WO2024033968A1 - 投影光学系及び眼鏡型端末 - Google Patents
投影光学系及び眼鏡型端末 Download PDFInfo
- Publication number
- WO2024033968A1 WO2024033968A1 PCT/JP2022/030271 JP2022030271W WO2024033968A1 WO 2024033968 A1 WO2024033968 A1 WO 2024033968A1 JP 2022030271 W JP2022030271 W JP 2022030271W WO 2024033968 A1 WO2024033968 A1 WO 2024033968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- projection
- light
- incident
- substrate
- region
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 111
- 239000000758 substrate Substances 0.000 claims abstract description 186
- 230000010287 polarization Effects 0.000 claims description 101
- 230000009467 reduction Effects 0.000 claims description 92
- 230000001681 protective effect Effects 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 239000010408 film Substances 0.000 description 13
- 239000003086 colorant Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/02—Viewing or reading apparatus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/344—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/64—Constructional details of receivers, e.g. cabinets or dust covers
Definitions
- the present invention relates to a projection optical system and a glasses-type terminal.
- eyeglass-type devices, head-mounted displays, and the like that use an optical system including a wave guide or the like to display a two-dimensional image for the user to observe (see, for example, Patent Document 1).
- the optical system may become complicated. Further, when the optical system includes a diffraction grating or the like, light incident at a predetermined angle may be diffracted and enter the user's eyes.
- the present invention has been made in view of these points, and it is an object of the present invention to reduce diffracted light traveling toward the user's eyes with a simple configuration in a device that displays a two-dimensional image for the user to observe.
- the purpose is to
- the first aspect of the present invention includes an optical waveguide, and transmits at least part of the light incident from the first surface to the second surface opposite to the first surface, a projection substrate for projecting image light onto the second surface; and an air layer provided on the first surface side or the second surface side of the projection substrate with respect to the optical waveguide. , covering at least a portion of the optical waveguide, the incident light that has entered from the first surface of the projection substrate at a predetermined incident angle is diffracted by the optical waveguide, and the image light is emitted in a direction. a diffracted light reduction plate that reduces the diffracted light toward which the optical waveguide section guides at least a portion of the projection light for projecting the image light, and outputs the image light from the second surface.
- a projection optical system is provided.
- the diffraction light reduction plate includes a protective substrate provided opposite to the first surface or the second surface of the projection substrate, a third surface of the protective substrate opposite to the projection substrate, and a third surface of the protective substrate opposite to the projection substrate.
- a polarizing filter that is provided on one of the fourth surfaces facing the substrate and reduces P waves parallel to the incident plane of the incident light that has entered the diffraction light reduction plate; and the polarized light of the protective substrate. It may include an infrared cut filter that is provided on a surface opposite to the surface on which the filter is provided, and that reduces light in an infrared region of the incident light.
- the diffraction light reduction plate is provided facing the first surface or the second surface of the projection substrate, and reduces P waves parallel to the incident surface of the incident light that has entered the diffraction light reduction plate. It may also have a polarizing filter to make it.
- the diffraction light reduction plate includes a protective substrate provided opposite to the first surface or the second surface of the projection substrate, a third surface of the protective substrate opposite to the projection substrate, and a third surface of the protective substrate opposite to the projection substrate. It may include a polarizing film that is coated on at least one of the fourth surfaces facing the substrate and reduces P waves parallel to the incident plane of the incident light that has entered the diffraction light reduction plate.
- the optical waveguide section includes an input diffraction grating, an input region into which projection light for projecting the image light is incident, and an input region that guides the input projection light into the inside of the projection substrate, and an output diffraction grating.
- the optical waveguide section includes an intermediate diffraction grating, and further includes an intermediate region that guides a part of the projection light incident from the input region toward the output region, and the input diffraction grating includes a plurality of one groove is formed in a first period, the intermediate diffraction grating has a plurality of second grooves formed in a second period, and the output diffraction grating has a plurality of third grooves formed in a third period. may have been done.
- the eyeglass-type terminal is provided as at least one of a right eye lens and a left eye lens of the user, and the eyeglass type terminal is provided as at least one of a lens for the right eye and a lens for the left eye of the user, and
- the projection optical system of the first aspect projects the image light onto the second surface while transmitting at least part of the light to the user's eyes, and a frame fixing the projection optical system.
- a projection unit that is provided on the frame and that irradiates the incident area of the optical waveguide of the projection substrate with the projection light for projecting the image light onto the output area of the optical waveguide.
- the projection unit includes a polarization adjustment unit that adjusts the polarization direction of the projection light irradiated onto the incident area, and the diffraction light reduction plate of the projection optical system faces the first surface of the projection substrate.
- the polarization adjusting section may adjust the polarization direction of the projection light so that the polarization direction of the image light and the polarization direction of the light to be reduced by the diffraction light reduction plate match.
- the projection unit includes a polarization adjustment unit that adjusts the polarization direction of the projection light irradiated onto the incident area, and the diffraction light reduction plate of the projection optical system faces the second surface of the projection substrate.
- the polarization adjusting section may adjust the polarization direction of the projection light so that the polarization direction of the image light and the polarization direction of the light transmitted by the diffraction light reduction plate match.
- a plurality of the projection substrates are fixed to the frame, and the diffraction light reduction plate is located on the opposite side of the user from one of the plurality of projection substrates, or on the side of the one projection substrate among the plurality of projection substrates. and the user, and the projection unit irradiates the projection light of different wavelengths onto the incident regions provided on each of the plurality of projection substrates, and The respective output areas overlap at least in part in a plan view, and the image light corresponding to the projection light irradiated from the projection unit onto the plurality of input areas is transmitted to the plurality of projection substrates.
- the light may be emitted from the second surface of the screen to the user's eyes.
- the projection unit includes a polarization adjustment unit that adjusts the polarization direction of at least one of the plurality of projection lights irradiated onto the incident area, and the diffraction light reduction plate of the projection optical system includes a plurality of diffraction light reduction plates. is provided on the opposite side of the projection board from the user, and the polarization adjustment unit is configured to adjust the polarization direction of at least one image light among the plurality of image lights and the light to be reduced by the diffraction light reduction plate. The polarization direction of the projection light may be adjusted so as to match the polarization direction.
- the projection unit includes a polarization adjustment unit that adjusts the polarization direction of at least one of the plurality of projection lights irradiated onto the incident area, and the diffraction light reduction plate of the projection optical system includes a plurality of diffraction light reduction plates. is provided between one of the projection boards of the plurality of projection boards and the user, and the polarization adjustment unit is configured to adjust the polarization direction of the image light emitted by the one projection board among the plurality of image lights and the polarization direction of the image light emitted by the one projection board among the plurality of image lights.
- the polarization direction of the projection light may be adjusted so as to match the polarization direction of the light transmitted by the diffraction light reduction plate.
- a first configuration example of the glasses-type terminal 10 according to the present embodiment is shown.
- 1 schematically shows an optical path of projection light in the glasses-type terminal 10 according to the present embodiment.
- the outline of the optical path of projection light on the projection substrate 100 according to this embodiment is shown.
- An example of projection light irradiated onto the projection board 100 by the projection unit 120 according to this embodiment and image light emitted by the projection board 100 is shown.
- An example of the configuration of a projection substrate 100 according to this embodiment is shown.
- a second configuration example of the glasses-type terminal 10 according to the present embodiment is shown.
- a third configuration example of the glasses-type terminal 10 according to the present embodiment is shown.
- a fourth configuration example of the glasses-type terminal 10 according to the present embodiment is shown.
- a fifth configuration example of the glasses-type terminal 10 according to the present embodiment is shown.
- a sixth configuration example of the glasses-type terminal 10 according to the present embodiment is shown.
- FIG. 1 shows a first configuration example of a glasses-type terminal 10 according to this embodiment.
- three axes that are perpendicular to each other are referred to as an X axis, a Y axis, and a Z axis.
- the glasses-type terminal 10 is, for example, a wearable device worn by a user.
- the glasses-type terminal 10 projects image light onto a display area provided on the projection board 100 while allowing the user to observe the scenery through the glasses.
- the eyeglass-type terminal 10 includes a projection optical system 50, a frame 110, and a projection section 120.
- the projection optical system 50 includes a projection substrate 100 and a diffraction light reduction plate 310.
- the projection substrate 100 of the projection optical system 50 is shown, and the illustration of the diffracted light reduction plate 310 is omitted.
- the diffraction light reduction plate 310 will be described later.
- the projection substrate 100 has an optical waveguide 200 and projects image light onto the second surface while transmitting at least part of the light incident from the first surface to the user's eyes.
- the first surface of the projection board 100 is a surface facing away from the user when the user is wearing the glasses-type terminal 10.
- the second surface of the projection board 100 is a surface facing the user when the user wears the glasses-type terminal 10.
- FIG. 1 shows an example in which the first and second surfaces of the projection substrate 100 are arranged substantially parallel to the XY plane.
- the projection substrate 100 is, for example, a glass substrate on which an optical waveguide 200 is formed.
- the optical waveguide section 200 guides at least a portion of the projection light for projecting the image light that has entered from the second surface of the projection substrate 100, and outputs it from the second surface as image light.
- the projection substrate 100 will be described later.
- the frame 110 fixes the projection optical system 50.
- the frame 110 is provided with a projection optical system 50 as at least one of a user's right eye lens and left eye lens.
- FIG. 1 shows an example in which a frame 110 is provided with a projection optical system 50a as a lens for the user's right eye, and a projection optical system 50b as a lens for the left eye of the user.
- the frame 110 may be provided with one projection optical system 50 as a lens for the user's right eye or a lens for the left eye. Further, the frame 110 may be provided with one projection optical system 50 as a user's binocular lenses. In this case, the frame 110 may have the shape of goggles.
- the frame 110 has parts such as temples and straps so that the user can wear the glasses-type terminal 10.
- the projection unit 120 is provided on the frame 110 and irradiates the projection optical system 50 with projection light for projecting image light onto the projection substrate 100.
- the frame 110 is provided with one or more such projection sections 120.
- FIG. 1 shows a projection unit 120a for irradiating a projection optical system 50a (projection substrate 100a) with projection light L1, and a projection unit 120b for irradiating a projection optical system 50b (projection substrate 100b) with projection light L2.
- An example provided in the frame 110 is shown.
- the projection unit 120 may be provided at a portion of the frame 110 to which the projection optical system 50 is fixed, or may be provided at a temple of the frame 110 or the like. It is desirable that the projection unit 120 is provided so as to be integrated with the frame 110.
- the projection unit 120 irradiates the projection optical system 50 with projection light including one wavelength, allowing the user to observe a monochromatic image.
- the projection unit 120 may irradiate the projection optical system 50 with projection light including a plurality of wavelengths to allow the user to observe an image including a plurality of colors.
- Such a projection optical system 50 will be explained next. Note that the operation of the projection substrate 100 of the projection optical system 50 will be explained first, and the diffraction light reduction plate 310 will be described later.
- FIG. 2 schematically shows the optical path of projection light in the glasses-type terminal 10 according to the present embodiment.
- the projection section 120 irradiates the incident region 210 of the optical waveguide section 200 of the projection substrate 100 with projection light.
- the input region 210 guides the projection light into the substrate of the projection substrate 100 .
- at least a portion of the projection light guided within the substrate is output from the output region 230 of the optical waveguide section 200 as image light. Note that the incident area 210 and the output area 230 will be described later.
- FIG. 3 schematically shows the optical path of projection light on the projection substrate 100 according to this embodiment.
- the optical waveguide section 200 has an input region 210, an intermediate region 220, and an output region 230.
- the projection light L enters the input region 210, passes through the intermediate region 220, and exits as image light P from the output region 230.
- the intermediate region 220 guides the projection light L part by part to the output region 230 as the projection light L travels away from the input region 210 .
- the output area 230 also outputs part of the projection light L as part of the image light P as the projection light L advances away from the intermediate area 220. Thereby, the projection substrate 100 emits the projection light L that has entered the input region 210 as image light P from the output region 230 .
- the intermediate region 220 guides the projection light L to the output region 230 at a constant rate over the entire region of the intermediate region 220.
- the intensity of the projection light L decreases as the projection light L advances away from the incident area 210, so the intensity of the projection light L entering the output area 230 from the intermediate area 220 varies depending on the distance from the incident area 210. It may be different.
- the emission region 230 emits the projection light L as the image light P at a constant rate over the entire area of the emission region 230.
- the light intensity of the projection light L decreases as the projection light L advances away from the intermediate region 220, so the image light P emitted from the output region 230 is
- the strength may vary depending on the For example, the brightness may gradually decrease from the upper left pixel to the lower right pixel of the image projected by the emission region 230.
- the projection substrate 100 reduces such variations in brightness.
- FIG. 4 shows an example of projection light L irradiated onto the projection substrate 100 by the projection unit 120 according to the present embodiment and image light P emitted from the projection substrate 100.
- the projection unit 120 irradiates the projection light L toward the second surface of the projection substrate 100 located in the +Z direction, for example.
- the projection light L corresponds to an image shown to the user. For example, when a screen or the like is installed on a surface substantially parallel to the XY plane and the projection light L is projected, the screen has an image M1 to be observed by the user. is displayed.
- the image shown to the user is, for example, an AR (Augmented Reality) image or a VR (Virtual Reality) image created by a processor included in the projection unit 120.
- the projection unit 120 irradiates a plurality of light beams as the projection light L to form the image M1 on a plane substantially parallel to the XY plane.
- the projection unit 120 projects a substantially rectangular image M1 with the X-axis direction as the longitudinal direction on a plane substantially parallel to the XY plane. Furthermore, in FIG. 4, five light rays among the plurality of light rays emitted by the projection unit 120 are shown as input light rays 20.
- the light ray corresponding to the upper left pixel of the image is the first input light ray 20a
- the light ray corresponding to the lower left pixel of the image is the second input light ray 20b
- the light ray corresponding to the center pixel of the image is the third input light ray 20c
- the light ray corresponding to the upper right pixel of the image is assumed to be a fourth input ray 20d
- the light ray corresponding to the lower right pixel of the image is assumed to be a fifth input ray 20e.
- the projection unit 120 for example, irradiates the incident region 210 of the projection substrate 100 with such projection light L so as to create an erect virtual image at infinity or at a predetermined position.
- the projection light that has entered the input region 210 passes through the intermediate region 220 and is output as image light P from the output region 230.
- the image light P is emitted from the emission region 230 and enters the user's eye at a distance d from the projection substrate 100.
- the image light P then forms an image on the retina of the user's eye as an image M2.
- the image light P includes a plurality of bundles of light rays that form an image M2.
- output light beams 30 five light beams out of the plurality of light beams that are irradiated from the circular area C of the output area 230 of the projection substrate 100 and form an image at a predetermined position are shown as output light beams 30.
- a beam of light that is formed as a pixel at the lower right of the image is the first output beam of light 30a
- a beam of light that is formed as a pixel of the upper right of the image is formed as the second output beam of light 30b
- the beam of light is formed as the pixel at the center of the image.
- the bundle of rays is a third output bundle of rays 30c, the bundle of rays that forms an image as a pixel at the lower left of the image is a fourth output bundle of rays 30d, and the bundle of rays that forms an image as a pixel at the upper left of an image is a fifth output bundle of rays 30e.
- Each bundle of light rays corresponds to each of the plurality of input light rays 20 incident from the projection unit 120.
- the first output light beam 30a corresponds to the first input light beam 20a
- the first input light beam 20a is branched multiple times and branched multiple times between the incident area 210 and the output area 230 of the projection substrate 100. Contains multiple light rays generated by diffraction, etc.
- the second output ray bundle 30b is connected to the second input ray 20b
- the third output ray bundle 30c is connected to the third input ray 20c
- the fourth output ray bundle 30d is connected to the fourth input ray 20d
- the fifth output ray bundle 30c is connected to the fourth input ray 20d.
- 30e correspond to the fifth input light beam 20e, respectively.
- the image M2 formed by the image light P emitted from the emission region 230 on the retina of the user's eye corresponds to the image M1 projected by the projection light L emitted by the projection unit 120.
- the user wearing the glasses-type terminal 10 can feel as if the image M2 is being projected onto the second surface of the projection board 100, superimposed on the scenery seen through the projection board 100.
- the emission area 230 functions as a display area that displays the image M2 corresponding to the image M1 projected by the projection light L.
- the image M2 observed by the user is an image obtained by vertically and horizontally inverting the image M1 projected by the projection light L.
- the image M1 projected by the projection light L may be a still image, or alternatively, may be a moving image.
- the projection substrate 100 that emits the image light P corresponding to the incident projection light L as described above will now be described.
- FIG. 5 shows an example of the configuration of the projection substrate 100 according to this embodiment.
- FIG. 3 shows an example in which the first and second surfaces of the projection substrate 100 are arranged substantially parallel to the XY plane.
- the projection substrate 100 has an optical waveguide 200 for projecting image light onto the second surface while transmitting at least a portion of the light incident from the first surface to the second surface opposite to the first surface. It is a board.
- the projection substrate 100 is, for example, a glass substrate.
- the projection substrate 100 includes an optical waveguide 200 having an entrance region 210, an intermediate region 220, and an exit region 230.
- the incident region 210 receives projection light for projecting image light, and guides the incident projection light toward the intermediate region 220 .
- FIG. 5 shows an example in which the incident region 210 has a circular shape in a plane substantially parallel to the XY plane, the present invention is not limited to this.
- the incident area 210 only needs to be able to guide the projection light to the intermediate area 220, and may have a shape such as an ellipse, a polygon, or a trapezoid.
- the incident region 210 has an incident diffraction grating in which a plurality of first grooves 212 are formed at a first period.
- the plurality of first grooves 212 function as a diffraction grating by being arranged in the same direction on the upper surface of the projection substrate 100 with predetermined groove widths and intervals.
- the entrance region 210 has a reflection-type or transmission-type entrance diffraction grating, and guides the projection light toward the intermediate region 220 by reflection-type diffraction or transmission-type diffraction.
- the first period of the plurality of first grooves 212 is, for example, in a range of about 10 nm to about 10 ⁇ m.
- the plurality of first grooves 212 are arranged, for example, in a direction from the incident region 210 to the intermediate region 220.
- the direction in which the projection light travels from the incident region 210 toward the intermediate region 220 is defined as the first direction.
- FIG. 5 shows an example in which the first direction is a direction substantially parallel to the X-axis direction, and the first groove portions 212 extending in a direction substantially parallel to the Y-axis direction are arranged in the first direction. Since the projection light enters the incident region 210 while converging, the incident region 210 guides the projection light to the intermediate region 220 so as to have a divergence angle centered on the first direction within the plane of the projection substrate 100. .
- the intermediate region 220 guides a portion of the projection light that has entered from the input region 210 toward the output region 230 .
- the intermediate region 220 is provided in a region through which projection light passes in a plane substantially parallel to the XY plane.
- the intermediate region 220 has a reflective intermediate diffraction grating and guides the projection light toward the output region 230 by reflective diffraction.
- the intermediate region 220 has, for example, a rectangular shape with the first direction as the longitudinal direction.
- the intermediate region 220 has a shape that expands as it moves away from the incident region 210 and away from the first direction, which is the direction in which the projection light travels through the incident region 210. It is preferable to have the following.
- the intermediate region 220 has, for example, a trapezoidal shape, a fan shape, or the like in a plane substantially parallel to the XY plane.
- FIG. 5 shows an example in which the intermediate region 220 has a trapezoidal shape.
- the intermediate region 220 having such a shape can be formed corresponding to a region where the projection light travels while spreading in the XY plane, and can efficiently guide the projection light.
- the intermediate region 220 has an intermediate diffraction grating in which a plurality of second grooves 222 are formed at a second period.
- the plurality of second grooves 222 function as a diffraction grating by being arranged in the same direction on the upper surface of the projection substrate 100 with predetermined groove widths and intervals.
- the intermediate region 220 functions, for example, as a reflective intermediate diffraction grating, and guides the projection light to the output region 230.
- the second period of the plurality of second groove portions 222 is a period different from the first period of the plurality of first groove portions 212. As for the second period, it is desirable that a period appropriate for guiding the projection light to the emission region 230 is selected.
- the second period is, for example, in a range of about 10 nm to about 10 ⁇ m.
- the plurality of second groove portions 222 are arranged in a predetermined direction.
- the direction from the intermediate region 220 toward the emission region 230 is defined as the second direction, and the angle formed by the first direction and the second direction is defined as the first angle.
- the plurality of second grooves 222 are formed in a direction that is inclined in the second direction by an angle that is 1/2 of the first angle with respect to the first direction.
- the second direction is approximately parallel to the Y-axis direction
- the first angle is approximately 90 degrees
- the plurality of second grooves 222 are oriented in the second direction by approximately 45 degrees with respect to the first direction.
- An example of arraying in an inclined direction is shown.
- the intermediate region 220 has a plurality of first divided regions 224 arranged in the traveling direction of the incident projection light.
- the second groove portions 222 formed in the plurality of first divided regions 224 have different depths.
- the second groove portion 222 is formed such that the proportion of light guided to the output region 230 among the input projection light differs for each first divided region 224.
- the intermediate region 220 has three or more first divided regions 224.
- the intermediate region 220 is divided into a plurality of first divided regions 224, and by varying the amount of projection light guided to the output region 230 for each first divided region 224, the distance from the incident region 210 can be adjusted. While guiding the projection light having different intensities to the output region 230, the distribution of the amount of light in the direction perpendicular to the traveling direction of the projection light is adjusted to be substantially constant.
- the depth of the second groove portion 222 provided in one first divided region 224 is closer to the entrance region 210 than the second groove portion provided in one first divided region 224.
- the second groove portion 222 is formed to have a depth greater than the depth of the second groove portion 222.
- the rate of change in the depth of the second groove portions 222 of two adjacent first divided regions 224 among the plurality of first divided regions 224 may increase as the distance from the incident region 210 increases.
- the first divided region 224a that is closest to the incident region 210 is configured so that the first divided region 224a that is closest to the incident region 210 is configured to guide a light amount of approximately 1/4 of the incident projection light to the output region 230. It is assumed that the depth of two groove portions 222a is formed. In this case, the remaining approximately 3/4 of the amount of projection light that has entered the first divided region 224a closest to the incident region 210 enters the adjacent first divided region 224b.
- the depth of the second groove portion 222b is formed so as to guide light having an amount of approximately 1 ⁇ 3 of the incident projection light to the output region 230.
- the depth of the second groove portion 222b of the first divided region 224b that is second closest to the incident region 210 allows 4/3 times as much light as that of the first divided region 224a that is closest to the incident region 210.
- the depth of the second groove portion 222a is greater than the depth of the second groove portion 222a so as to guide the wave to the emission region 230.
- the first divided region 224b as described above guides to the output region 230 approximately 1/4 of the amount of projection light that has entered the first divided region 224a closest to the input region 210.
- the depth of the second groove portion 222c is formed so as to guide light with approximately 1/2 the amount of light of the incident projection light to the output region 230.
- the depth of the second groove portion 222c of the first divided region 224c that is third closest to the incident region 210 is 3/2 times the depth of the first divided region 224b that is the second closest to the incident region 210.
- the depth of the second groove portion 222b is greater than the depth of the second groove portion 222b so as to guide the light to the emission region 230.
- the rate of change in the depth of the second groove portions 222 in two adjacent first divided regions 224 among the three first divided regions 224 is formed such that the rate of change in the depth increases as the distance from the incident region 210 increases.
- the first divided region 224c which is third closest to the incident region 210, guides to the output region 230 approximately 1/4 of the amount of projection light that has entered the first divided region 224a, which is closest to the incident region 210. It turns out.
- the intermediate region 220 is configured to vary the amount of projection light guided to the output region 230 to a predetermined value for each first divided region 224. It can be seen that the projection light can be guided to the output region 230 while making the amount of the projection light guided to the corresponding output region 230 have a substantially constant distribution.
- the intermediate region 220 may further include a first reflective region 226 at the farthest position from the incident region 210.
- FIG. 5 shows an example in which the intermediate region 220 has three first divided regions 224 and a first reflective region 226.
- the first reflective region 226 reflects at least a portion of the light that has passed through the plurality of first divided regions 224 back to the plurality of first divided regions 224 .
- the first reflective region 226 has a second groove 222 with a depth greater than the depth of the second groove 222 of the adjacent first divided region 224 .
- the plurality of first divided regions 224 guide at least a portion of the light reflected by the first reflective region 226 to the output region 230. Thereby, the intermediate region 220 can guide more projection light to the output region 230.
- the depth of the second groove portion 222 of the plurality of first divided regions 224 is determined by the amount of projection light that each first divided region 224 guides to the output region 230 including the light reflected by the first reflective region 226. may be determined to be approximately constant.
- the output region 230 guides at least a portion of the projection light incident from the intermediate region 220 and outputs it from the second surface of the projection substrate 100 as image light.
- FIG. 5 shows an example in which the emission region 230 has a rectangular shape with the X-axis direction as the longitudinal direction in a plane substantially parallel to the XY plane, the present invention is not limited to this.
- the emission region 230 may have a shape such as a rectangle, square, or trapezoid whose longitudinal direction is the Y-axis direction, as long as it can waveguide the projection light and emit it as image light.
- the emission region 230 has an emission diffraction grating in which a plurality of third grooves 232 are formed at a third period.
- the plurality of third grooves 232 function as a diffraction grating by being arranged in the same direction on the upper surface of the projection substrate 100 with predetermined groove widths and intervals.
- the exit region 230 has a reflective or transmissive exit diffraction grating, and guides the image light toward the user's eyes by reflective diffraction or transmission diffraction.
- the third period of the plurality of third grooves 232 provided in the emission region 230 is a period different from the second period of the plurality of second grooves 222 in the intermediate region 220.
- the third period of the plurality of third grooves 232 of the emission region 230 may be the same period as the first period of the plurality of first grooves 212 of the incidence region 210. In this way, by substantially matching the periods of the diffraction gratings provided in the region into which the projection light is incident and the region from which the image light is emitted, it is possible to reduce distortions that occur in images observed by the user.
- the third period is, for example, in a range of about 10 nm to about 10 ⁇ m.
- the plurality of third groove portions 232 are arranged, for example, in the second direction from the intermediate region 220 toward the emission region 230.
- FIG. 5 shows an example in which the third groove portions 232 extending in the first direction are arranged in the second direction.
- the output region 230 has a plurality of second divided regions 234 arranged in the traveling direction of the projection light incident from the intermediate region 220.
- the third groove portions 232 formed in the plurality of second divided regions 234 have different depths.
- the third groove portion 232 is formed such that the proportion of light emitted as image light out of the input projection light differs for each second divided region 234.
- the emission region 230 has two or more second divided regions 234.
- the depth of the third groove portion 232 provided in one second divided region 234 is the same as the depth of the third groove portion 232 provided in one second divided region 234 which is closer to the intermediate region 220 than the third groove portion 232 provided in one second divided region 234.
- the depth is greater than 232.
- the rate of change in the depth of the third groove portion 232 of two adjacent second divided regions 234 increases as the distance from the intermediate region 220 increases. Good too.
- the emission region 230 is divided into a plurality of second divided regions 234, and the amount of light emitted as image light is made different for each second divided region 234.
- the emission region 230 guides the projection light as image light, and when an observer observes the image light as an image, the light amount of the entire image is The distribution of can be adjusted to be approximately constant.
- the emission region 230 may further include a second reflection region 236 at the farthest position from the intermediate region 220.
- FIG. 5 shows an example in which the emission region 230 has two second divided regions 234 and a second reflection region 236.
- the second reflective region 236 reflects at least a portion of the light that has passed through the plurality of second divided regions 234 back to the plurality of second divided regions 234 .
- the second reflective region 236 has a third groove portion 232 having a depth greater than the depth of the third groove portion 232 of the adjacent second divided region 234 .
- the plurality of second division regions 234 converts at least a portion of the light reflected by the second reflection region 236 into image light from the second surface of the projection substrate 100. It emits as. Thereby, the emission region 230 can emit more projection light as image light, similarly to the intermediate region 220.
- the depth of the third groove portion 232 of the plurality of second divided regions 234 is such that the amount of light emitted by each second divided region 234 as image light including the light reflected by the second reflective region 236 is approximately constant. It may be decided to do so.
- the projection substrate 100 branches the projection light incident on the incident region 210 at a different rate for each of the plurality of first divided regions 224 of the intermediate region 220, and The image light is emitted from the Thereby, the projection board 100 can reduce variations in the brightness of the projected image that is observed by the user.
- the projection substrate 100 can further reduce variations in image brightness by emitting image light at different rates for each of the plurality of second divided regions 234 in the emission region 230.
- Such a projection substrate 100 can be realized by forming diffraction gratings corresponding to the incident region 210, intermediate region 220, and output region 230 on the front or back surface of a glass substrate or the like.
- the groove portion forming the diffraction grating is made of, for example, resist, resin, or the like. Therefore, the projection substrate 100 according to the present embodiment is a substrate that can be easily produced by forming grooves with a predetermined period and depth in each region without incorporating a complicated optical system.
- one projection substrate 100 is provided in the frame 110 in each of the projection optical systems 50 for the right eye and for the left eye, and the corresponding projection section 120 irradiates the incident region 210 of each projection substrate 100 with projection light.
- the glasses-type terminal 10 has been described above, the present invention is not limited thereto.
- one projection optical system 50 may be provided with a plurality of projection substrates 100. Such a glasses-type terminal 10 will be explained next.
- FIG. 6 shows a second configuration example of the glasses-type terminal 10 according to the present embodiment.
- the operations that are substantially the same as those of the glasses-type terminal 10 according to the present embodiment shown in FIG.
- the appearance of the glasses-type terminal 10 of the second configuration example may be almost the same as that of the glasses-type terminal 10 shown in FIG.
- a plurality of projection boards 100 are fixed to the frame 110 of the glasses-type terminal 10 of the second configuration example.
- the plurality of projection substrates 100 are fixed to the frame 110 such that the emission areas 230 provided on each of the plurality of projection substrates 100 at least partially overlap in a plan view substantially parallel to the XY plane.
- three projection substrates 100R, 100G, and 100B are fixed to the frame 110 of the glasses-type terminal 10, and the three projection substrates 100 have an output area 230R, an output area 230G, and an output area 230B.
- An example is shown in which they overlap in plan view on the XY plane.
- the projection unit 120 irradiates projection light of different wavelengths onto the incident regions 210 provided on each of the plurality of projection substrates 100, respectively.
- the emission areas 230 provided on each of the plurality of projection substrates 100 transmit image light corresponding to the projection light irradiated from the projection unit 120 to the plurality of incidence areas 210, respectively, on the second surface of the plurality of projection substrates 100. and emit light to the user's eyes.
- FIG. 6 shows an example in which the projection unit 120 irradiates the incident areas 210 of the three projection substrates 100 with three projection lights corresponding to the three primary colors of RGB, red, green, and blue, which form an image.
- the three projection substrates 100 then superimpose three image lights corresponding to the three primary colors of RGB and emit the superimposed image lights to the user's eyes. This allows the user to view an image having, for example, 2 n multiple colors.
- n is a positive integer such as 4, 8, 16, 24, etc.
- ⁇ Third configuration example of glasses-type terminal 10> since the optical waveguide section 200 has a diffraction grating, when light enters the projection substrate 100 at a predetermined angle from above the user wearing the glasses-type terminal 10, the light is diffracted by the diffraction grating. Light may enter the user's eyes.
- the predetermined angle is, for example, an angle of 50 degrees or more and less than 90 degrees. The predetermined angle may be greater than or equal to 60 degrees and less than or equal to 80 degrees.
- the glasses-type terminal 10 may be configured to be able to reduce such diffracted light. Such a configuration will be explained next.
- FIG. 7 shows a third configuration example of the glasses-type terminal 10 according to the present embodiment.
- the operations that are substantially the same as those of the glasses-type terminal 10 according to the present embodiment shown in FIG.
- FIG. 7 is a diagram in which the projection section 120 is omitted.
- the appearance of the glasses-type terminal 10 of the third configuration example may be almost the same as the glasses-type terminal 10 shown in FIG.
- the projection optical system 50 further includes a diffracted light reduction plate 310.
- the diffraction light reduction plate 310 is provided on the first surface side of the projection substrate 100 with respect to the optical waveguide section 200 of the projection substrate 100 with an air layer in between. In this way, the diffraction light reduction plate 310 is provided apart from the optical waveguide section 200 so as not to affect the optical characteristics of the optical waveguide section 200.
- the diffracted light reduction plate 310 covers at least a portion of the optical waveguide 200, and the incident light that has entered from the first surface of the projection substrate 100 at a predetermined angle of incidence is diffracted by the optical waveguide 200 to produce image light. Reduces diffracted light heading in the direction of emission.
- the diffraction light reduction plate 310 covers at least a portion of the output diffraction grating in the output region 230. Thereby, the diffraction light reduction plate 310 can receive incident light directed toward the diffraction grating of the optical waveguide section 200 at a predetermined angle of incidence from the first surface side of the projection substrate 100 .
- Incident light having a predetermined incident angle and directed toward the diffraction grating of the optical waveguide section 200 is diffracted by the diffraction grating.
- the diffracted lights diffracted by the diffraction grating the diffracted lights that go in the direction of the image light emitted from the second surface of the projection substrate 100 will be directed towards the user's eyes, and will not enter the user's field of vision. be.
- the intensity of the diffracted light diffracted by such a diffraction grating varies depending on the polarization direction. For example, among the diffracted lights, the intensity of the P wave parallel to the plane of incidence of the incident light is greater than the intensity of the S wave perpendicular to the plane of incidence of the incident light. Therefore, the diffraction light reduction plate 310 is provided so as to reduce the P-wave light among the incident light and transmit the S-wave light.
- the diffracted light reduction plate 310 can reduce the intensity of the diffracted light directed toward the user's eyes even if light is incident from above the user wearing the glasses-type terminal 10. Furthermore, the diffracted light reduction plate 310 transmits S-wave light among the incident light to the projection substrate 100, so that at least a portion of the external light can be transmitted and viewed by the user.
- a diffracted light reduction plate 310 is provided facing the first surface of the projection substrate 100, and polarized light that reduces P waves parallel to the incident plane of the incident light incident on the diffraction light reduction plate 310 is shown.
- An example with a filter is shown.
- a polarizing filter is a polarizing plate, a polarizing film, or the like that attenuates a linearly polarized component of input light in a predetermined direction. It is desirable that the diffraction light reduction plate 310 be fixed to the frame 110 or the projection substrate 100.
- the diffraction light reduction plate 310 may include a rotatable polarization filter, and may be capable of adjusting the polarization direction (absorption axis) of the light to be reduced.
- FIG. 7 illustrates an example in which the diffracted light reduction plate 310 reduces the P wave of the incident light incident on the projection substrate 100 in order to reduce the diffracted light diffracted by the optical waveguide 200 of the projection substrate 100.
- the diffracted light reduction plate 310 may reduce the P wave of the diffracted light diffracted by the optical waveguide 200 of the projection substrate 100.
- the diffracted light reduction plate 310 is provided facing the second surface of the projection substrate 100 and reduces the P waves of the light emitted from the projection substrate 100.
- the diffraction light reduction plate 310 is provided between the user and the projection substrate 100.
- the intensity of the diffracted light directed toward the user's eyes can be reduced, similarly to the arrangement shown in FIG.
- the diffraction light reduction plate 310 may be a polarizing film coated on a transparent substrate or the like. Such a diffraction light reduction plate 310 will be explained next.
- FIG. 8 shows a fourth configuration example of the glasses-type terminal 10 according to the present embodiment.
- the same reference numerals are given to the operations that are substantially the same as those of the glasses-type terminal 10 according to the present embodiment shown in FIGS. 1 and 7, and redundant explanation will be omitted.
- the appearance of the glasses-type terminal 10 of the fourth configuration example may be almost the same as that of the glasses-type terminal 10 shown in FIG.
- the diffraction light reduction plate 310 includes a protective substrate 320 and a polarizing film 330.
- the protection substrate 320 is provided facing the first surface of the projection substrate 100.
- the protection substrate 320 may be provided facing the second surface of the projection substrate 100.
- the protective substrate 320 is a substrate transparent to at least visible light, such as a glass substrate or a plastic substrate.
- the polarizing film 330 is coated on at least one of the third surface of the protective substrate 320 opposite to the projection substrate 100 and the fourth surface facing the projection substrate 100.
- FIG. 8 shows an example in which a polarizing film 330 is coated on the third surface of the protective substrate 320.
- the polarizing film 330 is a thin film that reduces P waves parallel to the plane of incidence of the incident light that has entered the diffraction light reduction plate 310.
- the polarizing film 330 may be coated on part or all of the protective substrate 320.
- the diffracted light reducing plate 310 having the protective substrate 320 and the polarizing film 330 can also reduce the intensity of the diffracted light directed to the user's eyes, similarly to the diffracted light reducing plate 310 described with reference to FIG.
- the protection substrate 320 is preferably fixed to the frame 110 or the projection substrate 100. Further, the protection substrate 320 may be rotatably provided and configured to be able to adjust the direction of the absorption axis of the diffraction light reduction plate 310.
- FIG. 9 shows a fifth configuration example of the glasses-type terminal 10 according to the present embodiment.
- the diffracted light reduction plate 310 of the fifth configuration example includes a protective substrate 320, a polarizing filter 340, and an infrared cut filter 350.
- the polarizing filter 340 is provided on the third surface of the protective substrate 320 opposite to the projection substrate 100, and reduces P waves parallel to the incident plane of the incident light that has entered the diffraction light reduction plate 310.
- the polarizing filter 340 is a polarizing plate, a polarizing film, or the like. Further, the polarizing filter 340 may be the polarizing film described in FIG. 8. Such a polarizing filter 340 provides the effect of reducing the intensity of diffracted light directed toward the user's eyes, as described in FIGS. 7 and 8.
- the infrared cut filter 350 is provided on the fourth surface of the protective substrate 320 facing the projection substrate 100, and reduces light in the infrared region of the incident light.
- the infrared cut filter 350 is, for example, an IR cut filter that reduces near-infrared light using a multilayer film.
- Such an infrared cut filter 350 reduces light in the infrared region of the incident light when the incident angle of the incident light that enters the filter is about 0 degrees.
- the infrared cut filter 350 also reduces light in the visible range when the angle of incidence of the incident light is large, for example, 50 degrees or more. Therefore, the infrared cut filter 350 can reduce incident light in the visible range that enters the projection substrate 100 from above the user at a predetermined angle. Therefore, the glasses-type terminal 10 of the fifth configuration example can further reduce the intensity of the diffracted light directed toward the user's eyes.
- the diffracted light reduction plate 310 in FIG. 9 shows an example in which a polarizing filter 340 is provided on the third surface of the protective substrate 320, and an infrared cut filter 350 is provided on the fourth surface of the protective substrate 320.
- a polarizing filter 340 may be provided on the third surface of the protective substrate 320, and a polarizing filter 340 may be provided on the fourth surface of the protective substrate 320.
- ⁇ Sixth configuration example of glasses-type terminal 10> In the glasses-type terminal 10 according to the present embodiment, an example has been described in which the diffracted light diffracted by the optical waveguide section 200 of the projection substrate 100 is reduced, but the present invention is not limited thereto.
- the eyeglass-type terminal 10 may be further configured to reduce image light leaking from the first surface of the projection substrate 100.
- a part of the image light that should be emitted towards the user may end up being emitted as leaked light in a direction different from the user.
- part of the image light emitted from the second surface of the projection substrate 100 may be emitted from the first surface of the projection substrate 100 due to the diffraction grating of the optical waveguide section 200.
- a person looking at the user may feel uncomfortable because the user's eyes appear to be shining.
- the image light leaking from the output diffraction grating is light that has been guided through a plurality of diffraction gratings of the optical waveguide section 200, it becomes light that is polarized in one direction corresponding to the structure of the optical waveguide section 200. Therefore, by providing the diffracted light reduction plate 310 to face the first surface of the projection substrate 100 and making the polarization direction of the image light substantially coincide with the polarization direction (absorption axis) of the light to be reduced by the diffraction light reduction plate 310. , the intensity of leaked image light can be reduced.
- Such a glasses-type terminal 10 will be explained next.
- FIG. 10 shows a sixth configuration example of the glasses-type terminal 10 according to the present embodiment.
- the operations that are substantially the same as those of the glasses-type terminal 10 of the third configuration example shown in FIG.
- the glasses-type terminal 10 of the sixth configuration example is configured such that the polarization direction of image light can be adjusted.
- the projection section 120 has a polarization adjustment section 122 that adjusts the polarization direction of the projection light irradiated onto the incident area of the optical waveguide section 200.
- the polarization adjustment unit 122 includes, for example, a wave plate that rotates the polarization direction of linearly polarized light. Then, the polarization adjustment unit 122 adjusts the polarization direction of the projection light so that the polarization direction of the image light and the polarization direction of the light to be reduced by the diffracted light reduction plate 310 substantially match.
- the polarization adjustment unit 122 adjusts the polarization direction of the projection light, for example, so that the polarization direction of the image light becomes a P wave with respect to the diffracted light reduction plate 310.
- the diffracted light reduction plate 310 can reduce leakage of image light emitted from the first surface of the projection substrate 100.
- the diffracted light reduction plate 310 reduces the diffracted light directed toward the user's eyes, and at the same time reduces the leaked image light to the extent that the image light does not bother others even when they see the user wearing the glasses-type terminal 10. can reduce the strength of Further, the diffracted light reduction plate 310 transmits light having a polarization direction perpendicular to the polarization direction of the leaked image light, so that at least a portion of the external light can be transmitted and visually recognized by the user.
- the diffracted light reduction plate 310 is provided facing the second surface of the projection substrate 100 .
- the diffracted light reducing plate 310 reduces the diffracted light while reducing the amount of image emitted from the projection board 100 toward the user. Configured to transmit light.
- the glasses-type terminal 10 may be configured to be able to adjust the polarization direction of the image light.
- the projection section 120 includes the polarization adjustment section 122 that adjusts the polarization direction of the projection light irradiated onto the incident area of the optical waveguide section 200. Then, the polarization adjustment unit 122 adjusts the polarization direction of the projection light so that the polarization direction of the image light and the polarization direction of the light transmitted by the diffracted light reduction plate 310 substantially match. As an example, the polarization adjustment unit 122 adjusts the polarization direction of the projection light so that the polarization direction of the image light becomes an S wave with respect to the diffracted light reduction plate 310.
- the diffracted light reduction plate 310 reduces the diffracted light directed toward the user's eyes, and reduces the image light emitted from the projection board 100 toward the user. It can be made transparent and visible to the user. Note that even if the polarization direction of the projection light is not adjusted, if the polarization direction of the image light projected from the projection substrate 100 toward the user is approximately perpendicular to the absorption axis of the diffracted light reduction plate 310, such polarization adjustment is possible.
- the portion 122 may be omitted.
- the projection optical system 50 may include a plurality of projection substrates 100, as described with reference to FIG. 6, and the user may observe an image in which a plurality of image lights of different wavelengths are superimposed. In this case, it is desirable that the polarization directions of the plurality of image lights are substantially the same.
- the diffraction light reduction plate 310 is provided on the opposite side of the plurality of projection substrates 100 from the user, or between the plurality of projection substrates 100 and the user.
- FIG. 6 shows an example in which the projection optical system 50 includes three projection substrates 100 and one diffracted light reduction plate 310 provided on the side opposite to the user of the three projection substrates 100. .
- the diffraction light reduction plate 310 may be provided between two different projection substrates 100. Even with this arrangement, the diffracted light reduction plate 310 can reduce the diffracted light directed toward the user's eyes. In other words, the diffraction light reduction plate 310 is provided on the opposite side of one of the plurality of projection substrates 100 from the user, or between one of the projection substrates 100 and the user. Further, the projection optical system 50 may have a plurality of such diffraction light reduction plates 310.
- the eyeglass-type terminal 10 may be configured to be able to adjust the polarization direction of the image light.
- the projection unit 120 includes a polarization adjustment unit 122 that adjusts the polarization direction of at least one of the plurality of projection lights irradiated onto the incident area.
- the projection unit 120 may include a polarization adjustment unit 122 that adjusts the polarization direction of all projection light.
- the diffraction light reduction plate 310 may be provided on the side of the plurality of projection substrates 100 opposite to the user.
- the polarization adjustment unit 122 adjusts the polarization direction of the projection light so that the polarization direction of at least one of the plurality of image lights and the polarization direction of the light to be reduced by the diffracted light reduction plate 310 substantially match. Adjust.
- the diffracted light reduction plate 310 can reduce the intensity of image light leaked from the first surface of at least one projection substrate 100 while reducing the diffracted light directed toward the user's eyes.
- the projection unit 120 may have a plurality of polarization adjustment units 122 that adjust the polarization directions of the plurality of projection lights in accordance with the plurality of projection lights irradiated onto the incident region 210.
- the projection section 120 efficiently guides the plurality of projection lights in the optical waveguide section 200 and appropriately reduces leakage light corresponding to the plurality of projection lights with the diffraction light reduction plate 310. The polarization direction of light can be adjusted.
- the diffracted light reduction plate 310 may be provided between one of the plurality of projection substrates 100 and the user.
- the polarization adjustment unit 122 adjusts the projection so that the polarization direction of the image light emitted by one of the projection substrates 100 out of the plurality of image lights and the polarization direction of the light transmitted by the diffracted light reduction plate 310 are approximately the same. Adjust the polarization direction of light.
- the diffracted light reduction plate 310 can transmit the image light emitted from the second surface of the projection substrate 100 toward the user and make it visible to the user while reducing the diffracted light directed toward the user's eyes.
- the projection section 120 may have a plurality of polarization adjustment sections 122 that adjust the polarization directions of the plurality of projection lights in accordance with the plurality of projection lights irradiated onto the incident region 210. .
- the optical waveguide section 200 of the projection substrate 100 has an entrance region 210, an intermediate region 220, and an output region 230, but the invention is not limited to this.
- the optical waveguide section 200 only needs to be able to output the projection light incident from the projection section 120 as image light for the user to observe, and the shapes of the incident region 210, intermediate region 220, and output region 230 may be other shapes. Good too.
- the optical waveguide section 200 may have, for example, an entrance region 210 and an output region 230, but no intermediate region 220.
- Eyeglass-type terminal 20 Input light beam 30 Output light beam 50 Projection optical system 100 Projection substrate 110 Frame 120 Projection section 122 Polarization adjustment section 200 Optical waveguide section 210 Incident region 212 First groove section 220 Intermediate region 222 Second groove section 224 First divided region 226 First reflective area 230 Output area 232 Third groove 234 Second divided area 236 Second reflective area 310 Diffraction light reduction plate 320 Protective substrate 330 Polarizing film 340 Polarizing filter 350 Infrared cut filter
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本発明の投影光学系(50)は、光導波部(200)を有し、第1面から入射した光の少なくとも一部を第1面の反対側の第2面へと透過させつつ、第2面に画像光を投影させるための投影基板(100)と、光導波部(200)に対して投影基板(100)の第1面の側に空気層を介して設けられており、光導波部(200)の少なくとも一部を覆い、投影基板(100)の第1面から所定の入射角度を有して入射した入射光が光導波部(200)で回折して画像光が出射する方向に向かう回折光を低減させる回折光低減板(310)とを備え、光導波部(200)は、画像光を投影させるための投影光の少なくとも一部を導波して、第2面から画像光として出射する。
Description
本発明は、投影光学系及び眼鏡型端末に関する。
従来、ウェイブガイド等を含む光学系を用いて2次元画像をユーザに観察させるように表示する眼鏡型のデバイス、ヘッドマウントディスプレイ等が知られている(例えば、特許文献1を参照)。
このような装置は、限られた空間に光学系を組み込むので、光学系が複雑になってしまうことがあった。また、光学系が回折格子等を有する場合、所定の角度で入射した光が回折してユーザの目に入ってしまうことがあった。
そこで、本発明はこれらの点に鑑みてなされたものであり、2次元画像をユーザに観察させるように表示する装置において、簡便な構成でユーザの目の方向に進む回折光を低減できるようにすることを目的とする。
本発明の第1の態様においては、光導波部(optical waveguide)を有し、第1面から入射した光の少なくとも一部を前記第1面の反対側の第2面へと透過させつつ、前記第2面に画像光を投影させるための投影基板と、前記光導波部に対して前記投影基板の前記第1面の側又は前記第2面の側に空気層を介して設けられており、前記光導波部の少なくとも一部を覆い、前記投影基板の前記第1面から所定の入射角度を有して入射した入射光が前記光導波部で回折して前記画像光が出射する方向に向かう回折光を低減させる回折光低減板とを備え、前記光導波部は、前記画像光を投影させるための投影光の少なくとも一部を導波して、前記第2面から前記画像光として出射する、投影光学系を提供する。
前記回折光低減板は、当該投影基板の前記第1面又は前記第2面と対向して設けられている保護基板と、前記保護基板の前記投影基板とは反対側の第3面及び前記投影基板に対向する第4面のうち一方の面に設けられており、前記回折光低減板に入射した前記入射光の入射面に平行なP波を低減させる偏光フィルタと、前記保護基板の前記偏光フィルタが設けられている面とは反対側の面に設けられており、前記入射光のうち赤外領域の光を低減させる赤外カットフィルタとを有してもよい。
前記回折光低減板は、前記投影基板の前記第1面又は前記第2面と対向して設けられており、前記回折光低減板に入射した前記入射光の入射面に平行なP波を低減させる偏光フィルタを有してもよい。
前記回折光低減板は、前記投影基板の前記第1面又は前記第2面と対向して設けられている保護基板と、前記保護基板の前記投影基板とは反対側の第3面及び前記投影基板に対向する第4面のうち少なくとも一方にコーティングされており、前記回折光低減板に入射した前記入射光の入射面に平行なP波を低減させる偏光膜とを有してもよい。
前記光導波部は、入射回折格子を含み、前記画像光を投影させるための投影光が入射し、入射した前記投影光を当該投影基板の内部に導波する入射領域と、出射回折格子を含み、前記入射領域から入射した前記投影光の少なくとも一部を導波して前記第2面から前記画像光として出射する出射領域とを有し、前記回折光低減板は、前記出射回折格子の少なくとも一部を覆っていてもよい。
前記光導波部は、中間回折格子を含み、前記入射領域から入射した前記投影光の一部を前記出射領域に向けて導波する中間領域を更に有し、前記入射回折格子は、複数の第1溝部が第1周期で形成されており、前記中間回折格子は、複数の第2溝部が第2周期で形成されており、前記出射回折格子は、複数の第3溝部が第3周期で形成されていてもよい。
本発明の第2の態様においては、ユーザが装着する眼鏡型端末であって、前記ユーザの右眼用のレンズ及び左眼用レンズのうち少なくとも一方として設けられており、前記第1面から入射する少なくとも一部の光を前記ユーザの眼へと透過させつつ、前記第2面に前記画像光を投影させる、第1の態様の前記投影光学系と、前記投影光学系を固定しているフレームと、前記フレームに設けられており、前記光導波部の出射領域に前記画像光を投影させるための前記投影光を前記投影基板の前記光導波部の入射領域に照射する投影部とを備える、眼鏡型端末を提供する。
前記投影部は、前記入射領域に照射する前記投影光の偏光方向を調節する偏光調節部を有し、前記投影光学系の前記回折光低減板は、前記投影基板の前記第1面と対向して設けられており、前記偏光調節部は、前記画像光の偏光方向と前記回折光低減板が低減させる光の偏光方向とを一致させるように前記投影光の偏光方向を調節してもよい。
前記投影部は、前記入射領域に照射する前記投影光の偏光方向を調節する偏光調節部を有し、前記投影光学系の前記回折光低減板は、前記投影基板の前記第2面と対向して設けられており、前記偏光調節部は、前記画像光の偏光方向と前記回折光低減板が透過させる光の偏光方向とを一致させるように前記投影光の偏光方向を調節してもよい。
前記フレームには、複数の前記投影基板が固定されており、前記回折光低減板は、複数の前記投影基板のうち一の投影基板の前記ユーザとは反対側か、又は、前記一の投影基板と前記ユーザとの間に設けられており、前記投影部は、複数の前記投影基板のそれぞれに設けられている前記入射領域に異なる波長の前記投影光をそれぞれ照射し、複数の前記投影基板にそれぞれ設けられている前記出射領域は、平面視で少なくとも一部が重なっており、前記投影部から複数の前記入射領域にそれぞれ照射された前記投影光に対応する前記画像光を複数の前記投影基板の前記第2面から前記ユーザの眼へとそれぞれ出射してもよい。
前記投影部は、前記入射領域に照射する複数の前記投影光のうち少なくとも1つの前記投影光の偏光方向を調節する偏光調節部を有し、前記投影光学系の前記回折光低減板は、複数の前記投影基板の前記ユーザとは反対側に設けられており、前記偏光調節部は、複数の前記画像光のうち少なくとも1つの前記画像光の偏光方向と前記回折光低減板が低減させる光の偏光方向とを一致させるように、前記投影光の偏光方向を調節してもよい。
前記投影部は、前記入射領域に照射する複数の前記投影光のうち少なくとも1つの前記投影光の偏光方向を調節する偏光調節部を有し、前記投影光学系の前記回折光低減板は、複数の前記投影基板うち一の投影基板と前記ユーザとの間に設けられており、前記偏光調節部は、複数の前記画像光のうち前記一の投影基板が出射する前記画像光の偏光方向と前記回折光低減板が透過させる光の偏光方向とを一致させるように、前記投影光の偏光方向を調節してもよい。
本発明によれば、簡便な構成でユーザの目の方向に進む回折光を低減できるという効果を奏する。
<眼鏡型端末10の第1構成例>
図1は、本実施形態に係る眼鏡型端末10の第1構成例を示す。本実施例において、互いに直交する3つの軸をX軸、Y軸、及びZ軸とする。眼鏡型端末10は、ユーザが装着する、例えば、ウェアラブルデバイスである。眼鏡型端末10は、眼鏡越しの景色をユーザに観察させつつ、投影基板100に設けられている表示領域に画像光を投影する。眼鏡型端末10は、投影光学系50と、フレーム110と、投影部120とを備える。
図1は、本実施形態に係る眼鏡型端末10の第1構成例を示す。本実施例において、互いに直交する3つの軸をX軸、Y軸、及びZ軸とする。眼鏡型端末10は、ユーザが装着する、例えば、ウェアラブルデバイスである。眼鏡型端末10は、眼鏡越しの景色をユーザに観察させつつ、投影基板100に設けられている表示領域に画像光を投影する。眼鏡型端末10は、投影光学系50と、フレーム110と、投影部120とを備える。
投影光学系50は、投影基板100と回折光低減板310とを備える。図1において、投影光学系50のうちの投影基板100を示し、回折光低減板310の記載は省略している。回折光低減板310については後述する。
投影基板100は、光導波部200(optical waveguide)を有し、第1面から入射する少なくとも一部の光をユーザの眼へと透過させつつ、第2面に画像光を投影させる。ここで、投影基板100の第1面は、眼鏡型端末10をユーザが装着した状態でユーザとは反対側を向く面である。また、投影基板100の第2面は、眼鏡型端末10をユーザが装着した状態でユーザを向く面である。図1は、投影基板100の第1面及び第2面がXY平面と略平行に配置されている例を示す。
投影基板100は、例えば、ガラス基板に光導波部200(optical waveguide)が形成されている基板である。光導波部200は、投影基板100の第2面から入射した画像光を投影させるための投影光の少なくとも一部を導波して、当該第2面から画像光として出射する。投影基板100については後述する。
フレーム110は、投影光学系50を固定している。フレーム110には、ユーザの右眼用のレンズ及び左眼用レンズのうち少なくとも一方として投影光学系50が設けられている。図1は、フレーム110にユーザの右眼用のレンズとして投影光学系50aが設けられており、左眼用レンズとして投影光学系50bが設けられている例を示す。
これに代えて、フレーム110は、ユーザの右眼用のレンズ又は左眼用レンズとして1つの投影光学系50が設けられていてもよい。また、フレーム110は、ユーザの両眼用レンズとして1つの投影光学系50が設けられていてもよい。この場合、フレーム110は、ゴーグルの形状を有してもよい。フレーム110は、ユーザが当該眼鏡型端末10を装着できるように、テンプル、ストラップ等の部位を有する。
投影部120は、フレーム110に設けられており、投影基板100に画像光を投影させるための投影光を投影光学系50に向けて照射する。フレーム110には、このような投影部120が1又は複数設けられている。図1は、投影光学系50a(投影基板100a)に投影光L1を照射するための投影部120aと、投影光学系50b(投影基板100b)に投影光L2を照射するための投影部120bとがフレーム110に設けられている例を示す。
投影部120は、フレーム110の投影光学系50を固定している部位に設けられていてもよく、フレーム110のテンプル等に設けられていてもよい。投影部120は、フレーム110と一体になるように設けられていることが望ましい。投影部120は、例えば、1つの波長を含む投影光を投影光学系50に照射して、ユーザに単色の画像を観察させる。また、投影部120は、複数の波長を含む投影光を投影光学系50に照射して、ユーザに複数の色を含む画像を観察させてもよい。
このような投影光学系50について、次に説明する。なお、まずは、投影光学系50の投影基板100の動作を説明し、回折光低減板310については後述する。
図2は、本実施形態に係る眼鏡型端末10における投影光の光路の概略を示す。投影部120は、投影基板100の光導波部200の入射領域210に投影光を照射する。入射領域210は、投影基板100の基板内に投影光を導波する。そして、基板内を導波した投影光の少なくとも一部は、光導波部200の出射領域230から画像光として出射する。なお、入射領域210及び出射領域230については後述する。
図3は、本実施形態に係る投影基板100における投影光の光路の概略を示す。後述するが、光導波部200は、入射領域210、中間領域220、及び出射領域230を有する。投影光Lは、入射領域210に入射し、中間領域220を経て出射領域230から画像光Pとして出射する。中間領域220は、投影光Lが入射領域210から離れて進行するにつれて、投影光Lを一部ずつ出射領域230に導波する。
同様に、出射領域230も、投影光Lが中間領域220から離れて進行するにつれて、投影光Lの一部ずつの光を画像光Pの一部として出射する。これにより、投影基板100は、入射領域210に入射した投影光Lを出射領域230から画像光Pとして出射する。
ここで、中間領域220が、中間領域220の領域全体において一定の割合で投影光Lを出射領域230に導波する例を考える。この場合、投影光Lが入射領域210から離れて進行するにつれて投影光Lの光量が減少するので、中間領域220から出射領域230に入射する投影光Lは、入射領域210からの距離によって強度が異なってしまうことがある。
同様に、出射領域230が、出射領域230の領域全体において一定の割合で投影光Lを画像光Pとして出射する例を考える。この場合、投影光Lが中間領域220から離れて進行するにつれて投影光Lの光量が減少するので、出射領域230から出射する画像光Pは、入射領域210からの距離及び出射領域230からの距離によって強度が異なってしまうことがある。例えば、出射領域230が投影する画像の左上の画素から右下の画素に向けて、輝度が徐々に低減してしまうことがある。本実施形態に係る投影基板100は、このような輝度のバラツキを低減させるものである。
<投影光と画像光の一例>
図4は、本実施形態に係る投影部120が投影基板100に照射する投影光Lと、投影基板100が出射する画像光Pの一例を示す。投影部120は、例えば、+Z方向に位置する投影基板100の第2面に向けて投影光Lを照射する。投影光Lは、ユーザに見せる画像に対応しており、例えば、XY平面と略平行な面にスクリーン等を設置して投影光Lを投影させた場合、当該スクリーンにはユーザに観察させる画像M1が表示される。ユーザに見せる画像は、例えば投影部120が有するプロセッサが作成するAR(Augmented Reality)画像又はVR(Virtual Reality)画像である。このように、投影部120は、XY平面と略平行な面に画像M1を形成する複数の光線を投影光Lとして照射する。
図4は、本実施形態に係る投影部120が投影基板100に照射する投影光Lと、投影基板100が出射する画像光Pの一例を示す。投影部120は、例えば、+Z方向に位置する投影基板100の第2面に向けて投影光Lを照射する。投影光Lは、ユーザに見せる画像に対応しており、例えば、XY平面と略平行な面にスクリーン等を設置して投影光Lを投影させた場合、当該スクリーンにはユーザに観察させる画像M1が表示される。ユーザに見せる画像は、例えば投影部120が有するプロセッサが作成するAR(Augmented Reality)画像又はVR(Virtual Reality)画像である。このように、投影部120は、XY平面と略平行な面に画像M1を形成する複数の光線を投影光Lとして照射する。
本実施形態において、投影部120が、XY平面と略平行な面においてX軸方向を長手方向とした略長方形の画像M1を投影する例を説明する。また、図4において、投影部120が照射する複数の光線のうち5つの光線を入力光線20として示す。例えば、画像の左上の画素に対応する光線を第1入力光線20a、画像の左下の画素に対応する光線を第2入力光線20b、画像の中央の画素に対応する光線を第3入力光線20c、画像の右上の画素に対応する光線を第4入力光線20d、画像の右下の画素に対応する光線を第5入力光線20eとする。
投影部120は、例えば、このような投影光Lを無限遠または所定の位置に正立虚像を作る様に投影基板100の入射領域210に照射する。入射領域210に入射した投影光は、中間領域220を経て出射領域230から画像光Pとして出射される。画像光Pは、出射領域230から出射され、投影基板100から距離dだけ離れたユーザの眼に入射する。そして、画像光Pは、ユーザの眼の網膜で画像M2として結像する。このように、画像光Pは、画像M2として結像する複数の光線束を含む。
図4において、投影基板100の出射領域230の円形領域Cから照射され、所定の位置で結像する複数の光線束のうち5つの光線束を出力光線束30として示す。例えば、画像の右下の画素として結像する光線束を第1出力光線束30a、画像の右上の画素として結像する光線束を第2出力光線束30b、画像の中央の画素として結像する光線束を第3出力光線束30c、画像の左下の画素として結像する光線束を第4出力光線束30d、画像の左上の画素として結像する光線束を第5出力光線束30eとする。
それぞれの光線束は、投影部120から入射した複数の入力光線20のそれぞれに対応する。例えば、第1出力光線束30aは、第1入力光線20aに対応しており、第1入力光線20aが投影基板100の入射領域210から出射領域230までの間に複数回の分岐及び複数回の回折等によって発生した複数の光線を含む。同様に、第2出力光線束30bは第2入力光線20bに、第3出力光線束30cは第3入力光線20cに、第4出力光線束30dは第4入力光線20dに、第5出力光線束30eは第5入力光線20eに、それぞれ対応する。
言い換えると、出射領域230から出射される画像光Pがユーザの眼の網膜で結像した画像M2は、投影部120が照射した投影光Lが投影する画像M1に対応する。これにより、眼鏡型端末10を装着したユーザは、投影基板100越しに見る風景に重ねて、投影基板100の第2面に画像M2が投影されているように感じることができる。言い換えると、出射領域230は、投影光Lが投影する画像M1に対応する画像M2を表示させる表示領域として機能する。
図4において、ユーザが観測する画像M2は、投影光Lが投影する画像M1を上下及び左右に反転した画像となる例を示す。なお、投影光Lが投影する画像M1は、静止画であってもよく、これに代えて、動画であってもよい。以上のように、入射した投影光Lに対応する画像光Pを出射する投影基板100について次に説明する。
<投影基板100の構成例>
図5は、本実施形態に係る投影基板100の構成例を示す。図3は、投影基板100の第1面及び第2面がXY平面と略平行に配置されている例を示す。投影基板100は、第1面から入射した光の少なくとも一部を第1面の反対側の第2面へと透過させつつ、第2面に画像光を投影させるための光導波部200を有する基板である。投影基板100は、一例として、ガラス基板である。投影基板100は、入射領域210、中間領域220、及び出射領域230を有する光導波部200を備える。
図5は、本実施形態に係る投影基板100の構成例を示す。図3は、投影基板100の第1面及び第2面がXY平面と略平行に配置されている例を示す。投影基板100は、第1面から入射した光の少なくとも一部を第1面の反対側の第2面へと透過させつつ、第2面に画像光を投影させるための光導波部200を有する基板である。投影基板100は、一例として、ガラス基板である。投影基板100は、入射領域210、中間領域220、及び出射領域230を有する光導波部200を備える。
<入射領域210の例>
入射領域210は、画像光を投影させるための投影光が入射し、入射した投影光を中間領域220に向けて導波する。図5は、入射領域210がXY平面と略平行な面において、円形の形状を有する例を示すが、これに限定されることはない。入射領域210は、投影光を中間領域220へと導波できればよく、楕円形、多角形、台形等の形状を有してよい。
入射領域210は、画像光を投影させるための投影光が入射し、入射した投影光を中間領域220に向けて導波する。図5は、入射領域210がXY平面と略平行な面において、円形の形状を有する例を示すが、これに限定されることはない。入射領域210は、投影光を中間領域220へと導波できればよく、楕円形、多角形、台形等の形状を有してよい。
入射領域210は、複数の第1溝部212が第1周期で形成されている入射回折格子を有する。言い換えると、複数の第1溝部212は、予め定められた溝の幅及び間隔で投影基板100の上面に同一方向に配列されていることにより、回折格子として機能する。入射領域210は、反射型又は透過型の入射回折格子を有し、反射型回折又は透過型回折によって中間領域220の方向に投影光を導く。複数の第1溝部212の第1周期は、例えば、10nm程度から10μm程度の範囲である。
複数の第1溝部212は、例えば、入射領域210から中間領域220に向かう方向に配列されている。ここで、入射領域210から中間領域220に向かう投影光の進行方向を第1方向とする。図5は、第1方向がX軸方向と略平行な方向であり、Y軸方向と略平行な方向に延伸する第1溝部212が第1方向に配列されている例を示す。投影光は、収束しつつ入射領域210に入射するので、入射領域210は、投影基板100の面内において第1方向を中心として広がり角を有するように投影光を中間領域220へと導波する。
<中間領域220の例>
中間領域220は、入射領域210から入射した投影光の一部を出射領域230に向けて導波する。中間領域220は、XY平面と略平行な面において、投影光が通過する領域に設けられている。中間領域220は、反射型の中間回折格子を有し、反射型回折によって出射領域230の方向へと投影光を導く。中間領域220は、例えば、第1方向を長手方向とした長方形の形状を有する。
中間領域220は、入射領域210から入射した投影光の一部を出射領域230に向けて導波する。中間領域220は、XY平面と略平行な面において、投影光が通過する領域に設けられている。中間領域220は、反射型の中間回折格子を有し、反射型回折によって出射領域230の方向へと投影光を導く。中間領域220は、例えば、第1方向を長手方向とした長方形の形状を有する。
なお、投影光は第1方向を中心に広がりながら進行するので、中間領域220は、入射領域210から離れるにつれて、入射領域210を通り投影光の進行方向である第1方向から離れるように広がる形状を有していることが好ましい。中間領域220は、例えば、XY平面と略平行な面において、台形、扇型等の形状を有する。図5は、中間領域220が台形の形状を有する例を示す。このような形状の中間領域220は、投影光がXY平面において広がりながら進行する領域に対応して形成することができ、投影光を効率的に導波することができる。
中間領域220は、複数の第2溝部222が第2周期で形成されている中間回折格子を有する。言い換えると、複数の第2溝部222は、予め定められた溝の幅及び間隔で投影基板100の上面に同一方向に配列されていることにより、回折格子として機能する。中間領域220は、例えば、反射型の中間回折格子として機能し、投影光を出射領域230へと導く。
複数の第2溝部222の第2周期は、複数の第1溝部212の第1周期とは異なる周期である。第2周期は、投影光を出射領域230へと導くために適切な周期が選択されることが望ましい。第2周期は、例えば、10nm程度から10μm程度の範囲である。
複数の第2溝部222は、例えば、予め定められた方向に配列されている。例えば、中間領域220から出射領域230に向かう方向を第2方向とし、第1方向と第2方向とがなす角を第1角度とする。この場合、複数の第2溝部222は、第1方向に対して第1角度の1/2の角度だけ第2方向に傾斜する方向に形成されている。図5は、第2方向がY軸方向と略平行な方向であり、第1角度が略90度であり、複数の第2溝部222が第1方向に対して略45度だけ第2方向に傾斜した方向に配列している例を示す。
中間領域220は、入射した投影光の進行方向に配列されている複数の第1分割領域224を有する。複数の第1分割領域224に形成されている第2溝部222は、それぞれ深さが異なる。言い換えると、中間領域220において、入力した投影光のうち出射領域230へと導波される光の割合が第1分割領域224毎に異なるように、第2溝部222が形成されている。
中間領域220は、3つ以上の第1分割領域224を有することが望ましい。このように、中間領域220は、複数の第1分割領域224に分割され、出射領域230に導波する投影光の光量を第1分割領域224毎に異ならせることにより、入射領域210からの距離によって強度が異なる投影光を出射領域230に導波しつつ、投影光の進行方向に対して垂直な方向の光量の分布を略一定に調節する。
例えば、一の第1分割領域224に設けられている第2溝部222の深さが、一の第1分割領域224よりも入射領域210に近い第1分割領域224に設けられている第2溝部222の深さよりも大きくなるように、第2溝部222が形成されている。この場合、複数の第1分割領域224のうち隣接する2つの第1分割領域224の第2溝部222の深さの変化率は、入射領域210から離れるほど大きくてもよい。
一例として、図5に示すように、3つの第1分割領域224を有する中間領域220を考える。ここで、3つの第1分割領域224のうち最も入射領域210に近い第1分割領域224aは、入射した投影光の略1/4の光量の光を出射領域230に導波するように、第2溝部222aの深さが形成されているとする。この場合、最も入射領域210に近い第1分割領域224aに入射した投影光の残りの略3/4の光量は、隣接する第1分割領域224bに入射する。
入射領域210に2番目に近い第1分割領域224bは、入射した投影光の略1/3の光量の光を出射領域230に導波するように、第2溝部222bの深さが形成されているとする。言い換えると、入射領域210に2番目に近い第1分割領域224bの第2溝部222bの深さは、入射領域210に最も近い第1分割領域224aと比較して4/3倍の光量の光を出射領域230に導波するように、第2溝部222aの深さよりも大きく形成されている。このような第1分割領域224bは、入射領域210に最も近い第1分割領域224aに入射した投影光の略1/4の光量の光を出射領域230に導波することになる。
そして、最も入射領域210に近い第1分割領域224aに入射した投影光の残りの略1/2の光量は、隣接する第1分割領域224cに入射する。入射領域210に3番目に近い第1分割領域224cは、入射した投影光の略1/2の光量の光を出射領域230に導波するように、第2溝部222cの深さが形成されているとする。言い換えると、入射領域210に3番目に近い第1分割領域224cの第2溝部222cの深さは、入射領域210に2番目に近い第1分割領域224bと比較して3/2倍の光量の光を出射領域230に導波するように、第2溝部222bの深さよりも大きく形成されている。
また、3つの第1分割領域224のうち隣接する2つの第1分割領域224の第2溝部222の深さの変化率は、入射領域210から離れるほど大きくなるように形成されている。そして、入射領域210に3番目に近い第1分割領域224cは、入射領域210に最も近い第1分割領域224aに入射した投影光の略1/4の光量の光を出射領域230に導波することになる。以上の例のように、中間領域220は、出射領域230に導波する投影光の光量を第1分割領域224毎に異ならせて所定の値にすることにより、それぞれの第1分割領域224に対応する出射領域230へと導波する投影光の光量をほぼ一定の分布にしつつ、投影光を出射領域230に導波できることがわかる。
なお、中間領域220は、入射領域210から最も遠い位置に、第1反射領域226を更に有してもよい。図5は、中間領域220が3つの第1分割領域224と第1反射領域226とを有する例を示す。第1反射領域226は、複数の第1分割領域224を通過した光の少なくとも一部を再び複数の第1分割領域224へと反射する。第1反射領域226は、隣接する第1分割領域224の第2溝部222の深さよりも大きい深さの第2溝部222を有する。
中間領域220がこのような第1反射領域226を有することにより、複数の第1分割領域224は、第1反射領域226が反射した光の少なくとも一部を出射領域230へと導波する。これにより、中間領域220は、より多くの投影光を出射領域230へと導波することができる。なお、複数の第1分割領域224の第2溝部222の深さは、それぞれの第1分割領域224が第1反射領域226による反射光を含めて出射領域230へと導波する投影光の光量を略一定にさせるように決められていてもよい。
<出射領域230の例>
出射領域230は、中間領域220から入射した投影光の少なくとも一部を導波して投影基板100の第2面から画像光として出射する。図5は、出射領域230がXY平面と略平行な面において、X軸方向を長手方向とした長方形の形状を有する例を示すが、これに限定されることはない。出射領域230は、投影光を導波して画像光として出射できればよく、例えば、Y軸方向を長手方向とした長方形、正方形、台形等の形状を有してよい。
出射領域230は、中間領域220から入射した投影光の少なくとも一部を導波して投影基板100の第2面から画像光として出射する。図5は、出射領域230がXY平面と略平行な面において、X軸方向を長手方向とした長方形の形状を有する例を示すが、これに限定されることはない。出射領域230は、投影光を導波して画像光として出射できればよく、例えば、Y軸方向を長手方向とした長方形、正方形、台形等の形状を有してよい。
出射領域230は、複数の第3溝部232が第3周期で形成されている出射回折格子を有する。言い換えると、複数の第3溝部232は、予め定められた溝の幅及び間隔で投影基板100の上面に同一方向に配列されていることにより、回折格子として機能する。出射領域230は、反射型又は透過型の出射回折格子を有し、反射型回折又は透過型回折によってユーザの眼の方向に画像光を導く。
出射領域230に設けられている複数の第3溝部232の第3周期は、中間領域220の複数の第2溝部222の第2周期とは異なる周期である。出射領域230の複数の第3溝部232の第3周期は、入射領域210の複数の第1溝部212の第1周期と同一の周期であってもよい。このように、投影光が入射する領域と画像光を出射する領域とに設けられている回折格子の周期を略一致させることで、ユーザが観察する画像に発生する歪み等を低減できる。第3周期は、例えば、10nm程度から10μm程度の範囲である。
複数の第3溝部232は、例えば、中間領域220から出射領域230に向かう第2方向に配列されている。図5は、第1方向に延伸する第3溝部232が第2方向に配列している例を示す。
出射領域230は、中間領域220と同様に、中間領域220から入射した投影光の進行方向に配列されている複数の第2分割領域234を有する。複数の第2分割領域234に形成されている第3溝部232は、それぞれ深さが異なる。言い換えると、出射領域230において、入力した投影光のうち画像光として出射する光の割合が第2分割領域234毎に異なるように、第3溝部232が形成されている。
出射領域230は、2つ以上の第2分割領域234を有することが望ましい。例えば、一の第2分割領域234に設けられている第3溝部232の深さは、一の第2分割領域234よりも中間領域220に近い第2分割領域234に設けられている第3溝部232の深さよりも大きく形成されている。また、出射領域230が3つ以上の第2分割領域234を有する場合、隣接する2つの第2分割領域234の第3溝部232の深さの変化率は、中間領域220から離れるほど大きくしてもよい。
以上のように、出射領域230は、複数の第2分割領域234に分割され、画像光として出射する光の光量を第2分割領域234毎に異ならせる。これにより、出射領域230は、中間領域220の複数の第1分割領域224と同様に、投影光を画像光として導波しつつ、観測者が画像光を画像として観測した場合に画像全体の光量の分布を略一定に調節できる。
出射領域230は、中間領域220から最も遠い位置に、第2反射領域236を更に有してもよい。図5は、出射領域230が2つの第2分割領域234と第2反射領域236とを有する例を示す。第2反射領域236は、複数の第2分割領域234を通過した光の少なくとも一部を再び複数の第2分割領域234へと反射する。第2反射領域236は、隣接する第2分割領域234の第3溝部232の深さよりも大きい深さの第3溝部232を有する。
出射領域230がこのような第2反射領域236を有することにより、複数の第2分割領域234は、第2反射領域236が反射した光の少なくとも一部を投影基板100の第2面から画像光として出射する。これにより、出射領域230は、中間領域220と同様に、より多くの投影光を画像光として出射することができる。なお、複数の第2分割領域234の第3溝部232の深さは、それぞれの第2分割領域234が第2反射領域236による反射光を含めて画像光として出射する光の光量を略一定にさせるように決められてもよい。
以上のように、本実施形態に係る投影基板100は、入射領域210に入射する投影光を中間領域220の複数の第1分割領域224毎に異なる割合で投影光を分岐させつつ、出射領域230から画像光として出射する。これにより、投影基板100は、ユーザに観察させる投影画像の輝度のバラツキを低減できる。また、投影基板100は、出射領域230においても、複数の第2分割領域234毎に異なる割合で画像光を出射することで、画像の輝度のバラツキを更に低減できる。
このような投影基板100は、ガラス基板等の表面又は裏面に、入射領域210、中間領域220、及び出射領域230に対応する回折格子を形成することで実現できる。なお、回折格子を形成する溝部は、例えば、レジスト、樹脂等である。したがって、本実施形態に係る投影基板100は、複雑な光学系を組み込むことなく、予め定められた周期、深さの溝部を領域毎に形成することで簡便に生産できる基板である。
<眼鏡型端末10の第2構成例>
以上において、右目用及び左目用の投影光学系50にはそれぞれ1つの投影基板100がフレーム110に設けられており、対応する投影部120が投影光をそれぞれの投影基板100の入射領域210に照射する眼鏡型端末10の例を既に説明したが、これに限定されることはない。例えば、1つの投影光学系50には、複数の投影基板100が設けられていてもよい。このような眼鏡型端末10について次に説明する。
以上において、右目用及び左目用の投影光学系50にはそれぞれ1つの投影基板100がフレーム110に設けられており、対応する投影部120が投影光をそれぞれの投影基板100の入射領域210に照射する眼鏡型端末10の例を既に説明したが、これに限定されることはない。例えば、1つの投影光学系50には、複数の投影基板100が設けられていてもよい。このような眼鏡型端末10について次に説明する。
図6は、本実施形態に係る眼鏡型端末10の第2構成例を示す。第2構成例の眼鏡型端末10において、図1に示された本実施形態に係る眼鏡型端末10の動作と略同一のものには同一の符号を付け、重複する説明を省略する。第2構成例の眼鏡型端末10の外観は、図1に示された眼鏡型端末10とほとんど変わらない外観でよい。
第2構成例の眼鏡型端末10のフレーム110には、複数の投影基板100が固定されている。この場合、複数の投影基板100にそれぞれ設けられている出射領域230がXY平面と略平行な平面視で少なくとも一部が重なるように、複数の投影基板100がフレーム110に固定されている。図6は、眼鏡型端末10のフレーム110に3つの投影基板100R、投影基板100G、及び投影基板100Bが固定されており、3つの投影基板100の出射領域230R、出射領域230G、及び出射領域230BがXY平面における平面視で重なっている例を示す。
投影部120は、複数の投影基板100のそれぞれに設けられている入射領域210に異なる波長の投影光をそれぞれ照射する。これにより、複数の投影基板100にそれぞれ設けられている出射領域230は、投影部120から複数の入射領域210にそれぞれ照射された投影光に対応する画像光を複数の投影基板100の第2面からユーザの眼へとそれぞれ出射する。
このような眼鏡型端末10を装着したユーザは、異なる波長の画像光が重畳された画像を観察することになるので、混色の色を有する画像を観察することができる。図6は、投影部120が画像を形成する赤、緑、及び青といったRGBの三原色に対応する3つの投影光を3つの投影基板100の入射領域210にそれぞれ照射する例を示す。そして、3つの投影基板100は、RGBの三原色に対応する3つの画像光を重畳してユーザの眼へと出射する。これにより、ユーザは、例えば、2nの複数の色を有する画像を観察することができる。ここで、nは、4、8、16、24等の正の整数である。
<眼鏡型端末10の第3構成例>
以上の眼鏡型端末10は、光導波部200が回折格子を有するので、眼鏡型端末10を装着したユーザの上方から所定の角度で投影基板100に光が入射すると、回折格子によって回折された回折光がユーザの目に入ってしまうことがある。所定の角度は、例えば、50度以上90度未満の角度である。所定の角度は、60度以上80度以下の角度であってもよい。
以上の眼鏡型端末10は、光導波部200が回折格子を有するので、眼鏡型端末10を装着したユーザの上方から所定の角度で投影基板100に光が入射すると、回折格子によって回折された回折光がユーザの目に入ってしまうことがある。所定の角度は、例えば、50度以上90度未満の角度である。所定の角度は、60度以上80度以下の角度であってもよい。
例えば、太陽光、蛍光灯の光等は、ユーザの上方からユーザに向かって進むことがあり、回折光としてユーザの目に入ると、ユーザが不快に感じたり、前が見づらくなったりすることがある。そこで、本実施形態に係る眼鏡型端末10は、このような回折光を低減できるように構成されていることが望ましい。このような構成について次に説明する。
図7は、本実施形態に係る眼鏡型端末10の第3構成例を示す。第3構成例の眼鏡型端末10において、図1に示された本実施形態に係る眼鏡型端末10の動作と略同一のものには同一の符号を付け、重複する説明を省略する。なお、図7は、投影部120を省略した図である。第3構成例の眼鏡型端末10の外観は、図1に示された眼鏡型端末10とほとんど変わらない外観でよい。
第3構成例の眼鏡型端末10において、投影光学系50は、回折光低減板310を更に備える。回折光低減板310は、投影基板100の光導波部200に対して投影基板100の第1面の側に空気層を介して設けられている。このように、回折光低減板310は、光導波部200の光学特性に影響を与えないように、光導波部200からは離れて設けられている。
回折光低減板310は、光導波部200の少なくとも一部を覆い、投影基板100の第1面から所定の入射角度を有して入射した入射光が光導波部200で回折して画像光が出射する方向に向かう回折光を低減させる。回折光低減板310は、例えば、出射領域230の出射回折格子の少なくとも一部を覆う。これにより、回折光低減板310は、投影基板100の第1面の側から所定の入射角度を有して光導波部200の回折格子に向かう入射光を受光することができる。
所定の入射角度を有し、光導波部200の回折格子に向かう入射光は、当該回折格子によって回折する。そして、回折格子によって回折した回折光のうち、投影基板100の第2面から出射した画像光の方向に向かう回折光は、ユーザの目に向かうことになり、ユーザの視界に入ってしまうことがある。
このような回折格子によって回折した回折光の強度は、偏光方向によって異なることが知られている。例えば、回折光のうち、入射光の入射面に対して平行なP波の強度の方が、入射光の入射面に対して垂直なS波の強度よりも大きくなる。そこで、回折光低減板310は、入射光のうちP波の光を低減させて、S波の光を透過するように設けられる。
これにより、回折光低減板310は、眼鏡型端末10を装着したユーザの上方から光が入射しても、ユーザの目に向かう回折光の強度を低減させることができる。また、回折光低減板310は、入射光のうちS波の光を投影基板100へと透過するので、外界の光の少なくとも一部を透過してユーザに視認させることができる。
図7は、回折光低減板310が、投影基板100の第1面と対向して設けられており、当該回折光低減板310に入射した入射光の入射面に平行なP波を低減させる偏光フィルタを有する例を示す。偏光フィルタは、入力した光のうち所定の方向の直線偏光の成分を減衰させる偏光板、偏光フィルム等である。回折光低減板310は、フレーム110又は投影基板100に固定されていることが望ましい。なお、回折光低減板310は、偏光フィルタが回転可能に設けられており、低減させる光の偏光方向(吸収軸)を調節可能であってもよい。
以上のように、図7は、投影基板100の光導波部200で回折した回折光を低減させるべく、回折光低減板310が投影基板100に入射する入射光のP波を低減させる例を説明したが、これに限定されることはない。例えば、回折光低減板310は、投影基板100の光導波部200で回折した回折光のP波を低減させてもよい。
この場合、回折光低減板310は、投影基板100の第2面と対向して設けられており、投影基板100から出射した光のP波を低減させる。言い換えると、回折光低減板310は、ユーザと投影基板100との間に設けられる。このような回折光低減板310の配置でも、図7に示す配置と同様に、ユーザの目に向かう回折光の強度を低減させることができる。また、回折光低減板310は、透明な基板等にコーティングされた偏光膜でもよい。このような回折光低減板310について次に説明する。
<眼鏡型端末10の第4構成例>
図8は、本実施形態に係る眼鏡型端末10の第4構成例を示す。第4構成例の眼鏡型端末10において、図1及び図7に示された本実施形態に係る眼鏡型端末10の動作と略同一のものには同一の符号を付け、重複する説明を省略する。第4構成例の眼鏡型端末10の外観は、図1に示された眼鏡型端末10とほとんど変わらない外観でよい。
図8は、本実施形態に係る眼鏡型端末10の第4構成例を示す。第4構成例の眼鏡型端末10において、図1及び図7に示された本実施形態に係る眼鏡型端末10の動作と略同一のものには同一の符号を付け、重複する説明を省略する。第4構成例の眼鏡型端末10の外観は、図1に示された眼鏡型端末10とほとんど変わらない外観でよい。
第4構成例の眼鏡型端末10において、回折光低減板310は、保護基板320と偏光膜330とを備える。保護基板320は、投影基板100の第1面と対向して設けられている。これに代えて、保護基板320は、投影基板100の第2面と対向して設けられていてもよい。保護基板320は、ガラス基板、プラスチック基板等の少なくとも可視光に対して透明な基板である。
偏光膜330は、保護基板320の投影基板100とは反対側の第3面及び投影基板100に対向する第4面のうち少なくとも一方にコーティングされている。図8は、偏光膜330が保護基板320の第3面にコーティングされている例を示す。
偏光膜330は、偏光フィルタと同様に、回折光低減板310に入射した入射光の入射面に平行なP波を低減させる薄膜である。偏光膜330は、保護基板320の一部又は全部にコーティングされていてもよい。
このように保護基板320及び偏光膜330を有する回折光低減板310も、図7で説明した回折光低減板310と同様に、ユーザの目に向かう回折光の強度を低減させることができる。保護基板320は、フレーム110又は投影基板100に固定されていることが望ましい。また、保護基板320は、回転可能に設けられており、回折光低減板310の吸収軸の方向を調節可能に構成されていてもよい。
<眼鏡型端末10の第5構成例>
図9は、本実施形態に係る眼鏡型端末10の第5構成例を示す。第5構成例の眼鏡型端末10において、図8に示された第4構成例の眼鏡型端末10の動作と略同一のものには同一の符号を付け、重複する説明を省略する。第5構成例の回折光低減板310は、保護基板320、偏光フィルタ340、及び赤外カットフィルタ350を有する。
図9は、本実施形態に係る眼鏡型端末10の第5構成例を示す。第5構成例の眼鏡型端末10において、図8に示された第4構成例の眼鏡型端末10の動作と略同一のものには同一の符号を付け、重複する説明を省略する。第5構成例の回折光低減板310は、保護基板320、偏光フィルタ340、及び赤外カットフィルタ350を有する。
偏光フィルタ340は、保護基板320の投影基板100とは反対側の第3面に設けられており、回折光低減板310に入射した入射光の入射面に平行なP波を低減させる。偏光フィルタ340は、偏光板、偏光フィルム等である。また、偏光フィルタ340は、図8で説明した偏光膜であってもよい。このような偏光フィルタ340により、図7及び図8で説明したように、ユーザの目に向かう回折光の強度を低減させる効果が得られる。
赤外カットフィルタ350は、保護基板320の投影基板100を向く第4面に設けられており、入射光のうち赤外領域の光を低減させる。赤外カットフィルタ350は、例えば、多層膜によって近赤外光を低減させるIRカットフィルタである。
このような赤外カットフィルタ350は、当該フィルタに入射する入射光の入射角が0度程度の場合、入射光の赤外領域の光を低減させる。そして、赤外カットフィルタ350は、入射光の入射角が例えば50度以上と大きくなった場合、可視域の光も低減させる。したがって、赤外カットフィルタ350は、ユーザの上方から所定の角度で投影基板100に入射する可視域の入射光を低減できる。したがって、第5構成例の眼鏡型端末10は、ユーザの目に向かう回折光の強度をより低減させることができる。
なお、図9の回折光低減板310は、保護基板320の第3面に偏光フィルタ340が設けられており、保護基板320の第4面に赤外カットフィルタ350が設けられている例を示すが、これに限定されることはない。回折光低減板310は、保護基板320の第3面に赤外カットフィルタ350が設けられており、保護基板320の第4面に偏光フィルタ340が設けられていてもよい。
<眼鏡型端末10の第6構成例>
以上の本実施形態に係る眼鏡型端末10において、投影基板100の光導波部200で回折した回折光を低減させる例を説明したが、これに限定されることはない。眼鏡型端末10は、更に、投影基板100の第1面から漏洩する画像光を低減するように構成されていてもよい。
以上の本実施形態に係る眼鏡型端末10において、投影基板100の光導波部200で回折した回折光を低減させる例を説明したが、これに限定されることはない。眼鏡型端末10は、更に、投影基板100の第1面から漏洩する画像光を低減するように構成されていてもよい。
眼鏡型端末10において、ユーザに向けて射出すべき画像光の一部が、ユーザとは異なる方向に漏れ光として出射してしまうことがあった。例えば、投影基板100の第2面から射出する画像光の一部が、光導波部200の回折格子によって投影基板100の第1面から射出してしまうことがある。この場合、ユーザを見ている人は、ユーザの目が光っているように見えてしまい、不快に感じることがある。
出射回折格子から漏洩した画像光は、光導波部200の複数の回折格子を導波した光なので、光導波部200の構造に対応して一方向に偏光した光になる。そこで、回折光低減板310を投影基板100の第1面と対向して設け、画像光の偏光方向と回折光低減板310の低減させる光の偏光方向(吸収軸)とを略一致させることで、漏洩した画像光の強度を低減させることができる。このような眼鏡型端末10について次に説明する。
図10は、本実施形態に係る眼鏡型端末10の第6構成例を示す。第6構成例の眼鏡型端末10において、図7に示された第3構成例の眼鏡型端末10の動作と略同一のものには同一の符号を付け、重複する説明を省略する。第6構成例の眼鏡型端末10は、画像光の偏光方向が調節可能に構成されている。
投影部120は、光導波部200の入射領域に照射する投影光の偏光方向を調節する偏光調節部122を有する。偏光調節部122は、例えば、直線偏光の偏光方向を回転させる波長板等を有する。そして、偏光調節部122は、画像光の偏光方向と回折光低減板310が低減させる光の偏光方向とを略一致するように投影光の偏光方向を調節する。偏光調節部122は、例えば、画像光の偏光方向が回折光低減板310に対してP波となるように、投影光の偏光方向を調節する。
これにより、回折光低減板310は、投影基板100の第1面から射出する画像光の漏れ光を低減できる。言い換えると、回折光低減板310は、ユーザの目に向かう回折光を低減させつつ、他者が眼鏡型端末10を装着したユーザを見ても画像光が気にならない程度に、漏洩した画像光の強度を低減させることができる。また、回折光低減板310は、漏洩した画像光の偏光方向に対して垂直な偏光方向の光を透過させるので、外界の光の少なくとも一部を透過してユーザに視認させることができる。
<眼鏡型端末10の他の構成例>
以上の本実施形態に係る眼鏡型端末10において、回折光低減板310を投影基板100の第2面に対向して設ける例を説明した。この場合、投影基板100とユーザとの間に回折光低減板310が設けられることになるので、回折光低減板310は、回折光を低減させつつ、投影基板100からユーザに向けて出射する画像光を透過するように構成される。
以上の本実施形態に係る眼鏡型端末10において、回折光低減板310を投影基板100の第2面に対向して設ける例を説明した。この場合、投影基板100とユーザとの間に回折光低減板310が設けられることになるので、回折光低減板310は、回折光を低減させつつ、投影基板100からユーザに向けて出射する画像光を透過するように構成される。
この場合においても、眼鏡型端末10は、画像光の偏光方向が調節可能に構成されていてもよい。例えば、投影部120は、上述のように、光導波部200の入射領域に照射する投影光の偏光方向を調節する偏光調節部122を有する。そして、偏光調節部122は、画像光の偏光方向と回折光低減板310が透過させる光の偏光方向とを略一致させるように投影光の偏光方向を調節する。一例として、偏光調節部122は、画像光の偏光方向が回折光低減板310に対してS波となるように投影光の偏光方向を調節する。
これにより、回折光低減板310は、投影基板100とユーザとの間に設けられていても、ユーザの目に向かう回折光を低減させつつ、投影基板100からユーザに向けて出射する画像光を透過させてユーザに視認させることができる。なお、投影光の偏光方向を調節しなくても、投影基板100からユーザに向けて投影する画像光の偏光方向が、回折光低減板310の吸収軸と略直交する場合、このような偏光調節部122はなくてもよい。
以上の眼鏡型端末10は、図6で説明したように、投影光学系50が複数の投影基板100を備え、異なる波長の複数の画像光が重畳された画像をユーザに観察させてもよい。この場合、複数の画像光の偏光方向が略一致していることが望ましい。
そして、回折光低減板310は、複数の投影基板100のユーザとは反対側か、又は複数の投影基板100とユーザとの間に設けられる。図6は、投影光学系50が3枚の投影基板100と、3枚の投影基板100のユーザとは反対側に設けられている1枚の回折光低減板310とを有する例を示している。
また、回折光低減板310は、投影光学系50が複数の投影基板100を有する場合、異なる2つの投影基板100の間に設けられていてもよい。回折光低減板310は、このような配置でもユーザの目に向かう回折光を低減できる。言い換えると、回折光低減板310は、複数の投影基板100のうち一の投影基板100のユーザとは反対側か、又は、一の投影基板100とユーザとの間に設けられている。また、投影光学系50は、このような回折光低減板310を複数有してもよい。
なお、投影光学系50が複数の投影基板100を有する場合においても、眼鏡型端末10は、画像光の偏光方向が調節可能に構成されていてもよい。例えば、投影部120は、入射領域に照射する複数の投影光のうち少なくとも1つの投影光の偏光方向を調節する偏光調節部122を有する。投影部120は、全ての投影光の偏光方向を調節する偏光調節部122を有してもよい。
そして、回折光低減板310は、複数の投影基板100のユーザとは反対側に設けられてよい。この場合、偏光調節部122は、複数の画像光のうち少なくとも1つの画像光の偏光方向と回折光低減板310が低減させる光の偏光方向とを略一致させるように、投影光の偏光方向を調節する。これにより、回折光低減板310は、ユーザの目に向かう回折光を低減させつつ、少なくとも1つの投影基板100の第1面から漏洩した画像光の強度を低減させることができる。
なお、投影部120は、入射領域210に照射する複数の投影光に対応して、複数の投影光の偏光方向を調節する偏光調節部122を複数有してもよい。この場合、投影部120は、光導波部200において複数の投影光を効率よく導波させつつ、回折光低減板310で適切に複数の投影光に対応する漏洩光を低減させるように複数の投影光の偏光方向を調節できる。
これに代えて、回折光低減板310は、複数の投影基板100うち一の投影基板100とユーザとの間に設けられていてもよい。この場合、偏光調節部122は、複数の画像光のうち一の投影基板100が出射する画像光の偏光方向と回折光低減板310が透過させる光の偏光方向とを略一致させるように、投影光の偏光方向を調節する。
これにより、回折光低減板310は、ユーザの目に向かう回折光を低減させつつ、投影基板100の第2面からユーザに向けて出射する画像光を透過させてユーザに視認させることができる。この場合においても、投影部120は、入射領域210に照射する複数の投影光に対応して、複数の投影光の偏光方向を調節する偏光調節部122を複数有してもよいことは言うまでもない。
以上の本実施形態に係る眼鏡型端末10において、投影基板100の光導波部200が入射領域210、中間領域220、及び出射領域230を有する例を説明したが、これに限定されることはない。光導波部200は、投影部120から入射した投影光をユーザに観察させるための画像光として出力できればよく、入射領域210、中間領域220、及び出射領域230の形状等は他の形状であってもよい。また、光導波部200は、例えば、入射領域210及び出射領域230を有し、中間領域220を有さない構成であってもよい。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。
10 眼鏡型端末
20 入力光線
30 出力光線束
50 投影光学系
100 投影基板
110 フレーム
120 投影部
122 偏光調節部
200 光導波部
210 入射領域
212 第1溝部
220 中間領域
222 第2溝部
224 第1分割領域
226 第1反射領域
230 出射領域
232 第3溝部
234 第2分割領域
236 第2反射領域
310 回折光低減板
320 保護基板
330 偏光膜
340 偏光フィルタ
350 赤外カットフィルタ
20 入力光線
30 出力光線束
50 投影光学系
100 投影基板
110 フレーム
120 投影部
122 偏光調節部
200 光導波部
210 入射領域
212 第1溝部
220 中間領域
222 第2溝部
224 第1分割領域
226 第1反射領域
230 出射領域
232 第3溝部
234 第2分割領域
236 第2反射領域
310 回折光低減板
320 保護基板
330 偏光膜
340 偏光フィルタ
350 赤外カットフィルタ
Claims (12)
- 光導波部(optical waveguide)を有し、第1面から入射した光の少なくとも一部を前記第1面の反対側の第2面へと透過させつつ、前記第2面に画像光を投影させるための投影基板と、
前記光導波部に対して前記投影基板の前記第1面の側又は前記第2面の側に空気層を介して設けられており、前記光導波部の少なくとも一部を覆い、前記投影基板の前記第1面から所定の入射角度を有して入射した入射光が前記光導波部で回折して前記画像光が出射する方向に向かう回折光を低減させる回折光低減板と
を備え、
前記光導波部は、前記画像光を投影させるための投影光の少なくとも一部を導波して、前記第2面から前記画像光として出射する、
投影光学系。 - 前記回折光低減板は、
当該投影基板の前記第1面又は前記第2面と対向して設けられている保護基板と、
前記保護基板の前記投影基板とは反対側の第3面及び前記投影基板に対向する第4面のうち一方の面に設けられており、前記回折光低減板に入射した前記入射光の入射面に平行なP波を低減させる偏光フィルタと、
前記保護基板の前記偏光フィルタが設けられている面とは反対側の面に設けられており、前記入射光のうち赤外領域の光を低減させる赤外カットフィルタと
を有する、
請求項1に記載の投影光学系。 - 前記回折光低減板は、前記投影基板の前記第1面又は前記第2面と対向して設けられており、前記回折光低減板に入射した前記入射光の入射面に平行なP波を低減させる偏光フィルタを有する、請求項1に記載の投影光学系。
- 前記回折光低減板は、
前記投影基板の前記第1面又は前記第2面と対向して設けられている保護基板と、
前記保護基板の前記投影基板とは反対側の第3面及び前記投影基板に対向する第4面のうち少なくとも一方にコーティングされており、前記回折光低減板に入射した前記入射光の入射面に平行なP波を低減させる偏光膜と
を有する、
請求項1に記載の投影光学系。 - 前記光導波部は、
入射回折格子を含み、前記画像光を投影させるための投影光が入射し、入射した前記投影光を当該投影基板の内部に導波する入射領域と、
出射回折格子を含み、前記入射領域から入射した前記投影光の少なくとも一部を導波して前記第2面から前記画像光として出射する出射領域と
を有し、
前記回折光低減板は、前記出射回折格子の少なくとも一部を覆う、
請求項1に記載の投影光学系。 - 前記光導波部は、中間回折格子を含み、前記入射領域から入射した前記投影光の一部を前記出射領域に向けて導波する中間領域を更に有し、
前記入射回折格子は、複数の第1溝部が第1周期で形成されており、
前記中間回折格子は、複数の第2溝部が第2周期で形成されており、
前記出射回折格子は、複数の第3溝部が第3周期で形成されている、
請求項5に記載の投影光学系。 - ユーザが装着する眼鏡型端末であって、
前記ユーザの右眼用のレンズ及び左眼用レンズのうち少なくとも一方として設けられており、前記第1面から入射する少なくとも一部の光を前記ユーザの眼へと透過させつつ、前記第2面に前記画像光を投影させる、請求項1から6のいずれか一項に記載の前記投影光学系と、
前記投影光学系を固定しているフレームと、
前記フレームに設けられており、前記光導波部の出射領域に前記画像光を投影させるための前記投影光を前記投影基板の前記光導波部の入射領域に照射する投影部と
を備える、眼鏡型端末。 - 前記投影部は、前記入射領域に照射する前記投影光の偏光方向を調節する偏光調節部を有し、
前記投影光学系の前記回折光低減板は、前記投影基板の前記第1面と対向して設けられており、
前記偏光調節部は、前記画像光の偏光方向と前記回折光低減板が低減させる光の偏光方向とを一致させるように前記投影光の偏光方向を調節する、
請求項7に記載の眼鏡型端末。 - 前記投影部は、前記入射領域に照射する前記投影光の偏光方向を調節する偏光調節部を有し、
前記投影光学系の前記回折光低減板は、前記投影基板の前記第2面と対向して設けられており、
前記偏光調節部は、前記画像光の偏光方向と前記回折光低減板が透過させる光の偏光方向とを一致させるように前記投影光の偏光方向を調節する、
請求項7に記載の眼鏡型端末。 - 前記フレームには、複数の前記投影基板が固定されており、
前記回折光低減板は、複数の前記投影基板のうち一の投影基板の前記ユーザとは反対側か、又は、前記一の投影基板と前記ユーザとの間に設けられており、
前記投影部は、複数の前記投影基板のそれぞれに設けられている前記入射領域に異なる波長の前記投影光をそれぞれ照射し、
複数の前記投影基板にそれぞれ設けられている前記出射領域は、平面視で少なくとも一部が重なっており、前記投影部から複数の前記入射領域にそれぞれ照射された前記投影光に対応する前記画像光を複数の前記投影基板の前記第2面から前記ユーザの眼へとそれぞれ出射する、
請求項7に記載の眼鏡型端末。 - 前記投影部は、前記入射領域に照射する複数の前記投影光のうち少なくとも1つの前記投影光の偏光方向を調節する偏光調節部を有し、
前記投影光学系の前記回折光低減板は、複数の前記投影基板の前記ユーザとは反対側に設けられており、
前記偏光調節部は、複数の前記画像光のうち少なくとも1つの前記画像光の偏光方向と前記回折光低減板が低減させる光の偏光方向とを一致させるように、前記投影光の偏光方向を調節する、
請求項10に記載の眼鏡型端末。 - 前記投影部は、前記入射領域に照射する複数の前記投影光のうち少なくとも1つの前記投影光の偏光方向を調節する偏光調節部を有し、
前記投影光学系の前記回折光低減板は、複数の前記投影基板うち一の投影基板と前記ユーザとの間に設けられており、
前記偏光調節部は、複数の前記画像光のうち前記一の投影基板が出射する前記画像光の偏光方向と前記回折光低減板が透過させる光の偏光方向とを一致させるように、前記投影光の偏光方向を調節する、
請求項10に記載の眼鏡型端末。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/030271 WO2024033968A1 (ja) | 2022-08-08 | 2022-08-08 | 投影光学系及び眼鏡型端末 |
PCT/JP2022/040182 WO2024034150A1 (ja) | 2022-08-08 | 2022-10-27 | 投影光学系及び眼鏡型端末 |
TW112128399A TW202409637A (zh) | 2022-08-08 | 2023-07-28 | 投影光學系統以及眼鏡型終端 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/030271 WO2024033968A1 (ja) | 2022-08-08 | 2022-08-08 | 投影光学系及び眼鏡型端末 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024033968A1 true WO2024033968A1 (ja) | 2024-02-15 |
Family
ID=89851225
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/030271 WO2024033968A1 (ja) | 2022-08-08 | 2022-08-08 | 投影光学系及び眼鏡型端末 |
PCT/JP2022/040182 WO2024034150A1 (ja) | 2022-08-08 | 2022-10-27 | 投影光学系及び眼鏡型端末 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/040182 WO2024034150A1 (ja) | 2022-08-08 | 2022-10-27 | 投影光学系及び眼鏡型端末 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202409637A (ja) |
WO (2) | WO2024033968A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013111471A1 (ja) * | 2012-01-24 | 2013-08-01 | ソニー株式会社 | 表示装置 |
JP2014222302A (ja) * | 2013-05-14 | 2014-11-27 | セイコーエプソン株式会社 | 表示装置 |
CN210776045U (zh) * | 2019-12-12 | 2020-06-16 | 深圳惠牛科技有限公司 | 一种光波导结构及增强现实设备 |
JP2021508093A (ja) * | 2018-01-12 | 2021-02-25 | エルジー・ケム・リミテッド | 回折導光板およびこれを含むディスプレイ装置 |
WO2021106749A1 (ja) * | 2019-11-26 | 2021-06-03 | 富士フイルム株式会社 | 光学部材および画像表示装置 |
-
2022
- 2022-08-08 WO PCT/JP2022/030271 patent/WO2024033968A1/ja unknown
- 2022-10-27 WO PCT/JP2022/040182 patent/WO2024034150A1/ja unknown
-
2023
- 2023-07-28 TW TW112128399A patent/TW202409637A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013111471A1 (ja) * | 2012-01-24 | 2013-08-01 | ソニー株式会社 | 表示装置 |
JP2014222302A (ja) * | 2013-05-14 | 2014-11-27 | セイコーエプソン株式会社 | 表示装置 |
JP2021508093A (ja) * | 2018-01-12 | 2021-02-25 | エルジー・ケム・リミテッド | 回折導光板およびこれを含むディスプレイ装置 |
WO2021106749A1 (ja) * | 2019-11-26 | 2021-06-03 | 富士フイルム株式会社 | 光学部材および画像表示装置 |
CN210776045U (zh) * | 2019-12-12 | 2020-06-16 | 深圳惠牛科技有限公司 | 一种光波导结构及增强现实设备 |
Also Published As
Publication number | Publication date |
---|---|
WO2024034150A1 (ja) | 2024-02-15 |
TW202409637A (zh) | 2024-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7517767B2 (ja) | 広視野を有する導波管プロジェクタのためのシステム | |
TWI720092B (zh) | 用於擴增近眼可穿戴顯示器之系統及方法 | |
US10162181B2 (en) | Display device with optics for brightness uniformity tuning having DOE optically coupled to receive light at central and peripheral regions | |
US20170315356A1 (en) | Waveguides of near-eye display devices for suppressing ghost images | |
KR102162994B1 (ko) | 근안 디스플레이를 위한 파장 통과 제어용 편광 시스템 및 방법 | |
CN113448088A (zh) | 增强现实设备 | |
JP2015194654A (ja) | 光学デバイス、画像投影装置及び電子機器 | |
GB2571389A (en) | Optical structure for augmented reality display | |
US20240231110A1 (en) | Projection substrate and smart glasses | |
WO2024033968A1 (ja) | 投影光学系及び眼鏡型端末 | |
WO2024033969A1 (ja) | 投影光学系及び眼鏡型端末 | |
WO2020179470A1 (ja) | 画像表示装置 | |
US12072535B2 (en) | Display device | |
US12111470B2 (en) | Optical system and mixed reality device | |
WO2023203663A1 (ja) | 投影基板及び眼鏡型端末 | |
WO2023203597A1 (ja) | 投影基板及び基板製造方法 | |
WO2023203600A1 (ja) | 投影基板及び投影基板の製造方法 | |
CN118974638A (zh) | 投影基板以及眼镜型终端 | |
CN118974637A (zh) | 投影基板以及基板制造方法 | |
US20230033943A1 (en) | Optical element and virtual image display device | |
JPWO2019016926A1 (ja) | 頭部装着型表示装置 | |
KR20230121545A (ko) | 현실감을 향상시키고 광원과 광학계가 일체화된 증강현실 장치 | |
KR20230009758A (ko) | 표시 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22954890 Country of ref document: EP Kind code of ref document: A1 |