[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024026790A1 - Method and apparatus for indication of communication pattern - Google Patents

Method and apparatus for indication of communication pattern Download PDF

Info

Publication number
WO2024026790A1
WO2024026790A1 PCT/CN2022/110372 CN2022110372W WO2024026790A1 WO 2024026790 A1 WO2024026790 A1 WO 2024026790A1 CN 2022110372 W CN2022110372 W CN 2022110372W WO 2024026790 A1 WO2024026790 A1 WO 2024026790A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
communication
information
terminal device
pattern
Prior art date
Application number
PCT/CN2022/110372
Other languages
French (fr)
Inventor
Naizheng ZHENG
Chunli Wu
Tao Tao
Daniela Laselva
Jorma Johannes Kaikkonen
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2022/110372 priority Critical patent/WO2024026790A1/en
Publication of WO2024026790A1 publication Critical patent/WO2024026790A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • Various example embodiments relate to the field of telecommunication and in particular, to a method, device, apparatus and computer readable storage medium for indication of communication pattern.
  • DTX discontinuous transmission
  • UE user equipment
  • example embodiments of the present disclosure provide a solution for indication of communication pattern.
  • a terminal device comprising at least one processor and at least one memory storing instructions.
  • the instructions are configured to, when executed by the at least one processor, cause the terminal device to receive, from a network device, first information indicating a plurality of communication patterns of the network device; determine whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and based on determining that the second information is received, perform a communication with the network device based on the communication pattern indicated by the second information.
  • a network device comprising at least one processor and at least one memory storing instructions.
  • the instructions are configured to, when executed by the at least one processor, cause the device to transmit, to a terminal device, first information indicating a plurality of communication patterns of the network device; and transmit, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
  • a method implemented at a terminal device comprises receiving, from a network device, first information indicating a plurality of communication patterns of the network device; determining whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and based on determining that the second information is received, performing a communication with the network device based on the communication pattern indicated by the second information.
  • a method implemented at a network device comprises transmitting, to a terminal device, first information indicating a plurality of communication patterns of the network device; and transmitting, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
  • an apparatus comprising means for receiving, at a terminal device from a network device, first information indicating a plurality of communication patterns of the network device; means for determining whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and means for based on determining that the second information is received, performing a communication with the network device based on the communication pattern indicated by the second information.
  • an apparatus comprising means for transmitting, at a network device to a terminal device, first information indicating a plurality of communication patterns of the network device; and means for transmitting, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
  • a non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method according to any one of the above third or fourth aspect.
  • a computer program comprising instructions, which, when executed by an apparatus, cause the apparatus at least to: receive, from a network device, first information indicating a plurality of communication patterns of the network device; determine whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and based on determining that the second information is received, perform a communication with the network device based on the communication pattern indicated by the second information.
  • a computer program comprising instructions, which, when executed by an apparatus, cause the apparatus at least to: transmit, to a terminal device, first information indicating a plurality of communication patterns of the network device; and transmit, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
  • a terminal device comprising receiving circuitry configured to receive, from a network device, first information indicating a plurality of communication patterns of the network device; determining circuitry configured to determine whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and performing circuitry configured to base on determining that the second information is received, perform a communication with the network device based on the communication pattern indicated by the second information.
  • a network device comprising transmitting circuitry configured to transmit, to a terminal device, first information indicating a plurality of communication patterns of the network device; and transmitting circuitry configured to transmit, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
  • Fig. 1 illustrates an example communication network in which embodiments of the present disclosure may be implemented
  • Fig. 2 illustrates a signaling chart illustrating an example process according to some embodiments of the present disclosure
  • Fig. 3 illustrates a flowchart of a method implemented at a terminal device according to some embodiments of the present disclosure
  • Fig. 4 illustrates a flowchart of a method implemented at a network device according to some embodiments of the present disclosure
  • Fig. 5 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure.
  • Fig. 6 illustrates a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • NR NB also referred to as a gNB
  • RRU Remote Radio Unit
  • RH radio header
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • BS components that can be turned off can be considered for discussion purpose when defining the specific values of the characteristics for sleep modes.
  • the DTX pattern has been introduced to implement energy saving, which is a promising solution to save network energy by switching on/off radio units (e.g., power amplifier) when there is no transmission to be made.
  • radio units e.g., power amplifier
  • the shutdown of the power amplifier on an Orthogonal Frequency Division Multiplexing (OFDM) symbol basis becomes possible and is commonly applied in commercial networks.
  • OFDM Orthogonal Frequency Division Multiplexing
  • ⁇ DTX the symbol level discontinuous-transmission is known as micro DTX ( ⁇ DTX) .
  • ⁇ DTX the symbol level discontinuous-transmission
  • gNB is operated at symbol level in the transmission side (using ⁇ DTX)
  • the network (NW) reception (RX) hardware can be operated with always-ON because typically there is limited gain in switching off also the receiver components such low noise amplifiers (LNA) .
  • LNA low noise amplifiers
  • the UE could have the knowledge on when to expect to receive the DL data and reference signals from the gNB, and hence UE may be able to save power whenever the NW applies DTX. Also, the UE does not have to worry about the UL data transmission, since the NW hardware RX is always ON for reception from the UE.
  • NW ⁇ DTX may be argued not always be the most power efficient approach, e.g. considering of always-ON of the NW Rx hardware.
  • the NW Rx hardware can be also considered to be not always-ON, i.e. with operation of NW discontinuous reception (DRX) .
  • DRX NW discontinuous reception
  • the NW DTX and DRX can be considered to be operated jointly, which could benefit to the gNB having more sleeping opportunities with better energy saving performance.
  • the exact Tx/Rx operations for each sleep mode may be set differently by each NW vendor based on own hardware implementation of the gNB/Radio Unit, and practically the network hardware may run at various Tx and Rx states at different traffic load. From idle/inactive mode UE point of view, these different states do not necessarily have to be seen as different levels of sleeping mode.
  • radio resource control (RRC) idle/inactive UE when to receive the synchronization signal and PBCH block (SSB) /system information block (SIB) /Paging or to monitor the Physical Downlink Control Channel (PDCCH) from the NW in DL corresponding to the NW Tx periodicity, and when to transmit the Physical Random Access Channel (PRACH) or wake up signal (WUS) in uplink (UL) corresponding to the NW Rx periodicity.
  • SSB PBCH block
  • SIB system information block
  • Paging Physical Downlink Control Channel
  • PRACH Physical Random Access Channel
  • WUS wake up signal
  • a network device may transition among a plurality of communication patterns services.
  • a terminal device receives first information indicating a plurality of communication patterns of the network device from a network device.
  • the terminal device determine second information is received from the network device, and the second information indicating a communication pattern among the plurality of communication patterns to be used by the network device.
  • the terminal device performs a communication with the network device based on the communication pattern indicated by the second information.
  • the communication pattern transition is more flexible, and the terminal device may obtain the communication pattern to which the network is going to transition, then apply for the corresponding communication pattern, thereby achieving further energy saving.
  • Fig. 1 illustrates an example network environment 100 in which example embodiments of the present disclosure may be implemented.
  • the environment 100 which may be a part of a communication network, comprises terminal devices and network devices.
  • the communication network 100 may comprise a terminal device 110 (hereinafter may also be referred to as user equipment 110 or a UE 110) .
  • the communication network 100 may further comprise a network device 120.
  • the network device 120 can manage a cell.
  • the terminal device 110 and the network device 120 can communicate with each other in the coverage of the cell.
  • the overall coverage of the cells may be referred to as paging area.
  • the network device 120 may be configured with a plurality of communication patterns.
  • the communication patterns may include, but not limited to, a discontinuous transmission (DTX) pattern, a discontinuous reception (DRX) pattern and so on.
  • DTX discontinuous transmission
  • DRX discontinuous reception
  • the terminal device 110 may know when to receive DL data and reference signals from the network device 120 and when to transmit UL data to the network device 120.
  • the system 100 may include any suitable number of network devices and terminal devices adapted for implementing embodiments of the present disclosure. Although not shown, it would be appreciated that one or more terminal devices may be located in the environment 100.
  • Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple (OFDM) , Discrete Fourier Transform spread OFDM (DFT-s-OFDM) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • MIMO Multiple-Input Multiple-Output
  • OFDM Orthogonal Frequency Division Multiple
  • DFT-s-OFDM Discrete Fourier Transform spread OFDM
  • More efficient means are proposed (other than SIB update) to enable adjustment of network Tx/Rx operations and discontinuity in these operations for NW energy saving, and its indication to the UE. They are denoted as network DTX and DRX pattern.
  • network Tx/Rx channels/signals periodicity configurations that impact NW energy consumption may include NW Tx periodicity of SSB, SIB, paging occasions, PDCCH occasion for CSS, as well as NW RX side, e.g. PRACH, PUCCH, UE WUS etc.
  • multiple network reception and/or transmission patterns including discontinuities in time in these reception/transmission operation can be configured to the UE that applies to all the DL and UL signalling, and the UE only receives/transmits signals/channels that fall into its own active time whenever that overlaps with network active time according to the NW’s current reception and/or transmission state (actual network DTX and DRX state) .
  • Fig. 2 illustrates a flowchart illustrating an example process according to some embodiments of the present disclosure.
  • the process 200 will be described with reference to Fig. 1.
  • the process 200 may involve the terminal device 110 and the network device 120 as illustrated in Fig. 1. It would be appreciated that although the process 200 for link has been described in the communication system 100 of Fig. 1, this process may be likewise applied to other communication scenarios.
  • the terminal device 110 receives 211 first information.
  • the first information indicates a plurality of communication patterns of the network device.
  • the network device 120 configures to the terminal device 110 (via either SIBx or RRC) a list of network Tx/Rx signals/channels configurations, including an index to each configuration, where each index/configuration accounts for the NW hardware Tx and Rx status (e.g. on/off) that correspond to the given NW reception/transmission pattern (and allowed sleeping mode) , or each index refers/points to different Tx/Rx signals/channels periodicity in the list of configurations.
  • communication patterns are associated with a plurality of different sleep modes of the network device.
  • the exact forms of Tx/Rx operation for each sleep mode may be set by each vendor based on its hardware implementation.
  • NW hardware for transmission is only operated in Micro sleep mode with ⁇ DTX, meaning that the NW hardware components for transmission are turned-off for the rest of sleep modes, i.e. light/deep/standby sleep mode.
  • NW hardware for reception is always-ON in Micro sleep mode, and periodic NW reception is operated for the rest of sleep modes with different associated DRX cycles, i.e. the NW hardware Rx with ShortNwDRXCycle in the Light-sleep mode, and with operation of LongDRXNwCycle/EvenLongerNwDRXCycle in the Deep/Standby-sleep mode.
  • the sleep Mode definitions and characteristic of each sleep mode is shown in Table-1.
  • Table-1 An example of sleep mode definition and characteristic of each sleep mode
  • NW hardware for transmission is associated with each sleep state, however the DTX cycle associated with each sleep state is configured differently, i.e. longer and longer DTX cycle from Micro to standby sleep mode.
  • NW hardware for reception is always-ON in Micro sleep mode, and periodic NW reception is operated for the rest of sleep modes with different associated DRX cycles, i.e. the NW hardware Rx with ShortNwDRXCycle in the Light-sleep mode, and with operation of LongNwDRXCycle/EvenLongerNwDRXCycle in the Deep/Standby-sleep mode. Joint DTX and DRX operation in deep and standby sleep mode.
  • the sleep Mode definitions and characteristic of each sleep mode is shown in Table-2.
  • Table-2 Another example of sleep mode definition and characteristic of each sleep mode
  • the network configures to UEs a list of configurations for NW running in energy saving mode, e.g. based on its hardware implementation with either Table-1 or Table-2 as examples. And there is a configured index associated with each configuration, where each index may reflect the NW hardware Tx and Rx status that corresponds to a given NW reception/transmission pattern (and sleeping mode) .
  • the terminal device 110 Upon receipt of the first information, the terminal device 110 stores 212 the first information. In some embodiments, the terminal device 110 will store the configurations received from SIBx or RRC signalling, and apply for the corresponding one as indicated in the following step.
  • the terminal device 110 then receives 213 second information from the network device 120, and the second information indicating a communication pattern among the plurality of communication patterns to be used by the network device 120.
  • NW sends paging information to UE, to indicate the adjustment of NW Tx/Rx signals/channels periodicity configurations. More specifically, one or more bit (s) in paging DCI (e.g. in short message) can be used to carry the configured index in Step 211 and indicate which NW reception/transmission pattern or which periodicity the NW is going to transition to. Possible combination of the different configurations can be specified instead of having separate bit for each signalling.
  • the DCI is used to schedule paging messages, the DCI format 1_0 with cyclic redundancy check (CRC) scrambled by paging radio network temporary identifier (P-RNTI) is shown in Table-3.
  • CRC cyclic redundancy check
  • P-RNTI paging radio network temporary identifier
  • Table-3 DCI format 1_0 with CRC scrambled by P-RNTI: this is used to schedule paging messages
  • the Short Message “bit (s) ” is shown in Table-4. It can be seen that the short message has 8 bits, and the fifth bit may be used to carry the configured index configured in step 213.
  • the terminal device 110 determines 214 the communication pattern indicated by the second information to be used by the network device. In some embodiments, the terminal device 110 will apply the corresponding configurations associated with the indicated index.
  • the terminal device 110 determines 214 the communication pattern with the longest periodicity among the plurality of communication patterns to be used by the network device.
  • the UE that just camps on the cell and legacy UEs that have not received the paging DCI indicating which periodicity to apply it applies the longest periodicity as broadcast in the SIB.
  • the terminal device 110 Based on the determined communication pattern, the terminal device 110 performs 215 a communication with the network device 120.
  • the UE only receives/transmits signals/channels that fall into its own active time whenever that overlaps with network active time according to the NW’s current reception and/or transmission state (actual network DTX and DRX state) .
  • Fig. 3 illustrates a flowchart of a method 300 implemented at a terminal device according to some embodiments of the present disclosure.
  • the method 300 will be described from the perspective of the terminal device 110 with reference to Fig. 1. It is to be understood that method 300 may further include additional blocks not shown and/or omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 110 may receive, from a network device, first information indicating a plurality of communication patterns of the network device.
  • the plurality of communication patterns may be associated with a plurality of different sleep modes of the network device.
  • the first information may be received via a system information block, SIB, or a radio resource control, RRC, message.
  • SIB system information block
  • RRC radio resource control
  • each of the plurality of communication patterns may be associated with a periodicity configuration for the network device to transmit or receive a signal.
  • the terminal device 110 may determine whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
  • the communication pattern may comprise at least one of: a discontinuous transmission, DTX, pattern, a discontinuous reception, DRX, pattern, or a combination of a DTX pattern and a DRX pattern.
  • the combination of the DTX pattern and the DRX pattern may be jointly indicated by the second information.
  • the first information may comprise a plurality of indexes associated with the plurality of communication patterns, respectively.
  • the second information may comprise an index associated with the communication pattern to be used by the network device.
  • the second information may be carried by at least one bit in paging downlink control information, DCI.
  • the at least one bit may be in a “short messages” field of the paging DCI.
  • the terminal device 110 may base on determining that the second information is received, perform a communication with the network device based on the communication pattern indicated by the second information.
  • the terminal device 110 may further based on determining that the second information is not received, perform a communication with the network device based on a communication pattern with the longest periodicity among the plurality of communication patterns.
  • the terminal device 110 may further based on determining that the second information is not received, perform a communication with the network device based on a default communication pattern.
  • the terminal device 110 may perform the communication with the network device by: determining a first active duration of the network device based on the communication pattern; determining a second active duration of the terminal device; determining an overlap between the first active duration and the second active duration; and transmitting a signal to the network device or receiving a signal from the network device during the overlap.
  • the network device may be configured with a DTX pattern or a DRX pattern. In the DTX pattern or the DRX pattern, the network device receives or transmits signals/channels in its own active time which is the first active duration.
  • the terminal device may also be configured with discontinuous communication patterns, the terminal device may determine its own active time (i.e.
  • the terminal device may receive or transmit signals/channels in its own active time.
  • the terminal device may communicate with the network device during the overlap between the network device’s active duration and the terminal device’s active duration.
  • the terminal device 110 may perform the communication with the network device by: determining an active duration of the network device based on the communication pattern; and transmitting a signal to the network device or receiving a signal from the network device during the active duration.
  • Fig. 4 illustrates a flowchart of a method 400 implemented at a network device according to some embodiments of the present disclosure.
  • the method 400 will be described from the perspective of the terminal device 110 with reference to Fig. 1. It is to be understood that method 400 may further include additional blocks not shown and/or omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
  • the network device 120 may transmit, to a terminal device, first information indicating a plurality of communication patterns of the network device.
  • the first information may be transmitted via a system information block, SIB, or a radio resource control, RRC, message.
  • SIB system information block
  • RRC radio resource control
  • the plurality of communication patterns may be associated with a plurality of different sleep modes of the network device.
  • each of the plurality of communication patterns may be associated with a periodicity configuration for the network device to transmit or receive a signal.
  • the network device 120 may transmit, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
  • the communication pattern may comprise at least one of: a discontinuous transmission, DTX, pattern, a discontinuous reception, DRX, pattern, or a combination of a DTX pattern and a DRX pattern.
  • the combination of the DTX pattern and the DRX pattern are jointly indicated by the second information.
  • the first information comprises a plurality of indexes associated with the plurality of communication patterns, respectively.
  • the second information comprises an index associated with the communication pattern to be used by the network device.
  • the second information may be carried by at least one bit in paging downlink control information, DCI.
  • the at least one bit may be in a “short messages” field of the paging DCI.
  • the network device 120 may further perform a communication with the terminal device based on the communication pattern indicated by the second information.
  • the network device 120 may further based on determining that the second information is not received by the terminal device, perform a communication with the terminal device based on a communication pattern with the longest periodicity among the plurality of communication patterns.
  • the network device 120 may further based on determining that the second information is not received by the terminal device, perform a communication with the terminal device based on a default communication pattern.
  • an apparatus capable of performing any of the method 300 may comprise means for performing the respective steps of the method 300.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for receiving, at a terminal device from a network device, first information indicating a plurality of communication patterns of the network device; means for determining whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and means for based on determining that the second information is received, performing a communication with the network device based on the communication pattern indicated by the second information.
  • the plurality of communication patterns are associated with a plurality of different sleep modes of the network device.
  • the communication pattern comprises at least one of: a discontinuous transmission, DTX, pattern, a discontinuous reception, DRX, pattern, or a combination of a DTX pattern and a DRX pattern.
  • the combination of the DTX pattern and the DRX pattern are jointly indicated by the second information.
  • the first information comprises a plurality of indexes associated with the plurality of communication patterns, respectively, or the second information comprises an index associated with the communication pattern to be used by the network device.
  • the first information is received via a system information block, SIB, or a radio resource control, RRC, message.
  • SIB system information block
  • RRC radio resource control
  • the second information is carried by at least one bit in paging downlink control information, DCI.
  • the at least one bit is in a “short messages” field of the paging DCI.
  • the apparatus further comprises means for based on determining that the second information is not received, performing a communication with the network device based on a communication pattern with the longest periodicity among the plurality of communication patterns.
  • the apparatus further comprises means for based on determining that the second information is not received, performing a communication with the network device based on a default communication pattern.
  • the means for performing the communication with the network device comprises: means for determining a first active duration of the network device based on the communication pattern; means for determining a second active duration of the terminal device; means for determining an overlap between the first active duration and the second active duration; and means for transmitting a signal to the network device or receiving a signal from the network device during the overlap.
  • the means for performing the communication with the network device comprises: means for determining an active duration of the network device based on the communication pattern; and means for transmitting a signal to the network device or receiving a signal from the network device during the active duration.
  • each of the plurality of communication patterns is associated with a periodicity configuration for the network device to transmit or receive a signal.
  • the apparatus further comprises means for performing other steps in some embodiments of the method 300.
  • the means comprises at least one processor; and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
  • an apparatus capable of performing any of the method 400 may comprise means for performing the respective steps of the method 400.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises: means for transmitting, at a network device to a terminal device, first information indicating a plurality of communication patterns of the network device; and means for transmitting, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
  • the apparatus further comprises means for performing a communication with the terminal device based on the communication pattern indicated by the second information.
  • the plurality of communication patterns are associated with a plurality of different sleep modes of the network device.
  • the communication pattern comprises at least one of: a discontinuous transmission, DTX, pattern, a discontinuous reception, DRX, pattern, or a combination of a DTX pattern and a DRX pattern.
  • the combination of the DTX pattern and the DRX pattern are jointly indicated by the second information.
  • the first information comprises a plurality of indexes associated with the plurality of communication patterns, respectively, or the second information comprises an index associated with the communication pattern to be used by the network device.
  • the first information is transmitted via a system information block, SIB, or a radio resource control, RRC, message.
  • SIB system information block
  • RRC radio resource control
  • the second information is carried by at least one bit in paging downlink control information, DCI.
  • At least one bit is in a “short messages” field of the paging DCI.
  • the apparatus further comprises: means for based on determining that the second information is not received by the terminal device, performing a communication with the terminal device based on a communication pattern with the longest periodicity among the plurality of communication patterns.
  • the apparatus further comprises: means for based on determining that the second information is not received by the terminal device, performing a communication with the terminal device based on a default communication pattern.
  • each of the plurality of communication patterns is associated with a periodicity configuration for the network device to transmit or receive a signal.
  • the apparatus further comprises means for performing other steps in some embodiments of the method 400.
  • the means comprises at least one processor; and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
  • Fig. 5 is a simplified block diagram of a device 500 that is suitable for implementing embodiments of the present disclosure.
  • the device 500 may be provided to implement the communication device, for example the terminal device 110, the network device 120 as shown in Fig. 1.
  • the device 500 includes one or more processors 510, one or more memories 520 coupled to the processor 510, and one or more transmitters and/or receivers (TX/RX) 540 coupled to the processor 510.
  • TX/RX transmitters and/or receivers
  • the TX/RX 540 is for bidirectional communications.
  • the TX/RX 540 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 510 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 600 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 520 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 524, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 522 and other volatile memories that will not last in the power-down duration.
  • a computer program 530 includes computer executable instructions that are executed by the associated processor 510.
  • the program 530 may be stored in the ROM 524.
  • the processor 510 may perform any suitable actions and processing by loading the program 530 into the RAM 522.
  • the embodiments of the present disclosure may be implemented by means of the program 530 so that the device 500 may perform any process of the disclosure as discussed with reference to Figs. 2 to 4.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 530 may be tangibly contained in a computer readable medium which may be included in the device 500 (such as in the memory 520) or other storage devices that are accessible by the device 500.
  • the device 500 may load the program 530 from the computer readable medium to the RAM 522 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 6 shows an example of the computer readable medium 600 in form of CD or DVD.
  • the computer readable medium has the program 530 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out procedure 200, or the method 300 or 400 as described above with reference to Figs. 2-4.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • non-transitory is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to indication of communication pattern. A terminal device receives, from a network device, first information indicating a plurality of communication patterns of the network device. The terminal device determines whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device. Based on determining that the second information is received, the terminal device performs a communication with the network device based on the communication pattern indicated by the second information. In this way, the communication pattern transition is more flexible, and the terminal device may be inform of the communication pattern transition in time, thereby achieving further energy saving.

Description

METHOD AND APPARATUS FOR INDICATION OF COMMUNICATION PATTERN FIELD
Various example embodiments relate to the field of telecommunication and in particular, to a method, device, apparatus and computer readable storage medium for indication of communication pattern.
BACKGROUND
With the development of communication systems, new technologies have been proposed. Currently, energy saving is a focus in wireless communication system. One existing practical implementation for energy saving is the discontinuous transmission (DTX) technique, which is a promising solution to save network energy by switching on/off radio units (e.g., power amplifier) when there is no transmission to be made. At user equipment (UE) side, by knowing the transmission pattern used by the gNodeB, the UE could have the knowledge on when to expect to receive the downlink (DL) data and reference signals from the gNodeB, and hence UE may be able to save power whenever the network applies DTX. However, it is still need to further improve the solution of energy saving.
SUMMARY
In general, example embodiments of the present disclosure provide a solution for indication of communication pattern.
In a first aspect, there is provided a terminal device. The terminal device comprises at least one processor and at least one memory storing instructions. The instructions are configured to, when executed by the at least one processor, cause the terminal device to receive, from a network device, first information indicating a plurality of communication patterns of the network device; determine whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and based on determining that the second information is received, perform a communication with the network device based on the communication pattern indicated by  the second information.
In a second aspect, there is provided a network device. The terminal device comprises at least one processor and at least one memory storing instructions. The instructions are configured to, when executed by the at least one processor, cause the device to transmit, to a terminal device, first information indicating a plurality of communication patterns of the network device; and transmit, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
In a third aspect, there is provided a method implemented at a terminal device. The method comprises receiving, from a network device, first information indicating a plurality of communication patterns of the network device; determining whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and based on determining that the second information is received, performing a communication with the network device based on the communication pattern indicated by the second information.
In a fourth aspect, there is provided a method implemented at a network device. The method comprises transmitting, to a terminal device, first information indicating a plurality of communication patterns of the network device; and transmitting, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
In a fifth aspect, there is provided an apparatus comprising means for receiving, at a terminal device from a network device, first information indicating a plurality of communication patterns of the network device; means for determining whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and means for based on determining that the second information is received, performing a communication with the network device based on the communication pattern indicated by the second information.
In a sixth aspect, there is provided an apparatus comprising means for transmitting, at a network device to a terminal device, first information indicating a plurality of communication patterns of the network device; and means for transmitting, to the terminal  device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
In a seventh aspect, there is provided a non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method according to any one of the above third or fourth aspect.
In an eighth aspect, there is provided a computer program comprising instructions, which, when executed by an apparatus, cause the apparatus at least to: receive, from a network device, first information indicating a plurality of communication patterns of the network device; determine whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and based on determining that the second information is received, perform a communication with the network device based on the communication pattern indicated by the second information.
In a ninth aspect, there is provided a computer program comprising instructions, which, when executed by an apparatus, cause the apparatus at least to: transmit, to a terminal device, first information indicating a plurality of communication patterns of the network device; and transmit, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
In a tenth aspect, there is provided a terminal device. The terminal device comprises receiving circuitry configured to receive, from a network device, first information indicating a plurality of communication patterns of the network device; determining circuitry configured to determine whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and performing circuitry configured to base on determining that the second information is received, perform a communication with the network device based on the communication pattern indicated by the second information.
In a eleventh aspect, there is provided a network device. The network device comprises transmitting circuitry configured to transmit, to a terminal device, first information indicating a plurality of communication patterns of the network device; and transmitting circuitry configured to transmit, to the terminal device, second information  indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
Fig. 1 illustrates an example communication network in which embodiments of the present disclosure may be implemented;
Fig. 2 illustrates a signaling chart illustrating an example process according to some embodiments of the present disclosure;
Fig. 3 illustrates a flowchart of a method implemented at a terminal device according to some embodiments of the present disclosure;
Fig. 4 illustrates a flowchart of a method implemented at a network device according to some embodiments of the present disclosure;
Fig. 5 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure; and
Fig. 6 illustrates a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones  described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. As used herein, “at least one of the following: <a list of two or more elements>” and “at least one of <a list of two or more elements>” and similar wording, where the list of two or more elements are joined by “and” or “or” , mean at least any one of the elements, or at least any two or more of the elements, or at least all the elements.
As used in this application, the term “circuitry” may refer to one or more or all of  the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and  systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
For the ongoing Release 18 Network (NW) Energy Saving (ES) SI, in AI 9.7.1 of 3GPP RAN1 discussion on NW energy savings performance evaluation, following agreement has been made in RAN1#109-e.
For evaluation purpose,
(a) Study how to define sleep modes and determine the characteristics for each  mode from one or multiple of the below
(i) Relative power
(ii) Transition time
(iii) Transition energy
(iv) Other approaches are not precluded
Note: BS components that can be turned off can be considered for discussion purpose when defining the specific values of the characteristics for sleep modes.
(b) Study whether sleep mode is defined for DL (TX) and UL (RX) jointly or separately
(c) Study the assumption of order for BS entering/resuming from a sleep mode to another mode (sleep or non-sleep) and the associated transition time and energy, i.e. state machine which may have impact on the transition energy.
The DTX pattern has been introduced to implement energy saving, which is a promising solution to save network energy by switching on/off radio units (e.g., power amplifier) when there is no transmission to be made. Along with hardware and software capability improvement, the shutdown of the power amplifier on an Orthogonal Frequency Division Multiplexing (OFDM) symbol basis becomes possible and is commonly applied in commercial networks. Generally, the symbol level discontinuous-transmission is known as micro DTX (μDTX) . Practically, when gNB is operated at symbol level in the transmission side (using μDTX) , the network (NW) reception (RX) hardware can be operated with always-ON because typically there is limited gain in switching off also the receiver components such low noise amplifiers (LNA) . At UE side, by knowing the μDTX transmission pattern used by the gNB, the UE could have the knowledge on when to expect to receive the DL data and reference signals from the gNB, and hence UE may be able to save power whenever the NW applies DTX. Also, the UE does not have to worry about the UL data transmission, since the NW hardware RX is always ON for reception from the UE.
However, from network energy saving perspective, the operation of NW μDTX may be argued not always be the most power efficient approach, e.g. considering of always-ON of the NW Rx hardware. Practically the power consumption for NW Rx consumes much less power than NW transmission (Tx) , but still at a certain very low load  case, the NW Rx hardware can be also considered to be not always-ON, i.e. with operation of NW discontinuous reception (DRX) . And the NW DTX and DRX can be considered to be operated jointly, which could benefit to the gNB having more sleeping opportunities with better energy saving performance.
As described above, the exact Tx/Rx operations for each sleep mode may be set differently by each NW vendor based on own hardware implementation of the gNB/Radio Unit, and practically the network hardware may run at various Tx and Rx states at different traffic load. From idle/inactive mode UE point of view, these different states do not necessarily have to be seen as different levels of sleeping mode. Instead, what matters to radio resource control (RRC) idle/inactive UE would be, when to receive the synchronization signal and PBCH block (SSB) /system information block (SIB) /Paging or to monitor the Physical Downlink Control Channel (PDCCH) from the NW in DL corresponding to the NW Tx periodicity, and when to transmit the Physical Random Access Channel (PRACH) or wake up signal (WUS) in uplink (UL) corresponding to the NW Rx periodicity.
However, one issue needs to be addressed is on how to indicate to (idle/inactive) UEs about the NW hardware Tx and Rx status transition from one to the other sleep mode.
According to embodiments of the present disclosure, there is providing a solution for indication of communication pattern transition. In this solution, a network device may transition among a plurality of communication patterns services. A terminal device receives first information indicating a plurality of communication patterns of the network device from a network device. The terminal device determine second information is received from the network device, and the second information indicating a communication pattern among the plurality of communication patterns to be used by the network device. Moreover, based on determining that the second information is received, the terminal device performs a communication with the network device based on the communication pattern indicated by the second information. As such, the communication pattern transition is more flexible, and the terminal device may obtain the communication pattern to which the network is going to transition, then apply for the corresponding communication pattern, thereby achieving further energy saving.
Example embodiments of the present disclosure for determination of terminal device’s identity will be described below with reference to Figs. 1-6.
Fig. 1 illustrates an example network environment 100 in which example embodiments of the present disclosure may be implemented. The environment 100, which may be a part of a communication network, comprises terminal devices and network devices.
As illustrated in Fig. 1, the communication network 100 may comprise a terminal device 110 (hereinafter may also be referred to as user equipment 110 or a UE 110) . The communication network 100 may further comprise a network device 120. The network device 120 can manage a cell. The terminal device 110 and the network device 120 can communicate with each other in the coverage of the cell. In some example embodiments, the overall coverage of the cells may be referred to as paging area.
The network device 120 may be configured with a plurality of communication patterns. The communication patterns may include, but not limited to, a discontinuous transmission (DTX) pattern, a discontinuous reception (DRX) pattern and so on. With obtaining the communication pattern of the network device 120, the terminal device 110 may know when to receive DL data and reference signals from the network device 120 and when to transmit UL data to the network device 120.
It is to be understood that the number of network devices and terminal devices is only for the purpose of illustration without suggesting any limitations. The system 100 may include any suitable number of network devices and terminal devices adapted for implementing embodiments of the present disclosure. Although not shown, it would be appreciated that one or more terminal devices may be located in the environment 100.
Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple  (OFDM) , Discrete Fourier Transform spread OFDM (DFT-s-OFDM) and/or any other technologies currently known or to be developed in the future.
More efficient means are proposed (other than SIB update) to enable adjustment of network Tx/Rx operations and discontinuity in these operations for NW energy saving, and its indication to the UE. They are denoted as network DTX and DRX pattern.
In one option, network Tx/Rx channels/signals periodicity configurations that impact NW energy consumption may include NW Tx periodicity of SSB, SIB, paging occasions, PDCCH occasion for CSS, as well as NW RX side, e.g. PRACH, PUCCH, UE WUS etc.
In another option, multiple network reception and/or transmission patterns including discontinuities in time in these reception/transmission operation (e.g. corresponding to different sleep modes if to be defined in specification) can be configured to the UE that applies to all the DL and UL signalling, and the UE only receives/transmits signals/channels that fall into its own active time whenever that overlaps with network active time according to the NW’s current reception and/or transmission state (actual network DTX and DRX state) .
Fig. 2 illustrates a flowchart illustrating an example process according to some embodiments of the present disclosure. For the purpose of discussion, the process 200 will be described with reference to Fig. 1. The process 200 may involve the terminal device 110 and the network device 120 as illustrated in Fig. 1. It would be appreciated that although the process 200 for link has been described in the communication system 100 of Fig. 1, this process may be likewise applied to other communication scenarios.
In the process 200, the terminal device 110 receives 211 first information. The first information indicates a plurality of communication patterns of the network device. In some embodiments, the network device 120 configures to the terminal device 110 (via either SIBx or RRC) a list of network Tx/Rx signals/channels configurations, including an index to each configuration, where each index/configuration accounts for the NW hardware Tx and Rx status (e.g. on/off) that correspond to the given NW reception/transmission pattern (and allowed sleeping mode) , or each index refers/points to different Tx/Rx signals/channels periodicity in the list of configurations.
As mentioned above, communication patterns are associated with a plurality of different sleep modes of the network device. The exact forms of Tx/Rx operation for each  sleep mode may be set by each vendor based on its hardware implementation.
In an example, NW hardware for transmission is only operated in Micro sleep mode with μDTX, meaning that the NW hardware components for transmission are turned-off for the rest of sleep modes, i.e. light/deep/standby sleep mode. NW hardware for reception is always-ON in Micro sleep mode, and periodic NW reception is operated for the rest of sleep modes with different associated DRX cycles, i.e. the NW hardware Rx with ShortNwDRXCycle in the Light-sleep mode, and with operation of LongDRXNwCycle/EvenLongerNwDRXCycle in the Deep/Standby-sleep mode. The sleep Mode definitions and characteristic of each sleep mode is shown in Table-1.
Table-1: An example of sleep mode definition and characteristic of each sleep mode
Figure PCTCN2022110372-appb-000001
In another example, NW hardware for transmission is associated with each sleep state, however the DTX cycle associated with each sleep state is configured differently, i.e. longer and longer DTX cycle from Micro to standby sleep mode. NW hardware for reception is always-ON in Micro sleep mode, and periodic NW reception is operated for the rest of sleep modes with different associated DRX cycles, i.e. the NW hardware Rx with ShortNwDRXCycle in the Light-sleep mode, and with operation of LongNwDRXCycle/EvenLongerNwDRXCycle in the Deep/Standby-sleep mode. Joint DTX and DRX operation in deep and standby sleep mode. The sleep Mode definitions and characteristic of each sleep mode is shown in Table-2.
Table-2: Another example of sleep mode definition and characteristic of each sleep mode
Figure PCTCN2022110372-appb-000002
When network energy saving operation is enabled, at network side, the network configures to UEs a list of configurations for NW running in energy saving mode, e.g. based on its hardware implementation with either Table-1 or Table-2 as examples. And there is a configured index associated with each configuration, where each index may reflect the NW hardware Tx and Rx status that corresponds to a given NW reception/transmission pattern (and sleeping mode) .
Upon receipt of the first information, the terminal device 110 stores 212 the first information. In some embodiments, the terminal device 110 will store the configurations received from SIBx or RRC signalling, and apply for the corresponding one as indicated in the following step.
The terminal device 110 then receives 213 second information from the network device 120, and the second information indicating a communication pattern among the plurality of communication patterns to be used by the network device 120.
In some embodiments, NW sends paging information to UE, to indicate the adjustment of NW Tx/Rx signals/channels periodicity configurations. More specifically, one or more bit (s) in paging DCI (e.g. in short message) can be used to carry the configured  index in Step 211 and indicate which NW reception/transmission pattern or which periodicity the NW is going to transition to. Possible combination of the different configurations can be specified instead of having separate bit for each signalling.
The DCI is used to schedule paging messages, the DCI format 1_0 with cyclic redundancy check (CRC) scrambled by paging radio network temporary identifier (P-RNTI) is shown in Table-3.
Table-3: DCI format 1_0 with CRC scrambled by P-RNTI: this is used to schedule paging messages
Figure PCTCN2022110372-appb-000003
The Short Message “bit (s) ” is shown in Table-4. It can be seen that the short message has 8 bits, and the fifth bit may be used to carry the configured index configured in step 213.
Table-4: TS38.331 -Table 6.5-1: Short messages
Figure PCTCN2022110372-appb-000004
Figure PCTCN2022110372-appb-000005
By receiving the paging DCI with indicated index, the terminal device 110 determines 214 the communication pattern indicated by the second information to be used by the network device. In some embodiments, the terminal device 110 will apply the corresponding configurations associated with the indicated index.
If the terminal device 110 does not receive the second information, the terminal device 110 determines 214 the communication pattern with the longest periodicity among the plurality of communication patterns to be used by the network device. In some embodiments, the UE that just camps on the cell and legacy UEs that have not received the paging DCI indicating which periodicity to apply, it applies the longest periodicity as broadcast in the SIB.
Based on the determined communication pattern, the terminal device 110 performs 215 a communication with the network device 120. In some embodiments, the UE only receives/transmits signals/channels that fall into its own active time whenever that overlaps with network active time according to the NW’s current reception and/or transmission state  (actual network DTX and DRX state) .
Fig. 3 illustrates a flowchart of a method 300 implemented at a terminal device according to some embodiments of the present disclosure. For the purpose of discussion, the method 300 will be described from the perspective of the terminal device 110 with reference to Fig. 1. It is to be understood that method 300 may further include additional blocks not shown and/or omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
At block 310, the terminal device 110 may receive, from a network device, first information indicating a plurality of communication patterns of the network device.
In some embodiments, the plurality of communication patterns may be associated with a plurality of different sleep modes of the network device.
In some embodiments, the first information may be received via a system information block, SIB, or a radio resource control, RRC, message.
In some embodiments, each of the plurality of communication patterns may be associated with a periodicity configuration for the network device to transmit or receive a signal.
At block 320, the terminal device 110 may determine whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
In some embodiments, the communication pattern may comprise at least one of: a discontinuous transmission, DTX, pattern, a discontinuous reception, DRX, pattern, or a combination of a DTX pattern and a DRX pattern.
In some embodiments, the combination of the DTX pattern and the DRX pattern may be jointly indicated by the second information.
In some embodiments, the first information may comprise a plurality of indexes associated with the plurality of communication patterns, respectively. The second information may comprise an index associated with the communication pattern to be used by the network device.
In some embodiments, the second information may be carried by at least one bit in paging downlink control information, DCI.
In some embodiments, the at least one bit may be in a “short messages” field of the  paging DCI.
At block 330, the terminal device 110 may base on determining that the second information is received, perform a communication with the network device based on the communication pattern indicated by the second information.
In some embodiments, the terminal device 110 may further based on determining that the second information is not received, perform a communication with the network device based on a communication pattern with the longest periodicity among the plurality of communication patterns.
In some embodiments, the terminal device 110 may further based on determining that the second information is not received, perform a communication with the network device based on a default communication pattern.
In some embodiments, the terminal device 110 may perform the communication with the network device by: determining a first active duration of the network device based on the communication pattern; determining a second active duration of the terminal device; determining an overlap between the first active duration and the second active duration; and transmitting a signal to the network device or receiving a signal from the network device during the overlap. For example, the network device may be configured with a DTX pattern or a DRX pattern. In the DTX pattern or the DRX pattern, the network device receives or transmits signals/channels in its own active time which is the first active duration. The terminal device may also be configured with discontinuous communication patterns, the terminal device may determine its own active time (i.e. the second active duration) based on its own communication pattern or the communication pattern of the network device. The terminal device then may receive or transmit signals/channels in its own active time. The terminal device may communicate with the network device during the overlap between the network device’s active duration and the terminal device’s active duration.
In some embodiments, the terminal device 110 may perform the communication with the network device by: determining an active duration of the network device based on the communication pattern; and transmitting a signal to the network device or receiving a signal from the network device during the active duration.
Fig. 4 illustrates a flowchart of a method 400 implemented at a network device according to some embodiments of the present disclosure. For the purpose of discussion, the method 400 will be described from the perspective of the terminal device 110 with  reference to Fig. 1. It is to be understood that method 400 may further include additional blocks not shown and/or omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
At block 410, the network device 120 may transmit, to a terminal device, first information indicating a plurality of communication patterns of the network device.
In some embodiments, the first information may be transmitted via a system information block, SIB, or a radio resource control, RRC, message.
In some embodiments, the plurality of communication patterns may be associated with a plurality of different sleep modes of the network device.
In some embodiments, each of the plurality of communication patterns may be associated with a periodicity configuration for the network device to transmit or receive a signal.
At block 420, the network device 120 may transmit, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
In some embodiments, the communication pattern may comprise at least one of: a discontinuous transmission, DTX, pattern, a discontinuous reception, DRX, pattern, or a combination of a DTX pattern and a DRX pattern.
In some embodiments, the combination of the DTX pattern and the DRX pattern are jointly indicated by the second information.
In some embodiments, the first information comprises a plurality of indexes associated with the plurality of communication patterns, respectively. The second information comprises an index associated with the communication pattern to be used by the network device.
In some embodiments, the second information may be carried by at least one bit in paging downlink control information, DCI.
In some embodiments, the at least one bit may be in a “short messages” field of the paging DCI.
In some embodiments, the network device 120 may further perform a communication with the terminal device based on the communication pattern indicated by the second information.
In some embodiments, the network device 120 may further based on determining that the second information is not received by the terminal device, perform a communication with the terminal device based on a communication pattern with the longest periodicity among the plurality of communication patterns.
In some embodiments, the network device 120 may further based on determining that the second information is not received by the terminal device, perform a communication with the terminal device based on a default communication pattern.
In some embodiments, an apparatus capable of performing any of the method 300 (for example, the terminal device 110) may comprise means for performing the respective steps of the method 300. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus comprises means for receiving, at a terminal device from a network device, first information indicating a plurality of communication patterns of the network device; means for determining whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and means for based on determining that the second information is received, performing a communication with the network device based on the communication pattern indicated by the second information.
In some embodiments, the plurality of communication patterns are associated with a plurality of different sleep modes of the network device.
In some embodiments, the communication pattern comprises at least one of: a discontinuous transmission, DTX, pattern, a discontinuous reception, DRX, pattern, or a combination of a DTX pattern and a DRX pattern.
In some embodiments, the combination of the DTX pattern and the DRX pattern are jointly indicated by the second information.
In some embodiments, at least one of: the first information comprises a plurality of indexes associated with the plurality of communication patterns, respectively, or the second information comprises an index associated with the communication pattern to be used by the network device.
In some embodiments, the first information is received via a system information  block, SIB, or a radio resource control, RRC, message.
In some embodiments, the second information is carried by at least one bit in paging downlink control information, DCI.
In some embodiments, the at least one bit is in a “short messages” field of the paging DCI.
In some embodiments, the apparatus further comprises means for based on determining that the second information is not received, performing a communication with the network device based on a communication pattern with the longest periodicity among the plurality of communication patterns.
In some embodiments, the apparatus further comprises means for based on determining that the second information is not received, performing a communication with the network device based on a default communication pattern.
In some embodiments, the means for performing the communication with the network device comprises: means for determining a first active duration of the network device based on the communication pattern; means for determining a second active duration of the terminal device; means for determining an overlap between the first active duration and the second active duration; and means for transmitting a signal to the network device or receiving a signal from the network device during the overlap.
In some embodiments, the means for performing the communication with the network device comprises: means for determining an active duration of the network device based on the communication pattern; and means for transmitting a signal to the network device or receiving a signal from the network device during the active duration.
In some embodiments, each of the plurality of communication patterns is associated with a periodicity configuration for the network device to transmit or receive a signal.
In some embodiments, the apparatus further comprises means for performing other steps in some embodiments of the method 300. In some embodiments, the means comprises at least one processor; and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
In some embodiments, an apparatus capable of performing any of the method 400  (for example, the network device 120) may comprise means for performing the respective steps of the method 400. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus comprises: means for transmitting, at a network device to a terminal device, first information indicating a plurality of communication patterns of the network device; and means for transmitting, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
In some embodiments, the apparatus further comprises means for performing a communication with the terminal device based on the communication pattern indicated by the second information.
In some embodiments, the plurality of communication patterns are associated with a plurality of different sleep modes of the network device.
In some embodiments, the communication pattern comprises at least one of: a discontinuous transmission, DTX, pattern, a discontinuous reception, DRX, pattern, or a combination of a DTX pattern and a DRX pattern.
In some embodiments, the combination of the DTX pattern and the DRX pattern are jointly indicated by the second information.
In some embodiments, at least one of: the first information comprises a plurality of indexes associated with the plurality of communication patterns, respectively, or the second information comprises an index associated with the communication pattern to be used by the network device.
In some embodiments, the first information is transmitted via a system information block, SIB, or a radio resource control, RRC, message.
In some embodiments, the second information is carried by at least one bit in paging downlink control information, DCI.
In some embodiments, at least one bit is in a “short messages” field of the paging DCI.
In some embodiments, the apparatus further comprises: means for based on determining that the second information is not received by the terminal device, performing a communication with the terminal device based on a communication pattern with the  longest periodicity among the plurality of communication patterns.
In some embodiments, the apparatus further comprises: means for based on determining that the second information is not received by the terminal device, performing a communication with the terminal device based on a default communication pattern.
In some embodiments, each of the plurality of communication patterns is associated with a periodicity configuration for the network device to transmit or receive a signal.
In some embodiments, the apparatus further comprises means for performing other steps in some embodiments of the method 400. In some embodiments, the means comprises at least one processor; and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
Fig. 5 is a simplified block diagram of a device 500 that is suitable for implementing embodiments of the present disclosure. The device 500 may be provided to implement the communication device, for example the terminal device 110, the network device 120 as shown in Fig. 1. As shown, the device 500 includes one or more processors 510, one or more memories 520 coupled to the processor 510, and one or more transmitters and/or receivers (TX/RX) 540 coupled to the processor 510.
The TX/RX 540 is for bidirectional communications. The TX/RX 540 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network elements.
The processor 510 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 600 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 520 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 524, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories  include, but are not limited to, a random access memory (RAM) 522 and other volatile memories that will not last in the power-down duration.
computer program 530 includes computer executable instructions that are executed by the associated processor 510. The program 530 may be stored in the ROM 524. The processor 510 may perform any suitable actions and processing by loading the program 530 into the RAM 522.
The embodiments of the present disclosure may be implemented by means of the program 530 so that the device 500 may perform any process of the disclosure as discussed with reference to Figs. 2 to 4. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some embodiments, the program 530 may be tangibly contained in a computer readable medium which may be included in the device 500 (such as in the memory 520) or other storage devices that are accessible by the device 500. The device 500 may load the program 530 from the computer readable medium to the RAM 522 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 6 shows an example of the computer readable medium 600 in form of CD or DVD. The computer readable medium has the program 530 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry  out procedure 200, or the  method  300 or 400 as described above with reference to Figs. 2-4. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. The term “non-transitory, ” as used herein, is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) .
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (30)

  1. A terminal device comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the terminal device at least to:
    receive, from a network device, first information indicating a plurality of communication patterns of the network device;
    determine whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and
    based on determining that the second information is received, perform a communication with the network device based on the communication pattern indicated by the second information.
  2. The terminal device of claim 1, wherein the plurality of communication patterns are associated with a plurality of different sleep modes of the network device.
  3. The terminal device of claim 1 or 2, wherein the communication pattern comprises at least one of:
    a discontinuous transmission, DTX, pattern,
    a discontinuous reception, DRX, pattern, or
    a combination of a DTX pattern and a DRX pattern.
  4. The terminal device of claim 3, wherein the combination of the DTX pattern and the DRX pattern are jointly indicated by the second information.
  5. The terminal device of any of claims 1-4, wherein at least one of:
    the first information comprises a plurality of indexes associated with the plurality of communication patterns, respectively, or
    the second information comprises an index associated with the communication pattern to be used by the network device.
  6. The terminal device of any of claims 1-5, wherein the first information is  received via a system information block, SIB, or a radio resource control, RRC, message.
  7. The terminal device of any of claims 1-6, wherein the second information is carried by at least one bit in paging downlink control information, DCI.
  8. The terminal device of claim 7, wherein the at least one bit is in a “short messages” field of the paging DCI.
  9. The terminal device of any of claims 1-8, wherein the terminal device is further caused to:
    based on determining that the second information is not received, perform a communication with the network device based on a communication pattern with the longest periodicity among the plurality of communication patterns.
  10. The terminal device of any of claims 1-8, wherein the terminal device is further caused to:
    based on determining that the second information is not received, perform a communication with the network device based on a default communication pattern.
  11. The terminal device of any of claims 1-10, wherein the terminal device is caused to perform the communication with the network device by:
    determining a first active duration of the network device based on the communication pattern;
    determining a second active duration of the terminal device;
    determining an overlap between the first active duration and the second active duration; and
    transmitting a signal to the network device or receiving a signal from the network device during the overlap.
  12. The terminal device of any of claims 1-10, wherein the terminal device is caused to perform the communication with the network device by:
    determining an active duration of the network device based on the communication pattern; and
    transmitting a signal to the network device or receiving a signal from the network  device during the active duration.
  13. The terminal device of any of claims 1-12, wherein each of the plurality of communication patterns is associated with a periodicity configuration for the network device to transmit or receive a signal.
  14. A network device comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the network device at least to:
    transmit, to a terminal device, first information indicating a plurality of communication patterns of the network device; and
    transmit, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
  15. The network device of claim 14, wherein the network device is further caused to:
    perform a communication with the terminal device based on the communication pattern indicated by the second information.
  16. The network device of claim 14 or 15, wherein the plurality of communication patterns are associated with a plurality of different sleep modes of the network device.
  17. The network device of any of claims 14-16, wherein the communication pattern comprises at least one of:
    a discontinuous transmission, DTX, pattern,
    a discontinuous reception, DRX, pattern, or
    a combination of a DTX pattern and a DRX pattern.
  18. The network device of claim 17, wherein the combination of the DTX pattern and the DRX pattern are jointly indicated by the second information.
  19. The network device of any of claims 14-18, wherein at least one of:
    the first information comprises a plurality of indexes associated with the plurality of communication patterns, respectively, or
    the second information comprises an index associated with the communication pattern to be used by the network device.
  20. The network device of any of claims 14-19, wherein the first information is transmitted via a system information block, SIB, or a radio resource control, RRC, message.
  21. The network device of any of claims 14-20, wherein the second information is carried by at least one bit in paging downlink control information, DCI.
  22. The network device of claim 21, wherein the at least one bit is in a “short messages” field of the paging DCI.
  23. The network device of any of claim 14-22, wherein the network device is further caused to:
    based on determining that the second information is not received by the terminal device, perform a communication with the terminal device based on a communication pattern with the longest periodicity among the plurality of communication patterns.
  24. The network device of any of claim 14-22, wherein the network device is further caused to:
    based on determining that the second information is not received by the terminal device, perform a communication with the terminal device based on a default communication pattern.
  25. The network device of any of claims 14-24, wherein each of the plurality of communication patterns is associated with a periodicity configuration for the network device to transmit or receive a signal.
  26. A method comprising:
    receiving, at a terminal device from a network device, first information indicating a plurality of communication patterns of the network device;
    determining whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and
    based on determining that the second information is received, performing a communication with the network device based on the communication pattern indicated by the second information.
  27. A method comprising:
    transmitting, at a network device to a terminal device, first information indicating a plurality of communication patterns of the network device; and
    transmitting, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
  28. An apparatus comprising:
    means for receiving, at a terminal device from a network device, first information indicating a plurality of communication patterns of the network device;
    means for determining whether second information is received from the network device, the second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device; and
    means for based on determining that the second information is received, performing a communication with the network device based on the communication pattern indicated by the second information.
  29. An apparatus comprising:
    means for transmitting, at a network device to a terminal device, first information indicating a plurality of communication patterns of the network device; and
    means for transmitting, to the terminal device, second information indicating a communication pattern, among the plurality of communication patterns, to be used by the network device.
  30. A non-transitory computer readable medium comprising program instructions that, when executed by an apparatus, cause the apparatus to perform at least the method of claim 26 or 27.
PCT/CN2022/110372 2022-08-04 2022-08-04 Method and apparatus for indication of communication pattern WO2024026790A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110372 WO2024026790A1 (en) 2022-08-04 2022-08-04 Method and apparatus for indication of communication pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110372 WO2024026790A1 (en) 2022-08-04 2022-08-04 Method and apparatus for indication of communication pattern

Publications (1)

Publication Number Publication Date
WO2024026790A1 true WO2024026790A1 (en) 2024-02-08

Family

ID=89848248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110372 WO2024026790A1 (en) 2022-08-04 2022-08-04 Method and apparatus for indication of communication pattern

Country Status (1)

Country Link
WO (1) WO2024026790A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163305A1 (en) * 2010-12-28 2012-06-28 Motorola Mobility, Inc. Energy-saving base station and method
WO2021238921A1 (en) * 2020-05-26 2021-12-02 FG Innovation Company Limited Method of performing power saving operation and related device
WO2022011672A1 (en) * 2020-07-17 2022-01-20 Qualcomm Incorporated Power mode distinction
CN114450909A (en) * 2019-09-30 2022-05-06 高通股份有限公司 Triggering power save mode with scheduled downlink control information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163305A1 (en) * 2010-12-28 2012-06-28 Motorola Mobility, Inc. Energy-saving base station and method
CN114450909A (en) * 2019-09-30 2022-05-06 高通股份有限公司 Triggering power save mode with scheduled downlink control information
WO2021238921A1 (en) * 2020-05-26 2021-12-02 FG Innovation Company Limited Method of performing power saving operation and related device
WO2022011672A1 (en) * 2020-07-17 2022-01-20 Qualcomm Incorporated Power mode distinction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT, ALCATEL-LUCENT SHANGHAI BELL: "Network Energy Saving: NodeB DRX/DTX", 3GPP TSG-RAN WG1 MEETING #60, R1-100914, 16 February 2010 (2010-02-16), XP050418514 *

Similar Documents

Publication Publication Date Title
US11963104B2 (en) Mechanism for interactions for entering into sleep mode
US20220232663A1 (en) Mechanism for Handling PDCCH Skipping and Wake Up Signal
US11997605B2 (en) Uplink information based on wake-up signal
WO2022021313A1 (en) Transmission detection skipping mechanism for power saving
WO2022016543A1 (en) Method, device and computer readable medium of communication
WO2021253248A1 (en) Discontinuous reception configuration for multi-beam operations
WO2024026790A1 (en) Method and apparatus for indication of communication pattern
WO2021022422A1 (en) Transmission of high layer ack/nack
US20240196371A1 (en) Paging enhancement mechanism
WO2024229656A1 (en) Monitoring with discontinuous reception cycle
WO2024031678A1 (en) Transmission reception point adaptation
WO2024168718A1 (en) Methods and apparatuses for paging
WO2024031665A1 (en) Transmission reception point adaptation
WO2024168689A1 (en) Methods and apparatuses for paging
WO2024031561A1 (en) Improved positioning activity
WO2024092672A1 (en) Enabling (re) transmissions with network discontinuous reception/discontinuous transmission
WO2023201729A1 (en) Method and apparatus for small data transmission
US20240260000A1 (en) Method and apparatus for paging
WO2024065478A1 (en) Access control for energy saving mode
WO2023173310A1 (en) Enhanced positioning mechanism
WO2024040401A1 (en) Mechanism for failure detection
WO2024207459A1 (en) Positioning enhancements
WO2024164260A1 (en) Devices, methods and apparatuses for small data transmission
WO2024092630A1 (en) Methods and devices for discontinuous transmission or discontinuous reception
WO2023216264A1 (en) Reporting of relaxation status of signal measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953599

Country of ref document: EP

Kind code of ref document: A1