は、隣接点間隔が所定閾値以下である場合、隣接点を構成する2つの最近傍点で囲まれる領域を、良好領域として検出する。ここでの所定閾値は、例えば最小検出寸法sである。 The quality determination unit 216 determines the quality of the monitoring state in the monitoring region MR. For example, the quality determination unit 216 detects an inappropriate area that is difficult to appropriately detect by the monitoring device 10 around the set protection region MR1 based on the calculated adjacent point interval. Determine the presence or absence of. The inappropriate area may be, for example, a difficult-to-detect area that is difficult to detect by the monitoring device 10, a non-detection area that is not detected by the monitoring device 10, or a low-sensitivity area or dead zone area where the detection sensitivity of the monitoring device 10 is lower than a predetermined sensitivity. I can say it. For example, if the interval between adjacent points is larger than a predetermined threshold, the quality determination unit 216 detects the area surrounded by the two nearest points forming the adjacent points as an inappropriate area. If the interval between adjacent points is less than or equal to a predetermined threshold, the quality determining unit 216 detects the area surrounded by the two nearest points forming the adjacent points as a good area. The predetermined threshold value here is, for example, the minimum detectable dimension s.
 表示制御部217は、表示デバイス250による表示を制御する。表示制御部217は、例えば、良否判定部216による判定の結果を示す判定結果情報を表示デバイス250に表示させる。 The display control unit 217 controls the display by the display device 250. For example, the display control unit 217 causes the display device 250 to display determination result information indicating the result of the determination by the quality determination unit 216.
<領域検査システムの動作>
 次に、領域検査システム5の動作例について説明する。
 図3A~図3Dは、端末装置20の動作例を示すフローチャートである。なお、図3Aの処理開始前に、保護領域MR1は設定済みであり、保護領域MR1に関する設定情報(例えば保護領域MR1の位置(例えば座標)、大きさ、又は範囲等)はメモリ230に保持されている。保護領域MR1の設定は、例えば端末装置20により行われていてもよいし、外部装置により生成された保護領域の情報を端末装置20が取得し、保護領域MR1を設定してもよい。
<Operation of area inspection system>
Next, an example of the operation of the area inspection system 5 will be described.
3A to 3D are flowcharts illustrating an example of the operation of the terminal device 20. Note that the protection region MR1 has already been set before the process in FIG. ing. The protection area MR1 may be set, for example, by the terminal device 20, or the terminal device 20 may acquire protection area information generated by an external device and set the protection area MR1.
 まず、設定部212は、端末装置20の動作モードとして、保護領域MR1を検査する検査モード(テストモード)を設定する(S11)。例えば、設定部212は、例えば、操作デバイス240を介して検査モードを開始するためのボタンを押下することで、検査モードを設定してもよい。設定部212は、メモリ230に保持された保護領域MR1に関する設定情報から、保護領域MR1の位置を取得する(S12)。設定部212は、例えば操作デバイス240を介して最小検出寸法sを入力して設定する(S13)。設定部212は、例えばs=30(mm)として設定してもよい。なお、ステップS14の処理は必須ではない。 First, the setting unit 212 sets an inspection mode (test mode) for inspecting the protected region MR1 as the operation mode of the terminal device 20 (S11). For example, the setting unit 212 may set the inspection mode by, for example, pressing a button to start the inspection mode via the operating device 240. The setting unit 212 acquires the position of the protected area MR1 from the setting information regarding the protected area MR1 held in the memory 230 (S12). The setting unit 212 inputs and sets the minimum detectable dimension s via the operating device 240, for example (S13). The setting unit 212 may set s=30 (mm), for example. Note that the process in step S14 is not essential.
 最小検出寸法sとは、監視装置10が検出可能な物体の大きさの最小値であり、保護領域MR1への進入前に確実に検出したい物体を想定して設定される。言い換えると、許容差域MR11内で確実に検出される物体を想定して設定される。その一例として、保護領域MR1への進入を監視するべき最小物体が人の手部である場合には最小検出寸法sが30mm程度に設定されてもよい。他の例としては、保護領域MR1への進入を監視するべき最小物体が人の脚部である場合には最小検出寸法sが70mm程度に設定されてもよい。最小検出寸法sは、検出対象物50としての予め設定されている形状のテストピース(試験片)と合致する。より具体的には、今回の場合のように、円柱試験片の直径と一致するようにしてもよい。つまり、検出対象物50のサイズは、最小検出寸法sに基づいて定められてもよい。 The minimum detection size s is the minimum size of an object that can be detected by the monitoring device 10, and is set assuming an object that is desired to be detected reliably before entering the protection region MR1. In other words, it is set assuming an object that is reliably detected within the tolerance range MR11. As an example, when the smallest object to be monitored for entry into the protection region MR1 is a human hand, the minimum detection dimension s may be set to about 30 mm. As another example, when the smallest object to be monitored for entry into the protection region MR1 is a human leg, the minimum detection dimension s may be set to about 70 mm. The minimum detection dimension s matches a test piece (test piece) of a preset shape as the detection target 50. More specifically, as in this case, it may be made to match the diameter of the cylindrical test piece. That is, the size of the detection target object 50 may be determined based on the minimum detection dimension s.
 設定部212は、例えば操作デバイス240を介して、連続検出回数nを入力して設定する(S14)。設定部212は、例えばn=3(回)として設定してもよい。なお、ステップS14の処理は必須ではない。連続検出回数nは、後述する検出対象物50の認識のための条件の一部として用いられる。 The setting unit 212 inputs and sets the number of consecutive detections n, for example via the operating device 240 (S14). The setting unit 212 may set n=3 (times), for example. Note that the process in step S14 is not essential. The number of consecutive detections n is used as part of the conditions for recognizing the detection target 50, which will be described later.
 設定部212は、検査者H1を示す点群(検査者点群PH1)を設定する(S15)。例えば、検査者H1は、保護領域MR1の検査時又は検査前に、監視現場C1に出向き、監視装置10によって検出されることで、検出点群PSの一部として検査者点群PH1が検出される。検査者点群PH1は、例えば、検査者H1の脚部を示す点群であってもよい。 The setting unit 212 sets a point group (examiner point group PH1) indicating the examiner H1 (S15). For example, the inspector H1 goes to the monitoring site C1 during or before inspecting the protected area MR1, and the inspector point group PH1 is detected as part of the detected point group PS by being detected by the monitoring device 10. Ru. The tester point group PH1 may be, for example, a point group showing the legs of the tester H1.
 設定部212は、許容差域MR11を設定する(S16)。この場合、設定部212は、例えば操作デバイス240を介して、許容差域寸法Tolを設定してもよい。設定部212は、保護領域MR1の外側に許容差域寸法Tolの分だけ拡大した領域から保護領域MR1を除いた領域を、許容差域MR11として設定する。なお、設定部212は、監視装置10の性能の繰返し精度σを取得して、許容差域寸法Tol=5σとして設定してもよい。設定部212は、例えばTol=10(mm)として設定してもよい。 The setting unit 212 sets the tolerance range MR11 (S16). In this case, the setting unit 212 may set the tolerance range dimension Tol, for example, via the operating device 240. The setting unit 212 sets, as a tolerance region MR11, an area obtained by excluding the protection region MR1 from a region expanded by the tolerance region dimension Tol outside the protection region MR1. Note that the setting unit 212 may obtain the repeatability σ of the performance of the monitoring device 10 and set the tolerance range dimension Tol=5σ. The setting unit 212 may set Tol=10 (mm), for example.
 表示制御部217は、検出点群PSと検査者点群PH1とに基づいて、例えばHough変換に従って、検出点群PSに含まれる検査者H1を示す点群(検査者検出点群PH1D)の形状を認識する(S17)。表示制御部217は、検査者検出点群PH1Dに基づいて、検査者H1の位置(現在位置)を認識する(S18)。 Based on the detection point group PS and the examiner point group PH1, the display control unit 217 displays the shape of the point group (examiner detected point group PH1D) indicating the examiner H1 included in the detection point group PS, for example, according to Hough transformation. is recognized (S17). The display control unit 217 recognizes the position (current position) of the examiner H1 based on the examiner detection point group PH1D (S18).
 設定部212は、検査モードを終了するか否かを判定する(S19)。例えば、設定部212は、操作デバイス240を介した検査モードの終了ボタンの押下を検出した場合、検査モードを終了すると判定する。設定部212は、操作デバイス240を介した検査モードの終了ボタンの押下を検出しなかった場合、検査モードを継続すると判定する。 The setting unit 212 determines whether to end the inspection mode (S19). For example, if the setting unit 212 detects that the inspection mode end button is pressed via the operating device 240, the setting unit 212 determines to end the inspection mode. When the setting unit 212 does not detect pressing of the end button of the inspection mode via the operation device 240, it determines that the inspection mode is to be continued.
 検査モードを終了しない場合(ステップS19のNo)、通信制御部211は、監視装置10から検出点群PSを取得する(S20)。対象物認識部213は、検出点群PSに基づいて、物体の形状を認識する(S21)。物体存在検出部214は、最小検出寸法sの半分(s/2)と同じ長さの半径を有する物体を検出したか否かを判定する(S22)。最小検出寸法sの半分(s/2)と同じ長さの半径を有する物体を検出した場合、対象物認識部213は、物体が検出対象物50であると認識し、図3Bに進む。最小検出寸法sの半分(s/2)と同じ長さの半径を有する物体を検出しなかった場合、対象物認識部213は、物体が検出対象物50ではないと認識し、図3Cに進む。 If the inspection mode is not ended (No in step S19), the communication control unit 211 acquires the detection point group PS from the monitoring device 10 (S20). The object recognition unit 213 recognizes the shape of the object based on the detected point group PS (S21). The object presence detection unit 214 determines whether an object having a radius equal to half (s/2) of the minimum detection dimension s has been detected (S22). If an object having a radius equal to half (s/2) of the minimum detection dimension s is detected, the object recognition unit 213 recognizes that the object is the detection object 50, and proceeds to FIG. 3B. If an object having a radius equal to half (s/2) of the minimum detection dimension s is not detected, the object recognition unit 213 recognizes that the object is not the detection object 50 and proceeds to FIG. 3C. .
 図3Bでは、最小検出寸法sの半分(s/2)と同じ長さの半径を有する物体を検出した場合、対象物認識部213は、その物体(つまり検出対象物50)を構成する点群である物体点群(対象物点群PO)のうち保護領域MR1に最も近い点である最近傍点PNが、許容差域MR11内に存在するか否かを判定する(S31)。最近傍点PNが許容差域MR11内に存在する場合、対象物認識部213は、監視現場C1におけるこの1つの最近傍点PNの座標(位置情報)をメモリ230に登録する(保持させる)(S32)。 In FIG. 3B, when an object having a radius of the same length as half (s/2) of the minimum detection dimension s is detected, the object recognition unit 213 detects a point group constituting the object (that is, the detection object 50). It is determined whether the nearest point PN, which is the point closest to the protection area MR1, of the object point group (object point group PO) exists within the tolerance range MR11 (S31). If the nearest point PN exists within the tolerance range MR11, the object recognition unit 213 registers (holds) the coordinates (position information) of this one nearest point PN in the monitoring site C1 in the memory 230 (S32). .
 検査者H1は、保護領域MR1の境界線(外周)に沿って検出対象物50を順次移動させる。そして、監視装置10により、移動中の検出対象物50が時系列で順次検出され、検出点群PSが得られる。そのため、図3A及び図3Bの処理を繰り返すことで、時系列で順番に複数の最近傍点PNが得られ、メモリ230に保持される。間隔算出部215は、メモリ230に保持された複数の最近傍点PNの位置に基づいて、ステップS32で登録された最近傍点PNと、この最近傍点PNに距離が最も近い他の最近傍点PNと、の間隔R(隣接点間隔)を算出し、メモリ230に保持させる(S33)。 The inspector H1 sequentially moves the detection object 50 along the boundary line (outer circumference) of the protected region MR1. Then, the monitoring device 10 sequentially detects the moving detection target object 50 in time series to obtain a detection point group PS. Therefore, by repeating the processes in FIGS. 3A and 3B, a plurality of nearest neighbor points PN are obtained in order in time series and are stored in the memory 230. Based on the positions of the plurality of nearest neighbor points PN held in the memory 230, the interval calculation unit 215 calculates the nearest neighbor point PN registered in step S32, another nearest neighbor point PN having the closest distance to this nearest neighbor point PN, The interval R (adjacent point interval) is calculated and stored in the memory 230 (S33).
 なお、検出対象物50は、例えば保護領域MR1の周りを1周するように一方向に移動するので、隣り合う最近傍点PNは、時間的にも隣り合う時点で得られた最近傍点と言える。なお、ステップS32において、対象物認識部213は、最近傍点PNの位置情報とともに最近傍点Pnが検出された検出時刻の情報もメモリ230に保持させてもよい。この場合、端末装置20は、時間的に隣り合う時点で得られた2つの最近傍点PNを確実に抽出できる。 Incidentally, since the detection target object 50 moves in one direction, for example, making one revolution around the protected region MR1, the adjacent nearest points PN can be said to be the nearest points obtained at temporally adjacent points. Note that in step S32, the object recognition unit 213 may cause the memory 230 to hold information on the detection time at which the nearest point Pn was detected, as well as the position information of the nearest point PN. In this case, the terminal device 20 can reliably extract two nearest points PN obtained at temporally adjacent points.
 良否判定部216は、算出された間隔Rが、設定された最小検出寸法sよりも大きいか否か、つまりR>sを満たすか否かを判定する(S34)。R>sを満たす場合、表示制御部217は、判定結果情報IRを表示デバイス250の画面に表示させる(S35)。表示制御部217は、ここでの判定結果情報IRとして、例えば、間隔Rが算出された2つの最近傍点PNで囲まれる領域(2つの最近傍点PNの間の領域)を不適切領域とし、不適切領域以外の領域とは表示態様が異なるようにして、不適切領域を表示させてもよい。また、表示制御部217は、判定結果情報IRとして、間隔Rを示す情報を強調して表示させてもよい。 The quality determination unit 216 determines whether the calculated interval R is larger than the set minimum detection dimension s, that is, whether R>s is satisfied (S34). If R>s is satisfied, the display control unit 217 displays the determination result information IR on the screen of the display device 250 (S35). As the determination result information IR here, the display control unit 217 sets, for example, the area surrounded by the two nearest neighbor points PN for which the interval R has been calculated (the area between the two nearest neighbor points PN) as an inappropriate area, and sets the area as an inappropriate area. The inappropriate area may be displayed in a different display manner from areas other than the appropriate area. Further, the display control unit 217 may emphasize and display information indicating the interval R as the determination result information IR.
 ステップS31において、最近傍点PNが許容差域MR11内に存在しない場合、表示制御部217は、判定結果情報IRとして、許容差域MR11から逸脱していることを示す逸脱情報を表示デバイス250に表示させる(S36)。これにより、検査者H1は、検査者H1が所持する検出対象物50を用いた検査位置が、許容差域MR11から逸脱していることを確認でき、検出対象物50を移動させる位置を調整できる。 In step S31, if the nearest point PN does not exist within the tolerance range MR11, the display control unit 217 displays deviation information indicating that it deviates from the tolerance range MR11 on the display device 250 as determination result information IR. (S36). Thereby, the inspector H1 can confirm that the inspection position using the detection target 50 owned by the inspector H1 deviates from the tolerance range MR11, and can adjust the position to which the detection target 50 is moved. .
 ステップS35又はS36の処理後、図3AのステップS17に進む。つまり、端末装置20は、ステップS17~ステップS35又はS36を実行するにより、例えば時点tでの検出対象物50の位置における検出点群PSに基づいて、不適切領域BAの有無を判定する。そして、ステップS17~ステップS35又はS36を再度実行することにより、検出対象物50が次の時点t+1での位置での検出対象物50の位置における検出点群PSに基づいて、不適切領域BAの有無を判定する。これにより、検出対象物50の移動時に継続して不適切領域BAの判別が可能である。 After processing step S35 or S36, the process advances to step S17 in FIG. 3A. That is, by executing steps S17 to S35 or S36, the terminal device 20 determines the presence or absence of the inappropriate area BA based on the detection point group PS at the position of the detection target object 50 at time t, for example. Then, by executing steps S17 to S35 or S36 again, the detection target object 50 is detected in the inappropriate area BA based on the detection point group PS at the position of the detection target object 50 at the next time point t+1. Determine the presence or absence. Thereby, it is possible to continuously determine the inappropriate area BA while the detection target object 50 is moving.
 図3Cでは、最小検出寸法sの半分(s/2)と同じ長さの半径を有する物体を検出しなかった場合、対象物認識部213は、検出点群PSから、保護領域MR1の外周の付近にある検出点dpを検出する(S41)。 In FIG. 3C, if an object having a radius equal to half (s/2) of the minimum detection dimension s is not detected, the object recognition unit 213 detects the outer periphery of the protection region MR1 from the detection point group PS. A nearby detection point dp is detected (S41).
 対象物認識部213は、時系列で順にメモリ230に保持された複数の最近傍点PNを含めて、n回連続(n回の連続する時点)で、監視装置10の投光部150により投光される投光光の空間的な間隔(投光ビーム間隔BI)を隔てて隣接しているか否かを判定する(S42)。投光ビーム間隔BIは、予め監視装置10から取得され、メモリ230に保持されている。複数(ここではn個)の最近傍点PNがn回連続で投光ビーム間隔BIを隔てて隣接している場合(S42のYes)、対象物認識部213は、複数の最近傍点PNがn回連続(n回の連続する時点)で、許容差域MR11内に位置しているか否かを判定する(S43)。複数の最近傍点PNがn回連続で許容差域MR11内に位置している場合(S43のYes)、対象物認識部213は、n個の最近傍点PNの座標等の位置情報をメモリ230に登録する(保持させる)(S44)。この場合、対象物認識部213は、n回連続でn個の許容差域MR11内に位置している最近傍点PNに対応して検出対象物50を認識する。 The target object recognition unit 213 emits light by the light emitter 150 of the monitoring device 10 n times in a row (n consecutive points in time), including the plurality of nearest neighbor points PN stored in the memory 230 in chronological order. It is determined whether the projected light beams are adjacent to each other with a spatial interval (projected beam interval BI) between them (S42). The projected beam interval BI is obtained in advance from the monitoring device 10 and held in the memory 230. If a plurality of (in this case, n) nearest neighbor points PN are adjacent to each other with the projected beam interval BI in between n times in a row (Yes in S42), the object recognition unit 213 determines that the plurality of nearest neighbor points PN Continuously (n consecutive times), it is determined whether the position is within the tolerance range MR11 (S43). If the plurality of nearest neighbor points PN are located within the tolerance range MR11 n times in a row (Yes in S43), the object recognition unit 213 stores position information such as the coordinates of the n nearest neighbor points PN in the memory 230. Register (retain) (S44). In this case, the object recognition unit 213 recognizes the detection object 50 corresponding to the nearest point PN located within the n tolerance ranges MR11 for n consecutive times.
 間隔算出部215は、メモリ230に保持された複数の最近傍点PNの位置に基づいて、複数の最近傍点PNのうちの2つの最近傍点PNをそれぞれ組み合わせて、各2つの最近傍点PNの間隔Rを算出し、メモリ230に保持させる(S45)。なお、前述と同様に、ステップS44において、間隔算出部215は、複数の最近傍点PNのぞれぞれの位置情報とともに、複数の最近傍点Pnのそれぞれが検出された検出時刻の情報もメモリ230に保持させてもよい。 Based on the positions of the plurality of nearest neighbor points PN held in the memory 230, the interval calculation unit 215 combines two nearest neighbor points PN among the plurality of nearest neighbor points PN, and calculates the interval R between each two nearest neighbor points PN. is calculated and held in the memory 230 (S45). Note that, as described above, in step S44, the interval calculation unit 215 stores information on the detection time at which each of the plurality of nearest neighbor points Pn was detected, as well as the position information of each of the plurality of nearest neighbor points PN, from the memory 230. It may be held at
 良否判定部216は、算出された間隔Rが、設定された最小検出寸法sよりも大きいか否か、つまりR>sを満たすか否かを判定する(S46)。R>sを満たす場合(S46のYes)、表示制御部217は、判定結果情報IRを表示デバイス250の画面に表示させる(S47)。ここでの判定結果情報IRの内容は、ステップS35と同様である。 The quality determination unit 216 determines whether the calculated interval R is larger than the set minimum detection dimension s, that is, whether R>s is satisfied (S46). If R>s is satisfied (Yes in S46), the display control unit 217 displays the determination result information IR on the screen of the display device 250 (S47). The contents of the determination result information IR here are the same as those in step S35.
 ステップS42において、複数の最近傍点PNがn回連続で投光ビーム間隔BIで隣接していない場合(S42のNo)、又は、複数の最近傍点PNがn回連続で許容差域MR11内に位置していない場合(S43のNo)、表示制御部217は、許容差域MR11から逸脱していることを示す逸脱情報を表示デバイス250の画面を表示させる(S47)。これにより、検査者H1は、検査者H1が所持する検出対象物50を用いた検査位置が、許容差域MR11から逸脱していることを確認でき、検出対象物50を移動させる位置を調整できる。 In step S42, if the plurality of nearest neighbor points PN are not adjacent to each other at the projection beam interval BI n times in a row (No in S42), or if the plurality of nearest neighbor points PN are located within the tolerance range MR11 n times in a row. If not (No in S43), the display control unit 217 causes the screen of the display device 250 to display deviation information indicating that the deviation is from the tolerance range MR11 (S47). Thereby, the inspector H1 can confirm that the inspection position using the detection target 50 owned by the inspector H1 deviates from the tolerance range MR11, and can adjust the position to which the detection target 50 is moved. .
 ステップS47又はS48の処理後、図3AのステップS17に進む。つまり、端末装置20は、ステップS17~ステップS47又はS48を実行するにより、時点tでの検出対象物50の位置における検出点群PSに基づいて、不適切領域BAの有無を判定する。そして、ステップS17~ステップS35又はS36を再度実行することにより、検出対象物50が次の時点t+1での位置での検出対象物50の位置における検出点群PSに基づいて、不適切領域BAの有無を判定する。これにより、検出対象物50の移動時に継続して不適切領域BAの判別が可能である。 After the processing in step S47 or S48, the process advances to step S17 in FIG. 3A. That is, by executing steps S17 to S47 or S48, the terminal device 20 determines the presence or absence of the inappropriate area BA based on the detection point group PS at the position of the detection target object 50 at time t. Then, by executing steps S17 to S35 or S36 again, the detection target object 50 is detected in the inappropriate area BA based on the detection point group PS at the position of the detection target object 50 at the next time point t+1. Determine the presence or absence. Thereby, it is possible to continuously determine the inappropriate area BA while the detection target object 50 is moving.
 図3AにおけるステップS19において、検査モードを終了する場合(S19のYes)、図3Dに進む。図3Dでは、検査モードを終了する場合、表示制御部217は、メモリ230に保持された1つ以上の間隔Rのうち、最小検出寸法s以下の間隔のうち最大の間隔を構成する2つの最近傍点PNの間の領域を、低密度領域BA2として表示(例えば強調表示)させる(S51)。これにより、検査者H1は、保護領域MR1周辺における隣接する最近傍点PNのうち、比較的疎な間隔の最近傍点PNを確認でき、つまり保護領域MR1へ進入される可能性がある領域を確認できる。 In step S19 in FIG. 3A, if the inspection mode is to be ended (Yes in S19), the process proceeds to FIG. 3D. In FIG. 3D, when ending the inspection mode, the display control unit 217 selects the two most recent intervals that constitute the largest interval among the intervals less than or equal to the minimum detection dimension s among the one or more intervals R held in the memory 230. The area between the neighboring points PN is displayed (eg, highlighted) as a low-density area BA2 (S51). As a result, the inspector H1 can confirm the nearest points PN at relatively sparse intervals among the adjacent nearest points PN around the protected area MR1, that is, the inspector H1 can confirm the area where there is a possibility of entry into the protected area MR1. .
 このような図3A~図3Dの処理によれば、端末装置20は、監視装置10の保護領域MR1の設定後に、検出対象物50が保護領域MR1の周辺を一周して移動することで、検査を行う。この場合に、端末装置20は、隣接点の間隔Rが最小検出寸法sつまり検出対象物50の直径より大きい場合、不適切領域BA(隙間)として検出できる。この場合、端末装置20は、不適切領域BAが一か所でも存在する場合には、人物等の物体が監視装置10により検知されずに保護領域MR1に進入する可能性があることを提示できる。端末装置20は、この不適切領域BAを見える化できる。つまり、端末装置20は、不適切領域BAを画面表示して、検査者H1に気付かせることができる。よって、検査者H1は、不適切領域BAに対して迅速に対策できる。また、検査者H1は、検査者自身が保護領域MR1の周囲を移動自在である。この場合でも、検査者H1は、所定の時点における検査者自身の現在位置の表示を確認でき、不適切領域BAに迅速にたどり着ける。 According to the processing shown in FIGS. 3A to 3D, the terminal device 20 performs inspection by moving the detection target 50 around the protection region MR1 after setting the protection region MR1 of the monitoring device 10. I do. In this case, if the interval R between adjacent points is larger than the minimum detection dimension s, that is, the diameter of the detection target object 50, the terminal device 20 can detect it as an inappropriate area BA (gap). In this case, the terminal device 20 can present that if there is even one inappropriate area BA, there is a possibility that an object such as a person may enter the protected area MR1 without being detected by the monitoring device 10. . The terminal device 20 can visualize this inappropriate area BA. That is, the terminal device 20 can display the inappropriate area BA on the screen to make the inspector H1 aware of it. Therefore, the inspector H1 can quickly take measures against the inappropriate area BA. Furthermore, the inspector H1 can move freely around the protected area MR1. Even in this case, the inspector H1 can check the display of the inspector's own current position at a predetermined point of time, and can quickly reach the inappropriate area BA.
 次に、各図を用いて、領域検査システム5における各処理について補足説明する。 Next, each process in the area inspection system 5 will be supplementarily explained using each figure.
 図4は、各情報の設定例を示す図である。図4では、最小検出寸法s、連続検出回数n、及び許容差域寸法Tolが表示デバイス250の画面に表示され、設定される。また、操作デバイス240を介してテスト開始ボタンB1が押下されると、例えば図3AのステップS17以降の処理が行われる。なお、テスト開始ボタンB1が押下された後に、最小検出寸法s、連続検出回数n、及び許容差域寸法Tolが表示デバイス250に表示され、設定されてもよい。 FIG. 4 is a diagram showing an example of setting each information. In FIG. 4, the minimum detection dimension s, the number of consecutive detections n, and the tolerance range dimension Tol are displayed on the screen of the display device 250 and set. Furthermore, when the test start button B1 is pressed via the operating device 240, the processing from step S17 onward in FIG. 3A, for example, is performed. Note that after the test start button B1 is pressed, the minimum detection dimension s, the number of consecutive detections n, and the tolerance range dimension Tol may be displayed on the display device 250 and set.
 次に、図1を参照して、監視現場C1について補足する。 Next, with reference to FIG. 1, additional information will be given regarding the monitoring site C1.
 監視現場C1では、監視装置10と、危険源の一例としてのロボット装置30と、が配置されている。監視現場C1には、保護領域MR1が設定されているが、保護領域MR1は監視現場C1において目印無しで視認できない。そこで、保護領域MR1の目印として、トラテープなどで視認可能にしておいてもよい。なお、検査者H1が保護領域MR1の位置を記憶しておくことで検査自体は可能であり、保護領域MR1を可視化することは必須ではない。また、監視現場C1では、検出対象物50が検査のために移動自在である。検査者H1は、例えば、端末装置20と検出対象物50とを持って、保護領域MR1の境界付近(外周付近)を移動しながら、検出対象物50を監視装置10に検出させる。つまり、検査者H1は、検出対象物50としての試験片を監視現場C1に持っていき、検査者H1は、設定された保護領域MR1の境界線上の任意の場所に検出対象物50を置く。監視装置10により検出対象物50の点群を含む検出点群PSが得られたら、検出対象物50を移動させて、再度、監視装置10により検出対象物50の点群を含む検出点群PSが得られる。このような検出対象物50の点群の取得と検出対象物50の移動とを繰り返す。なお、監視領域MRが警告領域MR2も含む場合、警告領域MR2も視認できない。さらに、監視装置10により検出可能な検出可能領域(監視装置10の視野)も視認できない。視認できない領域は、何らかの手段(例えばトラテープの設置)により視認可能とされてもよい。 At the monitoring site C1, a monitoring device 10 and a robot device 30 as an example of a danger source are arranged. A protected area MR1 is set at the monitored site C1, but the protected area MR1 is not visible at the monitored site C1 because it has no landmark. Therefore, as a mark of the protected region MR1, it may be made visible using a tab tape or the like. Note that the inspection itself is possible if the inspector H1 memorizes the position of the protected area MR1, and it is not essential to visualize the protected area MR1. Furthermore, at the monitoring site C1, the detection target object 50 is movable for inspection. For example, the inspector H1 holds the terminal device 20 and the detection target object 50 and causes the monitoring device 10 to detect the detection target object 50 while moving near the boundary (near the outer periphery) of the protected region MR1. That is, the inspector H1 brings a test piece as the detection target 50 to the monitoring site C1, and the inspector H1 places the detection target 50 at an arbitrary location on the boundary line of the set protection region MR1. Once the detection point group PS including the point group of the detection target object 50 is obtained by the monitoring device 10, the detection target object 50 is moved and the detection point group PS including the point group of the detection target object 50 is obtained by the monitoring device 10 again. is obtained. Such acquisition of the point group of the detection target object 50 and movement of the detection target object 50 are repeated. Note that when the monitoring region MR also includes the warning region MR2, the warning region MR2 is also not visible. Further, the detectable area (field of view of the monitoring device 10) that can be detected by the monitoring device 10 is also not visible. The invisible area may be made visible by some means (for example, by installing a tiger tape).
 図5Aは、検査対象の保護領域MR1の指定例を示す図である。図5Aでは、設定済みの複数の保護領域MR1(MR1A,MR1B)が表示デバイス250に表示されている。設定部212は、操作デバイス240を介して、検査対象とする保護領域MR1を選択することで、検査対象とする保護領域MR1(例えばMR1A)を指定する。なお、設定部212は、他の方法によって検査対象とする保護領域MR1を指定してもよい。なお、保護領域MR1の指定は、検出対象物50を監視現場C1に持っていく前に実行されても後に実行されてもよい。 FIG. 5A is a diagram showing an example of specifying the protected region MR1 to be inspected. In FIG. 5A, a plurality of protected regions MR1 (MR1A, MR1B) that have already been set are displayed on the display device 250. The setting unit 212 specifies the protected region MR1 (for example, MR1A) to be inspected by selecting the protected region MR1 to be inspected via the operating device 240. Note that the setting unit 212 may specify the protected region MR1 to be inspected using another method. Note that the designation of the protection area MR1 may be executed before or after the detection target object 50 is brought to the monitoring site C1.
 図5Bは、検査者点群PH1の指定例を示す図である。検査者点群PH1の指定時には、検査者H1は、監視現場C1内に所在することで、監視装置10によって検出される。これにより、検査者H1は、検出点群PSに含まれる点群として検出される。検査者H1を示す検査者点群PH1は、例えば検査者H1の脚部を示す点群である。図5Bでは、複数の検出点群PS(PS1,PS2,PS3)が表示デバイス250に表示されている。設定部212は、操作デバイス240を介して、複数の検出点群PSから検査者H1が所在する位置に対応する点群を検査者点群PH1として選択することで、検査者点群PH1を指定してもよい。設定部212は、例えば、Hough変換によって所定の半径を持つ円に一致する点を抽出することで、抽出された点群を検査者点群PH1として指定してもよい。ここでの所定の半径は、検査者H1の特性に依存する。なお、検査者点群PH1の形状は、円形の一部ではなく、他の形状を有してもよい。 FIG. 5B is a diagram showing an example of specifying the inspector point group PH1. When the inspector point group PH1 is designated, the inspector H1 is located within the monitoring site C1 and is detected by the monitoring device 10. Thereby, the inspector H1 is detected as a point group included in the detected point group PS. The tester point group PH1 indicating the tester H1 is, for example, a point group showing the legs of the tester H1. In FIG. 5B, a plurality of detection point groups PS (PS1, PS2, PS3) are displayed on the display device 250. The setting unit 212 specifies the examiner point group PH1 by selecting the point group corresponding to the position where the examiner H1 is located from the plurality of detection point groups PS as the examiner point group PH1 via the operation device 240. You may. For example, the setting unit 212 may designate the extracted point group as the inspector point group PH1 by extracting points that match a circle having a predetermined radius by Hough transformation. The predetermined radius here depends on the characteristics of the inspector H1. Note that the shape of the inspector point group PH1 is not a part of a circle, but may have another shape.
 図5Cは、保護領域MR1の周辺における検出対象物50の移動例と、端末装置20の表示デバイス250の画面例を示す図である。検査者H1は、例えば、検出対象物50と端末装置20との双方を所持して監視現場C1に出向き、検出対象物50を保護領域MR1の外周に沿って移動させながら、端末装置20における表示によって検出対象物50の検出状況を確認しながら、監視領域MRの監視状態を確認できる。 FIG. 5C is a diagram showing an example of movement of the detection target object 50 around the protected region MR1 and an example of the screen of the display device 250 of the terminal device 20. For example, the inspector H1 goes to the monitoring site C1 carrying both the detection target object 50 and the terminal device 20, and while moving the detection target object 50 along the outer periphery of the protected area MR1, displays the display on the terminal device 20. While checking the detection status of the detection target object 50, the monitoring status of the monitoring region MR can be confirmed.
 次に、検出対象物50の認識について説明する。 Next, recognition of the detection target object 50 will be explained.
 図6は、監視装置10により検出される検出対象物50に対応する対象物点群POを説明するための図である。図6に示すように、監視装置10から近い近傍では、投光ビームLBが基点である監視装置10の配置位置から広がっておらず、検出対象物50に対して多数の投光ビームLBが当たり、多数の検出光を受光でき、多数の検出点dpが得られる。図6では、監視装置10の近傍では7つの検出点dpが対象物点群POに含まれている。一方、監視装置10から遠い遠方では、投光ビームLBが基点である監視装置10の配置位置から広がっており、検出対象物50に当たる投光ビームLBの数が少なく、受光される検出光の数が少なく、検出点dpの数が少ない。図6では、監視装置10から遠方では3つの検出点dpが対象物点群POに含まれている。図示していないが、検出対象物50の配置位置が監視装置10から更に遠方になると、検出点dpが1つになり得る。よって、このような監視装置10により検出対象物50の観測を行うと、必然的に、監視装置10の近傍では検出対象物50の対象物点群POが高密度になり、監視装置10から遠方では検出対象物50の対象物点群POが低密度になる。なお、監視装置10は、回転機構部120が例えば1秒間に30回程の高速スキャンにより物体を検出するため、例えば物体としての移動中の人物や検出対象物50の動きはほぼ止まって見える。 FIG. 6 is a diagram for explaining the object point group PO corresponding to the detection object 50 detected by the monitoring device 10. As shown in FIG. 6, in the vicinity of the monitoring device 10, the projected light beam LB does not spread from the base point of the monitoring device 10, and a large number of projected light beams LB hit the detection target 50. , a large number of detection lights can be received, and a large number of detection points dp can be obtained. In FIG. 6, seven detection points dp are included in the object point group PO in the vicinity of the monitoring device 10. On the other hand, in a far place far from the monitoring device 10, the projected light beam LB spreads out from the base point of the monitoring device 10, the number of projected light beams LB hitting the detection target 50 is small, and the number of detected detection lights received is small. , and the number of detection points dp is small. In FIG. 6, three detection points dp far from the monitoring device 10 are included in the object point group PO. Although not shown, when the detection target object 50 is located further away from the monitoring device 10, the number of detection points dp may become one. Therefore, when the detection target object 50 is observed by such a monitoring device 10, the object point group PO of the detection target object 50 will inevitably become dense near the monitoring device 10, and the object point group PO of the detection target object 50 will inevitably become dense in the vicinity of the monitoring device 10. In this case, the object point group PO of the detection object 50 has a low density. Note that in the monitoring device 10, the rotation mechanism unit 120 detects objects by high-speed scanning, for example, about 30 times per second, so that, for example, the movement of a moving person or the object to be detected 50 appears to be almost stationary.
 図7A及び図7Bは、検出対象物50の第1認識例を説明するための図である。 FIGS. 7A and 7B are diagrams for explaining a first recognition example of the detection target object 50.
 対象物認識部213は、条件A又は条件Bを満たした場合に、検出点群PSに含まれる点群が検出対象物50を示す対象物点群POであると判定し、検出対象物50を認識する。条件Aでは、検出対象物50を示す対象物点群POが複数の検出点dpを含む場合の条件である。条件Aでは、対象物認識部213は、例えばHough変換に従って検出対象物50を認識する。Hough変換では、指定半径を有する円c1に一致する点、つまり円c1の円周上にある点を抽出する。ここでの指定半径は、最小検出寸法sの半分であるs/2であり、検出対象物50としての円柱試験片の設置面の半径である。対象物認識部213は、検出点群PS内に、Hough変換で抽出された複数の点を含む点群が検出された場合、この点群に対応して検出対象物50を認識する。これにより、対象物認識部213は、指定半径とは異なる半径を持つ不適合な点で構成される点群を、検出対象物50ではない異物(例えば昆虫、溶接火花、又は金属粉)であると判定できる。なお、Hough変換以外のマッチング手法によって、検出対象物50が認識されてもよい。 When condition A or condition B is satisfied, the object recognition unit 213 determines that the point group included in the detection point group PS is the object point group PO indicating the detection object 50, and detects the detection object 50. recognize. Condition A is a condition when the object point group PO indicating the detection object 50 includes a plurality of detection points dp. Under condition A, the object recognition unit 213 recognizes the detection object 50 according to Hough transformation, for example. In the Hough transformation, points that match the circle c1 having a specified radius, that is, points on the circumference of the circle c1 are extracted. The designated radius here is s/2, which is half of the minimum detection dimension s, and is the radius of the installation surface of the cylindrical test piece as the detection target 50. When a point group including a plurality of points extracted by Hough transformation is detected in the detection point group PS, the object recognition unit 213 recognizes the detection object 50 corresponding to this point group. As a result, the object recognition unit 213 identifies a point group consisting of nonconforming points with a radius different from the designated radius as a foreign object that is not the detection object 50 (for example, an insect, welding spark, or metal powder). Can be judged. Note that the detection target object 50 may be recognized using a matching method other than Hough transformation.
 対象物認識部213は、保護領域MR1の座標と対象物点群POとに基づいて、対象物点群POのうちの保護領域MR1に最も近い最近傍点PNを抽出する。例えば、対象物認識部213は、保護領域MR1の外周の一部を示す境界線の数式と、対象物点群POに含まれる各検出点dpの座標と、に基づいて、最近傍点PNを算出する。例えば、図7Aに示すような、境界線の座標関係を表す方程式L1(ax+by+c=0)と、対象物点群POに含まれる点A(x,y)と、の距離D1は、以下の(式1)によって算出される。 The object recognition unit 213 extracts the nearest neighbor point PN closest to the protection area MR1 from the object point group PO based on the coordinates of the protection area MR1 and the object point group PO. For example, the target object recognition unit 213 calculates the nearest point PN based on a mathematical formula of a boundary line indicating a part of the outer periphery of the protection region MR1 and the coordinates of each detection point dp included in the target object point group PO. do. For example, as shown in FIG. 7A, the distance D1 between the equation L1 (ax+by+c=0) representing the coordinate relationship of the boundary line and the point A (x 1 , y 1 ) included in the object point group PO is as follows: It is calculated by (Equation 1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図7Bに示すように、対象物認識部213は、抽出された最近傍点PNが許容差域MR11内に位置する場合、最近傍点PNに関する最近傍点情報をメモリ230に登録する(保持させる)ことを許可し、最近傍点情報をメモリ230に登録する。表示制御部217は、判定結果情報IRとして、最近傍点PNが許容差域MR11内に位置することを示す情報IR1を表示させる。 As shown in FIG. 7B, when the extracted nearest point PN is located within the tolerance range MR11, the object recognition unit 213 registers (retains) the nearest point information regarding the nearest point PN in the memory 230. Permission is given, and the nearest neighbor point information is registered in the memory 230. The display control unit 217 displays information IR1 indicating that the nearest point PN is located within the tolerance range MR11 as the determination result information IR.
 また、対象物認識部213は、抽出された最近傍点PNが許容差域MR11の外側且つ保護領域MR1の外側に位置する場合、最近傍点情報をメモリ230に登録することを許可せず、最近傍点情報をメモリ230に登録しない。表示制御部217は、最近傍点PNが許容差域MR11の外側且つ保護領域MR1の外側に位置することを示す情報IR2を表示させる。 Further, when the extracted nearest neighbor point PN is located outside the tolerance region MR11 and outside the protection region MR1, the target object recognition unit 213 does not permit the nearest neighbor point information to be registered in the memory 230, and the nearest neighbor point Information is not registered in memory 230. The display control unit 217 displays information IR2 indicating that the nearest point PN is located outside the tolerance range MR11 and outside the protection region MR1.
 また、対象物認識部213は、抽出された最近傍点PNが許容差域MR11の外側且つ保護領域MR1内に位置する場合、最近傍点情報をメモリ230に登録することを許可せず、最近傍点情報をメモリ230に登録しない。表示制御部217は、最近傍点PNが許容差域MR11の外側且つ保護領域MR1内に位置することを示す情報IR3を表示させる。 Further, when the extracted nearest neighbor point PN is located outside the tolerance region MR11 and within the protection region MR1, the target object recognition unit 213 does not permit the nearest neighbor point information to be registered in the memory 230, and the nearest neighbor point information is not registered in the memory 230. The display control unit 217 displays information IR3 indicating that the nearest point PN is located outside the tolerance region MR11 and within the protection region MR1.
 図8A及び図8Bは、検出対象物50の第2認識例を説明するための図である。 FIGS. 8A and 8B are diagrams for explaining a second recognition example of the detection target object 50.
 条件Bでは、指定半径を有する円c1に一致する点群が示す物体が検出されなかった場合、の条件である。つまり、条件Aで検出対象物50が検出されなかった場合に、条件Bでの検出対象物50の認識が試みられる。なお、対象物認識部213は、条件Aが成立するか否かとは独立して、条件Bを満たすか否かを判定してもよい。 Condition B is a condition in which an object indicated by a point group that coincides with a circle c1 having a specified radius is not detected. That is, when the detection target 50 is not detected under condition A, recognition of the detection target 50 under condition B is attempted. Note that the object recognition unit 213 may determine whether condition B is satisfied independently of whether condition A is satisfied.
 図8Aでは、所定の時点で検出された検出点群PSには、1つの検出点dpのみが含まれる。対象物認識部213は、検出対象物50を示し得る1つの検出点dpが許容差域MR11内に継続して位置するか否かを判定する。監視装置10により投光される投光ビームLBは、基準位置を基点としてxy平面に沿って回転している。また、投光ビームLBは一定の時間間隔で順次投光される。よって、1つの検出点dpが検出された後の次の検出点dpは、時系列で隣接する投光ビームLB同士の間隔(投光ビーム間隔BI)を隔てて、検出される。つまり、監視装置10の原理的に、次回の検出点dpは、投光部150が投光可能な投光ビームLBが進行する光路上(次のビーム線上)に存在する。なお、検出点群PSに含まれる検出点dpが1点であり、この検出点dpが許容差域MR11に含まれる場合、この検出点dpが最近傍点PNであると判定する。 In FIG. 8A, the detection point group PS detected at a predetermined time point includes only one detection point dp. The object recognition unit 213 determines whether one detection point dp that can indicate the detection object 50 is continuously located within the tolerance range MR11. The light beam LB projected by the monitoring device 10 is rotating along the xy plane with the reference position as the base point. Further, the projected light beam LB is sequentially projected at regular time intervals. Therefore, after one detection point dp has been detected, the next detection point dp is detected with an interval between adjacent projected light beams LB (projected beam interval BI) in time series. That is, in principle of the monitoring device 10, the next detection point dp exists on the optical path (on the next beam line) along which the projected light beam LB that can be projected by the light projecting unit 150 travels. Note that if there is one detection point dp included in the detection point group PS and this detection point dp is included in the tolerance range MR11, it is determined that this detection point dp is the nearest point PN.
 対象物認識部213は、今回取得された最近傍点PNとメモリ230に保持された過去の最近傍点PNとをxy平面上に並べた場合、n回連続(n回の連続する時点)で投光ビーム間隔BIを隔てて配置され、且つ、n回連続で許容差域MR11内に位置しているか否かを判定する。対象物認識部213は、n回連続で投光ビーム間隔BIで隣接し、且つ、n回連続で許容差域MR11内に位置する場合、n個の最近傍点PNが検出対象物50であると認識する。そして、対象物認識部213は、このn個の最近傍点PNのうち、メモリ230に保持されていない最近傍点PNをメモリ230に登録することを許可し、メモリ230に登録する。一方、対象物認識部213は、投光ビーム間隔BIで隣接する連続回数がn回未満である、又は、最近傍点PNが許容差域MR11内に位置する連続回数がn回未満である場合、n個の最近傍点PNが検出対象物50ではないと認識する。そして、対象物認識部213は、この最近傍点PNをメモリ230に登録することを許可せず、メモリ230に登録しない。 When the currently acquired nearest point PN and the past nearest point PN stored in the memory 230 are arranged on the xy plane, the object recognition unit 213 emits light n times in a row (n consecutive points in time). It is determined whether the beams are arranged at a beam interval BI and are located within the tolerance range MR11 n times in a row. The object recognition unit 213 determines that the n nearest points PN are the detection object 50 when they are adjacent to each other at the projected beam interval BI n times in a row and are located within the tolerance range MR11 n times in a row. recognize. Then, the object recognition unit 213 allows the nearest neighbor point PN that is not held in the memory 230 to be registered in the memory 230 among the n nearest neighbor points PN, and registers it in the memory 230. On the other hand, if the number of consecutive times that the projected beams are adjacent to each other at the interval BI is less than n times, or the number of consecutive times that the nearest point PN is located within the tolerance region MR11 is less than n times, the object recognition unit 213 recognizes that It is recognized that the n nearest points PN are not the detection target object 50. Then, the object recognition unit 213 does not permit this nearest point PN to be registered in the memory 230 and does not register it in the memory 230.
 図8Bに示すように、例えば、時系列で3つの時刻である時刻t-2、時刻t-1、及び時刻tが連続している。監視装置10による投光ビームLBの投光方向dr(探索方向)は、時刻t-2、時刻t-1、及び時刻tにおける投光方向となるように変化している。時刻t-2では最近傍点PN(t-2)が検出され、時刻t-1には最近傍点PN(t-1)が検出され、時刻tには最近傍点PN(t)が検出されている。これらの3つの最近傍点PNは、いずれも許容差域MR11に位置するので、連続検出回数n=3である場合には、対象物認識部213は、これらの最近傍点PNは時系列で移動した検出対象物50であると判定し、これらの最近傍点PNをメモリ230に登録する。なお、各投光方向drとは異なる方向(例えば各投光方向drの間の方向)に異物が存在しても、この異物は検出点dpとして検出されない。また、表示制御部217は、各最近傍点PNが許容差域MR11内に位置することを示す情報IR4を表示させてもよい。 As shown in FIG. 8B, for example, three times in chronological order, time t-2, time t-1, and time t, are consecutive. The projection direction dr (search direction) of the projection beam LB by the monitoring device 10 changes to become the projection direction at time t-2, time t-1, and time t. At time t-2, the nearest point PN(t-2) is detected, at time t-1 the nearest point PN(t-1) is detected, and at time t, the nearest point PN(t) is detected. . Since these three nearest points PN are all located in the tolerance range MR11, when the number of consecutive detections n=3, the object recognition unit 213 determines that these nearest points PN have moved in time series. It is determined that it is the detection target object 50, and these nearest neighbor points PN are registered in the memory 230. Note that even if a foreign object exists in a direction different from each light projection direction dr (for example, a direction between each light projection direction dr), this foreign object is not detected as a detection point dp. Further, the display control unit 217 may display information IR4 indicating that each nearest neighbor point PN is located within the tolerance range MR11.
 また、対象物認識部213は、上記の3つの最近傍点PNの少なくとも1つの許容差域MR11に位置しない場合には、連続検出回数n=3である場合、対象物認識部213は、これらの最近傍点PNは時系列で移動した検出対象物50でないと判定し、これらの最近傍点PNをメモリ230に登録しない。つまり、対象物認識部213は、これらの最近傍点PNの少なくとも一部が許容差域MR11から外れているので、メモリ230に未登録の全ての最近傍点PNの情報を破棄する。表示制御部217は、最近傍点PNの少なくとも一部が許容差域MR11から外れていることを示す情報IR5を表示させてもよい。 Furthermore, if the number of consecutive detections n=3, the object recognition unit 213 detects these It is determined that the nearest points PN are not the detection object 50 that has moved in time series, and these nearest points PN are not registered in the memory 230. In other words, the object recognition unit 213 discards information on all the unregistered nearest points PN in the memory 230 because at least some of these nearest points PN are outside the tolerance range MR11. The display control unit 217 may display information IR5 indicating that at least a portion of the nearest point PN is outside the tolerance range MR11.
 このように、条件Bでは、仮に監視装置10と検出対象物50との距離が長く、監視装置10から見ると遠方にある検出対象物50に対応する検出点群PSが1つの検出点dpのみであった場合、条件Aでは検出対象物50の形状を推定できず、検出対象物50を認識できない。この場合でも、条件Bによれば、端末装置20は、監視装置10による投光方向drに沿って保護領域MR1に最も近い最近傍点PNの探索を行う。そして、端末装置20は、過去に取得された最近傍点PNを含め、投光方向drに沿う複数の最近傍点PNが連続して許容差域MR11内に位置する場合、これらの最近傍点PNが、移動する検出対象物50を示すものとして検出対象物50を検出する。よって、端末装置20は、監視装置10から検出対象物50が遠方にある場合でも、検出対象物50を認識できる。 In this way, under condition B, if the distance between the monitoring device 10 and the detection target 50 is long, and the detection point group PS corresponding to the detection target 50 which is far away from the viewpoint of the monitoring device 10 is only one detection point dp. In this case, under condition A, the shape of the detection target 50 cannot be estimated and the detection target 50 cannot be recognized. Even in this case, according to condition B, the terminal device 20 searches for the nearest point PN closest to the protection region MR1 along the light projection direction dr by the monitoring device 10. Then, when a plurality of nearest neighbor points PN along the light projection direction dr, including the nearest neighbor point PN acquired in the past, are continuously located within the tolerance range MR11, the terminal device 20 determines that these nearest neighbor points PN are The detection target object 50 is detected as an indicator of the moving detection target object 50. Therefore, the terminal device 20 can recognize the detection target 50 even if the detection target 50 is located far from the monitoring device 10.
 次に、許容差域MR11を用いた安全性について説明する。 Next, safety using the tolerance range MR11 will be explained.
 保護領域MR1に外側から進入する物体が、保護されるべき保護領域MR1の境界(外周)に接触する前に、物体がほぼ100%検出される必要がある。そのため、保護領域MR1の外側に許容差域MR11という余剰の領域が設けられている。端末装置20は、監視装置10により物体が許容差域MR11内に進入した時点で検出されるようにする。監視装置10により測定される測定値(測距情報)のばらつきσは、監視装置10の設計上の性能に依存する。例えば、保護領域MR1を5σ分外側に拡大されることで、許容差域MR11が設けられる。 Approximately 100% of the objects need to be detected before an object entering the protection region MR1 from the outside comes into contact with the boundary (outer circumference) of the protection region MR1 to be protected. Therefore, an extra region called a tolerance region MR11 is provided outside the protection region MR1. The terminal device 20 allows the monitoring device 10 to detect the object when it enters the tolerance range MR11. The variation σ of the measurement values (distance information) measured by the monitoring device 10 depends on the designed performance of the monitoring device 10. For example, by expanding the protection region MR1 outward by 5σ, a tolerance region MR11 is provided.
 図9は、監視領域MRの良否の判定例を示す図である。 FIG. 9 is a diagram showing an example of determining whether the monitoring region MR is good or bad.
 良否判定部216は、ある時刻t及びその直前の時刻t-1における、許容差域MR11内に位置し隣接する最近傍点PN同士の間隔Rを最小検出寸法sと比較し、間隔Rの良否を判定する。間隔Rは、例えば単純にユークリッド距離をノルム計算することで導出されてもよい。R≦sの場合、最小検出寸法sを直径とする検出対象物50が保護領域MR1へ進入を試みても、保護領域MR1への進入前に許容差域MR11内で監視装置10に検出される。したがって、良否判定部216は、R>sを満たす場合、良好であると判定し、この間隔Rを有する2つの最近傍点PNの間の領域が不適切領域BAではないと判定する。一方、R>sの場合、最小検出寸法sを直径とする検出対象物50が保護領域MR1へ進入を試みた場合、間隔Rを有する2つの最近傍点PNの間を検出対象物50が通り抜ける可能性がある。したがって、良否判定部216は、R>sを満たす場合、良好ではないと判定し、この間隔Rを有する2つの最近傍点PNの間の領域が不適切領域BAであると判定する。 The quality determination unit 216 compares the distance R between adjacent nearest points PN located within the tolerance range MR11 at a certain time t and the time t-1 immediately before that with the minimum detection dimension s, and determines the quality of the distance R. judge. The interval R may be derived, for example, by simply calculating the norm of the Euclidean distance. In the case of R≦s, even if the detection target 50 whose diameter is the minimum detection dimension s tries to enter the protection region MR1, it is detected by the monitoring device 10 within the tolerance range MR11 before entering the protection region MR1. . Therefore, when R>s is satisfied, the quality determining unit 216 determines that the area is good, and determines that the area between the two nearest points PN having this interval R is not an inappropriate area BA. On the other hand, in the case of R>s, when the detection target 50 whose diameter is the minimum detection dimension s tries to enter the protection region MR1, the detection target 50 can pass between the two nearest points PN having the interval R. There is sex. Therefore, when R>s is satisfied, the quality determining unit 216 determines that the quality is not good, and determines that the area between the two nearest points PN having this interval R is the inappropriate area BA.
 なお、図9では、簡単に説明するために、2つの最近傍点PN(PN(t-1),PN(t))のみが示されている。実際には、良否判定部216は、保護領域MR1の外周に沿って全ての最近傍点PNについて、2つの隣接する最近傍点PNのそれぞれについて順に、間隔Rに基づく良否判定を行う。 Note that in FIG. 9, only the two nearest neighbor points PN (PN(t-1), PN(t)) are shown for easy explanation. Actually, the quality determination unit 216 performs quality determination based on the interval R for all the nearest points PN along the outer periphery of the protection region MR1, and for each of two adjacent nearest points PN in turn.
 図10は、表示デバイス250による第1表示例を示す図である。 FIG. 10 is a diagram showing a first display example by the display device 250.
 表示制御部217は、検査中又は検査後に、監視装置10により検出された検出点群PSに基づく監視領域MRの検査結果を表示デバイス250に表示させる。表示デバイス250は、メモリ230に登録されたデータ(例えば1つ以上の最近傍点PN)に基づいて、最小検出寸法sより間隔Rが大きな不適切領域BAや、最小検出寸法sよりも小さく密度判定閾値THRよりも間隔Rが大きな低密度領域BA2等を強調表示する。表示デバイス250は、保護領域MR1とともに、不適切領域BAや低密度領域BA2を表示してもよい。また、表示デバイス250は、不適切領域BAがどのような領域であるかを示す情報を表示してもよい。また、表示デバイス250は、低密度領域BA2がどのような領域であるかを示す情報を表示してもよい。例えば、判定結果情報IRとして、隣接する最近傍点PN同士の間隔が大であることを示すメッセージ情報IR6や、最近傍点PNの密度が所定密度以下である低密度であることを示すメッセージ情報IR7を含んでよい。また、表示デバイス250は、検査中に検査モードにおいて図10の表示を行ってもよいし、検査後に検出点群表示モードにおいて図10の表示を行ってもよい。表示デバイス250は、最小検出寸法sの値や監視装置10の位置を表示してもよい。また、図10に示すように、判定結果情報IRは、保護領域MR1と、複数の時点のそれぞれにおいて導出された複数の最近傍点PNと、がマッピングされた情報IR8を含んでもよい。また、表示デバイス250は、各検出点dpを表示してもよい。 The display control unit 217 causes the display device 250 to display the inspection results of the monitoring region MR based on the detection point group PS detected by the monitoring device 10 during or after the inspection. The display device 250 determines, based on data registered in the memory 230 (for example, one or more nearest points PN), an inappropriate area BA where the interval R is larger than the minimum detection size s, or a density smaller than the minimum detection size s. Low-density areas BA2 and the like having a larger interval R than the threshold THR are highlighted. The display device 250 may display the inappropriate area BA and the low density area BA2 together with the protected area MR1. Furthermore, the display device 250 may display information indicating what kind of area the inappropriate area BA is. Furthermore, the display device 250 may display information indicating what kind of area the low density area BA2 is. For example, as the determination result information IR, message information IR6 indicating that the interval between adjacent nearest neighbor points PN is large, or message information IR7 indicating that the density of the nearest neighbor points PN is low density that is less than or equal to a predetermined density, may be used. may be included. Further, the display device 250 may perform the display shown in FIG. 10 in the test mode during the test, or may perform the display shown in FIG. 10 in the detected point group display mode after the test. The display device 250 may display the value of the minimum detectable dimension s and the position of the monitoring device 10. Further, as shown in FIG. 10, the determination result information IR may include information IR8 in which the protection region MR1 and a plurality of nearest neighbor points PN derived at each of a plurality of time points are mapped. Further, the display device 250 may display each detection point dp.
 表示デバイス250が検査中に判定結果情報IRを表示することで、検査者H1は、例えば、検査途中で表示された最近傍点PNが許容差域MR11から逸脱していることを認識でき、検査をやり直すことができる。表示デバイス250が検査後に判定結果情報IRを表示することで、検査者H1は、保護領域MR1の周囲の全体として不適切領域BAの有無や不適切領域BAの位置を確認できる。しいては、検査者H1は、監視領域MRの形状が正しく設定されたかどうかについても、この判定結果情報IRの表示により確認できる。つまり、良否判定部216は、監視領域MR内に不適切領域BAが存在するか否かを判定する良否判定だけでなく、監視領域MRの形状が適切に設定されたか否かを判定する良否判定を含んでもよい。 By displaying the determination result information IR on the display device 250 during the inspection, the inspector H1 can, for example, recognize that the nearest point PN displayed during the inspection deviates from the tolerance range MR11, and can continue the inspection. You can start over. By displaying the determination result information IR on the display device 250 after the inspection, the inspector H1 can confirm whether or not there is an inappropriate area BA and the position of the inappropriate area BA as a whole around the protected area MR1. Therefore, the inspector H1 can also check whether the shape of the monitoring region MR has been set correctly by displaying the determination result information IR. In other words, the quality determination unit 216 not only performs a quality determination to determine whether an inappropriate area BA exists within the monitoring region MR, but also performs a quality determination to determine whether the shape of the monitoring region MR is appropriately set. May include.
 図11は、表示デバイス250による第2表示例を示す図である。ここでは、図10の表示と異なる事項について主に説明する。 FIG. 11 is a diagram showing a second display example by the display device 250. Here, matters that are different from the display in FIG. 10 will be mainly explained.
 表示制御部217は、検査中又は検査後に、監視装置10により検出された検出点群PSに基づく監視領域MRの検査結果を表示デバイス250に表示させる。表示デバイス250は、検査者H1を示す検査者検出点群PH1Dに基づいて、検査者H1の位置を示す検査者位置情報IH1を表示してもよい。検査者位置情報IH1は、検査者H1を模した図形(例えば人型のイラスト)であってもよいし、検査者検出点群PH1Dそのものであってもよいし、検査者H1の位置を指し示す記号(例えば矢印)であってもよいし、検査者H1の位置を示すメッセージであってもよい。 The display control unit 217 causes the display device 250 to display the inspection results of the monitoring region MR based on the detection point group PS detected by the monitoring device 10 during or after the inspection. The display device 250 may display inspector position information IH1 indicating the position of the inspector H1 based on the inspector detection point group PH1D indicating the inspector H1. The examiner position information IH1 may be a figure imitating the examiner H1 (for example, a humanoid illustration), the examiner detection point group PH1D itself, or a symbol indicating the position of the examiner H1. (for example, an arrow) or a message indicating the position of the examiner H1.
 端末装置20は、表示デバイス250が検査中に検査者位置情報IH1を表示することで、例えば、保護領域MR1の周囲に検出対象物50以外に他の動く物体が存在する場合に、検査者H1と他の動く物体とを容易に区別して識別可能である。また、表示デバイス250が検査中に検査者位置情報IH1を表示することで、検査者H1は、検査途中での検査者H1の位置を確認でき、検査中の位置をリアルタイムで確認できる。また、表示デバイス250が検査後に検査者位置情報IH1を表示することで、検査者H1は、検査者H1の所在位置と不適切領域BA又は低密度領域BA2との位置関係を容易に認識でき、迅速に不適切領域BA又は低密度領域BA2に出向いて目視確認できる。 The terminal device 20 allows the display device 250 to display the inspector position information IH1 during the inspection, so that, for example, when there is a moving object other than the detection target 50 around the protected region MR1, the terminal device 20 can detect the inspector H1. and other moving objects can be easily distinguished and identified. Furthermore, since the display device 250 displays the examiner position information IH1 during the inspection, the examiner H1 can confirm the position of the examiner H1 during the inspection, and can confirm the position during the inspection in real time. Furthermore, since the display device 250 displays the inspector position information IH1 after the inspection, the inspector H1 can easily recognize the positional relationship between the inspector H1's location and the inappropriate area BA or low-density area BA2. It is possible to quickly go to the inappropriate area BA or low density area BA2 and visually check it.
 このように、本実施形態の端末装置20は、検出点群PSに含まれる点群同士の間隔Rを判定でき、間隔Rに基づいて不適切領域BAの有無を判定でき、判定結果情報IRを表示できる。よって、判定結果情報IRを確認した検査者H1は、保護領域MR1へ進入できる可能性がある不適切領域BAが存在することを認識できる。また、端末装置20は、検出点群PSが検出対象物50を示す対象物点群POであるか否かを識別できる。よって、端末装置20は、検査中に検出対象物50以外の別の物体が保護領域MR1の周辺に進入しても、検出対象物50とは区別し、不適切領域BA等を判別するためのデータから除外できる。 In this way, the terminal device 20 of the present embodiment can determine the interval R between the point groups included in the detected point group PS, can determine the presence or absence of the inappropriate area BA based on the interval R, and can transmit the determination result information IR. Can be displayed. Therefore, the inspector H1 who has confirmed the determination result information IR can recognize that there is an inappropriate area BA that may allow entry into the protected area MR1. Further, the terminal device 20 can identify whether the detection point group PS is the object point group PO indicating the detection target object 50 or not. Therefore, even if another object other than the detection target object 50 enters the vicinity of the protection area MR1 during the inspection, the terminal device 20 distinguishes it from the detection target object 50 and performs an operation for determining the inappropriate area BA etc. Can be excluded from the data.
 また、端末装置20は、検査モードや保護領域MR1への進入判定結果の表示を行うだけでなく、監視装置10により検出された検出点群PSの表示や、時系列で複数の時点で得られる複数の検出点群PSに基づく検出点群追跡が可能である。また、端末装置20は、隣接点間隔の判定、検出対象物50の認識、監視装置10による監視が困難な不検出部分(不適切領域BA)の可視化、及び監視現場C1における検査者H1の現在位置表示、等が可能である。 In addition, the terminal device 20 not only displays the inspection mode and the entry determination result into the protected area MR1, but also displays the detection point group PS detected by the monitoring device 10 and the detection point group PS detected at multiple points in time. Detection point group tracking based on a plurality of detection point groups PS is possible. The terminal device 20 also determines the interval between adjacent points, recognizes the detection target 50, visualizes an undetected area (inappropriate area BA) that is difficult to monitor by the monitoring device 10, and determines the current state of the inspector H1 at the monitoring site C1. It is possible to display the location, etc.
 以上、図面を参照しながら各種の実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that those skilled in the art can come up with various changes or modifications within the scope of the claims, and these naturally fall within the technical scope of the present invention. Understood. Further, each component in the above embodiments may be arbitrarily combined without departing from the spirit of the invention.
 本実施形態では、端末装置20のプロセッサ210が有する各種機能(各構成部)を監視装置10が備えてもよい。また、端末装置20の操作デバイス240及び表示デバイス250の少なくとも一方は、端末装置20とは独立したデバイスとして設けられてもよい。 In this embodiment, the monitoring device 10 may include various functions (each component) that the processor 210 of the terminal device 20 has. Further, at least one of the operating device 240 and the display device 250 of the terminal device 20 may be provided as a device independent of the terminal device 20.
 本実施形態では、検出対象物50が円柱試験片であることを例示したが、これに限られない。検出対象物50は、円柱以外の形状(例えば四角柱)の試験片であってもよい。
 つまり、この検出対象物50としての円柱試験片が、監視装置10が検出可能な物体の大きさの最小値(最小検出寸法s)を持つものであり、保護領域MR1への進入前に確実に検出したい物体を想定して設定される形状であればよく、ユーザが自由に設定している試験片でもよい。ただし、円柱や多角柱のような断面形状が同一の立体形状、さらに言及すると、断面形状が真円形状、正多角形状になるものであるほうが取り扱い(形状認識)がし易い。
In this embodiment, the detection target object 50 is a cylindrical test piece, but the detection target object 50 is not limited to this. The detection target object 50 may be a test piece having a shape other than a cylinder (for example, a square prism).
In other words, the cylindrical test piece serving as the detection target object 50 has the minimum object size (minimum detection dimension s) that can be detected by the monitoring device 10, and is reliably detected before entering the protection area MR1. It may have any shape as long as it is set assuming the object to be detected, or it may be a test piece that is freely set by the user. However, it is easier to handle (recognize the shape) a three-dimensional shape with the same cross-sectional shape, such as a cylinder or a polygonal prism, or more specifically, a perfect circular or regular polygonal cross-sectional shape.
 なお、検出対象物50が表示デバイスを備えてもよい。この場合、検出対象物50が通信デバイスを有し、端末装置20との間で通信して、判定結果情報ISを取得して検査結果を表示してもよい。 Note that the detection target object 50 may include a display device. In this case, the detection target object 50 may have a communication device, communicate with the terminal device 20, acquire the determination result information IS, and display the inspection results.
 上記実施形態では、CPU等のプロセッサは、物理的にどのように構成してもよい。また、プログラム可能なプロセッサを用いれば、プログラムの変更により処理内容を変更できるので、プロセッサの設計の自由度を高めることができる。プロセッサは、1つの半導体チップで構成してもよいし、物理的に複数の半導体チップで構成してもよい。複数の半導体チップで構成する場合、上記実施形態の各制御をそれぞれ別の半導体チップで実現してもよい。この場合、それらの複数の半導体チップで1つのプロセッサを構成すると考えることができる。また、プロセッサは、半導体チップと別の機能を有する部材(コンデンサ等)で構成してもよい。また、プロセッサが有する機能とそれ以外の機能とを実現するように、1つの半導体チップを構成してもよい。また、複数のプロセッサが1つの半導体チップで構成されてもよい。 In the above embodiments, the processor such as the CPU may be physically configured in any manner. Further, if a programmable processor is used, the processing content can be changed by changing the program, so the degree of freedom in designing the processor can be increased. A processor may be composed of one semiconductor chip, or may be physically composed of a plurality of semiconductor chips. When configured with a plurality of semiconductor chips, each control of the above embodiments may be implemented with separate semiconductor chips. In this case, these multiple semiconductor chips can be considered to constitute one processor. Furthermore, the processor may be constructed of a member (such as a capacitor) that has a function different from the semiconductor chip. Furthermore, one semiconductor chip may be configured to implement the functions of the processor and other functions. Furthermore, a plurality of processors may be configured with one semiconductor chip.
 特許請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現可能である。特許請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「先ず、」、「次に」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operation, procedure, step, and stage in the apparatus, system, program, and method shown in the claims, specification, and drawings is specifically defined as "before" or "before". ” etc., and unless the output of the previous process is used in the subsequent process, it can be implemented in any order. Even if the claims, specifications, and operational flows in the drawings are explained using "first," "next," etc. for convenience, this does not mean that it is essential to implement them in this order. isn't it.
 以上のように、上記実施形態の領域検査装置(例えば端末装置20)は、監視装置10により監視される監視領域MRを検査する。領域検査装置は、プロセッサ210を備える。監視領域MRは、保護領域MR1と、保護領域MR1の外側に形成される許容差域MR11とを含む。プロセッサ210は、複数の時点(例えば、…,時刻t-1,時刻t)のそれぞれにおいて、監視装置10により投光された投光光が反射又は散乱された検出光に対応する点群を検出点群PSとして取得する。プロセッサ210は、複数の時点のそれぞれにおいて、検出点群PSに基づいて検出対象物50を認識する。プロセッサ210は、複数の時点のそれぞれにおいて、検出点群PSに含まれる検出対象物50を示す対象物点群POに含まれる1つ以上の検出点dpのうち、許容差域MR11内に存在し且つ保護領域MR1に最も近い点である最近傍点PNを導出する。プロセッサ210は、複数の時点のそれぞれで導出された最近傍点PNを、監視領域MRが形成される二次元平面(例えばxy平面)上に時系列に並べて、各々の最近傍点PNの間の距離(例えば間隔R)を算出する。プロセッサ210は、距離と監視装置10により検出可能な最小検出寸法sとに基づいて、監視領域MRの良否の判定を行う。プロセッサ210は、判定の結果を示す判定結果情報IRを表示デバイス250に表示させる。 As described above, the area inspection device (for example, the terminal device 20) of the above embodiment inspects the monitoring area MR monitored by the monitoring device 10. The area inspection device includes a processor 210. The monitoring region MR includes a protection region MR1 and a tolerance region MR11 formed outside the protection region MR1. The processor 210 detects, at each of a plurality of time points (for example, . . . , time t-1, time t), a point group corresponding to the detection light that is the reflected or scattered light emitted by the monitoring device 10. Obtain as a point group PS. The processor 210 recognizes the detection target 50 based on the detection point group PS at each of a plurality of time points. At each of a plurality of time points, the processor 210 determines whether one or more detection points dp included in the object point group PO indicating the detection object 50 included in the detection point group PS exist within the tolerance range MR11. In addition, the nearest neighbor point PN, which is the point closest to the protected region MR1, is derived. The processor 210 arranges the nearest points PN derived at each of a plurality of time points in time series on a two-dimensional plane (for example, an xy plane) on which the monitoring region MR is formed, and calculates the distance ( For example, the interval R) is calculated. The processor 210 determines whether the monitoring region MR is good or bad based on the distance and the minimum detectable dimension s that can be detected by the monitoring device 10. The processor 210 causes the display device 250 to display determination result information IR indicating the determination result.
 これにより、領域検査装置は、検出点群PSに含まれる点群同士の間隔Rを判定でき、間隔Rに基づいて不適切領域BAの有無を判定でき、判定結果情報IRを表示できる。よって、判定結果情報IRを確認した検査者H1は、保護領域MR1へ進入できる可能性がある不適切領域BAが存在することを認識できる。また、端末装置20は、検出点群PSが検出対象物50を示す対象物点群POであるか否かを識別できる。よって、端末装置20は、検査中に検出対象物50以外の別の物体が保護領域MR1の周辺に進入しても、検出対象物50とは区別し、不適切領域BA等を判別するためのデータから除外できる。このように、領域検査装置は、保護領域MR1を含む監視領域MRの良否の判定精度を向上でき、作業者等(例えば検査者H1)が監視領域MRの良否を容易に確認できる。 Thereby, the area inspection device can determine the interval R between the point groups included in the detection point group PS, can determine the presence or absence of the inappropriate area BA based on the interval R, and can display the determination result information IR. Therefore, the inspector H1 who has confirmed the determination result information IR can recognize that there is an inappropriate area BA that may allow entry into the protected area MR1. Further, the terminal device 20 can identify whether the detection point group PS is the object point group PO indicating the detection target object 50 or not. Therefore, even if another object other than the detection target object 50 enters the vicinity of the protection area MR1 during the inspection, the terminal device 20 distinguishes it from the detection target object 50 and performs an operation for determining the inappropriate area BA etc. Can be excluded from the data. In this way, the area inspection device can improve the accuracy of determining the quality of the monitoring area MR including the protected area MR1, and allows an operator or the like (for example, the inspector H1) to easily confirm the quality of the monitoring area MR.
 また、プロセッサ210は、距離が最小検出寸法s以下である場合、距離が算出された2つの最近傍点PNの間の領域が不適切領域BAではないと判定し、距離が最小検出寸法sよりも長い場合、距離が算出された2つの最近傍点PNの間の領域が不適切領域BAであると判定してもよい。 Furthermore, if the distance is less than or equal to the minimum detection dimension s, the processor 210 determines that the area between the two nearest points PN for which the distance has been calculated is not an inappropriate area BA, and the distance is less than the minimum detection dimension s. If it is long, it may be determined that the area between the two nearest points PN for which the distance has been calculated is the inappropriate area BA.
 これにより、領域検査装置は、距離(つまり監視装置10により検出可能な検出間隔)が最小検出寸法sよりも大きい場合、監視領域MRに不適切領域BAが存在することを表示することで、検出間隔が大きな不適切領域BAからの進入を防止できない可能性があることを提示できる。距離が最小検出寸法sより小さい場合、不適切領域BAが存在しないことを表示することで、保護領域MR1への進入を防止できることを提示できる。 Thereby, when the distance (that is, the detection interval that can be detected by the monitoring device 10) is larger than the minimum detection dimension s, the area inspection device can detect the presence of the inappropriate area BA in the monitoring area MR. It can be shown that there is a possibility that entry from the inappropriate area BA with a large interval cannot be prevented. When the distance is smaller than the minimum detection dimension s, it can be shown that entry into the protected area MR1 can be prevented by displaying that the inappropriate area BA does not exist.
 また、判定結果情報IRは、監視領域MRにおける不適切領域BAを示す情報である不適切領域情報を含んでもよい。プロセッサ210は、保護領域MR1の外周に沿って検出対象物50を移動させる検査者H1の位置を示す検査者位置情報IH1を取得し、不適切領域情報と検査者位置情報IH1とを表示デバイス250に表示させてもよい。 Further, the determination result information IR may include inappropriate area information that is information indicating an inappropriate area BA in the monitoring region MR. The processor 210 acquires inspector position information IH1 indicating the position of the inspector H1 who moves the detection target object 50 along the outer periphery of the protected region MR1, and displays the inappropriate area information and the inspector position information IH1 on the display device 250. may be displayed.
 これにより、領域検査装置は、検査者H1が監視現場C1に所在する検査者H1自身の位置を可視化できる。よって、検査者H1は、自身の現在位置を容易に把握でき、検査者H1の位置に対する不適切領域BAを容易に判別できる。よって、検査者H1は、不適切領域BAに迅速に到着できる。また、領域検査装置は、保護領域MR1の周囲に他に動く物体があっても、検査者H1と他の物体とを識別できる。 Thereby, the area inspection device can visualize the position of the inspector H1 himself located at the monitoring site C1. Therefore, the inspector H1 can easily grasp his or her current position and can easily determine the inappropriate area BA for the inspector H1's position. Therefore, the inspector H1 can quickly arrive at the inappropriate area BA. Furthermore, even if there are other moving objects around the protected region MR1, the area inspection device can distinguish between the inspector H1 and the other objects.
 また、プロセッサ210は、検査者H1の少なくとも一部を示す点群である検査者点群PH1を設定してもよい。プロセッサ210は、検出点群に、検査者点群PH1と一致する点群である検査者検出点群PH1Dが含まれる場合、前記検査者検出点群PH1Dに基づいて検査者H1の位置を推定することで、検査者位置情報IH1を取得する。 Furthermore, the processor 210 may set an examiner point group PH1 that is a point group indicating at least a portion of the examiner H1. When the detection point group includes an inspector detection point group PH1D that is a point group that matches the inspector point group PH1, the processor 210 estimates the position of the inspector H1 based on the inspector detection point group PH1D. Thus, the inspector position information IH1 is acquired.
 これにより、領域検査装置は、監視装置10を利用して検査者検出点群PH1Dを取得でき、他の位置検出手段(例えばGPS)を用いずに検査者H1の位置を推定できる。 Thereby, the area inspection device can acquire the inspector detection point group PH1D using the monitoring device 10, and can estimate the location of the inspector H1 without using other position detection means (eg, GPS).
 また、最小検出寸法sは、検出対象物50の直径でもよい。プロセッサ210は、検出点群PSが、最小検出寸法sに一致する半径を有する円c1の円周上に位置する複数の検出点dpを含む場合、複数の検出点dpに対応して検出対象物50を認識してもよい。 Furthermore, the minimum detection dimension s may be the diameter of the detection target 50. When the detection point group PS includes a plurality of detection points dp located on the circumference of a circle c1 having a radius matching the minimum detection dimension s, the processor 210 detects the detection target object corresponding to the plurality of detection points dp. 50 may be recognized.
 これにより、領域検査装置は、複数の検出点dpにより形成される形状を基に検出対象物50を認識でき、検出対象物50の存在を高精度に判別できる。 Thereby, the area inspection device can recognize the detection target object 50 based on the shape formed by the plurality of detection points dp, and can determine the presence of the detection target object 50 with high accuracy.
 また、プロセッサ210は、所定数の時点で連続して検出された検出点群PSに含まれる検出点dpが1つであり、監視領域MRが形成される二次元平面上に検出点dpを時系列に並べた状態で、隣接する時点の検出点dpが監視装置10による投光ビーム間隔BIを隔てて二次元平面上で隣接し、且つ、いずれの検出点dpも許容差域MR11内に位置する場合、所定数の時点で連続して検出された複数の検出点dpに対応して検出対象物50を認識し、所定数の時点で連続して検出された1つずつの検出点dpを、各時点での最近傍点PNとしてもよい。 In addition, the processor 210 detects that there is one detection point dp included in the detection point group PS continuously detected at a predetermined number of points in time, and that the processor 210 sequentially places the detection point dp on the two-dimensional plane in which the monitoring region MR is formed. When arranged in series, the detection points dp at adjacent points in time are adjacent on a two-dimensional plane with the projected beam interval BI from the monitoring device 10 interposed therebetween, and both detection points dp are located within the tolerance range MR11. In this case, the detection target object 50 is recognized corresponding to a plurality of detection points dp that are consecutively detected at a predetermined number of time points, and each detection point dp that is consecutively detected at a predetermined number of time points is recognized. , may be the nearest neighbor point PN at each time point.
 これにより、領域検査装置は、例えば、監視装置10から検出対象物50が遠方にあり、監視装置10により検出対象物50を示す複数の検出点dpが検出できない場合でも、時間的且つ平面的に連続する検出点に基づいて、検出対象物50と推定できる。 As a result, the area inspection device can detect the detection target 50 in a temporal and planar manner, for example, even if the detection target 50 is far away from the monitoring device 10 and the multiple detection points dp indicating the detection target 50 cannot be detected by the monitoring device 10. The detection target object 50 can be estimated based on consecutive detection points.
 また、プロセッサ210は、複数の保護領域MR1の中から、検査対象の保護領域MR1を指定し、指定された保護領域MR1を含む監視領域MRの良否の判定を行ってもよい。 Furthermore, the processor 210 may designate the protection region MR1 to be inspected from among the plurality of protection regions MR1, and determine whether the monitoring region MR including the designated protection region MR1 is good or bad.
 これにより、領域検査装置は、所望の保護領域MR1を指定して、この保護領域MR1を含む監視領域MRの検査を実施できる。 Thereby, the area inspection device can designate the desired protection area MR1 and inspect the monitoring area MR including this protection area MR1.
 また、検出対象物50は、保護領域MR1の外周に沿って移動可能でもよい。プロセッサ210は、検出対象物50が保護領域MR1の外周に沿って1周分移動した後、判定結果情報IRを表示させてもよい。これにより、検査者H1は、検査完了後に一括して判定結果を確認でき、監視領域MR全体における不適切領域BA等を一見して確認できる。 Furthermore, the detection target object 50 may be movable along the outer periphery of the protection region MR1. The processor 210 may display the determination result information IR after the detection target object 50 has moved one round along the outer periphery of the protected region MR1. Thereby, the inspector H1 can confirm the determination results all at once after completing the inspection, and can confirm the inappropriate area BA, etc. in the entire monitoring area MR at a glance.
 また、検出対象物50は、保護領域MR1の外周に沿って移動可能でもよい。プロセッサ210は、検出対象物50が保護領域MR1の外周に沿って移動中に、判定結果情報IRを表示させてもよい。これにより、検査者H1は、検査しながら判定結果を順次確認でき、監視領域MRにおける不適切領域BA等を迅速に確認できる。 Furthermore, the detection target object 50 may be movable along the outer periphery of the protection region MR1. The processor 210 may display the determination result information IR while the detection target object 50 is moving along the outer periphery of the protection region MR1. Thereby, the inspector H1 can sequentially confirm the determination results while inspecting, and can quickly confirm inappropriate areas BA, etc. in the monitoring area MR.
 また、判定結果情報IRは、保護領域MR1と、複数の時点のそれぞれにおいて導出された複数の最近傍点PNと、がマッピングされた情報を含んでもよい。これにより、領域検査装置は、導出された最近傍点PNと保護領域MR1との位置関係を明示して、各最近傍点PNを表示できる。よって、検査者H1は、監視領域MRにおけるどの位置が不適切領域BAであるかを直感的に迅速に確認できる。 Further, the determination result information IR may include information in which the protection region MR1 and a plurality of nearest neighbor points PN derived at each of a plurality of time points are mapped. Thereby, the area inspection device can clearly indicate the positional relationship between the derived nearest neighbor point PN and the protection region MR1 and display each nearest neighbor point PN. Therefore, the inspector H1 can quickly and intuitively confirm which position in the monitoring area MR is the inappropriate area BA.
 また、判定結果情報IRは、距離が最小検出寸法sより長い場合、距離が最小検出寸法sより長いことを示す情報を含んでもよい。これにより、検査者H1は、監視装置10による検出可能間隔としての距離が大きな箇所があり、監視領域MRの監視が良好ではない箇所があることを確認できる。 Furthermore, when the distance is longer than the minimum detectable dimension s, the determination result information IR may include information indicating that the distance is longer than the minimum detectable dimension s. Thereby, the inspector H1 can confirm that there are places where the distance as a detectable interval by the monitoring device 10 is large, and there are places where the monitoring region MR is not well monitored.
 また、判定結果情報IRは、距離が最小検出寸法s以下であり所定の密度判定閾値THRよりも長い場合、距離が得られた2つの最近傍点PNの付近では検出点dpの密度が低いことを示す情報を含んでもよい。これにより、検査者H1は、監視装置10により検出不可能ではないが、検出可能間隔としての距離が比較的大きな箇所があり、監視領域MRにおける安全性が低下し得ることを確認できる。 In addition, the determination result information IR indicates that when the distance is less than or equal to the minimum detection dimension s and longer than the predetermined density determination threshold THR, the density of the detection point dp is low in the vicinity of the two nearest points PN from which the distance was obtained. It may also include information indicating. Thereby, the inspector H1 can confirm that although it is not undetectable by the monitoring device 10, there is a location where the distance as a detectable interval is relatively large, and the safety in the monitoring region MR may be reduced.
 また、判定結果情報IRは、導出された最近傍点PNが許容差域MR11内に位置するか否かを示す情報を含んでもよい。 Further, the determination result information IR may include information indicating whether the derived nearest neighbor point PN is located within the tolerance range MR11.
 これにより、検査者H1は、例えば、検査中に移動しながら、最近傍点PNが許容差域MR11内に位置する場合には、最近傍点が有効であることを確認でき、検出対象物50を次の位置に移動させて検査を継続できる。また、検査者H1は、例えば、検査中に移動しながら、最近傍点PNが許容差域MR11内に位置しない場合には、最近傍点PNが無効であることを確認でき、検出対象物50を前の位置に戻して最近傍点を取り直し、検査を続けることができる。 As a result, the inspector H1 can, for example, confirm that the nearest point is valid while moving during the inspection and the nearest point PN is located within the tolerance range MR11, and move the detected object 50 to the next one. The inspection can be continued by moving it to the position shown below. Further, for example, while moving during the inspection, the inspector H1 can confirm that the nearest point PN is invalid and move the detection target 50 forward if the nearest point PN is not located within the tolerance range MR11. You can return to the position, re-find the nearest point, and continue testing.
 なお、本出願は、2022年8月10日出願の日本特許出願(特願2022-128369)に基づくものであり、その内容は本出願の中に参照として援用される。 Note that this application is based on a Japanese patent application (Japanese Patent Application No. 2022-128369) filed on August 10, 2022, the contents of which are incorporated as a reference in this application.
 本開示は、保護領域を含む監視領域の良否の判定精度を向上でき、作業者等が監視領域の良否を容易に確認できる領域検査装置、領域検査方法、及びプログラム等に有用である。 The present disclosure is useful for an area inspection device, an area inspection method, a program, etc. that can improve the accuracy of determining the acceptability of a monitoring area including a protected area, and allow an operator etc. to easily check the acceptability of the monitored area.
5 領域検査システム
10 監視装置
20 端末装置
30 ロボット装置
50 検出対象物
210 プロセッサ
211 通信制御部
212 設定部
213 対象物認識部
214 物体存在検出部
215 間隔算出部
216 良否判定部
217 表示制御部
220 通信デバイス
230 メモリ
240 操作デバイス
250 表示デバイス
C1 監視現場
dp 検出点
H1 検査者
IH1 検査者位置情報
IR 判定結果情報
MR 監視領域
MR1 保護領域
MR2 警告領域
MR11 許容差域
PS 検出点群
PH1 検査者点群
PH1D 検査者検出点群
PO 対象物点群
5 Area inspection system 10 Monitoring device 20 Terminal device 30 Robot device 50 Detection target 210 Processor 211 Communication control unit 212 Setting unit 213 Object recognition unit 214 Object presence detection unit 215 Interval calculation unit 216 Quality determination unit 217 Display control unit 220 Communication Device 230 Memory 240 Operation device 250 Display device C1 Monitoring site DP Detection point H1 Inspector IH1 Inspector position information IR Judgment result information MR Monitoring area MR1 Protection area MR2 Warning area MR11 Tolerance range PS Detection point group PH1 Inspector point group PH1D Inspector detection point group PO Target point group

Claims (15)

  1.  監視装置により監視される監視領域を検査する領域検査装置であって、
     プロセッサを備え、
     前記監視領域は、保護領域と、前記保護領域の外側に形成される許容差域と、を含み、
     前記プロセッサは、
     複数の時点のそれぞれにおいて、前記監視装置により投光された投光光が反射又は散乱された検出光に対応する点群を検出点群として取得し、
     前記複数の時点のそれぞれにおいて、前記検出点群に基づいて検出対象物を認識し、
     前記複数の時点のそれぞれにおいて、前記検出点群に含まれる前記検出対象物を示す対象物点群に含まれる1つ以上の検出点のうち、前記許容差域内に存在し且つ前記保護領域に最も近い点である最近傍点を導出し、
     前記複数の時点のそれぞれで導出された最近傍点を、前記監視領域が形成される二次元平面上に時系列に並べて、各々の最近傍点の間の距離を算出し、
     前記距離と前記監視装置により検出可能な最小検出寸法とに基づいて、前記監視領域の良否の判定を行い、
     前記判定の結果を示す判定結果情報を表示デバイスに表示させる、
     領域検査装置。
    An area inspection device for inspecting a monitoring area monitored by a monitoring device,
    Equipped with a processor,
    The monitoring area includes a protection area and a tolerance area formed outside the protection area,
    The processor includes:
    At each of a plurality of time points, a group of points corresponding to detection light from which the light projected by the monitoring device is reflected or scattered is acquired as a group of detection points,
    Recognizing a detection target based on the detection point group at each of the plurality of time points,
    At each of the plurality of time points, among one or more detection points included in the object point group indicating the detection object included in the detection point group, the detection point that exists within the tolerance range and is the closest to the protection area. Derive the nearest neighbor point, which is the closest point,
    arranging the nearest neighbor points derived at each of the plurality of time points in time series on a two-dimensional plane in which the monitoring area is formed, and calculating the distance between each of the nearest neighbor points;
    Determining whether the monitoring area is good or bad based on the distance and the minimum detection dimension that can be detected by the monitoring device,
    displaying judgment result information indicating the result of the judgment on a display device;
    Area inspection device.
  2.  前記プロセッサは、
     前記距離が前記最小検出寸法以下である場合、前記距離が算出された2つの最近傍点の間の領域が不適切領域ではないと判定し、
     前記距離が前記最小検出寸法よりも長い場合、前記距離が算出された2つの最近傍点の間の領域が不適切領域であると判定する、
     請求項1に記載の領域検査装置。
    The processor includes:
    If the distance is less than or equal to the minimum detection dimension, it is determined that the area between the two nearest points for which the distance was calculated is not an inappropriate area,
    If the distance is longer than the minimum detection dimension, determining that the area between the two nearest neighbor points for which the distance was calculated is an inappropriate area;
    The area inspection device according to claim 1.
  3.  前記判定結果情報は、前記監視領域における前記不適切領域を示す情報である不適切領域情報を含み、
     前記プロセッサは、
     前記保護領域の外周に沿って前記検出対象物を移動させる検査者の位置を示す検査者位置情報を取得し、
     前記不適切領域情報と前記検査者位置情報を前記表示デバイスに表示させる、
     請求項2に記載の領域検査装置。
    The determination result information includes inappropriate area information that is information indicating the inappropriate area in the monitoring area,
    The processor includes:
    acquiring inspector position information indicating the position of an inspector who moves the detection target along the outer periphery of the protection area;
    displaying the inappropriate area information and the inspector position information on the display device;
    The area inspection device according to claim 2.
  4.  前記プロセッサは、
     検査者の少なくとも一部を示す点群である検査者点群を設定し、
     前記検出点群に、前記検査者点群と一致する点群である検査者検出点群が含まれる場合、前記検査者検出点群に基づいて前記検査者の位置を推定することで、前記検査者位置情報を取得する、
     請求項3に記載の領域検査装置。
    The processor includes:
    setting an examiner point cloud that is a point cloud indicating at least a portion of the examiner;
    When the detection point group includes an inspector detection point group that is a point group that matches the inspector point group, the inspection obtain person location information,
    The area inspection device according to claim 3.
  5.  前記最小検出寸法は、前記検出対象物の直径であり、
     前記プロセッサは、前記検出点群が、前記最小検出寸法に一致する半径を有する円の円周上に位置する複数の前記検出点を含む場合、複数の前記検出点に対応して前記検出対象物を認識する、
     請求項1又は2に記載の領域検査装置。
    The minimum detection dimension is the diameter of the detection target,
    When the detection point group includes a plurality of detection points located on the circumference of a circle having a radius that matches the minimum detection dimension, the processor detects the detection target according to the plurality of detection points. recognize,
    The area inspection device according to claim 1 or 2.
  6.  前記プロセッサは、
     所定数の時点で連続して検出された前記検出点群に含まれる前記検出点が1つであり、前記監視領域が形成される二次元平面上に前記検出点を時系列に並べた状態で、隣接する時点の前記検出点が前記監視装置による投光ビーム間隔を隔てて前記二次元平面上で隣接し、且つ、いずれの前記検出点も前記許容差域内に位置する場合、
     前記所定数の時点で連続して検出された複数の前記検出点に対応して前記検出対象物を認識し、
     前記所定数の時点で連続して検出された1つずつの前記検出点を、各時点での前記最近傍点とする、
     請求項1又は2に記載の領域検査装置。
    The processor includes:
    The detection point included in the detection point group continuously detected at a predetermined number of points in time is one, and the detection points are arranged in chronological order on a two-dimensional plane in which the monitoring area is formed. , when the detection points at adjacent times are adjacent on the two-dimensional plane with an interval between the beams projected by the monitoring device, and both of the detection points are located within the tolerance range,
    Recognizing the detection target corresponding to the plurality of detection points consecutively detected at the predetermined number of points in time;
    each one of the detection points consecutively detected at the predetermined number of time points is set as the nearest neighbor point at each time point;
    The area inspection device according to claim 1 or 2.
  7.  前記プロセッサは、
     複数の保護領域の中から、検査対象の保護領域を指定し、
     指定された前記保護領域を含む前記監視領域の良否の判定を行う、
     請求項1又は2に記載の領域検査装置。
    The processor includes:
    Specify the protection area to be inspected from among multiple protection areas,
    determining the quality of the monitoring area including the specified protection area;
    The area inspection device according to claim 1 or 2.
  8.  前記検出対象物は、前記保護領域の外周に沿って移動可能であり、
     前記プロセッサは、前記検出対象物が前記保護領域の外周に沿って1周分移動した後、前記判定結果情報を表示させる、
     請求項1又は2に記載の領域検査装置。
    The detection target is movable along the outer periphery of the protection area,
    The processor causes the determination result information to be displayed after the detection target has moved one round along the outer periphery of the protection area.
    The area inspection device according to claim 1 or 2.
  9.  前記検出対象物は、前記保護領域の外周に沿って移動可能であり、
     前記プロセッサは、前記検出対象物が前記保護領域の外周に沿って移動中に、前記判定結果情報を表示させる、
     請求項1又は2に記載の領域検査装置。
    The detection target is movable along the outer periphery of the protection area,
    The processor displays the determination result information while the detection target is moving along the outer periphery of the protection area.
    The area inspection device according to claim 1 or 2.
  10.  前記判定結果情報は、前記保護領域と、前記複数の時点のそれぞれにおいて導出された複数の最近傍点と、がマッピングされた情報を含む、
     請求項1又は2に記載の領域検査装置。
    The determination result information includes information in which the protected area and a plurality of nearest neighbor points derived at each of the plurality of time points are mapped.
    The area inspection device according to claim 1 or 2.
  11.  前記判定結果情報は、前記距離が前記最小検出寸法より長い場合、前記距離が前記最小検出寸法より長いことを示す情報を含む、
     請求項1又は2に記載の領域検査装置。
    When the distance is longer than the minimum detectable dimension, the determination result information includes information indicating that the distance is longer than the minimum detectable dimension.
    The area inspection device according to claim 1 or 2.
  12.  前記判定結果情報は、前記距離が前記最小検出寸法以下であり所定の密度判定閾値よりも長い場合、前記距離が得られた2つの最近傍点の付近では検出点の密度が低いことを示す情報を含む、
     請求項11に記載の領域検査装置。
    The determination result information includes information indicating that when the distance is less than or equal to the minimum detection dimension and longer than a predetermined density determination threshold, the density of detection points is low in the vicinity of the two nearest points from which the distance was obtained. include,
    The area inspection device according to claim 11.
  13.  前記判定結果情報は、導出された前記最近傍点が前記許容差域内に位置するか否かを示す情報を含む、
     請求項9に記載の領域検査装置。
    The determination result information includes information indicating whether the derived nearest neighbor point is located within the tolerance range.
    The area inspection device according to claim 9.
  14.  監視装置により監視される監視領域を検査する領域検査方法であって、
     前記監視領域は、保護領域と、前記保護領域の外側に形成される許容差域を含み、
     複数の時点のそれぞれにおいて、前記監視装置により投光された投光光が反射又は散乱された検出光に対応する点群を検出点群として取得するステップと、
     前記複数の時点のそれぞれにおいて、前記検出点群に基づいて検出対象物を認識するステップと、
     前記複数の時点のそれぞれにおいて、前記検出点群に含まれる前記検出対象物を示す対象物点群に含まれる1つ以上の検出点のうち、前記許容差域内に存在し且つ前記保護領域に最も近い点である最近傍点を導出するステップと、
     前記複数の時点のそれぞれで導出された最近傍点を、前記監視領域が形成される二次元平面上に時系列に並べて、各々の最近傍点の間の距離を算出するステップと、
     前記距離と前記監視装置により検出可能な最小検出寸法とに基づいて、前記監視領域の良否の判定を行うステップと、
     前記判定の結果を示す判定結果情報を表示デバイスに表示させるステップと、
     を有する領域検査方法。
    An area inspection method for inspecting a monitoring area monitored by a monitoring device, the method comprising:
    The monitoring area includes a protection area and a tolerance area formed outside the protection area,
    At each of a plurality of time points, acquiring a point group corresponding to detection light from which the projected light projected by the monitoring device is reflected or scattered as a detected point group;
    recognizing a detection target based on the detection point group at each of the plurality of time points;
    At each of the plurality of time points, among one or more detection points included in the object point group indicating the detection object included in the detection point group, the detection point that exists within the tolerance range and is the closest to the protection area. deriving a nearest neighbor point that is a close point;
    arranging the nearest neighbor points derived at each of the plurality of time points in time series on a two-dimensional plane in which the monitoring area is formed, and calculating a distance between each of the nearest neighbor points;
    determining whether the monitoring area is good or bad based on the distance and a minimum detectable dimension detectable by the monitoring device;
    Displaying judgment result information indicating the result of the judgment on a display device;
    An area inspection method having
  15.  請求項14に記載の領域検査方法の各ステップをコンピュータに実行させるためのプログラム。 A program for causing a computer to execute each step of the area inspection method according to claim 14.
PCT/JP2023/029102 2022-08-10 2023-08-09 Region inspection apparatus, region inspection method, and program WO2024034639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022128369 2022-08-10
JP2022-128369 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034639A1 true WO2024034639A1 (en) 2024-02-15

Family

ID=89851654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029102 WO2024034639A1 (en) 2022-08-10 2023-08-09 Region inspection apparatus, region inspection method, and program

Country Status (1)

Country Link
WO (1) WO2024034639A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175488A (en) * 2009-01-31 2010-08-12 Keyence Corp Optical scan type photoelectric switch
JP2014503820A (en) * 2010-12-21 2014-02-13 ジック アーゲー Photoelectric sensor and object detection and distance measurement method
JP2014523716A (en) * 2011-07-05 2014-09-11 オムロン株式会社 Method and apparatus for projective space monitoring
US20190362549A1 (en) * 2018-05-22 2019-11-28 Sick Ag Visualization of 3d image data
US20210173084A1 (en) * 2019-12-06 2021-06-10 Datalogic Ip Tech S.R.L. Safety laser scanner and related method for adjusting distance measurements to compensate for reflective backgrounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175488A (en) * 2009-01-31 2010-08-12 Keyence Corp Optical scan type photoelectric switch
JP2014503820A (en) * 2010-12-21 2014-02-13 ジック アーゲー Photoelectric sensor and object detection and distance measurement method
JP2014523716A (en) * 2011-07-05 2014-09-11 オムロン株式会社 Method and apparatus for projective space monitoring
US20190362549A1 (en) * 2018-05-22 2019-11-28 Sick Ag Visualization of 3d image data
US20210173084A1 (en) * 2019-12-06 2021-06-10 Datalogic Ip Tech S.R.L. Safety laser scanner and related method for adjusting distance measurements to compensate for reflective backgrounds

Similar Documents

Publication Publication Date Title
US10546167B2 (en) System and method of operating a manufacturing cell
JP6866673B2 (en) Monitoring system, monitoring device, and monitoring method
JP2021180002A (en) System having autonomous mobile robot and base station for autonomous mobile robot, base station for autonomous mobile robot, method for autonomous mobile robot, and method for autonomous docking to base station for autonomous mobile robot
CN106997455B (en) Photoelectric sensor and method for safely detecting object with minimum size
JP6013505B2 (en) Method and apparatus for controlling a laser tracker using a gesture
JP5544032B2 (en) Method and laser measurement system for controlling a laser tracker using a gesture
EP2663874B1 (en) Method and system for determining position and orientation of a measuring instrument
US11125860B2 (en) Triangulation applied as a safety scanner
US10223793B1 (en) Laser distance measuring method and system
JP2009110124A (en) Target detecting device, target detecting method, and target detecting program
JP6637331B2 (en) Safety scanner and optical safety system
JP2017531258A (en) Method and apparatus for identifying structural element of projected structural pattern in camera image
CN116721512B (en) Autonomous navigation robot environment perception control method and system
CN110174706B (en) Object monitoring device using sensor
JP6417948B2 (en) Drift gauge and drift inspection method
WO2024034639A1 (en) Region inspection apparatus, region inspection method, and program
JPWO2019186742A1 (en) Monitoring control device, monitoring system, monitoring control method and program
JPWO2020136969A1 (en) Measuring systems, measuring devices, measuring methods, and programs
KR101750509B1 (en) Apparatus for monitoring radar rotating structure using soind camera and method thereof
JP2018179654A (en) Imaging device for detecting abnormality of distance image
Jacobsen et al. Real-time lidar for monitoring construction worker presence near hazards and in work areas in a virtual reality environment
US10408604B1 (en) Remote distance estimation system and method
WO2023089952A1 (en) Scanner device and area setting method
EP4282604A1 (en) Information processing device, information processing method, and program
US12140415B2 (en) Image analysis device, analyis device, shape measurement device, image analysis method, measurement condition determination method, shape measurement method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852601

Country of ref document: EP

Kind code of ref document: A1