WO2024029422A1 - 通信システム - Google Patents
通信システム Download PDFInfo
- Publication number
- WO2024029422A1 WO2024029422A1 PCT/JP2023/027375 JP2023027375W WO2024029422A1 WO 2024029422 A1 WO2024029422 A1 WO 2024029422A1 JP 2023027375 W JP2023027375 W JP 2023027375W WO 2024029422 A1 WO2024029422 A1 WO 2024029422A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- repeater
- base station
- signaling
- information
- communication
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 228
- 238000012545 processing Methods 0.000 claims abstract description 109
- 238000005259 measurement Methods 0.000 claims abstract description 38
- 230000011664 signaling Effects 0.000 description 254
- 238000000034 method Methods 0.000 description 78
- 230000005540 biological transmission Effects 0.000 description 54
- 230000004044 response Effects 0.000 description 43
- 238000010586 diagram Methods 0.000 description 35
- 230000006870 function Effects 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 238000007726 management method Methods 0.000 description 15
- 238000004364 calculation method Methods 0.000 description 11
- 238000012937 correction Methods 0.000 description 10
- 230000004913 activation Effects 0.000 description 9
- 230000015654 memory Effects 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 238000013468 resource allocation Methods 0.000 description 7
- 101100465000 Mus musculus Prag1 gene Proteins 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 101150096310 SIB1 gene Proteins 0.000 description 4
- 238000004873 anchoring Methods 0.000 description 4
- 230000001934 delay Effects 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 101100274486 Mus musculus Cited2 gene Proteins 0.000 description 2
- 101150096622 Smr2 gene Proteins 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 241001229889 Metis Species 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 208000018910 keratinopathic ichthyosis Diseases 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000013146 percutaneous coronary intervention Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/10—Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/26—Cell enhancers or enhancement, e.g. for tunnels, building shadow
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Definitions
- the present disclosure relates to wireless communication technology.
- LTE Long Term Evolution
- LTE-A Long Term Evolution Advanced
- NR New Radio Access Technology
- Non-Patent Document 3 For example, in Europe, an organization called METIS has compiled requirements for 5G (see Non-Patent Document 3).
- the 5G wireless access system has 1000 times the system capacity, 100 times the data transmission speed, 1/5th the data processing delay, and 100 times the number of simultaneous connection of communication terminals compared to the LTE system.
- the requirements include realizing further reductions in power consumption and costs of devices (see Non-Patent Document 3).
- OFDM Orthogonal Frequency Division Multiplexing
- DFT-s-OFDM Discrete Fourier Transform-spread-OFDM
- the 5G system does not include circuit switching and only uses a packet communication method.
- NR allows the use of higher frequencies than LTE in order to improve transmission speed and reduce processing delays.
- NR which may use a higher frequency than LTE
- cell coverage is ensured by forming a narrow beam-shaped transmission/reception range (beamforming) and changing the direction of the beam (beam sweeping).
- FIG. 1 is an explanatory diagram showing the structure of a radio frame used in an NR communication system.
- one radio frame is 10 ms.
- a radio frame is divided into 10 equally sized subframes.
- one or more numerologies ie, one or more subcarrier spacings (SCS)
- SCS subcarrier spacings
- one subframe is 1 ms regardless of the subcarrier interval, and one slot is composed of 14 symbols.
- the number of slots included in one subframe is one when the subcarrier interval is 15 kHz, and the number of slots at other subcarrier intervals increases in proportion to the subcarrier interval (Non-patent Document 11 (3GPP TS38 (See .211)).
- Non-Patent Document 2 (Chapter 5) and Non-Patent Document 11.
- a physical broadcast channel is a communication terminal from a base station device (hereinafter sometimes simply referred to as a "base station”) to a mobile terminal device (hereinafter sometimes simply referred to as a “mobile terminal”). This is a channel for downlink transmission to a device (hereinafter sometimes referred to as a “communication terminal” or “terminal”).
- PBCH is transmitted together with a downlink synchronization signal.
- Downlink synchronization signals in NR include a first synchronization signal (P-SS) and a second synchronization signal (S-SS).
- a synchronization signal is transmitted from a base station as a synchronization signal burst (hereinafter sometimes referred to as an SS burst) at a predetermined period and with a predetermined duration.
- the SS burst is composed of a synchronization signal block (hereinafter sometimes referred to as an SS block) for each beam of the base station.
- the base station transmits the SS block of each beam by changing the beam within the duration of the SS burst.
- the SS block is composed of P-SS, S-SS, and PBCH.
- a physical downlink control channel is a channel for downlink transmission from a base station to a communication terminal.
- the PDCCH carries downlink control information (DCI).
- the DCI includes resource allocation information for a Downlink Shared Channel (DL-SCH), which is one of the transport channels described below, and a paging channel (Paging Channel, which is one of the transport channels described later). This includes resource allocation information for PCH, HARQ (Hybrid Automatic Repeat reQuest) information regarding DL-SCH, and the like.
- the DCI may include an uplink scheduling grant.
- DCI may include Ack (Acknowledgement)/Nack (Negative Acknowledgement) which is a response signal to uplink transmission.
- the DCI may include a slot format indication (SFI).
- PDCCH or DCI is also called L1/L2 control signal.
- a time/frequency region is provided as a candidate for PDCCH to be included. This area is called a control resource set (CORESET).
- the communication terminal monitors CORESET and acquires PDCCH.
- a physical downlink shared channel is a channel for downlink transmission from a base station to a communication terminal.
- a downlink shared channel (DL-SCH), which is a transport channel, and a PCH, which is a transport channel, are mapped to the PDSCH.
- a physical uplink control channel is a channel for uplink transmission from a communication terminal to a base station.
- PUCCH carries uplink control information (UCI).
- the UCI includes Ack/Nack, which is a response signal for downlink transmission, CSI (Channel State Information), scheduling request (SR), and the like.
- CSI is composed of RI (Rank Indicator), PMI (Precoding Matrix Indicator), and CQI (Channel Quality Indicator) report.
- RI is rank information of a channel matrix in MIMO (Multiple Input, Multiple Output).
- PMI is information on a precoding weight matrix used in MIMO.
- CQI is quality information indicating the quality of received data or the quality of a communication channel.
- the UCI may be carried by PUSCH, which will be described later.
- PUCCH or UCI is also called L1/L2 control signal.
- a physical uplink shared channel is a channel for uplink transmission from a communication terminal to a base station.
- An uplink shared channel (UL-SCH), which is one of the transport channels, is mapped to the PUSCH.
- a physical random access channel is a channel for uplink transmission from a communication terminal to a base station.
- PRACH carries a random access preamble.
- the downlink reference signal (Reference Signal: RS) is a symbol known as an NR communication system.
- the following four types of downlink reference signals are defined.
- Data demodulation reference signal (DM-RS), phase tracking reference signal (PT-RS), and positioning reference signal, which are UE-specific reference signals (UE-specific Reference Signal) :PRS), Channel State Information Reference Signal (CSI-RS).
- Measurements of the physical layer of a communication terminal include reference signal received power (RSRP) measurement and reference signal received quality (RSRQ) measurement.
- RSRP reference signal received power
- RSRQ reference signal received quality
- the uplink reference signal is a symbol known as an NR communication system.
- the following three types of uplink reference signals are defined. These are a data demodulation reference signal (DM-RS), a phase tracking reference signal (PT-RS), and a sounding reference signal (SRS).
- DM-RS data demodulation reference signal
- PT-RS phase tracking reference signal
- SRS sounding reference signal
- Non-Patent Document 2 (Chapter 5) will be explained.
- a broadcast channel (BCH) is broadcast throughout the coverage of the base station (cell).
- the BCH is mapped to a physical broadcast channel (PBCH).
- PBCH physical broadcast channel
- DL-SCH downlink shared channel
- DL-SCH can be broadcast to the entire coverage of a base station (cell).
- DL-SCH supports dynamic or semi-static resource allocation. Semi-static resource allocation is also called semi-persistent scheduling.
- DL-SCH supports discontinuous reception (DRX) of communication terminals to reduce power consumption of communication terminals.
- DL-SCH is mapped to a physical downlink shared channel (PDSCH).
- PDSCH physical downlink shared channel
- a paging channel supports DRX of a communication terminal to enable low power consumption of the communication terminal.
- PCH is required to be broadcast throughout the coverage of a base station (cell).
- the PCH is dynamically mapped to a physical resource such as a physical downlink shared channel (PDSCH) that is available for traffic.
- PDSCH physical downlink shared channel
- UL-SCH uplink shared channel
- PUSCH physical uplink shared channel
- Random Access Channel is limited to control information. RACH is at risk of collision. RACH is mapped to Physical Random Access Channel (PRACH).
- PRACH Physical Random Access Channel
- HARQ is a technology that improves the communication quality of a transmission path by combining automatic repeat request (ARQ) and forward error correction.
- ARQ automatic repeat request
- HARQ has the advantage that error correction functions effectively through retransmission even on transmission paths where communication quality changes. In particular, it is possible to further improve the quality by combining the reception results of the first transmission and the retransmission upon retransmission.
- a CRC error occurs on the receiving side
- the receiving side issues a retransmission request to the transmitting side.
- a retransmission request is made by toggling an NDI (New Data Indicator).
- the transmitting side that receives the retransmission request retransmits the data. If no CRC error occurs on the receiving side, no retransmission request is made. If the transmitting side does not receive a retransmission request for a predetermined period of time, it is assumed that a CRC error has not occurred on the receiving side.
- a broadcast control channel is a downlink channel for broadcasting system control information.
- the BCCH which is a logical channel, is mapped to a broadcast channel (BCH), which is a transport channel, or a downlink shared channel (DL-SCH).
- BCH broadcast channel
- DL-SCH downlink shared channel
- PCCH Paging Control Channel
- PCCH paging channel
- a common control channel is a channel for transmitting control information between a communication terminal and a base station.
- CCCH is used when a communication terminal does not have an RRC connection with a network.
- the CCCH is mapped to a downlink shared channel (DL-SCH), which is a transport channel.
- DL-SCH downlink shared channel
- UL-SCH uplink shared channel
- a dedicated control channel is a channel that transmits dedicated control information between a communication terminal and a network on a one-to-one basis.
- DCCH is used when a communication terminal has an RRC connection with the network.
- the DCCH is mapped to an uplink shared channel (UL-SCH) in uplinks and to a downlink shared channel (DL-SCH) in downlinks.
- UL-SCH uplink shared channel
- DL-SCH downlink shared channel
- the Dedicated Traffic Channel is a channel for one-to-one communication with communication terminals for transmitting user information.
- DTCH exists on both uplink and downlink.
- DTCH is mapped to an uplink shared channel (UL-SCH) in uplinks, and mapped to a downlink shared channel (DL-SCH) in downlinks.
- UL-SCH uplink shared channel
- DL-SCH downlink shared channel
- Location tracking of communication terminals is performed in units of areas consisting of one or more cells. Location tracking is performed to track the location of a communication terminal even when it is in a standby state, and to make a call to the communication terminal, in other words, to enable the communication terminal to receive a call.
- This area for tracking the location of the communication terminal is called a tracking area (TA).
- NR In NR, calling of a communication terminal is supported in an area smaller than the tracking area. This range is called a RAN notification area (RAN Notification Area: RNA). Paging of a communication terminal in the RRC_INACTIVE state, which will be described later, is performed within this range.
- RNA RAN Notification Area
- carrier aggregation is used to aggregate two or more component carriers (CCs) (also referred to as “aggregation”) in order to support wide frequency bandwidths (transmission bandwidths).
- CCs component carriers
- aggregation also referred to as “aggregation”
- CA transmission bandwidths
- the UE When CA is configured, the UE, which is a communication terminal, has only one RRC connection with the network (NW).
- one serving cell provides the NAS mobility information and security input. This cell is called a primary cell (PCell).
- PCell primary cell
- SCell secondary cell
- a serving cell set consisting of one PCell and one or more SCells is configured for one UE.
- DC dual connectivity
- a master base station Master Node: MN
- secondary base station Secondary Node: SN
- Serving cells configured by a master base station may be collectively referred to as a master cell group (Master Cell Group: MCG)
- serving cells configured by a secondary base station may be collectively referred to as a secondary cell group (Secondary Cell Group: SCG).
- a primary cell in an MCG or SCG is called a special cell (SpCell or SPCell).
- a special cell in the MCG is called a PCell
- a special cell in the SCG is called a primary SCG cell (PSCell).
- the base station presets a part of the carrier frequency band (hereinafter sometimes referred to as Bandwidth Part (BWP)) to the UE, and the UE performs transmission and reception with the base station in the BWP. By performing this, it is possible to reduce power consumption in the UE.
- BWP Bandwidth Part
- 3GPP supports services (or applications) using side link (SL) communication (also called PC5 communication) in both the EPS (Evolved Packet System) described below and the 5G core system. are being considered (see Non-Patent Documents 1, 2, 26-28).
- SL communication communication is performed between terminals. Examples of services using SL communication include V2X (vehicle-to-everything) services and proximity services.
- V2X vehicle-to-everything
- the physical channel used for SL (see Non-Patent Documents 2 and 11) will be explained.
- the Physical Sidelink Broadcast Channel (PSBCH) carries system and synchronization related information and is transmitted from the UE.
- a physical sidelink control channel (PSCCH) carries control information from the UE for sidelink communication and V2X sidelink communication.
- a physical sidelink shared channel (PSSCH) carries data from the UE for sidelink and V2X sidelink communications.
- a physical sidelink feedback channel (PSFCH) carries HARQ feedback on the sidelink from the UE that received the PSSCH transmission to the UE that transmitted the PSSCH.
- the transport channel used for SL (see Non-Patent Document 1) will be explained.
- the sidelink broadcast channel (SL-BCH) has a predetermined transport format and is mapped to the PSBCH, which is a physical channel.
- the Sidelink shared channel supports broadcast transmission.
- SL-SCH supports both UE autonomous resource selection and base station scheduled resource allocation. There is a collision risk in UE automatic resource selection, and when the UE is allocated individual resources by the base station, there is no collision.
- SL-SCH also supports dynamic link adaptation by changing transmit power, modulation, and coding.
- SL-SCH is mapped to PSSCH, which is a physical channel.
- a sidelink broadcast control channel is a sidelink channel for broadcasting sidelink system information from one UE to another UE.
- SBCCH is mapped to SL-BCH, which is a transport channel.
- the Sidelink Traffic Channel is a one-to-many sidelink traffic channel for transmitting user information from one UE to another UE.
- STCH is used only by UEs with sidelink communication capabilities and UEs with V2X sidelink communication capabilities.
- One-to-one communication between UEs with two sidelink communication capabilities is also realized on the STCH.
- STCH is mapped to SL-SCH, which is a transport channel.
- a sidelink control channel is a sidelink control channel for transmitting control information from one UE to another UE.
- SCCH is mapped to SL-SCH, which is a transport channel.
- Non-Patent Document 27 (3GPP TS23.287)
- HARQ feedback In unicast communication and group cast communication in SL, HARQ feedback (Ack/Nack), CSI reporting, etc. are supported.
- IAB Integrated Access and Backhaul
- Non-Patent Document 30 A method of controlling smart repeaters from a base station is being considered.
- Non-Patent Document 24 a problem arises in that the UE's position calculation result derived from the transmission and reception results of positioning signals becomes inaccurate.
- one of the objects of the present disclosure is to enable positioning of a UE connected to a base station via a smart repeater and to realize a highly reliable communication system.
- the communication system includes a core network side device equipped with the location management function of the 5th generation wireless access system, a base station applied to the 5th generation wireless access system, and relay processing between the base station and the communication terminal. and a repeater that performs.
- the repeater notifies the core network side device of at least one of the following information: information regarding the propagation delay between the connected base station and the own repeater, information regarding the position of the own repeater, and information regarding processing delay at the own repeater.
- the communication terminal measures the positioning signal transmitted by the repeater and notifies the core network side device of the measurement result of the positioning signal.
- the core network side device calculates the position of the communication terminal based on the information notified from the repeater and the measurement result notified from the communication terminal.
- FIG. 2 is an explanatory diagram showing the structure of a radio frame used in an NR communication system.
- 1 is a block diagram showing the overall configuration of an NR communication system 210 being discussed in 3GPP. It is a block diagram of DC by the base station connected to NG core.
- 3 is a block diagram showing the configuration of a mobile terminal 202 shown in FIG. 2.
- FIG. 3 is a block diagram showing the configuration of a base station 213 shown in FIG. 2.
- FIG. 5 is a block diagram showing the configuration of a 5GC unit.
- FIG. 2 is a flowchart showing an outline of steps from a cell search to a standby operation performed by a communication terminal (UE) in an NR communication system.
- FIG. 2 is a diagram showing an example of a cell configuration in an NR system.
- FIG. 2 is a connection configuration diagram showing an example of a connection configuration of terminals in SL communication.
- FIG. 2 is a connection configuration diagram showing an example of a connection configuration of base stations that support access/backhaul integration.
- FIG. 2 is a sequence diagram illustrating an example of a positioning procedure for a UE that connects to a base station via a repeater in accordance with the first embodiment;
- FIG. 3 is a sequence diagram illustrating another example of a positioning procedure for a UE that connects to a base station via a repeater in Embodiment 1;
- FIG. 7 is a sequence diagram showing another example of a positioning procedure for a UE that connects to a base station via a repeater in Embodiment 2.
- FIG. 7 is a sequence diagram showing another example of a positioning procedure for a UE that connects to a base station via a repeater in Embodiment 2.
- FIG. FIG. 7 is a diagram illustrating an example of protocol stacks in a repeater, base station, AMF, and LMF in Embodiment 3;
- 7 is a diagram illustrating another example of protocol stacks in a repeater, base station, AMF, and LMF in Embodiment 3.
- FIG. FIG. 7 is a sequence diagram illustrating another example of a positioning procedure for a UE that connects to a base station via a repeater in Embodiment 3;
- FIG. 7 is a sequence diagram illustrating another example of a positioning procedure for a UE that connects to a base station via a repeater in Embodiment 3;
- FIG. 7 is a sequence diagram illustrating another example of a positioning procedure for a UE that connects to a base station via a repeater in Embodiment 3;
- FIG. 7 is a sequence diagram illustrating another example of a positioning procedure for a UE that connects to a base station via a repeater in Embodiment 3;
- FIG. 2 is a block diagram showing the overall configuration of an NR communication system 210 being discussed in 3GPP.
- the radio access network is called NG-RAN (Next Generation Radio Access Network) 211.
- a mobile terminal device hereinafter referred to as “mobile terminal (User Equipment: UE)”) 202, which is a communication terminal device, is capable of wireless communication with a base station device (hereinafter referred to as “NR base station (NG-RAN NodeB: gNB)”) 213. It transmits and receives signals via wireless communication.
- the NG-RAN 211 is configured by one or more NR base stations 213.
- the term “communication terminal device” includes not only mobile terminal devices such as movable mobile phone terminal devices, but also non-mobile devices such as sensors.
- a “communication terminal device” may be simply referred to as a “communication terminal.”
- the AS (Access Stratum) protocol is terminated between the UE 202 and the NG-RAN 211.
- AS protocols include, for example, RRC (Radio Resource Control), SDAP (Service Data Adaptation Protocol), PDCP (Packet Data Convergence Protocol), RLC (Radio Link Control), MAC (Medium Access Control), and PHY (Physical layer). used.
- RRC Radio Resource Control
- SDAP Service Data Adaptation Protocol
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- PHY Physical layer
- RRC Radio Resource Control
- SDAP Service Data Adaptation Protocol
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- PHY Physical layer
- the control protocol RRC Radio Resource Control
- RRC Radio Resource Control
- the states of the NR base station 213 and the UE 202 in RRC include RRC_IDLE, RRC_CONNECTED, and RRC_INACTIVE.
- RRC_IDLE PLMN (Public Land Mobile Network) selection, system information (SI) notification, paging, cell re-selection, mobility, etc. are performed.
- RRC_CONNECTED the mobile terminal has an RRC connection and can send and receive data to and from the network. Furthermore, in RRC_CONNECTED, handover (HO), measurement of neighbor cells, and the like are performed.
- RRC_INACTIVE maintains the connection between the 5G core unit 214 and the NR base station 213 while performing system information (SI) broadcasting, paging, cell re-selection, mobility, etc. It will be done.
- gNB213 is a 5G core unit (hereinafter referred to as "5GC") that includes an access and mobility management function (AMF), a session management function (SMF), or a user plane function (UPF). 214 (sometimes referred to as "part") by an NG interface. Control information and/or user data are communicated between the gNB 213 and the 5GC unit 214.
- the NG interface is a general term for the N2 interface between gNB 213 and AMF 220, the N3 interface between gNB 213 and UPF 221, the N11 interface between AMF 220 and SMF 222, and the N4 interface between UPF 221 and SMF 222.
- a plurality of 5GC units 214 may be connected to one gNB 213.
- the gNBs 213 are connected by an Xn interface, and control information and/or user data are communicated between the gNBs 213.
- the 5GC unit 214 is a higher-level device, specifically a higher-level node, and controls the connection between the NR base station 213 and the mobile terminal (UE) 202, and controls the connection between one or more NR base stations (gNB) 213 and/or LTE. It distributes paging signals to base stations (E-UTRAN NodeB: eNB). Further, the 5GC unit 214 performs mobility control in an idle state. The 5GC unit 214 manages a tracking area list when the mobile terminal 202 is in a standby state, an inactive state, and an active state. The 5GC unit 214 initiates a paging protocol by transmitting a paging message to a cell belonging to a tracking area in which the mobile terminal 202 is registered.
- the gNB 213 may constitute one or more cells. When one gNB 213 configures multiple cells, each cell is configured to be able to communicate with the UE 202.
- the gNB 213 may be divided into a central unit (hereinafter sometimes referred to as CU) 215 and a distributed unit (hereinafter sometimes referred to as DU) 216.
- CU central unit
- DU distributed unit
- One CU 215 is configured in the gNB 213.
- One or more DUs 216 are configured in the gNB 213.
- One DU 216 constitutes one or more cells.
- the CU 215 is connected to the DU 216 by an F1 interface, and control information and/or user data are communicated between the CU 215 and the DU 216.
- the F1 interface consists of an F1-C interface and an F1-U interface.
- the CU 215 is responsible for the functions of the RRC, SDAP, and PDCP protocols, and the DU 216 is responsible for the functions of the RLC, MAC, and PHY protocols.
- One or more TRPs (Transmission Reception Points) 219 may be connected to the DU 216 .
- the TRP 219 transmits and receives radio signals to and from the UE.
- the CU 215 may be divided into a C-plane CU (CU-C) 217 and a U-plane CU (CU-U) 218.
- One CU-C 217 is configured in the CU 215.
- One or more CU-Us 218 are configured in the CU 215.
- the CU-C 217 is connected to the CU-U 218 via an E1 interface, and control information is communicated between the CU-C 217 and CU-U 218.
- the CU-C 217 is connected to the DU 216 through an F1-C interface, and control information is communicated between the CU-C 217 and the DU 216.
- the CU-U 218 is connected to the DU 216 by an F1-U interface, and user data is communicated between the CU-U 218 and the DU 216.
- a 5G communication system may include a unified data management (UDM) function and a policy control function (PCF) described in Non-Patent Document 10 (3GPP TS23.501).
- the UDM and/or the PCF may be included in the 5GC section 214 in FIG.
- a location management function described in Non-Patent Document 24 (3GPP TS38.305) may be provided.
- the LMF may be connected to the base station via the AMF, as disclosed in Non-Patent Document 25 (3GPP TS23.273).
- a 5G communication system may include a non-3GPP interworking function (N3IWF) described in Non-Patent Document 10 (3GPP TS23.501).
- N3IWF non-3GPP interworking function
- the N3IWF may terminate an access network (AN) between the UE and the UE.
- AN access network
- FIG. 3 is a diagram showing the configuration of a DC (dual connectivity) connected to the NG core.
- DC dual connectivity
- solid lines indicate U-Plane connections
- broken lines indicate C-Plane connections.
- master base station 240-1 may be a gNB or an eNB.
- the secondary base station 240-2 may be a gNB or an eNB.
- NG-EN-DC a DC configuration in which master base station 240-1 is a gNB and secondary base station 240-2 is an eNB may be referred to as NG-EN-DC.
- FIG. 3 shows an example in which the U-Plane connection between the 5GC unit 214 and the secondary base station 240-2 is performed via the master base station 240-1, the 5GC unit 214 and the secondary base station 240-2 It may also be done directly between. Further, in FIG. 3, instead of the 5GC unit 214, an EPC (Evolved Packet Core), which is a core network connected to the LTE system and the LTE-A system, may be connected to the master base station 240-1. A U-Plane connection between the EPC and the secondary base station 240-2 may be made directly.
- EPC Evolved Packet Core
- FIG. 4 is a block diagram showing the configuration of the mobile terminal 202 shown in FIG. 2.
- the transmission processing of the mobile terminal 202 shown in FIG. 4 will be explained.
- control data from the control section 310 and user data from the application section 302 are sent to the protocol processing section 301 .
- Control data and user data may be buffered. Buffers for control data and user data may be provided in the control unit 310, the application unit 302, or the protocol processing unit 301.
- the protocol processing unit 301 performs operations such as processing protocols such as SDAP, PDCP, RLC, and MAC, determining a destination base station in a DC, etc., and adding headers in each protocol.
- the data that has been subjected to the protocol processing is passed to the encoder section 304, where it is subjected to encoding processing such as error correction.
- encoding processing such as error correction.
- the data encoded by the encoder section 304 is modulated by the modulation section 305.
- the modulation section 305 may perform MIMO precoding.
- the modulated data is converted into a baseband signal and then output to frequency conversion section 306, where it is converted into a wireless transmission frequency. Thereafter, transmission signals are transmitted to the base station 213 from the antennas 307-1 to 307-4.
- FIG. 4 illustrates an example in which the number of antennas is four, the number of antennas is not limited to four.
- the reception process of the mobile terminal 202 is executed as follows. Radio signals from base station 213 are received by antennas 307-1 to 307-4. The received signal is converted from a radio reception frequency to a baseband signal by frequency converter 306, and demodulated by demodulator 308. Demodulation section 308 may perform weight calculation and multiplication processing. The demodulated data is passed to a decoder section 309, where decoding processing such as error correction is performed. The decoded data is passed to the protocol processing unit 301, and protocol processing such as MAC, RLC, PDCP, SDAP, etc., such as header removal in each protocol, is performed. Among the data subjected to protocol processing, control data is passed to the control unit 310, and user data is passed to the application unit 302.
- protocol processing such as MAC, RLC, PDCP, SDAP, etc.
- a series of processing by the mobile terminal 202 is controlled by the control unit 310. Therefore, although not shown in FIG. 4, the control section 310 is also connected to each section 302, 304 to 309.
- Each section of the mobile terminal 202 is realized by a processing circuit including, for example, a processor and a memory.
- the control unit 310 is realized by a processor executing a program in which a series of processes of the mobile terminal 202 are described.
- a program that describes a series of processes for the mobile terminal 202 is stored in memory. Examples of memory are nonvolatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), and flash memory.
- Each part of the mobile terminal 202 for example, a control unit 310, a protocol processing unit 301, an encoder unit 304, and a decoder unit 309, is an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), a DSP (Digital Signal Processor), etc. It may also be realized by a dedicated processing circuit.
- the number of antennas used by mobile terminal 202 for transmission and the number of antennas used for reception may be the same or different.
- FIG. 5 is a block diagram showing the configuration of base station 213 shown in FIG. 2. Transmission processing of the base station 213 shown in FIG. 5 will be explained.
- the EPC communication unit 401 transmits and receives data between the base station 213 and the EPC.
- the 5GC communication unit 412 transmits and receives data between the base station 213 and the 5GC (5GC unit 214, etc.).
- Other base station communication section 402 transmits and receives data to and from other base stations.
- the EPC communication unit 401, 5GC communication unit 412, and other base station communication unit 402 each exchange information with the protocol processing unit 403.
- Control data from the control unit 411 and user data and control data from the EPC communication unit 401, 5GC communication unit 412, and other base station communication unit 402 are sent to the protocol processing unit 403.
- Control data and user data may be buffered. Buffers for control data and user data may be provided in the control unit 411, in the EPC communication unit 401, in the 5GC communication unit 412, or in the other base station communication unit 402. may be provided.
- the protocol processing unit 403 performs operations such as processing protocols such as SDAP, PDCP, RLC, and MAC, for example, routing transmission data in a DC, etc., and adding headers in each protocol.
- the data that has been subjected to the protocol processing is passed to the encoder unit 405, where it is subjected to encoding processing such as error correction.
- encoding processing such as error correction.
- data sent from the 5GC communication unit 412 or the EPC communication unit 401 may be sent to another base station, for example, a secondary base station, via the other base station communication unit 402.
- the encoded data is subjected to modulation processing in modulation section 406.
- Precoding in MIMO may be performed in modulation section 406.
- the modulated data is converted into a baseband signal, it is output to frequency conversion section 407 and converted into a wireless transmission frequency.
- transmission signals are transmitted to one or more mobile terminals 202 from antennas 408-1 to 408-4.
- FIG. 5 illustrates an example in which the number of antennas is four, the number of antennas is not limited to four.
- the reception processing of the base station 213 is executed as follows. Radio signals from one or more mobile terminals 202 are received by antennas 408-1 through 408-4. The received signal is converted from a radio reception frequency to a baseband signal by a frequency converter 407, and demodulated by a demodulator 409. The demodulated data is passed to a decoder section 410, where decoding processing such as error correction is performed. The decoded data is passed to the protocol processing unit 403, where protocol processing such as MAC, RLC, PDCP, SDAP, etc., such as header removal in each protocol, is performed.
- protocol processing such as MAC, RLC, PDCP, SDAP, etc.
- control data is passed to the control unit 411, 5GC communication unit 412, EPC communication unit 401, or other base station communication unit 402
- user data is passed to the 5GC communication unit 412, EPC communication unit 401, or other base station communication unit 402. It is passed to the other base station communication section 402.
- Data sent from the other base station communication section 402 may be sent to the 5GC communication section 412 or the EPC communication section 401.
- the data may be, for example, upstream data sent to the 5GC communication unit 412 or the EPC communication unit 401 via another base station in the DC.
- control section 411 is also connected to each section 401, 402, 405 to 410, 412.
- Each unit of the base station 213, for example, the control unit 411, protocol processing unit 403, 5GC communication unit 412, EPC communication unit 401, other base station communication unit 402, encoder unit 405, and decoder unit 410, is the same as the mobile terminal 202 described above. It is realized by a processing circuit including a processor and memory, or a dedicated processing circuit such as FPGA, ASIC, or DSP. In FIG. 5, the number of antennas used by base station 213 for transmission and the number of antennas used for reception may be the same or different.
- a device with a The DU communication unit connects to the protocol processing unit 403.
- a protocol processing unit 403 in the CU 215 performs protocol processing such as PDCP and SDAP.
- a configuration in which a CU communication unit is provided except for the EPC communication unit 401, other base station communication unit 402, and 5GC communication unit 412 shown in FIG. 5 may be used.
- the CU communication unit connects to the protocol processing unit 403.
- a protocol processing unit 403 in the DU 216 performs protocol processing such as PHY, MAC, and RLC.
- FIG. 6 is a block diagram showing the configuration of the 5GC section.
- FIG. 6 shows the configuration of the 5GC unit 214 shown in FIG. 2 described above.
- FIG. 6 shows a case where the 5GC section 214 shown in FIG. 2 includes an AMF configuration, an SMF configuration, and a UPF configuration.
- the AMF has the function of the control plane control unit 525
- the SMF has the function of the session management unit 527
- the UPF has the functions of the user plane communication unit 523 and the Data Network communication unit 521. good.
- the Data Network communication unit 521 transmits and receives data between the 5GC unit 214 and the Data Network.
- the base station communication unit 522 transmits and receives data between the 5GC unit 214 and the base station 213 via the NG interface.
- User data sent from the Data Network is passed from the Data Network communication unit 521 to the base station communication unit 522 via the user plane communication unit 523, and is transmitted to one or more base stations 213.
- User data sent from the base station 213 is passed from the base station communication unit 522 to the Data Network communication unit 521 via the user plane communication unit 523, and is transmitted to the Data Network.
- the control data sent from the base station 213 is passed from the base station communication section 522 to the control plane control section 525.
- the control plane controller 525 may pass control data to the session manager 527.
- Control data may be sent from the Data Network.
- the control data sent from the Data Network may be sent from the Data Network communication section 521 to the session management section 527 via the user plane communication section 523.
- the session management unit 527 may send control data to the control plane control unit 525.
- the user plane control unit 523 includes a PDU processing unit 523-1, a mobility anchoring unit 523-2, and the like, and performs overall processing for the user plane (hereinafter sometimes referred to as U-Plane).
- the PDU processing unit 523-1 processes data packets, for example, transmits and receives packets to and from the Data Network communication unit 521 and transmits and receives packets to and from the base station communication unit 522.
- the mobility anchoring unit 523-2 is responsible for anchoring data paths when the UE is mobile.
- the session management unit 527 manages the PDU session established between the UE and the UPF.
- the session management unit 527 includes a PDU session control unit 527-1, a UE IP address assignment unit 527-2, and the like.
- the PDU session control unit 527-1 manages the PDU session between the mobile terminal 202 and the 5GC unit 214.
- the UE IP address assignment unit 527-2 assigns an IP address to the mobile terminal 202, etc.
- the control plane control unit 525 includes a NAS security unit 525-1, an idle state mobility management unit 525-2, and the like, and performs overall processing for the control plane (hereinafter sometimes referred to as C-Plane).
- the NAS security unit 525-1 performs security for NAS (Non-Access Stratum) messages.
- the idle state mobility management unit 525-2 manages mobility in the standby state (Idle State: RRC_IDLE state, or simply referred to as idle), generates and controls paging signals during the standby state, and performs the following functions: Adding, deleting, updating, searching, tracking area list management, etc. of one or more mobile terminals 202 are performed.
- each part of the 5GC unit 214 is realized, for example, by a processing circuit including a processor and a memory, or a dedicated processing circuit such as an FPGA, an ASIC, or a DSP. Ru.
- FIG. 7 is a flowchart schematically showing steps from cell search to standby operation performed by a communication terminal (UE) in the NR communication system.
- the communication terminal starts cell search, in step ST601, the communication terminal determines the slot timing and frame using the first synchronization signal (P-SS) and the second synchronization signal (S-SS) transmitted from surrounding base stations. Synchronize timing.
- P-SS first synchronization signal
- S-SS second synchronization signal
- P-SS and S-SS are collectively referred to as a synchronization signal (SS).
- a synchronization code that corresponds one-to-one to a PCI (Physical Cell Identifier) assigned to each cell is assigned to the synchronization signal (SS).
- PCI Physical Cell Identifier
- 1008 types of PCI are being considered. The communication terminal synchronizes using these 1008 PCIs and detects (identifies) the PCI of the synchronized cell.
- the communication terminal receives the PBCH from the next synchronized cell in step ST602.
- a MIB Master Information Block
- the MIB information includes, for example, SFN (System Frame Number), SIB (System Information Block) 1 scheduling information, subcarrier intervals such as SIB 1, and DM-RS position information.
- the communication terminal acquires the SS block identifier from the PBCH.
- a part of the bit string of the SS block identifier is included in the MIB.
- the remaining bit strings are included in the identifier used to generate the sequence of DM-RS accompanying the PBCH.
- the communication terminal obtains the SS block identifier using the MIB included in the PBCH and the DM-RS sequence accompanying the PBCH.
- step ST603 the communication terminal measures the received power of the SS block.
- the communication terminal selects the cell with the best reception quality, for example, the cell with the highest reception power, ie, the best cell, from among the one or more cells detected up to step ST603. Further, the communication terminal selects a beam with the best reception quality, for example, a beam with the highest reception power of the SS block, that is, the best beam. For example, the received power of the SS block for each SS block identifier is used to select the best beam.
- SIB1 includes information regarding access to the cell, cell configuration information, and scheduling information of other SIBs (SIBk: an integer of k ⁇ 2). SIB1 also includes a tracking area code (TAC).
- TAC tracking area code
- the communication terminal compares the TAC of SIB1 received in step ST605 with the TAC part of the tracking area identifier (Tracking Area Identity: TAI) in the tracking area list already held by the communication terminal.
- the tracking area list is also referred to as a TAI list.
- TAI is identification information for identifying a tracking area, and is composed of MCC (Mobile Country Code), MNC (Mobile Network Code), and TAC (Tracking Area Code).
- MCC is the country code.
- MNC is a network code.
- TAC is the tracking area code number.
- step ST606 if the TAC received in step ST605 is the same as the TAC included in the tracking area list, the communication terminal enters a standby operation in the cell. In comparison, if the TAC received in step ST605 is not included in the tracking area list, the communication terminal transmits TAU (Tracking Area Update) to the core network (EPC) including the MME etc. through the cell. Request a tracking area change in order to do so.
- TAU Tracking Area Update
- core network side devices Devices that make up the core network (hereinafter sometimes referred to as “core network side devices”) perform tracking based on the identification number (UE-ID, etc.) of the communication terminal sent from the communication terminal along with the TAU request signal. Update the area list.
- the core network side device transmits the updated tracking area list to the communication terminal.
- the communication terminal rewrites (updates) the TAC list held by the communication terminal based on the received tracking area list. Thereafter, the communication terminal enters a standby operation in the cell.
- random access 4-step random access and 2-step random access are used.
- 4-step random access and 2-step random access contention-based random access, that is, random access where timing collision with other mobile terminals may occur, and collision-free (contention-based) random access, contention-free) random access exists.
- the mobile terminal transmits a random access preamble to the base station.
- the random access preamble may be selected by the mobile terminal from within a predetermined range, or may be individually assigned to the mobile terminal and notified from the base station.
- the base station transmits a random access response to the mobile terminal.
- the random access response includes uplink scheduling information used in the third step, a terminal identifier used in uplink transmission in the third step, and the like.
- the mobile terminal performs uplink transmission to the base station.
- the mobile terminal uses the information acquired in the second step for uplink transmission.
- the base station notifies the mobile terminal whether or not there is a conflict resolution.
- the mobile terminal that is notified that there is no collision ends the random access process.
- the mobile terminal that is notified that there is a collision restarts the process from the first step.
- the collision-free 4-step random access method differs from the collision-based 4-step random access method in the following points. That is, prior to the first step, the base station allocates a random access preamble and uplink scheduling to the mobile terminal in advance. Further, the notification of whether or not the conflict is resolved in the fourth step is not required.
- the mobile terminal transmits a random access preamble and performs uplink transmission to the base station.
- the base station notifies the mobile terminal of the presence or absence of a collision.
- the mobile terminal that is notified that there is no collision ends the random access process.
- the mobile terminal that is notified that there is a collision restarts the process from the first step.
- the collision-free two-step random access method differs from the collision-based two-step random access method in the following points. That is, prior to the first step, the base station allocates a random access preamble and uplink scheduling to the mobile terminal in advance. Also, in the second step, the base station transmits a random access response to the mobile terminal.
- FIG. 8 shows an example of a cell configuration in NR.
- a narrow beam is formed and transmitted by changing direction.
- base station 750 performs transmission and reception with a mobile terminal using beam 751-1 at a certain time. At other times, base station 750 transmits to and receives from mobile terminals using beam 751-2. Similarly, the base station 750 uses one or more of the beams 751-3 to 751-8 to perform transmission and reception with the mobile terminal. In this way, the base station 750 configures a wide area cell 752.
- FIG. 8 shows an example in which the number of beams used by the base station 750 is eight, the number of beams may be different from eight. Furthermore, in the example shown in FIG. 8, the number of beams that the base station 750 uses simultaneously is one, but it may be plural.
- the concept of QCL is used for beam identification (see Non-Patent Document 14 (3GPP TS38.214)). That is, the beam is identified by information indicating which reference signal (eg, SS block, CSI-RS) beam can be regarded as the same beam.
- the information may include the type of information regarding viewpoints that can be regarded as the same beam, for example, information regarding Doppler shift, Doppler shift spread, average delay, average delay spread, and spatial Rx parameters (Non-patent Document 14 ( 3GPP TS38.214)).
- SL Side Link
- D2D Device to Device
- V2V Vehicle to Vehicle
- PC5-S signaling is implemented to establish a link for implementing SL, ie, PC5 communication.
- the link is implemented at the V2X layer and is also referred to as a layer 2 link.
- RRC signaling in SL communication is also referred to as PC5 RRC signaling.
- PC5 RRC signaling it has been proposed to notify UE capabilities between UEs that perform PC5 communication, and to notify AS layer settings for performing V2X communication using PC5 communication.
- FIG. 9 shows an example of a connection configuration of mobile terminals in SL communication.
- UE 805 and UE 806 exist within coverage 803 of base station 801.
- UL/DL communication 807 is performed between base station 801 and UE 805.
- UL/DL communication 808 is performed between base station 801 and UE 806.
- SL communication 810 is performed between UE 805 and UE 806.
- UE 811 and UE 812 exist outside the coverage 803.
- SL communication 814 is performed between UE 805 and UE 811.
- SL communication 816 is performed between UE 811 and UE 812.
- a UE 805 shown in FIG. 9 relays communication between a UE 811 and a base station 801.
- a configuration similar to that in FIG. 4 may be used for a UE that performs relaying.
- Relay processing in the UE will be explained using FIG. 4.
- Relay processing by the UE 805 in communication from the UE 811 to the base station 801 will be described.
- Radio signals from UE 811 are received by antennas 307-1 to 307-4.
- the received signal is converted from a radio reception frequency to a baseband signal by frequency converter 306, and demodulated by demodulator 308.
- Demodulation section 308 may perform weight calculation and multiplication processing.
- the demodulated data is passed to a decoder section 309, where decoding processing such as error correction is performed.
- the decoded data is passed to the protocol processing unit 301, and protocol processing such as MAC and RLC used for communication with the UE 811, such as header removal in each protocol, is performed. It also performs protocol processing such as RLC and MAC used for communication with the base station 801, such as adding headers in each protocol.
- the protocol processing unit 301 of the UE 811 may perform PDCP and SDAP protocol processing.
- the data that has been subjected to the protocol processing is passed to the encoder section 304, where it is subjected to encoding processing such as error correction. There may be data that is directly output from the protocol processing section 301 to the modulation section 305 without being subjected to encoding processing.
- the data encoded by the encoder section 304 is modulated by the modulation section 305.
- the modulation section 305 may perform MIMO precoding.
- the modulated data is converted into a baseband signal and then output to frequency conversion section 306, where it is converted into a wireless transmission frequency. Thereafter, transmission signals are transmitted to the base station 801 from the antennas 307-1 to 307-4.
- a 5G base station can support integrated access and backhaul (IAB) (see Non-Patent Documents 2 and 20).
- a base station that supports IAB (hereinafter sometimes referred to as an IAB base station) is an IAB donor CU, which is a CU of a base station that operates as an IAB donor that provides IAB functions, and a DU of a base station that operates as an IAB donor. It is composed of an IAB donor DU and an IAB node that is connected to the IAB donor DU and to the UE using a wireless interface. An F1 interface is provided between the IAB node and the IAB donor CU (see Non-Patent Document 2).
- IAB donor CU901 is connected to IAB donor DU902.
- IAB node 903 is connected to IAB donor DU 902 using a wireless interface.
- IAB node 903 is connected to IAB node 904 using a wireless interface. That is, IAB nodes may be connected in multiple stages.
- the UE 905 is connected to the IAB node 904 using a wireless interface.
- the UE 906 may be connected to the IAB node 903 using a wireless interface, and the UE 907 may be connected to the IAB donor DU 902 using a wireless interface.
- a plurality of IAB donor DUs 902 may be connected to an IAB donor CU 901, a plurality of IAB nodes 903 may be connected to an IAB donor DU 902, and a plurality of IAB nodes 904 may be connected to an IAB node 903. There may be cases where
- a BAP (Backhaul Adaptation Protocol) layer is provided in the connection between the IAB donor DU and the IAB node and the connection between the IAB nodes (see Non-Patent Document 29).
- the BAP layer performs operations such as routing received data to an IAB donor DU and/or IAB node and mapping it to an RLC channel (see Non-Patent Document 29).
- the protocol processing unit of the IAB donor DU performs BAP layer processing, such as adding a BAP header to downlink data, routing to an IAB node, and removing the BAP header from uplink data.
- the configuration shown in FIG. 5 excluding the EPC communication section 401, other base station communication section 402, and 5GC communication section 412 may be used.
- Transmission and reception processing at the IAB node will be explained using FIGS. 5 and 10. Transmission and reception processing of the IAB node 903 in communication between the IAB donor CU 901 and the UE 905 will be described.
- a radio signal from the IAB node 904 is received by the antenna 408 (some or all of the antennas 408-1 to 408-4).
- the received signal is converted from a radio reception frequency to a baseband signal by a frequency converter 407, and demodulated by a demodulator 409.
- the demodulated data is passed to a decoder section 410, where decoding processing such as error correction is performed.
- the decoded data is passed to the protocol processing unit 403, where it performs protocol processing such as MAC and RLC used for communication with the IAB node 904, such as header removal in each protocol. Further, routing to the IAB donor DU 902 using the BAP header is performed, and protocol processing such as RLC and MAC used for communication with the IAB donor DU 902 is performed, for example, operations such as adding headers in each protocol are performed.
- the data that has been subjected to the protocol processing is passed to the encoder unit 405, where it is subjected to encoding processing such as error correction. There may also be data that is directly output from protocol processing section 403 to modulation section 406 without being subjected to encoding processing.
- the encoded data is subjected to modulation processing in modulation section 406.
- Precoding in MIMO may be performed in modulation section 406.
- the modulated data is converted into a baseband signal, it is output to frequency conversion section 407 and converted into a wireless transmission frequency.
- transmission signals are transmitted to the IAB donor DU 902 from the antennas 408-1 to 408-4. Similar processing is performed in downlink communication from the IAB donor CU 901 to the UE 905.
- the IAB node 904 also performs the same transmission and reception processing as the IAB node 903.
- the protocol processing unit 403 of the IAB node 903 performs BAP layer processing such as adding a BAP header in uplink communication and routing to the IAB node 904, and removing the BAP header in downlink communication.
- a repeater may be used for communication between a base station and a UE (hereinafter sometimes referred to as an access link (AL) (see Non-Patent Document 31)).
- a repeater may have multiple beams.
- the repeater may receive a signal from a transmission source, amplify it, and transmit the amplified signal to a transmission destination (this operation may be referred to as AL transmission/reception).
- the repeater may use beams for AL transmission and reception.
- the base station may control the repeater.
- the base station may transmit a control signal to the repeater (a link used for transmitting a control signal between the base station and the repeater is sometimes referred to as a fronthaul link (FL) (Non-patent Document 31). reference)).
- FL fronthaul link
- L1/L2 signaling may be used for the control signal.
- the base station may control the beams used by the repeaters.
- the control by the base station may be, for example, beam switching.
- the base station may, for example, switch beams in response to movement of the UE.
- Positioning of a UE connected to a base station via a repeater may be performed.
- the UE may receive positioning signals transmitted by a base station.
- the positioning signal may be, for example, a PRS.
- the UE may notify the LMF of the reception result of the positioning signal.
- the reception result of the positioning signal may include, for example, information regarding the difference between the reception time of the positioning signal from the base station and the reception time of the positioning signal from another base station.
- the LMF may use the information to calculate the UE's location.
- the UE since the UE is connected to the base station via a repeater, the difference between the time when the UE receives the positioning signal and the time when the positioning signal is transmitted from the base station is directly correlated to the distance between the base station and the UE. do not have. As a result, a problem arises in that the location calculation result of the UE becomes inaccurate.
- Embodiment 1 discloses a method for solving such problems.
- the base station notifies the LMF of information regarding the repeater.
- the information may include, for example, information regarding delay time in the repeater.
- the information regarding the delay time may be, for example, the time from when the repeater receives the signal until it transmits the signal.
- the base station may specify the delay time at the repeater in advance.
- the base station may notify the repeater of the specified delay time.
- the repeater After receiving the positioning signal from the base station, the repeater may transmit the positioning signal to the UE when the specified time has elapsed. This makes it possible to reduce, for example, the processing amount of the repeater related to delay time derivation in the repeater.
- the information regarding the repeater that is notified from the base station to the LMF may include information regarding the propagation delay from the base station to the repeater, information regarding the position of the repeater, or both of the above information. may be included.
- the information regarding the position of the repeater may be information about the position of the repeater itself, information about the relative position between the base station and the repeater, or information about the distance between the base station and the repeater. or a combination of the above-mentioned plurality.
- the LMF may use the information to derive the propagation delay between the base station and the LMF. This makes it possible to improve the accuracy of UE position calculation, for example, regardless of the positional relationship between the base station, repeater, and UE.
- NRPPa signaling may be used for this notification from the base station to the LMF.
- OTDOA Observed Time Difference Of Arrival
- OTDOA Observed Time Difference Of Arrival
- positioning information response POSITIONING INFORMATION RESPONSE
- positioning information update POSITIONING INFORMATION UPDATE
- TRP INFORMATION RESPONSE positioning activation response
- PRS CONFIGURATION RESPONSE PRS configuration response
- measurement preconfiguration confirmation MEASUREMENT PRECONFIGURATION CONFIRM
- assistance information feedback ASSISTANCE INFORMATION FEEDBACK
- New NRPPa signaling may be provided.
- New NRPPa signaling may be used
- the LMF may request information regarding repeaters from the base station.
- NRPPa signaling may be used for the request.
- OTDOA information request OTDOA INFORMATION REQUEST
- positioning information request POSITIONING INFORMATION REQUEST
- TRP information request TRP INFORMATION REQUEST
- signaling of a positioning activation request POSITIONING ACTIVATION REQUEST
- PRS CONFIGURATION REQUEST PRS CONFIGURATION REQUEST
- MASUREMENT measurement preconfiguration request
- PRECONFIGURATION REQUIRED signaling may be used, or assistance information control (ASSISTANCE INFORMATION CONTROL) signaling may be used. This makes it possible, for example, to avoid complications in the communication system.
- New NRPPa signaling may be provided. New NRPPa signaling may be used for the request from the LMF to the base station. The request may trigger the notification of the information regarding the repeater from the base station to the LMF.
- the repeater may notify the base station of the information on its own repeater.
- Msg3 in 4-step random access processing may be used
- MsgA in 2-step random access processing may be used
- other signaling such as RRC setup completion (RRCSetupComplete) ( Non-Patent Document 19 (3GPP TS38.331)) may be used.
- the information may be included in a capability (eg, UE capability) and notified.
- the information may be notified from the repeater to the base station in response to a request from the base station.
- the base station may request information regarding the repeater from the repeater in advance.
- Msg2 in the 4-step random access process may be used for the request from the base station to the repeater, or other signaling, such as RRC startup request signaling (Non-patent Document 19 (3GPP TS38.331 ) may be used.
- the request may be included in a capability (eg, UE capability) request and notified.
- the request from the base station to the repeater may be made in response to the above-mentioned request from the LMF to the base station.
- the base station may notify the repeater of settings related to positioning signals.
- the settings may include information regarding time/frequency resources of the positioning signal, information regarding the code sequence of the positioning signal, and information regarding the amplification factor in the repeater. , information regarding the transmission power at the repeater, information regarding the transmission timing of the signal at the repeater, and information regarding beamforming at the repeater may be included.
- the repeater can determine the positioning signal transmitted from the base station, and as a result, the repeater can appropriately control the positioning signal, e.g., receive it from the base station and transmit it to the UE. It becomes possible.
- the repeater can acquire the above-mentioned information regarding the processing delay in the repeater itself, for example, information about the time from when the repeater receives a signal until it transmits the signal.
- the settings may include information regarding the QCL of the positioning signal.
- the information may include information indicating which reference signal (eg, SS block, CSI-RS) beam the positioning signal can be considered to be the same beam. From this information, the repeater may acquire information regarding the beam used for transmitting the positioning signal. This makes it possible to reduce the size of information related to positioning signal settings, for example.
- reference signal eg, SS block, CSI-RS
- the LMF may inquire of the base station whether or not a repeater is used.
- the inquiry may include information identifying the repeater, for example, the repeater's identifier, or may include information regarding the UE that communicates with the base station via the repeater.
- NRPPa signaling for example, NRPPa TRP INFORMATION REQUEST signaling may be used for the inquiry from the LMF to the base station.
- New NRPPa signaling may be provided. The new NRPPa signaling may be used for the inquiry from the LMF to the base station.
- the base station may notify the LMF of information regarding whether or not a repeater is used.
- the information may include information identifying the repeater, for example, a repeater identifier, or may include information regarding a UE that communicates with the base station via the repeater.
- the information may be notified in response to the above-mentioned inquiry from the LMF to the base station.
- NRPPa signaling for example, NRPPa TRP INFORMATION RESPONSE signaling may be used for the notification from the base station to the LMF.
- New NRPPa signaling may be provided. The new NRPPa signaling may be used for the notification from the base station to the LMF.
- the UE may receive the positioning signal transmitted via the repeater.
- the UE may notify the LMF of the reception result of the positioning signal.
- LPP signaling (see Non-Patent Document 34 (3GPP TS37.355)) may be used for the notification.
- the LMF may use the information to calculate the UE's location.
- the LMF may use the above-mentioned information regarding the repeater notified from the base station. This allows, for example, the LMF to accurately calculate the location of the UE.
- FIG. 11 is a sequence diagram illustrating an example of a positioning procedure for a UE that connects to a base station via a repeater.
- OTDOA positioning is performed.
- a base station transmits a positioning signal.
- FIG. 11 shows an example in which positioning is performed in response to a location information request (Mobile-Originated Location Request: MO-LR) from a UE.
- FIG. 11 shows an example in which UE-assisted positioning (positioning in which an LMF or the like calculates a position using assistance information from the UE (eg, positioning signal reception result)) is performed.
- UE-assisted positioning positioning in which an LMF or the like calculates a position using assistance information from the UE (eg, positioning signal reception result)
- signal transmission and reception between the UE, base station, AMF, and LMF is performed via repeaters.
- the side control information transmitted from the base station to the repeater is omitted in FIG. 11, the side control information is transmitted prior to signal transmission and reception between the UE and the base station, AMF, and LMF.
- the base station instructs the repeater to set a beam. The same applies to the figures after FIG. 11.
- procedure 2301 shown in FIG. 11 a positioning request from the UE and a positioning capability request and notification between the LMF and the UE are performed.
- Step ST2303 indicates the request from the UE to the AMF
- step ST2305 indicates the request from the AMF to the LMF.
- a positioning capability request is made from the LMF to the UE.
- the request is made using LPP signaling, for example, LPP Request Capability.
- the UE notifies the LMF of the positioning capability.
- the notification is performed using LPP signaling, for example, LPP Provide Capability.
- step ST2311 the LMF requests support data from the UE.
- the request is made using LPP signaling, eg, LPP assistance data request signaling.
- step ST2313 the UE notifies the LMF of the support data.
- the notification is performed using LPP signaling, for example LPP support data provision signaling.
- the LMF requests the base station for information regarding whether or not a repeater is used.
- the request may use NRPPa signaling, for example, NRPPa TRP information request signaling.
- the request may include a request for information regarding the TRP of the base station.
- the request for information regarding whether or not a repeater is used may include information that identifies the repeater, for example, a request for a repeater identifier, or may include a request for information regarding a UE that communicates with a base station via the repeater. Good too.
- the base station notifies the LMF of information regarding whether or not a repeater is used.
- NRPPa signaling for example, NRPPa TRP information response signaling may be used for the notification.
- the notification may include information regarding the TRP. In the example shown in FIG. 11, information indicating that a repeater is used is notified.
- the LMF requests information necessary for OTDOA from the base station.
- the request may use NRPPa signaling, for example, NRPPa OTDOA information request signaling.
- the request may include a request for information regarding the repeater.
- the information may include information regarding an instruction to start transmitting a positioning signal.
- the base station may transmit a positioning signal, for example, PRS, using step ST2319 as an opportunity.
- step ST2322 shown in FIG. 11 the base station requests information regarding the repeater from the repeater.
- the request may be made using, for example, L1/L2 signaling, MAC signaling, RRC signaling, or a combination of the above. It may also be carried out using
- step ST2325 the repeater notifies the base station of information regarding its own repeater. The notification may be performed using, for example, L1/L2 signaling, MAC signaling, RRC signaling, or a combination of the above. It may also be carried out using
- the base station notifies the LMF of information necessary for OTDOA.
- the notification may use NRPPa signaling, for example, NRPPa OTDOA information response signaling.
- the notification may include information regarding the repeater.
- the information about the repeater may include, for example, information about the propagation delay from the base station to the repeater, information about the location of the repeater, information about processing delays at the repeater, etc. Good too.
- the LMF instructs the UE to receive the positioning signal.
- the instruction may be performed using LPP signaling, for example, LPP Request Location Information signaling.
- the instruction may include information regarding the received positioning signal.
- the UE starts receiving the positioning signal.
- a positioning signal is transmitted from the base station to the UE.
- the transmission takes place via a repeater.
- the repeater receives a positioning signal from the base station and transmits the signal to the UE.
- the UE measures the positioning signal transmitted from the base station via the repeater.
- the UE reports the measurement results of the positioning signal to the LMF.
- the report may be performed using LPP signaling, for example, LPP Provide Location Information signaling.
- the report may include information regarding the difference between the reception time of the received positioning signal received from the base station via the repeater and the reception time of the positioning signal received from other base stations, Information about the station may also be included.
- the positioning signal received by the UE from another base station may be a positioning signal directly received from another base station, or may be a positioning signal received via a repeater connected to the base station. The UE may not be aware of whether the received positioning signal is received directly from the base station or via a repeater.
- procedure 2335 shown in FIG. 11 the UE position calculation and notification of the position calculation result are performed.
- the LMF calculates the location of the UE.
- the LMF may perform this calculation using the positioning signal measurement results obtained in step ST2333, may perform the calculation using the information regarding the repeater obtained in step ST2327, or may perform the calculation using both of the above. Good too.
- Step ST2339 shows the notification from the LMF to the AMF
- step ST2341 shows the notification from the AMF to the UE.
- MT-LR Mobile-Terminated Location Request
- NI-LR network-induced location request
- the repeater may generate and transmit the positioning signal.
- the positioning signal transmitted by the repeater may be, for example, PRS.
- the base station may notify the repeater of the positioning signal settings.
- the notification may include information regarding the time/frequency resources of the positioning signal, information regarding the beam used for transmitting the positioning signal, and information regarding the code sequence of the positioning signal. Good too.
- the notification may include a request for information regarding the repeater.
- the notification from the base station to the repeater may use L1/L2 signaling, MAC signaling, RRC signaling, or a combination of the above. It's okay to be hit.
- the repeater may use the information obtained from the notification to configure the positioning signal.
- the repeater may start transmitting the positioning signal in response to the notification.
- the repeater may notify the base station that the setting of the positioning signal is completed. In this notification, information regarding the own repeater may be notified.
- the information regarding repeaters may be the same as described above.
- the notification from the repeater to the base station may use L1/L2 signaling, MAC signaling, RRC signaling, or a combination of the above. You can.
- FIG. 12 is a sequence diagram showing another example of a positioning procedure for a UE that connects to a base station via a repeater.
- OTDOA positioning is performed.
- a repeater transmits a positioning signal.
- processes similar to those in FIG. 11 are given the same numbers, and common explanations will be omitted.
- the base station notifies the repeater of the setting of the positioning signal.
- the notification may include information regarding resources for positioning signals, or may include information regarding beams used for transmitting positioning signals.
- the notification may include a request for information regarding the repeater.
- Step ST2422 may use L1/L2 signaling, MAC signaling, RRC signaling, or a combination of the aforementioned plurality.
- the repeater sets the positioning signal using the information received in step ST2422.
- the repeater may notify the base station that the positioning signal setting has been completed.
- the notification may include information regarding the own repeater.
- the information regarding repeaters may be the same as described above.
- Step ST2425 may use L1/L2 signaling, MAC signaling, RRC signaling, or a combination of the aforementioned plurality.
- Steps ST2327 and ST2329 shown in FIG. 12 are the same as in FIG. 11.
- step ST2430 shown in FIG. 12 the repeater transmits a positioning signal to the UE.
- the transmission may be performed using the settings notified in step ST2422.
- Steps ST2331, ST2333, and procedure 2335 shown in FIG. 12 are the same as in FIG. 11.
- the base station may notify information regarding the repeater to devices other than the LMF.
- the information regarding repeaters may be used in other core NW devices.
- the base station may notify the AMF of the information.
- the AMF may use the information, for example, to register repeaters.
- the AMF may use, for example, position information of the repeater to determine whether the repeater can be registered in the NW. This makes it possible, for example, to prevent the repeater from being used in locations where it is not permitted to transmit.
- the repeater may have a positioning function.
- a repeater may have the same functionality as a UE regarding positioning. Positioning of the repeater itself may also be performed.
- repeater positioning a method similar to UE positioning may be used, the same signaling as UE positioning may be used, or the same signaling as UE positioning may be used.
- a repeater may derive its own position. This derivation in the repeater may be performed, for example, in a method similar to UE-based positioning (a positioning method in which a UE derives its own position). This makes it possible to reduce the amount of processing related to position calculation in the LMF, for example.
- Positioning of the repeater and the UE may be performed simultaneously.
- the repeater and/or the UE may receive positioning signals transmitted by the base station.
- the positioning signals received by the repeater and the UE may be the same or different.
- the UE may notify the LMF of the measurement results of the positioning signal.
- a repeater may notify a base station of information regarding its own repeater, for example, a processing delay at its own repeater.
- the base station may notify the LMF of this information.
- the LMF may use the above information to calculate the repeater and UE locations. By this, for example, positioning of the repeater and the UE can be performed quickly.
- the method disclosed in Embodiment 1 may be switched and used. For example, transmission of a positioning signal from a base station and generation and transmission of a positioning signal from a repeater may be switched.
- the base station may notify the repeater of information regarding the switching.
- the information may be, for example, information indicating whether the positioning signal is received from the base station and transmitted to the UE, or whether it is generated by the repeater itself.
- the repeater may receive a positioning signal from the base station and transmit it to the UE, or may generate a positioning signal at its own repeater and transmit it to the UE. This makes it possible, for example, to improve flexibility in positioning.
- the method disclosed in Embodiment 1 may be used in UE-based positioning.
- the LMF may notify the UE of information regarding the repeater.
- the notification may use LPP signaling, for example, LPP support data supply signaling, or may use other LPP signaling.
- the base station may notify the UE of the information regarding the repeater.
- RRC signaling, MAC signaling, or L1/L2 signaling may be used for notification from the base station to the UE.
- the UE may derive its own location using the information notified from the LMF and/or the base station. As a result, for example, even in UE-based positioning, it is possible to improve the positioning accuracy of a UE connected to a base station via a repeater.
- the first embodiment it is possible to ensure positioning accuracy even in positioning a UE connected to a base station via a repeater.
- Embodiment 2 In positioning using uplink signals, a method similar to that of Embodiment 1 may be applied. Positioning using uplink signals may be, for example, UL-TDOA (see Non-Patent Document 24 (3GPP TS38.305)).
- a UE connected to a base station via a repeater may transmit an SRS, and the base station may receive the SRS.
- the repeater may receive the SRS transmitted by the UE and transmit it to the base station.
- the repeater may amplify the SRS transmitted by the UE and transmit it to the base station.
- a repeater may perform the amplification operation and/or the transmission operation in conjunction with other channels/signals.
- the base station may notify the LMF of information regarding the repeater.
- the information may include, for example, the same information as the information disclosed in Embodiment 1.
- the information regarding the repeater that is notified from the base station to the LMF may include information regarding the propagation delay from the base station to the repeater, information regarding the position of the repeater, or both of the above information. may be included.
- the repeater may notify the base station of the information regarding its own repeater.
- Msg3 in 4-step random access processing may be used
- MsgA in 2-step random access processing may be used
- other signaling such as RRC setup completion (RRCSetupComplete) ( Non-Patent Document 19 (3GPP TS38.331)) may be used.
- the information may be included in a capability (eg, UE capability) and notified.
- the information may be notified from the repeater to the base station in response to a request from the base station.
- the base station may request information regarding the repeater from the repeater in advance.
- Msg2 in the 4-step random access process may be used for the request from the base station to the repeater, or other signaling, such as RRC startup request signaling (Non-patent Document 19 (3GPP TS38.331 ) may be used.
- the request may be included in a capability (eg, UE capability) request and notified.
- FIG. 13 is a sequence diagram showing another example of the positioning procedure of a UE that connects to a base station via a repeater.
- UL-TDOA positioning is performed.
- the UE transmits an SRS and the base station receives it.
- processes similar to those in FIG. 11 are given the same numbers, and common explanations will be omitted.
- the LMF requests information necessary for positioning from the base station.
- the request may use NRPPa signaling, for example, NRPPa positioning information request signaling.
- the request may include a request for information regarding the repeater.
- the information may include instructions for SRS configuration.
- the base station performs SRS settings.
- the base station instructs the UE to transmit SRS.
- RRC signaling for example, RRC reconfiguration signaling may be used for the instruction.
- the instruction may include information regarding SRS settings.
- Steps ST2322 and ST2325 shown in FIG. 13 are the same as those in FIG. 11.
- the base station notifies the LMF of information necessary for positioning.
- NRPPa signaling for example, NRPPa positioning information response signaling may be used for the notification.
- the notification may include information regarding the repeater.
- the information about the repeater may include, for example, information about the propagation delay from the base station to the repeater, information about the location of the repeater, information about processing delays at the repeater, etc. Good too.
- the LMF requests the base station to start transmitting positioning signals from the UE.
- NRPPa signaling for example, NRPPa POSITIONING ACTIVATION REQUEST signaling may be used for the request.
- the request may include information regarding the UE that starts transmitting positioning signals.
- the base station instructs the UE to start transmitting positioning signals.
- L1/L2 signaling may be used, MAC signaling may be used, RRC signaling may be used, or a combination of the above-mentioned plurality of signals may be used.
- the base station notifies the LMF of the completion of the start of positioning signal transmission.
- NRPPa signaling for example, NRPPa POSITIONING ACTIVATION RESPONSE signaling may be used for the notification.
- the LMF requests the base station to measure the positioning signal.
- the request may use NRPPa signaling, for example, NRPPa measurement request signaling.
- step ST2537 shown in FIG. 13 the UE transmits the SRS as a positioning signal to the base station.
- the base station measures the SRS from the UE.
- the base station notifies the LMF of the measurement results of the positioning signal.
- the notification may use NRPPa signaling, for example, NRPPa measurement response signaling.
- the LMF instructs the base station to stop transmitting positioning signals from the UE.
- NRPPa signaling for example, NRPPa POSITIONING DEACTIVATION signaling may be used for the instruction.
- the procedure 2335 shown in FIG. 13 is similar to that in FIG.
- the LMF may calculate the UE's position using the measurement results included in step ST2541, may calculate the UE's position using the repeater information included in step ST2527, or may use the above combination.
- the location of the UE may be determined by
- positioning related to MO-LR is performed, but it may be similarly applied to positioning related to a location information request (MT-LR) terminated at the UE, or network activation It may be similarly applied in positioning related to location information request (NI-LR).
- MT-LR location information request
- NI-LR location information request
- a repeater may measure the positioning signal.
- a repeater may receive the positioning signal.
- the positioning signal received by the repeater may be, for example, SRS.
- the base station may notify the repeater of the setting of the positioning signal.
- the repeater may use the notification as a trigger to start receiving the positioning signal.
- the repeater may notify the base station that the setting of the positioning signal is completed.
- the notification may include information regarding the repeater itself.
- the information regarding repeaters may be the same as described above.
- the repeater may notify the base station of the reception result of the positioning signal.
- the notification may include information regarding the reception time of the positioning signal, information regarding the reception angle of the positioning signal, and information regarding the received power (e.g., SRS-RSRP) of the positioning signal.
- the information disclosed in the TRP measurement result described in Non-Patent Document 33 (3GPP TS38.455) may be included.
- the LMF may use the information to calculate the UE's location.
- FIG. 14 is a sequence diagram showing another example of a positioning procedure for a UE that connects to a base station via a repeater.
- UL-TDOA positioning is performed.
- the UE transmits the SRS and the repeater receives it.
- processes similar to those in FIGS. 11 and 13 are given the same numbers, and common explanations will be omitted.
- the base station notifies the repeater of the SRS settings.
- the notification may include information regarding SRS resources or may include information regarding a beam used for SRS reception.
- the notification may include a request for information regarding the repeater.
- Step ST2622 may use L1/L2 signaling, MAC signaling, RRC signaling, or a combination of the above.
- the repeater uses the information notified in step ST2622 to configure SRS reception.
- the repeater may notify the base station that the SRS reception settings have been completed.
- the notification may include information regarding the repeater itself.
- the information regarding repeaters may be the same as described above.
- Step ST2625 may use L1/L2 signaling, MAC signaling, RRC signaling, or a combination of the aforementioned plurality.
- Steps ST2527 to ST2535 shown in FIG. 14 are the same as those in FIG. 13.
- step ST2636 shown in FIG. 14 the base station instructs the repeater to start receiving SRS.
- the notification may include information regarding SRS resources or may include information regarding a beam used for SRS reception.
- the notification may include a request for information regarding the repeater.
- Step ST2636 may use L1/L2 signaling, MAC signaling, RRC signaling, or a combination of the above.
- the repeater starts the SRS reception operation using step ST2636 as a trigger.
- step ST2637 shown in FIG. 14 the UE transmits the SRS as a positioning signal to the repeater.
- the repeater measures the SRS from the UE.
- the repeater notifies the base station of the SRS measurement results.
- the notification may use L1/L2 signaling, MAC signaling, RRC signaling, or a combination of the above.
- the base station notifies the LMF of the measurement results of the positioning signal.
- the notification may include information regarding the SRS measurement result at the repeater, which is included in step ST2640.
- the notification may use NRPPa signaling, for example, NRPPa measurement response signaling.
- Step ST2543 shown in FIG. 14 is the same as that in FIG. 13.
- Procedure 2335 shown in FIG. 14 is similar to FIG.
- the LMF may calculate the location of the UE using the measurement results included in step ST2641, may calculate the location of the UE using the repeater information included in step ST2527, or may calculate the location of the UE using the measurement results included in step ST2527, or may calculate the location of the UE using the measurement results included in step ST2527, or may calculate the location of the UE using the repeater information included in step ST2527, or may calculate the location of the UE using the measurement results included in step ST2527. may be used to determine the location of the UE.
- Positioning of the repeater and the UE using uplink signals may be performed simultaneously.
- the repeater and/or base station may receive positioning signals transmitted by the UE.
- the positioning signals received by the repeater and the base station may be the same or different.
- the repeater may notify the base station of the positioning signal reception result.
- the base station may notify the LMF of the positioning signal reception result by its own base station.
- the notification from the base station to the LMF may include the positioning signal reception result at the repeater, or may include information regarding the repeater.
- the LMF may use the above information to calculate the repeater and UE locations. This makes it possible, for example, to quickly perform positioning between the repeater and the UE.
- the method disclosed in Embodiment 2 may be used in UE-based positioning.
- the LMF may notify the UE of information regarding the repeater.
- the notification may use LPP signaling, for example, LPP support data supply signaling, or other LPP signaling.
- the base station may notify the UE of the information regarding the repeater.
- RRC signaling, MAC signaling, or L1/L2 signaling may be used for notification from the base station to the UE.
- the UE may derive its own location using the information notified from the LMF and/or the base station. As a result, for example, even in UE-based positioning, it is possible to improve the positioning accuracy of a UE connected to a base station via a repeater.
- the method disclosed in Embodiment 2 may be switched and used. For example, SRS measurement at the repeater and SRS measurement at the base station may be switched.
- the base station may notify the repeater of information regarding the switching.
- the information may be, for example, information indicating whether the SRS measurement is performed by the base station or by the repeater.
- the repeater may receive the SRS from the UE and transmit it to the base station, or may measure the SRS at its own repeater. This makes it possible, for example, to improve the flexibility of the communication system.
- the second embodiment it is possible to ensure positioning accuracy even in positioning using uplink signals of a UE connected to a base station via a repeater.
- Signaling may be transmitted and received between the repeater and the LMF.
- the signaling may be, for example, NRPPa signaling.
- the base station may transmit NRPPa signaling from the LMF to the repeater.
- a repeater may receive the NRPPa signaling sent via the base station.
- the repeater may send NRPPa signaling for the LMF to the base station.
- the base station may receive the NRPPa signaling for LMF transmitted from the repeater.
- the NRPPa protocol may be terminated between the repeater and the LMF.
- the NRPPa protocol may be terminated between the base station and the LMF.
- the NRPPa protocol may be terminated between the base station and the repeater.
- the base station may relay NRPPa signaling transmitted from the LMF to the repeater, or may relay NRPPa signaling transmitted from the repeater to the LMF.
- RRC signaling may be used for transmitting and receiving NRPPa signaling.
- NRPPa signaling may be encapsulated in RRC signaling transmitted and received between a base station and a repeater.
- the NRPPa signaling may be signaling terminated between a base station and a repeater, or may be signaling terminated between a repeater and an LMF.
- FIG. 15 is a diagram showing an example of a protocol stack in a repeater, base station, AMF, and LMF.
- the base station relays NRPPa signaling between the LMF and the repeater.
- NAS signaling may be used for transmitting and receiving NRPPa signaling.
- NAS signaling may be transmitted and received between the AMF and the repeater.
- NRPPa signaling may be encapsulated in NAS signaling transmitted and received between the AMF and the repeater.
- the NRPPa signaling may be signaling terminated between a repeater and an LMF.
- the NAS signaling may be sent using RRC signaling.
- the NAS signaling may be encapsulated in RRC signaling.
- FIG. 16 is a diagram showing another example of the protocol stack in the repeater, base station, AMF, and LMF.
- NRPPa signaling between the repeater and LMF is transmitted and received using NAS signaling between the repeater and AMF.
- NAS signaling between the repeater and the AMF is transmitted and received using RRC signaling between the repeater and the base station.
- the LMF may request information about the repeater from the repeater.
- the information regarding repeaters may be the same as in the first embodiment.
- NRPPa signaling may be used for the request from the LMF to the repeater.
- OTDOA information request signaling may be used
- positioning information request signaling may be used
- TRP information request signaling may be used
- positioning activation request signaling may be used.
- signaling of a PRS setting request may be used, signaling with a measurement advance setting request may be used, or signaling of support information control may be used.
- New NRPPa signaling may be provided. New NRPPa signaling may be used for this notification from the LMF to the repeater.
- the repeater may notify the LMF of information regarding its own repeater.
- the information regarding repeaters may be the same as in the first embodiment.
- the repeater may perform the notification in response to the above-mentioned request from the LMF.
- NRPPa signaling may be used for the notification from the repeater to the LMF.
- OTDOA information response signaling may be used
- positioning information response signaling may be used
- positioning information update signaling may be used
- TRP information response signaling may be used.
- positioning activation response signaling may be used
- PRS configuration response signaling may be used
- measurement pre-configuration confirmation signaling may be used
- assistance information feedback signaling may be used. This makes it possible, for example, to avoid complications in the communication system.
- New NRPPa signaling may be provided. New NRPPa signaling may be used for this notification from the repeater to the LMF.
- NRPPa signaling may be transmitted and received between the repeater and the LMF.
- NRPPa signaling may be transmitted and received between the repeater and the LMF.
- FIG. 17 is a sequence diagram showing another example of a positioning procedure for a UE that connects to a base station via a repeater.
- OTDOA positioning is performed.
- a base station transmits a positioning signal.
- FIG. 17 shows an example in which positioning is performed in response to a location information request from a UE.
- FIG. 17 shows an example in which UE-assisted positioning is performed.
- processes similar to those in FIG. 11 are given the same numbers, and common explanations will be omitted.
- Procedures 2301 and 2310 and steps ST2315 and ST2317 shown in FIG. 17 are the same as in FIG. 11.
- step ST2919 shown in FIG. 17 the LMF requests information necessary for OTDOA from the base station.
- the same signaling as in step ST2319 shown in FIG. 11 may be used for this request.
- the request may not include a request for information regarding repeaters.
- the LMF requests information regarding the repeater from the repeater.
- the request may use NRPPa signaling, for example, NRPPa OTDOA information request signaling.
- the repeater notifies the LMF of information regarding its own repeater.
- the notification may use NRPPa signaling, for example, NRPPa OTDOA information response signaling.
- the base station notifies the LMF of information necessary for OTDOA.
- the notification may use NRPPa signaling, for example, NRPPa OTDOA information response signaling.
- the notification may not include information regarding the repeater.
- Steps ST2329 to ST2333 and procedure 2335 shown in FIG. 17 are the same as those in FIG. 11.
- NRPPa signaling may be transmitted and received between the repeater and the LMF.
- FIG. 18 is a sequence diagram showing another example of the positioning procedure of a UE that connects to a base station via a repeater.
- OTDOA positioning is performed.
- a repeater transmits a positioning signal.
- processes similar to those in FIGS. 11 and 12 are given the same numbers, and common explanations will be omitted.
- Procedures 2301 and 2310 and steps ST2315 and ST2317 shown in FIG. 18 are the same as those shown in FIG. 11.
- Step ST3022 shown in FIG. 18 the LMF requests information necessary for OTDOA from the repeater.
- Step ST3022 may include a request for information regarding the repeater.
- the request may include information regarding a positioning signal transmission instruction.
- the request may use NRPPa signaling, for example, NRPPa OTDOA information request signaling.
- the repeater notifies the LMF of the information necessary for OTDOA.
- the notification may include information regarding the repeater itself.
- the notification may use NRPPa signaling, for example, NRPPa OTDOA information response signaling.
- Step ST2329 shown in FIG. 18 is the same as that in FIG. 11.
- Step ST2430 is the same as in FIG. 12.
- Steps ST2331, ST2333, and procedure 2335 are the same as those in FIG. 11.
- NRPPa signaling may be transmitted and received between the repeater and the LMF.
- NRPPa signaling may be transmitted and received between a repeater and an LMF.
- FIG. 19 is a sequence diagram showing another example of a positioning procedure for a UE that connects to a base station via a repeater.
- UL-TDOA positioning is performed.
- the UE transmits an SRS and the base station receives it.
- processes similar to those in FIGS. 11 and 13 are given the same numbers, and common explanations will be omitted.
- the LMF requests information necessary for positioning from the base station.
- the request may use NRPPa signaling, for example, NRPPa positioning information request signaling.
- the information may include instructions for SRS configuration.
- the request may not include a request for information regarding repeaters.
- Steps ST2520 and ST2521 shown in FIG. 19 are the same as those in FIG. 13.
- the LMF requests information regarding the repeater from the repeater.
- the request may use NRPPa signaling, for example, NRPPa positioning information request signaling.
- the repeater notifies the LMF of information regarding its own repeater.
- the information about the repeater may include, for example, information about the propagation delay from the base station to the repeater, information about the location of the repeater, information about processing delays at the repeater, etc. Good too.
- NRPPa signaling for example, NRPPa positioning information response signaling may be used for the notification.
- the base station notifies the LMF of information necessary for positioning.
- NRPPa signaling for example, NRPPa positioning information response signaling may be used for the notification.
- the notification may not include information regarding the repeater.
- Steps ST2529 to ST2543 shown in FIG. 19 are the same as in FIG. 13.
- Procedure 2335 is similar to FIG.
- NRPPa signaling may be transmitted and received between the repeater and the LMF.
- FIG. 20 is a sequence diagram showing another example of a positioning procedure for a UE that connects to a base station via a repeater.
- UL-TDOA positioning is performed.
- the UE transmits the SRS and the repeater receives it.
- processes similar to those in FIGS. 11, 13, 14, and 19 are given the same numbers, and common explanations will be omitted.
- Step ST3119 is the same as in FIG. 19.
- Steps ST2520 and ST2521 are the same as those in FIG. 13.
- Step ST3127 is similar to FIG. 19.
- Steps ST2529 to ST2533 are similar to those in FIG. 13.
- the LMF requests the repeater to measure the positioning signal.
- the request may use NRPPa signaling, for example, NRPPa measurement request signaling.
- the request may include information regarding SRS resources or may include information regarding a beam used for SRS reception.
- the request may include a request for information regarding the repeater.
- Steps ST2637 and ST2639 shown in FIG. 20 are the same as those in FIG. 14.
- the repeater notifies the LMF of the SRS measurement results.
- the notification may use NRPPa signaling, for example, NRPPa measurement response signaling.
- the notification may include information regarding the repeater itself.
- Step ST2543 shown in FIG. 20 is the same as that in FIG. 13.
- Procedure 2335 is similar to FIG.
- the third embodiment it is possible to reduce the processing amount of positioning signaling at the base station.
- Modification 1 of Embodiment 3 As another example of the signaling transmitted and received between the repeater and the LMF, the signaling may be LPP signaling.
- the base station may transmit LPP signaling from the LMF to the repeater.
- a repeater may receive the LPP signaling sent via the base station.
- the repeater may send LPP signaling for the LMF to the base station.
- the base station may receive the LPP signaling for LMF sent from the repeater.
- the LPP protocol may be terminated between the repeater and the LMF.
- NAS signaling may be used for transmitting and receiving LPP signaling.
- NAS signaling may be transmitted and received between the AMF and the repeater.
- LPP signaling may be encapsulated in NAS signaling transmitted and received between the AMF and the repeater.
- the LPP signaling may be signaling terminated between the repeater and the LMF.
- the NAS signaling may be sent using RRC signaling.
- the NAS signaling may be encapsulated in RRC signaling.
- the LMF may request information about the repeater from the repeater.
- the information regarding repeaters may be the same as in the first embodiment.
- LPP signaling may be used for the request from the LMF to the repeater.
- the signaling may be, for example, an LPP capability request, an LPP assistance data request, or an LPP location information request.
- New LPP signaling may be provided. The new LPP signaling may be used for the request from the LMF to the repeater.
- the repeater may notify the LMF of information regarding its own repeater.
- the information regarding repeaters may be the same as in the first embodiment.
- the repeater may perform the notification in response to the above-mentioned request from the LMF.
- LPP signaling may be used for this notification from the repeater to the LMF.
- the LPP signaling may be, for example, providing LPP capabilities, providing LPP support data, or providing LPP location information.
- New LPP signaling may be provided. The new LPP signaling may be used for the notification from the repeater to the LMF.
- LPP signaling may be transmitted and received between the repeater and the LMF.
- LPP signaling may be transmitted and received between the repeater and the LMF.
- step ST2922 shown in FIG. 17 may be replaced with LPP signaling, e.g., an LPP support data request
- step ST2925 shown in FIG. 17 may be replaced with LPP signaling, e.g., LPP support data request.
- An alternative to providing data may also be used.
- LPP signaling may be transmitted and received between the repeater and the LMF.
- step ST3022 shown in FIG. 18 may be replaced with LPP signaling, for example, an LPP support data request
- step ST3025 shown in FIG. 18 may be replaced with LPP signaling, for example, LPP support data request.
- An alternative to providing data may also be used.
- LPP signaling may be transmitted and received between the repeater and the LMF.
- LPP signaling may be transmitted and received between a repeater and an LMF.
- step ST3122 shown in FIG. 19 may be replaced with LPP signaling, e.g., an LPP support data request, or step ST3125 shown in FIG. 19 may be replaced with LPP signaling, e.g., LPP support data request.
- An alternative to providing data may also be used.
- LPP signaling may be transmitted and received between the repeater and the LMF.
- step ST3235 shown in FIG. 20 may be replaced with LPP signaling, for example, an LPP location information request or an LPP support data request
- step ST3241 shown in FIG. 20 may be replaced with LPP signaling.
- an alternative to LPP location information provision or LPP support data provision may be used.
- RIS reconfigurable intelligent surface
- a subframe is an example of a time unit of communication in the fifth generation communication system.
- a subframe may be a scheduling unit.
- the processing described in units of subframes may be performed in units of TTI, slots, subslots, or minislots.
- the methods disclosed in each of the above-described embodiments and their modifications may be applied not only to V2X (vehicle-to-everything) services but also to services that use SL communication.
- the present invention may be applied to SL communication used in various services such as proximity-based service, public safety, communication between wearable terminals, and communication between devices in factories.
- 202 Communication terminal device (mobile terminal), 210 Communication system, 213,240-1,240-2,750,801 Base station device (NR base station, base station), 214 5G core section, 215 Central unit, 216 Distributed unit , 217 Central unit for control plane, 218 Central unit for user plane, 219 TRP, 301, 403 Protocol processing section, 302 Application section, 304, 405 Encoder section, 305, 406 Modulation section, 306, 407 Frequency conversion section, 307- 1 to 307-4, 408-1 to 408-4 Antenna, 308, 409 Demodulation section, 309, 410 Decoder section, 310, 411, 526 Control section, 401 EPC communication section, 402 Other base station communication section, 412 5 GC communication Department, 521 Data Network Communication Department, 522 Base Station Communication Department, 523 User Plane Communication Department, 523-1 PDU Processing Department, 523-2 Mobility Anchoring Department, 525 Control Plane Control Department, 525-1 NAS Security Department, 525- 2 Idle state
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
通信システムは、第5世代無線アクセスシステムの位置管理機能が搭載されたコアネットワーク側装置と、第5世代無線アクセスシステムに適用される基地局と、基地局と通信端末との間で中継処理を行うリピータと、を含み、リピータは、接続中の基地局と自リピータとの間の伝搬遅延に関する情報、自リピータの位置に関する情報および自リピータにおける処理遅延に関する情報の中の少なくとも1つの情報をコアネットワーク側装置に通知し、通信端末はリピータが送信する測位信号の測定を行うとともに測位信号の測定結果をコアネットワーク側装置に通知する。コアネットワーク側装置は、リピータから通知された情報と、通信端末から通知された測定結果とに基づいて通信端末の位置を計算する。
Description
本開示は、無線通信技術に関する。
移動体通信システムの規格化団体である3GPP(3rd Generation Partnership Project)において、ロングタームエボリューション(Long Term Evolution:LTE)、第4世代無線アクセスシステムの1つであるロングタームエボリューションアドヴァンスド(Long Term Evolution Advanced:LTE-A)(非特許文献1参照)の後継として、第5世代(以下「5G」という場合がある)無線アクセスシステムが検討されている(例えば、非特許文献2)。5Gの無線区間の技術は「New Radio Access Technology」と称される(「New Radio」は「NR」と略称される)。NRシステムは、LTEシステム、LTE-Aシステムを基にして検討が進められている。
例えば、欧州では、METISという団体で5Gの要求事項がまとめられている(非特許文献3参照)。5G無線アクセスシステムでは、LTEシステムに対して、システム容量は1000倍、データの伝送速度は100倍、データの処理遅延は5分の1(1/5)、通信端末の同時接続数は100倍として、更なる低消費電力化、および装置の低コスト化を実現することが要件として挙げられている(非特許文献3参照)。
このような要求を満たすために、3GPPでは、5Gの規格検討が進められている(非特許文献4~23参照)。
NRのアクセス方式としては、下り方向はOFDM(Orthogonal Frequency Division Multiplexing)、上り方向はOFDM、DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM)が用いられる。また、5Gシステムは、LTE、LTE-A同様、回線交換を含まず、パケット通信方式のみになる。
NRでは、伝送速度向上、処理遅延低減のために、LTEに比べて高い周波数の使用が可能となっている。
LTEに比較して高い周波数を用いる場合があるNRにおいては、狭いビーム状の送受信範囲を形成する(ビームフォーミング)とともにビームの向きを変化させる(ビームスイーピング)ことで、セルカバレッジの確保が図られる。
非特許文献1(5章)に記載される、3GPPでの、NRシステムにおけるフレーム構成に関する決定事項について、図1を用いて説明する。図1は、NR方式の通信システムで使用される無線フレームの構成を示す説明図である。図1において、1つの無線フレーム(Radio frame)は10msである。無線フレームは10個の等しい大きさのサブフレーム(Subframe)に分割される。NRのフレーム構成においては、1つまたは複数のヌメロロジ(Numerology)すなわち、1つまたは複数のサブキャリア間隔(Subcarrier spacing:SCS)がサポートされている。NRにおいては、サブキャリア間隔によらず、1サブフレームは1msであり、また、1スロットは14シンボルで構成される。また、1サブフレームに含まれるスロット数は、サブキャリア間隔15kHzにおいては1つであり、他のサブキャリア間隔におけるスロット数は、サブキャリア間隔に比例して多くなる(非特許文献11(3GPP TS38.211)参照)。
3GPPでの、NRシステムにおけるチャネル構成に関する決定事項が、非特許文献2(5章)および非特許文献11に記載されている。
物理報知チャネル(Physical Broadcast Channel:PBCH)は、基地局装置(以下、単に「基地局」という場合がある)から移動端末装置(以下、単に「移動端末」、という場合がある)などの通信端末装置(以下、「通信端末」、または「端末」と称する場合がある)への下り送信用のチャネルである。PBCHは、下り同期信号(Downlink Synchronization Signal)とともに送信される。
NRにおける下り同期信号には、第一同期信号(Primary Synchronization Signal:P-SS)と、第二同期信号(Secondary Synchronization Signal:S-SS)とがある。同期信号は、同期信号バースト(Synchronization Signal Burst:以下、SSバーストと称する場合がある)として、所定の周期で、所定の継続時間をもって基地局から送信される。SSバーストは、基地局のビーム毎の同期信号ブロック(Synchronization Signal Block:以下、SSブロックと称する場合がある)により構成される。
基地局はSSバーストの継続時間内において各ビームのSSブロックを、ビームを変えて送信する。SSブロックは、P-SS、S-SS、およびPBCHによって構成される。
物理下り制御チャネル(Physical Downlink Control Channel:PDCCH)は、基地局から通信端末への下り送信用のチャネルである。PDCCHは、下り制御情報(Downlink Control Information:DCI)を運ぶ。DCIには、後述のトランスポートチャネルの1つである下り共有チャネル(Downlink Shared Channel:DL-SCH)のリソース割り当て(allocation)情報、後述のトランスポートチャネルの1つであるページングチャネル(Paging Channel:PCH)のリソース割り当て(allocation)情報、DL-SCHに関するHARQ(Hybrid Automatic Repeat reQuest)情報などが含まれる。また、DCIに、上りスケジューリンググラント(Uplink Scheduling Grant)が含まれる場合がある。DCIに、上り送信に対する応答信号であるAck(Acknowledgement)/Nack(Negative Acknowledgement)が含まれる場合がある。また、スロット内におけるDL/ULの切替えを柔軟に行うために、DCIに、スロット構成通知(Slot Format Indication:SFI)が含まれる場合がある。PDCCH、または、DCIは、L1/L2制御信号とも呼ばれる。
NRにおいて、PDCCHが含まれる候補となる時間・周波数領域が設けられている。この領域は、制御リソースセット(Control resource set:CORESET)と称される。通信端末は、CORESETをモニタリングし、PDCCHを取得する。
物理下り共有チャネル(Physical Downlink Shared Channel:PDSCH)は、基地局から通信端末への下り送信用のチャネルである。PDSCHには、トランスポートチャネルである下り共有チャネル(DL-SCH)、およびトランスポートチャネルであるPCHがマッピングされている。
物理上り制御チャネル(Physical Uplink Control Channel:PUCCH)は、通信端末から基地局への上り送信用のチャネルである。PUCCHは、上り制御情報(Uplink Control Information:UCI)を運ぶ。UCIには、下り送信に対する応答信号(response signal)であるAck/Nack、CSI(Channel State Information)、スケジューリングリクエスト(Scheduling Request:SR)などが含まれる。CSIは、RI(Rank Indicator)、PMI(Precoding Matrix Indicator)、CQI(Channel Quality Indicator)レポートで構成される。RIとは、MIMO(Multiple Input Multiple Output)におけるチャネル行列のランク情報である。PMIとは、MIMOにて用いるプリコーディングウェイト行列の情報である。CQIとは、受信したデータの品質、もしくは通信路品質を示す品質情報である。UCIは、後述のPUSCHによって運ばれる場合がある。PUCCH、または、UCIは、L1/L2制御信号とも呼ばれる。
物理上り共有チャネル(Physical Uplink Shared Channel:PUSCH)は、通信端末から基地局への上り送信用のチャネルである。PUSCHには、トランスポートチャネルの1つである上り共有チャネル(Uplink Shared Channel:UL-SCH)がマッピングされている。
物理ランダムアクセスチャネル(Physical Random Access Channel:PRACH)は、通信端末から基地局への上り送信用のチャネルである。PRACHは、ランダムアクセスプリアンブル(random access preamble)を運ぶ。
下り参照信号(リファレンスシグナル(Reference Signal):RS)は、NR方式の通信システムとして既知のシンボルである。以下の4種類の下りリファレンスシグナルが定義されている。UE固有参照信号(UE-specific Reference Signal)であるデータ復調用参照信号(Demodulation Reference Signal:DM-RS)、位相追尾参照信号(Phase Tracking Reference Signal:PT-RS)、測位参照信号(Positioning Reference Signal:PRS)、チャネル状態情報参照信号(Channel State Information Reference Signal:CSI-RS)である。通信端末の物理レイヤの測定として、リファレンスシグナルの受信電力(Reference Signal Received Power:RSRP)測定、リファレンスシグナルの受信品質(Reference Signal Received Quality:RSRQ)測定がある。
上り参照信号についても同様に、NR方式の通信システムとして既知のシンボルである。以下の3種類の上りリファレンスシグナルが定義されている。データ復調用参照信号(Demodulation Reference Signal:DM-RS)、位相追尾参照信号(Phase Tracking Reference Signal:PT-RS)、サウンディング用参照信号(Sounding Reference Signal:SRS)である。
非特許文献2(5章)に記載されるトランスポートチャネル(Transport Channel)について、説明する。下りトランスポートチャネルのうち、報知チャネル(Broadcast Channel:BCH)は、その基地局(セル)のカバレッジ全体に報知される。BCHは、物理報知チャネル(PBCH)にマッピングされる。
下り共有チャネル(Downlink Shared Channel:DL-SCH)には、HARQによる再送制御が適用される。DL-SCHは、基地局(セル)のカバレッジ全体への報知が可能である。DL-SCHは、ダイナミックあるいは準静的(Semi-static)なリソース割り当てをサポートする。準静的なリソース割り当ては、セミパーシステントスケジューリング(Semi-Persistent Scheduling)ともいわれる。DL-SCHは、通信端末の低消費電力化のために通信端末の間欠受信(Discontinuous reception:DRX)をサポートする。DL-SCHは、物理下り共有チャネル(PDSCH)へマッピングされる。
ページングチャネル(Paging Channel:PCH)は、通信端末の低消費電力を可能とするために通信端末のDRXをサポートする。PCHは、基地局(セル)のカバレッジ全体への報知が要求される。PCHは、動的にトラフィックに利用できる物理下り共有チャネル(PDSCH)のような物理リソースへマッピングされる。
上りトランスポートチャネルのうち、上り共有チャネル(Uplink Shared Channel:UL-SCH)には、HARQによる再送制御が適用される。UL-SCHは、ダイナミックあるいは準静的なリソース割り当てをサポートする。準静的なリソース割り当ては、設定済みグラント(Configured Grant)ともいわれる。UL-SCHは、物理上り共有チャネル(PUSCH)へマッピングされる。
ランダムアクセスチャネル(Random Access Channel:RACH)は、制御情報に限られている。RACHは、衝突のリスクがある。RACHは、物理ランダムアクセスチャネル(PRACH)へマッピングされる。
HARQについて説明する。HARQとは、自動再送要求(Automatic Repeat reQuest:ARQ)と誤り訂正(Forward Error Correction)との組合せによって、伝送路の通信品質を向上させる技術である。HARQには、通信品質が変化する伝送路に対しても、再送によって誤り訂正が有効に機能するという利点がある。特に、再送にあたって初送の受信結果と再送の受信結果との合成をすることで、更なる品質向上を得ることも可能である。
再送の方法の一例を説明する。受信側にて、受信データが正しくデコードできなかった場合、換言すればCRC(Cyclic Redundancy Check)エラーが発生した場合(CRC=NG)、受信側から送信側へ「Nack」を送信する。「Nack」を受信した送信側は、データを再送する。受信側にて、受信データが正しくデコードできた場合、換言すればCRCエラーが発生しない場合(CRC=OK)、受信側から送信側へ「Ack」を送信する。「Ack」を受信した送信側は次のデータを送信する。
再送の方法の他の例を説明する。受信側にて、CRCエラーが発生した場合、受信側から送信側へ再送要求を行う。再送要求は、NDI(New Data Indicator)のトグルによって行われる。再送要求を受信した送信側は、データを再送する。受信側にて、CRCエラーが発生しない場合、再送要求は行われない。送信側は、再送要求を所定の時間受信しなかった場合、受信側にてCRCエラーが発生しなかったとみなす。
非特許文献1(6章)に記載される論理チャネル(ロジカルチャネル:Logical Channel)について、説明する。報知制御チャネル(Broadcast Control Channel:BCCH)は、システム制御情報を報知するための下りチャネルである。論理チャネルであるBCCHは、トランスポートチャネルである報知チャネル(BCH)、あるいは下り共有チャネル(DL-SCH)へマッピングされる。
ページング制御チャネル(Paging Control Channel:PCCH)は、ページング情報(Paging Information)およびシステム情報(System Information)の変更を送信するための下りチャネルである。論理チャネルであるPCCHは、トランスポートチャネルであるページングチャネル(PCH)へマッピングされる。
共有制御チャネル(Common Control Channel:CCCH)は、通信端末と基地局との間の制御情報を送信するためのチャネルである。CCCHは、通信端末がネットワークとの間でRRC接続(connection)を有していない場合に用いられる。下り方向では、CCCHは、トランスポートチャネルである下り共有チャネル(DL-SCH)へマッピングされる。上り方向では、CCCHは、トランスポートチャネルである上り共有チャネル(UL-SCH)へマッピングされる。
個別制御チャネル(Dedicated Control Channel:DCCH)は、1対1にて、通信端末とネットワークとの間の個別制御情報を送信するチャネルである。DCCHは、通信端末がネットワークとの間でRRC接続を有している場合に用いられる。DCCHは、上りでは上り共有チャネル(UL-SCH)へマッピングされ、下りでは下り共有チャネル(DL-SCH)へマッピングされる。
個別トラフィックチャネル(Dedicated Traffic Channel:DTCH)は、ユーザ情報の送信のための通信端末への1対1通信のチャネルである。DTCHは、上りおよび下りともに存在する。DTCHは、上りでは上り共有チャネル(UL-SCH)へマッピングされ、下りでは下り共有チャネル(DL-SCH)へマッピングされる。
通信端末の位置追跡は、1つ以上のセルからなる区域を単位に行われる。位置追跡は、待受け状態であっても通信端末の位置を追跡し、通信端末を呼び出す、換言すれば通信端末が着呼することを可能にするために行われる。この通信端末の位置追跡のための区域をトラッキングエリア(Tracking Area:TA)と呼ぶ。
NRにおいては、トラッキングエリアよりも小さいエリアを単位とした範囲における通信端末の呼び出しがサポートされている。この範囲を、RAN通知エリア(RAN Notification Area:RNA)と呼ぶ。後述の、RRC_INACTIVE状態の通信端末のページングは、この範囲において行われる。
NRにおいては、広い周波数帯域幅(transmission bandwidths)をサポートするために、2つ以上のコンポーネントキャリア(Component Carrier:CC)を集約する(「アグリゲーション(aggregation)する」とも称する)、キャリアアグリゲーション(Carrier Aggregation:CA)が検討されている。CAについては、非特許文献1に記載されている。
CAが構成される場合、通信端末であるUEはネットワーク(Network:NW)と唯一のRRC接続(RRC connection)を有する。RRC接続において、1つのサービングセルがNASモビリティ情報とセキュリティ入力を与える。このセルをプライマリセル(Primary Cell:PCell)と呼ぶ。UEの能力(ケーパビリティ(capability))に応じて、セカンダリセル(Secondary Cell:SCell)が、PCellとともに、サービングセルの組を形成するために構成される。1つのPCellと1つ以上のSCellとからなるサービングセルの組が、1つのUEに対して構成される。
また、3GPPにおいて、さらなる通信容量の増大を図るために、UEが2つの基地局と接続して通信を行うデュアルコネクティビティ(Dual Connectivity:DCと略称される)などがある。DCについては、非特許文献1、22に記載されている。
デュアルコネクティビティ(DC)を行う基地局のうち、一方を「マスタ基地局(Master Node:MN)」といい、他方を「セカンダリ基地局(Secondary Node:SN)」という場合がある。マスタ基地局が構成するサービングセルをまとめて、マスタセルグループ(Master Cell Group:MCG)と称し、セカンダリ基地局が構成するサービングセルをまとめて、セカンダリセルグループ(Secondary Cell Group:SCG)と称する場合がある。DCにおいて、MCGまたはSCGの中のプライマリセルをスペシャルセル(Special Cell:SpCellまたはSPCell)と称する。MCGにおけるスペシャルセルをPCellと称し、SCGにおけるスペシャルセルをプライマリSCGセル(PSCell)と称する。
また、NRにおいては、キャリア周波数帯のうちの一部(以下、Bandwidth Part(BWP)と称する場合がある)を基地局がUEに対して予め設定し、UEが該BWPにおいて基地局との送受信を行うことで、UEにおける消費電力の低減が図られる。
また、3GPPでは、サイドリンク(SL:Side Link)通信(PC5通信とも称する)を用いたサービス(アプリケーションでもよい)を、後述するEPS(Evolved Packet System)においても、5Gコアシステムにおいてもサポートすることが検討されている(非特許文献1、2、26~28参照)。SL通信では端末間で通信が行われる。SL通信を用いたサービスとして、たとえば、V2X(Vehicle-to-everything)サービス、プロキシミティサービスなどがある。SL通信においては、端末間の直接通信だけでなく、リレー(relay)を介したUEとNWとの間の通信が提案されている(非特許文献26、28参照)。
SLに用いられる物理チャネル(非特許文献2、11参照)について説明する。物理サイドリンク報知チャネル(PSBCH:Physical sidelink broadcast channel)は、システムと同期に関連する情報を運び、UEから送信される。
物理サイドリンク制御チャネル(PSCCH:Physical sidelink control channel)は、サイドリンク通信とV2Xサイドリンク通信のためのUEからの制御情報を運ぶ。
物理サイドリンク共有チャネル(PSSCH:Physical sidelink shared channel)は、サイドリンク通信とV2Xサイドリンク通信のためのUEからのデータを運ぶ。
物理サイドリンクフィードバックチャネル(PSFCH:Physical sidelink feedback channel)は、PSSCH送信を受信したUEから、PSSCHを送信したUEに、サイドリンク上でのHARQフィードバックを運ぶ。
SLに用いられるトランスポートチャネル(非特許文献1参照)について説明する。サイドリンク報知チャネル(SL-BCH:Sidelink broadcast channel)は、予め決められたトランスポートフォーマットを有し、物理チャネルであるPSBCHにマッピングされる。
サイドリンク共有チャネル(SL-SCH:Sidelink shared channel)は、報知送信をサポートする。SL-SCHは、UE自動リソース選択(UE autonomous resource selection)と、基地局によってスケジュールされたリソースアロケーションの両方をサポートする。UE自動リソース選択では衝突リスクが有り、UEが基地局によって個別リソースをアロケーションされた時は、衝突は無い。また、SL-SCHは、送信電力、変調、コーディングを変えることによって、動的リンクアダプテーションをサポートする。SL-SCHは物理チャネルであるPSSCHにマッピングされる。
SLに用いられる論理チャネル(非特許文献2参照)について説明する。サイドリンク報知制御チャネル(SBCCH:Sidelink Broadcast Control Channel)は、1つのUEから他のUEにサイドリンクシステム情報を報知するためのサイドリンク用チャネルである。SBCCHはトランスポートチャネルであるSL-BCHにマッピングされる。
サイドリンクトラフィックチャネル(STCH:Sidelink Traffic Channel)は、1つのUEから他のUEにユーザ情報を送信するための1対多のサイドリンク用トラフィックチャネルである。STCHは、サイドリンク通信能力を有するUEと、V2Xサイドリンク通信能力を有するUEによってのみ用いられる。2つのサイドリンク通信能力を有するUE間の1対1通信もまたSTCHで実現される。STCHはトランスポートチャネルであるSL-SCHにマッピングされる。
サイドリンク制御チャネル(SCCH:Sidelink Control Channel)は、1つのUEから他のUEに制御情報を送信するためのサイドリンク用制御チャネルである。SCCHはトランスポートチャネルであるSL-SCHにマッピングされる。
LTEではSL通信はブロードキャスト(broadcast)のみであった。NRでは、SL通信として、ブロードキャストに加え、ユニキャスト(unicast)とグループキャスト(groupcast)のサポートが検討されている(非特許文献27(3GPP TS23.287)参照)。
SLにおけるユニキャスト通信やグループキャスト通信では、HARQのフィードバック(Ack/Nack)、CSI報告等がサポートされる。
また、3GPPでは、UEと基地局との間のリンクであるアクセスリンク、基地局間のリンクであるバックホールリンクをいずれも無線で行うアクセス・バックホール統合(Integrated Access and Backhaul:IAB)が検討されている(非特許文献2、20、29参照)。
3GPPでは、いくつかの新たな技術が提案されている。例えば、スマートリピータ(ビーム制御が可能なリピータ)の導入が提案されている(非特許文献30)。スマートリピータの基地局からの制御方法について検討されている。
3GPP TS36.300 V16.7.0
3GPP TS38.300 V16.8.0
"Scenarios, requirements and KPIs for 5G mobile and wireless system"、ICT-317669-METIS/D1.1
3GPP TR23.799 V14.0.0
3GPP TR38.801 V14.0.0
3GPP TR38.802 V14.2.0
3GPP TR38.804 V14.0.0
3GPP TR38.912 V16.0.0
3GPP RP-172115
3GPP TS23.501 V17.3.0
3GPP TS38.211 V17.0.0
3GPP TS38.212 V17.0.0
3GPP TS38.213 V17.0.0
3GPP TS38.214 V17.0.0
3GPP TS38.321 V16.7.0
3GPP TS38.322 V16.2.0
3GPP TS38.323 V16.6.0
3GPP TS37.324 V16.3.0
3GPP TS38.331 V16.7.0
3GPP TS38.401 V16.8.0
3GPP TS38.413 V16.8.0
3GPP TS37.340 V16.8.0
3GPP TS38.423 V16.8.0
3GPP TS38.305 V16.7.0
3GPP TS23.273 V17.3.0
3GPP TR23.703 V12.0.0
3GPP TS23.287 V17.2.0
3GPP TS23.303 V17.0.0
3GPP TS38.340 V16.5.0
3GPP RP-213700
3GPP RP-201831
3GPP TS38.215 V17.1.0
3GPP TS38.455 V17.0.0
3GPP TS37.355 V17.0.0
5G無線アクセスシステムでは多種多様なサービスのための通信が行われる。このような通信を可能にするため、たとえば、スマートリピータを用いた通信のサポートも検討されている。また、通信システムにおいて、測位信号の送受信を用いたUEの測位も行われる(非特許文献24参照)。ところが、UEはリピータを介して基地局と接続しているため、測位信号の送受信結果から導出されるUEの位置計算結果が不正確になるといった問題が生じる。
本開示は、上記課題に鑑み、スマートリピータを介して基地局と接続するUEの測位を可能とし、信頼性の高い通信システムを実現することを、目的の1つとする。
通信システムは、第5世代無線アクセスシステムの位置管理機能が搭載されたコアネットワーク側装置と、第5世代無線アクセスシステムに適用される基地局と、基地局と通信端末との間で中継処理を行うリピータと、を含む。リピータは、接続中の基地局と自リピータとの間の伝搬遅延に関する情報、自リピータの位置に関する情報および自リピータにおける処理遅延に関する情報の中の少なくとも1つの情報をコアネットワーク側装置に通知する。通信端末はリピータが送信する測位信号の測定を行うとともに測位信号の測定結果をコアネットワーク側装置に通知する。コアネットワーク側装置は、リピータから通知された情報と、通信端末から通知された測定結果とに基づいて通信端末の位置を計算する。
本開示によれば、スマートリピータを介して基地局と接続するUEの測位を可能とし、信頼性の高い通信システムを実現できる。
本開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。なお、以下の説明では、スマートリピータを単に「リピータ」と称する。
実施の形態1.
図2は、3GPPにおいて議論されているNR方式の通信システム210の全体的な構成を示すブロック図である。図2について説明する。無線アクセスネットワークは、NG-RAN(Next Generation Radio Access Network)211と称される。通信端末装置である移動端末装置(以下「移動端末(User Equipment:UE)」という)202は、基地局装置(以下「NR基地局(NG-RAN NodeB:gNB)」という)213と無線通信可能であり、無線通信で信号の送受信を行う。NG-RAN211は1つあるいは複数のNR基地局213によって構成される。
図2は、3GPPにおいて議論されているNR方式の通信システム210の全体的な構成を示すブロック図である。図2について説明する。無線アクセスネットワークは、NG-RAN(Next Generation Radio Access Network)211と称される。通信端末装置である移動端末装置(以下「移動端末(User Equipment:UE)」という)202は、基地局装置(以下「NR基地局(NG-RAN NodeB:gNB)」という)213と無線通信可能であり、無線通信で信号の送受信を行う。NG-RAN211は1つあるいは複数のNR基地局213によって構成される。
ここで、「通信端末装置」とは、移動可能な携帯電話端末装置などの移動端末装置だけでなく、センサなどの移動しないデバイスも含んでいる。以下の説明では、「通信端末装置」を、単に「通信端末」という場合がある。
UE202とNG-RAN211との間で、AS(Access Stratum)のプロトコルが終端される。ASのプロトコルとしては、例えばRRC(Radio Resource Control)、SDAP(Service Data Adaptation Protocol)、PDCP(Packet Data Convergence Protocol)、RLC(Radio Link Control)、MAC(Medium Access Control)、PHY(Physical layer)が用いられる。RRCは制御プレイン(以下、Cプレイン、または、C-Planeと称する場合もある)において用いられ、SDAPはユーザプレイン(以下、Uプレイン、または、U-Planeと称する場合もある)において用いられ、PDCP、MAC、RLC、PHYはCプレイン、Uプレインの両方において用いられる。
UE202とNR基地局213との間の制御プロトコルRRC(Radio Resource Control)は、報知(Broadcast)、ページング(paging)、RRC接続マネージメント(RRC connection management)などを行う。RRCにおけるNR基地局213とUE202との状態として、RRC_IDLEと、RRC_CONNECTEDと、RRC_INACTIVEとがある。
RRC_IDLEでは、PLMN(Public Land Mobile Network)選択、システム情報(System Information:SI)の報知、ページング(paging)、セル再選択(cell re-selection)、モビリティなどが行われる。RRC_CONNECTEDでは、移動端末はRRC接続(connection)を有し、ネットワークとのデータの送受信を行うことができる。またRRC_CONNECTEDでは、ハンドオーバ(Handover:HO)、隣接セル(Neighbor cell)の測定(メジャメント(measurement))などが行われる。RRC_INACTIVEは5Gコア部214とNR基地局213との間の接続が維持されつつ、システム情報(System Information:SI)の報知、ページング(paging)、セル再選択(cell re-selection)、モビリティなどが行われる。
gNB213は、アクセス・移動管理機能(Access and Mobility Management Function:AMF)、セッション管理機能(Session Management Function:SMF)、あるいはユーザプレイン機能(User Plane Function:UPF)等を含む5Gコア部(以下「5GC部」という場合がある)214とNGインタフェースにより接続される。gNB213と5GC部214との間で制御情報および/あるいはユーザデータが通信される。NGインタフェースは、gNB213とAMF220との間のN2インタフェース、gNB213とUPF221との間のN3インタフェース、AMF220とSMF222との間のN11インタフェース、および、UPF221とSMF222との間のN4インタフェースの総称である。1つのgNB213に対して、複数の5GC部214が接続されてもよい。gNB213間は、Xnインタフェースにより接続され、gNB213間で制御情報および/あるいはユーザデータが通信される。
5GC部214は、上位装置、具体的には上位ノードであり、NR基地局213と移動端末(UE)202との接続の制御、1つまたは複数のNR基地局(gNB)213および/あるいはLTE基地局(E-UTRAN NodeB:eNB)に対するページング信号の分配などを行う。また、5GC部214は、待ち受け状態(Idle State)のモビリティ制御(Mobility Control)を行う。5GC部214は、移動端末202が待ち受け状態のとき、インアクティブ状態(Inactive State)および、アクティブ状態(Active State)のときに、トラッキングエリア(Tracking Area)リストの管理を行う。5GC部214は、移動端末202が登録されている(registered)追跡領域(トラッキングエリア:Tracking Area)に属するセルへ、ページングメッセージを送信することで、ページングプロトコルに着手する。
gNB213は、1つあるいは複数のセルを構成してもよい。1つのgNB213が複数のセルを構成する場合、1つ1つのセルが、UE202と通信可能に構成される。
gNB213は、中央ユニット(Central Unit:以下、CUと称する場合がある)215と分散ユニット(Distributed Unit:以下、DUと称する場合がある)216に分割されていてもよい。CU215は、gNB213の中に1つ構成される。DU216は、gNB213の中に1つあるいは複数構成される。1つのDU216は、1つまたは複数のセルを構成する。CU215は、DU216とF1インタフェースにより接続され、CU215とDU216との間で制御情報および/あるいはユーザデータが通信される。F1インタフェースはF1-CインタフェースとF1-Uインタフェースとで構成される。CU215はRRC、SDAP、PDCPの各プロトコルの機能を担い、DU216はRLC、MAC、PHYの各プロトコルの機能を担う。DU216に、1つまたは複数のTRP(Transmission Reception Point)219が接続される場合がある。TRP219は、UEとの間で無線信号の送受信を行う。
CU215は、Cプレイン用CU(CU-C)217とUプレイン用CU(CU-U)218に分割されていてもよい。CU-C217は、CU215の中に1つ構成される。CU-U218は、CU215の中に1つあるいは複数構成される。CU-C217は、CU-U218とE1インタフェースにより接続され、CU-C217とCU-U218との間で制御情報が通信される。CU-C217は、DU216とF1-Cインタフェースにより接続され、CU-C217とDU216との間で制御情報が通信される。CU-U218は、DU216とF1-Uインタフェースにより接続され、CU-U218とDU216との間でユーザデータが通信される。
5G方式の通信システムにおいて、非特許文献10(3GPP TS23.501)に記載の統合データ管理(Unified Data Management:UDM)機能、ポリシー制御機能(Policy Control Function:PCF)が含まれてもよい。UDMおよび/あるいはPCFは、図2における5GC部214に含まれるとしてもよい。
5G方式の通信システムにおいて、非特許文献24(3GPP TS38.305)に記載の位置管理機能(Location Management Function:LMF)が設けられてもよい。LMFは、非特許文献25(3GPP TS23.273)に開示されているように、AMFを経由して基地局に接続されていてもよい。
5G方式の通信システムにおいて、非特許文献10(3GPP TS23.501)に記載の非3GPP相互動作機能(Non-3GPP Interworking Function:N3IWF)が含まれてもよい。N3IWFは、UEとの間における非3GPPアクセスにおいて、アクセスネットワーク(Access Network:AN)をUEとの間で終端してもよい。
図3は、NGコアに接続するDC(デュアルコネクティビティ)の構成を示した図である。図3において、実線はU-Planeの接続を示し、破線はC-Planeの接続を示す。図3において、マスタ基地局240-1はgNBであってもよいし、eNBであってもよい。また、セカンダリ基地局240-2はgNBであってもよいし、eNBであってもよい。例えば、図3において、マスタ基地局240-1がgNBであり、セカンダリ基地局240-2がeNBであるDC構成を、NG-EN-DCと称する場合がある。図3において、5GC部214とセカンダリ基地局240-2との間のU-Plane接続がマスタ基地局240-1経由で行われる例について示しているが、5GC部214とセカンダリ基地局240-2との間で直接行われてもよい。また、図3において、5GC部214に替えて、LTEシステム、LTE-Aシステムに接続されるコアネットワークであるEPC(Evolved Packet Core)がマスタ基地局240-1と接続していてもよい。EPCとセカンダリ基地局240-2との間のU-Plane接続が直接行われてもよい。
図4は、図2に示す移動端末202の構成を示すブロック図である。図4に示す移動端末202の送信処理を説明する。まず、制御部310からの制御データ、およびアプリケーション部302からのユーザデータが、プロトコル処理部301に送られる。制御データ、ユーザデータのバッファリングが行われてもよい。制御データ、ユーザデータのバッファが、制御部310に設けられてもよいし、アプリケーション部302に設けられてもよいし、プロトコル処理部301に設けられてもよい。プロトコル処理部301は、SDAP、PDCP、RLC、MAC等のプロトコル処理、例えば、DC等における送信先基地局の決定、各プロトコルにおけるヘッダの付与等の動作を行う。プロトコル処理が行われたデータは、エンコーダー部304へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、プロトコル処理部301から変調部305へ直接出力されるデータが存在してもよい。エンコーダー部304でエンコード処理されたデータは、変調部305にて変調処理が行われる。変調部305にて、MIMOにおけるプリコーディングが行われてもよい。変調されたデータは、ベースバンド信号に変換された後、周波数変換部306へ出力され、無線送信周波数に変換される。その後、アンテナ307-1~307-4から基地局213に送信信号が送信される。図4において、アンテナの数が4つである場合について例示したが、アンテナ数は4つに限定されない。
また、移動端末202の受信処理は、以下のように実行される。基地局213からの無線信号がアンテナ307-1~307-4により受信される。受信信号は、周波数変換部306にて無線受信周波数からベースバンド信号に変換され、復調部308において復調処理が行われる。復調部308にて、ウェイト計算および乗算処理が行われてもよい。復調後のデータは、デコーダー部309へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータは、プロトコル処理部301に渡され、MAC、RLC、PDCP、SDAP等のプロトコル処理、例えば、各プロトコルにおけるヘッダの除去等の動作が行われる。プロトコル処理が行われたデータのうち、制御データは制御部310へ渡され、ユーザデータはアプリケーション部302へ渡される。
移動端末202の一連の処理は、制御部310によって制御される。よって制御部310は、図4では省略しているが、各部302,304~309とも接続している。
移動端末202の各部、例えば、制御部310、プロトコル処理部301、エンコーダー部304、デコーダー部309は、例えば、プロセッサおよびメモリを含んで構成される処理回路で実現される。例えば、移動端末202の一連の処理が記述されたプログラムをプロセッサが実行することにより制御部310が実現される。移動端末202の一連の処理が記述されたプログラムはメモリに格納されている。メモリの例は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、等の、不揮発性または揮発性の半導体メモリである。移動端末202の各部、例えば、制御部310、プロトコル処理部301、エンコーダー部304、デコーダー部309は、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)などの専用の処理回路で実現されてもよい。図4において、移動端末202が送信に用いるアンテナ数と受信に用いるアンテナ数は、同じであってもよいし、異なっていてもよい。
図5は、図2に示す基地局213の構成を示すブロック図である。図5に示す基地局213の送信処理を説明する。EPC通信部401は、基地局213とEPCとの間のデータの送受信を行う。5GC通信部412は、基地局213と5GC(5GC部214など)との間のデータの送受信を行う。他基地局通信部402は、他の基地局との間のデータの送受信を行う。EPC通信部401、5GC通信部412、および他基地局通信部402は、それぞれプロトコル処理部403と情報の受け渡しを行う。制御部411からの制御データ、ならびにEPC通信部401、5GC通信部412、および他基地局通信部402からのユーザデータおよび制御データは、プロトコル処理部403へ送られる。制御データ、ユーザデータのバッファリングが行われてもよい。制御データ、ユーザデータのバッファが、制御部411に設けられてもよいし、EPC通信部401に設けられてもよいし、5GC通信部412に設けられてもよいし、他基地局通信部402に設けられてもよい。
プロトコル処理部403は、SDAP、PDCP、RLC、MAC等のプロトコル処理、例えば、DC等における送信データのルーティング、各プロトコルにおけるヘッダの付与等の動作を行う。プロトコル処理が行われたデータは、エンコーダー部405へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、プロトコル処理部403から変調部406へ直接出力されるデータが存在してもよい。また、プロトコル処理部403から他基地局通信部402にデータが送られてもよい。例えば、DCにおいて、5GC通信部412又はEPC通信部401から送られたデータが他基地局通信部402を介して他基地局、例えば、セカンダリ基地局に送られてもよい。エンコードされたデータは、変調部406にて変調処理が行われる。変調部406にて、MIMOにおけるプリコーディングが行われてもよい。変調されたデータは、ベースバンド信号に変換された後、周波数変換部407へ出力され、無線送信周波数に変換される。その後、アンテナ408-1~408-4より1つもしくは複数の移動端末202に対して送信信号が送信される。図5において、アンテナの数が4つである場合について例示したが、アンテナ数は4つに限定されない。
また、基地局213の受信処理は以下のように実行される。1つもしくは複数の移動端末202からの無線信号が、アンテナ408-1~408-4により受信される。受信信号は、周波数変換部407にて無線受信周波数からベースバンド信号に変換され、復調部409で復調処理が行われる。復調されたデータは、デコーダー部410へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータは、プロトコル処理部403に渡され、MAC、RLC、PDCP、SDAP等のプロトコル処理、例えば、各プロトコルにおけるヘッダの除去等の動作が行われる。プロトコル処理が行われたデータのうち、制御データは制御部411あるいは5GC通信部412あるいはEPC通信部401あるいは他基地局通信部402へ渡され、ユーザデータは5GC通信部412あるいはEPC通信部401あるいは他基地局通信部402へ渡される。他基地局通信部402から送られたデータが5GC通信部412あるいはEPC通信部401に送られてもよい。該データは、例えば、DCにおいて他基地局を経由して5GC通信部412あるいはEPC通信部401部に送られる上りデータであってもよい。
基地局213の一連の処理は、制御部411によって制御される。よって制御部411は、図5では省略しているが、各部401,402,405~410,412とも接続している。
基地局213の各部、例えば、制御部411、プロトコル処理部403、5GC通信部412、EPC通信部401、他基地局通信部402、エンコーダー部405、デコーダー部410は、上述した移動端末202と同様に、プロセッサおよびメモリを含んで構成される処理回路、または、FPGA、ASIC、DSPなどの専用の処理回路で実現される。図5において、基地局213が送信に用いるアンテナ数と受信に用いるアンテナ数は、同じであってもよいし、異なっていてもよい。
図2に示すCU215の構成の例として、図5に示すエンコーダー部405、変調部406、周波数変換部407、アンテナ408-1~408-4、復調部409、デコーダー部410を除き、DU通信部を設けたものが用いられる場合がある。DU通信部は、プロトコル処理部403と接続する。CU215におけるプロトコル処理部403は、PDCP、SDAP等のプロトコル処理を行う。
図2に示すDU216の構成の例として、図5に示すEPC通信部401、他基地局通信部402、5GC通信部412を除き、CU通信部を設けた構成が用いられる場合がある。CU通信部は、プロトコル処理部403と接続する。DU216におけるプロトコル処理部403は、PHY、MAC、RLC等のプロトコル処理を行う。
図6は、5GC部の構成を示すブロック図である。図6では、前述の図2に示す5GC部214の構成を示す。図6は、図2にて示す5GC部214に、AMFの構成、SMFの構成およびUPFの構成が含まれた場合について示している。図6に示す例において、AMFが制御プレイン制御部525の機能を、SMFがセッション管理部527の機能を、UPFがユーザプレイン通信部523およびData Network通信部521の機能を、それぞれ有してもよい。Data Network通信部521は、5GC部214とData Networkとの間のデータの送受信を行う。基地局通信部522は、5GC部214と基地局213との間のNGインタフェースによるデータの送受信を行う。Data Networkから送られたユーザデータは、Data Network通信部521から、ユーザプレイン通信部523経由で基地局通信部522に渡され、1つあるいは複数の、基地局213へ送信される。基地局213から送られたユーザデータは、基地局通信部522から、ユーザプレイン通信部523経由でData Network通信部521に渡され、Data Networkへ送信される。
基地局213から送られた制御データは、基地局通信部522から制御プレイン制御部525に渡される。制御プレイン制御部525は、制御データをセッション管理部527へ渡してもよい。Data Networkから制御データが送られてもよい。Data Networkから送られた制御データは、Data Network通信部521からユーザプレイン通信部523経由でセッション管理部527へ送られてもよい。セッション管理部527は、制御データを制御プレイン制御部525へ送ってもよい。
ユーザプレイン制御部523は、PDU処理部523-1、モビリティアンカリング部523-2などを含み、ユーザプレイン(以下、U-Planeと称する場合もある)に対する処理全般を行う。PDU処理部523-1は、データパケットの処理、例えば、Data Network通信部521との間のパケットの送受信、基地局通信部522との間のパケットの送受信を行う。モビリティアンカリング部523-2は、UEのモビリティ時におけるデータ経路の繋ぎ止めを担う。
セッション管理部527は、UEとUPFとの間に設けられるPDUセッションの管理などを行う。セッション管理部527は、PDUセッションコントロール部527-1、UE IPアドレス割当部527-2などを含む。PDUセッションコントロール部527-1は、移動端末202と5GC部214との間のPDUセッションの管理を行う。UE IPアドレス割当部527-2は、移動端末202へのIPアドレスの割当てなどを行う。
制御プレイン制御部525は、NASセキュリティ部525-1、アイドルステート(Idle State)モビリティ管理部525-2などを含み、制御プレイン(以下、C-Planeと称する場合もある)に対する処理全般を行う。NASセキュリティ部525-1は、NAS(Non-Access Stratum)メッセージのセキュリティなどを行う。アイドルステートモビリティ管理部525-2は、待受け状態(アイドルステート(Idle State):RRC_IDLE状態、または、単にアイドルとも称される)のモビリティ管理、待受け状態時のページング信号の生成および制御、傘下の1つあるいは複数の移動端末202のトラッキングエリアの追加、削除、更新、検索、トラッキングエリアリスト管理などを行う。
5GC部214の一連の処理は、制御部526によって制御される。よって制御部526は、図6では省略しているが、各部521~523,525,527と接続している。5GC部214の各部は、上述した移動端末202の制御部310と同様に、例えば、プロセッサおよびメモリを含んで構成される処理回路、または、FPGA、ASIC、DSPなどの専用の処理回路で実現される。
次に通信システムにおけるセルサーチ方法の一例を示す。図7は、NR方式の通信システムにおいて通信端末(UE)が行うセルサーチから待ち受け動作までの概略を示すフローチャートである。通信端末は、セルサーチを開始すると、ステップST601で、周辺の基地局から送信される第一同期信号(P-SS)、および第二同期信号(S-SS)を用いて、スロットタイミング、フレームタイミングの同期をとる。
P-SSとS-SSとを合わせて、同期信号(Synchronization Signal:SS)という。同期信号(SS)には、セル毎に割り当てられたPCI(Physical Cell Identifier)に1対1に対応するシンクロナイゼーションコードが割り当てられている。PCIの数は1008通りが検討されている。通信端末は、この1008通りのPCIを用いて同期をとるとともに、同期がとれたセルのPCIを検出(特定)する。
通信端末は、次に同期がとれたセルに対して、ステップST602で、PBCHを受信する。PBCH上のBCCHには、セル構成情報が含まれるMIB(Master Information Block)がマッピングされる。したがって、PBCHを受信してBCCHを得ることで、MIBが得られる。MIBの情報としては、例えば、SFN(System Frame Number)、SIB(System Information Block)1のスケジューリング情報、SIB1等のサブキャリア間隔、DM-RS位置の情報などがある。
また、通信端末は、PBCHより、SSブロック識別子を取得する。SSブロック識別子のビット列の一部は、MIBに含まれている。残りのビット列は、PBCHに付随するDM-RSのシーケンス生成に用いられる識別子に含まれている。通信端末は、PBCHに含まれるMIB、および、PBCHに付随するDM-RSのシーケンスを用いて、SSブロック識別子を取得する。
次にステップST603で、通信端末は、SSブロックの受信電力を測定する。
次にステップST604で、通信端末は、ステップST603までで検出された1つ以上のセルの中から、受信品質が最もよいセル、例えば、受信電力が最も高いセル、つまりベストセルを選択する。また、通信端末は、受信品質が最もよいビーム、例えば、SSブロックの受信電力が最も高いビーム、つまりベストビームを選択する。ベストビームの選択には、例えば、SSブロック識別子毎の、SSブロックの受信電力が用いられる。
次にステップST605で、通信端末は、MIBに含まれるSIB1のスケジューリング情報をもとにDL-SCHを受信して、報知情報BCCHの中のSIB(System Information Block)1を得る。SIB1には、該セルへのアクセスに関する情報、セルの構成情報、他のSIB(SIBk:k≧2の整数)のスケジューリング情報が含まれる。また、SIB1には、トラッキングエリアコード(Tracking Area Code:TAC)が含まれる。
次にステップST606で、通信端末は、ステップST605で受信したSIB1のTACと、通信端末が既に保有しているトラッキングエリアリスト内のトラッキングエリア識別子(Tracking Area Identity:TAI)のTAC部分とを比較する。トラッキングエリアリストは、TAIリスト(TAI list)とも称される。TAIはトラッキングエリアを識別するための識別情報であり、MCC(Mobile Country Code)と、MNC(Mobile Network Code)と、TAC(Tracking Area Code)とによって構成される。MCCは国コードである。MNCはネットワークコードである。TACはトラッキングエリアのコード番号である。
通信端末は、ステップST606で比較した結果、ステップST605で受信したTACがトラッキングエリアリスト内に含まれるTACと同じならば、該セルで待ち受け動作に入る。比較して、ステップST605で受信したTACがトラッキングエリアリスト内に含まれなければ、通信端末は、該セルを通して、MMEなどが含まれるコアネットワーク(Core Network,EPC)へ、TAU(Tracking Area Update)を行うためにトラッキングエリアの変更を要求する。
コアネットワークを構成する装置(以下「コアネットワーク側装置」という場合がある)は、TAU要求信号とともに通信端末から送られてくる該通信端末の識別番号(UE-IDなど)をもとに、トラッキングエリアリストの更新を行う。コアネットワーク側装置は、通信端末に更新後のトラッキングエリアリストを送信する。通信端末は、受信したトラッキングエリアリストに基づいて、通信端末が保有するTACリストを書き換える(更新する)。その後、通信端末は、該セルで待ち受け動作に入る。
次に通信システムにおけるランダムアクセス方法の例を示す。ランダムアクセスにおいて、4ステップランダムアクセスと2ステップランダムアクセスが用いられる。また、4ステップランダムアクセスと2ステップランダムアクセスのそれぞれについて、衝突ベースの(Contention-based)ランダムアクセス、すなわち、他の移動端末との間のタイミングの衝突が起こりうるランダムアクセスと、衝突無しの(Contention-free)ランダムアクセスが存在する。
衝突ベースの4ステップランダムアクセス方法の例を示す。最初のステップとして、移動端末は基地局に対し、ランダムアクセスプリアンブルを送信する。ランダムアクセスプリアンブルは、移動端末が所定の範囲の中から選択する場合もあれば、移動端末に個別に割当てられて基地局から通知される場合もある。
2番目のステップとして、基地局は移動端末に対し、ランダムアクセス応答を送信する。ランダムアクセス応答には、3番目のステップに用いられる上りスケジューリング情報、3番目のステップの上り送信において用いられる端末識別子などが含まれる。
3番目のステップとして、移動端末は基地局に対し上り送信を行う。移動端末は、上り送信に、2番目のステップにおいて取得した情報を用いる。4番目のステップとして、基地局は移動端末に対し、衝突解決の有無を通知する。衝突なし、と通知された移動端末は、ランダムアクセス処理を終了する。衝突あり、と通知された移動端末は、最初のステップから処理をやり直す。
衝突無しの4ステップランダムアクセス方法においては、衝突ベースの4ステップランダムアクセス方法と以下の点で異なる。すなわち、最初のステップに先立ち、基地局は移動端末に対し、ランダムアクセスプリアンブルと上りスケジューリングをあらかじめ割り当てる。また、4番目のステップにおける、衝突解決有無の通知が不要となる。
衝突ベースの2ステップランダムアクセス方法の例を示す。最初のステップとして、移動端末は基地局に対し、ランダムアクセスプリアンブルの送信および上り送信を行う。2番目のステップとして、基地局は移動端末に対し、衝突有無を通知する。衝突なし、と通知された移動端末は、ランダムアクセス処理を終了する。衝突あり、と通知された移動端末は、最初のステップから処理をやり直す。
衝突無しの2ステップランダムアクセス方法においては、衝突ベースの2ステップランダムアクセス方法と以下の点で異なる。すなわち、最初のステップに先立ち、基地局は移動端末に対し、ランダムアクセスプリアンブルと上りスケジューリングをあらかじめ割り当てる。また、2番目のステップにおいて、基地局は移動端末に対し、ランダムアクセス応答を送信する。
図8は、NRにおけるセルの構成の一例を示す。NRのセルでは、狭いビームを形成し、方向を変えて送信する。図8に示す例において、基地局750は、ある時間において、ビーム751-1を用いて移動端末との送受信を行う。他の時間において、基地局750は、ビーム751-2を用いて移動端末との送受信を行う。以下同様にして、基地局750はビーム751-3~751-8のうち1つあるいは複数を用いて移動端末との送受信を行う。このようにすることで、基地局750は広範囲のセル752を構成する。
図8において、基地局750が用いるビームの数を8とする例について示したが、ビームの数は8とは異なっていてもよい。また、図8に示す例において、基地局750が同時に用いるビームの数を1つとしたが、複数であってもよい。
ビームの識別には、QCL(Quasi-CoLocation)の概念が用いられる(非特許文献14(3GPP TS38.214)参照)。すなわち、当該ビームが、どの基準信号(例、SSブロック、CSI-RS)のビームと同じとみなせるかを示す情報によって識別される。該情報には、同じビームとみなせる観点についての情報の種別、例えば、ドップラーシフト、ドップラーシフト拡散、平均遅延、平均遅延拡散、空間的Rxパラメータに関する情報が含まれる場合がある(非特許文献14(3GPP TS38.214)参照)。
3GPPにおいて、D2D(Device to Device)通信、V2V(Vehicle to Vehicle)通信のため、サイドリンク(SL:Side Link)がサポートされている(非特許文献1、非特許文献16参照)。SLはPC5インタフェースによって規定される。
SL通信で、ブロードキャストに加え、ユニキャストとグループキャストをサポートするため、PC5-Sシグナリングのサポートが検討されている(非特許文献27(3GPP TS23.287)参照)。たとえば、SL、すなわちPC5通信を実施するためのリンクを確立するため、PC5-Sシグナリングが実施される。該リンクはV2Xレイヤで実施され、レイヤ2リンクとも称される。
また、SL通信において、RRCシグナリングのサポートが検討されている(非特許文献27(3GPP TS23.287)参照)。SL通信におけるRRCシグナリングを、PC5 RRCシグナリングとも称する。たとえば、PC5通信を行うUE間で、UEのケーパビリティを通知することや、PC5通信を用いてV2X通信を行うためのASレイヤの設定などを通知することが提案されている。
SL通信における移動端末の接続構成の例を図9に示す。図9に示す例において、基地局801のカバレッジ803内にUE805、UE806が存在する。基地局801とUE805との間で、UL/DL通信807が行われる。基地局801とUE806との間で、UL/DL通信808が行われる。UE805とUE806との間で、SL通信810が行われる。カバレッジ803の外にUE811、UE812が存在する。UE805とUE811との間でSL通信814が行われる。また、UE811とUE812との間でSL通信816が行われる。
SL通信における、リレー(relay)を介したUEとNWとの間の通信の例として、図9に示すUE805が、UE811と基地局801との間の通信を中継する。
リレーを行うUEに、図4と同様の構成が用いられる場合がある。UEにおけるリレーの処理を、図4を用いて説明する。UE811から基地局801への通信における、UE805によるリレーの処理について説明する。UE811からの無線信号がアンテナ307-1~307-4により受信される。受信信号は、周波数変換部306にて無線受信周波数からベースバンド信号に変換され、復調部308において復調処理が行われる。復調部308にて、ウェイト計算および乗算処理が行われてもよい。復調後のデータは、デコーダー部309へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータは、プロトコル処理部301に渡され、UE811との間の通信に用いるMAC、RLC等のプロトコル処理、例えば、各プロトコルにおけるヘッダの除去等の動作が行われる。また、基地局801との間の通信に用いるRLC、MAC等のプロトコル処理、例えば、各プロトコルにおけるヘッダの付与等の動作を行う。UE811のプロトコル処理部301において、PDCP、SDAPのプロトコル処理が行われる場合もある。プロトコル処理が行われたデータは、エンコーダー部304へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、プロトコル処理部301から変調部305へ直接出力されるデータが存在してもよい。エンコーダー部304でエンコード処理されたデータは、変調部305にて変調処理が行われる。変調部305にて、MIMOにおけるプリコーディングが行われてもよい。変調されたデータは、ベースバンド信号に変換された後、周波数変換部306へ出力され、無線送信周波数に変換される。その後、アンテナ307-1~307-4から基地局801に送信信号が送信される。
前述において、UE811から基地局801への通信における、UE805によるリレーの例について示したが、基地局801からUE811への通信のリレーにおいても同様の処理が用いられる。
5G方式の基地局は、アクセス・バックホール統合(Integrated Access and Backhaul:IAB)(非特許文献2、20参照)をサポート可能である。IABをサポートする基地局(以下、IAB基地局と称する場合がある)は、IAB機能を提供するIABドナーとして動作する基地局のCUであるIABドナーCU、IABドナーとして動作する基地局のDUであるIABドナーDU、および、IABドナーDUとの間、UEとの間で無線インタフェースを用いて接続されるIABノードにより構成される。IABノードとIABドナーCUとの間に、F1インタフェースが設けられる(非特許文献2参照)。
IAB基地局の接続の例を図10に示す。IABドナーCU901はIABドナーDU902と接続されている。IABノード903は、IABドナーDU902と無線インタフェースを用いて接続される。IABノード903は、IABノード904と無線インタフェースを用いて接続される。すなわち、IABノードの多段接続が行われる場合がある。UE905は、IABノード904と無線インタフェースを用いて接続される。UE906がIABノード903と無線インタフェースを用いて接続される場合があるし、UE907がIABドナーDU902と無線インタフェースを用いて接続される場合がある。IABドナーCU901に、複数のIABドナーDU902が接続される場合があるし、IABドナーDU902に複数のIABノード903が接続される場合があるし、IABノード903に、複数のIABノード904が接続される場合がある。
IABドナーDUとIABノードとの間の接続およびIABノード間の接続において、BAP(Backhaul Adaptation Protocol)レイヤが設けられる(非特許文献29参照)。BAPレイヤは、受信したデータの、IABドナーDUおよび/あるいはIABノードへのルーティング、RLCチャネルへのマッピング等の動作を行う(非特許文献29参照)。
IABドナーCUの構成の例として、CU215と同様の構成が用いられる。
IABドナーDUの構成の例として、DU216と同様の構成が用いられる。IABドナーDUのプロトコル処理部においては、BAPレイヤの処理、例えば、下りデータにおけるBAPヘッダの付与、IABノードへのルーティング、上りデータにおけるBAPヘッダの除去等の処理が行われる。
IABノードの構成の例として、図5に示すEPC通信部401、他基地局通信部402、5GC通信部412を除いた構成が用いられる場合がある。
IABノードにおける送受信処理を、図5、図10を用いて説明する。IABドナーCU901とUE905との間の通信における、IABノード903の送受信処理について説明する。UE905からIABドナーCU901への上り通信において、IABノード904からの無線信号が、アンテナ408(アンテナ408-1~408-4の一部または全部)により受信される。受信信号は、周波数変換部407にて無線受信周波数からベースバンド信号に変換され、復調部409で復調処理が行われる。復調されたデータは、デコーダー部410へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータは、プロトコル処理部403に渡され、IABノード904との間の通信に用いるMAC、RLC等のプロトコル処理、例えば、各プロトコルにおけるヘッダの除去等の動作が行われる。また、BAPヘッダを用いたIABドナーDU902へのルーティングが行われるとともに、IABドナーDU902との間の通信に用いるRLC、MAC等のプロトコル処理、例えば、各プロトコルにおけるヘッダの付与等の動作を行う。プロトコル処理が行われたデータは、エンコーダー部405へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、プロトコル処理部403から変調部406へ直接出力されるデータが存在してもよい。エンコードされたデータは、変調部406にて変調処理が行われる。変調部406にて、MIMOにおけるプリコーディングが行われてもよい。変調されたデータは、ベースバンド信号に変換された後、周波数変換部407へ出力され、無線送信周波数に変換される。その後、アンテナ408-1~408-4よりIABドナーDU902に対して送信信号が送信される。IABドナーCU901からUE905への下り通信においても同様の処理が行われる。
IABノード904においても、IABノード903と同様の送受信処理が行われる。IABノード903のプロトコル処理部403においては、BAPレイヤの処理として、例えば、上り通信におけるBAPヘッダの付与およびIABノード904へのルーティング、下り通信におけるBAPヘッダの除去等の処理が行われる。
基地局とUEとの間の通信(以下、アクセスリンク(Access Link:AL)と称する場合がある(非特許文献31参照))に、リピータが用いられてもよい。リピータは、複数のビームを有してもよい。リピータは、送信元からの信号を受信し、増幅して、送信先に対して増幅した信号を送信してもよい(該動作を、AL送受信と称する場合がある)。リピータは、AL送受信に、ビームを用いてもよい。
基地局は、リピータを制御してもよい。基地局はリピータに対し、制御信号を送信してもよい(基地局からリピータ間の制御信号送信に用いられるリンクを、フロントホールリンク(Fronthaul Link:FL)と称する場合がある(非特許文献31参照))。該制御信号に、L1/L2シグナリングが用いられてもよい。
基地局は、リピータが用いるビームを制御してもよい。基地局による該制御は、例えば、ビームの切替えであってもよい。基地局は、例えば、UEの移動を契機としてビームの切替えを行ってもよい。
リピータを介して基地局に接続したUEの測位が行われてもよい。例えば、UEは基地局が送信した測位信号を受信してもよい。測位信号は、例えば、PRSであってもよい。UEは、測位信号の受信結果をLMFに通知してもよい。測位信号の該受信結果には、例えば、基地局からの測位信号の受信時刻と、他の基地局からの測位信号の受信時刻の差分に関する情報が含まれてもよい。LMFは、該情報を用いて、UEの位置を計算してもよい。
ところが、UEはリピータを介して基地局と接続しているため、UEによる測位信号受信時刻と基地局からの測位信号の送信時刻の差分がそのまま基地局とUEとの間の距離に対応付けられない。その結果、UEの位置計算結果が不正確になるといった問題が生じる。
本実施の形態1では、このような課題を解決する方法を開示する。
該方法において、基地局はLMFに対して、リピータに関する情報を通知する。
該情報には、例えば、リピータにおける遅延時間に関する情報が含まれてもよい。遅延時間に関する該情報は、例えば、リピータが信号を受信してから送信するまでの時間であってもよい。
リピータにおける遅延時間を、基地局が予め指定してもよい。基地局はリピータに対し、指定した該遅延時間を通知してもよい。リピータは、基地局からの測位信号を受信後、該指定時間が経過したときにUEに対して測位信号を送信するとしてもよい。このことにより、例えば、リピータにおける遅延時間導出に係る該リピータの処理量を削減可能となる。
基地局からLMFに通知する、リピータに関する該情報に、基地局からリピータまでの伝搬遅延に関する情報が含まれてもよいし、リピータの位置に関する情報が含まれてもよいし、前述の両方の情報が含まれてもよい。リピータの位置に関する該情報は、リピータの位置そのものの情報であってもよいし、基地局とリピータの間の相対位置に関する情報であってもよいし、基地局とリピータの間の距離に関する情報であってもよいし、前述の複数の組合せであってもよい。LMFは、該情報を用いて、基地局とLMFとの間の伝搬遅延を導出してもよい。このことにより、例えば、基地局、リピータ、UEの位置関係によらず、UEの位置計算の精度を向上可能となる。
基地局からLMFへの該通知に、例えば、NRPPaシグナリング(非特許文献33(3GPP TS38.455)参照)が用いられてもよい。例えば、OTDOA(Observed Time Difference Of Arrival)情報応答(OTDOA INFORMATION RESPONSE)のシグナリングが用いられてもよいし、測位情報応答(POSITIONING INFORMATION RESPONSE)のシグナリングが用いられてもよいし、測位情報更新(POSITIONING INFORMATION UPDATE)のシグナリングが用いられてもよいし、TRP情報応答(TRP INFORMATION RESPONSE)のシグナリングが用いられてもよいし、測位アクティベーション応答(POSITIONING ACTIVATION RESPONSE)のシグナリングが用いられてもよいし、PRS設定応答(PRS CONFIGURATION RESPONSE)のシグナリングが用いられてもよいし、測定事前設定確認(MEASUREMENT PRECONFIGURATION CONFIRM)のシグナリングが用いられてもよいし、支援情報フィードバック(ASSISTANCE INFORMATION FEEDBACK)のシグナリングが用いられてもよい。このことにより、例えば、通信システムにおける複雑性を回避可能となる。新たなNRPPaシグナリングが設けられてもよい。基地局からLMFへの該通知に、新たなNRPPaシグナリングが用いられてもよい。
LMFは基地局に対し、リピータに関する情報を要求してもよい。該要求に、NRPPaシグナリングが用いられてもよい。例えば、OTDOA情報要求(OTDOA INFORMATION REQUEST)のシグナリングが用いられてもよいし、測位情報要求(POSITIONING INFORMATION REQUEST)のシグナリングが用いられてもよいし、TRP情報要求(TRP INFORMATION REQUEST)のシグナリングが用いられてもよいし、測位アクティベーション要求(POSITIONING ACTIVATION REQUEST)のシグナリングが用いられてもよいし、PRS設定要求(PRS CONFIGURATION REQUEST)のシグナリングが用いられてもよいし、測定事前設定要求あり(MEASUREMENT PRECONFIGURATION REQUIRED)のシグナリングが用いられてもよいし、支援情報制御(ASSISTANCE INFORMATION CONTROL)のシグナリングが用いられてもよい。このことにより、例えば、通信システムにおける複雑性を回避可能となる。新たなNRPPaシグナリングが設けられてもよい。LMFから基地局への該要求に、新たなNRPPaシグナリングが用いられてもよい。基地局からLMFへの、リピータに関する該情報の通知が、該要求を契機として行われてもよい。
リピータは基地局に対し、自リピータにおける該情報を通知してもよい。該通知には、例えば、4ステップランダムアクセス処理におけるMsg3が用いられてもよいし、2ステップランダムアクセスにおけるMsgAが用いられてもよいし、他のシグナリング、例えば、RRC立上げ完了(RRCSetupComplete)(非特許文献19(3GPP TS38.331)参照)が用いられてもよい。他の例として、該情報がケーパビリティ(例、UEケーパビリティ)に含まれて通知されてもよい。
リピータから基地局への該情報の通知が、基地局からの要求を契機に行われてもよい。基地局はリピータに対し、予め、該リピータに関する情報を要求してもよい。基地局からリピータへの該要求には、例えば、4ステップランダムアクセス処理におけるMsg2が用いられてもよいし、他のシグナリング、例えば、RRC立上げ要求のシグナリング(非特許文献19(3GPP TS38.331)参照)が用いられてもよい。他の例として、該要求がケーパビリティ(例、UEケーパビリティ)要求に含まれて通知されてもよい。基地局からリピータへの該要求は、前述の、LMFから基地局への要求を契機として行われてもよい。
基地局はリピータに対し、測位信号に関する設定を通知してもよい。該設定には、測位信号の時間/周波数リソースに関する情報が含まれてもよいし、測位信号の符号シーケンスに関する情報が含まれてもよいし、リピータにおける増幅率に関する情報が含まれてもよいし、リピータにおける送信電力に関する情報が含まれてもよいし、リピータにおける該信号の送信タイミングに関する情報が含まれてもよいし、リピータにおけるビームフォーミングに関する情報が含まれてもよい。このことにより、例えば、リピータは基地局から送信された測位信号を判別可能となり、その結果、リピータは測位信号の制御、例えば、該信号の基地局からの受信及びUEへの送信を適切に実行可能となる。また、リピータは、自リピータにおける処理遅延に関する前述の情報、例えば、リピータが信号を受信してから送信するまでの時間の情報を取得可能となる。
該設定に、測位信号のQCLに関する情報が含まれてもよい。該情報には、測位信号がどの基準信号(例、SSブロック、CSI-RS)のビームと同じとみなせるかを示す情報が含まれてもよい。リピータは、該情報より、測位信号の送信に用いるビームに関する情報を取得してもよい。このことにより、例えば、測位信号の設定に関する情報のサイズを削減可能となる。
LMFは基地局に対し、リピータの使用有無を問合わせてもよい。該問合せには、リピータを識別する情報、例えばリピータの識別子が含まれてもよいし、リピータを介して基地局と通信を行うUEに関する情報が含まれてもよい。LMFから基地局に対する該問合せには、NRPPaシグナリング、例えば、NRPPa TRP INFORMATION REQUESTのシグナリングが用いられてもよい。新たなNRPPaシグナリングが設けられてもよい。LMFから基地局に対する該問合せに、新たな該NRPPaシグナリングが用いられてもよい。
基地局はLMFに対し、リピータの使用有無に関する情報を通知してもよい。該情報には、リピータを識別する情報、例えばリピータの識別子が含まれてもよいし、リピータを介して基地局と通信を行うUEに関する情報が含まれてもよい。該情報の通知は、LMFから基地局への、前述の問合せを契機として行われてもよい。基地局からLMFへの該通知には、NRPPaシグナリング、例えば、NRPPa TRP INFORMATION RESPONSEのシグナリングが用いられてもよい。新たなNRPPaシグナリングが設けられてもよい。基地局からLMFへの該通知に、新たな該NRPPaシグナリングが用いられてもよい。
UEは、リピータ経由で送信された測位信号を受信してもよい。UEは、測位信号の受信結果をLMFに通知してもよい。該通知には、例えば、LPPシグナリング(非特許文献34(3GPP TS37.355)参照)が用いられてもよい。LMFは、該情報を用いて、UEの位置を計算してもよい。LMFは、基地局から通知された、リピータに関する前述の情報を用いてもよい。このことにより、例えば、LMFはUEの位置を精度よく計算可能となる。
図11は、リピータを介して基地局に接続するUEの測位プロシージャの例を示すシーケンス図である。図11に示す例において、OTDOAの測位が行われる。図11において、基地局が測位信号を送信する。図11において、UEからの位置情報要求(Mobile-Originated Location Request:MO-LR)に係る測位が行われる例について示す。図11において、UEアシステッド測位(UE-assisted positioning:UEからの支援情報(例、測位信号受信結果)を用いてLMF等が位置計算を行う測位)が行われる例について示す。
図11において、UEと基地局、AMF、LMFとの間の信号送受信はリピータを介して行われる。また、図11において、基地局からリピータに対して送信されるサイド制御情報の記載を省略しているが、UEと基地局、AMF、LMFとの間の信号送受信に先立ち、該サイド制御情報を送信することで、基地局からリピータに対するビームの設定の指示が行われる。図11以降の図においても同様である。
図11に示すプロシージャ2301において、UEからの測位要求およびLMFとUEとの間の測位ケーパビリティ要求および通知が行われる。
図11に示すステップST2303、ST2305において、UEはLMFに対し、測位を要求する。該要求は、AMFを経由して行われる。ステップST2303はUEからAMFへの、ステップST2305はAMFからLMFへの、該要求を示す。
図11に示すステップST2307において、LMFからUEに対する測位ケーパビリティ要求が行われる。該要求は、LPPシグナリング、例えば、LPPケーパビリティ要求(LPP Request Capability)を用いて行われる。ステップST2309において、UEはLMFに対し、測位ケーパビリティを通知する。該通知は、LPPシグナリング、例えば、LPPケーパビリティ供給(LPP Provide Capability)を用いて行われる。
図11に示すプロシージャ2310において、LMFとUEとの間で支援データの要求および通知が行われる。ステップST2311において、LMFはUEに対し、支援データを要求する。該要求は、LPPシグナリング、例えば、LPP支援データ要求のシグナリングを用いて行われる。ステップST2313において、UEはLMFに対し、支援データを通知する。該通知は、LPPシグナリング、例えば、LPP支援データ供給のシグナリングを用いて行われる。
図11に示すステップST2315において、LMFは基地局に対し、リピータの使用有無に関する情報を要求する。該要求には、NRPPaシグナリング、例えば、NRPPa TRP情報要求のシグナリングが用いられてもよい。該要求に、該基地局のTRPに関する情報の要求が含まれてもよい。リピータの使用有無に関する情報の要求には、リピータを識別する情報、例えばリピータの識別子の要求が含まれてもよいし、リピータを介して基地局と通信を行うUEに関する情報の要求が含まれてもよい。
図11に示すステップST2317において、基地局はLMFに対し、リピータの使用有無に関する情報を通知する。該通知には、NRPPaシグナリング、例えば、NRPPa TRP情報応答のシグナリングが用いられてもよい。該通知に、TRPに関する情報が含まれてもよい。図11に示す例においては、リピータを使用していることを示す情報を通知する。
図11に示すステップST2319において、LMFは基地局に対し、OTDOAに必要な情報を要求する。該要求には、NRPPaシグナリング、例えば、NRPPa OTDOA情報要求のシグナリングが用いられてもよい。該要求に、リピータに関する情報の要求が含まれてもよい。該情報に、測位信号の送信開始の指示に関する情報が含まれてもよい。基地局は、ステップST2319を契機として、測位信号、例えば、PRSを送信してもよい。
図11に示すステップST2322において、基地局はリピータに対して、該リピータに関する情報を要求する。該要求は、例えば、L1/L2シグナリングを用いて行われてもよいし、MACシグナリングを用いて行われてもよいし、RRCシグナリングを用いて行われてもよいし、前述の複数の組合せを用いて行われてもよい。ステップST2325において、リピータは基地局に対し、自リピータに関する情報を通知する。該通知は、例えば、L1/L2シグナリングを用いて行われてもよいし、MACシグナリングを用いて行われてもよいし、RRCシグナリングを用いて行われてもよいし、前述の複数の組合せを用いて行われてもよい。
図11に示すステップST2327において、基地局はLMFに対し、OTDOAに必要な情報を通知する。該通知には、NRPPaシグナリング、例えば、NRPPa OTDOA情報応答のシグナリングが用いられてもよい。該通知に、リピータに関する情報が含まれてもよい。リピータに関する該情報には、例えば、基地局からリピータまでの伝搬遅延に関する情報が含まれてもよいし、リピータの位置に関する情報が含まれてもよいし、リピータにおける処理遅延に関する情報が含まれてもよい。
図11に示すステップST2329において、LMFはUEに対し、測位信号の受信を指示する。該指示は、LPPシグナリング、例えば、LPP位置情報要求(LPP Request Location Information)のシグナリングを用いて行われてもよい。該指示に、受信する測位信号に関する情報が含まれてもよい。UEは、該指示を契機として、測位信号の受信動作を開始する。
図11に示すステップST2330において、基地局からUEに対して測位信号が送信される。該送信は、リピータを介して行われる。リピータは、基地局からの測位信号を受信し、UEに対して該信号を送信する。ステップST2331において、UEは基地局からリピータを介して送信された測位信号を測定する。
図11に示すステップST2333において、UEはLMFに対し、測位信号の測定結果を報告する。該報告は、LPPシグナリング、例えば、LPP位置情報供給(LPP Provide Location Information)のシグナリングを用いて行われてもよい。該報告に、該基地局からリピータを介して受信した受信した測位信号の受信時刻と、他の基地局から受信した測位信号の受信時刻の差分に関する情報が含まれてもよいし、他の基地局に関する情報が含まれてもよい。UEが他の基地局から受信した測位信号は、他の基地局から直接受信した測位信号であってもよいし、該基地局に接続するリピータを介して受信した測位信号であってもよい。UEは、受信した測位信号が、直接基地局から受信したものなのかリピータを介して受信したものなのかを意識しないとしてもよい。
図11に示すプロシージャ2335において、UEの位置計算および位置計算結果の通知が行われる。
図11に示すステップST2337において、LMFはUEの位置計算を行う。LMFは、該計算を、ステップST2333で取得した測位信号測定結果を用いて行ってもよいし、ステップST2327で取得したリピータに関する情報を用いて行ってもよいし、前述の両方を用いて行ってもよい。
図11に示すステップST2339、ST2341において、LMFはUEに対し、測位結果を通知する。該通知は、AMFを経由して行われる。ステップST2339はLMFからAMFへの、ステップST2341はAMFからUEへの、該通知を示す。
図11に示す例において、MO-LRに係る測位が行われる場合について示したが、UEにおいて終端される位置情報要求(Mobile-Terminated Location Request:MT-LR)に係る測位において同様に適用されてもよいし、ネットワーク起動の位置情報要求(Network-Induced Location Request:NI-LR)に係る測位において同様に適用されてもよい。図11より後の図においても同様としてもよい。
他の解決策として、リピータが測位信号を生成して送信してもよい。リピータが送信する測位信号は、例えば、PRSであってもよい。
基地局はリピータに対して、測位信号の設定を通知してもよい。該通知には、測位信号の時間/周波数リソースに関する情報が含まれてもよいし、測位信号の送信に用いるビームに関する情報が含まれてもよいし、測位信号の符号シーケンスに関する情報が含まれてもよい。該通知に、該リピータに関する情報の要求が含まれてもよい。基地局からリピータへの該通知には、L1/L2シグナリングが用いられてもよいし、MACシグナリングが用いられてもよいし、RRCシグナリングが用いられてもよいし、前述の複数の組合せが用いられてもよい。
リピータは、該通知で得られた情報を用いて、測位信号の設定を行ってもよい。リピータは、該通知を契機として、測位信号の送信を開始してもよい。リピータは基地局に対して、測位信号の設定が完了したことを通知してもよい。該通知において、自リピータに関する情報を通知してもよい。リピータに関する該情報は、前述と同様であってもよい。リピータから基地局に対する該通知には、L1/L2シグナリングが用いられてもよいし、MACシグナリングが用いられてもよいし、RRCシグナリングが用いられてもよいし、前述の複数の組合せが用いられてもよい。
図12は、リピータを介して基地局に接続するUEの測位プロシージャの他の例を示すシーケンス図である。図12に示す例において、OTDOAの測位が行われる。図12において、リピータが測位信号を送信する。図12において、図11と同様の処理には同じ番号を付し、共通する説明を省略する。
図12に示すプロシージャ2301、2310、ステップST2315~ST2319は、図11と同様である。
図12に示すステップST2422において、基地局はリピータに対して、測位信号の設定を通知する。該通知には、測位信号のリソースに関する情報が含まれてもよいし、測位信号の送信に用いるビームに関する情報が含まれてもよい。該通知に、該リピータに関する情報の要求が含まれてもよい。ステップST2422には、L1/L2シグナリングが用いられてもよいし、MACシグナリングが用いられてもよいし、RRCシグナリングが用いられてもよいし、前述の複数の組合せが用いられてもよい。リピータは、ステップST2422で受信した情報を用いて、測位信号の設定を行う。
図12に示すステップST2425において、リピータは基地局に対して、測位信号の設定が完了したことを通知してもよい。該通知に、自リピータに関する情報を通知してもよい。リピータに関する該情報は、前述と同様であってもよい。ステップST2425には、L1/L2シグナリングが用いられてもよいし、MACシグナリングが用いられてもよいし、RRCシグナリングが用いられてもよいし、前述の複数の組合せが用いられてもよい。
図12に示すステップST2327、ST2329は、図11と同様である。
図12に示すステップST2430において、リピータはUEに対して測位信号を送信する。該送信は、ステップST2422において通知された設定を用いて行われてもよい。
図12に示すステップST2331、ST2333、プロシージャ2335は、図11と同様である。
基地局は、リピータに関する情報をLMF以外の装置に通知してもよい。リピータに関する該情報が、他のコアNW装置において用いられてもよい。例えば、基地局は該情報をAMFに通知してもよい。AMFは該情報を、例えば、リピータの登録に用いてもよい。AMFは、例えば、リピータの位置情報を用いて、リピータのNWへの登録可否を判断してもよい。このことにより、例えば、リピータの送信が許可されていない位置におけるリピータの使用を防止可能となる。
リピータが測位機能を有してもよい。例えば、リピータは、測位に関してUEと同等の機能を有してもよい。リピータ自身の測位が行われてもよい。リピータの測位において、UEの測位と同様の方法が用いられてもよいし、UEの測位と同様のシグナリングが用いられてもよいし、UEの測位と同様のシグナリングが用いられてもよい。
リピータが自リピータの位置を導出してもよい。リピータにおける該導出は、例えばUEベースの測位(UEが自UEの位置を導出する測位方法)と同様の方法で行われてもよい。このことにより、例えば、LMFにおける位置計算に係る処理量を削減可能となる。
リピータとUEの測位が同時に行われてもよい。リピータおよび/あるいはUEは、基地局が送信した測位信号を受信してもよい。リピータとUEが受信する測位信号は、同じものであってもよいし、異なっていてもよい。UEは、測位信号の測定結果をLMFに通知してもよい。リピータは、自リピータに関する情報、例えば、自リピータにおける処理遅延を、基地局に通知してもよい。基地局は、該情報をLMFに通知してもよい。LMFは、前述の情報を用いて、リピータとUEの位置を計算してもよい。このことにより、例えば、リピータとUEの測位を迅速に実行可能となる。
本実施の形態1において開示した方法が切替えて用いられてもよい。例えば、基地局からの測位信号の送信と、リピータからの測位信号の生成および送信が、切替えられてもよい。基地局はリピータに対し、該切替えに関する情報を通知してもよい。該情報は、例えば、基地局からの測位信号を受信してUEに送信するか、リピータ自身で生成するかを示す情報であってもよい。リピータは、該情報を用いて、基地局からの測位信号を受信してUEに送信してもよいし、自リピータにて測位信号を生成してUEに送信してもよい。このことにより、例えば、測位における柔軟性向上を可能とできる。
本実施の形態1において開示した方法が、UEベースの測位において用いられてもよい。LMFはUEに対し、リピータに関する情報を通知してもよい。該通知には、LPPシグナリング、例えば、LPP支援データ供給のシグナリングが用いられてもよいし、他のLPPシグナリングが用いられてもよい。他の例として、基地局がUEに対し、リピータに関する該情報を通知してもよい。基地局からUEへの通知には、RRCシグナリングが用いられてもよいし、MACシグナリングが用いられてもよいし、L1/L2シグナリングが用いられてもよい。UEは、LMFおよび/あるいは基地局から通知された該情報を用いて、自UEの位置を導出してもよい。このことにより、例えば、UEベースの測位においても、リピータを介して基地局に接続するUEの測位精度を向上可能となる。
本実施の形態1により、リピータを介して基地局に接続するUEの測位においても、測位精度の確保が可能となる。
実施の形態2.
上り信号を用いた測位において、実施の形態1と同様の方法が適用されてもよい。上り信号を用いた測位は、例えば、UL-TDOA(非特許文献24(3GPP TS38.305)参照)であってもよい。
上り信号を用いた測位において、実施の形態1と同様の方法が適用されてもよい。上り信号を用いた測位は、例えば、UL-TDOA(非特許文献24(3GPP TS38.305)参照)であってもよい。
例えば、リピータを介して基地局に接続するUEがSRSを送信し、該基地局がSRSを受信してもよい。リピータは、UEが送信したSRSを受信し、基地局に対して送信してもよい。リピータは、UEが送信したSRSを増幅して基地局に送信してもよい。リピータは、該増幅動作および/あるいは該送信動作を、他のチャネル/信号とともに行ってもよい。
基地局はLMFに対して、リピータに関する情報を通知してもよい。該情報には、例えば、実施の形態1において開示した情報と同様の情報が含まれてもよい。
基地局からLMFに通知する、リピータに関する該情報に、基地局からリピータまでの伝搬遅延に関する情報が含まれてもよいし、リピータの位置に関する情報が含まれてもよいし、前述の両方の情報が含まれてもよい。
リピータは基地局に対し、自リピータに関する該情報を通知してもよい。該通知には、例えば、4ステップランダムアクセス処理におけるMsg3が用いられてもよいし、2ステップランダムアクセスにおけるMsgAが用いられてもよいし、他のシグナリング、例えば、RRC立上げ完了(RRCSetupComplete)(非特許文献19(3GPP TS38.331)参照)が用いられてもよい。他の例として、該情報がケーパビリティ(例、UEケーパビリティ)に含まれて通知されてもよい。
リピータから基地局への該情報の通知が、基地局からの要求を契機に行われてもよい。基地局はリピータに対し、予め、該リピータに関する情報を要求してもよい。基地局からリピータへの該要求には、例えば、4ステップランダムアクセス処理におけるMsg2が用いられてもよいし、他のシグナリング、例えば、RRC立上げ要求のシグナリング(非特許文献19(3GPP TS38.331)参照)が用いられてもよい。他の例として、該要求がケーパビリティ(例、UEケーパビリティ)要求に含まれて通知されてもよい。
図13は、リピータを介して基地局に接続するUEの測位プロシージャの他の例を示すシーケンス図である。図13に示す例において、UL-TDOAの測位が行われる。図13において、UEがSRSを送信し、基地局が受信する。図13において、図11と同様の処理には同じ番号を付し、共通する説明を省略する。
図13に示すプロシージャ2301、ステップST2315、ST2317は、図11と同様である。
図13に示すステップST2519において、LMFは基地局に対し、測位に必要な情報を要求する。該要求には、NRPPaシグナリング、例えば、NRPPa測位情報要求のシグナリングが用いられてもよい。該要求に、リピータに関する情報の要求が含まれてもよい。該情報に、SRS設定の指示が含まれてもよい。ステップST2520において、基地局は、SRSの設定を行う。ステップST2521において、基地局はUEに対し、SRSの送信を指示する。該指示には、RRCシグナリング、例えば、RRC再設定のシグナリングが用いられてもよい。該指示に、SRSの設定に関する情報が含まれてもよい。
図13に示すステップST2322、ST2325は、図11と同様である。
図13に示すステップST2527において、基地局はLMFに対し、測位に必要な情報を通知する。該通知には、NRPPaシグナリング、例えば、NRPPa測位情報応答のシグナリングが用いられてもよい。該通知に、リピータに関する情報が含まれてもよい。リピータに関する該情報には、例えば、基地局からリピータまでの伝搬遅延に関する情報が含まれてもよいし、リピータの位置に関する情報が含まれてもよいし、リピータにおける処理遅延に関する情報が含まれてもよい。
図13に示すステップST2529において、LMFは基地局に対し、UEからの測位信号の送信開始を要求する。該要求には、NRPPaシグナリング、例えば、NRPPa POSITIONING ACTIVATION REQUESTのシグナリングが用いられてもよい。該要求には、測位信号の送信を開始するUEに関する情報が含まれてもよい。ステップST2531において、基地局はUEに対し、測位信号の送信開始を指示する。該指示には、L1/L2シグナリングが用いられてもよいし、MACシグナリングが用いられてもよいし、RRCシグナリングが用いられてもよいし、前述の複数の組合せが用いられてもよい。ステップST2533において、基地局はLMFに対し、測位信号の送信開始完了を通知する。該通知には、NRPPaシグナリング、例えば、NRPPa POSITIONING ACTIVATION RESPONSEのシグナリングが用いられてもよい。
図13に示すステップST2535において、LMFは基地局に対し、測位信号の測定を要求する。該要求には、NRPPaシグナリング、例えば、NRPPa測定要求のシグナリングが用いられてもよい。
図13に示すステップST2537において、UEは基地局に対し、測位信号としてSRSを送信する。ステップST2539において、基地局はUEからのSRSを測定する。
図13に示すステップST2541において、基地局はLMFに対し、測位信号の測定結果を通知する。該通知には、NRPPaシグナリング、例えば、NRPPa測定応答のシグナリングが用いられてもよい。ステップST2543において、LMFは基地局に対し、UEからの測位信号の送信停止を指示する。該指示には、NRPPaシグナリング、例えば、NRPPa POSITIONING DEACTIVATIONのシグナリングが用いられてもよい。
図13に示すプロシージャ2335は、図11と同様である。LMFは、ステップST2541に含まれる測定結果を用いてUEの位置を計算してもよいし、ステップST2527に含まれるリピータ情報を用いてUEの位置を計算してもよいし、前述の組合せを用いてUEの位置を決定してもよい。
図13に示す例において、MO-LRに係る測位が行われる場合について示したが、UEにおいて終端される位置情報要求(MT-LR)に係る測位において同様に適用されてもよいし、ネットワーク起動の位置情報要求(NI-LR)に係る測位において同様に適用されてもよい。
他の解決策として、リピータが測位信号を測定してもよい。リピータが測位信号を受信してもよい。リピータが受信する測位信号は、例えば、SRSであってもよい。基地局はリピータに対して、測位信号の設定を通知してもよい。リピータは、該通知を契機として、測位信号の受信動作を開始してもよい。リピータは基地局に対して、測位信号の設定が完了したことを通知してもよい。該通知に、自リピータに関する情報が含まれてもよい。リピータに関する該情報は、前述と同様であってもよい。
リピータは基地局に対し、測位信号の受信結果を通知してもよい。該通知に、測位信号の受信時刻に関する情報が含まれてもよいし、測位信号の受信角度に関する情報が含まれてもよいし、測位信号の受信電力(例、SRS-RSRP)に関する情報が含まれてもよいし、非特許文献33(3GPP TS38.455)に記載のTRPメジャメント結果(TRP Measurement Result)に開示された情報が含まれてもよい。LMFは、該情報を用いて、UEの位置を計算してもよい。
図14は、リピータを介して基地局に接続するUEの測位プロシージャの他の例を示すシーケンス図である。図14に示す例において、UL-TDOAの測位が行われる。図14において、UEがSRSを送信し、リピータが受信する。図14において、図11、図13と同様の処理には同じ番号を付し、共通する説明を省略する。
図14に示すプロシージャ2301、ステップST2315、ST2317は、図11と同様である。ステップST2519~ST2521は、図13と同様である。
図14に示すステップST2622において、基地局はリピータに対して、SRSの設定を通知する。該通知には、SRSのリソースに関する情報が含まれてもよいし、SRSの受信に用いるビームに関する情報が含まれてもよい。該通知に、該リピータに関する情報の要求が含まれてもよい。ステップST2622には、L1/L2シグナリングが用いられてもよいし、MACシグナリングが用いられてもよいし、RRCシグナリングが用いられてもよいし、前述の複数の組合せが用いられてもよい。リピータは、ステップST2622で通知された情報を用いて、SRS受信の設定を行う。
図14に示すステップST2625において、リピータは基地局に対して、SRS受信の設定が完了したことを通知してもよい。該通知に、自リピータに関する情報が含まれてもよい。リピータに関する該情報は、前述と同様であってもよい。ステップST2625には、L1/L2シグナリングが用いられてもよいし、MACシグナリングが用いられてもよいし、RRCシグナリングが用いられてもよいし、前述の複数の組合せが用いられてもよい。
図14に示すステップST2527~ST2535は、図13と同様である。
図14に示すステップST2636において、基地局はリピータに対して、SRSの受信開始を指示する。該通知には、SRSのリソースに関する情報が含まれてもよいし、SRSの受信に用いるビームに関する情報が含まれてもよい。該通知に、該リピータに関する情報の要求が含まれてもよい。ステップST2636には、L1/L2シグナリングが用いられてもよいし、MACシグナリングが用いられてもよいし、RRCシグナリングが用いられてもよいし、前述の複数の組合せが用いられてもよい。リピータは、ステップST2636を契機として、SRS受信動作を開始する。
図14に示すステップST2637において、UEはリピータに対し、測位信号としてSRSを送信する。ステップST2639において、リピータはUEからのSRSを測定する。
図14に示すステップST2640において、リピータは基地局に対し、SRS測定結果を通知する。該通知には、L1/L2シグナリングが用いられてもよいし、MACシグナリングが用いられてもよいし、RRCシグナリングが用いられてもよいし、前述の複数の組合せが用いられてもよい。ステップST2641において、基地局はLMFに対し、測位信号の測定結果を通知する。該通知には、ステップST2640に含まれる、リピータにおけるSRS測定結果に関する情報が含まれてもよい。該通知には、NRPPaシグナリング、例えば、NRPPa測定応答のシグナリングが用いられてもよい。
図14に示すステップST2543は、図13と同様である。図14に示すプロシージャ2335は、図11と同様である。LMFは、ステップST2641に含まれる測定結果を用いてUEの位置を計算してもよいし、ステップST2527に含まれるリピータ情報を用いてUEの位置を計算してもよいし、前述の複数の組合せを用いてUEの位置を決定してもよい。
リピータとUEの、上り信号を用いた測位が同時に行われてもよい。リピータおよび/あるいは基地局は、UEが送信した測位信号を受信してもよい。リピータと基地局が受信する測位信号は、同じものであってもよいし、異なっていてもよい。リピータは、測位信号受信結果を基地局に通知してもよい。基地局は、自基地局による測位信号受信結果をLMFに通知してもよい。基地局からLMFへの該通知に、リピータにおける測位信号受信結果が含まれてもよいし、リピータに関する情報が含まれてもよい。LMFは、前述の情報を用いて、リピータとUEの位置を計算してもよい。このことにより、例えば、リピータとUEの測位を迅速に実行可能となる。
本実施の形態2において開示した方法が、UEベースの測位において用いられてもよい。LMFはUEに対し、リピータに関する情報を通知してもよい。該通知には、LPPシグナリング、例えば、LPP支援データ供給のシグナリングが用いられてもよいし、他のLPPシグナリングが用いられてもよい。他の例として、基地局がUEに対し、リピータに関する該情報を通知してもよい。基地局からUEへの通知には、RRCシグナリングが用いられてもよいし、MACシグナリングが用いられてもよいし、L1/L2シグナリングが用いられてもよい。UEは、LMFおよび/あるいは基地局から通知された該情報を用いて、自UEの位置を導出してもよい。このことにより、例えば、UEベースの測位においても、リピータを介して基地局に接続するUEの測位精度を向上可能となる。
本実施の形態2において開示した方法が切替えて用いられてもよい。例えば、リピータにおけるSRSの測定と、基地局におけるSRSの測定が、切替えられてもよい。基地局はリピータに対し、該切替えに関する情報を通知してもよい。該情報は、例えば、SRSの測定を基地局が行うかリピータが行うかを示す情報であってもよい。リピータは、該情報を用いて、UEからのSRSを受信して基地局に送信してもよいし、自リピータにてSRSを測定してもよい。このことにより、例えば、通信システムの柔軟性向上を可能とできる。
本実施の形態2により、リピータを介して基地局に接続するUEの、上り信号を用いた測位においても、測位精度の確保が可能となる。
実施の形態3.
リピータとLMFとの間でシグナリングの送受信が行われてもよい。該シグナリングは、例えば、NRPPaシグナリングであってもよい。
リピータとLMFとの間でシグナリングの送受信が行われてもよい。該シグナリングは、例えば、NRPPaシグナリングであってもよい。
基地局はリピータに対し、LMFから該リピータに対するNRPPaシグナリングを送信してもよい。リピータは、基地局経由で送信された該NRPPaシグナリングを受信してもよい。リピータは基地局に対し、LMFに対するNRPPaシグナリングを送信してもよい。基地局は、リピータから送信されたLMF向けの該NRPPaシグナリングを受信してもよい。
リピータとLMFとの間でNRPPaプロトコルが終端されてもよい。他の例として、基地局とLMFとの間でNRPPaプロトコルが終端されてもよい。基地局とリピータとの間でNRPPaプロトコルが終端されてもよい。基地局は、LMFから送信されたNRPPaシグナリングをリピータに中継してもよいし、リピータから送信されたNRPPaシグナリングをLMFに中継してもよい。
NRPPaシグナリングの送受信に、RRCシグナリングが用いられてもよい。基地局とリピータとの間で送受信されるRRCシグナリングに、NRPPaシグナリングがカプセル化されてもよい。該NRPPaシグナリングは、基地局とリピータとの間で終端されるシグナリングであってもよいし、リピータとLMFとの間で終端されるシグナリングであってもよい。
図15は、リピータ、基地局、AMF、LMFにおけるプロトコルスタックの例を示す図である。図15に示す例において、基地局はLMFとリピータとの間のNRPPaシグナリングを中継する。
NRPPaシグナリングの送受信に、NASシグナリングが用いられてもよい。AMFとリピータとの間でNASシグナリングが送受信されてもよい。AMFとリピータとの間で送受信されるNASシグナリングに、NRPPaシグナリングがカプセル化されてもよい。該NRPPaシグナリングは、リピータとLMFとの間で終端されるシグナリングであってもよい。該NASシグナリングは、RRCシグナリングを用いて送信されてもよい。該NASシグナリングが、RRCシグナリングにカプセル化されてもよい。
図16は、リピータ、基地局、AMF、LMFにおけるプロトコルスタックの他の例を示す図である。図16に示す例において、リピータとLMFとの間のNRPPaシグナリングは、リピータとAMFとの間のNASシグナリングを用いて送受信される。リピータとAMFとの間のNASシグナリングは、リピータと基地局との間のRRCシグナリングを用いて送受信される。
LMFとリピータとの間のシグナリングの例として、LMFはリピータに対し、該リピータに関する情報を要求してもよい。リピータに関する該情報は、実施の形態1と同様であってもよい。LMFからリピータへの該要求に、NRPPaシグナリングが用いられてもよい。例えば、OTDOA情報要求のシグナリングが用いられてもよいし、測位情報要求のシグナリングが用いられてもよいし、TRP情報要求のシグナリングが用いられてもよいし、測位アクティベーション要求のシグナリングが用いられてもよいし、PRS設定要求のシグナリングが用いられてもよいし、測定事前設定要求ありのシグナリングが用いられてもよいし、支援情報制御のシグナリングが用いられてもよい。新たなNRPPaシグナリングが設けられてもよい。LMFからリピータへの該通知に、新たなNRPPaシグナリングが用いられてもよい。
LMFとリピータとの間のシグナリングの例として、リピータはLMFに対し、自リピータに関する情報を通知してもよい。リピータに関する該情報は、実施の形態1と同様であってもよい。リピータは、LMFからの前述の要求を契機として、該通知を行ってもよい。
リピータからLMFへの該通知に、例えば、NRPPaシグナリングが用いられてもよい。例えば、OTDOA情報応答のシグナリングが用いられてもよいし、測位情報応答のシグナリングが用いられてもよいし、測位情報更新のシグナリングが用いられてもよいし、TRP情報応答のシグナリングが用いられてもよいし、測位アクティベーション応答のシグナリングが用いられてもよいし、PRS設定応答のシグナリングが用いられてもよいし、測定事前設定確認のシグナリングが用いられてもよいし、支援情報フィードバックのシグナリングが用いられてもよい。このことにより、例えば、通信システムにおける複雑性を回避可能となる。新たなNRPPaシグナリングが設けられてもよい。リピータからLMFへの該通知に、新たなNRPPaシグナリングが用いられてもよい。
実施の形態1において開示する測位プロシージャにおいて、リピータとLMFとの間のNRPPaシグナリングの送受信が行われてもよい。例えば、基地局からリピータを介してUEに測位信号を送信する場合において、リピータとLMFとの間のNRPPaシグナリングの送受信が行われてもよい。
図17は、リピータを介して基地局に接続するUEの測位プロシージャの他の例を示すシーケンス図である。図17に示す例において、OTDOAの測位が行われる。図17において、基地局が測位信号を送信する。図17において、UEからの位置情報要求に係る測位が行われる例について示す。図17において、UEアシステッド測位が行われる例について示す。図17において、図11と同様の処理には同じ番号を付し、共通する説明を省略する。
図17に示すプロシージャ2301、2310、ステップST2315、ST2317は、図11と同様である。
図17に示すステップST2919において、LMFは基地局に対し、OTDOAに必要な情報を要求する。該要求には、図11に示すステップST2319と同じシグナリングが用いられてもよい。該要求に、リピータに関する情報の要求が含まれないとしてもよい。
図17に示すステップST2922において、LMFはリピータに対して、該リピータに関する情報を要求する。該要求には、NRPPaシグナリング、例えば、NRPPa OTDOA情報要求のシグナリングが用いられてもよい。
図17に示すステップST2925において、リピータはLMFに対し、自リピータに関する情報を通知する。該通知には、NRPPaシグナリング、例えば、NRPPa OTDOA情報応答のシグナリングが用いられてもよい。
図17に示すステップST2927において、基地局はLMFに対し、OTDOAに必要な情報を通知する。該通知には、NRPPaシグナリング、例えば、NRPPa OTDOA情報応答のシグナリングが用いられてもよい。該通知に、リピータに関する情報が含まれないとしてもよい。
図17に示すステップST2329~ST2333、プロシージャ2335は、図11と同様である。
他の例として、リピータがUEに測位信号を送信する場合において、リピータとLMFとの間のNRPPaシグナリングの送受信が行われてもよい。
図18は、リピータを介して基地局に接続するUEの測位プロシージャの他の例を示すシーケンス図である。図18に示す例において、OTDOAの測位が行われる。図30において、リピータが測位信号を送信する。図18において、図11、図12と同様の処理には同じ番号を付し、共通する説明を省略する。
図18に示すプロシージャ2301、2310、ステップST2315、ST2317は、図11と同様である。
図18に示すステップST3022において、LMFはリピータに対して、OTDOAに必要な情報を要求する。ステップST3022に、該リピータに関する情報の要求が含まれてもよい。該要求に、測位信号の送信指示に関する情報が含まれてもよい。該要求には、NRPPaシグナリング、例えば、NRPPa OTDOA情報要求のシグナリングが用いられてもよい。
図18に示すステップST3025において、リピータはLMFに対し、OTDOAに必要な情報を通知する。該通知に、自リピータに関する情報が含まれてもよい。該通知には、NRPPaシグナリング、例えば、NRPPa OTDOA情報応答のシグナリングが用いられてもよい。
図18に示すステップST2329は、図11と同様である。ステップST2430は、図12と同様である。ステップST2331、ST2333、プロシージャ2335は、図11と同様である。
実施の形態2において開示する測位プロシージャにおいて、リピータとLMFとの間のNRPPaシグナリングの送受信が行われてもよい。例えば、UEがSRSを送信し、基地局が受信する場合において、リピータとLMFとの間のNRPPaシグナリングの送受信が行われてもよい。
図19は、リピータを介して基地局に接続するUEの測位プロシージャの他の例を示すシーケンス図である。図19に示す例において、UL-TDOAの測位が行われる。図19において、UEがSRSを送信し、基地局が受信する。図19において、図11、図13と同様の処理には同じ番号を付し、共通する説明を省略する。
図19に示すプロシージャ2301、ステップST2315、ST2317は、図11と同様である。
図19に示すステップST3119において、LMFは基地局に対し、測位に必要な情報を要求する。該要求には、NRPPaシグナリング、例えば、NRPPa測位情報要求のシグナリングが用いられてもよい。該情報に、SRS設定の指示が含まれてもよい。該要求に、リピータに関する情報の要求が含まれないとしてもよい。
図19に示すステップST2520、ST2521は、図13と同様である。
図19に示すステップST3122において、LMFはリピータに対し、該リピータに関する情報を要求する。該要求には、NRPPaシグナリング、例えば、NRPPa測位情報要求のシグナリングが用いられてもよい。
図19に示すステップST3125において、リピータはLMFに対し、自リピータに関する情報を通知する。リピータに関する該情報には、例えば、基地局からリピータまでの伝搬遅延に関する情報が含まれてもよいし、リピータの位置に関する情報が含まれてもよいし、リピータにおける処理遅延に関する情報が含まれてもよい。該通知には、NRPPaシグナリング、例えば、NRPPa測位情報応答のシグナリングが用いられてもよい。
図19に示すステップST3127において、基地局はLMFに対し、測位に必要な情報を通知する。該通知には、NRPPaシグナリング、例えば、NRPPa測位情報応答のシグナリングが用いられてもよい。該通知に、リピータに関する情報が含まれないとしてもよい。
図19に示すステップST2529~ST2543は、図13と同様である。プロシージャ2335は、図11と同様である。
他の例として、UEがSRSを送信し、リピータが受信する場合において、リピータとLMFとの間のNRPPaシグナリングの送受信が行われてもよい。
図20は、リピータを介して基地局に接続するUEの測位プロシージャの他の例を示すシーケンス図である。図20に示す例において、UL-TDOAの測位が行われる。図20において、UEがSRSを送信し、リピータが受信する。図20において、図11、図13、図14、図19と同様の処理には同じ番号を付し、共通する説明を省略する。
図20に示すプロシージャ2301、ステップST2315、ST2317は、図11と同様である。ステップST3119は、図19と同様である。ステップST2520、ST2521は、図13と同様である。ステップST3127は、図19と同様である。ステップST2529~ST2533は、図13と同様である。
図20に示すステップST3235において、LMFはリピータに対し、測位信号の測定を要求する。該要求には、NRPPaシグナリング、例えば、NRPPa測定要求のシグナリングが用いられてもよい。該要求には、SRSのリソースに関する情報が含まれてもよいし、SRSの受信に用いるビームに関する情報が含まれてもよい。該要求に、該リピータに関する情報の要求が含まれてもよい。
図20に示すステップST2637、ST2639は、図14と同様である。
図20に示すステップST3241において、リピータはLMFに対し、SRS測定結果を通知する。該通知には、NRPPaシグナリング、例えば、NRPPa測定応答のシグナリングが用いられてもよい。該通知に、自リピータに関する情報が含まれてもよい。
図20に示すステップST2543は、図13と同様である。プロシージャ2335は、図11と同様である。
本実施の形態3により、基地局における測位シグナリングの処理量を削減可能となる。
実施の形態3の変形例1.
リピータとLMFとの間で送受信されるシグナリングの他の例として、該シグナリングはLPPシグナリングであってもよい。
リピータとLMFとの間で送受信されるシグナリングの他の例として、該シグナリングはLPPシグナリングであってもよい。
基地局はリピータに対し、LMFから該リピータに対するLPPシグナリングを送信してもよい。リピータは、基地局経由で送信された該LPPシグナリングを受信してもよい。リピータは基地局に対し、LMFに対するLPPシグナリングを送信してもよい。基地局は、リピータから送信されたLMF向けの該LPPシグナリングを受信してもよい。リピータとLMFとの間でLPPプロトコルが終端されてもよい。
LPPシグナリングの送受信に、NASシグナリングが用いられてもよい。AMFとリピータとの間でNASシグナリングが送受信されてもよい。AMFとリピータとの間で送受信されるNASシグナリングに、LPPシグナリングがカプセル化されてもよい。該LPPシグナリングは、リピータとLMFとの間で終端されるシグナリングであってもよい。該NASシグナリングは、RRCシグナリングを用いて送信されてもよい。該NASシグナリングが、RRCシグナリングにカプセル化されてもよい。
リピータ、基地局、AMF、LMFにおけるLPPシグナリングに関するプロトコルスタックの例として、図16に示すNRPPaをLPPに置き換えたものが用いられてもよい。
LMFとリピータとの間のシグナリングの例として、LMFはリピータに対し、該リピータに関する情報を要求してもよい。リピータに関する該情報は、実施の形態1と同様であってもよい。LMFからリピータへの該要求に、LPPシグナリングが用いられてもよい。該シグナリングは、例えば、LPPケーパビリティ要求であってもよいし、LPP支援データ要求であってもよいし、LPP位置情報要求であってもよい。新たなLPPシグナリングが設けられてもよい。LMFからリピータへの該要求に、新たな該LPPシグナリングが用いられてもよい。
LMFとリピータとの間のシグナリングの例として、リピータはLMFに対し、自リピータに関する情報を通知してもよい。リピータに関する該情報は、実施の形態1と同様であってもよい。リピータは、LMFからの前述の要求を契機として、該通知を行ってもよい。
リピータからLMFへの該通知に、LPPシグナリングが用いられてもよい。該LPPシグナリングは、例えば、LPPケーパビリティ提供であってもよいし、LPP支援データ提供であってもよいし、LPP位置情報提供であってもよい。新たなLPPシグナリングが設けられてもよい。リピータからLMFへの該通知に、新たな該LPPシグナリングが用いられてもよい。
実施の形態1において開示する測位プロシージャにおいて、リピータとLMFとの間のLPPシグナリングの送受信が行われてもよい。例えば、基地局からリピータを介してUEに測位信号を送信する場合において、リピータとLMFとの間のLPPシグナリングの送受信が行われてもよい。動作シーケンスの例として、図17に示すステップST2922を、LPPシグナリング、例えば、LPP支援データ要求に置き換えたものが用いられてもよいし、図17に示すステップST2925を、LPPシグナリング、例えば、LPP支援データ提供に置き換えたものが用いられてもよい。
他の例として、リピータがUEに測位信号を送信する場合において、リピータとLMFとの間のLPPシグナリングの送受信が行われてもよい。動作シーケンスの例として、図18に示すステップST3022を、LPPシグナリング、例えば、LPP支援データ要求に置き換えたものが用いられてもよいし、図18に示すステップST3025を、LPPシグナリング、例えば、LPP支援データ提供に置き換えたものが用いられてもよい。
実施の形態2において開示する測位プロシージャにおいて、リピータとLMFとの間のLPPシグナリングの送受信が行われてもよい。例えば、UEがSRSを送信し、基地局が受信する場合において、リピータとLMFとの間のLPPシグナリングの送受信が行われてもよい。動作シーケンスの例として、図19に示すステップST3122を、LPPシグナリング、例えば、LPP支援データ要求に置き換えたものが用いられてもよいし、図19に示すステップST3125を、LPPシグナリング、例えば、LPP支援データ提供に置き換えたものが用いられてもよい。
他の例として、UEがSRSを送信し、リピータが受信する場合において、リピータとLMFとの間のLPPシグナリングの送受信が行われてもよい。動作シーケンスの例として、図20に示すステップST3235を、LPPシグナリング、例えば、LPP位置情報要求またはLPP支援データ要求に置き換えたものが用いられてもよいし、図20に示すステップST3241を、LPPシグナリング、例えば、LPP位置情報提供またはLPP支援データ提供に置き換えたものが用いられてもよい。
本変形例1により、基地局における測位シグナリングの処理量を削減可能となる。また、リピータのプロトコルスタックの設計における複雑性を回避可能となる。
本開示において、スマートリピータとして記載しているが、特に説明の無い限り、反射板であってもよいし、再構成可能インテリジェントサーフェス(Reconfigurable Intelligent Surface:RIS)であってもよい。このことにより、例えば、通信システムにおける消費電力を削減しつつ、基地局のカバレッジを拡張可能となる。
本開示において、gNBあるいはセルとして記載しているが、特に説明の無い限り、gNBであってもよいしセルであってもよい。
前述の各実施の形態およびその変形例は、例示に過ぎず、各実施の形態およびその変形例を自由に組合せることができる。また各実施の形態およびその変形例の任意の構成要素を適宜変更または省略することができる。
例えば、前述の各実施の形態およびその変形例において、サブフレームは、第5世代通信システムにおける通信の時間単位の一例である。サブフレームはスケジューリング単位であってもよい。前述の各実施の形態およびその変形例において、サブフレーム単位として記載している処理を、TTI単位、スロット単位、サブスロット単位、ミニスロット単位として行ってもよい。
例えば、前述の各実施の形態およびその変形例において開示した方法は、V2X(Vehicle-to-everything)サービスに限らずSL通信が用いられるサービスに適用してもよい。たとえば、プロキシミティサービス(Proximity-based service)、パブリックセイフティ(Public Safety)、ウェアラブル端末間通信、工場における機器間通信など、多種のサービスで用いられるSL通信に適用してもよい。
202 通信端末装置(移動端末)、210 通信システム、213,240-1,240-2,750,801 基地局装置(NR基地局,基地局)、214 5Gコア部、215 中央ユニット、216 分散ユニット、217 制御プレイン用中央ユニット、218 ユーザプレイン用中央ユニット、219 TRP、301,403 プロトコル処理部、302 アプリケーション部、304,405 エンコーダー部、305,406 変調部、306,407 周波数変換部、307-1~307-4,408-1~408-4 アンテナ、308,409 復調部、309,410 デコーダー部、310,411,526 制御部、401 EPC通信部、402 他基地局通信部、412 5GC通信部、521 Data Network通信部、522 基地局通信部、523 ユーザプレイン通信部、523-1 PDU処理部、523-2 モビリティアンカリング部、525 制御プレイン制御部、525-1 NASセキュリティ部、525-2 アイドルステートモビリティ管理部、527 セッション管理部、527-1 PDUセッションコントロール部、527-2 UE IPアドレス割当部、751-1~751-8 ビーム、752 セル、803 カバレッジ、805,806,811,812,905,906 UE、807,808 UL/DL通信、810,814 SL通信、901 IABドナーCU、902 IABドナーDU、903,904 IABノード。
Claims (2)
- 第5世代無線アクセスシステムの位置管理機能が搭載されたコアネットワーク側装置と、
前記第5世代無線アクセスシステムに適用される基地局と、
前記基地局と通信端末との間で中継処理を行うリピータと、
を含み、
前記リピータは、接続中の前記基地局と自リピータとの間の伝搬遅延に関する情報、自リピータの位置に関する情報および自リピータにおける処理遅延に関する情報の中の少なくとも1つの情報を前記コアネットワーク側装置に通知し、
前記通信端末は前記リピータが送信する測位信号の測定を行うとともに前記測位信号の測定結果を前記コアネットワーク側装置に通知し、
前記コアネットワーク側装置は、前記リピータから通知された前記情報と、前記通信端末から通知された前記測定結果とに基づいて前記通信端末の位置を計算する、
ことを特徴とする通信システム。 - 第5世代無線アクセスシステムの位置管理機能が搭載されたコアネットワーク側装置と、
前記第5世代無線アクセスシステムに適用される基地局と、
前記基地局と通信端末との間で中継処理を行うリピータと、
を含み、
前記リピータは、接続中の前記基地局と自リピータとの間の伝搬遅延に関する情報、自リピータの位置に関する情報および自リピータにおける処理遅延に関する情報の中の少なくとも1つの情報を前記コアネットワーク側装置に通知し、さらに、前記通信端末が送信する測位信号の測定を行うとともに前記測位信号の測定結果を前記コアネットワーク側装置に通知し、
前記コアネットワーク側装置は、前記リピータから通知された前記情報および前記測定結果に基づいて前記通信端末の位置を計算する、
ことを特徴とする通信システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-123846 | 2022-08-03 | ||
JP2022123846 | 2022-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024029422A1 true WO2024029422A1 (ja) | 2024-02-08 |
Family
ID=89849021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/027375 WO2024029422A1 (ja) | 2022-08-03 | 2023-07-26 | 通信システム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024029422A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200296680A1 (en) * | 2019-03-15 | 2020-09-17 | Qualcomm Incorporated | Positioning with relays |
WO2022080308A1 (ja) * | 2020-10-13 | 2022-04-21 | 三菱電機株式会社 | 通信システム |
-
2023
- 2023-07-26 WO PCT/JP2023/027375 patent/WO2024029422A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200296680A1 (en) * | 2019-03-15 | 2020-09-17 | Qualcomm Incorporated | Positioning with relays |
WO2022080308A1 (ja) * | 2020-10-13 | 2022-04-21 | 三菱電機株式会社 | 通信システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7405911B2 (ja) | 無線通信システム、基地局 | |
US20220287003A1 (en) | Communication system, communication terminal, and network | |
US20230422201A1 (en) | Communication terminal and communication system | |
US20230292391A1 (en) | Communication system and communication terminal | |
EP4255025A1 (en) | Communication system and communication terminal | |
WO2022030488A1 (ja) | 通信システムおよび基地局 | |
JP2023145753A (ja) | 通信システム、基地局および通信端末 | |
JPWO2020054642A1 (ja) | 通信システム、通信端末および基地局 | |
WO2023204186A1 (ja) | 通信システム | |
WO2023153336A1 (ja) | 通信システムおよび基地局 | |
WO2022080308A1 (ja) | 通信システム | |
WO2022206448A1 (en) | Network slice selection for inactive state and reestablishment | |
WO2024029422A1 (ja) | 通信システム | |
WO2024029424A1 (ja) | 通信システム | |
WO2023153335A1 (ja) | 通信システム | |
WO2024029425A1 (ja) | 基地局および通信システム | |
WO2024185748A1 (ja) | 通信システムおよび基地局 | |
WO2024029423A1 (ja) | 通信システム | |
WO2024143363A1 (ja) | 通信システム | |
WO2023095803A1 (ja) | 通信システム | |
WO2024171988A1 (ja) | 通信システム | |
WO2024171989A1 (ja) | 通信システム | |
WO2023095804A1 (ja) | 通信システム | |
WO2024232311A1 (ja) | 通信システム | |
WO2023013513A1 (ja) | 通信システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23849977 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024539101 Country of ref document: JP Kind code of ref document: A |