[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024027423A1 - 一种转轴机构及电子设备 - Google Patents

一种转轴机构及电子设备 Download PDF

Info

Publication number
WO2024027423A1
WO2024027423A1 PCT/CN2023/104968 CN2023104968W WO2024027423A1 WO 2024027423 A1 WO2024027423 A1 WO 2024027423A1 CN 2023104968 W CN2023104968 W CN 2023104968W WO 2024027423 A1 WO2024027423 A1 WO 2024027423A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
rotating arm
rotating
shaft mechanism
rotating shaft
Prior art date
Application number
PCT/CN2023/104968
Other languages
English (en)
French (fr)
Inventor
石拓
詹强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027423A1 publication Critical patent/WO2024027423A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/12Pivotal connections incorporating flexible connections, e.g. leaf springs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular to a rotating shaft mechanism and electronic equipment.
  • the rotating shaft mechanism can not only be used to change the folding state of the electronic device, but also provide sufficient damping force for the entire electronic device in different folding states, so that the electronic device can be folded It has reliable support during the folding state switching process.
  • the size of the rotating shaft mechanism also needs to be reduced accordingly to match the thin electronic equipment. This results in increased contact stress on the structural parts used to provide damping force in the rotating shaft mechanism. , which will affect the structural strength and service life of the rotating shaft mechanism.
  • This application provides a rotating shaft mechanism and electronic equipment to improve the structural strength of the rotating shaft mechanism and extend the service life of the rotating shaft mechanism.
  • the present application provides a rotating shaft mechanism, which may include a base, a rotating component and a damping component.
  • the rotating shaft assembly may include a first rotating arm and a second rotating arm.
  • the first rotating arm and the second rotating arm may be respectively rotatably connected to both sides of the base, and a side of the first rotating arm close to the base has a first rotating arm.
  • Cam surface, the side of the second rotating arm close to the base has a second cam surface.
  • the damping component may include a transmission member, a first fixed part and an elastic member, defining an extension direction of the rotation axis of the first rotating arm and the second rotating arm as the first direction, the transmission member may be slidably disposed on the base along the first direction, and The transmission member can be located between the first rotating arm and the second rotating arm, and both sides of the transmission member are in contact with the first cam surface and the second cam surface respectively, and can move along the axis when the first rotating arm and the second rotating arm rotate. Slide in the first direction; the first fixed arm is fixed on the base, and the first fixed part and the transmission part are spaced apart along the first direction; the elastic member can be elastically limited between the transmission part and the first fixed part.
  • the transmission member can convert the elastic force generated by the elastic member in the axial direction (first direction) of the rotating shaft mechanism into a radial force and transmit it to the first rotating arm and the second rotating arm. Since the elastic member moves along the axis of the rotating shaft mechanism, The size of the elastic member is not limited by other components of the electronic device. Therefore, the size of the elastic member can be appropriately increased to provide sufficient damping force for the electronic device, thereby avoiding the problem of limited opening and closing force of the electronic device. In addition, since the axial space of the rotating shaft structure is relatively ample, the axial size of the transmission member can be appropriately increased to increase the contact area with the first rotating arm and the second rotating arm, thereby reducing the contact stress and thereby improving the efficiency of the rotating shaft. The structural strength of the mechanism extends the service life of the rotating shaft mechanism.
  • the transmission member may include a first cam and a second cam.
  • the first cam is located on a side close to the first rotating arm, and one side of the first cam has a third cam abutting the first cam surface.
  • Three cam surfaces, the other side has a first inclined surface; the second cam is located on the side close to the second rotating arm, and one side of the second cam has a fourth cam surface that abuts the second cam surface, and the other side has Second slope.
  • the first inclined plane is drivingly connected to the second inclined plane.
  • the cam slides along the first direction, thereby changing the expansion and contraction state of the elastic member limited between the transmission member and the first fixed part.
  • the elastic member deforms, it also exerts a certain elastic force on the transmission member, and the elastic force can Further, the first cam and the second cam are transmitted to the first rotating arm and the second rotating arm on both sides, and converted into a damping force for the first rotating arm and the second rotating arm to rotate relative to the base, thereby causing the first rotating arm and the second rotating arm to rotate.
  • the second rotating arm can rotate stably under the action of damping force.
  • the damping assembly may further include a second fixing part that is fixed to the base, and the second fixing part abuts the side of the transmission member away from the first fixing part, so that the second fixing part is fixed to the base. Position the transmission parts sideways.
  • the damping assembly may further include a sliding part, the sliding part may be slidably disposed on the base along the first direction, and the sliding part may abut with a side of the transmission member facing the first fixed part. At this time, one end of the transmission member can be in contact with the first fixed part, and the other end can be Contact with the sliding part.
  • the sliding part can be driven to slide synchronously, and then the sliding part compresses the elastic member.
  • the first inclined surface may be located at an end of the first cam close to the second fixing part, and the second inclined surface may be located at an end of the second cam close to the second fixing part.
  • a first protrusion may be provided on the side of the second fixing part facing the transmission member.
  • the first protrusion has a third slope on the side facing the first cam, and a fourth slope on the side facing the second cam, wherein the third slope is provided on the side facing the second cam.
  • the inclined plane is parallel to the first inclined plane and abuts against each other, and the fourth inclined plane is parallel to and abuts against each other on the second inclined plane. In this way, the third inclined plane and the first inclined plane, the fourth inclined plane and the second inclined plane can respectively form an inclined plane transmission pair. Based on these two rotating pairs, both the first cam and the second cam can produce sliding motion in the first direction. Therefore, the two can jointly compress the elastic member.
  • a side of the first cam facing the second cam may have a first groove
  • a side of the second cam facing the first cam may have a first protrusion
  • the first protrusion may be at least partially inserted is connected in the first groove to guide the first cam and the second cam to slide toward or away from each other, and can also realize linkage of the first cam and the second cam sliding in the first direction, thereby improving the first cam consistent with the movement of the second cam in the first direction.
  • the side of the first cam facing the second cam may also be provided with a second protrusion
  • the side of the second cam facing the first cam may be provided with a second groove
  • the second protrusion may be at least partially inserted.
  • the fitting and insertion of the second protrusion and the second cam can also be used to guide the first cam and the second cam to slide toward or away from each other, and to guide the first cam and the second cam in the second groove. Synchronous sliding in one direction provides guarantee.
  • the end of the first cam close to the sliding part may also have a fifth slope
  • the end of the second cam close to the sliding part may also have a sixth slope.
  • the sliding part has a second protrusion on one side facing the transmission member.
  • the second protrusion may have a seventh inclined surface on a side facing the first cam, and an eighth inclined surface may be provided on a side facing the second cam, wherein the seventh inclined surface is the same as the seventh inclined surface.
  • the fifth inclined plane is parallel and abuts against each other, and the eighth inclined plane and the sixth inclined plane are parallel and abutting against each other. In this way, the seventh inclined plane, the fifth inclined plane, the eighth inclined plane and the sixth inclined plane can respectively form an inclined plane transmission pair.
  • the first cam and the second cam exert an action on the sliding part in the first direction.
  • the forces can be superimposed on each other, and the two can jointly push the sliding part to slide along the first direction, so the movement reliability of the damping component can be effectively improved.
  • the side of the sliding portion facing the transmission member can also be a flat surface, which can simplify the structure of the sliding portion and thus help reduce the structural complexity of the entire damping assembly.
  • a plane contact perpendicular to the first direction can be formed between the transmission member and the sliding part, so that when the transmission member slides, the sliding part can be directly driven to slide in the first direction.
  • one end of the first cam facing the second fixed part can abut with the second fixed part
  • one end of the second cam facing the first fixed part can abut with the sliding part
  • the inclined planes are parallel and abut against each other, thereby forming an inclined plane transmission pair.
  • This solution uses a transmission pair composed of a first inclined plane and a second inclined plane to realize the damping function of the first rotating arm and the second rotating arm during the rotation process.
  • the structure of the rotating shaft mechanism is relatively simple and the cost is relatively low.
  • the first inclined surface and the second inclined surface are arranged parallel to each other, the first inclined surface may be provided with a first rack, and the second inclined surface may be provided with a second rack.
  • the transmission member may further include an intermediate gear, which may be disposed between the first inclined surface and the second inclined surface and mesh with the first rack and the second rack respectively.
  • the damping assembly may also include a guide rod, which is fixed to the base and is arranged along the first direction.
  • the transmission member can be sleeved on the guide rod, so that the guide rod can be used to control the transmission member.
  • the sliding guide is used to improve the sliding stability of the transmission part in the first direction.
  • the elastic member may be a spring.
  • the damping component may further include a first pin arranged along the first direction, and the spring may be sleeved on the first pin to avoid problems such as arching when elastic deformation occurs.
  • the elastic member may also be an elastic piece, the number of elastic pieces may be multiple, and the multiple elastic pieces may be stacked along the first direction between the first fixed part and the sliding part.
  • the elastic member can also take the form of a spring and a spring piece.
  • the number of springs may be two, and the two springs may be disposed on both sides of the plurality of elastic pieces to ensure uniformity of the force on the sliding part, thereby helping to transmit the force to the first rotating arm and the second rotating arm. Balanced damping force effect.
  • this application also provides an electronic device, which may include a first housing, a second housing, a flexible display screen, and the rotating shaft mechanism in any possible solution of the first aspect.
  • the first housing and the second housing can be arranged on opposite sides of the rotating shaft mechanism, and the first rotating arm is slidingly connected to the first housing, and the second rotating arm is slidingly connected to the second housing.
  • the flexible display screen can continuously cover the first housing, the second housing and the rotating shaft mechanism, and the flexible display screen is fixedly connected to the first housing and the second housing.
  • the rotating shaft mechanism of this electronic device can The sub-device provides stable support when folding or unfolding, thereby improving the reliability of the electronic device.
  • Figure 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the electronic device shown in Figure 1 when it is in an unfolded state
  • Figure 3 is an exploded schematic diagram of the electronic device shown in Figure 2;
  • FIG 4 is an exploded structural schematic diagram of the rotating shaft mechanism 1 shown in Figure 3;
  • Figure 5 is a partial structural schematic diagram of a rotating shaft mechanism provided by a possible embodiment of the present application.
  • Figure 6 is an exploded view of the partial structure of the rotating shaft mechanism shown in Figure 5;
  • Figure 7 is a schematic structural diagram of the first swing arm provided by a possible embodiment of the present application.
  • Figure 8 is a partial structural diagram of the rotating shaft mechanism
  • Figure 9 is a schematic structural diagram of the first housing fixing bracket provided by a possible embodiment of the present application.
  • Figure 10a shows a schematic structural diagram of the rotating shaft mechanism when it is in the unfolded state
  • Figure 10b shows a schematic diagram of a first cross-section provided by a possible embodiment
  • Figure 10c is a schematic structural diagram of the rotating shaft mechanism when it is in the intermediate state
  • Figure 10d is a schematic structural diagram of the rotating shaft mechanism when it is in a closed state
  • Figure 11 is a schematic diagram of the mechanism of the first rotating arm and the first swing arm sliding relative to the first housing fixing frame according to an embodiment of the present application;
  • Figure 12 is a schematic structural diagram of the first support plate provided by a possible embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a first support plate and a second support plate supporting a flexible display screen according to a possible embodiment of the present application;
  • Figure 14 is a partial structural schematic diagram of a rotating shaft mechanism provided by an embodiment of the present application when it is in an unfolded state;
  • Figure 15 is a partial structural schematic diagram of a rotating shaft mechanism provided by an embodiment of the present application when it is in a folded state;
  • Figure 16 is an exploded structural schematic diagram of the rotating shaft mechanism shown in Figure 14;
  • Figure 17 is a schematic cross-sectional structural diagram of the rotating shaft mechanism shown in Figure 14 at A-A;
  • Figure 18 is a schematic structural diagram of the transmission member shown in Figure 14;
  • Figure 19 is a schematic structural diagram of the second fixed part and the sliding part provided by the embodiment of the present application.
  • Figure 20 is a schematic cross-sectional structural diagram of the rotating shaft mechanism shown in Figure 14 at B-B;
  • Figure 21 is a partial structural schematic diagram of another rotating shaft mechanism provided by an embodiment of the present application when it is in an unfolded state;
  • Figure 22 is a partial structural schematic diagram of another rotating shaft mechanism provided by an embodiment of the present application when it is in an unfolded state;
  • Figure 23 is a partial structural schematic diagram of another rotating shaft mechanism provided by an embodiment of the present application when it is in an unfolded state;
  • Figure 24 is a partial structural schematic diagram of another rotating shaft mechanism provided by an embodiment of the present application when it is in an unfolded state;
  • Figure 25 is a partial structural schematic diagram of another rotating shaft mechanism provided by the embodiment of the present application when it is in an unfolded state;
  • Figure 26 is a partial structural schematic diagram of another rotating shaft mechanism in an expanded state according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device can be a mobile phone, a personal digital assistant (PDA), a laptop, a tablet or other devices with foldable functions.
  • the electronic device of the embodiment shown in FIG. 1 is explained by taking a mobile phone as an example.
  • the electronic device may include a rotating shaft mechanism, a flexible display screen, and two housings.
  • the two housings may be named the first housing 2 and the second housing 3 respectively.
  • the first housing 2 and the second housing 3 are located on both sides of the rotating shaft mechanism 1 and can rotate around the rotating shaft mechanism 1 .
  • the electronic device can be closed and unfolded according to different usage scenarios.
  • the electronic device provided by this application may be an inward-folding electronic device.
  • the electronic device is in a closed state
  • Figure 1 shows the hinge mechanism 1 and the two shells when the electronic device is in a closed state. relative positional relationship between them.
  • the surface of the rotating shaft mechanism 1, the first exterior surface 2a of the first housing 2, and the second exterior surface 3a of the second housing 3 can jointly serve as the exterior surface of the electronic device.
  • the first appearance surface 2a of the first housing 2 refers to the surface of the first housing 2 facing away from the flexible display screen
  • the second appearance surface 3a of the second housing 3 refers to the surface of the second housing 3 facing away from the flexible display screen.
  • FIG. 2 is a schematic structural diagram of the electronic device shown in FIG. 1 when it is in an unfolded state. It is worth mentioning that FIG. 2 shows the structures of the first supporting surface 2b of the first housing 2 and the second supporting surface 3b side of the second housing 3. Wherein, the first supporting surface 2b of the first housing 2 refers to the surface of the first housing 2 used to support the flexible display screen 4, and the second supporting surface 3b of the second housing 3 refers to the surface of the second housing 3. A surface used to support the flexible display screen 4.
  • the flexible display screen 4 can continuously cover the first support surface 2b of the first housing 2, the second support surface 3b of the second housing 3 and the rotating shaft mechanism 1, and the flexible display screen 4 can be connected with the third support surface of the first housing 2.
  • a supporting surface 2b is fixedly connected to the second supporting surface 3b of the second housing 3, and the connection method may be but is not limited to bonding. In this way, when the electronic device is in the unfolded state as shown in FIG. 2 , the first housing 2 and the second housing 3 can support the flexible display screen 4 .
  • the flexible display screen 4 can be bent or flattened along with the first housing 2 and the second housing 3 .
  • FIG. 3 is an exploded schematic diagram of the electronic device shown in FIG. 2 .
  • the flexible display screen is not shown in FIG. 3 .
  • the first housing 2 and the second housing 3 may be located on opposite sides of the rotating shaft mechanism 1 .
  • the rotating shaft mechanism 1 may include one spindle module 11 or multiple spindle modules 11 .
  • FIG. 4 is an exploded structural diagram of the rotating shaft mechanism 1 shown in FIG. 3 .
  • the rotating shaft mechanism 1 includes three spindle modules 11 , and the three spindle modules 11 can be arranged at intervals along the length direction of the rotating shaft mechanism 1 .
  • the length direction of the rotating shaft mechanism 1 can be understood as the extension direction of the axis of rotation of the first housing 2 and the second housing 3 around the rotating shaft mechanism 1 .
  • the first housing 2 and the second housing 3 can be rotationally connected through the plurality of spindle modules 11, which can effectively improve the rotation stability of the first housing 2 and the second housing 3 of the electronic device relative to the rotating shaft mechanism 1. .
  • Figure 5 is a partial structural schematic diagram of a rotating shaft mechanism provided by a possible embodiment of the present application
  • Figure 6 is an exploded view of a partial structure of the rotating shaft mechanism shown in Figure 5
  • the spindle module 11 may include two rotating components, which are a first rotating component 11a and a second rotating component 11b respectively.
  • the rotating shaft mechanism 1 can also include a base 16, which can be used as a bearing component for the first rotating assembly 11a and the second rotating assembly 11b.
  • the first rotating assembly 11a and the second rotating assembly 11b are respectively arranged on both sides of the base 16.
  • the first rotating component 11 a and the second rotating component 11 b may be disposed symmetrically relative to the base 16 .
  • the specific arrangement of the first rotating component 11a and the connection relationship between the first rotating component 11a and the base 16 are mainly used as examples to describe the spindle module 11.
  • the second rotating component 11b side can be configured with reference to the first rotating component 11a side. It should be noted that the design of the second rotating component 11b can be completely consistent with the first rotating component 11a; You can also only refer to the components and connection relationships included in the first rotating component 11a, and other parameters can be adjusted adaptively and do not need to be completely consistent.
  • the first rotating components 11 a and the second rotating components 11 b of the multiple spindle modules 11 can be the same one.
  • the base 16 serves as a bearing component to improve the integration degree of the rotating shaft mechanism 1 .
  • the rotating shaft mechanism 1 can be provided with a base 16 corresponding to each spindle module 11, so that the first rotating component 11a and the second rotating component 11b of each spindle module 11 can be The corresponding base 16 serves as a load-bearing component.
  • the rotating shaft mechanism 1 of the present application also provides a damping mechanism that can provide damping force for the above-mentioned rotating components, so that the first rotating component and the second rotating component can be adjusted according to the damping force. It can rotate stably under the action of the electronic device to avoid accidental opening and closing of electronic equipment, and can also achieve the hovering of the two housings at the set position. In addition, the user can have a more obvious feeling when opening or closing the electronic device, which is conducive to improving the user's experience.
  • the first rotating component 11 a may include a first rotating arm 112 , which is rotatably connected to the base 16 .
  • the first rotating arm 112 may be rotationally connected to the base 16 through a physical axis.
  • a virtual axis may be used to realize the rotational connection between the first rotating arm 112 and the base.
  • an arc-shaped groove can be provided on the base, and an arc-shaped rotating block can be provided on the first rotating arm 112, so that the first rotation can be realized by sliding the arc-shaped rotating block along the groove surface of the arc-shaped groove. The rotation of the rotating arm 112 and the base.
  • an arc-shaped arm can also be provided on the base, and an arc-shaped rotation groove can be provided on the first rotating arm 112, so that the first rotation can be achieved by sliding the arc-shaped arm along the groove surface of the arc-shaped rotation groove. Rotation of arm 112 and base 16.
  • the arc-shaped groove and the arc-shaped rotating block cooperate to realize rotation around a virtual axis with a determined position, which is referred to as the rotation connection mode of the virtual axis. That is, the solid pins do not directly realize rotation between the two rotating entities, but the rotation connection is realized through the above-mentioned matching structure.
  • the first rotating arm 112 and the second rotating arm 120 can slide relative to the first housing and the second housing respectively while rotating around the base. Therefore, the first housing and the second housing can also rotate relative to the base.
  • the present application provides a damping component, which can cooperate with the first rotating arm 112 and the second rotating arm 120 to form a damping mechanism to provide the movement of the first rotating arm 112 and the second rotating arm 120. Damping force.
  • the present application first provides an exemplary implementation of a specific rotating shaft mechanism in conjunction with Figures 4-13.
  • the rotating shaft mechanism can also support the flexible display screen flatly.
  • the bending part of the flexible display screen can be evenly stressed, and when the electronic device is in In the folded state, an accommodation space can be provided for the flexible display screen, and the accommodation space can ensure that the bent portion of the flexible display screen has a certain degree of curvature to avoid being squeezed.
  • the rotating shaft mechanism can also keep the length of the flexible display screen unchanged during the entire unfolding or folding process of the electronic device, thereby ensuring the reliability of the flexible display screen.
  • the first rotating component 11a may also include a first swing arm 113, which is rotationally connected to the base 16.
  • the first swing arm 113 and the base 16 may be rotationally connected through a virtual axis.
  • FIG. 7 is a schematic structural diagram of the first swing arm 113 provided by a possible embodiment of the present application.
  • a first arc-shaped rotating block 1131 may be provided at one end of the first swing arm 113 for connection with the base 16 .
  • the rotation axes of the first rotating arm 112 and the first swing arm 113 relative to the base 16 are different, that is, the rotation axis of the first rotating arm 112 and the base 16 is rotationally connected to the rotation axis.
  • the first swing arm 113 and the base 16 have different rotational axes. Specifically, the two axes are parallel to each other, but not coincident.
  • FIG. 8 is a partial structural schematic diagram of the rotating shaft mechanism.
  • the base 16 can be provided with a first arc-shaped groove 163.
  • the first arc-shaped rotating block 1131 of the first swing arm 113 shown in FIG. 7 can be accommodated in the first arc-shaped groove 163 and can move along the first arc.
  • the arcuate surface of the groove 163 rotates, thereby realizing the rotation of the first swing arm 113 around the base 16 .
  • the first arc-shaped rotating block 1131 may be, but is not limited to, an arc-shaped rotating block
  • the first arc-shaped groove 163 may be, but is not limited to, an arc-shaped groove.
  • the rotating shaft mechanism 1 may further include a cover plate 114 , which can cover the base 16 to form an accommodation space between the cover plate 114 and the base 16 . It is worth mentioning that in this application, a separate cover can be provided for each spindle module 11 plate 114 to make its structure more flexible. Alternatively, multiple spindle modules 11 can share one cover 114 to simplify the overall structure of the rotating shaft mechanism 1 .
  • the surface of the cover plate 114 facing the first arc-shaped groove 163 can be provided with a first arc-shaped protrusion 1141, and the first arc-shaped rotating block 1131 of the first swing arm 113 shown in FIG. 7 can be inserted therein.
  • the first arc-shaped protrusion 1141 restricts the first arc-shaped rotating block 1131 of the first swing arm 113 in the first arc-shaped groove 163 of the base 16 to reduce the risk of the first swing arm 113 falling off the base 16 risk, thereby improving the reliability of the movement of the first swing arm 113.
  • the first arc-shaped groove 163 can also be an integrated channel structure directly opened on the base 16 .
  • the number of the first arc-shaped grooves 163 may be, but is not limited to, at least two.
  • the at least two first arc-shaped grooves 163 may be spaced apart in the length direction of the base 16, and the at least two first arc-shaped grooves 163 may be spaced apart in the length direction of the base 16.
  • the groove 163 can limit the position of the first arc-shaped rotating block 1131 to improve the reliability of the connection between the first arc-shaped rotating block 1131 and the base 16 .
  • the first swing arm 113 and the base 16 may also be rotationally connected through a physical shaft.
  • the rotating shaft mechanism includes multiple spindle modules 11
  • the first swing arm 113 of at least one spindle module 11 in the multiple spindle modules 11 can be rotationally connected to the base 16 through a virtual axis
  • the first swing arm 113 of at least one spindle module 11 is rotatably connected to the base 16 through a physical axis.
  • the first swing arm 113 of the main shaft assembly 101 opposite to the flexible display screen and the base 16 can be rotationally connected using a virtual axis connection to ensure smooth support for the flexible display screen; located in the length direction of the rotating axis mechanism
  • the first swing arm 113 and the base 16 of the two ends of the spindle module 11 can be rotationally connected by a physical shaft connection to improve the reliability of the connection between the entire rotating shaft structure and the first and second housings. sex.
  • the first rotating component may also include a first housing fixing bracket 115 , which may be connected with the first rotating arm 112 and the first swing arm 112 . Arm 113 is connected.
  • FIG. 9 is a schematic structural diagram of the first housing fixing bracket 115 provided by a possible embodiment of the present application.
  • the first housing fixing frame 115 may be provided with a first chute 1151 , and the first chute 1151 may move along the first housing fixing frame 115 toward or away from the base 16 (x1 direction). )extend.
  • the first rotating arm 112 can be installed on the first slide groove 1151 and can slide in the first slide groove 1151 .
  • a first slideway 11511 can be provided on the groove wall of the first chute 1151, and a first slide block 1121 can be provided on the first rotating arm 112.
  • the first slider 1121 can be clamped in the first slideway 11511, and the first slider 1121 can slide along the first slideway 11511, so as to realize the rotation of the first rotating arm 112 in the first slideway 1151.
  • Limit. by providing the first slide 11511 on the groove wall of the first slide 1151, it can provide a guide for the first rotating arm 112 to slide along the first slide 1151, thereby improving the stability of the movement of the first rotating arm 112. .
  • the first housing holder 115 may also be provided with a second chute 1152 .
  • the first chute 1151 and the second chute 1152 are spaced apart along the length direction of the first casing holder 115 .
  • the end of the first swing arm 113 facing the first housing fixing bracket 115 can be installed in the second slide groove 1152 , and the first swing arm 113 can be in the second slide groove 1152 Slide inside.
  • the first housing fixing bracket 115 may include a first surface 115a and a second surface 115b arranged oppositely, wherein the first surface 115a may be the rotating shaft mechanism 1 when it is applied to an electronic device.
  • the second slide groove 1152 may extend in a direction (y1 direction) from the first surface 115a to the second surface 115b, or from the second surface 115b to the first surface 115a.
  • the projection of the y1 direction on the first cross section may not be parallel to the projection of the x1 direction on the first cross section, wherein the first cross section may be perpendicular to the rotation axis of the first rotation arm 112 and the rotation axis of the first swing arm 113 Reference plane.
  • a second slideway 11521 may also be provided in the second slide groove 1152 , and a second slider 1132 may be provided on the first swing arm 113 shown in FIG. 7 .
  • the second slider 1132 can be locked in the second slideway 11521, and the second slider 1132 can slide in the y direction in the second slideway 11521, so as to realize the movement of the first swing arm 113 in the second slideway.
  • the groove 1152 is limited to prevent the first swing arm 113 from falling off the second slide groove 1152 .
  • the second slideway 11521 on the groove wall of the second slideway 1152, it can provide a guide for the first swing arm 113 to slide along the second slideway 1152, thereby improving the stability of the movement of the first swing arm 113.
  • the second rotating component 11 b and the first rotating component 11 a can be arranged symmetrically with respect to the base 16 .
  • the second rotating component 11 b may also include a second housing fixing bracket 119 , a second rotating arm 120 and a second swing arm 121 .
  • the second housing holder 119 has a third surface 119a and a fourth surface 119b arranged oppositely.
  • the third surface 119a is the side of the second housing holder 119 facing the flexible display screen. side surface.
  • the second housing fixing bracket 119 may include a third slide groove 1191 extending in the x2 direction and a fourth slide groove 1192 extending in the y2 direction.
  • the second rotating arm 120 may slide in the third slide groove 1191.
  • the swing arm 121 can slide in the fourth slide groove 1192.
  • the projection of the x2 direction in the second section is not parallel to the projection of the y2 direction in the second section.
  • the second section is perpendicular to the rotation axis of the second rotating arm 120 and the second section. Two swing arms The reference plane of the rotation axis of 121.
  • the third chute 1191 may be provided with a third slideway 11911
  • the second rotating arm 120 may be provided with a third slider 12001
  • the fourth chute 1192 may be provided with a fourth slideway 11921.
  • the second swing arm 121 may be provided with a fourth slider 12102.
  • the arrangement method of the third slideway 11911 can refer to the first slideway 11511
  • the arrangement method of the third slider 12001 can refer to the first slider 1121
  • the arrangement method of the fourth slideway 11921 can refer to the second slideway 11521
  • the arrangement method of the fourth slider 12102 may refer to the second slider 1132, and will not be described again here.
  • the second swing arm 121 can be configured with reference to the first swing arm 113 shown in Figure 7.
  • the base 16 can be Including the second arc-shaped groove 164, the second swing arm 121 is provided with a second arc-shaped rotating block 12101 (refer to Figure 6).
  • the surface of the cover 114 facing the second arc-shaped groove 164 can also be provided with a second arc-shaped protrusion 1142, wherein the second arc-shaped groove 164 can be set with reference to the first arc-shaped groove 163, and the second arc-shaped groove 164 can be provided with a second arc-shaped protrusion 1142.
  • the arc-shaped rotating block 12101 can be arranged with reference to the first arc-shaped rotating block 1131, and the second arc-shaped protrusion 1142 can be arranged with reference to the first arc-shaped protrusion 1141, which will not be described again here.
  • Figure 10a shows a schematic structural diagram of the rotating shaft mechanism when it is in an unfolded state.
  • the distance between the edge of the first housing holder 115 facing the base 16 and the base 16 is the shortest, and the second slider 1132 of the first swing arm 113 is in contact with the first surface of the first housing holder 115 .
  • 115a is the closest.
  • the first rotating arm 112 when the rotating shaft mechanism rotates from the unfolded state to the closed state, the first rotating arm 112 can slide along the first direction in the first slide groove 1151, and the first swing arm 113 can slide in the second sliding groove 1151.
  • the groove 1152 slides in the second direction.
  • the second rotating arm 120 can slide along x2 in the third slide groove 1191, and the second swing arm 121 can slide along y2 in the fourth slide groove 1192.
  • the x1 direction and the x2 direction are respectively represented by solid lines with arrows
  • the y1 direction and y2 direction are respectively represented by dashed lines with arrows.
  • FIG. 10a the x1 direction and the x2 direction are respectively represented by solid lines with arrows, and the y1 direction and y2 direction are respectively represented by dashed lines with arrows.
  • FIG. 10 b shows a schematic diagram of a first cross-section provided by a possible embodiment.
  • the x1 direction and the y1 direction intersect, and the angle at which they intersect may be an acute angle in the illustration. , and can also be other possible angles, such as right angles or obtuse angles.
  • the positional relationship between the x2 direction and the y2 direction may be symmetrical to the positional relationship between the x1 direction and the y1 direction shown in FIG. 10b , which will not be described again here.
  • Figure 10c is a schematic structural diagram of the rotating shaft mechanism when it is in an intermediate state. Comparing Figure 10c and Figure 10a, it can be seen that during this process, the first housing fixing frame 115 can move in a direction away from the base 16 relative to the first rotating arm 112, and drive the first rotating arm 112 and the first pendulum.
  • the arm 113 rotates about the base 16 .
  • the first arc-shaped rotating block 1131 of the first swing arm 113 moves in the direction of sliding out of the corresponding first arc-shaped groove 163, so that the first arc-shaped rotating block 1131 is accommodated in the corresponding first arc-shaped groove 163. Partially reduced.
  • the second slider 1132 of the first swing arm 113 slides in the second slideway 11521 from the first surface 115a of the first housing fixing bracket 115 toward the second surface 115b.
  • the second housing fixed frame 119 can drive the second rotating arm 120 and the second swing arm 121 to rotate around the base.
  • the specific movement process is the same as the above-mentioned first housing fixed frame 115 driving the first rotating arm 112 and the second swing arm 121 .
  • the movement process of a swing arm 113 rotating around the base 16 is similar and will not be described again.
  • Figure 10d is a schematic structural diagram when the rotating shaft mechanism is in a closed state.
  • the first housing fixing frame 115 continues to move in a direction away from the base 16 relative to the first rotating arm 112 , and drives the first rotating arm 112 to rotate around the base 16 .
  • the first arc-shaped rotating block 1131 of the first swing arm 113 continues to move in the direction of sliding out of the corresponding first arc-shaped groove 163, so that the first arc-shaped rotating block 1131 is accommodated in the corresponding first arc-shaped groove 163. part is further reduced.
  • the second slide block 1132 of the first swing arm 113 continues to slide in the second slide groove 1152 in the direction toward the second surface 115b of the first housing fixing bracket 115 .
  • the second housing fixing bracket 119 can drive the second rotating arm 120 and the second swing arm 121 to continue rotating around the base.
  • the specific movement process is the same as the above-mentioned first shell fixing bracket 115 driving the first rotating arm 112 and The movement process of the first swing arm 113 rotating around the base 16 is similar and will not be described again.
  • FIG. 11 is a schematic diagram of a mechanism in which the first rotating arm 112 and the first swing arm 113 slide relative to the first housing fixing bracket 115 according to an embodiment of the present application. It can be seen from Figure 11 that using the rotating shaft mechanism 1 provided by the present application, when the first rotating arm 112 and the first swing arm 113 rotate around the base 16, their rotating axes do not coincide, so that the first rotating arm 112 can be realized The phase difference between the first swing arm 113 and the first swing arm 113 realizes the motion process of Figures 10a to 10d.
  • the rotation angles of the first rotating arm 112 and the first swing arm 113 relative to the base 16 can be no more than 90°. That Compared with the existing solution, the rotation angle of the first swing arm 113 can be effectively reduced, so that the local structure of the first swing arm 113 (for example, the A position of the first swing arm 113 shown in Figure 7 The wall thickness of the structure) is designed to meet the strength requirements, thereby improving the structural reliability of the first swing arm 113.
  • FIG. 11 can also be used to illustrate the mechanism principle of the second rotating arm 120 and the second swing arm 121 sliding relative to the second housing fixing bracket 119 .
  • the second rotating arm 120 and the second swing arm 121 can be rotated relative to the base 16.
  • the angles are not greater than 90°, so that the rotation angle of the second swing arm 121 is reduced, so that the wall thickness design of the local structure of the second swing arm 121 meets the strength requirements, so that the structural reliability of the second swing arm 121 is improved. promote.
  • the rotating shaft mechanism 1 when used in electronic equipment, it can also effectively avoid the thinning design of components in the electronic equipment to avoid the rotation of the first swing arm 113 and the second swing arm 121, which can Improve the reliability of the overall structure of electronic equipment.
  • the first rotating arm 112 and the first swing arm 113 both support the first housing fixing frame 115 in the z direction shown in Figure 10d. force, which can effectively improve the motion integration between the first rotating arm 112 and the first swing arm 113 and the first housing fixing bracket 115, and act as a stop for the first housing fixing bracket 115 in this direction. role.
  • the second rotating arm 120 and the second swing arm 121 can also have a supporting force for the second housing fixing frame 119 in the Z direction, which can effectively improve the distance between the second rotating arm 120 and the second swing arm 120 .
  • the movement combination between the arm 121 and the second housing fixing bracket 119 serves as a stop for the second housing fixing bracket 119 in this direction. In this way, even if the electronic device using the rotating shaft mechanism falls in the closed state, the instantaneous impact of the first housing fixing bracket 115 and the second housing fixing bracket 119 relative to the rotating shaft mechanism in this state can be effectively reduced. The risk of large displacement can ensure the reliability of the entire structure of electronic equipment.
  • the rotating shaft mechanism may also include a first support plate 12 and a second support plate 13 .
  • the first support plate 12 and the second support plate 13 may be separately provided as shown in FIG. 5
  • the first support plate 12 and the second support plate 13 may be symmetrically arranged relative to the base 16.
  • the first support plate 12 and the first housing fixing bracket 115 are rotationally connected. It should be noted that the first support plate 12 can be rotationally connected with the plurality of first housing holders 115 of the plurality of spindle modules 11, which is conducive to simplifying the structure of the rotating shaft mechanism 1 and improving the structural reliability of the rotating shaft mechanism 1. sex.
  • the first housing fixing bracket 115 may also be provided with
  • the first rotation groove 1153 may be an arc-shaped groove.
  • FIG. 12 is a schematic structural diagram of the first support plate 12 provided by a possible embodiment of the present application.
  • the end of the first support plate 12 facing the first housing fixing bracket 115 may be provided with a first rotating part 1201 , and the first rotating part 1201 may be configured in an arc shape, for example, in a circular arc shape.
  • the first rotating part 1201 can be installed in the first rotating groove 1153, and the first supporting plate 12 and the first housing fixing frame 115 can be realized by the rotation of the first rotating part 1201 along the groove surface of the first rotating groove 1153. relative rotation between them.
  • Figure 13 is a schematic structural diagram of the first support plate 12 and the second support plate 13 supporting the flexible display screen 4 according to a possible embodiment of the present application. Since the second support plate 13 is symmetrically arranged with the first support plate 12, when the second support plate 13 is specifically set, the second support plate 13 can be rotationally connected to the second housing fixing frame 119, and the second housing fixing frame 119 There is a second rotation groove 1193. In addition, the second support plate 13 can be provided with a second rotation part 1301, so that the second rotation part 1301 rotates along the groove surface of the second rotation groove 1193 to realize the connection between the second support plate 13 and the second rotation groove 1193. Relative rotation between the two housing fixing brackets 119.
  • the first support plate 12 may include a first plate surface 12a, and the first plate surface 12a may be used to support a flexible display screen.
  • the first plate surface 12a of the first support plate 12 and the surface of the cover plate (not shown in FIG. 12 ) facing the flexible display screen 4 can be on the same plane, so that the flexible display screen 4 can be installed.
  • the second support plate 13 also has a second plate surface (not shown in the figure) for supporting the flexible display screen.
  • the second plate surface of the second support plate 13 is in contact with the cover plate. The surface facing the flexible display screen 4 may be on the same plane.
  • the rotation axes of the first rotating arm and the first swing arm are not coincident, and the rotation axes of the second rotating arm and the second swing arm are not coincident, so that the rotation axis mechanism can be rotated during the rotation process.
  • the phase difference between the rotating arm and the swing arm set on the same side is realized, thereby realizing the telescopic movement of the two rotating components, so that the rotating shaft mechanism can stably support the flexible display screen of the electronic device when it is in the unfolded state, and When the rotating shaft mechanism is in a closed state, a water-drop-like screen space can be formed that meets the bending requirements of the flexible display screen.
  • the opening direction of the first chute and the second chute of the first housing fixing frame, and the opening direction of the third chute and the fourth chute of the second case fixing frame are carried out.
  • Reasonable design can reduce the rotation angle of the first swing arm and the second swing arm relative to the base, so that the wall thickness design of the local structure of the first swing arm and the second swing arm can meet the strength requirements, thereby making the The structural reliability of the first swing arm and the second swing arm is improved.
  • the rotating shaft mechanism is applied to electronic equipment, it can effectively avoid damage to components in the electronic equipment.
  • the thinning design is carried out to avoid the rotation of the first swing arm and the second swing arm, which can improve the reliability of the entire structure of the electronic device.
  • it can also reduce the risk of the flexible display screen of the electronic device being squeezed by the rotation of the first swing arm and the second swing arm, which can reduce the risk of damage to the flexible display screen and extend its service life.
  • the damping component After introducing the first rotating component and the second rotating component of the rotating shaft mechanism, the damping component will be further described in detail below.
  • each spindle module includes, in addition to the above-mentioned first rotating component and second rotating component, a damping component for the first rotating component. and a second rotating component providing a damping component for damping force.
  • first rotating component and second rotating component includes, in addition to the above-mentioned first rotating component and second rotating component, a damping component for the first rotating component. and a second rotating component providing a damping component for damping force.
  • second rotating component providing a damping component for damping force.
  • Figure 14 is a partial structural schematic diagram of a rotating shaft mechanism provided by an embodiment of the present application when it is in an unfolded state.
  • Figure 15 is a partial structural schematic diagram of the rotating shaft mechanism shown in Figure 14 when it is in a folded state.
  • Figure 16 is an exploded structural schematic diagram of the rotating shaft mechanism shown in Figure 14 .
  • the damping component 17 may include a transmission member 171, a first fixing part 172 and an elastic member 173.
  • the transmission member 171 may be slidably disposed on the base along the first direction, and the first fixation part 172 may be fixed on the base. seat, and the first fixed part 172 and the transmission member 171 are spaced apart in the first direction.
  • the above-mentioned first direction is specifically the extension direction of the rotation axes of the first rotating arm 112 and the second rotating arm 120 , that is, the length direction of the rotating shaft mechanism.
  • the transmission member 171 can be located between the first rotating arm 112 and the second rotating arm 120.
  • a first protruding portion 1122 can be provided on a side of the first rotating arm 112 facing the transmission member 171.
  • the first protruding portion 1122 faces toward
  • the transmission member 171 has a first cam surface 11221 on one side.
  • a second protruding portion 12002 can be provided on the side of the second rotating arm 120 facing the transmission member 171.
  • the second protrusion 12002 has a first cam surface 11221 on a side facing the transmission member 171.
  • the second cam surface 120021, that is, the transmission member 171 is located between the first cam surface 11221 of the first rotating arm 112 and the second protruding portion 12002 of the second rotating arm 120.
  • the cam surface can be understood as a surface formed by a curved profile on the first protruding portion 1122 or the second protruding portion 12002 . Both sides of the transmission member 171 can abut against the first cam surface 11221 and the second cam surface 120021 respectively. In this way, when the first rotating arm 112 and the second rotating arm 120 rotate, the transmission member 171 can contact the first cam surface 11221 and the second cam surface 120021 on both sides.
  • the rotating arm 112 and the second rotating arm 120 are pushed and slid along the first direction on the base, thereby changing the expansion and contraction state of the elastic member 173 limited between the transmission member 171 and the first fixed part 172 , and the elastic member 173
  • a certain elastic force will be exerted on the transmission member 171.
  • This elastic force can be further transmitted to the first rotating arm 112 and the second rotating arm 120 on both sides through the transmission member 171, so that the first rotating arm 112 and the second rotating arm 120 are deformed.
  • the second rotating arm 120 receives a radial contact force from the transmission member 171, and this contact force can be converted into a damping force for the first rotating arm 112 and the second rotating arm 120 to rotate relative to the base, so that the second rotating arm 112 and the second rotating arm 120 rotate relative to the base.
  • the first rotating arm 112 and the second rotating arm 120 can rotate stably under the action of damping force.
  • the radial direction in the embodiment of the present application can be understood as the direction approaching or away from the base.
  • the radial contact force received by the first rotating arm 112 from the transmission member 171 is the direction away from the base.
  • the contact force in the direction of the base, the radial contact force received by the second rotating arm 120 from the transmission member 171 is also the contact force in the direction away from the base, the force receiving direction of the first rotating arm 112 and the second rotating arm 120 Opposite and approximately equal in size.
  • the damping assembly 17 may also include a second fixing part 174 , the second fixing part 174 may be fixed on the base, and the second fixing part 174 may be away from the first fixing part 172 with the transmission member 171 one side of the transmission member 171 abuts, thereby positioning the transmission member 171 on this side.
  • the second fixing part 174 and the base may be, but are not limited to, threadedly connected through fasteners such as screws and bolts, or buckled through buckles, or fixedly connected through adhesive bonding or other methods.
  • the first fixing part 172 and the base can also be fixedly connected in the above manner, which will not be described again here.
  • the damping component 17 may also include a sliding part 175.
  • the sliding part 175 may be slidably disposed on the base along the first direction, and the sliding part 175 may be in contact with the side of the transmission member 171 facing the first fixing part 172. At this time, Both ends of the elastic member 173 can elastically contact the first fixing part 172 and the sliding part 175 respectively.
  • the sliding part 175 can be driven to slide synchronously, and then the sliding part 175 compresses the elastic member 173, and The elastic force generated by the elastic member 173 can be transmitted to the first rotating arm 112 and the second rotating arm 120 through the sliding part 175 and the transmission member 171 in sequence.
  • the width of the sliding part 175 can be equivalent to the width of the first fixing part 172 to reliably limit the elastic member disposed between the two, thereby reliably transmitting the elastic force to the transmission member 171 .
  • the damping assembly 17 may also include a guide rod 176 fixedly disposed on the base along the first direction.
  • both ends of the guide rod may be fixedly connected to the first fixing part 172 and the second fixing part 174 respectively.
  • both the transmission member 171 and the sliding part 175 can be sleeved on the guide rod 176, so that the guide rod 176 is used to guide the sliding movement of the transmission member 171 and the sliding part 175, thereby improving the sliding stability of the two in the first direction.
  • FIG. 17 is a schematic cross-sectional structural diagram of the rotating shaft mechanism shown in FIG. 14 at AA.
  • the transmission member 171 may include a first cam 1711 and a second cam 1712.
  • the first cam 1711 is located on a side close to the first rotating arm 112
  • the second cam 1712 is located on a side close to the second rotating arm 120. side, and the first cam 1711 is in contact with the first cam surface 11221 of the first rotating arm 112
  • the second cam 1712 is in contact with the second cam surface 120021 of the second rotating arm 120 . It can also be seen from FIG.
  • first cam 1711 has a third cam surface 17111 on the side facing the first rotating arm 112
  • second cam 1712 has a fourth cam surface 17121 on the side facing the second rotating arm 120.
  • first cam 1711 and the first rotating arm 112, and the second cam 1712 and the second rotating arm 120 may respectively form a cam pair.
  • first cam 1711 and the second cam 1712 can slide toward each other (closer to each other) or slide away from each other (away from each other).
  • the first cam 1711 and the second cam 1712 can be designed to slide toward each other when the first rotating arm 112 and the second rotating arm 120 rotate in the direction of folding the electronic device, and when the first rotating arm 112 and the second rotating arm 120 slide in opposite directions when rotating in the direction of unfolding the electronic device.
  • the curved surface contours of the first cam surface 11221, the second cam surface 120021, the third cam surface 17111 and the fourth cam surface 17121 can be designed. to fulfill. It can be understood that through reasonable design of the curved surface contours of the above-mentioned cam surfaces, the first rotating arm 112 and the second rotating arm 120 can also be made to hover at the set rotation angle, thereby conducive to improving the user experience. .
  • FIG. 18 is a schematic structural diagram of the transmission member 171 shown in FIG. 14 .
  • the side of the first cam 1711 facing the second cam 1712 may also be provided with a first inclined surface 17112, and the side of the second cam 1712 facing the first cam 1711 may be provided with a second inclined surface 17122.
  • the first inclined surface 17112 and the second inclined surface 17122 may be are arranged in parallel to form an inclined plane transmission pair.
  • FIG. 19 is a schematic structural diagram of the second fixing part and the sliding part provided by the embodiment of the present application.
  • a first protrusion 1741 may be provided on the side of the second fixing part 174 facing the transmission member 171 .
  • the first protrusion 1741 has a third slope 17411 on the side facing the first cam 1711 .
  • One side of the second cam 1712 has a fourth inclined surface 17412.
  • the first inclined surface 17112 of the first cam 1711 can be located at an end of the first cam 1711 close to the second fixing part 174, and the first inclined surface 17112 and the third inclined surface 17411 can be arranged in parallel and abut against each other.
  • the second inclined surface 17122 of the second cam 1712 may be located at an end of the second cam 1712 close to the second fixing part 174, and the second inclined surface 17122 and the fourth inclined surface 17412 may be arranged in parallel and abut against each other.
  • the second cam 1712 will also move in the fourth direction. Under the contact action of the inclined surface 17412, it slides toward the side away from the second fixing part 174. That is to say, the actual movement track of the second cam 1712 is sliding along the inclination direction of the fourth inclined surface 17412. It can be seen that during this process, both the first cam 1711 and the second cam 1712 can generate sliding motion in the first direction, so they can jointly compress the elastic member 173 . It can be seen that during the unfolding process of the electronic device, through the compression effect of the elastic member 173, the user can obtain a more obvious operating feel, which is conducive to improving the user's experience.
  • the elastic member 173 gradually returns to the compressed state. spring, and release the accumulated elastic potential energy, thereby pushing the first cam 1711 and the second cam 1712 to slide in a direction away from the first fixing part 172 .
  • the inclined plane transmission pair composed of the first inclined plane 17112 and the third inclined plane 17411 while the first cam 1711 slides in the direction close to the second fixed part 174, it also generates a sliding displacement in the direction of the first rotating arm 112, so that A torsion force may be applied to the first rotating arm 112 to assist its rotation.
  • the elastic potential energy released by the elastic member 173 can provide a certain folding assistance to the rotating shaft mechanism, thereby reducing the difficulty of the folding operation of the electronic device.
  • the specific shape of the first bump 1741 is not limited.
  • the first bump 1741 can be a triangular bump.
  • the width of the first bump 1741 is relatively small, thus helping to reduce the The overall width of the pivot mechanism.
  • the first protrusion 1741 may be an isosceles triangular protrusion, that is, the inclination angles of the third slope 17411 and the fourth slope 17412 with respect to the first direction may be equal.
  • the sliding distance of the two in the first direction can also remain the same, so that the elastic member 173 can be compressed by the same amount, and the first rotating arm 112 and the second rotating arm 120 can be subjected to equal amounts of compression.
  • the damping force acts to improve the working reliability of the damping component 17.
  • the first bump 1741 may also be a trapezoid or other polygonal structure, as long as the characteristics of the third bevel 17411 and the fourth bevel 17412 can be achieved, which will not be described again here.
  • the displacement between the first cam 1711 and the second cam 1712 and the sliding part 175 can also be transmitted through an inclined plane transmission pair.
  • one end of the first cam 1711 close to the sliding part 175 has a fifth inclined surface 17113 arranged toward the second cam 1712
  • one end of the second cam 1712 close to the sliding part 175 has a sixth inclined surface 17123 arranged towards the first cam 1711 .
  • the sliding part 175 may be provided with a second protrusion 1751 on one side facing the transmission member 171.
  • the second protrusion 1751 has a seventh slope 17511 on the side facing the first cam 1711 and an eighth slope on the side facing the second cam 1712. 17512.
  • the fifth inclined surface 17113 of the first cam 1711 and the seventh inclined surface 17511 of the second protrusion 1751 are arranged in parallel and abut against each other.
  • the sixth inclined surface 17123 of the second cam 1712 and the eighth inclined surface 17512 of the second protrusion 1751 are arranged in parallel and Butt each other.
  • the second bump 1751 may also be in a shape such as a triangle or a trapezoid, as long as the characteristics of the seventh slope 17511 and the eighth slope 17512 can be achieved, which will not be described again here.
  • the inclined plane transmission pair composed of the fifth inclined plane 17113 and the seventh inclined plane 17511 and the sixth inclined plane 17123 and the eighth inclined plane 17512 are used transmission pair
  • the first cam 1711 and the second cam 1712 slide toward the side close to the first fixed part 172
  • the first cam 1711 will exert a force F1 perpendicular to the fifth inclined plane 17113 to the sliding part 175.
  • the second cam 1712 will apply a force F2 perpendicular to the sixth slope 17123 to the sliding part 175.
  • the component forces of F1 and F2 in the radial direction i.e., the width direction of the base
  • the force components of F1 and F2 in the first direction are offset, so they can superimpose on the sliding part 175 , thereby pushing the sliding part 175 to slide in the first direction, causing the sliding part 175 to compress the elastic member 173 .
  • the elastic member 173 gradually rebounds in the compressed state and releases the accumulated elastic potential energy, thereby pushing the sliding part 175 toward Slide in the direction away from the first fixing part 172 .
  • using the transmission pair composed of the sixth inclined surface 17123 and the eighth inclined surface 17512, while the second cam 1712 slides in the direction close to the second fixed part 174 it will also generate a displacement sliding in the direction of the second rotating arm 120. .
  • the damping assembly 17 can move the elastic member 173 in the axial direction of the rotating shaft mechanism (ie, the first direction) through the inclined plane transmission pair formed by the first cam 1711 and the second cam 1712.
  • the generated elastic force is converted into a radial force and transmitted to the first rotating arm 112 and the second rotating arm 120. Since the elastic member 173 is arranged along the axial direction of the rotating shaft mechanism, the size of the elastic member 173 is not affected by other components of the electronic device (such as the motherboard). , batteries, etc.), the size of the elastic member 173 can be appropriately increased to ensure that sufficient damping force is provided for the electronic device, thereby avoiding the problem of limited opening and closing force of the electronic device.
  • the thickness of the rotating shaft mechanism is reduced.
  • the axial space of the rotating shaft mechanism is relatively abundant. Therefore, the first cam 1711 and the second cam 1711 can be appropriately added during design.
  • the axial size of the cam 1712 is increased to increase the contact area with the rotating arm on the corresponding side. This can reduce the contact stress of the first cam 1711 and the second cam 1712 while ensuring that space is allowed, thereby improving the two Cam life.
  • a first groove 17114 can be provided on the side of the first cam 1711 facing the second cam 1712, and the first groove 17114 can be located on the first slope 17112 away from the second fixing portion 174
  • the side of the second cam 1712 facing the first cam 1711 may be provided with a first protrusion 17124
  • the first protrusion 17124 may be located on the side of the second slope 17122 away from the second fixing part 174 .
  • the first protrusion 17124 can be slidably disposed in the first groove 17114, and a side wall of the first protrusion 17124 away from the second fixing portion 174 can abut against the inner wall of the first groove 17114.
  • the cooperation between the first protrusion 17124 and the first groove 17114 can, on the one hand, guide the first cam 1711 and the second cam 1712 to slide toward or away from each other; on the other hand, it can also make the first cam 1711 and the second cam 1712
  • the second cam 1712 slides in the first direction to achieve linkage, thereby further ensuring that the first cam 1711 and the second cam 1712 can maintain synchronous sliding in the first direction.
  • a second protrusion 17115 may be provided on the side of the first cam 1711 facing the second cam 1712.
  • a second groove 17125 may be provided on the side of the second cam 1712 facing the first cam 1711.
  • the second protrusion 17115 can be slidably disposed in the second groove 17125, and a side wall of the second protrusion 17115 facing the second fixing portion 174 can abut against the inner wall of the second groove 17125.
  • the mating insertion of the second protrusion 17115 and the second groove 17125 can also guide the first cam 1711 and the second cam 1712 to slide toward or away from each other, and provide a guide for the first cam 1711 and the second cam 1712 to slide in the first direction.
  • the synchronous sliding in the direction provides guarantee, thereby further improving the working reliability of the damping component 17.
  • the specific form of the elastic member 173 is not limited.
  • it may be a spring 1731 or an elastic piece 1732.
  • the spring 1731 and the elastic piece 1732 can also be designed in a common manner.
  • the number of springs 1731 and elastic pieces 1732 can be multiple.
  • the two ends of each spring 1731 are respectively in contact with the first fixed part 172 and the sliding part 175.
  • the plurality of elastic pieces 1732 can be moved along the first direction. Overlaid between the first fixed part 172 and the sliding part 175 .
  • the specific number of springs 1731 and elastic pieces 1732 can be set according to the magnitude of the damping force required by the damping component and the space of the rotating shaft mechanism.
  • Figures 14 and 15 show the situation of two springs.
  • the two springs 1731 can be arranged on both sides of the plurality of spring pieces 1732 to ensure the uniformity of the force on the sliding part, thereby helping to move the first The rotating arm 112 and the second rotating arm 120 transmit a balanced damping force.
  • the damping assembly 17 may also include a first pin 177 corresponding to the spring 1731, and the first pin 177 may be along the first pin 177.
  • One direction penetrates the first fixed part 172 , the sliding part 175 and the second fixed part 174 in sequence, and the spring 1731 is sleeved on the first pin 177 , thereby avoiding problems such as arching when the spring 1731 elastically deforms.
  • a first blocking block 1721 may be provided on the side of the first fixed part 172 away from the sliding part 175.
  • the first blocking block 1721 is provided with a blocking groove 17211 at a position corresponding to the first pin 177.
  • the first pin One end of 177 can be extended from the first fixing part 172 and then locked in the slot 17211.
  • a second blocking block 1742 may be provided on the side of the second fixing part 174 away from the first fixing part 172.
  • the second blocking block 1742 may be provided with a blocking hole 17421 at a position corresponding to the first pin 177.
  • the first pin The other end of 177 can be clamped in the clamping hole 17421. In this way, the first pin 177 and the base can be relatively fixed through the engaging function of the first clamping block 1721 and the second clamping block 1742 .
  • the first rotating arm 112 and the second rotating arm 120 can be rotationally connected to the base through a physical axis or a virtual axis.
  • the first pin 177 can be used as an entity to connect the first rotating arm 112 or the second rotating arm 120 to the base. axis.
  • the first pin 177 located on one side of the first rotating arm 112 can penetrate the first protruding portion 1122 of the first rotating arm 112
  • the first pin 177 located on one side of the second rotating arm 120 can penetrate the first protruding portion 1122 of the first rotating arm 112 .
  • the second protruding portion 12002 of the second rotating arm can realize the rotational connection relationship between the first rotating arm 112 and the second rotating arm 120 and the base.
  • the rotating shaft mechanism may also be provided with other possible structures. Please refer to FIG. 14 , FIG. 15 and FIG. 16 again.
  • the rotating shaft mechanism may also include a synchronization component 18 .
  • the synchronization component 18 may include a first driving gear 181 disposed on a side of the first rotating arm 112 facing the second rotating arm 120 , and a second driving gear disposed on a side of the second rotating arm 120 facing the first rotating arm 112 182, the first driving gear 181 and the second driving gear 182 are connected in transmission. In this way, when one of the swing arms rotates around the base, the other swing arm can be driven to rotate around the base in opposite or opposite directions simultaneously, and the rotation angles of the two swing arms can be kept consistent.
  • the first driving gear 181 and the second driving gear 182 can be respectively sleeved on the first pin 177 on the corresponding side.
  • the first driving gear 181 may be located on a side of the first protruding part 1122 away from the first fixing part 172 , and the first driving gear 181 and the first protruding part 1122 may be spaced apart.
  • the second driving gear 182 can also be located on the side of the second protruding portion 12002 away from the first fixed portion 172 , and the second driving gear 182 and the second protruding portion 12002 are spaced apart.
  • the side of the second fixed portion 174 facing the first rotating arm 112 can be embedded between the first protruding portion 1122 and the first driving gear 181 , and the side of the second fixed portion 174 facing the second rotating arm 120 It can be embedded between the second protruding portion 12002 and the second driving gear 182, thereby helping to improve the compactness of the rotating shaft mechanism.
  • FIG. 20 is a schematic cross-sectional structural diagram of the rotating shaft mechanism shown in FIG. 14 at B-B.
  • the synchronization component 18 may also include a driven gear 183, which may be disposed between two driving gears.
  • the number of driven gears 183 may be an even number, and the adjacent driven gears 183 and the adjacent driven gears 183 and the driving gears mesh with each other, so that the first driving gear 181 and the second driving gear 183 mesh with each other.
  • the gears 182 can rotate in opposite directions or in opposite directions through the even number of driven gears 183 .
  • the synchronization assembly 18 may also include a gear shaft 1831 corresponding to the driven gear 183.
  • both ends of the gear shaft 1831 may be fixedly connected to the second fixing part 174 and the second clamping block 1742, respectively.
  • Each driven gear 183 can be respectively sleeved on the corresponding gear shaft 1831, thereby improving the smoothness of the movement of the synchronization component.
  • the gear shaft 1831 can also be rotationally connected to the second fixing portions 174 and the second clamping blocks 1742 at both ends.
  • the driven gear 183 can be fixed on the corresponding gear.
  • the driven gear 183 and the corresponding gear shaft 1831 can be fixedly connected by key connection, or can also be designed with an integrated structure, which is not specifically limited in this application.
  • the synchronization component 18 can be accommodated in the accommodation space formed by the above-mentioned cover plate and the base, so that the structure of the rotating shaft mechanism is relatively compact.
  • the other swing arm can be driven to rotate around the base in opposite or opposite directions synchronously.
  • each swing arm can slide along the chute of the housing holder on the corresponding side, when the swing arm rotates around the base, it can drive the housing holder on the same side to rotate at the same angle.
  • the synchronous rotation of the two housing fixing frames can be realized.
  • the casing holder can be fixedly connected to the casing of the electronic device, the synchronous rotation of the two casing holders can drive the two casings of the electronic device to rotate synchronously. In this way, it is possible to avoid damage to the two casings fixed to the two casings.
  • the flexible display screen exerts instantaneous force, which is beneficial to improving the reliability of the flexible display screen.
  • FIG. 21 is a partial structural schematic diagram of another rotating shaft mechanism in an expanded state according to an embodiment of the present application.
  • the damping assembly 17 also includes a transmission member 171, a first fixed part 172, an elastic member 173, a second fixed part 174 and a sliding part 175.
  • the transmission member 171, the first fixed part 172, the second fixed part 175 The structure and arrangement of the portion 174 can be substantially the same as in the previous embodiments, and these components will not be described in detail here.
  • the elastic members 173 can all be in the form of springs 1731 , and the specific number of the springs 1731 can be determined according to the size of the damping force required by the damping assembly 17 and the space of the rotating shaft mechanism. Settings, this application does not impose restrictions on this.
  • FIG. 17 shows the case where the elastic member includes four springs 1731 , and the two ends of each spring 1731 are respectively in contact with the first fixing part 172 and the sliding part 175 .
  • the two springs 1731 can be respectively sleeved on the two first pins 177, thereby avoiding problems such as arching when elastic deformation occurs.
  • the damping assembly 17 may also include two second pins 178 , the two second pins 178 may be located between the two first pins 177 , and the second pins 178 may penetrate sequentially along the first direction.
  • One end of the second pin 178 can be extended from the first fixed part 172 and then clamped in the first block 1721.
  • the other end of the second pin 178 can be connected with the sliding part 175. Slidingly connected to guide the sliding portion 175 in the first direction.
  • the two middle springs 1731 can be respectively set on the corresponding second pins 178, so that the second pins 178 are used to limit the deformation direction of the springs 1731 set thereon.
  • one end of the guide rod 176 can be fixedly connected to the first fixed part 172 , and the other end can be slidably connected to the sliding part 175 . That is to say, in addition to being slidably connected to the first pin 177 and the second pin 178 , the sliding part 175 can also be slidably assembled on the guide rod 176 at the same time. Since the two middle second pins 178 are opposite to the guide rod 176 in the first direction, the sliding portion 175 can be slidably assembled on the guide rod 176 toward one end of the first fixing portion 172 and toward the second fixing portion 174 One end is slidably assembled on two second pins 178.
  • the specific design may be appropriate.
  • the length of the middle area of the sliding part 175 in the first direction is increased to improve the smoothness of the movement of the sliding part 175 .
  • FIG. 22 is a partial structural schematic diagram of another rotating shaft mechanism in an expanded state according to an embodiment of the present application.
  • the damping assembly 17 may also include a transmission member 171, a first fixed part 172, an elastic member 173, a second fixed part 174 and a sliding part 175, wherein the structure of the elastic member 173 and the first fixed part 172
  • the arrangement can be made with reference to the embodiment shown in FIG. 14 , but the structures of the transmission member 171 , the sliding part 175 and the second fixing part 174 are somewhat changed compared to the embodiment shown in FIG. 14 .
  • the side of the second fixing part 174 facing the transmission member 171 is no longer provided with the first bump, but has a planar structure.
  • the side of the sliding portion 175 facing the transmission member can also be designed as a planar structure.
  • first cam 1711 of the transmission member 171 facing the second fixed part 174 can abut with the second fixed part 174
  • one end of the second cam 1712 of the transmission member 171 facing the sliding part 175 can The sliding portion 175 is in contact with each other.
  • first inclined surface 17112 of the first cam 1711 and the second inclined surface 17122 of the second cam 1712 can be arranged in parallel and abut against each other. In this way, an inclined surface transmission pair can be formed between the first inclined surface 17112 and the second inclined surface 17122.
  • the first cam 1711 and the second cam 1712 are driven to slide toward each other.
  • the second inclined surface 17122 of the second cam 1712 will move toward the third cam.
  • a cam 1711 exerts a component force in the direction of the second fixed part 174. Since the first cam 1711 and the second fixed part 174 are in contact, the first cam 1711 only rotates during the rotation of the first rotating arm 112. There is radial displacement without displacement in the first direction.
  • the first inclined surface 17112 of the first cam 1711 exerts a reaction force toward the first fixing part 172 on the second cam 1712. Driven by the reaction force, the second cam 1712 slides toward the first cam 1711.
  • the second cam 1712 can drive the sliding part 175 to slide synchronously to the side close to the first fixing part 172, thereby compressing the elastic member 173.
  • the elastic force generated by the elastic member 173 can be transmitted to the second cam 1712 through the sliding part 175, and can continue to be transmitted to the first cam 1711 through the second cam 1712, and then transmitted by the first cam 1711 and the second cam 1712 respectively. Give arms to both sides.
  • the elastic member 173 gradually rebounds in the compressed state and releases the accumulated elastic potential energy, pushing the second cam 1712 toward At this time, the first inclined surface 17112 of the first cam 1711 exerts a component force toward the second rotating arm 120 on the second cam 1712, so that the second cam 1712 moves closer to the second fixed portion 174.
  • the second fixed part 174 slides in the direction, it will also slide in the direction of the second rotating arm 120 , thereby exerting a torsion effect on the second rotating arm 120 to assist its rotation.
  • the second inclined surface 17122 of the second cam 1712 will exert a reaction force toward the first rotation arm 112 on the first cam 1711.
  • the first cam 1711 will also move closer to the first rotation arm 112.
  • the direction of the arm 112 slides, so that a torsion force can be applied to the first rotating arm 112 to assist its rotation.
  • the elastic potential energy released by the elastic member 173 can provide a certain folding assistance to the rotating shaft mechanism, thereby reducing the difficulty of opening and closing the electronic device.
  • FIG. 23 is a partial structural schematic diagram of another rotating shaft mechanism in an expanded state according to an embodiment of the present application.
  • the damping assembly 17 may also include a transmission member 171, a first fixed part 172, an elastic member 173, a second fixed part 174 and a sliding part 175, wherein the transmission part 171, the first fixed part 172 and the sliding part
  • the structure of 175 can be configured with reference to the embodiment shown in Figure 20 .
  • all elastic members 173 can be in the form of springs 1731.
  • the specific number of springs 1731 can be set according to the size of the damping force required by the damping assembly 17 and the space of the rotating shaft mechanism. This application is There is no restriction on this.
  • FIG. 23 shows the case where the elastic member 173 includes four springs 1731 , and the two ends of each spring 1731 are respectively in contact with the first fixing part 172 and the sliding part 175 .
  • the two springs 1731 on both sides can be respectively sleeved on the two first pins 177.
  • the two middle springs 1731 can be placed on both sides.
  • Two second pins 178 are disposed between the first pins 177.
  • the second pins 178 can penetrate the first fixed part 172 and the sliding part 175 in sequence along the first direction.
  • One end of the second pins 178 can be formed by the first
  • the fixed part 172 extends and is locked in the first blocking block 1721.
  • the other end of the second pin 178 can be slidably connected with the sliding part 175 to guide the sliding part 175 in the first direction.
  • the two middle springs 1731 can be respectively set on the corresponding second pins 178, so that the second pins 178 are used to limit the deformation direction of the springs 1731 set thereon.
  • the sliding portion 175 can be slidably assembled on the guide rod 176 toward one end of the first fixed portion 172 and toward the second fixed portion 172 .
  • One end of the portion 174 is slidably assembled on the two second pins 178 .
  • the sliding part 175 may be appropriately increased during specific design. The length of the middle area of the sliding portion 175 in the first direction is increased to improve the smoothness of the movement of the sliding portion 175 .
  • FIG. 24 is a partial structural schematic diagram of another rotating shaft mechanism in an expanded state according to an embodiment of the present application.
  • the damping assembly may also include an intermediate gear 179.
  • the first inclined surface 17112 of the first cam 1711 may be provided with a first rack 171121
  • the second inclined surface 17122 of the second cam 1712 may be provided with a second rack 171221
  • the intermediate gear 179 is provided between the first inclined surface 17112 and between the second inclined surfaces 17122
  • the intermediate gear 179 meshes with the first rack 171121 and the second rack 171221 on both sides respectively.
  • first fixing part 172 the second fixing part 174, the sliding part 175 and the elastic member 173 in this embodiment can be configured with reference to the embodiment shown in FIG. 23, and will not be described again here.
  • FIG. 25 is a partial structural schematic diagram of another rotating shaft mechanism in an expanded state according to an embodiment of the present application.
  • the damping assembly 17 may include a transmission member 171, a first fixing part 172, an elastic part 173, and a second fixing part 174.
  • the first fixing part 172, the second fixing part 174, and the elastic part 173 may refer to The embodiment shown in Figure 23 is configured. Different from the embodiment shown in Figure 23, the sliding part is omitted in the embodiment of the present application. Therefore, one end of the second cam 1712 of the elastic member 173 facing the first fixing part 172 can directly elastically contact the elastic member 173. That is to say, the elastic member 173 is limited between the second cam 1712 and the first fixing part 172 .
  • This design can simplify the structure of the damping component 17 to a certain extent, which on the one hand can reduce the assembly difficulty of the rotating shaft mechanism, and on the other hand can also help reduce the cost of the rotating shaft mechanism.
  • the second cam 1712 can be positioned toward the first fixing portion 172.
  • One end is provided with a first extension 17126 and a second The extension part 17127, wherein the first extension part 17126 can extend towards the side where the first rotating arm 112 is located, the second extension part 17127 can extend towards the side where the second rotating arm 120 is located, and the first extension part 17126 and the The two extension parts 17127 can be respectively sleeved on the first pins 177 on both sides.
  • the springs 1731 located on both sides can be respectively limited between the first extending part 17126 and the first fixing part 172 and between the second extending part 17127 and the first fixing part 172.
  • FIG. 26 is a partial structural schematic diagram of another rotating shaft mechanism in an expanded state according to an embodiment of the present application.
  • the damping assembly 17 may include a transmission member 171, a first fixed part 172, an elastic part 173, and a sliding part 175.
  • the first fixed part 172, the sliding part 175, and the elastic part 173 may be shown in Figure 23 settings.
  • the embodiment of the present application omits the second fixing part.
  • the end of the first cam 1711 away from the first fixing part 172 can be connected with the end surface of the first driving gear 181 and the second fixing part.
  • the end surfaces of the driving gear 182 and the end surfaces of the two driven gears 183 are in contact with each other.
  • This design can also simplify the structure of the damping component, thereby helping to reduce the assembly difficulty and cost of the rotating shaft mechanism.
  • the first cam 1711 can move closer or farther away.
  • the second cam 1712 slides in the radial direction, and the second cam 1712 has both radial displacement and displacement in the first direction.
  • the second cam 1712 can push the sliding part 175 while sliding in the direction close to the first cam 1711 Slide toward the side of the first fixed part 172 to compress the elastic member 173, or may be pushed by the sliding part 175 when the elastic member 173 rebounds and slide toward the side away from the first fixed part 172, and between the first inclined surface and the second The two inclined surfaces slide against each other under the mutual conflict with the first cam 1711, so as to apply a torsion force to the first rotating arm 112 and the second rotating arm 120 to assist their rotation through the first cam 1711 and the second cam 1712.
  • first cam 1711 has a radial displacement
  • one end of the gear shaft can be fixedly connected or rotationally connected with the second clamping block 1742 , the other end does not exceed the end surface of the driven gear 183 to avoid interference with the first cam 1711 .
  • wear-resistant sheets can also be provided on the end surfaces of each driving gear and driven gear 183 to reduce the friction loss caused by the first cam 1711 to each gear when sliding, thereby improving the structure of the rotating shaft mechanism. strength.
  • the damping assembly 17 can also omit the sliding part and the second fixed part at the same time.
  • the end of the first cam 1711 away from the first fixed part 172 can be in contact with the end surface of the first driving gear 181
  • the end surfaces of the second driving gear 182 and the end surfaces of the driven gears 183 on both sides are in contact
  • the end of the second cam 1712 facing the first fixed part 172 is directly in contact with the elastic member 173 , which can further simplify the structure of the damping assembly 17 , thereby reducing the assembly difficulty and cost of the rotating shaft mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Telephone Set Structure (AREA)

Abstract

一种转轴机构(1)及电子设备,转轴机构(1)包括基座(16)、转动组件和阻尼组件(17),转动组件包括第一转动臂(112)和第二转动臂(120),第一转动臂(112)与第二转动臂(120)分别转动连接于基座(16)的两侧,第一转动臂(112)靠近基座(16)的一侧具有第一凸轮面(11221),第二转动臂(120)靠近基座(16)的一面具有第二凸轮面(120021);阻尼组件(17)包括传动件(171)、第一固定部(172)和弹性件(173),传动件(171)沿第一方向滑动设置于基座(16),传动件(171)位于第一转动臂(112)与第二转动臂(120)之间,且传动件(171)的两侧分别与第一凸轮面(11221)和第二凸轮面(120021)抵接,传动件(171)可在第一转动臂(112)及第二转动臂(120)转动时沿第一方向滑动;第一固定部(172)固定于基座(16),且第一固定部(172)与传动件(171)沿第一方向间隔设置;弹性件(173)限位于传动件(171)与第一固定部(172)之间。

Description

一种转轴机构及电子设备
相关申请的交叉引用
本申请要求在2022年07月30日提交中国专利局、申请号为202210911441.1、申请名称为“一种转轴机构及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及到一种转轴机构及电子设备。
背景技术
随着柔性显示屏技术的逐渐成熟,推动电子设备的显示方式发生了非常大的变化,可折叠柔性屏手机、可折叠柔性屏平板电脑,以及具有可折叠柔性屏的可穿戴电子设备等是未来智能电子设备的一大重要演进方向。
转轴机构作为可折叠电子设备实现折叠功能的重要部件,除了可用于实现电子设备的折叠状态的改变,还可以为整个电子设备在不同的折叠状态下提供足够的阻尼力,以使电子设备在进行折叠状态切换的过程中具有可靠的支撑力。然而,随着电子设备不断向轻薄化方向发展,转轴机构的尺寸也需相应地减薄来与薄型电子设备相匹配,这就导致转轴机构中用于提供阻尼力的结构件的接触应力变大,进而会影响转轴机构的结构强度和使用寿命。
发明内容
本申请提供了一种转轴机构及电子设备,以提高转轴机构的结构强度,延长转轴机构的使用寿命。
第一方面,本申请提供了一种转轴机构,该转轴机构可包括基座、转动组件和阻尼组件。其中,转轴组件可以包括第一转动臂和第二转动臂,第一转动臂和第二转动臂可分别转动连接于基座的两侧,且第一转动臂靠近基座的一侧具有第一凸轮面,第二转动臂靠近基座的一侧具有第二凸轮面。阻尼组件可包括传动件、第一固定部以及弹性件,定义第一转动臂和第二转动臂的转动轴线的延伸方向为第一方向,传动件可沿第一方向滑动设置于基座,且传动件可位于第一转动臂和第二转动臂之间,传动件的两侧分别与第一凸轮面和第二凸轮面抵接,其可以在第一转动臂和第二转动臂转动时沿第一方向滑动;第一固定臂固定于基座,且第一固定部与传动件沿第一方向间隔设置;弹性件可弹性限位于传动件与第一固定部之间。
上述方案中,传动件可以将弹性件在转轴机构的轴向(第一方向)产生的弹性力转换为径向力传递给第一转动臂和第二转动臂,由于弹性件沿转轴机构的轴向设置,弹性件的尺寸不受电子设备的其他部件的限制,因此可以适当增大弹性件的尺寸来为电子设备提供足够的阻尼力,进而可以规避电子设备的开合力局限性问题。另外,由于转轴结构的轴向空间相对宽裕,因此可以适当增加传动件的轴向尺寸在增大其与第一转动臂和第二转动臂的接触面积,从而减小接触应力,进而可以提高转轴机构的结构强度,延长转轴机构的使用寿命。
在一些可能的实施方案中,传动件可以包括第一凸轮和第二凸轮,第一凸轮位于靠近第一转动臂的一侧,且第一凸轮的一侧具有与第一凸轮面抵接的第三凸轮面,另一侧具有第一斜面;第二凸轮位于靠近第二转动臂的一侧,且第二凸轮的一侧具有与第二凸轮面抵接的第四凸轮面,另一侧具有第二斜面。第一斜面与第二斜面传动连接,当第一凸轮和第二凸轮随第一转动臂以及第二转动臂的转动相向或相背滑动时,可以推动第一凸轮与第二凸轮中的至少一个凸轮沿第一方向滑动,从而使限位于传动件与第一固定部之间的弹性件的伸缩状态发生改变,弹性件发生形变的同时也会向传动件施加一定的弹性力,该弹性力可进一步第一凸轮和第二凸轮传递给两侧的第一转动臂和第二转动臂,并转化为第一转动臂和第二转动臂相对基座转动的阻尼力,从而使第一转动臂和第二转动臂能够在阻尼力的作用下稳定地转动。
在一些可能的实施方案中,阻尼组件还可以包括第二固定部,该第二固定部固定于基座,且第二固定部与传动件背离第一固定部的一侧相抵接,从而在该侧对传动件进行定位。
在一些可能的实施方案中,阻尼组件还可以包括滑动部,滑动部可沿第一方向滑动设置于基座,且滑动部可与传动件朝向第一固定部的一侧抵接。这时,传动件的一端可与第一固定部抵接,另一端则可 与滑动部抵接。当传动件的两侧的第一转动臂和第二转动臂的推挤下沿第一方向滑动时,即可带动滑动部同步滑动,进而由滑动部压缩弹性件。
在一些可能的实施方案中,第一斜面可位于第一凸轮靠近第二固定部的一端,第二斜面可位于第二凸轮靠近第二固定部的一端。第二固定部朝向传动件的一侧可设置有第一凸块,第一凸块朝向第一凸轮的一侧具有第三斜面,朝向第二凸轮的一侧具有第四斜面,其中,第三斜面与第一斜面平行且相互抵接,第四斜面与第二斜面平行且相互抵接。这样,第三斜面与第一斜面、第四斜面与第二斜面可分别组成一个斜面传动副,基于这两个转动副,第一凸轮和第二凸轮都可以产生沿第一方向的滑动运动,因此两者可以共同压缩弹性件。
在一些可能的实施方案中,第一凸轮朝向第二凸轮的一侧可具有第一凹槽,第二凸轮朝向第一凸轮的一侧可具有第一凸起,第一凸起可至少部分插接于第一凹槽内,从而为第一凸轮和第二凸轮的相向或相背滑动进行导向,并且还可以使第一凸轮及第二凸轮在第一方向的滑动实现联动,提高第一凸轮和第二凸轮在第一方向的运动一致性。
类似地,第一凸轮朝向第二凸轮的一侧还可设置有第二凸起,第二凸轮朝向第一凸轮的一侧则可设置有第二凹槽,第二凸起可至少部分插接于第二凹槽内,通过第二凸起与第二凸轮的配合插接也可以为第一凸轮和第二凸轮的相向或相背滑动进行导向,以及为第一凸轮和第二凸轮在第一方向的同步滑动提供保障。
在一些可能的实施方案中,第一凸轮靠近滑动部的一端还可具有第五斜面,第二凸轮靠近滑动部的一端还可具有第六斜面。滑动部朝向传动件的一侧具有第二凸块,第二凸块朝向第一凸轮的一侧可具有第七斜面,朝向第二凸轮的一侧可具有第八斜面,其中,第七斜面与第五斜面平行且相互抵接,第八斜面与第六斜面平行且相互抵接。这样,第七斜面与第五斜面、第八斜面与第六斜面可分别组成一个斜面传动副,基于这两个转动副,第一凸轮和第二凸轮施加于滑动部的沿第一方向的作用力可以相互叠加,两者可以共同推动滑动部沿第一方向滑动,因此可以有效提高阻尼组件的运动可靠性。
在另外一些可能的实施方案中,滑动部朝向传动件的一侧还可以为平面,这样可以简化滑动部的结构,从而有利于降低阻尼组件整体的结构复杂度。该方案中,传动件与滑动部之间可形成垂直于第一方向的平面接触,从而在传动件滑动时可直接带动滑动部沿第一方向滑动。
在一些可能的实施方案中,第一凸轮朝向第二固定部的一端可与第二固定部抵接,第二凸轮朝向第一固定部的一端可与滑动部抵接,第一斜面与第二斜面平行且相互抵接,从而形成斜面传动副。该方案通过第一斜面与第二斜面组成的传动副实现第一转动臂和第二转动臂在转动过程中的阻尼功能,转轴机构的结构较为简单,成本也相对较低。
在一些可能的实施方案中,第一斜面与第二斜面平行设置,第一斜面可设置有第一齿条,第二斜面可设置有第二齿条。这时,传动件还可以包括中间齿轮,中间齿轮可设置于第一斜面与第二斜面之间,且分别与第一齿条和第二齿条啮合。当第一凸轮与第二凸轮相向或者相背滑动时,中间齿轮的两侧分别在第一齿条和第二齿条上滚动,这样就可以保证第一凸轮和第二凸轮相向或相背滑动的同步性,进而有助于提升阻尼组件的工作可靠性。
在一些可能的实施方案中,阻尼组件还可以包括导向杆,导向杆固定于基座,且导向杆沿第一方向设置,传动件可套设于该导向杆,从而利用导向杆对传动件的滑动进行导向,提高传动件在第一方向的滑动稳定性。
在一些可能的实施方案中,弹性件可以为弹簧。这时,阻尼组件还可以包括沿第一方向设置的第一销轴,弹簧可以套设在第一销轴上,从而避免其发生弹性形变时出现起拱等问题。
在另外一些可能的实施方案中,弹性件还可以为弹片,弹片的数量可以为多个,多个弹片可沿第一方向叠置在第一固定部与滑动部之间。
当然,弹性件还可以采用弹簧和弹片共用的形式。示例性地,弹簧的数量可以为两个,两个弹簧可以设置在多个弹片的两侧,从而保证滑动部的受力均匀性,进而有助于向第一转动臂和第二转动臂传递均衡的阻尼力作用。
第二方面,本申请还提供了一种电子设备,该电子设备可包括第一壳体、第二壳体、柔性显示屏以及前述第一方面任一可能的方案中的转轴机构。第一壳体和第二壳体可分设于转轴机构的相对的两侧,且第一转动臂与第一壳体滑动连接,第二转动臂与第二壳体滑动连接。柔性显示屏可连续覆盖于第一壳体、第二壳体和转轴机构,柔性显示屏与第一壳体和第二壳体固定连接。该电子设备的转轴机构可在电 子设备折叠或展开的过程中提供稳定的支撑力,使得电子设备的使用可靠性得以提高。
附图说明
图1为本申请实施例提供的电子设备的结构示意图;
图2为图1中所示的电子设备处于展开状态时的结构示意图;
图3为图2中所示的电子设备的爆炸示意图;
图4为图3中所示的转轴机构1的爆炸结构示意图;
图5为本申请一个可能的实施例提供的转轴机构的局部结构示意图;
图6为图5中所示的转轴机构的局部结构爆炸图;
图7为本申请一个可能的实施例提供的第一摆臂的结构示意图;
图8为转轴机构的局部结构示意图;
图9为本申请一个可能的实施例提供的第一壳体固定架的结构示意图;
图10a展示了转轴机构处于展开状态时的结构示意图;
图10b展示了一个可能的实施例提供的第一截面的示意图;
图10c为转轴机构处于中间状态时的结构示意图;
图10d为转轴机构处于闭合状态时的结构示意图;
图11为本申请一实施例提供的第一转动臂和第一摆臂相对于第一壳体固定架滑动的机构原理图;
图12为本申请一个可能的实施例提供的第一支撑板的结构示意图;
图13为本申请一个可能的实施例提供的第一支撑板和第二支撑板对柔性显示屏进行支撑的结构示意图;
图14为本申请实施例提供的一种转轴机构处于展开状态时的局部结构示意图;
图15为本申请实施例提供的一种转轴机构处于折叠状态时的局部结构示意图;
图16为图14中所示的转轴机构的爆炸结构示意图;
图17为图14中所示的转轴机构的在A-A处的截面结构示意图;
图18为图14中所示的传动件的结构示意图;
图19为本申请实施例提供的第二固定部与滑动部的结构示意图;
图20为图14中所示的转轴机构在B-B处的截面结构示意图;
图21为本申请实施例提供的另一种转轴机构处于展开状态时的局部结构示意图;
图22为本申请实施例提供的另一种转轴机构处于展开状态时的局部结构示意图;
图23为本申请实施例提供的另一种转轴机构处于展开状态时的局部结构示意图;
图24为本申请实施例提供的另一种转轴机构处于展开状态时的局部结构示意图;
图25为本申请实施例提供的另一种转轴机构处于展开状态时的局部结构示意图;
图26为本申请实施例提供的另一种转轴机构处于展开状态时的局部结构示意图。
附图标记:
1-转轴机构;11-主轴模组;11a-第一转动组件;11b-第二转动组件;112-第一转动臂;
1121-第一滑块;1122-第一凸出部;11221-第一凸轮面;
113-第一摆臂;1131-第一弧形转动块;1132-第二滑块;
114-盖板;1141-第一弧形凸起;1142-第二弧形凸起;
115-第一壳体固定架;115a-第一面;115b-第二面;1151-第一滑槽;11511-第一滑道;
1152-第二滑槽;11521-第二滑道;1153-第一转动槽;
16-基座;163-第一弧形槽;164-第二弧形槽;
17-阻尼组件;171-传动件;1711-第一凸轮;17111-第三凸轮面;17112-第一斜面;
171121-第一齿条;17113-第五斜面;17114-第一凹槽;17115-第二凸起;1712-第二凸轮;
17121-第四凸轮面;17122-第二斜面;171221-第二齿条;17123-第六斜面;17124-第一凸起;
17125-第二凹槽;17126-第一延伸部;17127-第二延伸部;172-第一固定部;1721-第一卡块;
17211-卡槽;173-弹性件;1731-弹簧;1732-弹片;174-第二固定部;1741-第一凸块;
17411-第三斜面;17412-第四斜面;1742-第二卡块;17421-卡孔;175-滑动部;1751-第二凸块;
17511-第七斜面;17512-第八斜面;176-导向杆;177-第一销轴;178-第二销轴;179-中间齿轮;
18-同步组件;181-第一主动齿轮;182-第二主动齿轮;183-从动齿轮;1831-齿轮轴;
119-第二壳体固定架;119a-第三面;119b-第四面;1191-第三滑槽;11911-第三滑道;
1192-第四滑槽;11921-第四滑道;1193-第二转动槽;
120-第二转动臂;12001-第三滑块;12002-第二凸出部;120021-第二凸轮面;
121-第二摆臂;12101-第二弧形转动块;12102-第四滑块;
12-第一支撑板;12a–第一板面;1201-第一转动部;
13-第二支撑板;1301-第二转动部;
2-第一壳体;2a-第一外观面;2b-第一支撑面;
3-第二壳体;3a-第二外观面;3b-第二支撑面;
4-柔性显示屏。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
参考图1所示,图1为本申请实施例提供的电子设备的结构示意图。电子设备可以为手机、掌上电脑(personal digital assistant,PDA)、笔记本电脑、平板电脑或者其它具有可折叠功能的设备。图1所示实施例的电子设备以手机为例进行阐述。电子设备可包括转轴机构、柔性显示屏以及两个壳体,为了便于描述,可将两个壳体分别命名为第一壳体2和第二壳体3。其中,第一壳体2和第二壳体3位于转轴机构1的两侧,且可绕转轴机构1转动。该电子设备在使用时,可根据不同的使用场景进行闭合及展开。本申请提供的电子设备可为内折式电子设备,在图1所示的实施例中,电子设备处于闭合状态,且图1展示了转轴机构1在电子设备处于闭合状态时与两个壳体之间的相对位置关系。此时,转轴机构1的表面、第一壳体2的第一外观面2a和第二壳体3的第二外观面3a可共同作为电子设备的外观面。其中,第一壳体2的第一外观面2a是指第一壳体2的背离柔性显示屏的表面,第二壳体3的第二外观面3a是指第二壳体3的背离柔性显示屏4的表面。
一并参考图2所示,图2为图1中所示的电子设备处于展开状态时的结构示意图。值得一提的是,在图2中示出了第一壳体2的第一支撑面2b和第二壳体3的第二支撑面3b侧的结构。其中,第一壳体2的第一支撑面2b是指第一壳体2的用于支撑柔性显示屏4的表面,第二壳体3的第二支撑面3b是指第二壳体3的用于支撑柔性显示屏4的表面。柔性显示屏4可连续覆盖于第一壳体2的第一支撑面2b、第二壳体3的第二支撑面3b以及转轴机构1,且柔性显示屏4可与第一壳体2的第一支撑面2b以及第二壳体3的第二支撑面3b固定连接,其连接方式可以但不限于为粘接。这样,在电子设备处于如图2所示的展开状态时,第一壳体2和第二壳体3可对柔性显示屏4起到支撑的作用。
在第一壳体2和第二壳体3由图2所示的展开状态到图1所示的闭合状态,或者由图1所示的闭合状态到图2所示的展开状态的相对转动的过程中,柔性显示屏4可随第一壳体2和第二壳体3进行弯折或展平。
参考图3所示,图3为图2中所示的电子设备的爆炸示意图。需要说明的是,在图3中未示出柔性显示屏。在本申请实施例中,第一壳体2和第二壳体3可位于转轴机构1的相对的两侧,转轴机构1可以包括一个主轴模组11,也可以包括多个主轴模组11。示例性地,可参照图4,图4为图3中所示的转轴机构1的爆炸结构示意图。在图4所示的实施例中,转轴机构1包括三个主轴模组11,该三个主轴模组11可沿转轴机构1的长度方向间隔排列。其中,转轴机构1的长度方向可以理解为第一壳体2和第二壳体3绕转轴机构1转动的轴线的延伸方向。第一壳体2和第二壳体3可通过该多个主轴模组11转动连接,这样可有效地提高电子设备的第一壳体2和第二壳体3相对转轴机构1转动的稳定性。
一并参考图5和图6所示,图5为本申请一个可能的实施例提供的转轴机构的局部结构示意图,图6为图5中所示的转轴机构的局部结构爆炸图。在本实施例中,主轴模组11可以包括两个转动组件,该两个转动组件分别为第一转动组件11a和第二转动组件11b。转轴机构1还可以包括基座16,该基座16可作为第一转动组件11a和第二转动组件11b的承载部件,第一转动组件11a和第二转动组件11b分设于基座16的两侧,在一些实施情况中,第一转动组件11a和第二转动组件11b可相对于基座16对称设置。为便于描述,在本申请以下各实施例中,主要以第一转动组件11a的具体设置方式以及第一转动组件11a与基座16的连接关系为例,对主轴模组11进行说明,而第二转动组件11b侧可参照第一转动组件11a侧进行设置。需要说明的是,第二转动组件11b的设计可以与第一转动组件11a完全一致; 也可以只参考第一转动组件11a中包括的部件和连接关系,其他参数可以适应性调整,并不要求完全一致。
值得一提的是,在本申请一个可能的实施例中,当主轴模组11为多个时,该多个主轴模组11的第一转动组件11a和第二转动组件11b可均以同一个基座16作为承载部件,以提高转轴机构1的集成化程度。在本申请另外一些可能的实施例中,转轴机构1可对应每个主轴模组11分别设置一个基座16,以使每个主轴模组11的第一转动组件11a和第二转动组件11b以对应的基座16作为承载部件。
为了更好的实现转轴机构1的展开和折叠,本申请的转轴机构1还提供了能够为上述转动组件提供阻尼力的阻尼机构,以使第一转动组件和第二转动组件能够在阻尼力的作用下稳定地转动,以避免电子设备的误开合,还可实现两个壳体在设定位置的悬停。另外,在用户对电子设备进行展开或闭合的过程中可有较为明显的感受,其有利于提升用户的使用体验。
可以继续参考图5和图6,第一转动组件11a可以包括第一转动臂112,该第一转动臂112可与基座16转动连接。在一些实施例中,第一转动臂112可以通过实体轴与基座16转动连接。在另外一些实施例中,第一转动臂112与基座之间还可以采用虚拟轴的方式实现转动连接。示例性的,可在基座上设置一个弧形槽,同时在第一转动臂112上设置一个弧形转动块,从而通过使弧形转动块沿弧形槽的槽面的滑动来实现第一转动臂112与基座的转动。当然,也可以在基座上设置一个弧形臂,同时在第一转动臂112上设置一个弧形转动槽,从而通过使弧形臂沿弧形转动槽的槽面的滑动来实现第一转动臂112与基座16的转动。
在本申请中,这种弧形槽和弧形转动块配合以实现绕一个虚拟的位置确定的轴心旋转的方式,简称为虚拟轴的转动连接方式。即,两个转动实体之间不直接实心销轴实现转动,而是通过上述配合结构实现转动连接。
在本申请实施例中,在电子设备折叠和展开过程中,第一转动臂112和第二转动臂120在绕基座转动的同时,还可分别相对第一壳体和第二壳体滑动,从而使第一壳体和第二壳体也能够相对基座转动。本申请基于该种设计,提供了一种阻尼组件,该阻尼组件可配合第一转动臂112和第二转动臂120共同形成阻尼机构,以为第一转动臂112和第二转动臂120的运动提供阻尼力。
为了更清楚完整的呈现本申请的阻尼机构,在具体说明本申请实施例的阻尼机构的具体设置方式之前,本申请先结合图4-图13示例性的提供一种具体的转轴机构的实现,该转轴机构除了能够实现阻尼功能,还能够平整地支撑柔性显示屏,在电子设备的中间状态以及展开或折叠的过程中,能够使柔性显示屏的弯折部分受力均匀,并且在电子设备处于折叠状态下,能够为柔性显示屏提供容纳空间,且该容纳空间可以保证柔性显示屏的弯折部分具有一定程度的曲率,避免被挤压。进一步地,该转轴机构还能够使柔性显示屏在电子设备的整个展开或折叠的过程中长度保持不变,从而保证柔性显示屏的可靠性。
应当理解的,下述实施例仅为实现电子设备的折叠与展开功能的转轴机构的一种可能的实现方式,在其他实施例中,还可以采用其他方式实现。本申请实施例所涉及的阻尼组件,只要转动臂与壳体滑动连接的转轴机构中,均可适用。
接下来,对转轴机构的示例性的设计进行具体说明。
在本申请中,第一转动组件11a还可以包括第一摆臂113,该第一摆臂113与基座16转动连接。示例性地,第一摆臂113与基座16可通过虚拟轴的方式实现转动连接,可参考图7,图7为本申请一个可能的实施例提供的第一摆臂113的结构示意图。该第一摆臂113用于与基座16连接的一端可以设置有第一弧形转动块1131。需要说明的是,本申请实施例中,第一转动臂112和第一摆臂113相对基座16转动的轴心不同,也即第一转动臂112与基座16转动连接的转动轴心与第一摆臂113与基座16转动连接的轴心不同。具体来说,两轴心相互平行,但是并不重合。
另外,可参考图8,图8为转轴机构的局部结构示意图。基座16可设置有第一弧形槽163,上述图7中所示的第一摆臂113的第一弧形转动块1131可容置于第一弧形槽163,且可沿第一弧形槽163的弧形面转动,从而实现第一摆臂113绕基座16的转动。通过使第一摆臂113与基座16通过虚拟轴的方式实现转动连接,有利于减小第一摆臂113在基座16上占用的空间,从而能够减小主轴模组11的体积,便于实现转轴机构1的小型化设计。值得一提的是,在本申请实施例中,第一弧形转动块1131可以但不限于为圆弧形转动块,第一弧形槽163可以但不限于为圆弧形槽。
可继续参考图8,转轴机构1还可以包括盖板114,该盖板114可盖设于基座16,以在盖板114与基座16之间形成一容置空间。值得一提的是,在本申请中,针对每个主轴模组11可以单独设置一个盖 板114,以使其结构较为灵活。或者,多个主轴模组11可共用一个盖板114,以简化转轴机构1的整体结构。盖板114的朝向第一弧形槽163的表面可设置有第一弧形凸起1141,则上述图7中所示的第一摆臂113的第一弧形转动块1131可插设于该第一弧形凸起1141与第一弧形槽163之间。从而使第一弧形凸起1141将第一摆臂113的第一弧形转动块1131限位于基座16的第一弧形槽163内,以降低第一摆臂113从基座16上脱落的风险,从而提高第一摆臂113运动的可靠性。
在本申请另一个可能的实施例中,还可以使第一弧形槽163为直接开设于基座16上的一体式的通道结构。这样,可实现基座16的一体化设计,提高转轴机构的结构可靠性。另外,第一弧形槽163的数量可以但不限于为至少两个,该至少两个第一弧形槽163可以在基座16的长度方向上间隔设置,且该至少两个第一弧形槽163可以实现对第一弧形转动块1131的限位,以提高第一弧形转动块1131与基座16连接的可靠性。
在本申请另外一些实施例中,第一摆臂113与基座16也可以通过实体轴的方式进行转动连接。在转轴机构中包括多个主轴模组11时,可使该多个主轴模组11中的至少一个主轴模组11的第一摆臂113与基座16通过虚拟轴的方式进行转动连接,并使至少一个主轴模组11的第一摆臂113与基座16通过实体轴的方式进行转动连接。此时,与柔性显示屏相对设置的主轴组件101的第一摆臂113与基座16可采用虚拟轴连接的方式实现转动连接,以保证对柔性显示屏的平整支撑;位于转轴机构的长度方向的两个端部的主轴模组11的第一摆臂113与基座16则可采用实体轴连接的方式实现转动连接,以提高转轴结构整体与第一壳体和第二壳体的连接可靠性。
可再次参考图5和图6,在本申请实施例中,第一转动组件还可以包括第一壳体固定架115,该第一壳体固定架115可与第一转动臂112和第一摆臂113相连接。
在具体设置第一壳体固定架115时,可参考图9,图9为本申请一个可能的实施例提供的第一壳体固定架115的结构示意图。在该实施例中,第一壳体固定架115可以设置有第一滑槽1151,该第一滑槽1151可沿第一壳体固定架115沿朝向或者背离基座16运动的方向(x1方向)延伸。可一并参照图6和图9,第一转动臂112可安装于该第一滑槽1151,且可在第一滑槽1151内滑动。另外,为了避免第一转动臂112从第一滑槽1151内脱落,可以在第一滑槽1151的槽壁设置第一滑道11511,并在第一转动臂112上设置第一滑块1121。这样,可使第一滑块1121卡设于第一滑道11511,并使第一滑块1121可沿第一滑道11511滑动,以实现对第一转动臂112在第一滑槽1151内的限位。另外,通过在第一滑槽1151的槽壁上设置第一滑道11511,其可为第一转动臂112沿第一滑槽1151的滑动提供导向,从而提高第一转动臂112运动的稳定性。
可继续参照图9,第一壳体固定架115还可以设置有第二滑槽1152,在沿第一壳体固定架115的长度方向上,第一滑槽1151和第二滑槽1152间隔设置。可一并参考图7和图9,第一摆臂113的朝向第一壳体固定架115的端部可安装于该第二滑槽1152,且第一摆臂113可在第二滑槽1152内滑动。需要说明的是,在本申请中,第一壳体固定架115可以包括相背设置的第一面115a和第二面115b,其中,第一面115a可为转轴机构1应用于电子设备时,第一壳体固定架115的朝向柔性显示屏的一侧表面。具体实施时,第二滑槽1152可以沿由第一面115a向第二面115b,或者由第二面115b向第一面115a的方向(y1方向)延伸。另外,y1方向在第一截面的投影可与x1方向在第一截面的投影不平行,其中,该第一截面可为垂直第一转动臂112的转动轴线和第一摆臂113的转动轴线的参考平面。
另外,可继续参考图9,在本申请中,也可以在第二滑槽1152内设置第二滑道11521,并在图7中所示的第一摆臂113上设置第二滑块1132。这样,可使第二滑块1132卡设于第二滑道11521,并使第二滑块1132可在第二滑道11521内沿y方向滑动,以实现对第一摆臂113在第二滑槽1152的限位,从而可避免第一摆臂113从第二滑槽1152脱落。另外,通过在第二滑槽1152的槽壁上设置第二滑道11521,其可为第一摆臂113沿第二滑槽1152的滑动提供导向,从而提高第一摆臂113运动的稳定性。
由上文可知,在本申请一实施例中,第二转动组件11b可与第一转动组件11a相对于基座16对称设置。具体实施时,请再次参考图5和图6,第二转动组件11b也可包括第二壳体固定架119、第二转动臂120和第二摆臂121。其中,第二壳体固定架119具有相背设置的第三面119a和第四面119b,当转轴机构用于电子设备时,第三面119a为第二壳体固定架119的朝向柔性显示屏的一侧表面。另外,第二壳体固定架119可包括沿x2方向延伸的第三滑槽1191和沿y2方向延伸的第四滑槽1192,第二转动臂120可在第三滑槽1191内滑动,第二摆臂121可在第四滑槽1192内滑动,x2方向在第二截面的投影与y2方向在第二截面内的投影不平行,该第二截面为垂直第二转动臂120的转动轴线和第二摆臂 121的转动轴线的参考平面。
另外,可继续参照图6,第三滑槽1191可设置有第三滑道11911,第二转动臂120可设置有第三滑块12001,第四滑槽1192可设置有第四滑道11921,第二摆臂121可设置有第四滑块12102。其中,第三滑道11911的设置方式可参照第一滑道11511,第三滑块12001的设置方式可参照第一滑块1121,第四滑道11921的设置方式可参照第二滑道11521,第四滑块12102的设置方式可参照第二滑块1132,在此均不进行赘述。
在本申请中,第二摆臂121可参考图7中所示的第一摆臂113进行设置,为了实现第二摆臂121与基座16的转动连接,可参考图8,基座16可包括第二弧形槽164,第二摆臂121则设置有第二弧形转动块12101(可参考图6)。另外,还可以使盖板114的朝向第二弧形槽164的表面设置有第二弧形凸起1142,其中,第二弧形槽164可参照第一弧形槽163进行设置,第二弧形转动块12101可参照第一弧形转动块1131进行设置,第二弧形凸起1142可参照第一弧形凸起1141进行设置,在此均不进行赘述。
在对本申请上述实施例提供的第一转动组件11a和第二转动组件11b与基座16的连接关系进行了解之后,下面对该转轴机构的运动过程进行说明。首先,可参考图10a,图10a展示了转轴机构处于展开状态时的结构示意图。此时,第一壳体固定架115的朝向基座16的边缘与基座16之间的距离最近,第一摆臂113的第二滑块1132与第一壳体固定架115的第一面115a的距离最近。
由上述实施例的介绍可以知道,当转轴机构由展开状态向闭合状态转动时,第一转动臂112可在第一滑槽1151内沿第一方向滑动,第一摆臂113可在第二滑槽1152内沿第二方向滑动。相类似的,第二转动臂120可在第三滑槽1191内沿x2滑动,第二摆臂121可在第四滑槽1192内沿y2滑动。在图10a中,用带箭头的实线分别表示了x1方向和x2方向,用带箭头的虚线分别表示了y1方向和y2方向。另外,可参考图10b,图10b展示了一个可能的实施例提供的第一截面的示意图,在该第一截面内x1方向和y1方向相交,且二者相交的角度可为图示中的锐角,也可以为其它可能的角度,例如直角或者钝角。另外,在第二截面内,x2方向和y2方向的位置关系可与图10b中所示的x1方向和y1方向的位置关系相对称,在此不进行赘述。
可参照图10c,图10c为转轴机构处于中间状态时的结构示意图。对比图10c和图10a可以看出,在该过程中,第一壳体固定架115可相对于第一转动臂112向背离基座16的方向移动,并带动第一转动臂112和第一摆臂113绕基座16转动。第一摆臂113的第一弧形转动块1131向滑出对应的第一弧形槽163的方向运动,从而使第一弧形转动块1131容置于对应的第一弧形槽163内的部分减小。同时,第一摆臂113的第二滑块1132在第二滑道11521内由第一壳体固定架115的第一面115a向第二面115b的方向滑动。相类似的,第二壳体固定架119可带动第二转动臂120和第二摆臂121绕基座转动,其具体运动过程与上述第一壳体固定架115带动第一转动臂112和第一摆臂113绕基座16转动的运动过程相类似,在此不进行赘述。
另外,参照图10d,图10d为转轴机构处于闭合状态时的结构示意图。在由图10c到图10d的过程中,第一壳体固定架115继续相对于第一转动臂112向背离基座16的方向移动,并带动第一转动臂112绕基座16转动。第一摆臂113的第一弧形转动块1131继续向滑出对应的第一弧形槽163的方向运动,从而使第一弧形转动块1131容置于对应的第一弧形槽163内的部分进一步减小。同时,第一摆臂113的第二滑块1132在第二滑槽1152内继续沿朝向第一壳体固定架115的第二面115b的方向滑动。相类似的,第二壳体固定架119可带动第二转动臂120和第二摆臂121绕基座继续转动,其具体运动过程与上述第一壳体固定架115带动第一转动臂112和第一摆臂113绕基座16转动的运动过程相类似,在此不进行赘述。
可以理解的是,当电子设备由图10d所示的闭合状态向图10a所示的展开状态转动时,第一壳体固定架115、第一转动臂112和第一摆臂113,以及第二壳体固定架119、第二转动臂120和第二摆臂121可分别沿与上述由图10a到图10d的转动过程相反的方向运动,在此不进行赘述。
参照图11,图11为本申请一实施例提供的第一转动臂112和第一摆臂113相对于第一壳体固定架115滑动的机构原理图。由图11可以看出,采用本申请提供的转轴机构1,第一转动臂112和第一摆臂113在绕基座16转动时,其转动轴心不重合,这样可实现第一转动臂112和第一摆臂113之间的相位差动,从而实现上述图10a到10d的运动过程。另外,通过对第一滑槽1151和第二滑槽1152的开设方向进行合理设计,可以使第一转动臂112与第一摆臂113相对于基座16转动的角度均不大于90°。其 与现有的方案相比,可以使第一摆臂113的转动角度有效的减小,这样可使第一摆臂113的局部结构(例如图7中所示的第一摆臂113的A处的结构)的壁厚设计满足强度要求,从而使第一摆臂113的结构可靠性得以提升。可以理解的是,图11也可用于表示第二转动臂120和第二摆臂121相对于第二壳体固定架119滑动的机构原理。由上述分析可知,在本申请中,通过对第三滑槽1191和第四滑槽1192的开设方向进行合理设计,可以使第二转动臂120与第二摆臂121相对于基座16转动的角度均不大于90°,从而使第二摆臂121的转动角度减小,以使第二摆臂121的局部结构的壁厚设计满足强度要求,从而使第二摆臂121的结构可靠性得以提升。另外,在将该转轴机构1用于电子设备时,还可有效的避免对电子设备中的部件进行减薄设计,来对第一摆臂113和第二摆臂121的转动进行避让,其可提高电子设备整机结构的可靠性。
另外,可继续参照图10d,在转轴机构处于闭合状态时,由于第一转动臂112与第一摆臂113在图10d中所示的z方向上均存在对于第一壳体固定架115的支撑力,其可有效的提高第一转动臂112与第一摆臂113与第一壳体固定架115之间的运动结合度,并对于第一壳体固定架115在该方向上起到止位的作用。相类似的,也可以使第二转动臂120与第二摆臂121在该Z方向上存在对于第二壳体固定架119的支撑力,其可有效的提高第二转动臂120与第二摆臂121与第二壳体固定架119之间的运动结合度,并对于第二壳体固定架119在该方向上起到止位的作用。这样,即便在应用有该转轴机构的电子设备在该闭合状态下发生跌落,也可有效的降低第一壳体固定架115和第二壳体固定架119在该状态下相对于转轴机构发生瞬时较大位移的风险,从而可保证电子设备整机结构的可靠性。
可再次参照图4,在本申请实施例中,转轴机构还可以包括第一支撑板12和第二支撑板13,第一支撑板12和第二支撑板13可分设于如图5所示的基座16的相对的两侧,在本申请一实施例中,第一支撑板12和第二支撑板13可相对于基座16对称设置。
在本申请实施例中,第一支撑板12和第一壳体固定架115转动连接。需要说明的是,第一支撑板12可与多个主轴模组11的多个第一壳体固定架115转动连接,其有利于简化转轴机构1的结构,并可提高转轴机构1的结构可靠性。
在具体将第一支撑板12和第一壳体固定架115进行转动连接时,可首先参考如图9所示的第一壳体固定架115,该第一壳体固定架115还可以设置有第一转动槽1153,该第一转动槽1153可以为圆弧形槽。另外,可参照图12,图12为本申请一个可能的实施例提供的第一支撑板12的结构示意图。第一支撑板12的朝向第一壳体固定架115的端部可以设置有第一转动部1201,该第一转动部1201可设置为弧形,示例性的可为圆弧形。这样第一转动部1201可安装于第一转动槽1153,并可通过第一转动部1201沿第一转动槽1153的槽面的转动,来实现第一支撑板12与第一壳体固定架115之间的相对转动。
参考图13,图13为本申请一个可能的实施例提供的第一支撑板12和第二支撑板13对柔性显示屏4进行支撑的结构示意图。由于第二支撑板13与第一支撑板12对称设置,因此在具体设置第二支撑板13时,第二支撑板13可与第二壳体固定架119转动连接,第二壳体固定架119具有第二转动槽1193,另外,第二支撑板13可设置有第二转动部1301,从而使第二转动部1301沿第二转动槽1193的槽面转动,来实现第二支撑板13与第二壳体固定架119之间的相对转动。
可一并参考图12和图13,第一支撑板12可包括第一板面12a,该第一板面12a可用于支撑柔性显示屏。在电子设备处于展开状态时,第一支撑板12的第一板面12a与盖板(图12未示出)朝向柔性显示屏4的表面可处于同一平面,从而可实现对柔性显示屏4的平整支撑。类似地,第二支撑板13也具有用于支撑柔性显示屏的第二板面(图中未示出),在电子设备处于展开状态时,第二支撑板13的第二板面与盖板朝向柔性显示屏4的表面可处于同一平面。
如前所述,采用上述转轴机构可以通过使第一转动臂和第一摆臂的转动轴线不重合,第二转动臂和第二摆臂的转动轴线不重合,这样可在转轴机构转动的过程中实现同侧设置的转动臂和摆臂之间的相位差动,从而实现两个转动组件的伸缩运动,以使转轴机构在处于展开状态时能够对电子设备的柔性显示屏进行平稳支撑,并在转轴机构处于闭合状态时能够形成满足柔性显示屏的弯折要求的类水滴状的容屏空间。另外,在本申请中,通过对第一壳体固定架的第一滑槽和第二滑槽的开设方向,以及第二壳体固定架的第三滑槽和第四滑槽的开设方向进行合理的设计,可以使第一摆臂和第二摆臂相对于基座的转动角度减小,这样可使第一摆臂和第二摆臂的局部结构的壁厚设计满足强度要求,从而使第一摆臂和第二摆臂的结构可靠性得以提升。在将该转轴机构应用于电子设备时,可有效的避免对电子设备中的部件进 行减薄设计,来对第一摆臂和第二摆臂的转动进行避让,其可提高电子设备整机结构的可靠性。并且,还可减小第一摆臂和第二摆臂转动对电子设备的柔性显示屏造成挤压的风险,其可降低柔性显示屏损坏的风险,延长其使用寿命。
在介绍完转轴机构的第一转动组件与第二转动组件后,下面进一步对阻尼组件进行详细说明。
在本申请实施例中,阻尼组件可设置于每个主轴模组中,也即,每个主轴模组除了包括上述第一转动组件和第二转动组件以外,还包括用于为第一转动组件和第二转动组件提供阻尼力的阻尼组件。下面具体对该阻尼组件的结构进行说明。
参考图14和图15所示,图14为本申请实施例提供的一种转轴机构处于展开状态时的局部结构示意图,图15为图14中所示的转轴机构处于折叠状态时的局部结构示意图,图16为图14中所示的转轴机构的爆炸结构示意图。在本实施例中,阻尼组件17可包括传动件171、第一固定部172以及弹性件173,其中,传动件171可沿第一方向滑动设置于基座,第一固定部172则固定于基座,且第一固定部172与传动件171在第一方向上间隔设置,弹性件173的一端可与第一固定部172弹性抵接,另一端可与传动件171弹性抵接,从而弹性限位于传动件171与第一固定部172之间。其中,上述第一方向具体为第一转动臂112和第二转动臂120的转动轴线的延伸方向,也即转轴机构的长度方向。
传动件171可位于第一转动臂112与第二转动臂120之间,另外,第一转动臂112朝向传动件171的一侧可设置有第一凸出部1122,第一凸出部1122朝向传动件171的一面具有第一凸轮面11221,类似地,第二转动臂120朝向传动件171的一侧可设置有第二凸出部12002,第二凸出部12002朝向传动件171的一面具有第二凸轮面120021,也即传动件171位于第一转动臂112的第一凸轮面11221与第二转动臂120的第二凸出部12002之间。这里,凸轮面可以理解为第一凸出部1122或者第二凸出部12002上由曲线轮廓构成的表面。传动件171的两侧可分别与第一凸轮面11221和第二凸轮面120021抵接,这样,当第一转动臂112和第二转动臂120转动时,传动件171可在两侧的第一转动臂112和第二转动臂120推挤下沿第一方向在基座上滑动,从而使限位于传动件171与第一固定部172之间的弹性件173的伸缩状态发生改变,弹性件173发生形变的同时也会向传动件171施加一定的弹性力,该弹性力可进一步通过传动件171传递给两侧的第一转动臂112和第二转动臂120,使第一转动臂112和第二转动臂120在转动的过程中受到来自传动件171的径向抵接力,而该抵接力又可转化为第一转动臂112和第二转动臂120相对基座转动的阻尼力,从而使第一转动臂112和第二转动臂120能够在阻尼力的作用下稳定地转动。需要说明的是,本申请实施例中的径向可以理解为靠近或远离基座的方向,具体到本方案中,第一转动臂112所受到的来自传动件171的径向抵接力为远离基座的方向的抵接力,第二转动臂120所受到的来自传动件171的径向抵接力也为远离基座的方向的抵接力,第一转动臂112与第二转动臂120的受力方向相反且大小大致相等。
在一些可能的实施例中,阻尼组件17还可以包括第二固定部174,该第二固定部174可以固定于基座上,且第二固定部174可与传动件171背离第一固定部172的一侧抵接,从而在该侧对传动件171进行定位。另外,第二固定部174与基座之间可以但不限于通过螺钉、螺栓等紧固件螺纹联接,或者通过卡扣进行卡接,又或者通过粘接剂粘接等方式进行固定连接。类似地,第一固定部172与基座之间也可以采用上述方式固定连接,此处不再进行赘述。
另外,阻尼组件17还可以包括滑动部175,滑动部175可以沿第一方向滑动设置于基座,且滑动部175可与传动件171朝向第一固定部172的一侧抵接,这时,弹性件173的两端可分别与第一固定部172和滑动部175弹性抵接。当传动件171在两侧的第一转动臂112和第二转动臂120的推挤下沿第一方向滑动时,即可带动滑动部175同步滑动,进而由滑动部175压缩弹性件173,而弹性件173所产生的弹性力则可以依次通过滑动部175和传动件171传递给第一转动臂112和第二转动臂120。在本实施例中,滑动部175的宽度可与第一固定部172的宽度相当,以将设置于两者之间的弹性件可靠限位,进而可以将弹性力可靠地传递给传动件171。
在将传动件171滑动设置在基座上时,阻尼组件17还可以包括导向杆176,该导向杆176沿第一方向固定设置于基座。示例性地,导向杆的两端可分别与第一固定部172和第二固定部174固定连接。这时,传动件171和滑动部175均可以套设在导向杆176上,从而利用导向杆176对传动件171和滑动部175的滑动进行导向,提高两者在第一方向的滑动稳定性。
一并参考图14至图17所示,图17为图14中所示的转轴机构的在A-A处的截面结构示意图。在 本实施例中,传动件171可以包括第一凸轮1711和第二凸轮1712,其中,第一凸轮1711位于靠近第一转动臂112的一侧,第二凸轮1712位于靠近第二转动臂120的一侧,且第一凸轮1711与第一转动臂112的第一凸轮面11221相抵接,第二凸轮1712与第二转动臂120的第二凸轮面120021抵接。由图16中也可以看出,第一凸轮1711朝向第一转动臂112的一侧可具有第三凸轮面17111,第二凸轮1712朝向第二转动臂120的一侧则具有第四凸轮面17121。这时,第一凸轮1711与第一转动臂112、第二凸轮1712与第二转动臂120可分别组成为凸轮副。当第一转动臂112及第二转动臂120转动时,第一凸轮1711和第二凸轮1712可以相向滑动(靠近彼此)或者相背滑动(远离彼此)。在本实施例中,第一凸轮1711与第二凸轮1712可被设计为在第一转动臂112及第二转动臂120朝向将电子设备折叠的方向转动时相向滑动,以及在第一转动臂112及第二转动臂120朝向将电子设备展开的方向转动时相背滑动,具体可通过对第一凸轮面11221、第二凸轮面120021、第三凸轮面17111和第四凸轮面17121的曲面轮廓设计来实现。可以理解的,通过对上述几个凸轮面的曲面轮廓的合理设计,还可以使第一转动臂112和第二转动臂120在设定的转动角度实现悬停,从而有利于提升用户的使用体验。
一并参考图18所示,图18为图14中所示的传动件171的结构示意图。第一凸轮1711朝向第二凸轮1712的一面还可设置有第一斜面17112,第二凸轮1712朝向第一凸轮1711的一面则可设置有第二斜面17122,第一斜面17112与第二斜面17122可平行设置以形成斜面传动副,当第一凸轮1711与第二凸轮1712相向滑动或者相背滑动时,第一凸轮1711与第二凸轮1712中的至少一个凸轮可通过自身斜面的受力而沿第一方向滑动,从而压缩弹性件173。
一并参考图18和图19所示,图19为本申请实施例提供的第二固定部与滑动部的结构示意图。在一个具体的实施例中,第二固定部174朝向传动件171的一侧可设置有第一凸块1741,第一凸块1741朝向第一凸轮1711的一侧具有第三斜面17411,朝向第二凸轮1712的一侧具有第四斜面17412。这时,第一凸轮1711的第一斜面17112具体可位于第一凸轮1711靠近第二固定部174的一端,且第一斜面17112与第三斜面17411可平行设置且相互抵接,同理,第二凸轮1712的第二斜面17122可位于第二凸轮1712靠近第二固定部174的一端,且第二斜面17122与第四斜面17412可平行设置且相互抵接。
结合图14至图19所示,在第一转动臂112和第二转动臂120朝向将电子设备展开的方向转动的过程中(即第一转动臂112和第二转动臂120相背转动),基于第一斜面17112与第三斜面17411组成的斜面传动副,第一转动臂112带动第一凸轮1711朝向靠近第二凸轮1712的一侧滑动时,第一凸轮1711同时会在第三斜面17411的抵接作用下朝向远离第二固定部174的一侧滑动,也就是说,第一凸轮1711的实际运动轨迹是沿第三斜面17411的倾斜方向的滑动。类似地,基于第二斜面17122与第四斜面17412组成的斜面传动副,第二转动臂120带动第二凸轮1712朝向靠近第一凸轮1711的一侧滑动时,第二凸轮1712同时会在第四斜面17412的抵接作用下朝向远离第二固定部174的一侧滑动,也就是说,第二凸轮1712的实际运动轨迹是沿第四斜面17412的倾斜方向的滑动。可以看出,在这个过程中,第一凸轮1711和第二凸轮1712都可以产生第一方向的滑动运动,因此两者可以共同压缩弹性件173。可以看出,在电子设备展开的过程中,通过对弹性件173的压缩作用,可以使用户获得较为明显的操作手感,有利于提升用户的使用体验。
在第一转动臂112和第二转动臂120朝向将电子设备折叠的方向转动的过程中(即第一转动臂112和第二转动臂120相向转动),弹性件173在被压缩的状态逐渐回弹,并释放所积蓄的弹性势能,从而推动第一凸轮1711和第二凸轮1712朝向远离第一固定部172的方向滑动。基于第一斜面17112与第三斜面17411组成的斜面传动副,第一凸轮1711在向靠近第二固定部174的方向滑动的同时,还会产生朝向第一转动臂112的方向滑动的位移,从而可以向第一转动臂112施加助力其转动的扭力作用。类似地,基于第二斜面17122与第四斜面17412组成的斜面传动副,第二凸轮1712在向靠近第二固定部174的方向滑动的同时,也会产生朝向第二转动臂120的方向滑动的位移,从而可以向第二转动臂120施加助力其转动的扭力作用。可以看出,在电子设备折叠的过程中,通过弹性件173所释放的弹性势能,可以为转轴机构提供一定的折叠助力,从而降低电子设备的折叠操作难度。
其中,上述第一凸块1741的具体形状不限,示例性地,第一凸块1741可以为三角形凸块,这时,第一凸块1741的宽度尺寸相对较小,因此有助于减小转轴机构的整体宽度。进一步地,第一凸块1741具体可以为等腰三角形凸块,也即,第三斜面17411与第四斜面17412相对于第一方向的倾斜角可以相等,这样,当第一凸轮1711和第二凸轮1712相向滑动时,两者在第一方向的滑动距离也可以保持相同,从而能够对弹性件173产生相同的压缩量,进而可以使第一转动臂112和第二转动臂120受到大小相等 的阻尼力作用,提高阻尼组件17的工作可靠性。
当然,在另外一些实施例中,第一凸块1741还可以为梯形或者其它多边形结构,只要能够实现第三斜面17411和第四斜面17412的特征即可,此处不再进行赘述。
基于相同的原理,第一凸轮1711和第二凸轮1712与滑动部175之间也可以通过斜面传动副来传递位移。具体实施时,第一凸轮1711靠近滑动部175的一端具有朝向第二凸轮1712设置的第五斜面17113,第二凸轮1712靠近滑动部175的一端具有朝向第一凸轮1711设置的第六斜面17123。滑动部175朝向传动件171的一侧可设置有第二凸块1751,第二凸块1751朝向第一凸轮1711的一侧具有第七斜面17511,朝向第二凸轮1712的一侧具有第八斜面17512。第一凸轮1711的第五斜面17113与第二凸块1751的第七斜面17511平行设置且相互抵接,第二凸轮1712的第六斜面17123与第二凸块1751的第八斜面17512平行设置且相互抵接。具体实施时,第二凸块1751也可以为三角形、梯形等形状,只要能够实现第七斜面17511和第八斜面17512的特征即可,此处不再进行赘述。
在第一转动臂112和第二转动臂120朝向将电子设备折叠的方向转动的过程中,利用第五斜面17113与第七斜面17511组成的斜面传动副以及第六斜面17123与第八斜面17512组成的传动副,当第一凸轮1711和第二凸轮1712朝向靠近第一固定部172的一侧滑动时,第一凸轮1711会向滑动部175施加一个垂直于第五斜面17113的作用力F1,第二凸轮1712则会向滑动部175施加一个垂直于第六斜面17123的作用力F2,可以理解的,F1与F2在径向(即基座的宽度方向)的分力由于方向相反,因此可以相互抵消,而F1与F2在第一方向的分力方向相同,因此可以叠加作用在滑动部175上,进而推动滑动部175沿第一方向滑动,使滑动部175压缩弹性件173。
在第一转动臂112和第二转动臂120朝向将电子设备折叠的方向转动的过程中,弹性件173在被压缩的状态逐渐回弹,并释放所积蓄的弹性势能,从而推动滑动部175朝向远离第一固定部172的方向滑动。利用第五斜面17113与第七斜面17511组成的斜面传动副,第一凸轮1711在向靠近第二固定部174的方向滑动的同时,还会产生朝向第一转动臂112的方向滑动的位移。同理,利用第六斜面17123与第八斜面17512组成的传动副,第二凸轮1712在向靠近第二固定部174的方向滑动的同时,也会产生朝向第二转动臂120的方向滑动的位移。配合前述的第一斜面17112与第三斜面17411组成的斜面传动副以及第二斜面17122与第四斜面17412组成的斜面传动副,可以看出,在这个过程中,第一凸轮1711实际是在第七斜面17511和第三斜面17411的共同作用下产生的径向滑动,第二凸轮1712则是在第八斜面17512与第四斜面17412的共同作用下产生的径向滑动,因此可以有效提高阻尼组件17的运动可靠性。
通过以上描述可以看出,本申请实施例提供的阻尼组件17,通过第一凸轮1711与第二凸轮1712形成的斜面传动副,可以将弹性件173在转轴机构的轴向(即第一方向)产生的弹性力转换为径向力传递给第一转动臂112和第二转动臂120,由于弹性件173沿转轴机构的轴向设置,弹性件173的尺寸不受电子设备的其他部件(如主板、电池等)的限制,因此可以适当增大弹性件173的尺寸来保证为电子设备提供足够的阻尼力,进而可以规避电子设备的开合力局限性问题。另外,鉴于电子设备的薄型化设计趋势,转轴机构的厚度尺寸随之减小,相比之下,转轴机构的轴向空间则相对充裕,因此在设计时可以适当增加第一凸轮1711和第二凸轮1712的轴向尺寸来增大其与对应侧的转动臂的接触面积,这样可以在保证空间允许的前提下,减小第一凸轮1711和第二凸轮1712的接触应力,进而可以提高两个凸轮的寿命。
继续参考图15、图16和图18,第一凸轮1711朝向第二凸轮1712的一侧可设置有第一凹槽17114,该第一凹槽17114可位于第一斜面17112背离第二固定部174的一侧,相应地,第二凸轮1712朝向第一凸轮1711的一侧可设置有第一凸起17124,该第一凸起17124可位于第二斜面17122背离第二固定部174的一侧。第一凸起17124可滑动设置于第一凹槽17114内,且第一凸起17124背离第二固定部174的一侧侧壁可与第一凹槽17114的内壁相抵接。利用第一凸起17124与第一凹槽17114之间的配合,一方面可以为第一凸轮1711及第二凸轮1712的相向或相背滑动进行导向,另一方面还可以使第一凸轮1711及第二凸轮1712在第一方向的滑动实现联动,从而进一步保证第一凸轮1711和第二凸轮1712能够在第一方向保持同步滑动。
进一步地,第一凸轮1711朝向第二凸轮1712的一侧还可以设置有第二凸起17115,相应地,第二凸轮1712朝向第一凸轮1711的一侧可设置有第二凹槽17125。第二凸起17115可滑动设置于第二凹槽17125内,且第二凸起17115朝向第二固定部174的一侧侧壁可与第二凹槽17125的内壁抵接。类似地, 第二凸起17115与第二凹槽17125的配合插接也可以为第一凸轮1711及第二凸轮1712的相向或相背滑动进行导向,以及为第一凸轮1711和第二凸轮1712在第一方向的同步滑动提供保障,从而进一步提高阻尼组件17的工作可靠性。
在本申请实施例中,弹性件173的具体形式不限,例如可以为弹簧1731,或者也可以为弹片1732。当然,也可以参照图14和图15中所示,采用弹簧1731与弹片1732共用的设计形式。采用这种设计时,弹簧1731和弹片1732的数量可以分别为多个,每个弹簧1731的两端分别与第一固定部172和滑动部175抵接,多个弹片1732则可沿第一方向叠置在第一固定部172与滑动部175之间。弹簧1731和弹片1732的具体数量可以根据阻尼组件所需提供的阻尼力的大小以及转轴机构的空间等进行设置。图14和图15中示出了两个弹簧的情况,这时,两个弹簧1731可以设置在多个弹片1732的两侧,从而保证滑动部的受力均匀性,进而有助于向第一转动臂112和第二转动臂120传递均衡的阻尼力作用。
可以理解的,为了保证弹片1732能够可靠地限位在第一固定部172与滑动部175之间,在具体实施时,多个弹片1732可以依次套设在前述的导向杆176上,从而避免弹片1732在发生弹性形变时出现移位,提高阻尼组件17的工作可靠性。
类似地,在将弹簧1731限位在第一固定部172与滑动部175之间时,阻尼组件17还可以包括与弹簧1731一一对应的第一销轴177,第一销轴177可沿第一方向依次穿射第一固定部172、滑动部175和第二固定部174,弹簧1731即套设在第一销轴177上,从而可避免弹簧1731在发生弹性形变时出现起拱等问题。在本实施例中,第一固定部172背离滑动部175的一侧可设置有第一卡块1721,第一卡块1721对应第一销轴177的位置设置有卡槽17211,第一销轴177的一端可由第一固定部172伸出后卡接在卡槽17211内。相应地,第二固定部174背离第一固定部172的一侧可设置有第二卡块1742,第二卡块1742对应第一销轴177的位置可设置有卡孔17421,第一销轴177的另一端可卡接在卡孔17421内。这样,通过第一卡块1721和第二卡块1742的卡接作用即可以实现第一销轴177与基座的相对固定。
另外,如前所述,第一转动臂112和第二转动臂120既可以通过实体轴的方式与基座转动连接,也可以通过虚拟轴的方式与基座转动连接。当第一转动臂112和第二转动臂120通过实体轴与基座转动连接时,上述第一销轴177即可以用作为将第一转动臂112或第二转动臂120与基座连接的实体轴。这时,位于第一转动臂112一侧的第一销轴177可以穿射第一转动臂112的第一凸出部1122,位于第二转动臂120一侧的第一销轴177可以穿射第二转动臂的第二凸出部12002,如此即可实现第一转动臂112及第二转动臂120与基座的转动连接关系。
除了上述结构以外,在本申请的一些实施例中,转轴机构还可以设置有其它可能的结构。请在再次参考图14、图15和图16,在本实施例中,转轴机构还可以包括同步组件18。同步组件18可以包括设置于第一转动臂112朝向第二转动臂120的一侧的第一主动齿轮181,以及设置于第二转动臂120朝向第一转动臂112的一侧的第二主动齿轮182,第一主动齿轮181和第二主动齿轮182之间传动连接。这样,在其中一个摆臂绕基座转动的过程中,可带动另外一个摆臂绕基座同步向相向或相背的方向转动,且两个摆臂的转动角度可以保持一致。
为了提升同步组件运动的稳定性,第一主动齿轮181和第二主动齿轮182可分别套设在对应侧的第一销轴177上。示例性地,沿第一方向,第一主动齿轮181可以位于第一凸出部1122背离第一固定部172的一侧,且第一主动齿轮181与第一凸出部1122之间可以间隔设置,同理,第二主动齿轮182也可以位于第二凸出部12002背离第一固定部172的一侧,且第二主动齿轮182与第二凸出部12002之间间隔设置。这时,第二固定部174朝向第一转动臂112的一侧可以嵌设于第一凸出部1122与第一主动齿轮181之间,第二固定部174朝向第二转动臂120的一侧可以嵌设于第二凸出部12002与第二主动齿轮182之间,从而有助于提高转轴机构的机构紧凑性。
参考图20所示,图20为图14中所示的转轴机构在B-B处的截面结构示意图。在本申请实施例中,同步组件18还可以包括从动齿轮183,该从动齿轮183可设置于两个主动齿轮之间。另外,从动齿轮183的数量可以为偶数个,且相邻的从动齿轮183之间以及相邻的从动齿轮183与主动齿轮之间相互啮合,从而使第一主动齿轮181和第二主动齿轮182可通过该偶数个从动齿轮183实现相向或相背转动。
另外,同步组件18还可以包括与从动齿轮183一一对应的齿轮轴1831,沿第一方向,齿轮轴1831的两端可分别与第二固定部174和第二卡块1742固定连接,每个从动齿轮183可分别套设在对应的齿轮轴1831上,从而提高同步组件的运动平稳性。当然,在其它一些实施方式中,齿轮轴1831也可以分别与两端的第二固定部174和第二卡块1742转动连接,这时,从动齿轮183则可以固定在对应的齿轮 轴1831上。在这种实施方式中,从动齿轮183与对应的齿轮轴1831可以采用键连接的方式固定连接,或者也可以采用一体式结构设计,本申请对此不作具体限制。
值得一提的是,在本申请实施例中,同步组件18可容置在上述盖板与基座形成的容置空间内,以使转轴机构的结构较为紧凑。通过设置同步组件18,可以在其中一个摆臂绕基座转动的过程中,带动另一个摆臂绕基座同步向相向或相背的方向转动。同时,由于每个摆臂可沿对应侧的壳体固定架的滑槽滑动,因此,在摆臂绕基座转动的过程中,可以带动同侧的壳体固定架以相同的角度转动,从而可以在两个摆臂同步转动的过程中,实现两个壳体固定架的同步转动。又因为壳体固定架可与电子设备的壳体固定连接,因此两个壳体固定架的同步转动可带动电子设备的两个壳体同步转动,这样,可以避免对固定于两个壳体的柔性显示屏施加瞬时的作用力,有利于提高柔性显示屏的可靠性。
参考图21所示,图21为本申请实施例提供的另一种转轴机构处于展开状态时的局部结构示意图。在本实施例中,阻尼组件17同样包括传动件171、第一固定部172、弹性件173、第二固定部174以及滑动部175,其中,传动件171、第一固定部172、第二固定部174的结构及设置方式可与前述实施例中大致相同,此处不再对这些部件进行过多赘述。与前述实施例所不同的是,本实施例中,弹性件173可全部采用弹簧1731的形式,弹簧1731的具体数量可以根据阻尼组件17所需提供的阻尼力的大小以及转轴机构的空间等进行设置,本申请对此不做限制。图17中示出了弹性件包括四个弹簧1731的情况,每个弹簧1731的两端分别与第一固定部172和滑动部175抵接。
其中,对于位于两侧的两个弹簧1731,该两个弹簧1731可分别套设在前述的两个第一销轴177上,从而避免其在发生弹性形变时出现起拱等问题。另外,阻尼组件17还可以包括两个第二销轴178,该两个第二销轴178可位于两个第一销轴177之间,且第二销轴178可沿第一方向依次穿射第一固定部172和滑动部175,第二销轴178的一端可由第一固定部172伸出后卡接在第一卡块1721内,第二销轴178的另一端则可与滑动部175滑动连接,以对滑动部175在第一方向的滑动进行导向。这时,中间的两个弹簧1731可分别套设在对应的第二销轴178上,从而利用第二销轴178限制其上所套设的弹簧1731的形变方向。
继续参考图21,本实施例中在设置导向杆176时,可以使导向杆176的一端与第一固定部172固定连接,另一端与滑动部175滑动连接。也就是说,滑动部175除了可与第一销轴177和第二销轴178滑动连接以外,还可以同时滑动装配在导向杆176上。由于中间两个第二销轴178与导向杆176在第一方向上位置相对,因此可以使滑动部175朝向第一固定部172的一端滑动装配在导向杆176上,而朝向第二固定部174的一端滑动装配在两个第二销轴178上。可以理解的,为了避免滑动部175在朝向第二固定部174滑动时在第二销轴178上滑脱,或者在朝向第一固定部172滑动时在导向杆176上滑脱,在具体设计时可以适当增大滑动部175中间区域在第一方向上的长度,以提高滑动部175的运动平稳性。
参考图22所示,图22为本申请实施例提供的另一种转轴机构处于展开状态时的局部结构示意图。在本实施例中,阻尼组件17同样也可以包括传动件171、第一固定部172、弹性件173、第二固定部174以及滑动部175,其中,弹性件173以及第一固定部172的结构可参考图14所示的实施例进行设置,而传动件171、滑动部175以及第二固定部174的结构相较于图14所示的实施例则有所变化。具体来说,第二固定部174朝向传动件171的一侧不再设有第一凸块,而是平面结构。同样地,滑动部175朝向传动件的一侧也可以设计为平面结构。
在具体设置传动件171时,传动件171的第一凸轮1711朝向第二固定部174的一端可与第二固定部174相互抵接,传动件171的第二凸轮1712朝向滑动部175的一端可与滑动部175相互抵接。另外,第一凸轮1711的第一斜面17112与第二凸轮1712的第二斜面17122可平行设置且相互抵接,这样,第一斜面17112与第二斜面17122之间即可形成一个斜面传动副。
当第一转动臂112和第二转动臂120朝向将电子设备展开的方向转动时,带动第一凸轮1711和第二凸轮1712相向滑动,这时,第二凸轮1712的第二斜面17122会向第一凸轮1711施加一个朝向第二固定部174的方向的分力,而由于第一凸轮1711与第二固定部174之间抵接,因此在第一转动臂112转动的过程中第一凸轮1711只存在径向的位移而不会产生沿第一方向的位移。相反,第一凸轮1711的第一斜面17112会向第二凸轮1712施加一个朝向第一固定部172的方向的反作用力,在该反作用力的驱动下,第二凸轮1712在朝向第一凸轮1711滑动的同时,还会在产生朝向靠近第一固定部172的方向滑动的位移,也就是说,第二凸轮1712的实际运动轨迹是沿第一斜面17112的倾斜方向的滑动。这样,第二凸轮1712即可带动滑动部175同步向靠近第一固定部172的一侧滑动,从而压缩弹性件173, 而弹性件173所产生的弹性力则可以通过滑动部175传递给第二凸轮1712,并可通过第二凸轮1712继续向第一凸轮1711传递,进而由第一凸轮1711和第二凸轮1712分别传递给两侧的摆臂。
当第一转动臂112和第二转动臂120朝向将电子设备折叠的方向相背运动时,弹性件173在被压缩的状态逐渐回弹,并释放所积蓄的弹性势能,推动第二凸轮1712向靠近第二固定部174的方向滑动,这时,第一凸轮1711的第一斜面17112会向第二凸轮1712施加一个朝向第二转动臂120的方向的分力,使得第二凸轮1712在向靠近第二固定部174的方向滑动的同时,还会产生朝向第二转动臂120的方向滑动的位移,从而可以向第二转动臂120施加助力其转动的扭力作用。相反,第二凸轮1712的第二斜面17122会向第一凸轮1711施加一个朝向第一转动臂112的方向的反作用力,在该反作用力的驱动下,第一凸轮1711也会向靠近第一转动臂112的方向滑动,从而可以向第一转动臂112施加助力其转动的扭力作用。可以看出,在这个过程中,通过弹性件173所释放的弹性势能,可以为转轴机构提供一定的折叠助力,从而降低电子设备的开合操作难度。
参考图23所示,图23为本申请实施例提供的另一种转轴机构处于展开状态时的局部结构示意图。在本实施例中,阻尼组件17也可以包括传动件171、第一固定部172、弹性件173、第二固定部174以及滑动部175,其中,传动件171与第一固定部172和滑动部175的结构可参照图20中所示的实施例进行设置。所不同的是,本实施例中弹性件173可全部采用弹簧1731的形式,弹簧1731的具体数量可以根据阻尼组件17所需提供的阻尼力的大小以及转轴机构的空间等进行设置,本申请对此不做限制。图23中示出了弹性件173包括四个弹簧1731的情况,每个弹簧1731的两端分别与第一固定部172和滑动部175抵接。
在具体设置弹性件173时,与图21所示的实施例类似,两侧的两个弹簧1731可分别套设在两个第一销轴177上,对于中间的两个弹簧1731,可在两个第一销轴177之间设置两个第二销轴178,第二销轴178可沿第一方向依次穿射第一固定部172和滑动部175,第二销轴178的一端可由第一固定部172伸出后卡接在第一卡块1721内,第二销轴178的另一端则可与滑动部175滑动连接,以对滑动部175在第一方向的滑动进行导向。这时,中间的两个弹簧1731可分别套设在对应的第二销轴178上,从而利用第二销轴178限制其上所套设的弹簧1731的形变方向。
此外,由于中间两个第二销轴178与导向杆176在第一方向上位置相对,因此可以使滑动部175朝向第一固定部172的一端滑动装配在导向杆176上,而朝向第二固定部174的一端滑动装配在两个第二销轴178上。为了避免滑动部175在朝向第二固定部174靠近滑动时在第二销轴178上滑脱,或者在朝向第一固定部172滑动时在导向杆176上滑脱,在具体设计时可以适当增大滑动部175中间区域在第一方向上的长度,以提高滑动部175的运动平稳性。
参考图24所示,图24为本申请实施例提供的另一种转轴机构处于展开状态时的局部结构示意图。在本实施例中,阻尼组件除了包括传动件171、第一固定部172、弹性件173、第二固定部174以及滑动部175等结构以外,还可以包括中间齿轮179。具体实施时,第一凸轮1711的第一斜面17112可设置有第一齿条171121,第二凸轮1712的第二斜面17122可设置有第二齿条171221,中间齿轮179设置于第一斜面17112与第二斜面17122之间,且中间齿轮179分别与两侧的第一齿条171121和第二齿条171221啮合。当第一凸轮1711与第二凸轮1712相向或者相背滑动时,中间齿轮179的两侧分别在第一齿条171121和第二齿条171221上滚动,这样就可以保证第一凸轮1711和第二凸轮1712相向或相背滑动的同步性,进而有助于进一步提升阻尼组件17的工作可靠性。
另外,本实施例中的第一固定部172、第二固定部174、滑动部175以及弹性件173的结构可以参照图23中所示的实施例进行设置,此处不再过多赘述。
参考图25所示,图25为本申请实施例提供的另一种转轴机构处于展开状态时的局部结构示意图。在本实施例中,阻尼组件17可以包括传动件171、第一固定部172、弹性件173以及第二固定部174,其中,第一固定部172、第二固定部174和弹性件173可参照图23所示的实施例进行设置。与图23所示的实施例不同的是,本申请实施例中省略了滑动部,因此,弹性件173的第二凸轮1712朝向第一固定部172的一端可直接与弹性件173弹性抵接,也就是说,弹性件173被限位于第二凸轮1712与第一固定部172之间。这种设计可以在一定程度上简化阻尼组件17的结构,这样一方面可以降低转轴机构的组装难度,另一方面还有助于降低转轴机构的成本。
需要说明的是,当弹性件173包括多个弹簧1731时,为了对靠近边缘设置的弹簧1731也能可靠地限位,在本实施例中,可以在第二凸轮1712朝向第一固定部172的一端设置第一延伸部17126和第二 延伸部17127,其中,第一延伸部17126可朝向第一转动臂112所在的一侧延伸,第二延伸部17127可朝向第二转动臂120所在的一侧延伸,且第一延伸部17126和第二延伸部17127可以分别套设在两侧的第一销轴177上。这样,位于两侧的弹簧1731可以分别限位在第一延伸部17126与第一固定部172之间以及第二延伸部17127与第一固定部172之间。
参考图26所示,图26为本申请实施例提供的另一种转轴机构处于展开状态时的局部结构示意图。在本实施例中,阻尼组件17可以包括传动件171、第一固定部172、弹性件173和滑动部175,其中,第一固定部172、滑动部175和弹性件173可参照图23所示的实施例进行设置。与图23所示的实施例不同的是,本申请实施例省略了第二固定部,这时,第一凸轮1711背离第一固定部172的一端可与第一主动齿轮181的端面、第二主动齿轮182的端面以及两个从动齿轮183的端面抵接。这种设计也可以简化阻尼组件的结构,从而有助于降低转轴机构的组装难度以及成本。
利用第一凸轮1711的第一斜面与第二凸轮1712的第二斜面形成的斜面传动副,在第一转动臂112和第二转动臂120转动的过程中,第一凸轮1711可朝向靠近或远离第二凸轮1712的径向方向滑动,第二凸轮1712则同时存在径向位移和第一方向的位移,因此第二凸轮1712可以在朝向靠近第一凸轮1711的方向滑动的同时,推动滑动部175朝向第一固定部172的一侧滑动,以压缩弹性件173,或者可以在弹性件173回弹时被滑动部175推动朝向远离第一固定部172的一侧滑动,并在第一斜面与第二斜面的相互抵触下与第一凸轮1711相背滑动,以通过第一凸轮1711和第二凸轮1712向第一转动臂112和第二转动臂120施加助力其转动的扭力作用。
需要说明的是,本实施例中由于第一凸轮1711具有在径向的位移,因此在具体设置两个从动齿轮183时,可以使齿轮轴的一端与第二卡块1742固定连接或者转动连接,另一端则不超出从动齿轮183的端面,以避免与第一凸轮1711产生干涉。另外,在一些实施方案中,还可以在各个主动齿轮和从动齿轮183的端面设置耐磨片,以减轻第一凸轮1711在滑动时对各个齿轮造成的摩擦损耗,进而可以提高转轴机构的结构强度。
可以理解的,在其它一些实施例中,阻尼组件17还可以同时省略滑动部和第二固定部,此时,第一凸轮1711背离第一固定部172的一端可与第一主动齿轮181的端面、第二主动齿轮182的端面以及两侧从动齿轮183的端面抵接,第二凸轮1712朝向第一固定部172的一端则与弹性件173直接抵接,这样可以进一步简化阻尼组件17的结构,进而降低转轴机构的组装难度和成本。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种转轴机构,其特征在于,包括基座、转动组件和阻尼组件,其中:
    所述转动组件包括第一转动臂和第二转动臂,所述第一转动臂与所述第二转动臂分别转动连接于所述基座的两侧,且所述第一转动臂靠近所述基座的一侧具有第一凸轮面,所述第二转动臂靠近所述基座的一侧具有第二凸轮面;
    所述阻尼组件包括传动件、第一固定部以及弹性件,所述传动件沿第一方向滑动设置于所述基座,所述传动件位于所述第一转动臂与所述第二转动臂之间,且所述传动件的两侧分别与所述第一凸轮面和所述第二凸轮面抵接,所述传动件可在所述第一转动臂及所述第二转动臂转动时沿所述第一方向滑动;所述第一固定部固定于所述基座,且所述第一固定部与所述传动件沿所述第一方向间隔设置;所述弹性件弹性限位于所述传动件与所述第一固定部之间;
    所述第一方向为所述第一转动臂及所述第二转动臂的转动轴线的延伸方向。
  2. 如权利要求1所述的转轴机构,其特征在于,所述传动件包括第一凸轮和第二凸轮,所述第一凸轮位于靠近所述第一转动臂的一侧,且所述第一凸轮的一侧具有与所述第一凸轮面抵接的第三凸轮面,另一侧具有第一斜面;所述第二凸轮位于靠近所述第二转动臂的一侧,且所述第二凸轮的一侧具有与所述第二凸轮面抵接的第三凸轮面,另一侧具有第二斜面;
    所述第一凸轮和所述第二凸轮随所述第一转动臂及所述第二转动臂的转动相向或者相背滑动,所述第一斜面与所述第二斜面传动连接,以推动所述第一凸轮与所述第二凸轮中的至少一个所述凸轮沿所述第一方向滑动。
  3. 如权利要求2所述的转轴机构,其特征在于,所述阻尼组件还包括第二固定部,所述第二固定部固定于所述基座,且所述第二固定部与所述传动件背离所述第一固定部的一侧抵接。
  4. 如权利要求2或3所述的转轴机构,其特征在于,所述阻尼组件还包括滑动部,所述滑动部沿所述第一方向滑动设置于所述基座,且所述滑动部与所述传动件朝向所述第一固定部的一侧抵接;
    所述弹性件的一端与所述第一固定部抵接,另一端与所述滑动部抵接。
  5. 如权利要求3或4所述的转轴机构,其特征在于,所述第一斜面位于所述第一凸轮靠近所述第二固定部的一端,所述第二斜面位于所述第二凸轮靠近所述第二固定部的一端;
    所述第二固定部朝向所述传动件的一侧设置有第一凸块,所述第一凸块朝向所述第一凸轮的一侧具有第三斜面,所述第一凸块朝向所述第二凸轮的一侧具有第四斜面;
    所述第一斜面与所述第三斜面平行且相互抵接,所述第二斜面与所述第四斜面平行且相互抵接。
  6. 如权利要求5所述的转轴机构,其特征在于,所述第一凸轮朝向第二凸轮的一侧具有第一凹槽,所述第二凸轮朝向所述第一凸轮的一侧具有第一凸起,所述第一凸起至少部分插接于所述第一凹槽内。
  7. 如权利要求5或6所述的转轴机构,其特征在于,所述第一凸轮朝向所述第二凸轮的一侧具有第二凸起,所述第二凸轮朝向所述第一凸轮的一侧具有第二凹槽,所述第二凸起至少部分插接于所述第二凹槽内。
  8. 如权利要求4~7任一项所述的转轴机构,其特征在于,所述第一凸轮靠近所述滑动部的一端具有第五斜面,所述第二凸轮靠近所述滑动部的一端具有第六斜面;
    所述滑动部朝向所述传动件的一侧具有第二凸块,所述第二凸块朝向所述第一凸轮的一侧具有第七斜面,所述第二凸块朝向所述第二凸轮的一侧具有第八斜面;
    所述第五斜面与所述第七斜面平行且相互抵接,所述第六斜面与所述第八斜面平行且相互抵接。
  9. 如权利要求4~7任一项所述的转轴机构,其特征在于,所述滑动部朝向所述传动件的一侧为平面。
  10. 如权利要求3或4所述的转轴机构,其特征在于,所述第一凸轮朝向所述第二固定部的一端与所述第二固定部抵接,所述第二凸轮朝向所述第一固定部的一端与所述滑动部抵接;
    所述第一斜面与所述第二斜面平行且相互抵接。
  11. 如权利要求3或4所述的转轴机构,其特征在于,所述第一斜面与所述第二斜面平行设置,所述第一斜面设置有第一齿条,所述第二斜面设置有第二齿条;
    所述传动件还包括中间齿轮,所述中间齿轮设置于所述第一斜面与所述第二斜面之间,且所述中间齿轮分别与所述第一齿条和所述第二齿条啮合。
  12. 如权利要求1~11任一项所述的转轴机构,其特征在于,所述阻尼组件还包括导向杆,所述导向 杆固定于所述基座,且所述导向杆沿所述第一方向设置;
    所述传动件套设于所述导向杆。
  13. 一种电子设备,其特征在于,包括第一壳体、第二壳体、柔性显示屏以及如权利要求1~12任一项所述的转轴机构,其中:
    所述第一壳体和所述第二壳体分设于所述转轴机构的相对的两侧,所述第一转动臂与所述第一壳体滑动连接,所述第二转动臂与所述第二壳体滑动连接;
    所述柔性显示屏连续覆盖于所述第一壳体、所述第二壳体和所述转轴机构,且所述柔性显示屏与所述第一壳体和所述第二壳体固定连接。
PCT/CN2023/104968 2022-07-30 2023-06-30 一种转轴机构及电子设备 WO2024027423A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210911441.1A CN117515016A (zh) 2022-07-30 2022-07-30 一种转轴机构及电子设备
CN202210911441.1 2022-07-30

Publications (1)

Publication Number Publication Date
WO2024027423A1 true WO2024027423A1 (zh) 2024-02-08

Family

ID=89761283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104968 WO2024027423A1 (zh) 2022-07-30 2023-06-30 一种转轴机构及电子设备

Country Status (2)

Country Link
CN (1) CN117515016A (zh)
WO (1) WO2024027423A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118209396A (zh) * 2024-05-15 2024-06-18 大连正大清源建筑材料有限公司 一种装配式建筑预制构件的强度检测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111997991A (zh) * 2020-07-29 2020-11-27 华为技术有限公司 一种转轴机构及电子设备
CN113194183A (zh) * 2021-05-21 2021-07-30 维沃移动通信有限公司 折叠机构及电子设备
CN114333566A (zh) * 2020-09-30 2022-04-12 华为技术有限公司 一种折叠装置及电子设备
CN114810803A (zh) * 2022-05-05 2022-07-29 惠州Tcl移动通信有限公司 转轴机构和折叠显示设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111997991A (zh) * 2020-07-29 2020-11-27 华为技术有限公司 一种转轴机构及电子设备
CN114333566A (zh) * 2020-09-30 2022-04-12 华为技术有限公司 一种折叠装置及电子设备
CN113194183A (zh) * 2021-05-21 2021-07-30 维沃移动通信有限公司 折叠机构及电子设备
CN114810803A (zh) * 2022-05-05 2022-07-29 惠州Tcl移动通信有限公司 转轴机构和折叠显示设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118209396A (zh) * 2024-05-15 2024-06-18 大连正大清源建筑材料有限公司 一种装配式建筑预制构件的强度检测设备

Also Published As

Publication number Publication date
CN117515016A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US11846997B2 (en) Rotating shaft mechanism and mobile terminal
WO2020186889A1 (zh) 一种转轴机构及移动终端
CN115076218B (zh) 电子设备和折叠装置
WO2021103161A1 (zh) 用于折叠屏的转轴机构、折叠屏组件及可折叠移动终端
CN115494913A (zh) 折叠转轴结构及折叠电子设备
WO2023001105A1 (zh) 折叠机构及电子设备
WO2024027423A1 (zh) 一种转轴机构及电子设备
CN112153179B (zh) 一种转轴机构及移动终端
CN117419098B (zh) 转动机构和可折叠电子设备
CN116708613B (zh) 可折叠机构和可折叠终端
CN116857274A (zh) 铰链机构及电子设备
WO2023143339A1 (zh) 一种转轴机构及电子设备
WO2022228158A1 (zh) 折叠机构及电子设备
WO2024178958A1 (zh) 一种转轴机构及电子设备
WO2024222200A1 (zh) 一种转轴机构及电子设备
WO2024139433A1 (zh) 一种可折叠的电子设备及其转轴机构
US20240219978A1 (en) Rotating shaft mechanism and electronic device
CN114584638A (zh) 一种转轴机构及移动终端
WO2024139437A1 (zh) 一种转轴机构及电子设备
WO2024082743A1 (zh) 一种可折叠的电子设备及其转轴机构
WO2024159757A1 (zh) 一种转轴机构及电子设备
WO2024131443A1 (zh) 一种可折叠电子设备和铰链
WO2024222233A1 (zh) 一种转轴机构及电子设备
WO2024193353A1 (zh) 一种转轴机构及电子设备
WO2024217053A1 (zh) 支撑机构及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849133

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023849133

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023849133

Country of ref document: EP

Effective date: 20241007