[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024027630A1 - Method and apparatus for authorization alignment - Google Patents

Method and apparatus for authorization alignment Download PDF

Info

Publication number
WO2024027630A1
WO2024027630A1 PCT/CN2023/110176 CN2023110176W WO2024027630A1 WO 2024027630 A1 WO2024027630 A1 WO 2024027630A1 CN 2023110176 W CN2023110176 W CN 2023110176W WO 2024027630 A1 WO2024027630 A1 WO 2024027630A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
smf
network
information
authorization
Prior art date
Application number
PCT/CN2023/110176
Other languages
French (fr)
Inventor
Wu Wang
Jinyin Zhu
Yunjie Lu
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Publication of WO2024027630A1 publication Critical patent/WO2024027630A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • H04W12/084Access security using delegated authorisation, e.g. open authorisation [OAuth] protocol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0038Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of security context information

Definitions

  • the non-limiting and exemplary embodiments of the present disclosure generally relate to the technical field of communications, and specifically to methods and apparatuses for authorization alignment.
  • a first network function may determine whether a second NF is authorized to send a request to the first NF.
  • the first NF may authorize the request from the second NF in various ways.
  • the first NF may authorize the request from the second NF using one of the following two options: 1) OAuth-based authorization mechanism following Internet Engineering Task Force (IETF) Request for Comments (RFC) : 6749, October 2012, the disclosure of which is incorporated by reference herein in its entirety; 2) based on the local policy of the first NF.
  • IETF Internet Engineering Task Force
  • RRC Request for Comments
  • 3GPP TS 29.510 V17.6.0 has defined oauth2Required and perPlmnOauth2ReqList which indicate by a service producer whether Oauth2-based authorization is required to be supported by a service consumer (per public land mobile network (PLMN) ) during network repository function (NRF) registration. Then during NRF discovery procedure, the service consumer will get the information from NRF whether Oauth2-based authorization is required by the service producer.
  • PLMN public land mobile network
  • NRF network repository function
  • the access and mobility management function (AMF) as the NF service consumer performs the NRF discovery to get information of a home session management function (H-SMF) or an anchor SMF and send the information to a visited SMF (V-SMF) or intermediate SMF (I-SMF) during protocol data unit (PDU) session setup or mobility procedures, so the V-SMF or I-SMF as the service consumer does not perform the NRF discovery to get the information of H-SMF or anchor SMF.
  • H-SMF home session management function
  • anchor SMF an anchor SMF
  • V-SMF visited SMF
  • I-SMF intermediate SMF
  • PDU protocol data unit
  • the oauth2Required information of a network node can be only obtained from NRF. When a network node obtains such information, it will not send it to another network node.
  • the AMF gets the oauth2Required information of H-SMF or anchor SMF, but it does not forward this information to V-SMF or I-SMF.
  • the V-SMF does not know whether Oauth2-based authorization is required by the H-SMF.
  • the I-SMF does not know whether Oauth2-based authorization is required by the anchor SMF.
  • the new V-SMF does not know whether Oauth2-based authorization is required by the H-SMF.
  • the new V-SMF does not know whether Oauth2-based authorization is required by the H-SMF.
  • the new AMF does not know whether Oauth2-based authorization is required by the SMF.
  • a first network node before a first network node sends a message to a second network node, it will perform an additional NRF discovery for the second network node to get the oauth2Required information of the second network node, which may introduce additional network delay.
  • V-SMF will perform the additional NRF discovery for H-SMF or anchor SMF or V-SMF, which may introduce additional network delay.
  • the first network node may send a message to the second network node without performing additional NRF discovery. However this message may be rejected by the second network node due to authorization requirement. Then the first network node may obtain the token to access the second network node and resend the message to the second network node. This procedure also introduces additional network delay.
  • KPI key performance indicator
  • an improved solution for authorization alignment may be desirable.
  • a method performed by a first network node.
  • the method comprises obtaining first information indicating whether a second network node requires authorization.
  • the method further comprises sending the first information to a third network node.
  • the authorization comprises OAuth2-based authorization.
  • the first information is obtained from at least one of a network repository function (NRF) , or a fourth network node.
  • NRF network repository function
  • the first information is obtained from the NRF.
  • the first information is sent to the third network node during at least one of a protocol data unit (PDU) session establishment procedure with intermediate SMF, a PDU session establishment procedure in home routed roaming scenario, an intra public land mobile network (PLMN) handover procedure with access and mobility management function (AMF) change, an intra PLMN handover procedure with visited session management function (SMF) change, an inter PLMN mobility registration procedure, or an inter PLMN handover procedure.
  • PDU protocol data unit
  • AMF access and mobility management function
  • SMF visited session management function
  • inter PLMN mobility registration procedure an inter PLMN handover procedure.
  • the first network node comprises at least one of a first access and mobility management function (AMF) , or a first session management function (SMF) .
  • AMF access and mobility management function
  • SMF session management function
  • the second network node comprises a second session management function (SMF) .
  • SMF session management function
  • the second SMF comprises at least one of an anchor SMF, a home SMF, or an SMF hosting session management context resource.
  • the third network node comprises at least one of a second AMF, or a third session management function (SMF) .
  • SMF session management function
  • the first information is sent to the third network node in at least one of session management context create data, session management context, or user equipment context.
  • the first information comprises at least one of information indicating whether a home network node requires authorization, information indicating whether an anchor network node requires authorization, or information indicating whether a network node hosting session management context resource requires authorization.
  • a method performed by a second network node.
  • the method comprises receiving first information indicating whether a second network node requires authorization from a first network node.
  • the method further comprises getting a token for accessing the second network node when the first information indicates the second network node requires authorization.
  • the authorization comprises OAuth2-based authorization.
  • the first information is received from the first network node during at least one of a protocol data unit (PDU) session establishment procedure with intermediate SMF, a PDU session establishment procedure in home routed roaming scenario, an intra public land mobile network (PLMN) handover procedure with access and mobility management function (AMF) change, an intra PLMN handover procedure with visited session management function (SMF) change, an inter PLMN mobility registration procedure, or an inter PLMN handover procedure.
  • PDU protocol data unit
  • AMF access and mobility management function
  • SMF visited session management function
  • the first network node comprises at least one of a first access and mobility management function (AMF) , or a first session management function (SMF) .
  • AMF access and mobility management function
  • SMF session management function
  • the second network node comprises a second session management function (SMF) .
  • SMF session management function
  • the second SMF comprises at least one of an anchor SMF, a home SMF, or an SMF hosting session management context resource.
  • the third network node comprises at least one of a second AMF, or a third session management function (SMF) .
  • SMF session management function
  • the first information is sent to the third network node in at least one of session management context create data, session management context, or user equipment context.
  • the first information comprises at least one of information indicating whether a home network node requires authorization, information indicating whether an anchor network node requires authorization, or information indicating whether a network node hosting session management context resource requires authorization.
  • the method further comprises, when the first information indicates the second network node does not require authorization, determining to skip getting the token for accessing the second network node.
  • a first network node comprising a processor and a memory coupled to the processor. Said memory contains instructions executable by said processor. The first network node is operative to obtain first information indicating whether a second network node requires authorization. The first network node is further operative to send the first information to a third network node.
  • a second network node comprising a processor and a memory coupled to the processor. Said memory contains instructions executable by said processor.
  • the second network node is operative to receive first information indicating whether a second network node requires authorization from a first network node.
  • the second network node is further operative to get a token for accessing the second network node when the first information indicates the second network node requires authorization.
  • a first network node comprising an obtaining module configured to obtain first information indicating whether a second network node requires authorization.
  • the second network node further comprises a sending module configured to send the first information to a third network node.
  • a third network node comprises a receiving module configured to receive first information indicating whether a second network node requires authorization from a first network node.
  • the third network node further comprises a getting module configured to get a token for accessing the second network node when the first information indicates the second network node requires authorization.
  • a computer program product comprising instructions which when executed by at least one processor, cause the at least one processor to perform the method according to any one of the first or second aspects.
  • a computer-readable storage medium storing instructions which when executed by at least one processor, cause the at least one processor to perform the method according to any one of the first or second aspects.
  • Embodiments herein may provide many advantages, of which a non-exhaustive list of examples follows.
  • it makes the Oauth2-based authorization work end to end in home routed roaming scenarios.
  • it can avoid the V-SMF to perform the additional NRF discovery for H-SMF or anchor SMF or V-SMF, which can reduce the network delay.
  • it can avoid the retransmission from V-SMF to H-SMF or old V-SMF due to unsuccessful cross PLMN requests (401 Unauthorized) , and reduce the network delay.
  • it can increase the success rate KPI for requests for example in home routed roaming scenarios.
  • the embodiments herein are not limited to the features and advantages mentioned above. A person skilled in the art will recognize additional features and advantages upon reading the following detailed description.
  • FIG. 1a schematically shows Non-Roaming 5G System Architecture according to an embodiment of the present disclosure
  • FIG. 1b schematically shows Roaming 5G System Architecture according to an embodiment of the present disclosure
  • FIG. 2a shows a flowchart of a method according to an embodiment of the present disclosure
  • FIG. 2b shows an example of NF/NF service discovery according to an embodiment of the present disclosure
  • FIG. 3 shows a flowchart of a method according to another embodiment of the present disclosure
  • FIG. 4 shows a flowchart of a PDU session establishment procedure in home routed roaming scenario according to an embodiment of the present disclosure
  • FIG. 5 shows a flowchart of intra-PLMN handover procedure with V-SMF change according to an embodiment of the present disclosure
  • FIG. 6 shows a flowchart of intra-PLMN mobility registration procedure with V-SMF change according to an embodiment of the present disclosure
  • FIG. 7a shows a flowchart of an inter-PLMN mobility registration procedure according to an embodiment of the present disclosure
  • FIG. 7b shows a flowchart of an inter-PLMN handover procedure according to an embodiment of the present disclosure
  • FIG. 8a is a block diagram showing an apparatus suitable for practicing some embodiments of the disclosure.
  • FIG. 8b is a block diagram showing a first network node according to an embodiment of the disclosure.
  • FIG. 8c is a block diagram showing a second network node according to an embodiment of the disclosure.
  • FIG. 9 is a schematic showing a wireless network in accordance with some embodiments.
  • FIG. 10 is a schematic showing a user equipment in accordance with some embodiments.
  • FIG. 11 is a schematic showing a virtualization environment in accordance with some embodiments.
  • FIG. 12 is a schematic showing a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments
  • FIG. 13 is a schematic showing a host computer communicating via a base station with a user equipment over a partially wireless connection in accordance with some embodiments;
  • FIG. 14 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments;
  • FIG. 15 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments;
  • FIG. 16 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
  • FIG. 17 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
  • the term “network” refers to a network following any suitable communication standards such as new radio (NR) , long term evolution (LTE) , LTE-Advanced (LTE-A) , wideband code division multiple access (WCDMA) , high-speed packet access (HSPA) , Code Division Multiple Access (CDMA) , Time Division Multiple Address (TDMA) , Frequency Division Multiple Access (FDMA) , Orthogonal Frequency-Division Multiple Access (OFDMA) , Single carrier frequency division multiple access (SC-FDMA) and other wireless networks.
  • NR new radio
  • LTE long term evolution
  • LTE-A LTE-Advanced
  • WCDMA wideband code division multiple access
  • HSPA high-speed packet access
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Address
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single carrier frequency division multiple access
  • a CDMA network may implement a radio
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA network may implement a radio technology such as Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, Ad-hoc network, wireless sensor network, etc.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • Ad-hoc network wireless sensor network
  • the terms “network” and “system” can be used interchangeably.
  • the communications between two devices in the network may be performed according to any suitable communication protocols, including, but not limited to, the communication protocols as defined by a standard organization such as 3GPP.
  • the communication protocols may comprise the first generation (1G) , 2G
  • network node or “network entity” refers to any suitable network function (NF) which can be implemented in a network element (physical or virtual) of a communication network.
  • NF network function
  • the network function can be implemented either as a network element on a dedicated hardware, as a software instance running on a dedicated hardware, or as a virtualized function instantiated on an appropriate platform, e.g. on a cloud infrastructure.
  • the 5G system may comprise a plurality of NFs such as AMF (Access and Mobility management Function) , SMF (Session Management Function) , AUSF (Authentication Service Function) , UDM (Unified Data Management) , PCF (Policy Control Function) , AF (Application Function) , NEF (Network Exposure Function) , UPF (User plane Function) and NRF (Network Repository Function) , RAN (radio access network) , SCP (service communication proxy) , NWDAF (network data analytics function) , NSSF (Network Slice Selection Function) , NSSAAF (Network Slice-Specific Authentication and Authorization Function) , etc.
  • AMF Access and Mobility management Function
  • SMF Session Management Function
  • AUSF Authentication Service Function
  • UDM Unified Data Management
  • PCF Policy Control Function
  • AF Application Function
  • NEF Network Exposure Function
  • UPF User plane Function
  • NRF Network Repository Function
  • RAN radio
  • the 4G system may include MME (Mobile Management Entity) , HSS (home subscriber server) , Policy and Charging Rules Function (PCRF) , Packet Data Network Gateway (PGW) , PGW control plane (PGW-C) , Serving gateway (SGW) , SGW control plane (SGW-C) , E-UTRAN Node B (eNB) , etc.
  • MME Mobile Management Entity
  • HSS home subscriber server
  • PCRF Policy and Charging Rules Function
  • PGW Packet Data Network Gateway
  • PGW-C PGW control plane
  • SGW Serving gateway
  • SGW-C SGW control plane
  • the network function may comprise different types of NFs for example depending on a specific network.
  • Virtualizing means creating virtual versions of apparatuses or devices which may include virtualizing hardware platforms, storage devices and networking resources.
  • virtualization can be applied to a provider edge node and relates to an implementation in which at least a portion of the functionality is implemented as one or more virtual components (e.g., via one or more applications, components, functions, virtual machines or containers executing on one or more physical processing nodes in one or more networks) .
  • some or all of the functions described herein may be implemented as virtual components executed by one or more virtual machines implemented in one or more virtual environments hosted by one or more of hardware nodes. Further, in embodiments in which the virtual node is not a radio access node or does not require radio connectivity (e.g., a core network node) , then the provider edge node or PE may be entirely virtualized.
  • the virtual node is not a radio access node or does not require radio connectivity (e.g., a core network node)
  • the provider edge node or PE may be entirely virtualized.
  • the functions may be implemented by one or more applications (which may alternatively be called software instances, virtual appliances, network functions, virtual nodes, virtual network functions, etc. ) operative to implement some of the features, functions, and/or benefits of some of the embodiments disclosed herein.
  • Applications are run in virtualization environment which provides hardware comprising processing circuitry and memory.
  • Memory contains instructions executable by processing circuitry whereby application is operative to provide one or more of the features, benefits, and/or functions disclosed herein.
  • Virtualization environment comprises general-purpose or special-purpose network hardware devices comprising a set of one or more processors or processing circuitry, which may be commercial off-the-shelf (COTS) processors, dedicated Application Specific Integrated Circuits (ASICs) , or any other type of processing circuitry including digital or analog hardware components or special purpose processors.
  • Each hardware device may comprise memory which may be non-persistent memory for temporarily storing instructions or software executed by processing circuitry.
  • Each hardware device may comprise one or more network interface controllers (NICs) , also known as network interface cards, which include physical network interface.
  • NICs network interface controllers
  • Each hardware device may also include non-transitory, persistent, machine-readable storage media -having stored therein software and/or instructions executable by processing circuitry.
  • Software may include any type of software including software for instantiating one or more virtualization layers (also referred to as hypervisors) , software to execute virtual machines as well as software allowing it to execute functions, features and/or benefits described in relation with some embodiment
  • Virtual machines comprise virtual processing, virtual memory, virtual networking or interface and virtual storage, and may be run by a corresponding virtualization layer or hypervisor. Different embodiments of the instance of virtual appliance may be implemented on one or more of virtual machines, and the implementations may be made in different ways.
  • processing circuitry executes software to instantiate the hypervisor or virtualization layer, which may sometimes be referred to as a virtual machine monitor (VMM) .
  • Virtualization layer may present a virtual operating platform that appears like networking hardware to virtual machine.
  • terminal device refers to any end device that can access a communication network and receive services therefrom.
  • the terminal device refers to a mobile terminal, user equipment (UE) , or other suitable devices.
  • the UE may be, for example, a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a portable computer, an image capture terminal device such as a digital camera, a gaming terminal device, a music storage and a playback appliance, a mobile phone, a cellular phone, a smart phone, a voice over IP (VoIP) phone, a wireless local loop phone, a tablet, a wearable device, a personal digital assistant (PDA) , a portable computer, a desktop computer, a wearable terminal device, a vehicle-mounted wireless terminal device, a wireless endpoint, a mobile station, a laptop-embedded equipment (LEE) , a laptop-mounted equipment (LME) , a USB dongle, a smart device, a wireless customer-premises equipment (CPE) and the like.
  • a portable computer an image capture terminal device such as a digital camera, a gaming terminal device, a music storage and a playback appliance
  • a mobile phone a cellular phone, a smart phone, a voice over IP (VoIP) phone
  • a terminal device may represent a UE configured for communication in accordance with one or more communication standards promulgated by the 3GPP (3rd Generation Partnership Project) , such as 3GPP’ LTE standard or NR standard.
  • 3GPP 3rd Generation Partnership Project
  • a “user equipment” or “UE” may not necessarily have a “user” in the sense of a human user who owns and/or operates the relevant device.
  • a terminal device may be configured to transmit and/or receive information without direct human interaction.
  • a terminal device may be designed to transmit information to a network on a predetermined schedule, when triggered by an internal or external event, or in response to requests from the communication network.
  • a UE may represent a device that is intended for sale to, or operation by, a human user but that may not initially be associated with a specific human user.
  • a terminal device may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another terminal device and/or network equipment.
  • the terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as a machine-type communication (MTC) device.
  • M2M machine-to-machine
  • MTC machine-type communication
  • the terminal device may be a UE implementing the 3GPP narrow band internet of things (NB-IoT) standard.
  • NB-IoT narrow band internet of things
  • a terminal device may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
  • references in the specification to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the phrase “at least one of A and B” or “at least one of A or B” should be understood to mean “only A, only B, or both A and B. ”
  • the phrase “A and/or B” should be understood to mean “only A, only B, or both A and B” .
  • a communication system may further include any additional elements suitable to support communication between terminal devices or between a wireless device and another communication device, such as a landline telephone, a service provider, or any other network node or terminal device.
  • the communication system may provide communication and various types of services to one or more terminal devices to facilitate the terminal devices’ access to and/or use of the services provided by, or via, the communication system.
  • FIG. 1a schematically shows Non-Roaming 5G System Architecture according to an embodiment of the present disclosure.
  • the architecture of FIG. 1a is same as Figure 4.2.3-1 as described in 3GPP TS 23.501 V17.5.0, the disclosure of which is incorporated by reference herein in its entirety.
  • the system architecture of FIG. 1a is same as Figure 4.2.3-1 as described in 3GPP TS 23.501 V17.5.0, the disclosure of which is incorporated by reference herein in its entirety.
  • 1a may comprise some exemplary elements such as AUSF, AMF, DN (data network) , NEF, NRF, NSSF, PCF, SMF, UDM, UPF, AF, UE, (R) AN, SCP (Service Communication Proxy) , NSSAAF (Network Slice-Specific Authentication and Authorization Function) , NSACF (Network Slice Admission Control Function) , Edge Application Server Discovery Function (EASDF) , etc.
  • the UE can establish a signaling connection with the AMF over the reference point N1, as illustrated in FIG. 1a.
  • This signaling connection may enable NAS (Non-access stratum) signaling exchange between the UE and the core network, comprising a signaling connection between the UE and the (R) AN and the N2 connection for this UE between the (R) AN and the AMF.
  • the (R) AN can communicate with the UPF over the reference point N3.
  • the UE can establish a protocol data unit (PDU) session to the DN (data network, e.g. an operator network or Internet) through the UPF over the reference point N6.
  • PDU protocol data unit
  • the exemplary system architecture also contains some reference points such as N1, N2, N3, N4, N6, N9, N15, etc., which can support the interactions between NF services in the NFs.
  • these reference points may be realized through corresponding NF service-based interfaces and by specifying some NF service consumers and providers as well as their interactions in order to perform a particular system procedure.
  • the AM related policy is provided by PCF to AMF for a registered UE via N15 interface. AMF can get AM policy during AM Policy Association Establishment/Modification procedure.
  • NFs shown in FIG. 1a may include the functionality for example as defined in clause 6.2 of 3GPP TS 23.501 V17.5.0.
  • FIG. 1b schematically shows Roaming 5G System Architecture according to an embodiment of the present disclosure.
  • the architecture of FIG. 1b is same as Figure 4.2.4-6 as described in 3GPP TS 23.501 V17.5.0, the disclosure of which is incorporated by reference herein in its entirety.
  • the system architecture of FIG. 1b may comprise some exemplary elements such as AUSF, AMF, data network, visited NSSF (V-NSSF) , home NSSF (H-NSSF) , visited PCF (V-PCF) , home PCF (H-PCF) , visited SMF (V-SMF) , home SMF (H-SMF) , UDM, UPF, AF, UE, (R) AN, NSSAAF, etc.
  • the exemplary system architecture also contains some reference points such as N1, N2, N3, N4, N5, N6, N7, N9, N16, N11, N24, N10, N38, N15, N22, N13, N12, N58, N59, N31, N12, etc., which can support the interactions between NF services in the NFs.
  • these reference points may be realized through corresponding NF service-based interfaces and by specifying some NF service consumers and providers as well as their interactions in order to perform a particular system procedure.
  • NFs shown in FIG. 1b may include the functionality for example as defined in clause 6.2 of 3GPP TS 23.501 V17.5.0.
  • the H-SMF in the HPLMN may require the oAuth2-based authorization for the requests from V-SMF in the N16 interface (per PLMN) .
  • FIG. 2a shows a flowchart of a method according to an embodiment of the present disclosure, which may be performed by an apparatus implemented in or at or as a first network node or communicatively coupled to the first network node.
  • the apparatus may provide means or modules for accomplishing various parts of the method 200 as well as means or modules for accomplishing other processes in conjunction with other components.
  • the first network node may obtain first information indicating whether a second network node requires authorization.
  • the authorization may be any suitable authorization.
  • the authorization comprises OAuth2-based authorization.
  • the first network node may be any suitable network node such as network function as described in various 3GPP specifications such as 3GPP TS 23.501 V17.5.0.
  • the first network node may comprise at least one of a first access and mobility management function (AMF) or a first session management function (SMF) .
  • AMF access and mobility management function
  • SMF session management function
  • the first AMF may be located in any network such as home PLMN or visited PLMN.
  • the first SMF may be located in any network such as home PLMN or visited PLMN.
  • the first SMF may be H-SMF or V-SMF or I-SMF.
  • the second network node may be any suitable network node such as network function as described in various 3GPP specifications such as 3GPP TS 23.501 V17.5.0.
  • the first network node and the second network node may belong to the same PLMN or different PLMNs.
  • the second network node comprises a second session management function (SMF) .
  • SMF session management function
  • the first SMF and the second SMF may belong to the same PLMN or different PLMNs.
  • the second SMF may comprise at least one of an anchor SMF, a home SMF, or an SMF hosting session management context resource.
  • the first information comprises at least one of information indicating whether a home network node (such as H-SMF) requires authorization, information indicating whether an anchor network node (anchor SMF) requires authorization, or information indicating whether a network node (e.g., source V-SMF) hosting session management context resource requires authorization.
  • a home network node such as H-SMF
  • anchor SMF anchor network node
  • a network node e.g., source V-SMF
  • the first network node may obtain first information indicating whether a second network node requires authorization in various ways. For example, the first network node may obtain the first information from NRF or another network node. Alternatively, when the first network node has contacted the second network node, it may know whether the second network node requires authorization.
  • the first information is obtained from at least one of a network repository function (NRF) , or a fourth network node.
  • the fourth network nod may be any suitable network node which has the first information indicating whether a second network node requires authorization. For example, an old (source) SMF may send the first information to a new (target) SMF.
  • the NRF may be any suitable network node supporting service discovery function.
  • the NRF may receive NF discovery request from NF service consumer or SCP, and provides the information of the discovered NF instances (be discovered) to the NF service consumer or SCP.
  • the NRF may maintain the NF profile of available NF instances and their supported services.
  • the NRF may be same as NRF as described in 3GPP TS 23.501 V17.5.0.
  • 3GPP TS 29.510 V17.6.0 has defined the oauth2Required and perPlmnOauth2ReqList which indicates by a service producer whether Oauth2-based authorization is required to be supported by a service consumer (per PLMN) during NRF registration. Then during NRF discovery procedure, the service consumer will get the information from NRF whether Oauth2-based authorization is required by the service producer.
  • the first information is obtained from the NRF.
  • PLMN public land mobile network
  • T-AMF target AMF
  • T-AMF rediscover from NRF to get the H-SMF NF profile to get the “oauth2Required” information.
  • the first network node may send the first information to a third network node.
  • the third network node may be any suitable network node such as network function as described in various 3GPP specifications such as 3GPP TS 23.501 V17.5.0.
  • the third network node comprises at least one of a second AMF, or a third session management function (SMF) .
  • SMF session management function
  • the first network node may send the first information to the third network node in various ways. For example, when the first network node needs to send a message to the third network node, it may send the first information to the third network node in the message. When the first network node receives a request from the third network node, it may send a response comprising the first information to the third network node.
  • the first information is sent to the third network node during at least one of a protocol data unit (PDU) session establishment procedure with intermediate SMF, a PDU session establishment procedure in home routed roaming scenario, an intra public land mobile network (PLMN) handover procedure with access and mobility management function (AMF) change, an intra PLMN handover procedure with visited session management function (SMF) change, an inter PLMN mobility registration procedure, or an inter PLMN handover procedure.
  • PDU protocol data unit
  • AMF access and mobility management function
  • SMF visited session management function
  • inter PLMN mobility registration procedure an inter PLMN handover procedure.
  • the above procedures may be same/similar as/to the corresponding procedures as described in various 3GPP specifications such as 3GPP TS 23.502 V17.5.0.
  • the first information may be comprised in any suitable messages such as new message or existing message.
  • the first information is sent to the third network node in at least one of session management context create data, session management context, or user equipment context (such as PDU Session Context) .
  • the session management context create data may be same as SmContextCreateData as described in clause 6.1.6.2.2 of 3GPP TS 29.502 V17.5.0.
  • the session management context may be same as SmContextCreateData as described in clause 6.1.6.2.39 of 3GPP TS 29.502 V17.5.0, the disclosure of which is incorporated by reference herein in its entirety.
  • the session management context may be same as SmContext as defined in 29.502 clause 6.1.6.2.39.
  • the user equipment context may be same as UeContext as described in clause 6.1.6.2.25 of 3GPP TS 29.518 V17.6.0, the disclosure of which is incorporated by reference herein in its entirety.
  • the PDU Session Context may be same as PduSessionContext as described in clause 6.1.6.2.37 of 3GPP TS 29.518 V17.6.0.
  • the first network node may obtain second information comprising authorization requirement supported by the second network node per public land mobile network (PLMN) of a network function (NF) service consumer.
  • PLMN public land mobile network
  • NF network function
  • the first network node may send the second information to the third network node.
  • the first network node may when a PLMN identifier (ID) of the third network node is present in the second information, the first information is overridden by the second information and when the PLMN ID of the third network node is not present in the second information, the first information is applicable.
  • ID PLMN identifier
  • the first network node may the second information is obtained from at least one of a network repository function (NRF) , or a fourth network node.
  • NRF network repository function
  • FIG. 2b shows an example of NF/NF service discovery according to an embodiment of the present disclosure.
  • the H-SMF may register to the H-NRF (home NRF) with NF profile that may contains “perPlmnOauth2ReqList” parameter.
  • the AMF may perform the discovery to get the H-SMF’s NF Profile which contains the H-SMF’s address information and “oauth2Required” indication.
  • FIG. 3 shows a flowchart of a method according to another embodiment of the present disclosure, which may be performed by an apparatus implemented in or at or as a second network node or communicatively coupled to the second network node.
  • the apparatus may provide means or modules for accomplishing various parts of the method 300 as well as means or modules for accomplishing other processes in conjunction with other components. For some parts which have been described in the above embodiments, the description thereof is omitted here for brevity.
  • the second network node may receive first information indicating whether a second network node requires authorization from a first network node.
  • the authorization comprises OAuth2-based authorization.
  • the first information is received from the first network node during at least one of a protocol data unit (PDU) session establishment procedure with intermediate SMF, a PDU session establishment procedure in home routed roaming scenario, an intra public land mobile network (PLMN) handover procedure with access and mobility management function (AMF) change, an intra PLMN handover procedure with visited session management function (SMF) change, an inter PLMN mobility registration procedure, or an inter PLMN handover procedure.
  • PDU protocol data unit
  • AMF access and mobility management function
  • SMF visited session management function
  • the first network node comprises at least one of a first access and mobility management function (AMF) , or a first session management function (SMF) .
  • AMF access and mobility management function
  • SMF session management function
  • the second network node comprises a second session management function (SMF) .
  • SMF session management function
  • the second SMF comprises at least one of an anchor SMF, a home SMF, or an SMF hosting session management context resource.
  • the third network node comprises at least one of a second AMF, or a third session management function (SMF) .
  • SMF session management function
  • the first information is sent to the third network node in at least one of session management context create data, session management context, or user equipment context.
  • the first information comprises at least one of information indicating whether a home network node requires authorization, information indicating whether an anchor network node requires authorization, or information indicating whether a network node hosting session management context resource requires authorization.
  • the second network node may get a token for accessing the second network node.
  • the second network node may get the token for accessing the second network node in various ways.
  • the second network node may send a request for getting a token for accessing the second network node to a NRF.
  • the second network node may receive a response comprising the token for accessing the second network node from the NRF.
  • the request may be same as the Nnrf_AccessToken_Get request as described in as described in 3GPP TS 23.502 V17.5.0.
  • the response may be same as the Nnrf_AccessToken_Get response as described in as described in 3GPP TS 23.502 V17.5.0.
  • the second network node may determine to skip getting the token for accessing the second network node. For example, the second network node may not send a request for getting a token for accessing the second network node to a NRF. Instead the second network node may send a message without token to the second network node.
  • the second network node may receive second information comprising authorization requirement supported by the second network node per public land mobile network (PLMN) of a network function (NF) service consumer from the first network node.
  • PLMN public land mobile network
  • NF network function
  • the first information when a PLMN identifier (ID) of the third network node is present in the second information, the first information is overridden by the second information and when the PLMN ID of the third network node is not present in the second information, the first information is applicable.
  • ID PLMN identifier
  • SmContextCreateData as defined in 3GPP TS 29.502 V17.5.0 clause 6.1.6.2.2 may add information of HsmfOauth2Required and smContextSmfOauth2Required.
  • SmContextCreateData as defined in 3GPP TS 29.502 V17.5.0 clause 6.1.6.2.2 may add information of hsmfOauthInd and smContextOauthInd.
  • SmContext as defined in 3GPP TS 29.502 V17.5.0 clause 6.1.6.2.39 may add information of HsmfOauth2Required.
  • SmContext as defined in 3GPP TS 29.502 V17.5.0 clause 6.1.6.2.39 may add information of hsmfOauthInd.
  • A. 2 Nsmf_PDUSession API as defined in 3GPP TS 29.502 V17.5.0 may be amended as following.
  • PduSessionContext as defined in 3GPP TS 29.518 V17.6.0 clause 6.1.6.2.37 may add information of Hsmfoauth2Required and smContextSmfOauth2Required.
  • PduSessionContext as defined in 3GPP TS 29.518 V17.6.0 clause 6.1.6.2.37 may add information of hsmfOauthInd and smContextOauthInd.
  • A. 2 Namf_Communication API as defined in 3GPP TS 29.518 V17.6.0 may be amended as following.
  • Hsmfoauth2Required may be used interchangeably herein with hsmfOauthInd.
  • smContextSmfOauth2Required may be used interchangeably herein with smContextOauthInd.
  • FIG. 4 shows a flowchart of a PDU session establishment procedure in home routed roaming scenario according to an embodiment of the present disclosure.
  • Step 1 UE triggers PDU Session establishment in home routed roaming scenario.
  • AMF performs the NRF discovery to select the H-SMF and V-SMF.
  • H-SMF H-SMF
  • V-SMF V-SMF
  • AMF gets the “oauth2Required” information.
  • Step 2 AMF includes the “HsmfOauth2Required” IE with the value from “oauth2Required” information of H-SMF in the Nsmf_PDUSession_CreateSMContext request.
  • Step 3 V-SMF uses the received “HsmfOauth2Required” information to decide whether to query the oAuth2 Token to access H-SMF.
  • Step 4 if the “HsmfOauth2Required” is true, V-SMF perform the Nnrf_AccessToken_Get request to get the oAuth2 Token for H-SMF
  • Step 5 V-SMF sends the Nsmf_PDUSession_Create request with the oAuth2 token header to H-SMF.
  • Step 6 UE requested PDU Session Establishment procedure continues.
  • Some messages shown in FIG. 4 may be same as the corresponding messages as described in various 3GPP specifications such as 3GPP TS 23.502 V17.5.0. Some messages shown in FIG. 4 may be enhanced according various embodiments of the disclosure.
  • FIG. 5 shows a flowchart of intra-PLMN handover procedure with V-SMF change according to an embodiment of the present disclosure.
  • Step 1 Intra-PLMN handover procedure is triggered.
  • Step 2 The S-AMF includes the “HsmfOauth2Required and smContextSmfOauth2Required” information in the ueContext and forward it to T-AMF.
  • Step 3 The T-AMF includes the “HsmfOauth2Required and smContextSmfOauth2Required” IE in the Nsmf_PDUSession_CreateSMContext request to target V-SMF.
  • Step 4 Target V-SMF uses the received “smContextSmfOauth2Required” information to decide whether to query the oAuth2 Token to access V-SMF to retrieve the SMContext.
  • Step 5 If the “smContextSmfOauth2Required” is true, target V-SMF performs the Nnrf_AccessToken_Get request to get the oAuth2 Token for source V-SMF.
  • Step 6 Target V-SMF retrieves the SMContext from source V-SMF with the oAuth2 token header.
  • the retrieved SMContext can contain the “HsmfOauth2Required” information that target V-SMF can use in case the T-AMF does not provide this indication in step 3.
  • Step 7 Target V-SMF uses the received “HsmfOauth2Required” information to decide whether to query the oAuth2 Token to access H-SMF.
  • Step 8 If the “HsmfOauth2Required” is true, target V-SMF performs the Nnrf_AccessToken_Get request to get the oAuth2 Token for H-SMF.
  • Step 9 The handover procedure continues.
  • Step 10 Target V-SMF sends the Nsmf_PDUSession_Update request with the oAuth2 token header to H-SMF.
  • Step 11 The handover procedure continues
  • Some messages shown in FIG. 5 may be same as the corresponding messages as described in various 3GPP specifications such as 3GPP TS 23.502 V17.5.0. Some messages shown in FIG. 5 may be enhanced according various embodiments of the disclosure.
  • FIG. 6 shows a flowchart of intra-PLMN mobility registration procedure with V-SMF change according to an embodiment of the present disclosure.
  • Step 1 Intra-PLMN mobility registration procedure is triggered.
  • Step 2 the T-AMF sends the Namf_Communication_UEContextTransfer request to S-AMF to get UEContext.
  • Step 3 The S-AMF includes the “HsmfOauth2Required and smContextSmfOauth2Required” information in the ueContext and response it to T-AMF.
  • Step 4 Mobility registration procedure continues.
  • Step 5 The T-AMF includes the “HsmfOauth2Required and smContextSmfOauth2Required” IE in the Nsmf_PDUSession_CreateSMContext request to target V-SMF.
  • Step 6 Target V-SMF uses the received “smContextSmfOauth2Required” information to decide whether to query the oAuth2 Token to access source V-SMF to retrieve SMContext.
  • Step 7 if the “smContextSmfOauth2Required” is true, target V-SMF performs the Nnrf_AccessToken_Get request to get the oAuth2 Token for source V-SMF.
  • Step 8 Target V-SMF retrieves the SMContext from source V-SMF with the oAuth2 token header.
  • the retrieved SMContext can contain the “HsmfOauth2Required” information that target V-SMF can use in case the T-AMF does not provide this indication in step 3.
  • Step 9 Target V-SMF uses the received “HsmfOauth2Required” information to decide whether to query the oAuth2 Token to access H-SMF.
  • Step 10 if the “HsmfOauth2Required” is true, target V-SMF performs the Nnrf_AccessToken_Get request to get the oAuth2 Token for H-SMF.
  • Step 11 Target V-SMF sends the Nsmf_PDUSession_Update request with the oAuth2 token header to H-SMF.
  • Step 12 The mobility registration procedure continues.
  • Some messages shown in FIG. 6 may be same as the corresponding messages as described in various 3GPP specifications such as 3GPP TS 23.502 V17.5.0. Some messages shown in FIG. 6 may be enhanced according various embodiments of the disclosure.
  • FIG. 7a shows a flowchart of an inter-PLMN mobility registration procedure according to an embodiment of the present disclosure.
  • Step 1 Inter-PLMN mobility registration procedure is triggered.
  • Step 2 Since the PLMN is changed, the T-AMF cannot use the “HsmfOauth2Required” information in the UEContext, then T-AMF needs to rediscover from NRF to get the H-SMF NFProfile to get the “oauth2Required” information.
  • Step 3 T-AMF performs the discovery request.
  • Step 4 T-AMF gets the discovery response to get the “oauth2Required” information.
  • Step 5 the T-AMF sends the Nsmf_PDUSession_CreateSMContext request to H-SMF, and depends on the “oauth2Required” information to decide whether include the oAuth2 token header.
  • Step 5 the T-AMF sends the Nsmf_PDUSession_CreateSMContext request to target V-SMF and include s the “HsmfOauth2Required” IE.
  • Step 6 Target V-SMF uses the received “HsmfOauth2Required” information to decide whether to query the oAuth2 Token to access H-SMF.
  • Step 7 if the “HsmfOauth2Required” is true, target V-SMF performs the Nnrf_AccessToken_Get request to get the oAuth2 Token for H-SMF.
  • Step 8 Target V-SMF sends the Nsmf_PDUSession_Update or Nsmf_PDUSession_Create request with the oAuth2 token header to H-SMF.
  • Step 9 The mobility registration procedure continues.
  • Some messages shown in FIG. 7a may be same as the corresponding messages as described in various 3GPP specifications such as 3GPP TS 23.502 V17.5.0. Some messages shown in FIG. 7a may be enhanced according various embodiments of the disclosure.
  • FIG. 7b shows a flowchart of an inter-PLMN handover procedure according to an embodiment of the present disclosure.
  • Step 1 Inter-PLMN handover procedure is triggered
  • Step 2 Since the PLMN is changed, the T-AMF cannot use the “HsmfOauth2Required” information in the UEContext, then T-AMF needs to rediscover from NRF to get the H-SMF NFProfile to get the “oauth2Required” information.
  • Step 3 T-AMF performs the discovery request.
  • Step 4 T-AMF gets the discovery response to get the “oauth2Required” information
  • Step 5 The T-AMF sends the Nsmf_PDUSession_CreateSMContext request to H-SMF, and depends on the “oauth2Required” information to decide whether include the oAuth2 token header.
  • Step 10 The T-AMF sends the Nsmf_PDUSession_UpdateSMContext request to H-SMF, and depends on the “oauth2Required” information to decide whether include the oAuth2 token header.
  • Step 5 The T-AMF sends the Nsmf_PDUSession_CreateSMContext request to target V-SMF and include the “HsmfOauth2Required” IE.
  • Step 6 Target V-SMF uses the received “HsmfOauth2Required” information to decide whether to query the oAuth2 Token to access H-SMF.
  • Step 7 If the “HsmfOauth2Required” is true, target V-SMF performs the Nnrf_AccessToken_Get request to get the oAuth2 Token for H-SMF.
  • Step 8 Target V-SMF sends the Nsmf_PDUSession_Create request with the oAuth2 token header to H-SMF.
  • Step 9 The handover procedure continues.
  • Step 10 The T-AMF sends the Nsmf_PDUSession_UpdateSMContext request to target V-SMF.
  • Step 11 Target V-SMF sends the Nsmf_PDUSession_Update request with the oAuth2 token header to H-SMF.
  • Step 12 the handover procedure continues.
  • Some messages shown in FIG. 7b may be same as the corresponding messages as described in various 3GPP specifications such as 3GPP TS 23.502 V17.5.0. Some messages shown in FIG. 7b may be enhanced according various embodiments of the disclosure.
  • AMF discovers whether Oauth2-based authorization is required by H-SMF and sends this information to V-SMF.
  • AMF discovers whether Oauth2-based authorization is required by an old V-SMF and sends this information to a new V-SMF.
  • Embodiments herein may provide many advantages, of which a non-exhaustive list of examples follows.
  • it makes the Oauth2-based authorization work end to end in home routed roaming scenarios.
  • it can avoid the V-SMF to perform the additional NRF discovery for H-SMF or anchor SMF or V-SMF, which can reduce the network delay.
  • it can avoid the retransmission from V-SMF to H-SMF or old V-SMF due to unsuccessful cross PLMN requests (401 Unauthorized) , and reduce the network delay.
  • it can increase the success rate KPI for requests for example in home routed roaming scenarios.
  • the embodiments herein are not limited to the features and advantages mentioned above. A person skilled in the art will recognize additional features and advantages upon reading the following detailed description.
  • FIG. 8a is a block diagram showing an apparatus suitable for practicing some embodiments of the disclosure.
  • any one of the third network node or the first network node described above may be implemented as or through the apparatus 800.
  • the apparatus 800 comprises at least one processor 821, such as a digital processor (DP) , and at least one memory (MEM) 822 coupled to the processor 821.
  • the apparatus 800 may further comprise a transmitter TX and receiver RX 823 coupled to the processor 821.
  • the MEM 822 stores a program (PROG) 824.
  • the PROG 824 may include instructions that, when executed on the associated processor 821, enable the apparatus 800 to operate in accordance with the embodiments of the present disclosure.
  • a combination of the at least one processor 821 and the at least one MEM 822 may form processing means 825 adapted to implement various embodiments of the present disclosure.
  • Various embodiments of the present disclosure may be implemented by computer program executable by one or more of the processor 821, software, firmware, hardware or in a combination thereof.
  • the MEM 822 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memories and removable memories, as non-limiting examples.
  • the processor 821 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • general purpose computers special purpose computers
  • microprocessors microprocessors
  • DSPs digital signal processors
  • processors based on multicore processor architecture, as non-limiting examples.
  • the memory 822 contains instructions executable by the processor 821, whereby the third network node operates according to any of the methods related to the third network node as described above.
  • the memory 822 contains instructions executable by the processor 821, whereby the first network node operates according to any of the methods related to the first network node as described above.
  • FIG. 8b is a block diagram showing a first network node 850 according to an embodiment of the disclosure.
  • the first network node 850 comprises an obtaining module 851 configured to obtain first information indicating whether a second network node requires authorization.
  • the second network node 850 further comprises a sending module 852 configured to send the first information to a third network node.
  • FIG. 8c is a block diagram showing a third network node 860 according to an embodiment of the disclosure.
  • the third network node 860 comprises a receiving module 861 configured to receive first information indicating whether a second network node requires authorization from a first network node.
  • the third network node 860 further comprises a getting module 862 configured to get a token for accessing the second network node when the first information indicates the second network node requires authorization.
  • the third network node 860 further comprises a determining module 863 configured to, when the first information indicates the second network node does not require authorization, determine to skip getting the token for accessing the second network node.
  • unit or module may have conventional meaning in the field of electronics, electrical devices and/or electronic devices and may include, for example, electrical and/or electronic circuitry, devices, modules, processors, memories, logic solid state and/or discrete devices, computer programs or instructions for carrying out respective tasks, procedures, computations, outputs, and/or displaying functions, and so on, as such as those that are described herein.
  • the third network node or the first network node may not need a fixed processor or memory, any computing resource and storage resource may be arranged from the third network node or the first network node in the communication system.
  • the introduction of virtualization technology and network computing technology may improve the usage efficiency of the network resources and the flexibility of the network.
  • Embodiments of the present disclosure provide a communication system including a host computer including: processing circuitry configured to provide user data; and a communication interface configured to forward the user data to a cellular network for transmission to a terminal device.
  • the cellular network includes a base station and/or the terminal device.
  • the system further includes the terminal device.
  • the terminal device is configured to communicate with the base station.
  • the processing circuitry of the host computer is configured to execute a host application, thereby providing the user data; and the terminal device includes processing circuitry configured to execute a client application associated with the host application.
  • Embodiments of the present disclosure also provide a communication system including a host computer including: a communication interface configured to receive user data originating from a transmission from a terminal device; a base station. The transmission is from the terminal device to the base station.
  • the processing circuitry of the host computer is configured to execute a host application.
  • the terminal device is configured to execute a client application associated with the host application, thereby providing the user data to be received by the host computer.
  • FIG. 9 is a schematic showing a wireless network in accordance with some embodiments.
  • a wireless network such as the example wireless network illustrated in FIG. 9.
  • the wireless network of FIG. 9 only depicts network 1006, network nodes 1060 (corresponding to network side node) and 1060b, and WDs (corresponding to terminal device) 1010, 1010b, and 1010c.
  • a wireless network may further include any additional elements suitable to support communication between wireless devices or between a wireless device and another communication device, such as a landline telephone, a service provider, or any other network node or end device.
  • network node 1060 and wireless device (WD) 1010 are depicted with additional detail.
  • the wireless network may provide communication and other types of services to one or more wireless devices to facilitate the wireless devices’ access to and/or use of the services provided by, or via, the wireless network.
  • the wireless network may comprise and/or interface with any type of communication, telecommunication, data, cellular, and/or radio network or other similar type of system.
  • the wireless network may be configured to operate according to specific standards or other types of predefined rules or procedures.
  • particular embodiments of the wireless network may implement communication standards, such as Global System for Mobile Communications (GSM) , Universal Mobile Telecommunications System (UMTS) , Long Term Evolution (LTE) , and/or other suitable 2G, 3G, 4G, or 5G standards; wireless local area network (WLAN) standards, such as the IEEE 802.11 standards; and/or any other appropriate wireless communication standard, such as the Worldwide Interoperability for Microwave Access (WiMax) , Bluetooth, Z-Wave and/or ZigBee standards.
  • GSM Global System for Mobile Communications
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • WLAN wireless local area network
  • WiMax Worldwide Interoperability for Microwave Access
  • Bluetooth Z-Wave and/or ZigBe
  • Network 1006 may comprise one or more backhaul networks, core networks, IP networks, public switched telephone networks (PSTNs) , packet data networks, optical networks, wide-area networks (WANs) , local area networks (LANs) , wireless local area networks (WLANs) , wired networks, wireless networks, metropolitan area networks, and other networks to enable communication between devices.
  • PSTNs public switched telephone networks
  • WANs wide-area networks
  • LANs local area networks
  • WLANs wireless local area networks
  • wired networks wireless networks
  • wireless networks metropolitan area networks, and other networks to enable communication between devices.
  • Network node 1060 and WD 1010 comprise various components described in more detail below. These components work together in order to provide network node and/or wireless device functionality, such as providing wireless connections in a wireless network.
  • the wireless network may comprise any number of wired or wireless networks, network nodes, base stations, controllers, wireless devices, relay stations, and/or any other components or systems that may facilitate or participate in the communication of data and/or signals whether via wired or wireless connections.
  • network node refers to equipment capable, configured, arranged and/or operable to communicate directly or indirectly with a wireless device and/or with other network nodes or equipment in the wireless network to enable and/or provide wireless access to the wireless device and/or to perform other functions (e.g., administration) in the wireless network.
  • network nodes include, but are not limited to, access points (APs) (e.g., radio access points) , base stations (BSs) (e.g., radio base stations, Node Bs, evolved Node Bs (eNBs) and NR NodeBs (gNBs) ) .
  • APs access points
  • BSs base stations
  • eNBs evolved Node Bs
  • gNBs NR NodeBs
  • Base stations may be categorized based on the amount of coverage they provide (or, stated differently, their transmit power level) and may then also be referred to as femto base stations, pico base stations, micro base stations, or macro base stations.
  • a base station may be a relay node or a relay donor node controlling a relay.
  • a network node may also include one or more (or all) parts of a distributed radio base station such as centralized digital units and/or remote radio units (RRUs) , sometimes referred to as Remote Radio Heads (RRHs) .
  • RRUs remote radio units
  • RRHs Remote Radio Heads
  • Such remote radio units may or may not be integrated with an antenna as an antenna integrated radio.
  • Parts of a distributed radio base station may also be referred to as nodes in a distributed antenna system (DAS) .
  • DAS distributed antenna system
  • network nodes include multi-standard radio (MSR) equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, multi-cell/multicast coordination entities (MCEs) , core network nodes (e.g., MSCs, MMEs) , O&M nodes, OSS nodes, SON nodes, positioning nodes (e.g., E-SMLCs) , and/or MDTs.
  • MSR multi-standard radio
  • RNCs radio network controllers
  • BSCs base station controllers
  • BTSs base transceiver stations
  • MCEs multi-cell/multicast coordination entities
  • core network nodes e.g., MSCs, MMEs
  • O&M nodes e.g., OSS nodes
  • SON nodes e.g., SON nodes
  • positioning nodes e.g.
  • network nodes may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a wireless device with access to the wireless network or to provide some service to a wireless device that has accessed the wireless network.
  • network node 1060 includes processing circuitry 1070, device readable medium 1080, interface 1090, auxiliary equipment 1084, power source 1086, power circuitry 1087, and antenna 1062.
  • network node 1060 illustrated in the example wireless network of FIG. 9 may represent a device that includes the illustrated combination of hardware components, other embodiments may comprise network nodes with different combinations of components. It is to be understood that a network node comprises any suitable combination of hardware and/or software needed to perform the tasks, features, functions and methods disclosed herein.
  • network node 1060 may comprise multiple different physical components that make up a single illustrated component (e.g., device readable medium 1080 may comprise multiple separate hard drives as well as multiple RAM modules) .
  • network node 1060 may be composed of multiple physically separate components (e.g., a NodeB component and a RNC component, or a BTS component and a BSC component, etc. ) , which may each have their own respective components.
  • network node 1060 comprises multiple separate components (e.g., BTS and BSC components)
  • one or more of the separate components may be shared among several network nodes.
  • a single RNC may control multiple NodeB’s.
  • each unique NodeB and RNC pair may in some instances be considered a single separate network node.
  • network node 1060 may be configured to support multiple radio access technologies (RATs) .
  • RATs radio access technologies
  • Network node 1060 may also include multiple sets of the various illustrated components for different wireless technologies integrated into network node 1060, such as, for example, GSM, WCDMA, LTE, NR, WiFi, or Bluetooth wireless technologies. These wireless technologies may be integrated into the same or different chip or set of chips and other components within network node 1060.
  • Processing circuitry 1070 is configured to perform any determining, calculating, or similar operations (e.g., certain obtaining operations) described herein as being provided by a network node. These operations performed by processing circuitry 1070 may include processing information obtained by processing circuitry 1070 by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored in the network node, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.
  • processing information obtained by processing circuitry 1070 by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored in the network node, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.
  • Processing circuitry 1070 may comprise a combination of one or more of a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application-specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or combination of hardware, software and/or encoded logic operable to provide, either alone or in conjunction with other network node 1060 components, such as device readable medium 1080, network node 1060 functionality.
  • processing circuitry 1070 may execute instructions stored in device readable medium 1080 or in memory within processing circuitry 1070. Such functionality may include providing any of the various wireless features, functions, or benefits discussed herein.
  • processing circuitry 1070 may include a system on a chip (SOC) .
  • SOC system on a chip
  • processing circuitry 1070 may include one or more of radio frequency (RF) transceiver circuitry 1072 and baseband processing circuitry 1074.
  • radio frequency (RF) transceiver circuitry 1072 and baseband processing circuitry 1074 may be on separate chips (or sets of chips) , boards, or units, such as radio units and digital units.
  • part or all of RF transceiver circuitry 1072 and baseband processing circuitry 1074 may be on the same chip or set of chips, boards, or units
  • processing circuitry 1070 executing instructions stored on device readable medium 1080 or memory within processing circuitry 1070.
  • some or all of the functionality may be provided by processing circuitry 1070 without executing instructions stored on a separate or discrete device readable medium, such as in a hard-wired manner.
  • processing circuitry 1070 can be configured to perform the described functionality. The benefits provided by such functionality are not limited to processing circuitry 1070 alone or to other components of network node 1060, but are enjoyed by network node 1060 as a whole, and/or by end users and the wireless network generally.
  • Device readable medium 1080 may comprise any form of volatile or non-volatile computer readable memory including, without limitation, persistent storage, solid-state memory, remotely mounted memory, magnetic media, optical media, random access memory (RAM) , read-only memory (ROM) , mass storage media (for example, a hard disk) , removable storage media (for example, a flash drive, a Compact Disk (CD) or a Digital Video Disk (DVD) ) , and/or any other volatile or non-volatile, non-transitory device readable and/or computer-executable memory devices that store information, data, and/or instructions that may be used by processing circuitry 1070.
  • volatile or non-volatile computer readable memory including, without limitation, persistent storage, solid-state memory, remotely mounted memory, magnetic media, optical media, random access memory (RAM) , read-only memory (ROM) , mass storage media (for example, a hard disk) , removable storage media (for example, a flash drive, a Compact Disk (CD) or a Digital
  • Device readable medium 1080 may store any suitable instructions, data or information, including a computer program, software, an application including one or more of logic, rules, code, tables, etc. and/or other instructions capable of being executed by processing circuitry 1070 and, utilized by network node 1060.
  • Device readable medium 1080 may be used to store any calculations made by processing circuitry 1070 and/or any data received via interface 1090.
  • processing circuitry 1070 and device readable medium 1080 may be considered to be integrated.
  • Interface 1090 is used in the wired or wireless communication of signalling and/or data between network node 1060, network 1006, and/or WDs 1010. As illustrated, interface 1090 comprises port (s) /terminal (s) 1094 to send and receive data, for example to and from network 1006 over a wired connection. Interface 1090 also includes radio front end circuitry 1092 that may be coupled to, or in certain embodiments a part of, antenna 1062. Radio front end circuitry 1092 comprises filters 1098 and amplifiers 1096. Radio front end circuitry 1092 may be connected to antenna 1062 and processing circuitry 1070. Radio front end circuitry may be configured to condition signals communicated between antenna 1062 and processing circuitry 1070.
  • Radio front end circuitry 1092 may receive digital data that is to be sent out to other network nodes or WDs via a wireless connection. Radio front end circuitry 1092 may convert the digital data into a radio signal having the appropriate channel and bandwidth parameters using a combination of filters 1098 and/or amplifiers 1096. The radio signal may then be transmitted via antenna 1062. Similarly, when receiving data, antenna 1062 may collect radio signals which are then converted into digital data by radio front end circuitry 1092. The digital data may be passed to processing circuitry 1070. In other embodiments, the interface may comprise different components and/or different combinations of components.
  • network node 1060 may not include separate radio front end circuitry 1092, instead, processing circuitry 1070 may comprise radio front end circuitry and may be connected to antenna 1062 without separate radio front end circuitry 1092.
  • processing circuitry 1070 may comprise radio front end circuitry and may be connected to antenna 1062 without separate radio front end circuitry 1092.
  • all or some of RF transceiver circuitry 1072 may be considered a part of interface 1090.
  • interface 1090 may include one or more ports or terminals 1094, radio front end circuitry 1092, and RF transceiver circuitry 1072, as part of a radio unit (not shown) , and interface 1090 may communicate with baseband processing circuitry 1074, which is part of a digital unit (not shown) .
  • Antenna 1062 may include one or more antennas, or antenna arrays, configured to send and/or receive wireless signals. Antenna 1062 may be coupled to radio front end circuitry 1090 and may be any type of antenna capable of transmitting and receiving data and/or signals wirelessly. In some embodiments, antenna 1062 may comprise one or more omni-directional, sector or panel antennas operable to transmit/receive radio signals between, for example, 2 GHz and 66 GHz. An omni-directional antenna may be used to transmit/receive radio signals in any direction, a sector antenna may be used to transmit/receive radio signals from devices within a particular area, and a panel antenna may be a line of sight antenna used to transmit/receive radio signals in a relatively straight line. In some instances, the use of more than one antenna may be referred to as MIMO. In certain embodiments, antenna 1062 may be separate from network node 1060 and may be connectable to network node 1060 through an interface or port.
  • Antenna 1062, interface 1090, and/or processing circuitry 1070 may be configured to perform any receiving operations and/or certain obtaining operations described herein as being performed by a network node. Any information, data and/or signals may be received from a wireless device, another network node and/or any other network equipment. Similarly, antenna 1062, interface 1090, and/or processing circuitry 1070 may be configured to perform any transmitting operations described herein as being performed by a network node. Any information, data and/or signals may be transmitted to a wireless device, another network node and/or any other network equipment.
  • Power circuitry 1087 may comprise, or be coupled to, power management circuitry and is configured to supply the components of network node 1060 with power for performing the functionality described herein. Power circuitry 1087 may receive power from power source 1086. Power source 1086 and/or power circuitry 1087 may be configured to provide power to the various components of network node 1060 in a form suitable for the respective components (e.g., at a voltage and current level needed for each respective component) . Power source 1086 may either be included in, or external to, power circuitry 1087 and/or network node 1060.
  • network node 1060 may be connectable to an external power source (e.g., an electricity outlet) via an input circuitry or interface such as an electrical cable, whereby the external power source supplies power to power circuitry 1087.
  • power source 1086 may comprise a source of power in the form of a battery or battery pack which is connected to, or integrated in, power circuitry 1087. The battery may provide backup power should the external power source fail.
  • Other types of power sources such as photovoltaic devices, may also be used.
  • network node 1060 may include additional components beyond those shown in FIG. 9 that may be responsible for providing certain aspects of the network node’s functionality, including any of the functionality described herein and/or any functionality necessary to support the subject matter described herein.
  • network node 1060 may include user interface equipment to allow input of information into network node 1060 and to allow output of information from network node 1060. This may allow a user to perform diagnostic, maintenance, repair, and other administrative functions for network node 1060.
  • wireless device refers to a device capable, configured, arranged and/or operable to communicate wirelessly with network nodes and/or other wireless devices.
  • the term WD may be used interchangeably herein with user equipment (UE) .
  • Communicating wirelessly may involve transmitting and/or receiving wireless signals using electromagnetic waves, radio waves, infrared waves, and/or other types of signals suitable for conveying information through air.
  • a WD may be configured to transmit and/or receive information without direct human interaction.
  • a WD may be designed to transmit information to a network on a predetermined schedule, when triggered by an internal or external event, or in response to requests from the network.
  • Examples of a WD include, but are not limited to, a smart phone, a mobile phone, a cell phone, a voice over IP (VoIP) phone, a wireless local loop phone, a desktop computer, a personal digital assistant (PDA) , a wireless cameras, a gaming console or device, a music storage device, a playback appliance, a wearable terminal device, a wireless endpoint, a mobile station, a tablet, a laptop, a laptop-embedded equipment (LEE) , a laptop-mounted equipment (LME) , a smart device, a wireless customer-premise equipment (CPE) , a vehicle-mounted wireless terminal device, etc.
  • VoIP voice over IP
  • PDA personal digital assistant
  • LME laptop-embedded equipment
  • LME laptop-mounted equipment
  • smart device a wireless customer-premise equipment (CPE)
  • CPE wireless customer-premise equipment
  • a WD may support device-to-device (D2D) communication, for example by implementing a 3GPP standard for sidelink communication, vehicle-to-vehicle (V2V) , vehicle-to-infrastructure (V2I) , vehicle-to-everything (V2X) and may in this case be referred to as a D2D communication device.
  • D2D device-to-device
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2X vehicle-to-everything
  • a WD may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another WD and/or a network node.
  • the WD may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as an MTC device.
  • M2M machine-to-machine
  • the WD may be a UE implementing the 3GPP narrow band internet of things (NB-IoT) standard.
  • NB-IoT narrow band internet of things
  • machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances (e.g. refrigerators, televisions, etc. ) personal wearables (e.g., watches, fitness trackers, etc. ) .
  • a WD may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
  • a WD as described above may represent the endpoint of a wireless connection, in which case the device may be referred to as a wireless terminal. Furthermore, a WD as described above may be mobile, in which case it may also be referred to as a mobile device or a mobile terminal.
  • wireless device 1010 includes antenna 1011, interface 1014, processing circuitry 1020, device readable medium 1030, user interface equipment 1032, auxiliary equipment 1034, power source 1036 and power circuitry 1037.
  • WD 1010 may include multiple sets of one or more of the illustrated components for different wireless technologies supported by WD 1010, such as, for example, GSM, WCDMA, LTE, NR, WiFi, WiMAX, or Bluetooth wireless technologies, just to mention a few. These wireless technologies may be integrated into the same or different chips or set of chips as other components within WD 1010.
  • Antenna 1011 may include one or more antennas or antenna arrays, configured to send and/or receive wireless signals, and is connected to interface 1014.
  • antenna 1011 may be separate from WD 1010 and be connectable to WD 1010 through an interface or port.
  • Antenna 1011, interface 1014, and/or processing circuitry 1020 may be configured to perform any receiving or transmitting operations described herein as being performed by a WD. Any information, data and/or signals may be received from a network node and/or another WD.
  • radio front end circuitry and/or antenna 1011 may be considered an interface.
  • interface 1014 comprises radio front end circuitry 1012 and antenna 1011.
  • Radio front end circuitry 1012 comprise one or more filters 1018 and amplifiers 1016.
  • Radio front end circuitry 1014 is connected to antenna 1011 and processing circuitry 1020, and is configured to condition signals communicated between antenna 1011 and processing circuitry 1020.
  • Radio front end circuitry 1012 may be coupled to or a part of antenna 1011.
  • WD 1010 may not include separate radio front end circuitry 1012; rather, processing circuitry 1020 may comprise radio front end circuitry and may be connected to antenna 1011.
  • some or all of RF transceiver circuitry 1022 may be considered a part of interface 1014.
  • Radio front end circuitry 1012 may receive digital data that is to be sent out to other network nodes or WDs via a wireless connection. Radio front end circuitry 1012 may convert the digital data into a radio signal having the appropriate channel and bandwidth parameters using a combination of filters 1018 and/or amplifiers 1016. The radio signal may then be transmitted via antenna 1011. Similarly, when receiving data, antenna 1011 may collect radio signals which are then converted into digital data by radio front end circuitry 1012. The digital data may be passed to processing circuitry 1020. In other embodiments, the interface may comprise different components and/or different combinations of components.
  • Processing circuitry 1020 may comprise a combination of one or more of a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application-specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or combination of hardware, software, and/or encoded logic operable to provide, either alone or in conjunction with other WD 1010 components, such as device readable medium 1030, WD 1010 functionality. Such functionality may include providing any of the various wireless features or benefits discussed herein.
  • processing circuitry 1020 may execute instructions stored in device readable medium 1030 or in memory within processing circuitry 1020 to provide the functionality disclosed herein.
  • processing circuitry 1020 includes one or more of RF transceiver circuitry 1022, baseband processing circuitry 1024, and application processing circuitry 1026.
  • the processing circuitry may comprise different components and/or different combinations of components.
  • processing circuitry 1020 of WD 1010 may comprise a SOC.
  • RF transceiver circuitry 1022, baseband processing circuitry 1024, and application processing circuitry 1026 may be on separate chips or sets of chips.
  • part or all of baseband processing circuitry 1024 and application processing circuitry 1026 may be combined into one chip or set of chips, and RF transceiver circuitry 1022 may be on a separate chip or set of chips.
  • part or all of RF transceiver circuitry 1022 and baseband processing circuitry 1024 may be on the same chip or set of chips, and application processing circuitry 1026 may be on a separate chip or set of chips.
  • part or all of RF transceiver circuitry 1022, baseband processing circuitry 1024, and application processing circuitry 1026 may be combined in the same chip or set of chips.
  • RF transceiver circuitry 1022 may be a part of interface 1014.
  • RF transceiver circuitry 1022 may condition RF signals for processing circuitry 1020.
  • processing circuitry 1020 executing instructions stored on device readable medium 1030, which in certain embodiments may be a computer-readable storage medium.
  • some or all of the functionality may be provided by processing circuitry 1020 without executing instructions stored on a separate or discrete device readable storage medium, such as in a hard-wired manner.
  • processing circuitry 1020 can be configured to perform the described functionality. The benefits provided by such functionality are not limited to processing circuitry 1020 alone or to other components of WD 1010, but are enjoyed by WD 1010 as a whole, and/or by end users and the wireless network generally.
  • Processing circuitry 1020 may be configured to perform any determining, calculating, or similar operations (e.g., certain obtaining operations) described herein as being performed by a WD. These operations, as performed by processing circuitry 1020, may include processing information obtained by processing circuitry 1020 by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored by WD 1010, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.
  • processing information obtained by processing circuitry 1020 by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored by WD 1010, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.
  • Device readable medium 1030 may be operable to store a computer program, software, an application including one or more of logic, rules, code, tables, etc. and/or other instructions capable of being executed by processing circuitry 1020.
  • Device readable medium 1030 may include computer memory (e.g., Random Access Memory (RAM) or Read Only Memory (ROM) ) , mass storage media (e.g., a hard disk) , removable storage media (e.g., a Compact Disk (CD) or a Digital Video Disk (DVD) ) , and/or any other volatile or non-volatile, non-transitory device readable and/or computer executable memory devices that store information, data, and/or instructions that may be used by processing circuitry 1020.
  • processing circuitry 1020 and device readable medium 1030 may be considered to be integrated.
  • User interface equipment 1032 may provide components that allow for a human user to interact with WD 1010. Such interaction may be of many forms, such as visual, audial, tactile, etc. User interface equipment 1032 may be operable to produce output to the user and to allow the user to provide input to WD 1010. The type of interaction may vary depending on the type of user interface equipment 1032 installed in WD 1010. For example, if WD 1010 is a smart phone, the interaction may be via a touch screen; if WD 1010 is a smart meter, the interaction may be through a screen that provides usage (e.g., the number of gallons used) or a speaker that provides an audible alert (e.g., if smoke is detected) .
  • usage e.g., the number of gallons used
  • a speaker that provides an audible alert
  • User interface equipment 1032 may include input interfaces, devices and circuits, and output interfaces, devices and circuits. User interface equipment 1032 is configured to allow input of information into WD 1010, and is connected to processing circuitry 1020 to allow processing circuitry 1020 to process the input information. User interface equipment 1032 may include, for example, a microphone, a proximity or other sensor, keys/buttons, a touch display, one or more cameras, a USB port, or other input circuitry. User interface equipment 1032 is also configured to allow output of information from WD 1010, and to allow processing circuitry 1020 to output information from WD 1010. User interface equipment 1032 may include, for example, a speaker, a display, vibrating circuitry, a USB port, a headphone interface, or other output circuitry. Using one or more input and output interfaces, devices, and circuits, of user interface equipment 1032, WD 1010 may communicate with end users and/or the wireless network, and allow them to benefit from the functionality described herein.
  • Auxiliary equipment 1034 is operable to provide more specific functionality which may not be generally performed by WDs. This may comprise specialized sensors for doing measurements for various purposes, interfaces for additional types of communication such as wired communications etc. The inclusion and type of components of auxiliary equipment 1034 may vary depending on the embodiment and/or scenario.
  • Power source 1036 may, in some embodiments, be in the form of a battery or battery pack. Other types of power sources, such as an external power source (e.g., an electricity outlet) , photovoltaic devices or power cells, may also be used.
  • WD 1010 may further comprise power circuitry 1037 for delivering power from power source 1036 to the various parts of WD 1010 which need power from power source 1036 to carry out any functionality described or indicated herein.
  • Power circuitry 1037 may in certain embodiments comprise power management circuitry.
  • Power circuitry 1037 may additionally or alternatively be operable to receive power from an external power source; in which case WD 1010 may be connectable to the external power source (such as an electricity outlet) via input circuitry or an interface such as an electrical power cable.
  • Power circuitry 1037 may also in certain embodiments be operable to deliver power from an external power source to power source 1036. This may be, for example, for the charging of power source 1036. Power circuitry 1037 may perform any formatting, converting, or other modification to the power from power source 1036 to make the power suitable for the respective components of WD 1010 to which power is supplied.
  • FIG. 10 is a schematic showing a user equipment in accordance with some embodiments.
  • FIG. 10 illustrates one embodiment of a UE in accordance with various aspects described herein.
  • a user equipment or UE may not necessarily have a user in the sense of a human user who owns and/or operates the relevant device.
  • a UE may represent a device that is intended for sale to, or operation by, a human user but which may not, or which may not initially, be associated with a specific human user (e.g., a smart sprinkler controller) .
  • a UE may represent a device that is not intended for sale to, or operation by, an end user but which may be associated with or operated for the benefit of a user (e.g., a smart power meter) .
  • UE 1100 may be any UE identified by the 3rd Generation Partnership Project (3GPP) , including a NB-IoT UE, a machine type communication (MTC) UE, and/or an enhanced MTC (eMTC) UE.
  • UE 1100 is one example of a WD configured for communication in accordance with one or more communication standards promulgated by the 3rd Generation Partnership Project (3GPP) , such as 3GPP’s GSM, UMTS, LTE, and/or 5G standards.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP 3rd Generation Partnership Project
  • UE 1100 includes processing circuitry 1101 that is operatively coupled to input/output interface 1105, radio frequency (RF) interface 1109, network connection interface 1111, memory 1115 including random access memory (RAM) 1117, read-only memory (ROM) 1119, and storage medium 1121 or the like, communication subsystem 1131, power source 1133, and/or any other component, or any combination thereof.
  • Storage medium 1121 includes operating system 1123, application program 1125, and data 1127. In other embodiments, storage medium 1121 may include other similar types of information.
  • Certain UEs may utilize all of the components shown in FIG. 10, or only a subset of the components. The level of integration between the components may vary from one UE to another UE. Further, certain UEs may contain multiple instances of a component, such as multiple processors, memories, transceivers, transmitters, receivers, etc.
  • processing circuitry 1101 may be configured to process computer instructions and data.
  • Processing circuitry 1101 may be configured to implement any sequential state machine operative to execute machine instructions stored as machine-readable computer programs in the memory, such as one or more hardware-implemented state machines (e.g., in discrete logic, FPGA, ASIC, etc. ) ; programmable logic together with appropriate firmware; one or more stored program, general-purpose processors, such as a microprocessor or Digital Signal Processor (DSP) , together with appropriate software; or any combination of the above.
  • the processing circuitry 1101 may include two central processing units (CPUs) . Data may be information in a form suitable for use by a computer.
  • input/output interface 1105 may be configured to provide a communication interface to an input device, output device, or input and output device.
  • UE 1100 may be configured to use an output device via input/output interface 1105.
  • An output device may use the same type of interface port as an input device.
  • a USB port may be used to provide input to and output from UE 1100.
  • the output device may be a speaker, a sound card, a video card, a display, a monitor, a printer, an actuator, an emitter, a smartcard, another output device, or any combination thereof.
  • UE 1100 may be configured to use an input device via input/output interface 1105 to allow a user to capture information into UE 1100.
  • the input device may include a touch-sensitive or presence-sensitive display, a camera (e.g., a digital camera, a digital video camera, a web camera, etc. ) , a microphone, a sensor, a mouse, a trackball, a directional pad, a trackpad, a scroll wheel, a smartcard, and the like.
  • the presence-sensitive display may include a capacitive or resistive touch sensor to sense input from a user.
  • a sensor may be, for instance, an accelerometer, a gyroscope, a tilt sensor, a force sensor, a magnetometer, an optical sensor, a proximity sensor, another like sensor, or any combination thereof.
  • the input device may be an accelerometer, a magnetometer, a digital camera, a microphone, and an optical sensor.
  • RF interface 1109 may be configured to provide a communication interface to RF components such as a transmitter, a receiver, and an antenna.
  • Network connection interface 1111 may be configured to provide a communication interface to network 1143a.
  • Network 1143a may encompass wired and/or wireless networks such as a local-area network (LAN) , a wide-area network (WAN) , a computer network, a wireless network, a telecommunications network, another like network or any combination thereof.
  • LAN local-area network
  • WAN wide-area network
  • network 1143a may comprise a Wi-Fi network.
  • Network connection interface 1111 may be configured to include a receiver and a transmitter interface used to communicate with one or more other devices over a communication network according to one or more communication protocols, such as Ethernet, TCP/IP, SONET, ATM, or the like.
  • Network connection interface 1111 may implement receiver and transmitter functionality appropriate to the communication network links (e.g., optical, electrical, and the like) .
  • the transmitter and receiver functions may share circuit components, software or firmware, or alternatively may be implemented separately.
  • RAM 1117 may be configured to interface via bus 1102 to processing circuitry 1101 to provide storage or caching of data or computer instructions during the execution of software programs such as the operating system, application programs, and device drivers.
  • ROM 1119 may be configured to provide computer instructions or data to processing circuitry 1101.
  • ROM 1119 may be configured to store invariant low-level system code or data for basic system functions such as basic input and output (I/O) , startup, or reception of keystrokes from a keyboard that are stored in a non-volatile memory.
  • Storage medium 1121 may be configured to include memory such as RAM, ROM, programmable read-only memory (PROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , magnetic disks, optical disks, floppy disks, hard disks, removable cartridges, or flash drives.
  • storage medium 1121 may be configured to include operating system 1123, application program 1125 such as a web browser application, a widget or gadget engine or another application, and data file 1127.
  • Storage medium 1121 may store, for use by UE 1100, any of a variety of various operating systems or combinations of operating systems.
  • Storage medium 1121 may be configured to include a number of physical drive units, such as redundant array of independent disks (RAID) , floppy disk drive, flash memory, USB flash drive, external hard disk drive, thumb drive, pen drive, key drive, high-density digital versatile disc (HD-DVD) optical disc drive, internal hard disk drive, Blu-Ray optical disc drive, holographic digital data storage (HDDS) optical disc drive, external mini-dual in-line memory module (DIMM) , synchronous dynamic random access memory (SDRAM) , external micro-DIMM SDRAM, smartcard memory such as a subscriber identity module or a removable user identity (SIM/RUIM) module, other memory, or any combination thereof.
  • RAID redundant array of independent disks
  • HD-DVD high-density digital versatile disc
  • HDDS holographic digital data storage
  • DIMM external mini-dual in-line memory module
  • SDRAM synchronous dynamic random access memory
  • SIM/RUIM removable user identity
  • Storage medium 1121 may allow UE 1100 to access computer-executable instructions, application programs or the like, stored on transitory or non-transitory memory media, to off-load data, or to upload data.
  • An article of manufacture, such as one utilizing a communication system may be tangibly embodied in storage medium 1121, which may comprise a device readable medium.
  • processing circuitry 1101 may be configured to communicate with network 1143b using communication subsystem 1131.
  • Network 1143a and network 1143b may be the same network or networks or different network or networks.
  • Communication subsystem 1131 may be configured to include one or more transceivers used to communicate with network 1143b.
  • communication subsystem 1131 may be configured to include one or more transceivers used to communicate with one or more remote transceivers of another device capable of wireless communication such as another WD, UE, or base station of a radio access network (RAN) according to one or more communication protocols, such as IEEE 802.11, CDMA, WCDMA, GSM, LTE, UTRAN, WiMax, or the like.
  • RAN radio access network
  • Each transceiver may include transmitter 1133 and/or receiver 1135 to implement transmitter or receiver functionality, respectively, appropriate to the RAN links (e.g., frequency allocations and the like) . Further, transmitter 1133 and receiver 1135 of each transceiver may share circuit components, software or firmware, or alternatively may be implemented separately.
  • the communication functions of communication subsystem 1131 may include data communication, voice communication, multimedia communication, short-range communications such as Bluetooth, near-field communication, location-based communication such as the use of the global positioning system (GPS) to determine a location, another like communication function, or any combination thereof.
  • communication subsystem 1131 may include cellular communication, Wi-Fi communication, Bluetooth communication, and GPS communication.
  • Network 1143b may encompass wired and/or wireless networks such as a local-area network (LAN) , a wide-area network (WAN) , a computer network, a wireless network, a telecommunications network, another like network or any combination thereof.
  • network 1143b may be a cellular network, a Wi-Fi network, and/or a near-field network.
  • Power source 1113 may be configured to provide alternating current (AC) or direct current (DC) power to components of UE 1100.
  • communication subsystem 1131 may be configured to include any of the components described herein.
  • processing circuitry 1101 may be configured to communicate with any of such components over bus 1102.
  • any of such components may be represented by program instructions stored in memory that when executed by processing circuitry 1101 perform the corresponding functions described herein.
  • the functionality of any of such components may be partitioned between processing circuitry 1101 and communication subsystem 1131.
  • the non-computationally intensive functions of any of such components may be implemented in software or firmware and the computationally intensive functions may be implemented in hardware.
  • FIG. 11 is a schematic showing a virtualization environment in accordance with some embodiments.
  • FIG. 11 is a schematic block diagram illustrating a virtualization environment 1200 in which functions implemented by some embodiments may be virtualized.
  • virtualizing means creating virtual versions of apparatuses or devices which may include virtualizing hardware platforms, storage devices and networking resources.
  • virtualization can be applied to a node (e.g., a virtualized base station or a virtualized radio access node) or to a device (e.g., a UE, a wireless device or any other type of communication device) or components thereof and relates to an implementation in which at least a portion of the functionality is implemented as one or more virtual components (e.g., via one or more applications, components, functions, virtual machines or containers executing on one or more physical processing nodes in one or more networks) .
  • some or all of the functions described herein may be implemented as virtual components executed by one or more virtual machines implemented in one or more virtual environments 1200 hosted by one or more of hardware nodes 1230. Further, in embodiments in which the virtual node is not a radio access node or does not require radio connectivity (e.g., a core network node) , then the network node may be entirely virtualized.
  • the functions may be implemented by one or more applications 1220 (which may alternatively be called software instances, virtual appliances, network functions, virtual nodes, virtual network functions, etc. ) operative to implement some of the features, functions, and/or benefits of some of the embodiments disclosed herein.
  • Applications 1220 are run in virtualization environment 1200 which provides hardware 1230 comprising processing circuitry 1260 and memory 1290-1.
  • Memory 1290-1 contains instructions 1295 executable by processing circuitry 1260 whereby application 1220 is operative to provide one or more of the features, benefits, and/or functions disclosed herein.
  • Virtualization environment 1200 comprises general-purpose or special-purpose network hardware devices 1230 comprising a set of one or more processors or processing circuitry 1260, which may be commercial off-the-shelf (COTS) processors, dedicated Application Specific Integrated Circuits (ASICs) , or any other type of processing circuitry including digital or analog hardware components or special purpose processors.
  • processors or processing circuitry 1260 which may be commercial off-the-shelf (COTS) processors, dedicated Application Specific Integrated Circuits (ASICs) , or any other type of processing circuitry including digital or analog hardware components or special purpose processors.
  • Each hardware device may comprise memory 1290-1 which may be non-persistent memory for temporarily storing instructions 1295 or software executed by processing circuitry 1260.
  • Each hardware device may comprise one or more network interface controllers (NICs) 1270, also known as network interface cards, which include physical network interface 1280.
  • NICs network interface controllers
  • Each hardware device may also include non-transitory, persistent, machine-readable storage media 1290-2 having stored therein software 1295 and/or instructions executable by processing circuitry 1260.
  • Software 1295 may include any type of software including software for instantiating one or more virtualization layers 1250 (also referred to as hypervisors) , software to execute virtual machines 1240 as well as software allowing it to execute functions, features and/or benefits described in relation with some embodiments described herein.
  • Virtual machines 1240 comprise virtual processing, virtual memory, virtual networking or interface and virtual storage, and may be run by a corresponding virtualization layer 1250 or hypervisor. Different embodiments of the instance of virtual appliance 1220 may be implemented on one or more of virtual machines 1240, and the implementations may be made in different ways.
  • processing circuitry 1260 executes software 1295 to instantiate the hypervisor or virtualization layer 1250, which may sometimes be referred to as a virtual machine monitor (VMM) .
  • Virtualization layer 1250 may present a virtual operating platform that appears like networking hardware to virtual machine 1240.
  • hardware 1230 may be a standalone network node with generic or specific components. Hardware 1230 may comprise antenna 12225 and may implement some functions via virtualization. Alternatively, hardware 1230 may be part of a larger cluster of hardware (e.g. such as in a data center or customer premise equipment (CPE) ) where many hardware nodes work together and are managed via management and orchestration (MANO) 12100, which, among others, oversees lifecycle management of applications 1220.
  • CPE customer premise equipment
  • MANO management and orchestration
  • NFV network function virtualization
  • NFV may be used to consolidate many network equipment types onto industry standard high volume server hardware, physical switches, and physical storage, which can be located in data centers, and customer premise equipment.
  • virtual machine 1240 may be a software implementation of a physical machine that runs programs as if they were executing on a physical, non-virtualized machine.
  • Each of virtual machines 1240, and that part of hardware 1230 that executes that virtual machine be it hardware dedicated to that virtual machine and/or hardware shared by that virtual machine with others of the virtual machines 1240, forms a separate virtual network elements (VNE) .
  • VNE virtual network elements
  • VNF Virtual Network Function
  • one or more radio units 12200 that each include one or more transmitters 12220 and one or more receivers 12210 may be coupled to one or more antennas 12225.
  • Radio units 12200 may communicate directly with hardware nodes 1230 via one or more appropriate network interfaces and may be used in combination with the virtual components to provide a virtual node with radio capabilities, such as a radio access node or a base station.
  • control system 12230 which may alternatively be used for communication between the hardware nodes 1230 and radio units 12200.
  • FIG. 12 is a schematic showing a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments.
  • a communication system includes telecommunication network 1310, such as a 3GPP-type cellular network, which comprises access network 1311, such as a radio access network, and core network 1314.
  • Access network 1311 comprises a plurality of base stations 1312a, 1312b, 1312c, such as NBs, eNBs, gNBs or other types of wireless access points, each defining a corresponding coverage area 1313a, 1313b, 1313c.
  • Each base station 1312a, 1312b, 1312c is connectable to core network 1314 over a wired or wireless connection 1315.
  • a UE 1391 located in coverage area 1313c is configured to wirelessly connect to, or be paged by, the corresponding base station 1312c.
  • a relay UE 1392 in coverage area 1313a is wirelessly connectable to the corresponding base station 1312a. While a plurality of UEs 1391, 1392 are illustrated in this example, the disclosed embodiments are equally applicable to a situation where a sole UE is in the coverage area or where a sole UE is connecting to the corresponding base station 1312a or 1312b or 1312c .
  • Telecommunication network 1310 is itself connected to host computer 1330, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server or as processing resources in a server farm.
  • Host computer 1330 may be under the ownership or control of a service provider, or may be operated by the service provider or on behalf of the service provider.
  • Connections 1321 and 1322 between telecommunication network 1310 and host computer 1330 may extend directly from core network 1314 to host computer 1330 or may go via an optional intermediate network 1320.
  • Intermediate network 1320 may be one of, or a combination of more than one of, a public, private or hosted network; intermediate network 1320, if any, may be a backbone network or the Internet; in particular, intermediate network 1320 may comprise two or more sub-networks (not shown) .
  • the communication system of FIG. 12 as a whole enables connectivity between the connected UEs 1391, 1392 and host computer 1330.
  • the connectivity may be described as an over-the-top (OTT) connection 1350.
  • Host computer 1330 and the connected UEs 1391, 1392 are configured to communicate data and/or signalling via OTT connection 1350, using access network 1311, core network 1314, any intermediate network 1320 and possible further infrastructure (not shown) as intermediaries.
  • OTT connection 1350 may be transparent in the sense that the participating communication devices through which OTT connection 1350 passes are unaware of routing of uplink and downlink communications.
  • base station 1312a or 1312b or 1312c may not or need not be informed about the past routing of an incoming downlink communication with data originating from host computer 1330 to be forwarded (e.g., handed over) to a connected UE 1391.
  • base station 1312a or 1312b or 1312c need not be aware of the future routing of an outgoing uplink communication originating from the UE 1391 towards the host computer 1330.
  • FIG. 13 is a schematic showing a host computer communicating via a base station with a user equipment over a partially wireless connection in accordance with some embodiments.
  • host computer 1410 comprises hardware 1415 including communication interface 1416 configured to set up and maintain a wired or wireless connection with an interface of a different communication device of communication system 1400.
  • Host computer 1410 further comprises processing circuitry 1418, which may have storage and/or processing capabilities.
  • processing circuitry 1418 may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions.
  • Host computer 1410 further comprises software 1411, which is stored in or accessible by host computer 1410 and executable by processing circuitry 1418.
  • Software 1411 includes host application 1412.
  • Host application 1412 may be operable to provide a service to a remote user, such as UE 1430 connecting via OTT connection 1450 terminating at UE 1430 and host computer 1410. In providing the service to the remote user, host application 1412 may provide user data which is transmitted using OTT connection 1450.
  • Communication system 1400 further includes base station 1420 provided in a telecommunication system and comprising hardware 1425 enabling it to communicate with host computer 1410 and with UE 1430.
  • Hardware 1425 may include communication interface 1426 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of communication system 1400, as well as radio interface 1427 for setting up and maintaining at least wireless connection 1470 with UE 1430 located in a coverage area (not shown in FIG. 13) served by base station 1420.
  • Communication interface 1426 may be configured to facilitate connection 1460 to host computer 1410. Connection 1460 may be direct or it may pass through a core network (not shown in FIG. 13) of the telecommunication system and/or through one or more intermediate networks outside the telecommunication system.
  • hardware 1425 of base station 1420 further includes processing circuitry 1428, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions.
  • Base station 1420 further has software 1421 stored internally or accessible via an external connection.
  • Communication system 1400 further includes UE 1430 already referred to. Its hardware 1435 may include radio interface 1437 configured to set up and maintain wireless connection 1470 with a base station serving a coverage area in which UE 1430 is currently located. Hardware 1435 of UE 1430 further includes processing circuitry 1438, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. UE 1430 further comprises software 1431, which is stored in or accessible by UE 1430 and executable by processing circuitry 1438. Software 1431 includes client application 1432. Client application 1432 may be operable to provide a service to a human or non-human user via UE 1430, with the support of host computer 1410.
  • an executing host application 1412 may communicate with the executing client application 1432 via OTT connection 1450 terminating at UE 1430 and host computer 1410.
  • client application 1432 may receive request data from host application 1412 and provide user data in response to the request data.
  • OTT connection 1450 may transfer both the request data and the user data.
  • Client application 1432 may interact with the user to generate the user data that it provides.
  • host computer 1410, base station 1420 and UE 1430 illustrated in FIG. 13 may be similar or identical to host computer 1330, one of base stations 1312a, 1312b, 1312c and one of UEs 1391, 1392 of FIG. 12, respectively.
  • the inner workings of these entities may be as shown in FIG. 13 and independently, the surrounding network topology may be that of FIG. 12.
  • OTT connection 1450 has been drawn abstractly to illustrate the communication between host computer 1410 and UE 1430 via base station 1420, without explicit reference to any intermediary devices and the precise routing of messages via these devices.
  • Network infrastructure may determine the routing, which it may be configured to hide from UE 1430 or from the service provider operating host computer 1410, or both. While OTT connection 1450 is active, the network infrastructure may further take decisions by which it dynamically changes the routing (e.g., on the basis of load balancing consideration or reconfiguration of the network) .
  • Wireless connection 1470 between UE 1430 and base station 1420 is in accordance with the teachings of the embodiments described throughout this disclosure.
  • One or more of the various embodiments improve the performance of OTT services provided to UE 1430 using OTT connection 1450, in which wireless connection 1470 forms the last segment. More precisely, in some embodiments herein, it makes the Oauth2-based authorization work end to end in home routed roaming scenarios. In some embodiments herein, it can avoid the V-SMF to perform the additional NRF discovery for H-SMF or anchor SMF or V-SMF, which can reduce the network delay.
  • it can avoid the retransmission from V-SMF to H-SMF or old V-SMF due to unsuccessful cross PLMN requests (401 Unauthorized) , and reduce the network delay. In some embodiments herein, it can increase the success rate KPI for requests for example in home routed roaming scenarios.
  • a measurement procedure may be provided for the purpose of monitoring data rate, latency and other factors on which the one or more embodiments improve.
  • the measurement procedure and/or the network functionality for reconfiguring OTT connection 1450 may be implemented in software 1411 and hardware 1415 of host computer 1410 or in software 1431 and hardware 1435 of UE 1430, or both.
  • sensors (not shown) may be deployed in or in association with communication devices through which OTT connection 1450 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which software 1411, 1431 may compute or estimate the monitored quantities.
  • the reconfiguring of OTT connection 1450 may include message format, retransmission settings, preferred routing etc.; the reconfiguring need not affect base station 1420, and it may be unknown or imperceptible to base station 1420. Such procedures and functionalities may be known and practiced in the art.
  • measurements may involve proprietary UE signalling facilitating host computer 1410’s measurements of throughput, propagation times, latency and the like.
  • the measurements may be implemented in that software 1411 and 1431 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using OTT connection 1450 while it monitors propagation times, errors etc.
  • FIG. 14 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
  • FIG. 14 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to FIGs. 12 and 13. For simplicity of the present disclosure, only drawing references to FIG. 14 will be included in this section.
  • the host computer provides user data.
  • substep 1511 (which may be optional) of step 1510, the host computer provides the user data by executing a host application.
  • the host computer initiates a transmission carrying the user data to the UE.
  • step 1530 the base station transmits to the UE the user data which was carried in the transmission that the host computer initiated, in accordance with the teachings of the embodiments described throughout this disclosure.
  • step 1540 the UE executes a client application associated with the host application executed by the host computer.
  • FIG. 15 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
  • FIG. 15 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to FIG. 12 and 13. For simplicity of the present disclosure, only drawing references to FIG. 15 will be included in this section.
  • the host computer provides user data.
  • the host computer provides the user data by executing a host application.
  • the host computer initiates a transmission carrying the user data to the UE. The transmission may pass via the base station, in accordance with the teachings of the embodiments described throughout this disclosure.
  • step 1630 (which may be optional) , the UE receives the user data carried in the transmission.
  • FIG. 16 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
  • FIG. 16 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to FIGs. 12 and 13. For simplicity of the present disclosure, only drawing references to FIG. 16 will be included in this section.
  • step 1710 the UE receives input data provided by the host computer. Additionally or alternatively, in step 1720, the UE provides user data.
  • substep 1721 (which may be optional) of step 1720, the UE provides the user data by executing a client application.
  • substep 1711 (which may be optional) of step 1710, the UE executes a client application which provides the user data in reaction to the received input data provided by the host computer.
  • the executed client application may further consider user input received from the user.
  • the UE initiates, in substep 1730 (which may be optional) , transmission of the user data to the host computer.
  • step 1740 of the method the host computer receives the user data transmitted from the UE, in accordance with the teachings of the embodiments described throughout this disclosure.
  • FIG. 17 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
  • FIG. 17 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to FIGs. 12 and 13. For simplicity of the present disclosure, only drawing references to FIG. 17 will be included in this section.
  • the base station receives user data from the UE.
  • the base station initiates transmission of the received user data to the host computer.
  • the host computer receives the user data carried in the transmission initiated by the base station.
  • a computer program product being tangibly stored on a computer readable storage medium and including instructions which, when executed on at least one processor, cause the at least one processor to carry out any of the methods as described above.
  • a computer-readable storage medium storing instructions which when executed by at least one processor, cause the at least one processor to carry out any of the methods as described above.
  • the present disclosure may also provide a carrier containing the computer program as mentioned above, wherein the carrier is one of an electronic signal, optical signal, radio signal, or computer readable storage medium.
  • the computer readable storage medium can be, for example, an optical compact disk or an electronic memory device like a RAM (random access memory) , a ROM (read only memory) , Flash memory, magnetic tape, CD-ROM, DVD, Blue-ray disc and the like.
  • an apparatus implementing one or more functions of a corresponding apparatus described with an embodiment comprises not only prior art means, but also means for implementing the one or more functions of the corresponding apparatus described with the embodiment and it may comprise separate means for each separate function, or means that may be configured to perform two or more functions.
  • these techniques may be implemented in hardware (one or more apparatuses) , firmware (one or more apparatuses) , software (one or more modules) , or combinations thereof.
  • firmware or software implementation may be made through modules (e.g., procedures, functions, and so on) that perform the functions described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure provide method and apparatus for authorization alignment. A method performed by a first network node comprises obtaining first information indicating whether a second network node requires authorization. The method further comprises sending the first information to a third network node.

Description

METHOD AND APPARATUS FOR AUTHORIZATION ALIGNMENT TECHNICAL FIELD
The non-limiting and exemplary embodiments of the present disclosure generally relate to the technical field of communications, and specifically to methods and apparatuses for authorization alignment.
BACKGROUND
This section introduces aspects that may facilitate a better understanding of the disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
In a communication network such as 3GPP (3rd Generation Partnership Project) network, a first network function (NF) may determine whether a second NF is authorized to send a request to the first NF. The first NF may authorize the request from the second NF in various ways. For example, the first NF may authorize the request from the second NF using one of the following two options: 1) OAuth-based authorization mechanism following Internet Engineering Task Force (IETF) Request for Comments (RFC) : 6749, October 2012, the disclosure of which is incorporated by reference herein in its entirety; 2) based on the local policy of the first NF.
SUMMARY
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
3GPP TS 29.510 V17.6.0, the disclosure of which is incorporated by reference herein in its entirety, has defined oauth2Required and perPlmnOauth2ReqList which indicate by a service producer whether Oauth2-based authorization is required to be supported by a service consumer (per public land mobile network (PLMN) ) during network repository function (NRF) registration. Then during NRF discovery procedure, the service consumer will get the information from NRF whether Oauth2-based authorization is required by the service producer.
For example, in home routed roaming scenarios, the access and mobility management function (AMF) as the NF service consumer performs the NRF discovery to get information of a home session management function (H-SMF) or an anchor SMF and send the information to a visited SMF (V-SMF) or intermediate SMF (I-SMF) during protocol data unit (PDU) session  setup or mobility procedures, so the V-SMF or I-SMF as the service consumer does not perform the NRF discovery to get the information of H-SMF or anchor SMF.
In the existing solution, the oauth2Required information of a network node can be only obtained from NRF. When a network node obtains such information, it will not send it to another network node.
However there may be some problems in the existing solutions. For example, the AMF gets the oauth2Required information of H-SMF or anchor SMF, but it does not forward this information to V-SMF or I-SMF. During a PDU session establishment procedure in home routed roaming case, the V-SMF does not know whether Oauth2-based authorization is required by the H-SMF. During a PDU session establishment procedure with I-SMF, the I-SMF does not know whether Oauth2-based authorization is required by the anchor SMF. During intra-PLMN mobility with V-SMF change, the new V-SMF does not know whether Oauth2-based authorization is required by the H-SMF. During inter-PLMN mobility with V-SMF inserting or V-SMF change, the new V-SMF does not know whether Oauth2-based authorization is required by the H-SMF. During inter-PLMN mobility with V-SMF removal, the new AMF does not know whether Oauth2-based authorization is required by the SMF.
In these cases, before a first network node sends a message to a second network node, it will perform an additional NRF discovery for the second network node to get the oauth2Required information of the second network node, which may introduce additional network delay. For example, V-SMF will perform the additional NRF discovery for H-SMF or anchor SMF or V-SMF, which may introduce additional network delay.
Alternatively, the first network node may send a message to the second network node without performing additional NRF discovery. However this message may be rejected by the second network node due to authorization requirement. Then the first network node may obtain the token to access the second network node and resend the message to the second network node. This procedure also introduces additional network delay.
In addition, some key performance indicator (KPI) may be reduced. For example, success rate KPI for requests may be reduced.
To overcome or mitigate at least one above mentioned problems or other problems, an improved solution for authorization alignment may be desirable.
In a first aspect of the disclosure, there is provided a method performed by a first network node. The method comprises obtaining first information indicating whether a second network node requires authorization. The method further comprises sending the first information to a third network node.
In an embodiment, the authorization comprises OAuth2-based authorization.
In an embodiment, the first information is obtained from at least one of a network repository function (NRF) , or a fourth network node.
In an embodiment, in inter public land mobile network (PLMN) mobility registration procedure or inter PLMN handover procedure, the first information is obtained from the NRF.
In an embodiment, the first information is sent to the third network node during at least one of a protocol data unit (PDU) session establishment procedure with intermediate SMF, a PDU session establishment procedure in home routed roaming scenario, an intra public land mobile network (PLMN) handover procedure with access and mobility management function (AMF) change, an intra PLMN handover procedure with visited session management function (SMF) change, an inter PLMN mobility registration procedure, or an inter PLMN handover procedure.
In an embodiment, the first network node comprises at least one of a first access and mobility management function (AMF) , or a first session management function (SMF) .
In an embodiment, the second network node comprises a second session management function (SMF) .
In an embodiment, the second SMF comprises at least one of an anchor SMF, a home SMF, or an SMF hosting session management context resource.
In an embodiment, the third network node comprises at least one of a second AMF, or a third session management function (SMF) .
In an embodiment, the first information is sent to the third network node in at least one of session management context create data, session management context, or user equipment context.
In an embodiment, the first information comprises at least one of information indicating whether a home network node requires authorization, information indicating whether an anchor network node requires authorization, or information indicating whether a network node hosting session management context resource requires authorization.
In a second aspect of the disclosure, there is provided a method performed by a second network node. The method comprises receiving first information indicating whether a second network node requires authorization from a first network node. The method further comprises getting a token for accessing the second network node when the first information indicates the second network node requires authorization.
In an embodiment, the authorization comprises OAuth2-based authorization.
In an embodiment, the first information is received from the first network node during at least one of a protocol data unit (PDU) session establishment procedure with intermediate SMF, a PDU session establishment procedure in home routed roaming scenario, an intra public land mobile network (PLMN) handover procedure with access and mobility management function  (AMF) change, an intra PLMN handover procedure with visited session management function (SMF) change, an inter PLMN mobility registration procedure, or an inter PLMN handover procedure.
In an embodiment, the first network node comprises at least one of a first access and mobility management function (AMF) , or a first session management function (SMF) .
In an embodiment, the second network node comprises a second session management function (SMF) .
In an embodiment, the second SMF comprises at least one of an anchor SMF, a home SMF, or an SMF hosting session management context resource.
In an embodiment, the third network node comprises at least one of a second AMF, or a third session management function (SMF) .
In an embodiment, the first information is sent to the third network node in at least one of session management context create data, session management context, or user equipment context.
In an embodiment, the first information comprises at least one of information indicating whether a home network node requires authorization, information indicating whether an anchor network node requires authorization, or information indicating whether a network node hosting session management context resource requires authorization.
In an embodiment, the method further comprises, when the first information indicates the second network node does not require authorization, determining to skip getting the token for accessing the second network node.
In a third aspect of the disclosure, there is provided a first network node. The first network node comprises a processor and a memory coupled to the processor. Said memory contains instructions executable by said processor. The first network node is operative to obtain first information indicating whether a second network node requires authorization. The first network node is further operative to send the first information to a third network node.
In a fourth aspect of the disclosure, there is provided a second network node. The second network node comprises a processor and a memory coupled to the processor. Said memory contains instructions executable by said processor. The second network node is operative to receive first information indicating whether a second network node requires authorization from a first network node. The second network node is further operative to get a token for accessing the second network node when the first information indicates the second network node requires authorization.
In a fifth aspect of the disclosure, there is provided a first network node. The first network node comprises an obtaining module configured to obtain first information indicating  whether a second network node requires authorization. The second network node further comprises a sending module configured to send the first information to a third network node.
In a sixth aspect of the disclosure, there is provided a third network node. The third network node comprises a receiving module configured to receive first information indicating whether a second network node requires authorization from a first network node. The third network node further comprises a getting module configured to get a token for accessing the second network node when the first information indicates the second network node requires authorization.
In a seventh aspect of the disclosure, there is provided a computer program product comprising instructions which when executed by at least one processor, cause the at least one processor to perform the method according to any one of the first or second aspects.
In an eighth aspect of the disclosure, there is provided a computer-readable storage medium storing instructions which when executed by at least one processor, cause the at least one processor to perform the method according to any one of the first or second aspects.
Embodiments herein may provide many advantages, of which a non-exhaustive list of examples follows. In some embodiments herein, it makes the Oauth2-based authorization work end to end in home routed roaming scenarios. In some embodiments herein, it can avoid the V-SMF to perform the additional NRF discovery for H-SMF or anchor SMF or V-SMF, which can reduce the network delay. In some embodiments herein, it can avoid the retransmission from V-SMF to H-SMF or old V-SMF due to unsuccessful cross PLMN requests (401 Unauthorized) , and reduce the network delay. In some embodiments herein, it can increase the success rate KPI for requests for example in home routed roaming scenarios. The embodiments herein are not limited to the features and advantages mentioned above. A person skilled in the art will recognize additional features and advantages upon reading the following detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other aspects, features, and benefits of various embodiments of the present disclosure will become more fully apparent, by way of example, from the following detailed description with reference to the accompanying drawings, in which like reference numerals or letters are used to designate like or equivalent elements. The drawings are illustrated for facilitating better understanding of the embodiments of the disclosure and not necessarily drawn to scale, in which:
FIG. 1a schematically shows Non-Roaming 5G System Architecture according to an embodiment of the present disclosure;
FIG. 1b schematically shows Roaming 5G System Architecture according to an embodiment of the present disclosure;
FIG. 2a shows a flowchart of a method according to an embodiment of the present disclosure;
FIG. 2b shows an example of NF/NF service discovery according to an embodiment of the present disclosure;
FIG. 3 shows a flowchart of a method according to another embodiment of the present disclosure;
FIG. 4 shows a flowchart of a PDU session establishment procedure in home routed roaming scenario according to an embodiment of the present disclosure;
FIG. 5 shows a flowchart of intra-PLMN handover procedure with V-SMF change according to an embodiment of the present disclosure;
FIG. 6 shows a flowchart of intra-PLMN mobility registration procedure with V-SMF change according to an embodiment of the present disclosure;
FIG. 7a shows a flowchart of an inter-PLMN mobility registration procedure according to an embodiment of the present disclosure;
FIG. 7b shows a flowchart of an inter-PLMN handover procedure according to an embodiment of the present disclosure;
FIG. 8a is a block diagram showing an apparatus suitable for practicing some embodiments of the disclosure;
FIG. 8b is a block diagram showing a first network node according to an embodiment of the disclosure;
FIG. 8c is a block diagram showing a second network node according to an embodiment of the disclosure;
FIG. 9 is a schematic showing a wireless network in accordance with some embodiments;
FIG. 10 is a schematic showing a user equipment in accordance with some embodiments;
FIG. 11 is a schematic showing a virtualization environment in accordance with some embodiments;
FIG. 12 is a schematic showing a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments;
FIG. 13 is a schematic showing a host computer communicating via a base station with a user equipment over a partially wireless connection in accordance with some embodiments;
FIG. 14 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments;
FIG. 15 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments;
FIG. 16 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments; and
FIG. 17 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
DETAILED DESCRIPTION
The embodiments of the present disclosure are described in detail with reference to the accompanying drawings. It should be understood that these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the present disclosure. Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present disclosure should be or are in any single embodiment of the disclosure. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present disclosure. Furthermore, the described features, advantages, and characteristics of the disclosure may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the disclosure may be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the disclosure.
As used herein, the term “network” refers to a network following any suitable communication standards such as new radio (NR) , long term evolution (LTE) , LTE-Advanced (LTE-A) , wideband code division multiple access (WCDMA) , high-speed packet access (HSPA) , Code Division Multiple Access (CDMA) , Time Division Multiple Address (TDMA) , Frequency Division Multiple Access (FDMA) , Orthogonal Frequency-Division Multiple Access (OFDMA) , Single carrier frequency division multiple access (SC-FDMA) and other wireless networks. A  CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , etc. UTRA includes WCDMA and other variants of CDMA. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, Ad-hoc network, wireless sensor network, etc. In the following description, the terms “network” and “system” can be used interchangeably. Furthermore, the communications between two devices in the network may be performed according to any suitable communication protocols, including, but not limited to, the communication protocols as defined by a standard organization such as 3GPP. For example, the communication protocols may comprise the first generation (1G) , 2G, 3G, 4G, 4.5G, 5G communication protocols, and/or any other protocols either currently known or to be developed in the future.
The term “network node” or “network entity” refers to any suitable network function (NF) which can be implemented in a network element (physical or virtual) of a communication network. For example, the network function can be implemented either as a network element on a dedicated hardware, as a software instance running on a dedicated hardware, or as a virtualized function instantiated on an appropriate platform, e.g. on a cloud infrastructure. For example, the 5G system (5GS) may comprise a plurality of NFs such as AMF (Access and Mobility management Function) , SMF (Session Management Function) , AUSF (Authentication Service Function) , UDM (Unified Data Management) , PCF (Policy Control Function) , AF (Application Function) , NEF (Network Exposure Function) , UPF (User plane Function) and NRF (Network Repository Function) , RAN (radio access network) , SCP (service communication proxy) , NWDAF (network data analytics function) , NSSF (Network Slice Selection Function) , NSSAAF (Network Slice-Specific Authentication and Authorization Function) , etc. For example, the 4G system (such as LTE) may include MME (Mobile Management Entity) , HSS (home subscriber server) , Policy and Charging Rules Function (PCRF) , Packet Data Network Gateway (PGW) , PGW control plane (PGW-C) , Serving gateway (SGW) , SGW control plane (SGW-C) , E-UTRAN Node B (eNB) , etc. In other embodiments, the network function may comprise different types of NFs for example depending on a specific network.
Virtualizing means creating virtual versions of apparatuses or devices which may include virtualizing hardware platforms, storage devices and networking resources. As used herein, virtualization can be applied to a provider edge node and relates to an implementation in which at least a portion of the functionality is implemented as one or more virtual components (e.g., via one or more applications, components, functions, virtual machines or containers executing on one or more physical processing nodes in one or more networks) .
In some embodiments, some or all of the functions described herein may be implemented as virtual components executed by one or more virtual machines implemented in one or more virtual environments hosted by one or more of hardware nodes. Further, in embodiments in which the virtual node is not a radio access node or does not require radio connectivity (e.g., a core network node) , then the provider edge node or PE may be entirely virtualized.
The functions may be implemented by one or more applications (which may alternatively be called software instances, virtual appliances, network functions, virtual nodes, virtual network functions, etc. ) operative to implement some of the features, functions, and/or benefits of some of the embodiments disclosed herein. Applications are run in virtualization environment which provides hardware comprising processing circuitry and memory. Memory contains instructions executable by processing circuitry whereby application is operative to provide one or more of the features, benefits, and/or functions disclosed herein.
Virtualization environment, comprises general-purpose or special-purpose network hardware devices comprising a set of one or more processors or processing circuitry, which may be commercial off-the-shelf (COTS) processors, dedicated Application Specific Integrated Circuits (ASICs) , or any other type of processing circuitry including digital or analog hardware components or special purpose processors. Each hardware device may comprise memory which may be non-persistent memory for temporarily storing instructions or software executed by processing circuitry. Each hardware device may comprise one or more network interface controllers (NICs) , also known as network interface cards, which include physical network interface. Each hardware device may also include non-transitory, persistent, machine-readable storage media -having stored therein software and/or instructions executable by processing circuitry. Software may include any type of software including software for instantiating one or more virtualization layers (also referred to as hypervisors) , software to execute virtual machines as well as software allowing it to execute functions, features and/or benefits described in relation with some embodiments described herein.
Virtual machines, comprise virtual processing, virtual memory, virtual networking or interface and virtual storage, and may be run by a corresponding virtualization layer or hypervisor. Different embodiments of the instance of virtual appliance may be implemented on one or more of virtual machines, and the implementations may be made in different ways.
During operation, processing circuitry executes software to instantiate the hypervisor or virtualization layer, which may sometimes be referred to as a virtual machine monitor (VMM) . Virtualization layer may present a virtual operating platform that appears like networking hardware to virtual machine.
The term “terminal device” refers to any end device that can access a communication network and receive services therefrom. By way of example and not limitation, the terminal device refers to a mobile terminal, user equipment (UE) , or other suitable devices. The UE may be, for example, a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a portable computer, an image capture terminal device such as a digital camera, a gaming terminal device, a music storage and a playback appliance, a mobile phone, a cellular phone, a smart phone, a voice over IP (VoIP) phone, a wireless local loop phone, a tablet, a wearable device, a personal digital assistant (PDA) , a portable computer, a desktop computer, a wearable terminal device, a vehicle-mounted wireless terminal device, a wireless endpoint, a mobile station, a laptop-embedded equipment (LEE) , a laptop-mounted equipment (LME) , a USB dongle, a smart device, a wireless customer-premises equipment (CPE) and the like. In the following description, the terms “terminal device” , “terminal” , “user equipment” and “UE” may be used interchangeably. As one example, a terminal device may represent a UE configured for communication in accordance with one or more communication standards promulgated by the 3GPP (3rd Generation Partnership Project) , such as 3GPP’ LTE standard or NR standard. As used herein, a “user equipment” or “UE” may not necessarily have a “user” in the sense of a human user who owns and/or operates the relevant device. In some embodiments, a terminal device may be configured to transmit and/or receive information without direct human interaction. For instance, a terminal device may be designed to transmit information to a network on a predetermined schedule, when triggered by an internal or external event, or in response to requests from the communication network. Instead, a UE may represent a device that is intended for sale to, or operation by, a human user but that may not initially be associated with a specific human user.
As yet another example, in an Internet of Things (IoT) scenario, a terminal device may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another terminal device and/or network equipment. The terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as a machine-type communication (MTC) device. As one particular example, the terminal device may be a UE implementing the 3GPP narrow band internet of things (NB-IoT) standard. Particular examples of such machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances, for example refrigerators, televisions, personal wearables such as watches etc. In other scenarios, a terminal device may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
References in the specification to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed terms.
As used herein, the phrase “at least one of A and B” or “at least one of A or B” should be understood to mean “only A, only B, or both A and B. ” The phrase “A and/or B” should be understood to mean “only A, only B, or both A and B” .
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
It is noted that these terms as used in this document are used only for ease of description and differentiation among nodes, devices or networks etc. With the development of the technology, other terms with the similar/same meanings may also be used.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
Although the subject matter described herein may be implemented in any appropriate type of system using any suitable components, the embodiments disclosed herein are described in relation to a communication system complied with the exemplary system architectures illustrated in FIGs. 1a-1b. For simplicity, the system architectures of FIGs. 1a-1b only depict some exemplary elements. In practice, a communication system may further include any additional elements  suitable to support communication between terminal devices or between a wireless device and another communication device, such as a landline telephone, a service provider, or any other network node or terminal device. The communication system may provide communication and various types of services to one or more terminal devices to facilitate the terminal devices’ access to and/or use of the services provided by, or via, the communication system.
FIG. 1a schematically shows Non-Roaming 5G System Architecture according to an embodiment of the present disclosure. The architecture of FIG. 1a is same as Figure 4.2.3-1 as described in 3GPP TS 23.501 V17.5.0, the disclosure of which is incorporated by reference herein in its entirety. The system architecture of FIG. 1a may comprise some exemplary elements such as AUSF, AMF, DN (data network) , NEF, NRF, NSSF, PCF, SMF, UDM, UPF, AF, UE, (R) AN, SCP (Service Communication Proxy) , NSSAAF (Network Slice-Specific Authentication and Authorization Function) , NSACF (Network Slice Admission Control Function) , Edge Application Server Discovery Function (EASDF) , etc.
In accordance with an exemplary embodiment, the UE can establish a signaling connection with the AMF over the reference point N1, as illustrated in FIG. 1a. This signaling connection may enable NAS (Non-access stratum) signaling exchange between the UE and the core network, comprising a signaling connection between the UE and the (R) AN and the N2 connection for this UE between the (R) AN and the AMF. The (R) AN can communicate with the UPF over the reference point N3. The UE can establish a protocol data unit (PDU) session to the DN (data network, e.g. an operator network or Internet) through the UPF over the reference point N6.
As further illustrated in FIG. 1a, the exemplary system architecture also contains some reference points such as N1, N2, N3, N4, N6, N9, N15, etc., which can support the interactions between NF services in the NFs. For example, these reference points may be realized through corresponding NF service-based interfaces and by specifying some NF service consumers and providers as well as their interactions in order to perform a particular system procedure. The AM related policy is provided by PCF to AMF for a registered UE via N15 interface. AMF can get AM policy during AM Policy Association Establishment/Modification procedure.
Various NFs shown in FIG. 1a may include the functionality for example as defined in clause 6.2 of 3GPP TS 23.501 V17.5.0.
FIG. 1b schematically shows Roaming 5G System Architecture according to an embodiment of the present disclosure. The architecture of FIG. 1b is same as Figure 4.2.4-6 as described in 3GPP TS 23.501 V17.5.0, the disclosure of which is incorporated by reference herein in its entirety. The system architecture of FIG. 1b may comprise some exemplary elements such as AUSF, AMF, data network, visited NSSF (V-NSSF) , home NSSF (H-NSSF) , visited PCF  (V-PCF) , home PCF (H-PCF) , visited SMF (V-SMF) , home SMF (H-SMF) , UDM, UPF, AF, UE, (R) AN, NSSAAF, etc.
As further illustrated in FIG. 1b, the exemplary system architecture also contains some reference points such as N1, N2, N3, N4, N5, N6, N7, N9, N16, N11, N24, N10, N38, N15, N22, N13, N12, N58, N59, N31, N12, etc., which can support the interactions between NF services in the NFs. For example, these reference points may be realized through corresponding NF service-based interfaces and by specifying some NF service consumers and providers as well as their interactions in order to perform a particular system procedure.
Various NFs shown in FIG. 1b may include the functionality for example as defined in clause 6.2 of 3GPP TS 23.501 V17.5.0.
The H-SMF in the HPLMN may require the oAuth2-based authorization for the requests from V-SMF in the N16 interface (per PLMN) .
FIG. 2a shows a flowchart of a method according to an embodiment of the present disclosure, which may be performed by an apparatus implemented in or at or as a first network node or communicatively coupled to the first network node. As such, the apparatus may provide means or modules for accomplishing various parts of the method 200 as well as means or modules for accomplishing other processes in conjunction with other components.
At block 202, the first network node may obtain first information indicating whether a second network node requires authorization.
The authorization may be any suitable authorization. In an embodiment, the authorization comprises OAuth2-based authorization.
The first network node may be any suitable network node such as network function as described in various 3GPP specifications such as 3GPP TS 23.501 V17.5.0.
In an embodiment, the first network node may comprise at least one of a first access and mobility management function (AMF) or a first session management function (SMF) . For example, the first AMF may be located in any network such as home PLMN or visited PLMN. The first SMF may be located in any network such as home PLMN or visited PLMN. The first SMF may be H-SMF or V-SMF or I-SMF.
The second network node may be any suitable network node such as network function as described in various 3GPP specifications such as 3GPP TS 23.501 V17.5.0.
In an embodiment, the first network node and the second network node may belong to the same PLMN or different PLMNs.
In an embodiment, the second network node comprises a second session management function (SMF) .
In an embodiment, the first SMF and the second SMF may belong to the same PLMN or different PLMNs.
In an embodiment, the second SMF may comprise at least one of an anchor SMF, a home SMF, or an SMF hosting session management context resource.
In an embodiment, the first information comprises at least one of information indicating whether a home network node (such as H-SMF) requires authorization, information indicating whether an anchor network node (anchor SMF) requires authorization, or information indicating whether a network node (e.g., source V-SMF) hosting session management context resource requires authorization.
The first network node may obtain first information indicating whether a second network node requires authorization in various ways. For example, the first network node may obtain the first information from NRF or another network node. Alternatively, when the first network node has contacted the second network node, it may know whether the second network node requires authorization.
In an embodiment, the first information is obtained from at least one of a network repository function (NRF) , or a fourth network node. The fourth network nod may be any suitable network node which has the first information indicating whether a second network node requires authorization. For example, an old (source) SMF may send the first information to a new (target) SMF.
The NRF may be any suitable network node supporting service discovery function. For example, the NRF may receive NF discovery request from NF service consumer or SCP, and provides the information of the discovered NF instances (be discovered) to the NF service consumer or SCP. The NRF may maintain the NF profile of available NF instances and their supported services. In an embodiment, the NRF may be same as NRF as described in 3GPP TS 23.501 V17.5.0.
As described above, 3GPP TS 29.510 V17.6.0 has defined the oauth2Required and perPlmnOauth2ReqList which indicates by a service producer whether Oauth2-based authorization is required to be supported by a service consumer (per PLMN) during NRF registration. Then during NRF discovery procedure, the service consumer will get the information from NRF whether Oauth2-based authorization is required by the service producer.
In an embodiment, in inter public land mobile network (PLMN) mobility registration procedure or inter PLMN handover procedure, the first information is obtained from the NRF. For example, in inter PLMN mobility registration procedure or inter PLMN handover procedure, since the PLMN is changed, a T-AMF (target AMF) cannot use the “HsmfOauth2Required”  information in the UE context, then T-AMF needs to rediscover from NRF to get the H-SMF NF profile to get the “oauth2Required” information.
At block 204, the first network node may send the first information to a third network node.
The third network node may be any suitable network node such as network function as described in various 3GPP specifications such as 3GPP TS 23.501 V17.5.0.
In an embodiment, the third network node comprises at least one of a second AMF, or a third session management function (SMF) .
The first network node may send the first information to the third network node in various ways. For example, when the first network node needs to send a message to the third network node, it may send the first information to the third network node in the message. When the first network node receives a request from the third network node, it may send a response comprising the first information to the third network node.
In an embodiment, the first information is sent to the third network node during at least one of a protocol data unit (PDU) session establishment procedure with intermediate SMF, a PDU session establishment procedure in home routed roaming scenario, an intra public land mobile network (PLMN) handover procedure with access and mobility management function (AMF) change, an intra PLMN handover procedure with visited session management function (SMF) change, an inter PLMN mobility registration procedure, or an inter PLMN handover procedure. For example, the above procedures may be same/similar as/to the corresponding procedures as described in various 3GPP specifications such as 3GPP TS 23.502 V17.5.0.
The first information may be comprised in any suitable messages such as new message or existing message. In an embodiment, the first information is sent to the third network node in at least one of session management context create data, session management context, or user equipment context (such as PDU Session Context) . For example, the session management context create data may be same as SmContextCreateData as described in clause 6.1.6.2.2 of 3GPP TS 29.502 V17.5.0. The session management context may be same as SmContextCreateData as described in clause 6.1.6.2.39 of 3GPP TS 29.502 V17.5.0, the disclosure of which is incorporated by reference herein in its entirety. The session management context may be same as SmContext as defined in 29.502 clause 6.1.6.2.39. The user equipment context may be same as UeContext as described in clause 6.1.6.2.25 of 3GPP TS 29.518 V17.6.0, the disclosure of which is incorporated by reference herein in its entirety. The PDU Session Context may be same as PduSessionContext as described in clause 6.1.6.2.37 of 3GPP TS 29.518 V17.6.0.
In an embodiment, the first network node may obtain second information comprising authorization requirement supported by the second network node per public land mobile network (PLMN) of a network function (NF) service consumer.
In an embodiment, the first network node may send the second information to the third network node.
In an embodiment, the first network node may when a PLMN identifier (ID) of the third network node is present in the second information, the first information is overridden by the second information and when the PLMN ID of the third network node is not present in the second information, the first information is applicable.
In an embodiment, the first network node may the second information is obtained from at least one of a network repository function (NRF) , or a fourth network node.
FIG. 2b shows an example of NF/NF service discovery according to an embodiment of the present disclosure.
As shown, the H-SMF may register to the H-NRF (home NRF) with NF profile that may contains “perPlmnOauth2ReqList” parameter.
The AMF may perform the discovery to get the H-SMF’s NF Profile which contains the H-SMF’s address information and “oauth2Required” indication.
The detailed NF/NF service discovery procedures have been described in clause 4.17 of 3GPP TS 23.502 V17.5.0.
FIG. 3 shows a flowchart of a method according to another embodiment of the present disclosure, which may be performed by an apparatus implemented in or at or as a second network node or communicatively coupled to the second network node. As such, the apparatus may provide means or modules for accomplishing various parts of the method 300 as well as means or modules for accomplishing other processes in conjunction with other components. For some parts which have been described in the above embodiments, the description thereof is omitted here for brevity.
At block 302, the second network node may receive first information indicating whether a second network node requires authorization from a first network node.
In an embodiment, the authorization comprises OAuth2-based authorization.
In an embodiment, the first information is received from the first network node during at least one of a protocol data unit (PDU) session establishment procedure with intermediate SMF, a PDU session establishment procedure in home routed roaming scenario, an intra public land mobile network (PLMN) handover procedure with access and mobility management function (AMF) change, an intra PLMN handover procedure with visited session  management function (SMF) change, an inter PLMN mobility registration procedure, or an inter PLMN handover procedure.
In an embodiment, the first network node comprises at least one of a first access and mobility management function (AMF) , or a first session management function (SMF) .
In an embodiment, the second network node comprises a second session management function (SMF) .
In an embodiment, the second SMF comprises at least one of an anchor SMF, a home SMF, or an SMF hosting session management context resource.
In an embodiment, the third network node comprises at least one of a second AMF, or a third session management function (SMF) .
In an embodiment, the first information is sent to the third network node in at least one of session management context create data, session management context, or user equipment context.
In an embodiment, the first information comprises at least one of information indicating whether a home network node requires authorization, information indicating whether an anchor network node requires authorization, or information indicating whether a network node hosting session management context resource requires authorization.
At block 304, when the first information indicates the second network node requires authorization, the second network node may get a token for accessing the second network node.
The second network node may get the token for accessing the second network node in various ways.
In an embodiment, the second network node may send a request for getting a token for accessing the second network node to a NRF. The second network node may receive a response comprising the token for accessing the second network node from the NRF. For example, The request may be same as the Nnrf_AccessToken_Get request as described in as described in 3GPP TS 23.502 V17.5.0. The response may be same as the Nnrf_AccessToken_Get response as described in as described in 3GPP TS 23.502 V17.5.0.
At block 306, optionally, when the first information indicates the second network node does not require authorization, the second network node may determine to skip getting the token for accessing the second network node. For example, the second network node may not send a request for getting a token for accessing the second network node to a NRF. Instead the second network node may send a message without token to the second network node.
In an embodiment, the second network node may receive second information comprising authorization requirement supported by the second network node per public land  mobile network (PLMN) of a network function (NF) service consumer from the first network node.
In an embodiment, when a PLMN identifier (ID) of the third network node is present in the second information, the first information is overridden by the second information and when the PLMN ID of the third network node is not present in the second information, the first information is applicable.
In an embodiment, SmContextCreateData as defined in 3GPP TS 29.502 V17.5.0 clause 6.1.6.2.2 may add information of HsmfOauth2Required and smContextSmfOauth2Required.
Table 6.1.6.2.2-1: Definition of type SmContextCreateData
In an embodiment, SmContextCreateData as defined in 3GPP TS 29.502 V17.5.0 clause 6.1.6.2.2 may add information of hsmfOauthInd and smContextOauthInd.
Table 6.1.6.2.2-1: Definition of type SmContextCreateData
In an embodiment, SmContext as defined in 3GPP TS 29.502 V17.5.0 clause 6.1.6.2.39 may add information of HsmfOauth2Required.
Table 6.1.6.2.39-1: Definition of type SmContext
In an embodiment, SmContext as defined in 3GPP TS 29.502 V17.5.0 clause 6.1.6.2.39 may add information of hsmfOauthInd.
Table 6.1.6.2.39-1: Definition of type SmContext
In an embodiment, A. 2 Nsmf_PDUSession API as defined in 3GPP TS 29.502 V17.5.0 may be amended as following.
A.2 Nsmf_PDUSession API





In an embodiment, PduSessionContext as defined in 3GPP TS 29.518 V17.6.0 clause 6.1.6.2.37 may add information of Hsmfoauth2Required and smContextSmfOauth2Required.
Table 6.1.6.2.37-1: Definition of type PduSessionContext
In an embodiment, PduSessionContext as defined in 3GPP TS 29.518 V17.6.0 clause 6.1.6.2.37 may add information of hsmfOauthInd and smContextOauthInd.
Table 6.1.6.2.37-1: Definition of type PduSessionContext
In an embodiment, A. 2 Namf_Communication API as defined in 3GPP TS 29.518 V17.6.0 may be amended as following.
A.2 Namf_Communication API

In various embodiments, Hsmfoauth2Required may be used interchangeably herein with hsmfOauthInd. smContextSmfOauth2Required may be used interchangeably herein with smContextOauthInd.
FIG. 4 shows a flowchart of a PDU session establishment procedure in home routed roaming scenario according to an embodiment of the present disclosure.
Step 1: UE triggers PDU Session establishment in home routed roaming scenario. AMF performs the NRF discovery to select the H-SMF and V-SMF. In the discovered H-SMF’s NF profile, AMF gets the “oauth2Required” information.
Step 2: AMF includes the “HsmfOauth2Required” IE with the value from “oauth2Required” information of H-SMF in the Nsmf_PDUSession_CreateSMContext request.
Step 3: V-SMF uses the received “HsmfOauth2Required” information to decide whether to query the oAuth2 Token to access H-SMF.
Step 4: if the “HsmfOauth2Required” is true, V-SMF perform the Nnrf_AccessToken_Get request to get the oAuth2 Token for H-SMF
Step 5: V-SMF sends the Nsmf_PDUSession_Create request with the oAuth2 token header to H-SMF.
Step 6: UE requested PDU Session Establishment procedure continues.
Some messages shown in FIG. 4 may be same as the corresponding messages as described in various 3GPP specifications such as 3GPP TS 23.502 V17.5.0. Some messages shown in FIG. 4 may be enhanced according various embodiments of the disclosure.
FIG. 5 shows a flowchart of intra-PLMN handover procedure with V-SMF change according to an embodiment of the present disclosure.
Step 1: Intra-PLMN handover procedure is triggered.
Step 2: The S-AMF includes the “HsmfOauth2Required and smContextSmfOauth2Required” information in the ueContext and forward it to T-AMF.
Step 3: The T-AMF includes the “HsmfOauth2Required and smContextSmfOauth2Required” IE in the Nsmf_PDUSession_CreateSMContext request to target V-SMF.
Step 4: Target V-SMF uses the received “smContextSmfOauth2Required” information to decide whether to query the oAuth2 Token to access V-SMF to retrieve the SMContext.
Step 5: If the “smContextSmfOauth2Required” is true, target V-SMF performs the Nnrf_AccessToken_Get request to get the oAuth2 Token for source V-SMF.
Step 6: Target V-SMF retrieves the SMContext from source V-SMF with the oAuth2 token header. Optionally the retrieved SMContext can contain the “HsmfOauth2Required”  information that target V-SMF can use in case the T-AMF does not provide this indication in step 3.
Step 7: Target V-SMF uses the received “HsmfOauth2Required” information to decide whether to query the oAuth2 Token to access H-SMF.
Step 8: If the “HsmfOauth2Required” is true, target V-SMF performs the Nnrf_AccessToken_Get request to get the oAuth2 Token for H-SMF.
Step 9: The handover procedure continues.
Step 10: Target V-SMF sends the Nsmf_PDUSession_Update request with the oAuth2 token header to H-SMF.
Step 11: The handover procedure continues
Some messages shown in FIG. 5 may be same as the corresponding messages as described in various 3GPP specifications such as 3GPP TS 23.502 V17.5.0. Some messages shown in FIG. 5 may be enhanced according various embodiments of the disclosure.
FIG. 6 shows a flowchart of intra-PLMN mobility registration procedure with V-SMF change according to an embodiment of the present disclosure.
Step 1: Intra-PLMN mobility registration procedure is triggered.
Step 2: the T-AMF sends the Namf_Communication_UEContextTransfer request to S-AMF to get UEContext.
Step 3: The S-AMF includes the “HsmfOauth2Required and smContextSmfOauth2Required” information in the ueContext and response it to T-AMF.
Step 4: Mobility registration procedure continues.
Step 5: The T-AMF includes the “HsmfOauth2Required and smContextSmfOauth2Required” IE in the Nsmf_PDUSession_CreateSMContext request to target V-SMF.
Step 6: Target V-SMF uses the received “smContextSmfOauth2Required” information to decide whether to query the oAuth2 Token to access source V-SMF to retrieve SMContext.
Step 7: if the “smContextSmfOauth2Required” is true, target V-SMF performs the Nnrf_AccessToken_Get request to get the oAuth2 Token for source V-SMF.
Step 8: Target V-SMF retrieves the SMContext from source V-SMF with the oAuth2 token header. Optionally the retrieved SMContext can contain the “HsmfOauth2Required” information that target V-SMF can use in case the T-AMF does not provide this indication in step 3.
Step 9: Target V-SMF uses the received “HsmfOauth2Required” information to decide whether to query the oAuth2 Token to access H-SMF.
Step 10: if the “HsmfOauth2Required” is true, target V-SMF performs the Nnrf_AccessToken_Get request to get the oAuth2 Token for H-SMF.
Step 11: Target V-SMF sends the Nsmf_PDUSession_Update request with the oAuth2 token header to H-SMF.
Step 12: The mobility registration procedure continues.
Some messages shown in FIG. 6 may be same as the corresponding messages as described in various 3GPP specifications such as 3GPP TS 23.502 V17.5.0. Some messages shown in FIG. 6 may be enhanced according various embodiments of the disclosure.
FIG. 7a shows a flowchart of an inter-PLMN mobility registration procedure according to an embodiment of the present disclosure.
Step 1: Inter-PLMN mobility registration procedure is triggered.
Step 2: Since the PLMN is changed, the T-AMF cannot use the “HsmfOauth2Required” information in the UEContext, then T-AMF needs to rediscover from NRF to get the H-SMF NFProfile to get the “oauth2Required” information.
Step 3: T-AMF performs the discovery request.
Step 4: T-AMF gets the discovery response to get the “oauth2Required” information.
For the V-SMF removal procedure:
Step 5: the T-AMF sends the Nsmf_PDUSession_CreateSMContext request to H-SMF, and depends on the “oauth2Required” information to decide whether include the oAuth2 token header.
For the V-SMF insertion or change procedures:
Step 5: the T-AMF sends the Nsmf_PDUSession_CreateSMContext request to target V-SMF and include s the “HsmfOauth2Required” IE.
Step 6: Target V-SMF uses the received “HsmfOauth2Required” information to decide whether to query the oAuth2 Token to access H-SMF.
Step 7: if the “HsmfOauth2Required” is true, target V-SMF performs the Nnrf_AccessToken_Get request to get the oAuth2 Token for H-SMF.
Step 8: Target V-SMF sends the Nsmf_PDUSession_Update or Nsmf_PDUSession_Create request with the oAuth2 token header to H-SMF.
Step 9: The mobility registration procedure continues.
Some messages shown in FIG. 7a may be same as the corresponding messages as described in various 3GPP specifications such as 3GPP TS 23.502 V17.5.0. Some messages shown in FIG. 7a may be enhanced according various embodiments of the disclosure.
FIG. 7b shows a flowchart of an inter-PLMN handover procedure according to an embodiment of the present disclosure.
Step 1: Inter-PLMN handover procedure is triggered
Step 2: Since the PLMN is changed, the T-AMF cannot use the “HsmfOauth2Required” information in the UEContext, then T-AMF needs to rediscover from NRF to get the H-SMF NFProfile to get the “oauth2Required” information.
Step 3: T-AMF performs the discovery request.
Step 4: T-AMF gets the discovery response to get the “oauth2Required” information
For the V-SMF removal procedure:
Step 5: The T-AMF sends the Nsmf_PDUSession_CreateSMContext request to H-SMF, and depends on the “oauth2Required” information to decide whether include the oAuth2 token header.
Step 10: The T-AMF sends the Nsmf_PDUSession_UpdateSMContext request to H-SMF, and depends on the “oauth2Required” information to decide whether include the oAuth2 token header.
For the V-SMF insertion or change procedures:
Step 5: The T-AMF sends the Nsmf_PDUSession_CreateSMContext request to target V-SMF and include the “HsmfOauth2Required” IE.
Step 6: Target V-SMF uses the received “HsmfOauth2Required” information to decide whether to query the oAuth2 Token to access H-SMF.
Step 7: If the “HsmfOauth2Required” is true, target V-SMF performs the Nnrf_AccessToken_Get request to get the oAuth2 Token for H-SMF.
Step 8: Target V-SMF sends the Nsmf_PDUSession_Create request with the oAuth2 token header to H-SMF.
Step 9: The handover procedure continues.
Step 10: The T-AMF sends the Nsmf_PDUSession_UpdateSMContext request to target V-SMF.
Step 11: Target V-SMF sends the Nsmf_PDUSession_Update request with the oAuth2 token header to H-SMF.
Step 12: the handover procedure continues.
Some messages shown in FIG. 7b may be same as the corresponding messages as described in various 3GPP specifications such as 3GPP TS 23.502 V17.5.0. Some messages shown in FIG. 7b may be enhanced according various embodiments of the disclosure.
In an embodiment, AMF discovers whether Oauth2-based authorization is required by H-SMF and sends this information to V-SMF.
In an embodiment, AMF discovers whether Oauth2-based authorization is required by an old V-SMF and sends this information to a new V-SMF.
Embodiments herein may provide many advantages, of which a non-exhaustive list of examples follows. In some embodiments herein, it makes the Oauth2-based authorization work end to end in home routed roaming scenarios. In some embodiments herein, it can avoid the V-SMF to perform the additional NRF discovery for H-SMF or anchor SMF or V-SMF, which can reduce the network delay. In some embodiments herein, it can avoid the retransmission from V-SMF to H-SMF or old V-SMF due to unsuccessful cross PLMN requests (401 Unauthorized) , and reduce the network delay. In some embodiments herein, it can increase the success rate KPI for requests for example in home routed roaming scenarios. The embodiments herein are not limited to the features and advantages mentioned above. A person skilled in the art will recognize additional features and advantages upon reading the following detailed description.
FIG. 8a is a block diagram showing an apparatus suitable for practicing some embodiments of the disclosure. For example, any one of the third network node or the first network node described above may be implemented as or through the apparatus 800.
The apparatus 800 comprises at least one processor 821, such as a digital processor (DP) , and at least one memory (MEM) 822 coupled to the processor 821. The apparatus 800 may further comprise a transmitter TX and receiver RX 823 coupled to the processor 821. The MEM 822 stores a program (PROG) 824. The PROG 824 may include instructions that, when executed on the associated processor 821, enable the apparatus 800 to operate in accordance with the embodiments of the present disclosure. A combination of the at least one processor 821 and the at least one MEM 822 may form processing means 825 adapted to implement various embodiments of the present disclosure.
Various embodiments of the present disclosure may be implemented by computer program executable by one or more of the processor 821, software, firmware, hardware or in a combination thereof.
The MEM 822 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memories and removable memories, as non-limiting examples.
The processor 821 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
In an embodiment where the apparatus is implemented as or at the third network node, the memory 822 contains instructions executable by the processor 821, whereby the third network  node operates according to any of the methods related to the third network node as described above.
In an embodiment where the apparatus is implemented as or at the first network node, the memory 822 contains instructions executable by the processor 821, whereby the first network node operates according to any of the methods related to the first network node as described above.
FIG. 8b is a block diagram showing a first network node 850 according to an embodiment of the disclosure. As shown, the first network node 850 comprises an obtaining module 851 configured to obtain first information indicating whether a second network node requires authorization. The second network node 850 further comprises a sending module 852 configured to send the first information to a third network node.
FIG. 8c is a block diagram showing a third network node 860 according to an embodiment of the disclosure. As shown, the third network node 860 comprises a receiving module 861 configured to receive first information indicating whether a second network node requires authorization from a first network node. The third network node 860 further comprises a getting module 862 configured to get a token for accessing the second network node when the first information indicates the second network node requires authorization.
In an embodiment, the third network node 860 further comprises a determining module 863 configured to, when the first information indicates the second network node does not require authorization, determine to skip getting the token for accessing the second network node.
The term unit or module may have conventional meaning in the field of electronics, electrical devices and/or electronic devices and may include, for example, electrical and/or electronic circuitry, devices, modules, processors, memories, logic solid state and/or discrete devices, computer programs or instructions for carrying out respective tasks, procedures, computations, outputs, and/or displaying functions, and so on, as such as those that are described herein.
With function units, the third network node or the first network node may not need a fixed processor or memory, any computing resource and storage resource may be arranged from the third network node or the first network node in the communication system. The introduction of virtualization technology and network computing technology may improve the usage efficiency of the network resources and the flexibility of the network.
Further, the exemplary overall commutation system including the terminal device and the network node will be introduced as below.
Embodiments of the present disclosure provide a communication system including a host computer including: processing circuitry configured to provide user data; and a  communication interface configured to forward the user data to a cellular network for transmission to a terminal device. The cellular network includes a base station and/or the terminal device.
In embodiments of the present disclosure, the system further includes the terminal device. The terminal device is configured to communicate with the base station.
In embodiments of the present disclosure, the processing circuitry of the host computer is configured to execute a host application, thereby providing the user data; and the terminal device includes processing circuitry configured to execute a client application associated with the host application.
Embodiments of the present disclosure also provide a communication system including a host computer including: a communication interface configured to receive user data originating from a transmission from a terminal device; a base station. The transmission is from the terminal device to the base station.
In embodiments of the present disclosure, the processing circuitry of the host computer is configured to execute a host application. The terminal device is configured to execute a client application associated with the host application, thereby providing the user data to be received by the host computer.
FIG. 9 is a schematic showing a wireless network in accordance with some embodiments.
Although the subject matter described herein may be implemented in any appropriate type of system using any suitable components, the embodiments disclosed herein are described in relation to a wireless network, such as the example wireless network illustrated in FIG. 9. For simplicity, the wireless network of FIG. 9 only depicts network 1006, network nodes 1060 (corresponding to network side node) and 1060b, and WDs (corresponding to terminal device) 1010, 1010b, and 1010c. In practice, a wireless network may further include any additional elements suitable to support communication between wireless devices or between a wireless device and another communication device, such as a landline telephone, a service provider, or any other network node or end device. Of the illustrated components, network node 1060 and wireless device (WD) 1010 are depicted with additional detail. The wireless network may provide communication and other types of services to one or more wireless devices to facilitate the wireless devices’ access to and/or use of the services provided by, or via, the wireless network.
The wireless network may comprise and/or interface with any type of communication, telecommunication, data, cellular, and/or radio network or other similar type of system. In some embodiments, the wireless network may be configured to operate according to specific standards or other types of predefined rules or procedures. Thus, particular embodiments of the wireless network may implement communication standards, such as Global System for Mobile  Communications (GSM) , Universal Mobile Telecommunications System (UMTS) , Long Term Evolution (LTE) , and/or other suitable 2G, 3G, 4G, or 5G standards; wireless local area network (WLAN) standards, such as the IEEE 802.11 standards; and/or any other appropriate wireless communication standard, such as the Worldwide Interoperability for Microwave Access (WiMax) , Bluetooth, Z-Wave and/or ZigBee standards.
Network 1006 may comprise one or more backhaul networks, core networks, IP networks, public switched telephone networks (PSTNs) , packet data networks, optical networks, wide-area networks (WANs) , local area networks (LANs) , wireless local area networks (WLANs) , wired networks, wireless networks, metropolitan area networks, and other networks to enable communication between devices.
Network node 1060 and WD 1010 comprise various components described in more detail below. These components work together in order to provide network node and/or wireless device functionality, such as providing wireless connections in a wireless network. In different embodiments, the wireless network may comprise any number of wired or wireless networks, network nodes, base stations, controllers, wireless devices, relay stations, and/or any other components or systems that may facilitate or participate in the communication of data and/or signals whether via wired or wireless connections.
As used herein, network node refers to equipment capable, configured, arranged and/or operable to communicate directly or indirectly with a wireless device and/or with other network nodes or equipment in the wireless network to enable and/or provide wireless access to the wireless device and/or to perform other functions (e.g., administration) in the wireless network. Examples of network nodes include, but are not limited to, access points (APs) (e.g., radio access points) , base stations (BSs) (e.g., radio base stations, Node Bs, evolved Node Bs (eNBs) and NR NodeBs (gNBs) ) . Base stations may be categorized based on the amount of coverage they provide (or, stated differently, their transmit power level) and may then also be referred to as femto base stations, pico base stations, micro base stations, or macro base stations. A base station may be a relay node or a relay donor node controlling a relay. A network node may also include one or more (or all) parts of a distributed radio base station such as centralized digital units and/or remote radio units (RRUs) , sometimes referred to as Remote Radio Heads (RRHs) . Such remote radio units may or may not be integrated with an antenna as an antenna integrated radio. Parts of a distributed radio base station may also be referred to as nodes in a distributed antenna system (DAS) . Yet further examples of network nodes include multi-standard radio (MSR) equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, multi-cell/multicast coordination entities (MCEs) , core network nodes (e.g., MSCs, MMEs) ,  O&M nodes, OSS nodes, SON nodes, positioning nodes (e.g., E-SMLCs) , and/or MDTs. As another example, a network node may be a virtual network node as described in more detail below. More generally, however, network nodes may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a wireless device with access to the wireless network or to provide some service to a wireless device that has accessed the wireless network.
In FIG. 9, network node 1060 includes processing circuitry 1070, device readable medium 1080, interface 1090, auxiliary equipment 1084, power source 1086, power circuitry 1087, and antenna 1062. Although network node 1060 illustrated in the example wireless network of FIG. 9 may represent a device that includes the illustrated combination of hardware components, other embodiments may comprise network nodes with different combinations of components. It is to be understood that a network node comprises any suitable combination of hardware and/or software needed to perform the tasks, features, functions and methods disclosed herein. Moreover, while the components of network node 1060 are depicted as single boxes located within a larger box, or nested within multiple boxes, in practice, a network node may comprise multiple different physical components that make up a single illustrated component (e.g., device readable medium 1080 may comprise multiple separate hard drives as well as multiple RAM modules) .
Similarly, network node 1060 may be composed of multiple physically separate components (e.g., a NodeB component and a RNC component, or a BTS component and a BSC component, etc. ) , which may each have their own respective components. In certain scenarios in which network node 1060 comprises multiple separate components (e.g., BTS and BSC components) , one or more of the separate components may be shared among several network nodes. For example, a single RNC may control multiple NodeB’s. In such a scenario, each unique NodeB and RNC pair, may in some instances be considered a single separate network node. In some embodiments, network node 1060 may be configured to support multiple radio access technologies (RATs) . In such embodiments, some components may be duplicated (e.g., separate device readable medium 1080 for the different RATs) and some components may be reused (e.g., the same antenna 1062 may be shared by the RATs) . Network node 1060 may also include multiple sets of the various illustrated components for different wireless technologies integrated into network node 1060, such as, for example, GSM, WCDMA, LTE, NR, WiFi, or Bluetooth wireless technologies. These wireless technologies may be integrated into the same or different chip or set of chips and other components within network node 1060.
Processing circuitry 1070 is configured to perform any determining, calculating, or similar operations (e.g., certain obtaining operations) described herein as being provided by a network node. These operations performed by processing circuitry 1070 may include processing  information obtained by processing circuitry 1070 by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored in the network node, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.
Processing circuitry 1070 may comprise a combination of one or more of a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application-specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or combination of hardware, software and/or encoded logic operable to provide, either alone or in conjunction with other network node 1060 components, such as device readable medium 1080, network node 1060 functionality. For example, processing circuitry 1070 may execute instructions stored in device readable medium 1080 or in memory within processing circuitry 1070. Such functionality may include providing any of the various wireless features, functions, or benefits discussed herein. In some embodiments, processing circuitry 1070 may include a system on a chip (SOC) .
In some embodiments, processing circuitry 1070 may include one or more of radio frequency (RF) transceiver circuitry 1072 and baseband processing circuitry 1074. In some embodiments, radio frequency (RF) transceiver circuitry 1072 and baseband processing circuitry 1074 may be on separate chips (or sets of chips) , boards, or units, such as radio units and digital units. In alternative embodiments, part or all of RF transceiver circuitry 1072 and baseband processing circuitry 1074 may be on the same chip or set of chips, boards, or units
In certain embodiments, some or all of the functionality described herein as being provided by a network node, base station, eNB or other such network node may be performed by processing circuitry 1070 executing instructions stored on device readable medium 1080 or memory within processing circuitry 1070. In alternative embodiments, some or all of the functionality may be provided by processing circuitry 1070 without executing instructions stored on a separate or discrete device readable medium, such as in a hard-wired manner. In any of those embodiments, whether executing instructions stored on a device readable storage medium or not, processing circuitry 1070 can be configured to perform the described functionality. The benefits provided by such functionality are not limited to processing circuitry 1070 alone or to other components of network node 1060, but are enjoyed by network node 1060 as a whole, and/or by end users and the wireless network generally.
Device readable medium 1080 may comprise any form of volatile or non-volatile computer readable memory including, without limitation, persistent storage, solid-state memory, remotely mounted memory, magnetic media, optical media, random access memory (RAM) ,  read-only memory (ROM) , mass storage media (for example, a hard disk) , removable storage media (for example, a flash drive, a Compact Disk (CD) or a Digital Video Disk (DVD) ) , and/or any other volatile or non-volatile, non-transitory device readable and/or computer-executable memory devices that store information, data, and/or instructions that may be used by processing circuitry 1070. Device readable medium 1080 may store any suitable instructions, data or information, including a computer program, software, an application including one or more of logic, rules, code, tables, etc. and/or other instructions capable of being executed by processing circuitry 1070 and, utilized by network node 1060. Device readable medium 1080 may be used to store any calculations made by processing circuitry 1070 and/or any data received via interface 1090. In some embodiments, processing circuitry 1070 and device readable medium 1080 may be considered to be integrated.
Interface 1090 is used in the wired or wireless communication of signalling and/or data between network node 1060, network 1006, and/or WDs 1010. As illustrated, interface 1090 comprises port (s) /terminal (s) 1094 to send and receive data, for example to and from network 1006 over a wired connection. Interface 1090 also includes radio front end circuitry 1092 that may be coupled to, or in certain embodiments a part of, antenna 1062. Radio front end circuitry 1092 comprises filters 1098 and amplifiers 1096. Radio front end circuitry 1092 may be connected to antenna 1062 and processing circuitry 1070. Radio front end circuitry may be configured to condition signals communicated between antenna 1062 and processing circuitry 1070. Radio front end circuitry 1092 may receive digital data that is to be sent out to other network nodes or WDs via a wireless connection. Radio front end circuitry 1092 may convert the digital data into a radio signal having the appropriate channel and bandwidth parameters using a combination of filters 1098 and/or amplifiers 1096. The radio signal may then be transmitted via antenna 1062. Similarly, when receiving data, antenna 1062 may collect radio signals which are then converted into digital data by radio front end circuitry 1092. The digital data may be passed to processing circuitry 1070. In other embodiments, the interface may comprise different components and/or different combinations of components.
In certain alternative embodiments, network node 1060 may not include separate radio front end circuitry 1092, instead, processing circuitry 1070 may comprise radio front end circuitry and may be connected to antenna 1062 without separate radio front end circuitry 1092. Similarly, in some embodiments, all or some of RF transceiver circuitry 1072 may be considered a part of interface 1090. In still other embodiments, interface 1090 may include one or more ports or terminals 1094, radio front end circuitry 1092, and RF transceiver circuitry 1072, as part of a radio unit (not shown) , and interface 1090 may communicate with baseband processing circuitry 1074, which is part of a digital unit (not shown) .
Antenna 1062 may include one or more antennas, or antenna arrays, configured to send and/or receive wireless signals. Antenna 1062 may be coupled to radio front end circuitry 1090 and may be any type of antenna capable of transmitting and receiving data and/or signals wirelessly. In some embodiments, antenna 1062 may comprise one or more omni-directional, sector or panel antennas operable to transmit/receive radio signals between, for example, 2 GHz and 66 GHz. An omni-directional antenna may be used to transmit/receive radio signals in any direction, a sector antenna may be used to transmit/receive radio signals from devices within a particular area, and a panel antenna may be a line of sight antenna used to transmit/receive radio signals in a relatively straight line. In some instances, the use of more than one antenna may be referred to as MIMO. In certain embodiments, antenna 1062 may be separate from network node 1060 and may be connectable to network node 1060 through an interface or port.
Antenna 1062, interface 1090, and/or processing circuitry 1070 may be configured to perform any receiving operations and/or certain obtaining operations described herein as being performed by a network node. Any information, data and/or signals may be received from a wireless device, another network node and/or any other network equipment. Similarly, antenna 1062, interface 1090, and/or processing circuitry 1070 may be configured to perform any transmitting operations described herein as being performed by a network node. Any information, data and/or signals may be transmitted to a wireless device, another network node and/or any other network equipment.
Power circuitry 1087 may comprise, or be coupled to, power management circuitry and is configured to supply the components of network node 1060 with power for performing the functionality described herein. Power circuitry 1087 may receive power from power source 1086. Power source 1086 and/or power circuitry 1087 may be configured to provide power to the various components of network node 1060 in a form suitable for the respective components (e.g., at a voltage and current level needed for each respective component) . Power source 1086 may either be included in, or external to, power circuitry 1087 and/or network node 1060. For example, network node 1060 may be connectable to an external power source (e.g., an electricity outlet) via an input circuitry or interface such as an electrical cable, whereby the external power source supplies power to power circuitry 1087. As a further example, power source 1086 may comprise a source of power in the form of a battery or battery pack which is connected to, or integrated in, power circuitry 1087. The battery may provide backup power should the external power source fail. Other types of power sources, such as photovoltaic devices, may also be used.
Alternative embodiments of network node 1060 may include additional components beyond those shown in FIG. 9 that may be responsible for providing certain aspects of the network node’s functionality, including any of the functionality described herein and/or any functionality  necessary to support the subject matter described herein. For example, network node 1060 may include user interface equipment to allow input of information into network node 1060 and to allow output of information from network node 1060. This may allow a user to perform diagnostic, maintenance, repair, and other administrative functions for network node 1060.
As used herein, wireless device (WD) refers to a device capable, configured, arranged and/or operable to communicate wirelessly with network nodes and/or other wireless devices. Unless otherwise noted, the term WD may be used interchangeably herein with user equipment (UE) . Communicating wirelessly may involve transmitting and/or receiving wireless signals using electromagnetic waves, radio waves, infrared waves, and/or other types of signals suitable for conveying information through air. In some embodiments, a WD may be configured to transmit and/or receive information without direct human interaction. For instance, a WD may be designed to transmit information to a network on a predetermined schedule, when triggered by an internal or external event, or in response to requests from the network. Examples of a WD include, but are not limited to, a smart phone, a mobile phone, a cell phone, a voice over IP (VoIP) phone, a wireless local loop phone, a desktop computer, a personal digital assistant (PDA) , a wireless cameras, a gaming console or device, a music storage device, a playback appliance, a wearable terminal device, a wireless endpoint, a mobile station, a tablet, a laptop, a laptop-embedded equipment (LEE) , a laptop-mounted equipment (LME) , a smart device, a wireless customer-premise equipment (CPE) , a vehicle-mounted wireless terminal device, etc. A WD may support device-to-device (D2D) communication, for example by implementing a 3GPP standard for sidelink communication, vehicle-to-vehicle (V2V) , vehicle-to-infrastructure (V2I) , vehicle-to-everything (V2X) and may in this case be referred to as a D2D communication device. As yet another specific example, in an Internet of Things (IoT) scenario, a WD may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another WD and/or a network node. The WD may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as an MTC device. As one particular example, the WD may be a UE implementing the 3GPP narrow band internet of things (NB-IoT) standard. Particular examples of such machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances (e.g. refrigerators, televisions, etc. ) personal wearables (e.g., watches, fitness trackers, etc. ) . In other scenarios, a WD may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation. A WD as described above may represent the endpoint of a wireless connection, in which case the device may be referred to as a wireless terminal. Furthermore, a WD as described  above may be mobile, in which case it may also be referred to as a mobile device or a mobile terminal.
As illustrated, wireless device 1010 includes antenna 1011, interface 1014, processing circuitry 1020, device readable medium 1030, user interface equipment 1032, auxiliary equipment 1034, power source 1036 and power circuitry 1037. WD 1010 may include multiple sets of one or more of the illustrated components for different wireless technologies supported by WD 1010, such as, for example, GSM, WCDMA, LTE, NR, WiFi, WiMAX, or Bluetooth wireless technologies, just to mention a few. These wireless technologies may be integrated into the same or different chips or set of chips as other components within WD 1010.
Antenna 1011 may include one or more antennas or antenna arrays, configured to send and/or receive wireless signals, and is connected to interface 1014. In certain alternative embodiments, antenna 1011 may be separate from WD 1010 and be connectable to WD 1010 through an interface or port. Antenna 1011, interface 1014, and/or processing circuitry 1020 may be configured to perform any receiving or transmitting operations described herein as being performed by a WD. Any information, data and/or signals may be received from a network node and/or another WD. In some embodiments, radio front end circuitry and/or antenna 1011 may be considered an interface.
As illustrated, interface 1014 comprises radio front end circuitry 1012 and antenna 1011. Radio front end circuitry 1012 comprise one or more filters 1018 and amplifiers 1016. Radio front end circuitry 1014 is connected to antenna 1011 and processing circuitry 1020, and is configured to condition signals communicated between antenna 1011 and processing circuitry 1020. Radio front end circuitry 1012 may be coupled to or a part of antenna 1011. In some embodiments, WD 1010 may not include separate radio front end circuitry 1012; rather, processing circuitry 1020 may comprise radio front end circuitry and may be connected to antenna 1011. Similarly, in some embodiments, some or all of RF transceiver circuitry 1022 may be considered a part of interface 1014. Radio front end circuitry 1012 may receive digital data that is to be sent out to other network nodes or WDs via a wireless connection. Radio front end circuitry 1012 may convert the digital data into a radio signal having the appropriate channel and bandwidth parameters using a combination of filters 1018 and/or amplifiers 1016. The radio signal may then be transmitted via antenna 1011. Similarly, when receiving data, antenna 1011 may collect radio signals which are then converted into digital data by radio front end circuitry 1012. The digital data may be passed to processing circuitry 1020. In other embodiments, the interface may comprise different components and/or different combinations of components.
Processing circuitry 1020 may comprise a combination of one or more of a microprocessor, controller, microcontroller, central processing unit, digital signal processor,  application-specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or combination of hardware, software, and/or encoded logic operable to provide, either alone or in conjunction with other WD 1010 components, such as device readable medium 1030, WD 1010 functionality. Such functionality may include providing any of the various wireless features or benefits discussed herein. For example, processing circuitry 1020 may execute instructions stored in device readable medium 1030 or in memory within processing circuitry 1020 to provide the functionality disclosed herein.
As illustrated, processing circuitry 1020 includes one or more of RF transceiver circuitry 1022, baseband processing circuitry 1024, and application processing circuitry 1026. In other embodiments, the processing circuitry may comprise different components and/or different combinations of components. In certain embodiments processing circuitry 1020 of WD 1010 may comprise a SOC. In some embodiments, RF transceiver circuitry 1022, baseband processing circuitry 1024, and application processing circuitry 1026 may be on separate chips or sets of chips. In alternative embodiments, part or all of baseband processing circuitry 1024 and application processing circuitry 1026 may be combined into one chip or set of chips, and RF transceiver circuitry 1022 may be on a separate chip or set of chips. In still alternative embodiments, part or all of RF transceiver circuitry 1022 and baseband processing circuitry 1024 may be on the same chip or set of chips, and application processing circuitry 1026 may be on a separate chip or set of chips. In yet other alternative embodiments, part or all of RF transceiver circuitry 1022, baseband processing circuitry 1024, and application processing circuitry 1026 may be combined in the same chip or set of chips. In some embodiments, RF transceiver circuitry 1022 may be a part of interface 1014. RF transceiver circuitry 1022 may condition RF signals for processing circuitry 1020.
In certain embodiments, some or all of the functionality described herein as being performed by a WD may be provided by processing circuitry 1020 executing instructions stored on device readable medium 1030, which in certain embodiments may be a computer-readable storage medium. In alternative embodiments, some or all of the functionality may be provided by processing circuitry 1020 without executing instructions stored on a separate or discrete device readable storage medium, such as in a hard-wired manner. In any of those particular embodiments, whether executing instructions stored on a device readable storage medium or not, processing circuitry 1020 can be configured to perform the described functionality. The benefits provided by such functionality are not limited to processing circuitry 1020 alone or to other components of WD 1010, but are enjoyed by WD 1010 as a whole, and/or by end users and the wireless network generally.
Processing circuitry 1020 may be configured to perform any determining, calculating, or similar operations (e.g., certain obtaining operations) described herein as being performed by a WD. These operations, as performed by processing circuitry 1020, may include processing information obtained by processing circuitry 1020 by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored by WD 1010, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.
Device readable medium 1030 may be operable to store a computer program, software, an application including one or more of logic, rules, code, tables, etc. and/or other instructions capable of being executed by processing circuitry 1020. Device readable medium 1030 may include computer memory (e.g., Random Access Memory (RAM) or Read Only Memory (ROM) ) , mass storage media (e.g., a hard disk) , removable storage media (e.g., a Compact Disk (CD) or a Digital Video Disk (DVD) ) , and/or any other volatile or non-volatile, non-transitory device readable and/or computer executable memory devices that store information, data, and/or instructions that may be used by processing circuitry 1020. In some embodiments, processing circuitry 1020 and device readable medium 1030 may be considered to be integrated.
User interface equipment 1032 may provide components that allow for a human user to interact with WD 1010. Such interaction may be of many forms, such as visual, audial, tactile, etc. User interface equipment 1032 may be operable to produce output to the user and to allow the user to provide input to WD 1010. The type of interaction may vary depending on the type of user interface equipment 1032 installed in WD 1010. For example, if WD 1010 is a smart phone, the interaction may be via a touch screen; if WD 1010 is a smart meter, the interaction may be through a screen that provides usage (e.g., the number of gallons used) or a speaker that provides an audible alert (e.g., if smoke is detected) . User interface equipment 1032 may include input interfaces, devices and circuits, and output interfaces, devices and circuits. User interface equipment 1032 is configured to allow input of information into WD 1010, and is connected to processing circuitry 1020 to allow processing circuitry 1020 to process the input information. User interface equipment 1032 may include, for example, a microphone, a proximity or other sensor, keys/buttons, a touch display, one or more cameras, a USB port, or other input circuitry. User interface equipment 1032 is also configured to allow output of information from WD 1010, and to allow processing circuitry 1020 to output information from WD 1010. User interface equipment 1032 may include, for example, a speaker, a display, vibrating circuitry, a USB port, a headphone interface, or other output circuitry. Using one or more input and output interfaces, devices, and  circuits, of user interface equipment 1032, WD 1010 may communicate with end users and/or the wireless network, and allow them to benefit from the functionality described herein.
Auxiliary equipment 1034 is operable to provide more specific functionality which may not be generally performed by WDs. This may comprise specialized sensors for doing measurements for various purposes, interfaces for additional types of communication such as wired communications etc. The inclusion and type of components of auxiliary equipment 1034 may vary depending on the embodiment and/or scenario.
Power source 1036 may, in some embodiments, be in the form of a battery or battery pack. Other types of power sources, such as an external power source (e.g., an electricity outlet) , photovoltaic devices or power cells, may also be used. WD 1010 may further comprise power circuitry 1037 for delivering power from power source 1036 to the various parts of WD 1010 which need power from power source 1036 to carry out any functionality described or indicated herein. Power circuitry 1037 may in certain embodiments comprise power management circuitry. Power circuitry 1037 may additionally or alternatively be operable to receive power from an external power source; in which case WD 1010 may be connectable to the external power source (such as an electricity outlet) via input circuitry or an interface such as an electrical power cable. Power circuitry 1037 may also in certain embodiments be operable to deliver power from an external power source to power source 1036. This may be, for example, for the charging of power source 1036. Power circuitry 1037 may perform any formatting, converting, or other modification to the power from power source 1036 to make the power suitable for the respective components of WD 1010 to which power is supplied.
FIG. 10 is a schematic showing a user equipment in accordance with some embodiments.
FIG. 10 illustrates one embodiment of a UE in accordance with various aspects described herein. As used herein, a user equipment or UE may not necessarily have a user in the sense of a human user who owns and/or operates the relevant device. Instead, a UE may represent a device that is intended for sale to, or operation by, a human user but which may not, or which may not initially, be associated with a specific human user (e.g., a smart sprinkler controller) . Alternatively, a UE may represent a device that is not intended for sale to, or operation by, an end user but which may be associated with or operated for the benefit of a user (e.g., a smart power meter) . UE 1100 may be any UE identified by the 3rd Generation Partnership Project (3GPP) , including a NB-IoT UE, a machine type communication (MTC) UE, and/or an enhanced MTC (eMTC) UE. UE 1100, as illustrated in FIG. 10, is one example of a WD configured for communication in accordance with one or more communication standards promulgated by the 3rd Generation Partnership Project (3GPP) , such as 3GPP’s GSM, UMTS, LTE, and/or 5G standards.  As mentioned previously, the term WD and UE may be used interchangeable. Accordingly, although FIG. 10 is a UE, the components discussed herein are equally applicable to a WD, and vice-versa.
In FIG. 10, UE 1100 includes processing circuitry 1101 that is operatively coupled to input/output interface 1105, radio frequency (RF) interface 1109, network connection interface 1111, memory 1115 including random access memory (RAM) 1117, read-only memory (ROM) 1119, and storage medium 1121 or the like, communication subsystem 1131, power source 1133, and/or any other component, or any combination thereof. Storage medium 1121 includes operating system 1123, application program 1125, and data 1127. In other embodiments, storage medium 1121 may include other similar types of information. Certain UEs may utilize all of the components shown in FIG. 10, or only a subset of the components. The level of integration between the components may vary from one UE to another UE. Further, certain UEs may contain multiple instances of a component, such as multiple processors, memories, transceivers, transmitters, receivers, etc.
In FIG. 10, processing circuitry 1101 may be configured to process computer instructions and data. Processing circuitry 1101 may be configured to implement any sequential state machine operative to execute machine instructions stored as machine-readable computer programs in the memory, such as one or more hardware-implemented state machines (e.g., in discrete logic, FPGA, ASIC, etc. ) ; programmable logic together with appropriate firmware; one or more stored program, general-purpose processors, such as a microprocessor or Digital Signal Processor (DSP) , together with appropriate software; or any combination of the above. For example, the processing circuitry 1101 may include two central processing units (CPUs) . Data may be information in a form suitable for use by a computer.
In the depicted embodiment, input/output interface 1105 may be configured to provide a communication interface to an input device, output device, or input and output device. UE 1100 may be configured to use an output device via input/output interface 1105. An output device may use the same type of interface port as an input device. For example, a USB port may be used to provide input to and output from UE 1100. The output device may be a speaker, a sound card, a video card, a display, a monitor, a printer, an actuator, an emitter, a smartcard, another output device, or any combination thereof. UE 1100 may be configured to use an input device via input/output interface 1105 to allow a user to capture information into UE 1100. The input device may include a touch-sensitive or presence-sensitive display, a camera (e.g., a digital camera, a digital video camera, a web camera, etc. ) , a microphone, a sensor, a mouse, a trackball, a directional pad, a trackpad, a scroll wheel, a smartcard, and the like. The presence-sensitive display may include a capacitive or resistive touch sensor to sense input from a user. A sensor may  be, for instance, an accelerometer, a gyroscope, a tilt sensor, a force sensor, a magnetometer, an optical sensor, a proximity sensor, another like sensor, or any combination thereof. For example, the input device may be an accelerometer, a magnetometer, a digital camera, a microphone, and an optical sensor.
In FIG. 10, RF interface 1109 may be configured to provide a communication interface to RF components such as a transmitter, a receiver, and an antenna. Network connection interface 1111 may be configured to provide a communication interface to network 1143a. Network 1143a may encompass wired and/or wireless networks such as a local-area network (LAN) , a wide-area network (WAN) , a computer network, a wireless network, a telecommunications network, another like network or any combination thereof. For example, network 1143a may comprise a Wi-Fi network. Network connection interface 1111 may be configured to include a receiver and a transmitter interface used to communicate with one or more other devices over a communication network according to one or more communication protocols, such as Ethernet, TCP/IP, SONET, ATM, or the like. Network connection interface 1111 may implement receiver and transmitter functionality appropriate to the communication network links (e.g., optical, electrical, and the like) . The transmitter and receiver functions may share circuit components, software or firmware, or alternatively may be implemented separately.
RAM 1117 may be configured to interface via bus 1102 to processing circuitry 1101 to provide storage or caching of data or computer instructions during the execution of software programs such as the operating system, application programs, and device drivers. ROM 1119 may be configured to provide computer instructions or data to processing circuitry 1101. For example, ROM 1119 may be configured to store invariant low-level system code or data for basic system functions such as basic input and output (I/O) , startup, or reception of keystrokes from a keyboard that are stored in a non-volatile memory. Storage medium 1121 may be configured to include memory such as RAM, ROM, programmable read-only memory (PROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , magnetic disks, optical disks, floppy disks, hard disks, removable cartridges, or flash drives. In one example, storage medium 1121 may be configured to include operating system 1123, application program 1125 such as a web browser application, a widget or gadget engine or another application, and data file 1127. Storage medium 1121 may store, for use by UE 1100, any of a variety of various operating systems or combinations of operating systems.
Storage medium 1121 may be configured to include a number of physical drive units, such as redundant array of independent disks (RAID) , floppy disk drive, flash memory, USB flash drive, external hard disk drive, thumb drive, pen drive, key drive, high-density digital versatile disc (HD-DVD) optical disc drive, internal hard disk drive, Blu-Ray optical disc drive,  holographic digital data storage (HDDS) optical disc drive, external mini-dual in-line memory module (DIMM) , synchronous dynamic random access memory (SDRAM) , external micro-DIMM SDRAM, smartcard memory such as a subscriber identity module or a removable user identity (SIM/RUIM) module, other memory, or any combination thereof. Storage medium 1121 may allow UE 1100 to access computer-executable instructions, application programs or the like, stored on transitory or non-transitory memory media, to off-load data, or to upload data. An article of manufacture, such as one utilizing a communication system may be tangibly embodied in storage medium 1121, which may comprise a device readable medium.
In FIG. 10, processing circuitry 1101 may be configured to communicate with network 1143b using communication subsystem 1131. Network 1143a and network 1143b may be the same network or networks or different network or networks. Communication subsystem 1131 may be configured to include one or more transceivers used to communicate with network 1143b. For example, communication subsystem 1131 may be configured to include one or more transceivers used to communicate with one or more remote transceivers of another device capable of wireless communication such as another WD, UE, or base station of a radio access network (RAN) according to one or more communication protocols, such as IEEE 802.11, CDMA, WCDMA, GSM, LTE, UTRAN, WiMax, or the like. Each transceiver may include transmitter 1133 and/or receiver 1135 to implement transmitter or receiver functionality, respectively, appropriate to the RAN links (e.g., frequency allocations and the like) . Further, transmitter 1133 and receiver 1135 of each transceiver may share circuit components, software or firmware, or alternatively may be implemented separately.
In the illustrated embodiment, the communication functions of communication subsystem 1131 may include data communication, voice communication, multimedia communication, short-range communications such as Bluetooth, near-field communication, location-based communication such as the use of the global positioning system (GPS) to determine a location, another like communication function, or any combination thereof. For example, communication subsystem 1131 may include cellular communication, Wi-Fi communication, Bluetooth communication, and GPS communication. Network 1143b may encompass wired and/or wireless networks such as a local-area network (LAN) , a wide-area network (WAN) , a computer network, a wireless network, a telecommunications network, another like network or any combination thereof. For example, network 1143b may be a cellular network, a Wi-Fi network, and/or a near-field network. Power source 1113 may be configured to provide alternating current (AC) or direct current (DC) power to components of UE 1100.
The features, benefits and/or functions described herein may be implemented in one of the components of UE 1100 or partitioned across multiple components of UE 1100. Further, the  features, benefits, and/or functions described herein may be implemented in any combination of hardware, software or firmware. In one example, communication subsystem 1131 may be configured to include any of the components described herein. Further, processing circuitry 1101 may be configured to communicate with any of such components over bus 1102. In another example, any of such components may be represented by program instructions stored in memory that when executed by processing circuitry 1101 perform the corresponding functions described herein. In another example, the functionality of any of such components may be partitioned between processing circuitry 1101 and communication subsystem 1131. In another example, the non-computationally intensive functions of any of such components may be implemented in software or firmware and the computationally intensive functions may be implemented in hardware.
FIG. 11 is a schematic showing a virtualization environment in accordance with some embodiments.
FIG. 11 is a schematic block diagram illustrating a virtualization environment 1200 in which functions implemented by some embodiments may be virtualized. In the present context, virtualizing means creating virtual versions of apparatuses or devices which may include virtualizing hardware platforms, storage devices and networking resources. As used herein, virtualization can be applied to a node (e.g., a virtualized base station or a virtualized radio access node) or to a device (e.g., a UE, a wireless device or any other type of communication device) or components thereof and relates to an implementation in which at least a portion of the functionality is implemented as one or more virtual components (e.g., via one or more applications, components, functions, virtual machines or containers executing on one or more physical processing nodes in one or more networks) .
In some embodiments, some or all of the functions described herein may be implemented as virtual components executed by one or more virtual machines implemented in one or more virtual environments 1200 hosted by one or more of hardware nodes 1230. Further, in embodiments in which the virtual node is not a radio access node or does not require radio connectivity (e.g., a core network node) , then the network node may be entirely virtualized.
The functions may be implemented by one or more applications 1220 (which may alternatively be called software instances, virtual appliances, network functions, virtual nodes, virtual network functions, etc. ) operative to implement some of the features, functions, and/or benefits of some of the embodiments disclosed herein. Applications 1220 are run in virtualization environment 1200 which provides hardware 1230 comprising processing circuitry 1260 and memory 1290-1. Memory 1290-1 contains instructions 1295 executable by processing circuitry  1260 whereby application 1220 is operative to provide one or more of the features, benefits, and/or functions disclosed herein.
Virtualization environment 1200, comprises general-purpose or special-purpose network hardware devices 1230 comprising a set of one or more processors or processing circuitry 1260, which may be commercial off-the-shelf (COTS) processors, dedicated Application Specific Integrated Circuits (ASICs) , or any other type of processing circuitry including digital or analog hardware components or special purpose processors. Each hardware device may comprise memory 1290-1 which may be non-persistent memory for temporarily storing instructions 1295 or software executed by processing circuitry 1260. Each hardware device may comprise one or more network interface controllers (NICs) 1270, also known as network interface cards, which include physical network interface 1280. Each hardware device may also include non-transitory, persistent, machine-readable storage media 1290-2 having stored therein software 1295 and/or instructions executable by processing circuitry 1260. Software 1295 may include any type of software including software for instantiating one or more virtualization layers 1250 (also referred to as hypervisors) , software to execute virtual machines 1240 as well as software allowing it to execute functions, features and/or benefits described in relation with some embodiments described herein.
Virtual machines 1240, comprise virtual processing, virtual memory, virtual networking or interface and virtual storage, and may be run by a corresponding virtualization layer 1250 or hypervisor. Different embodiments of the instance of virtual appliance 1220 may be implemented on one or more of virtual machines 1240, and the implementations may be made in different ways.
During operation, processing circuitry 1260 executes software 1295 to instantiate the hypervisor or virtualization layer 1250, which may sometimes be referred to as a virtual machine monitor (VMM) . Virtualization layer 1250 may present a virtual operating platform that appears like networking hardware to virtual machine 1240.
As shown in FIG. 11, hardware 1230 may be a standalone network node with generic or specific components. Hardware 1230 may comprise antenna 12225 and may implement some functions via virtualization. Alternatively, hardware 1230 may be part of a larger cluster of hardware (e.g. such as in a data center or customer premise equipment (CPE) ) where many hardware nodes work together and are managed via management and orchestration (MANO) 12100, which, among others, oversees lifecycle management of applications 1220.
Virtualization of the hardware is in some contexts referred to as network function virtualization (NFV) . NFV may be used to consolidate many network equipment types onto industry standard high volume server hardware, physical switches, and physical storage, which can be located in data centers, and customer premise equipment.
In the context of NFV, virtual machine 1240 may be a software implementation of a physical machine that runs programs as if they were executing on a physical, non-virtualized machine. Each of virtual machines 1240, and that part of hardware 1230 that executes that virtual machine, be it hardware dedicated to that virtual machine and/or hardware shared by that virtual machine with others of the virtual machines 1240, forms a separate virtual network elements (VNE) .
Still in the context of NFV, Virtual Network Function (VNF) is responsible for handling specific network functions that run in one or more virtual machines 1240 on top of hardware networking infrastructure 1230 and corresponds to application 1220 in FIG. 11.
In some embodiments, one or more radio units 12200 that each include one or more transmitters 12220 and one or more receivers 12210 may be coupled to one or more antennas 12225. Radio units 12200 may communicate directly with hardware nodes 1230 via one or more appropriate network interfaces and may be used in combination with the virtual components to provide a virtual node with radio capabilities, such as a radio access node or a base station.
In some embodiments, some signalling can be effected with the use of control system 12230 which may alternatively be used for communication between the hardware nodes 1230 and radio units 12200.
FIG. 12 is a schematic showing a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments.
With reference to FIG. 12, in accordance with an embodiment, a communication system includes telecommunication network 1310, such as a 3GPP-type cellular network, which comprises access network 1311, such as a radio access network, and core network 1314. Access network 1311 comprises a plurality of base stations 1312a, 1312b, 1312c, such as NBs, eNBs, gNBs or other types of wireless access points, each defining a corresponding coverage area 1313a, 1313b, 1313c. Each base station 1312a, 1312b, 1312c is connectable to core network 1314 over a wired or wireless connection 1315. A UE 1391 located in coverage area 1313c is configured to wirelessly connect to, or be paged by, the corresponding base station 1312c. A relay UE 1392 in coverage area 1313a is wirelessly connectable to the corresponding base station 1312a. While a plurality of UEs 1391, 1392 are illustrated in this example, the disclosed embodiments are equally applicable to a situation where a sole UE is in the coverage area or where a sole UE is connecting to the corresponding base station 1312a or 1312b or 1312c .
Telecommunication network 1310 is itself connected to host computer 1330, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server or as processing resources in a server farm. Host computer 1330 may be under the ownership or control of a service provider, or may be operated by the service  provider or on behalf of the service provider. Connections 1321 and 1322 between telecommunication network 1310 and host computer 1330 may extend directly from core network 1314 to host computer 1330 or may go via an optional intermediate network 1320. Intermediate network 1320 may be one of, or a combination of more than one of, a public, private or hosted network; intermediate network 1320, if any, may be a backbone network or the Internet; in particular, intermediate network 1320 may comprise two or more sub-networks (not shown) .
The communication system of FIG. 12 as a whole enables connectivity between the connected UEs 1391, 1392 and host computer 1330. The connectivity may be described as an over-the-top (OTT) connection 1350. Host computer 1330 and the connected UEs 1391, 1392 are configured to communicate data and/or signalling via OTT connection 1350, using access network 1311, core network 1314, any intermediate network 1320 and possible further infrastructure (not shown) as intermediaries. OTT connection 1350 may be transparent in the sense that the participating communication devices through which OTT connection 1350 passes are unaware of routing of uplink and downlink communications. For example, base station 1312a or 1312b or 1312c may not or need not be informed about the past routing of an incoming downlink communication with data originating from host computer 1330 to be forwarded (e.g., handed over) to a connected UE 1391. Similarly, base station 1312a or 1312b or 1312c need not be aware of the future routing of an outgoing uplink communication originating from the UE 1391 towards the host computer 1330.
FIG. 13 is a schematic showing a host computer communicating via a base station with a user equipment over a partially wireless connection in accordance with some embodiments.
Example implementations, in accordance with an embodiment, of the UE, base station and host computer discussed in the preceding paragraphs will now be described with reference to FIG. 13. In communication system 1400, host computer 1410 comprises hardware 1415 including communication interface 1416 configured to set up and maintain a wired or wireless connection with an interface of a different communication device of communication system 1400. Host computer 1410 further comprises processing circuitry 1418, which may have storage and/or processing capabilities. In particular, processing circuitry 1418 may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. Host computer 1410 further comprises software 1411, which is stored in or accessible by host computer 1410 and executable by processing circuitry 1418. Software 1411 includes host application 1412. Host application 1412 may be operable to provide a service to a remote user, such as UE 1430 connecting via OTT connection 1450 terminating at UE 1430 and host computer 1410. In  providing the service to the remote user, host application 1412 may provide user data which is transmitted using OTT connection 1450.
Communication system 1400 further includes base station 1420 provided in a telecommunication system and comprising hardware 1425 enabling it to communicate with host computer 1410 and with UE 1430. Hardware 1425 may include communication interface 1426 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of communication system 1400, as well as radio interface 1427 for setting up and maintaining at least wireless connection 1470 with UE 1430 located in a coverage area (not shown in FIG. 13) served by base station 1420. Communication interface 1426 may be configured to facilitate connection 1460 to host computer 1410. Connection 1460 may be direct or it may pass through a core network (not shown in FIG. 13) of the telecommunication system and/or through one or more intermediate networks outside the telecommunication system. In the embodiment shown, hardware 1425 of base station 1420 further includes processing circuitry 1428, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. Base station 1420 further has software 1421 stored internally or accessible via an external connection.
Communication system 1400 further includes UE 1430 already referred to. Its hardware 1435 may include radio interface 1437 configured to set up and maintain wireless connection 1470 with a base station serving a coverage area in which UE 1430 is currently located. Hardware 1435 of UE 1430 further includes processing circuitry 1438, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. UE 1430 further comprises software 1431, which is stored in or accessible by UE 1430 and executable by processing circuitry 1438. Software 1431 includes client application 1432. Client application 1432 may be operable to provide a service to a human or non-human user via UE 1430, with the support of host computer 1410. In host computer 1410, an executing host application 1412 may communicate with the executing client application 1432 via OTT connection 1450 terminating at UE 1430 and host computer 1410. In providing the service to the user, client application 1432 may receive request data from host application 1412 and provide user data in response to the request data. OTT connection 1450 may transfer both the request data and the user data. Client application 1432 may interact with the user to generate the user data that it provides.
It is noted that host computer 1410, base station 1420 and UE 1430 illustrated in FIG. 13 may be similar or identical to host computer 1330, one of base stations 1312a, 1312b, 1312c and one of UEs 1391, 1392 of FIG. 12, respectively. This is to say, the inner workings of  these entities may be as shown in FIG. 13 and independently, the surrounding network topology may be that of FIG. 12.
In FIG. 13, OTT connection 1450 has been drawn abstractly to illustrate the communication between host computer 1410 and UE 1430 via base station 1420, without explicit reference to any intermediary devices and the precise routing of messages via these devices. Network infrastructure may determine the routing, which it may be configured to hide from UE 1430 or from the service provider operating host computer 1410, or both. While OTT connection 1450 is active, the network infrastructure may further take decisions by which it dynamically changes the routing (e.g., on the basis of load balancing consideration or reconfiguration of the network) .
Wireless connection 1470 between UE 1430 and base station 1420 is in accordance with the teachings of the embodiments described throughout this disclosure. One or more of the various embodiments improve the performance of OTT services provided to UE 1430 using OTT connection 1450, in which wireless connection 1470 forms the last segment. More precisely, in some embodiments herein, it makes the Oauth2-based authorization work end to end in home routed roaming scenarios. In some embodiments herein, it can avoid the V-SMF to perform the additional NRF discovery for H-SMF or anchor SMF or V-SMF, which can reduce the network delay. In some embodiments herein, it can avoid the retransmission from V-SMF to H-SMF or old V-SMF due to unsuccessful cross PLMN requests (401 Unauthorized) , and reduce the network delay. In some embodiments herein, it can increase the success rate KPI for requests for example in home routed roaming scenarios.
A measurement procedure may be provided for the purpose of monitoring data rate, latency and other factors on which the one or more embodiments improve. There may further be an optional network functionality for reconfiguring OTT connection 1450 between host computer 1410 and UE 1430, in response to variations in the measurement results. The measurement procedure and/or the network functionality for reconfiguring OTT connection 1450 may be implemented in software 1411 and hardware 1415 of host computer 1410 or in software 1431 and hardware 1435 of UE 1430, or both. In embodiments, sensors (not shown) may be deployed in or in association with communication devices through which OTT connection 1450 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which software 1411, 1431 may compute or estimate the monitored quantities. The reconfiguring of OTT connection 1450 may include message format, retransmission settings, preferred routing etc.; the reconfiguring need not affect base station 1420, and it may be unknown or imperceptible to base station 1420. Such procedures and functionalities may be known and practiced in the art. In  certain embodiments, measurements may involve proprietary UE signalling facilitating host computer 1410’s measurements of throughput, propagation times, latency and the like. The measurements may be implemented in that software 1411 and 1431 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using OTT connection 1450 while it monitors propagation times, errors etc.
FIG. 14 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
FIG. 14 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to FIGs. 12 and 13. For simplicity of the present disclosure, only drawing references to FIG. 14 will be included in this section. In step 1510, the host computer provides user data. In substep 1511 (which may be optional) of step 1510, the host computer provides the user data by executing a host application. In step 1520, the host computer initiates a transmission carrying the user data to the UE. In step 1530 (which may be optional) , the base station transmits to the UE the user data which was carried in the transmission that the host computer initiated, in accordance with the teachings of the embodiments described throughout this disclosure. In step 1540 (which may also be optional) , the UE executes a client application associated with the host application executed by the host computer.
FIG. 15 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
FIG. 15 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to FIG. 12 and 13. For simplicity of the present disclosure, only drawing references to FIG. 15 will be included in this section. In step 1610 of the method, the host computer provides user data. In an optional substep (not shown) the host computer provides the user data by executing a host application. In step 1620, the host computer initiates a transmission carrying the user data to the UE. The transmission may pass via the base station, in accordance with the teachings of the embodiments described throughout this disclosure. In step 1630 (which may be optional) , the UE receives the user data carried in the transmission.
FIG. 16 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
FIG. 16 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to FIGs. 12 and 13. For simplicity of the present disclosure, only drawing references to FIG. 16 will be included in this section. In step 1710 (which may be optional) , the UE receives input data provided by the host computer. Additionally or alternatively, in step 1720, the UE provides user data. In substep 1721 (which may be optional) of step 1720, the UE provides the user data by executing a client application. In substep 1711 (which may be optional) of step 1710, the UE executes a client application which provides the user data in reaction to the received input data provided by the host computer. In providing the user data, the executed client application may further consider user input received from the user. Regardless of the specific manner in which the user data was provided, the UE initiates, in substep 1730 (which may be optional) , transmission of the user data to the host computer. In step 1740 of the method, the host computer receives the user data transmitted from the UE, in accordance with the teachings of the embodiments described throughout this disclosure.
FIG. 17 is a schematic showing methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
FIG. 17 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to FIGs. 12 and 13. For simplicity of the present disclosure, only drawing references to FIG. 17 will be included in this section. In step 1810 (which may be optional) , in accordance with the teachings of the embodiments described throughout this disclosure, the base station receives user data from the UE. In step 1820 (which may be optional) , the base station initiates transmission of the received user data to the host computer. In step 1830 (which may be optional) , the host computer receives the user data carried in the transmission initiated by the base station.
According to an aspect of the disclosure it is provided a computer program product being tangibly stored on a computer readable storage medium and including instructions which, when executed on at least one processor, cause the at least one processor to carry out any of the methods as described above.
According to an aspect of the disclosure it is provided a computer-readable storage medium storing instructions which when executed by at least one processor, cause the at least one processor to carry out any of the methods as described above.
In addition, the present disclosure may also provide a carrier containing the computer program as mentioned above, wherein the carrier is one of an electronic signal, optical signal,  radio signal, or computer readable storage medium. The computer readable storage medium can be, for example, an optical compact disk or an electronic memory device like a RAM (random access memory) , a ROM (read only memory) , Flash memory, magnetic tape, CD-ROM, DVD, Blue-ray disc and the like.
The techniques described herein may be implemented by various means so that an apparatus implementing one or more functions of a corresponding apparatus described with an embodiment comprises not only prior art means, but also means for implementing the one or more functions of the corresponding apparatus described with the embodiment and it may comprise separate means for each separate function, or means that may be configured to perform two or more functions. For example, these techniques may be implemented in hardware (one or more apparatuses) , firmware (one or more apparatuses) , software (one or more modules) , or combinations thereof. For a firmware or software, implementation may be made through modules (e.g., procedures, functions, and so on) that perform the functions described herein.
Exemplary embodiments herein have been described above with reference to block diagrams and flowchart illustrations of methods and apparatuses. It will be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by various means including computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create means for implementing the functions specified in the flowchart block or blocks.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the subject matter described herein, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any implementation or of what may be claimed, but  rather as descriptions of features that may be specific to particular embodiments of particular implementations. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The above described embodiments are given for describing rather than limiting the disclosure, and it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the disclosure as those skilled in the art readily understand. Such modifications and variations are considered to be within the scope of the disclosure and the appended claims. The protection scope of the disclosure is defined by the accompanying claims.

Claims (27)

  1. A method (200) performed by a first network node, comprising:
    obtaining (202) first information indicating whether a second network node requires authorization; and
    sending (204) the first information to a third network node.
  2. The method according to claim 1, wherein the authorization comprises OAuth2-based authorization.
  3. The method according to claim 1 or 2, wherein the first information is obtained from at least one of:
    a network repository function (NRF) , or
    a fourth network node.
  4. The method according to claim 3, wherein in inter public land mobile network (PLMN) mobility registration procedure or inter PLMN handover procedure, the first information is obtained from the NRF.
  5. The method according to any of claims 1-4, wherein the first information is sent to the third network node during at least one of:
    a protocol data unit (PDU) session establishment procedure with intermediate SMF,
    a PDU session establishment procedure in home routed roaming scenario,
    an intra public land mobile network (PLMN) handover procedure with access and mobility management function (AMF) change,
    an intra PLMN handover procedure with visited session management function (SMF) change,
    an inter PLMN mobility registration procedure, or
    an inter PLMN handover procedure.
  6. The method according to any of claims 1-5, wherein the first network node comprises at least one of:
    a first access and mobility management function (AMF) , or
    a first session management function (SMF) .
  7. The method according to claims 1-6, wherein the second network node comprises a second session management function (SMF) .
  8. The method according to claim 7, wherein the second SMF comprises at least one of:
    an anchor SMF,
    a home SMF, or
    an SMF hosting session management context resource.
  9. The method according to any of claims 1-8, wherein the third network node comprises at least one of:
    a second AMF, or
    a third session management function (SMF) .
  10. The method according to any of claims 1-9, wherein the first information is sent to the third network node in at least one of:
    session management context create data,
    session management context, or
    user equipment context.
  11. The method according to claims 1-10, wherein the first information comprises at least one of:
    information indicating whether a home network node requires authorization,
    information indicating whether an anchor network node requires authorization, or
    information indicating whether a network node hosting session management context resource requires authorization.
  12. A method (300) performed by a third network node, comprising:
    receiving (302) first information indicating whether a second network node requires authorization from a first network node; and
    when the first information indicates the second network node requires authorization, getting (304) a token for accessing the second network node.
  13. The method according to claim 12, wherein the authorization comprises OAuth2-based authorization.
  14. The method according to claim 12 or 13, wherein the first information is received from the first network node during at least one of:
    a protocol data unit (PDU) session establishment procedure with intermediate SMF,
    a PDU session establishment procedure in home routed roaming scenario,
    an intra public land mobile network (PLMN) handover procedure with access and mobility management function (AMF) change,
    an intra PLMN handover procedure with visited session management function (SMF) change,
    an inter PLMN mobility registration procedure, or
    an inter PLMN handover procedure.
  15. The method according to any of claims 12-14, wherein the first network node comprises at least one of:
    a first access and mobility management function (AMF) , or
    a first session management function (SMF) .
  16. The method according to any of claims 12-15, wherein the second network node comprises a second session management function (SMF) .
  17. The method according to claim 16, wherein the second SMF comprises at least one of:
    an anchor SMF,
    a home SMF, or
    an SMF hosting session management context resource.
  18. The method according to any of claims 12-17, wherein the third network node comprises at least one of:
    a second AMF, or
    a third session management function (SMF) .
  19. The method according to any of claims 12-18, wherein the first information is sent to the third network node in at least one of:
    session management context create data,
    session management context, or
    user equipment context.
  20. The method according to any of claims 12-19, wherein the first information comprises at least one of:
    information indicating whether a home network node requires authorization,
    information indicating whether an anchor network node requires authorization, or
    information indicating whether a network node hosting session management context resource requires authorization.
  21. The method according to any of claims 12-20, further comprising:
    when the first information indicates the second network node does not require authorization, determining (306) to skip getting the token for accessing the second network node.
  22. A first network node (800) , comprising:
    a processor (821) ; and
    a memory (822) coupled to the processor (821) , said memory (822) containing instructions executable by said processor (821) , whereby the first network node (800) is operative to:
    obtain first information indicating whether a second network node requires authorization; and
    send the first information to a third network node.
  23. The first network node according to claim 22, wherein the first network node is further operative to perform the method of any one of claims 2 to 11.
  24. A third network node (800) , comprising:
    a processor (821) ; and
    a memory (822) coupled to the processor (821) , said memory (822) containing instructions executable by said processor (821) , whereby the third network node (800) is operative to:
    receive first information indicating whether a second network node requires authorization from a first network node; and
    when the first information indicates the second network node requires authorization, get a token for accessing the second network node.
  25. The third network node according to claim 24, wherein the third network node is further operative to perform the method of any one of claims 13 to 21.
  26. A computer-readable storage medium storing instructions which when executed by at least one processor, cause the at least one processor to perform the method according to any one of claims 1 to 21.
  27. A computer program product comprising instructions which when executed by at least one processor, cause the at least one processor to perform the method according to any of claims 1 to 21.
PCT/CN2023/110176 2022-08-05 2023-07-31 Method and apparatus for authorization alignment WO2024027630A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022110528 2022-08-05
CNPCT/CN2022/110528 2022-08-05

Publications (1)

Publication Number Publication Date
WO2024027630A1 true WO2024027630A1 (en) 2024-02-08

Family

ID=89848538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110176 WO2024027630A1 (en) 2022-08-05 2023-07-31 Method and apparatus for authorization alignment

Country Status (1)

Country Link
WO (1) WO2024027630A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886520A (en) * 2016-01-25 2018-11-23 黑莓有限公司 Establish Session initiation Protocol session
CN113132355A (en) * 2018-10-29 2021-07-16 华为技术有限公司 Service authorization method and communication device
WO2022033478A1 (en) * 2020-08-10 2022-02-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for security communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886520A (en) * 2016-01-25 2018-11-23 黑莓有限公司 Establish Session initiation Protocol session
CN113132355A (en) * 2018-10-29 2021-07-16 华为技术有限公司 Service authorization method and communication device
WO2022033478A1 (en) * 2020-08-10 2022-02-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for security communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GSMA: "Misalignment on usage of OAuth within 3GPP 29.510", 3GPP DRAFT; S3-211367, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG3, no. e-meeting; 20210517 - 20210528, 20 April 2021 (2021-04-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051997256 *

Similar Documents

Publication Publication Date Title
US20230421641A1 (en) Methods providing dynamic nef tunnel allocation and related network nodes/functions
WO2021227833A1 (en) Method and apparatus for providing edge service
US20240284178A1 (en) Non-orthogonal signaling for radio access networks
US20230232356A1 (en) Storage of network slice authorization status
US20230412589A1 (en) Representation tokens in indirect communication
WO2023274149A1 (en) Method, apparatus for service level agreement assurance in mobile network
WO2021164659A1 (en) Method and apparatus for privacy protection
US20240114444A1 (en) Network slice isolation via network slice lists
US20230328677A1 (en) Handling registrations of a user equipment in different communication networks
EP4091311B1 (en) Handling of token audience mismatch
WO2024027630A1 (en) Method and apparatus for authorization alignment
WO2024022278A1 (en) Method and apparatus for mobility management
US20210227382A1 (en) To Increase Security of Dual Connectivity
WO2024022420A1 (en) Method and apparatus for default notification subscription
WO2024037405A1 (en) Method and apparatus for service continuity
WO2023056788A1 (en) Method, apparatus for network exposure service continuity across edge data networks
WO2024037452A1 (en) Method and apparatus for acr scenario selection
WO2024012064A1 (en) Method and apparatus for event report
WO2023066286A1 (en) Method and apparatus for service control
WO2023179376A1 (en) Method and apparatus for relay node discovery
WO2023241470A1 (en) Method and apparatus for application session information management in edge computing
WO2023083264A1 (en) Method and apparatus for multicast/broadcast service
US20230083873A1 (en) Maintaining n32 interface when using different radio access technologies
US11445474B2 (en) Mobile switching node and mobility management node to page terminal device
US20240314868A1 (en) Communication device pre-grant assistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849338

Country of ref document: EP

Kind code of ref document: A1