[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024024889A1 - 光学積層体 - Google Patents

光学積層体 Download PDF

Info

Publication number
WO2024024889A1
WO2024024889A1 PCT/JP2023/027574 JP2023027574W WO2024024889A1 WO 2024024889 A1 WO2024024889 A1 WO 2024024889A1 JP 2023027574 W JP2023027574 W JP 2023027574W WO 2024024889 A1 WO2024024889 A1 WO 2024024889A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
group
light
liquid crystal
layer
Prior art date
Application number
PCT/JP2023/027574
Other languages
English (en)
French (fr)
Inventor
政大 藤田
智 永安
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023118296A external-priority patent/JP2024019045A/ja
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024024889A1 publication Critical patent/WO2024024889A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an optical laminate.
  • organic electroluminescent (hereinafter also referred to as organic EL) display device it has been proposed to arrange a vertically aligned liquid crystal cured film for the purpose of improving the oblique reflection hue during black display (Patent Document 1).
  • a vertically aligned liquid crystal cured film is often a cured film obtained by curing a composition containing a dichroic dye and a polymerizable liquid crystal compound in a state in which the polymerizable liquid crystal compound is oriented in the vertical direction.
  • Such vertically aligned liquid crystal cured films sometimes have poor adhesion.
  • An object of the present invention is to provide an optical laminate with excellent adhesion.
  • the present invention provides the following optical laminate.
  • An optical laminate in which a light-absorbing anisotropic film, an adhesive layer, and an optical film are laminated in contact with each other in this order,
  • the light absorption anisotropic film is a cured product layer in which a dichroic dye and a polymerizable liquid crystal compound are oriented in the lamination direction of the optical laminate, and
  • the adhesive layer has a temperature of 60° C. or higher at a maximum value of loss modulus obtained by dynamic viscoelasticity measurement in a tensile mode at a frequency of 10 Hz.
  • the cationically curable adhesive contains a cationically polymerizable compound,
  • the total content of at least one selected from the group consisting of polyfunctional alicyclic epoxy, polyfunctional aromatic epoxy, and polyfunctional oxetane is 60 parts by mass or more based on 100 parts by mass of the cationically polymerizable compound.
  • the cationically curable adhesive contains a cationically polymerizable compound, With respect to the total amount of 100 parts by mass of the cationic polymerizable compounds, the total content of at least one selected from the group consisting of polyfunctional alicyclic epoxy, polyfunctional aromatic epoxy, and polyfunctional oxetane is such that the total content of all cationic polymerizable compounds is
  • [5] The optical laminate according to any one of [1] to [4], wherein the optical film is a resin film.
  • the retardation layer having the in-plane retardation has the following formulas (1) to (3): 100nm ⁇ Re(550) ⁇ 160nm...(1) [In the formula, Re (550) represents an in-plane retardation value (in-plane retardation) for light with a wavelength of 550 nm. ] Re(450)/Re(550) ⁇ 1.0...(2) 1.00 ⁇ Re(650)/Re(550)...(3) [In the formula, Re (450) is the in-plane retardation value for light with a wavelength of 450 nm, Re (550) is the in-plane retardation value for light with a wavelength of 550 nm, and Re (650) is the in-plane retardation value for light with a wavelength of 650 nm.
  • Re (550) represents an in-plane retardation value (in-plane retardation) for light with a wavelength of 550 nm.
  • Re (450) is the in-plane retardation value for light with a wavelength of 450 nm
  • Re (550) is the in-plane retardation value for light with a wavelength of 550 nm
  • Re (650) is the in-plane retardation value for light with a wavelength of 650 nm. Represents the phase difference value.
  • the present invention further provides the following optical laminate.
  • An optical laminate in which a light-absorbing anisotropic film, an adhesive layer, and an optical film are laminated in contact with each other in this order,
  • the light absorption anisotropic film is a cured product layer in which a dichroic dye and a polymerizable liquid crystal compound are oriented in the lamination direction of the optical laminate, and
  • the adhesive layer has a maximum loss modulus temperature of 60° C. or higher obtained by dynamic viscoelasticity measurement in a tensile mode at a frequency of 10 Hz.
  • the cationically curable adhesive contains a cationically polymerizable compound, The total content of at least one selected from the group consisting of polyfunctional alicyclic epoxy, polyfunctional aromatic epoxy, and polyfunctional oxetane is 60 parts by mass or more based on 100 parts by mass of the cationically polymerizable compound. , [a] or [b].
  • An optical laminate with a circularly polarizing plate comprising: a circularly polarizing plate including a retardation layer having a phase difference.
  • the retardation layer having the in-plane retardation has the following formulas (1) to (3): 100nm ⁇ Re(550) ⁇ 160nm...(1) [In the formula, Re (550) represents an in-plane retardation value (in-plane retardation) for light with a wavelength of 550 nm.
  • Re (450) is the in-plane retardation value for light with a wavelength of 450 nm
  • Re (550) is the in-plane retardation value for light with a wavelength of 550 nm
  • Re (650) is the in-plane retardation value for light with a wavelength of 650 nm. Represents the phase difference value.
  • an optical laminate with excellent adhesion can be provided. Further, according to the present invention, it is possible to provide an optical laminate that has excellent adhesion and can also suppress a decrease in front transmittance in a heat resistance durability test.
  • FIG. 3 is a diagram showing the X-axis, Y-axis, and Z-axis in the light-absorbing anisotropic film included in the optical laminate. It is a schematic sectional view showing an example of the layer composition of an optical layered product.
  • FIG. 2 is a schematic cross-sectional view showing an example of the layer structure of an optical laminate in which optical members are bonded together.
  • FIG. 2 is a schematic cross-sectional view showing an example of the layer structure of an optical laminate in which optical members are bonded together.
  • optical laminate In an optical laminate according to an embodiment of the present invention, a light-absorbing anisotropic film, an adhesive layer, and an optical film are laminated in contact with each other in this order, and the light-absorbing anisotropic film is polymerized with a dichroic dye.
  • the adhesive layer is an optical laminate containing a cured product of a cationic curable adhesive.
  • FIG. 1 is a cross-sectional view schematically showing the optical laminate of the present invention.
  • the optical laminate 1 shown in FIG. 1 includes a light-absorbing anisotropic film 11, an adhesive layer 12, and an optical film 13 in this order.
  • the optical laminate 1 may further include a hard coat layer, which will be described later, on one or both sides of the optical laminate 1.
  • the optical laminate of the present invention is produced by laminating the light-absorbing anisotropic film and the optical film via an adhesive layer containing a cured product of a cation-curable adhesive. Excellent adhesion can be achieved between the two. In this specification, adhesion can be evaluated according to the method described in the Examples section below.
  • the optical laminate 1 can be used for display devices, and can be particularly suitably used for organic EL display devices.
  • the optical laminate 1 can be arranged such that the optical film 13 is closer to the viewer than the light-absorbing anisotropic film 11 is.
  • the light absorption anisotropic film 11 is a cured layer in which a dichroic dye and a polymerizable liquid crystal compound are oriented in the lamination direction of the optical laminate.
  • the light absorption anisotropic film 11 is preferably a cured product of a polymerizable liquid crystal composition containing a dichroic dye and at least one polymerizable liquid crystal compound.
  • the optical laminate 1 may have an alignment film for controlling the alignment of the polymerizable liquid crystal compound so as to be in direct contact with the cured product layer, and a base material for forming the cured product layer or the alignment film. It may have.
  • the cured material layer or the alignment film and the base material can be provided so as to be in direct contact with each other.
  • the stacking direction of the optical laminate is also referred to as a vertical direction
  • the orientation in the vertical direction is also referred to as vertical alignment.
  • the light absorption anisotropic film 11 is a cured layer in which a dichroic dye and a polymerizable liquid crystal compound are oriented in the lamination direction of the optical laminate 1.
  • the light absorption anisotropic film 11 has an x-axis in an arbitrary direction within the film plane, a y-axis in a direction perpendicular to the x-axis within the film plane, and a film thickness direction (optical laminate 1
  • Ax represents the absorbance of linearly polarized light vibrating in the x-axis direction. Ax can be measured by inputting linearly polarized light that vibrates in the x-axis direction from the z-axis direction toward the film surface.
  • Ay represents the absorbance of linearly polarized light vibrating in the y-axis direction.
  • Ay can be measured by inputting linearly polarized light that vibrates in the y-axis direction from the z-axis direction toward the film surface.
  • Az represents the absorbance of linearly polarized light vibrating in the z-axis direction.
  • Az is, for example, incident linearly polarized light that vibrates in the z-axis direction from the xy plane direction toward the side surface of the film, that is, when the film is taken as an xy plane, it is perpendicular to the side surface (thickness direction). can be measured.
  • the rotation of the film is performed by rotating the film in which Ax has been measured by 60° in the direction of incidence of linearly polarized light with the y-axis as the rotation axis.
  • the rotation of the film is performed by rotating the film in which Ay was measured by 60° in the direction of incidence of linearly polarized light with the x-axis as the rotation axis.
  • the absorbance in the z direction in equation (i) is difficult to measure because light is incident from the side surface of the film. Therefore, when the angle between the vibration plane of the linearly polarized light that is the measurement light and the xy plane of the membrane is 90°, the xy plane of the membrane is 30° in the direction of incidence of the linearly polarized light with respect to this vibration plane.
  • the absorbance in the Az direction can be estimated by measuring at angles of 60° and 60°. Specifically, it can be estimated by the following method.
  • the light absorption anisotropic film 11 satisfies the above formulas (ii) and (iii).
  • the dichroic dye tends to have excellent absorption anisotropy, that is, excellent polarization performance. This excellent property makes it easy to effectively transmit light from the front direction and effectively absorb light from an oblique direction.
  • the thickness of the light-absorbing anisotropic film 11 is preferably 0.1 to 5 ⁇ m, more preferably 0.2 to 3 ⁇ m, and even more preferably 0.4 to 2 ⁇ m.
  • the thickness of the light-absorbing anisotropic film 11 can be measured using, for example, a laser microscope, a stylus-type film thickness meter, or the like.
  • a dichroic dye refers to a dye that has a property that the absorbance in the long axis direction of the molecule is different from the absorbance in the short axis direction.
  • the dichroic dye preferably has a maximum absorption wavelength ( ⁇ MAX) in the wavelength range of 300 to 700 nm in the light absorption anisotropic film, and more preferably has a maximum absorption wavelength in the wavelength range of 500 to 600 nm. preferable.
  • dichroic dyes examples include acridine dyes, oxazine dyes, cyanine dyes, naphthalene dyes, azo dyes, and anthraquinone dyes, among which azo dyes are preferred.
  • azo dyes include monoazo dyes, bisazo dyes, trisazo dyes, tetrakisazo dyes, and stilbene azo dyes, with bisazo dyes and trisazo dyes being preferred.
  • Dichroic dyes may be used alone or in combination, but if polarization properties are required over the entire visible light range, it is preferable to combine three or more types of dichroic dyes, and it is preferable to combine three or more types of azo dyes. More preferred.
  • the light absorption anisotropic film contains at least one dye having a maximum absorption wavelength in the wavelength range of 500 to 600 nm.
  • the light absorption anisotropic film contains at least one dye having a maximum absorption wavelength in the wavelength range of 500 to 600 nm.
  • a 1 and A 3 are each independently a phenyl group that may have a substituent, a naphthyl group that may have a substituent, or a monovalent heterocyclic group that may have a substituent. represents.
  • a 2 is a p-phenylene group which may have a substituent, a naphthalene-1,4-diyl group which may have a substituent, or a divalent heterocycle which may have a substituent. represents a group.
  • p represents an integer from 1 to 4.
  • a plurality of A 2 's may be the same or different from each other.
  • Examples of the monovalent heterocyclic group include groups obtained by removing one hydrogen atom from a heterocyclic compound such as quinoline, thiazole, benzothiazole, thienothiazole, imidazole, benzimidazole, oxazole, and benzoxazole.
  • Examples of the divalent heterocyclic group include a group obtained by removing two hydrogen atoms from the above-mentioned heterocyclic compound.
  • substituent optionally possessed by the phenyl group, naphthyl group, and monovalent heterocyclic group in A 1 and A 3 , and the p-phenylene group, naphthalene-1,4-diyl group, and divalent heterocyclic group in A 2 is an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms having a polymerizable group, an alkenyl group having 1 to 4 carbon atoms; a methoxy group, an ethoxy group, a butoxy group, etc.
  • Substituted or unsubstituted amino groups such as groups (substituted amino groups refer to amino groups having one or two alkyl groups having 1 to 6 carbon atoms, and one alkyl group having 1 to 6 carbon atoms having a polymerizable group) or an amino group having two amino groups, or an amino group in which two substituted alkyl groups bond to each other to form an alkanediyl group having 2 to 8 carbon atoms.
  • An unsubstituted amino group is -NH 2.
  • examples of the polymerizable group include an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, and the like.
  • B 1 to B 30 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, a nitro group, a substituted or It represents an unsubstituted amino group (the definitions of a substituted amino group and an unsubstituted amino group are as above), a chlorine atom, or a trifluoromethyl group.
  • n1 to n4 each independently represent an integer of 0 to 3.
  • the plurality of B2s may be the same or different from each other
  • the plurality of B6s may be the same or different from each other
  • n3 is 2 or more
  • multiple B9s may be the same or different from each other
  • n4 is 2 or more
  • the plurality of B14s may be the same or different from each other.
  • anthraquinone dye a compound represented by formula (I-9) is preferred.
  • R 1 to R 8 each independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • oxazone dye a compound represented by formula (I-10) is preferred.
  • R 9 to R 15 each independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • acridine dye a compound represented by formula (I-11) is preferred.
  • R 16 to R 23 each independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms represented by R x includes methyl group, ethyl group, propyl group and butyl group.
  • Examples of the aryl group having 6 to 12 carbon atoms include phenyl group, tolyl group, xylyl group, and naphthyl group.
  • cyanine dye a compound represented by formula (I-12) and a compound represented by formula (I-13) are preferred.
  • D 1 and D 2 each independently represent a group represented by any one of formulas (I-12a) to (I-12d).
  • n5 represents an integer from 1 to 3.
  • D 3 and D 4 each independently represent a group represented by any one of formulas (I-13a) to (I-13h).
  • n6 represents an integer from 1 to 3.
  • the content of the dichroic dye in the polymerizable liquid crystal composition for forming the light-absorbing anisotropic film 11 depends on the orientation of the dichroic dye. From the viewpoint of improving the quality, the amount is preferably 0.1 parts by mass or more and 30 parts by mass or less, more preferably 0.1 parts by mass or more and 20 parts by mass or less, and 0.1 parts by mass or more and 20 parts by mass or less, based on 100 parts by mass of the solid content of the polymerizable liquid crystal composition. It is more preferably 1 part by mass or more and 10 parts by mass or less, particularly preferably 0.1 part by mass or more and 5 parts by mass or less. It is preferable that the content of the dichroic dye is within this range because it is difficult to disturb the liquid crystal alignment of the liquid crystal compound.
  • the light absorption anisotropic film contains a polymer of a polymerizable liquid crystal compound.
  • the term "polymerizable liquid crystal compound” refers to a liquid crystal compound having at least one polymerizable group in its molecule.
  • the polymerizable liquid crystal compound may be a monomer having a polymerizable group (hereinafter also referred to as “polymerizable liquid crystal monomer”), or may be a polymer of monomers having a polymerizable group or It may be an oligomer (hereinafter also simply referred to as "polymerizable liquid crystal polymer").
  • polymer of a polymerizable liquid crystal compound refers to a compound having a repeating unit derived from a polymerizable liquid crystal compound, which is formed by polymerization of a polymerizable group possessed by the polymerizable liquid crystal compound. Also included are polymers obtained by performing a reaction such as a reaction in which a specific functional group (for example, a polymerizable group) is introduced into a polymer obtained by polymerizing a polymerizable group.
  • the polymer of the polymerizable liquid crystal compound may or may not have a polymerizable group.
  • a polymer of a polymerizable liquid crystal compound that has a polymerizable group is considered to correspond to the above-mentioned "polymerizable liquid crystal polymer" when the compound is polymerized in the formation of a light-absorbing anisotropic film.
  • the polymer of the compound (polymerizable liquid crystal polymer) corresponds to the "polymer of the polymerizable liquid crystal compound" in this specification.
  • the polymer of the polymerizable liquid crystal compound may or may not have liquid crystallinity.
  • the polymer may have two or more types of repeating units derived from a polymerizable liquid crystal compound. Moreover, the polymer may have repeating units other than repeating units derived from the polymerizable liquid crystal compound.
  • the light absorption anisotropic film can contain one or more polymers of polymerizable liquid crystal compounds.
  • the above-mentioned polymerizable group refers to a group that can participate in a polymerization reaction by active radicals, acids, etc. generated from a polymerization initiator.
  • Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, (meth)acryloyl group, (meth)acryloyloxy group, oxiranyl group, oxetanyl group, etc. Can be mentioned.
  • (meth)acryloyl group, (meth)acryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and (meth)acryloyloxy group and (meth)acryloyl group are more preferable.
  • the liquid crystallinity of the polymerizable liquid crystal compound may be thermotropic liquid crystal or lyotropic liquid crystal, but thermotropic liquid crystal is preferable. Furthermore, if the polymerizable liquid crystal compound forming the light-absorbing anisotropic layer has the same functional group (polymerizable group) as that of the compound forming the alignment film, such as a (meth)acryloyl group, the alignment film It has high compatibility with the light-absorbing anisotropic film and can exhibit excellent adhesion between layers.
  • the liquid crystal state exhibited by the polymerizable liquid crystal compound is preferably a smectic liquid crystal phase, and more preferably a higher-order smectic phase from the viewpoint of improving performance.
  • the polymerizable liquid crystal compound forms a smectic B phase, a smectic D phase, a smectic E phase, a smectic F phase, a smectic G phase, a smectic H phase, a smectic I phase, a smectic J phase, a smectic K phase, or a smectic L phase.
  • liquid crystal phase formed by the polymerizable liquid crystal compound is one of these higher-order smectic phases, higher light absorption anisotropy characteristics can be easily obtained.
  • the polymerizable liquid crystal compound is not particularly limited as long as it has at least one polymerizable group in its molecule, and any known polymerizable liquid crystal compound can be used.
  • examples of polymerizable liquid crystal compounds that can exhibit (higher order) smectic liquid crystallinity include compounds represented by the following formula (L-1).
  • X 1 and X 2 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group which may have a substituent;
  • the carbon atoms constituting the alicyclic hydrocarbon group may be substituted with oxygen atoms, sulfur atoms, or nitrogen atoms.
  • at least one of X 1 and X 2 is a 1,4-phenylene group which may have a substituent or a cyclohexane-1,4-diyl group which may have a substituent.
  • Y 1 represents a single bond or a divalent linking group.
  • n 1 to 4, and when n is 2 or more, a plurality of X 1 's may be the same or different from each other.
  • X 2 may be the same as or different from any or all of the plurality of X 1s .
  • the plurality of Y 1 's may be the same or different from each other.
  • U 1 represents a polymerizable group.
  • W 1 represents a single bond or a divalent linking group.
  • V 1 represents an alkanediyl group having 1 to 20 carbon atoms which may have a substituent, and -CH 2 - constituting the alkanediyl group is -O-, -CO-, -S-, Alternatively, it may be replaced with -NH-.
  • T 3 represents a hydrogen atom or a monovalent group.
  • examples of substituents that the divalent aromatic group or divalent alicyclic hydrocarbon group may have include halogen atoms, methyl groups, ethyl groups, and butyl groups Examples include an alkyl group having 1 to 4 carbon atoms, a fluorinated alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, a nitro group, and a monovalent aromatic group.
  • substituents that the 1,4-phenylene group or the cyclohexane-1,4-diyl group may have.
  • X 1 and X 2 are each independently preferably a 1,4-phenylene group which may have a substituent or a cyclohexane-1,4-diyl group which may have a substituent. It is.
  • the cyclohexane-1,4-diyl group is preferably a trans-cyclohexane-1,4-diyl group.
  • the 1,4-phenylene group and the cyclohexane-1,4-diyl group are unsubstituted.
  • R a and R b each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X 1 and X 2 all have the same structure, it is preferable that two or more Y 1 exist with mutually different bonding methods.
  • a plurality of Y 1 's with mutually different bonding methods are present, an asymmetric structure is formed and smectic liquid crystallinity tends to occur easily.
  • U 1 is a polymerizable group, preferably a radically polymerizable group.
  • Examples of the polymerizable group include the same groups as those exemplified above as the polymerizable group possessed by the polymerizable liquid crystal compound.
  • the polymerizable group represented by U 1 is preferably a (meth)acryloyl group or a (meth)acryloyloxy group.
  • alkanediyl group represented by V 1 examples include methylene group, ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5 -diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, decane-1,10-diyl group, tetradecane-1,14-diyl group, icosane -1,20-diyl group and the like.
  • V 1 is preferably an alkanediyl group having 2 to 12 carbon atoms, more preferably an alkanediyl group having 4 to 12 carbon atoms, and even more preferably an alkanediyl group having 6 to 12 carbon atoms.
  • -CH 2 - constituting the alkanediyl group may be replaced with -O-, -CO-, -S-, or -NH-.
  • alkanediyl group may have include a cyano group and a halogen atom, but the alkanediyl group is preferably unsubstituted, and an unsubstituted linear alkanediyl group Or, it is more preferable that at least one -CH 2 - constituting the alkanediyl group is replaced with -O-, -CO-, -S-, or -NH-.
  • W 1 is preferably a single bond, -O-, -S-, -COO-, or -OCOO-, more preferably a single bond or -O-.
  • T 3 is preferably a monovalent group.
  • the polymerizable liquid crystal compound in which T 3 is a monovalent group is preferably a compound represented by the following formula (L-2).
  • U 1 -V 1 -W 1 -(X 1 -Y 1 ) n -X 2 -W 2 -V 2 -U 2 (L-2) [In formula (L-2), X 1 , X 2 , Y 1 , n, U 1 , W 1 and V 1 each have the same meaning as above.
  • U 2 represents a hydrogen atom or a polymerizable group.
  • W 2 represents a single bond or a divalent linking group.
  • V 2 represents an alkanediyl group having 1 to 20 carbon atoms which may have a substituent, and -CH 2 - constituting the alkanediyl group is -O-, -CO-, -S-, Alternatively, it may be replaced with -NH-.
  • Examples of the polymerizable group represented by U 2 include the same groups as those exemplified above as polymerizable groups possessed by the polymerizable liquid crystal compound.
  • both U 1 and U 2 are polymerizable groups, more preferably both are radically polymerizable groups.
  • the polymerizable group represented by U 1 and the polymerizable group represented by U 2 may be different from each other, but U 1 and U 2 It is preferable that at least one of them is a (meth)acryloyl group or a (meth)acryloyloxy group, and it is more preferable that both of them are a (meth)acryloyl group or a (meth)acryloyloxy group.
  • U 1 and U 2 are the same type of group.
  • V 2 For details of V 2 , the above explanation for V 1 is cited.
  • W2 the above explanation of W1 is cited.
  • X 1 , Y 1 , X 2 and n each have the same meaning as above.
  • [Hereinafter, also referred to as partial structure (L-1A). ] is preferably an asymmetric structure because it facilitates the development of smectic liquid crystallinity.
  • Examples of the polymerizable liquid crystal compound in which the partial structure (L-1A) is an asymmetric structure include a polymerizable liquid crystal compound in which n is 1 and one X 1 and one X 2 have a mutually different structure. Also, a compound in which n is 2, two Y 1s have the same structure, two X 1s have the same structure, and one X 2 has a different structure from these two X 1s . Polymerizable liquid crystal compound, in which X 1 bonded to W 1 of two X 1 has a different structure from the other X 1 and X 2 , and the other X 1 and X 2 have the same structure. Also included are liquid crystal compounds. Furthermore, a compound in which n is 3, three Y 1s have the same structure, and any one of the three X 1s and one X 2 has a structure different from all of the other three. Examples include liquid crystal compounds.
  • the polymerizable liquid crystal compound is more preferably a polymerizable liquid crystal compound that has a partial structure represented by the following formula (L-1B) and exhibits smectic liquid crystallinity.
  • the polymerizable liquid crystal compound may have two or more partial structures represented by formula (L-1B).
  • -X 3 -Y 2 -X 4 -Y 3 -X 5 - (L-1B) [In formula (L-1B), X 3 , X 4 and X 5 are each independently a 1,4-phenylene group which may have a substituent or a cyclohexane-1,4-diyl group which may have a substituent. .
  • the partial structure represented by formula (L-1B) has an asymmetric structure as a whole. ]
  • Examples of the polymerizable liquid crystal compound include the following compounds.
  • polymerizable liquid crystal compounds are shown below, but the invention is not limited thereto.
  • the polymerizable liquid crystal compound has a cyclohexane-1,4-diyl group
  • the cyclohexane-1,4-diyl group is preferably in the trans form.
  • the polymer of the polymerizable liquid crystal compound is a compound having a repeating unit derived from the polymerizable liquid crystal compound, which is formed by polymerization of the polymerizable group possessed by the polymerizable liquid crystal compound. Also included are polymers obtained by performing a reaction such as a reaction to introduce a specific functional group (for example, a polymerizable group) to a polymer obtained by polymerization.
  • a reaction such as a reaction to introduce a specific functional group (for example, a polymerizable group) to a polymer obtained by polymerization.
  • An example of such a polymer is a polymer having a repeating unit having a polymerizable group at the end, which is represented by the following formula.
  • the above-mentioned repeating unit is obtained by polymerizing a polymerizable liquid crystal compound having a group at its end that can be converted into a polymerizable group, and then converting the group that can be converted into a polymerizable group into a polymerizable group. be able to.
  • the polymer having the above repeating unit corresponds to a polymer of a polymerizable liquid crystal monomer represented by the following formula, and can also be said to correspond to a polymerizable liquid crystal polymer when it is polymerized in forming a polarizing film.
  • the content ratio of the polymerizable liquid crystal compound (if two or more types are included, the total thereof) in the polymerizable liquid crystal composition for forming the light-absorbing anisotropic film 11 is determined from the viewpoint of increasing the orientation of the polymerizable liquid crystal compound. , preferably 70 parts by mass or more, more preferably 80 parts by mass or more, and preferably 99.5 parts by mass or less, more preferably 99 parts by mass or less, even more preferably, based on 100 parts by mass of the light absorption anisotropic film. is 94 parts by mass or less, more preferably 90 parts by mass or less.
  • the content ratio of the polymerizable liquid crystal compound can be calculated as the ratio of the polymerizable liquid crystal compound to 100 parts by mass of the solid content of the polymerizable liquid crystal composition for forming the light-absorbing anisotropic film 11. Further, the content of the polymer of the polymerizable liquid crystal compound in the light absorption anisotropic film may be calculated as the ratio of the polymerizable liquid crystal compound to the solid content of the composition.
  • the dichroic dye is included in the polymerizable liquid crystal compound, and the dichroic dye and the polymerizable liquid crystal compound exhibit light absorption anisotropy. It is preferable that the film 11 be oriented in the vertical direction with a high degree of order. Since the polymerizable liquid crystal compound and the dichroic dye are oriented with a high degree of order, when the optical laminate including the light-absorbing anisotropic film 11 is incorporated into an organic EL display device, the transmittance in the front direction is improved. It has excellent properties and tends to easily reduce directional anisotropy of light absorption characteristics in oblique directions.
  • the polymerizable liquid crystal composition used to form the light-absorbing anisotropic film 11 may contain components other than the dichroic dye and the polymerizable liquid crystal compound.
  • examples of such components include polymerization initiators, leveling agents, solvents, antioxidants, photosensitizers, crosslinking agents, and the like. These components may be used alone or in combination of two or more.
  • the polymerization initiator is a compound that can initiate a polymerization reaction of a polymerizable liquid crystal compound or the like.
  • a photopolymerization initiator that generates active radicals by the action of light is preferred.
  • polymerization initiator examples include benzoin compounds, benzophenone compounds, alkylphenone compounds, acylphosphine oxide compounds, triazine compounds, iodonium salts, and sulfonium salts.
  • benzophenone compounds include benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, and 3,3',4,4'-tetra(tert-butylperoxycarbonyl).
  • benzophenone and 2,4,6-trimethylbenzophenone examples include benzophenone and 2,4,6-trimethylbenzophenone.
  • alkylphenone compounds include diethoxyacetophenone, 2-methyl-2-morpholino-1-(4-methylthiophenyl)propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl) Butan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1,2-diphenyl-2,2-dimethoxyethane-1-one, 2-hydroxy-2-methyl-1-one [4-(2-hydroxyethoxy)phenyl]propan-1-one, 1-hydroxycyclohexylphenylketone and 2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propan-1-one
  • Examples include oligomers such as
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide.
  • triazine compounds examples include 2,4-bis(trichloromethyl)-6-(4-methoxyphenyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-(4-methoxynaphthyl) )-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-(4-methoxystyryl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-[ 2-(5-methylfuran-2-yl)ethenyl]-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-[2-(furan-2-yl)ethenyl]-1, 3,5-triazine, 2,4-bis(trichloromethyl)-6-[2-(4-diethylamino-2-methylphenyl)ethenyl]-1,3,5-triazine and 2,4-bis(trichloromethyl) )-6
  • polymerization initiators can be used.
  • Commercially available polymerization initiators include Irgacure (registered trademark) 907, 184, 651, 819, 250, and 369 (BASF); Sequal (registered trademark) BZ, Z, and BEE (Seiko Kagaku Co., Ltd.); Kayacure (registered trademark) BP100 and UVI-6992 (Nippon Kayaku Co., Ltd.); ADEKA Optomer SP-152 and SP-170 (ADEKA Co., Ltd.); TAZ-A and TAZ-PP (DKSH Japan Co., Ltd.); ); and TAZ-104 (Sanwa Chemical Co., Ltd.).
  • the content of the polymerization initiator is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass, based on 100 parts by mass of the polymerizable liquid crystal compound, from the viewpoint of not easily disturbing the orientation of the polymerizable liquid crystal compound.
  • the content is preferably 30 parts by mass or less, more preferably 10 parts by mass or less, and even more preferably 8 parts by mass or less.
  • the crosslinking agent preferably has a carbon-carbon unsaturated bond and an active hydrogen-reactive group in its molecule.
  • active hydrogen-reactive group refers to a group that is reactive with groups having active hydrogen, such as carboxyl group (-COOH), hydroxyl group (-OH), and amino group (-NH 2 ). Representative examples thereof include a glycidyl group, an oxazoline group, a carbodiimide group, an aziridine group, an imide group, an isocyanato group, a thioisocyanato group, and a maleic anhydride group.
  • the crosslinking agent is preferably a compound having two or more active hydrogen-reactive groups in its molecule, and in this case, the plurality of active hydrogen-reactive groups may be the same or different.
  • the carbon-carbon unsaturated bond possessed by the crosslinking agent may be a carbon-carbon double bond, a carbon-carbon triple bond, or a combination thereof, but is preferably a carbon-carbon double bond.
  • the crosslinking agent preferably contains a carbon-carbon unsaturated bond as a vinyl group and/or (meth)acrylic group.
  • the active hydrogen-reactive group is at least one selected from the group consisting of an epoxy group, a glycidyl group, and an isocyanato group, and a crosslinking agent (isocyanate-based crosslinking agent) having an acrylic group and an isocyanato group is preferable. Particularly preferred.
  • reactive additives include compounds having a (meth)acrylic group and an epoxy group, such as methacryloxyglycidyl ether and acryloxyglycidyl ether; Compounds having a (meth)acrylic group and a lactone group, such as lactone acrylate and lactone methacrylate; Compounds having a vinyl group and an oxazoline group, such as vinyloxazoline and isopropenyloxazoline; Isocyanatomethyl acrylate Examples include oligomers of compounds having a (meth)acrylic group and an isocyanato group, such as isocyanatomethyl methacrylate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate.
  • Other examples include compounds having a vinyl group or vinylene group and an acid anhydride, such as methacrylic anhydride, acrylic anhydride, maleic anhydride, and vinyl maleic anhydride.
  • methacryloxyglycidyl ether, acryloxyglycidyl ether, isocyanatomethyl acrylate, isocyanatomethyl methacrylate, vinyloxazoline, 2-isocyanatoethyl acrylate, 2-isocyanatoethyl methacrylate and the aforementioned oligomers are preferred, and isocyanatomethyl acrylate, Particular preference is given to 2-isocyanatoethyl acrylate and the oligomers mentioned above.
  • the crosslinking agent having an isocyanato group as an active hydrogen-reactive group is preferably a compound represented by the following formula (Y).
  • n represents an integer from 1 to 10
  • R 1' is a divalent aliphatic or alicyclic hydrocarbon group having 2 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 5 to 20 carbon atoms. represents.
  • R 3' represents a hydroxyl group or a group having a carbon-carbon unsaturated bond.
  • At least one R 3 ' in the formula (Y) is a group having a carbon-carbon unsaturated bond.
  • the compound represented by the formula (Y) is more preferably a compound represented by the following formula (YY) (hereinafter referred to as "compound (YY)” in some cases) (n is the formula (YY)). ).
  • the compound (YY) a commercially available product can be used as it is or after being purified if necessary.
  • Examples of commercially available products include Laromer (registered trademark) LR-9000 (manufactured by BASF).
  • the content of the crosslinking agent is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and preferably 5 parts by mass or less, based on 100 parts by mass of the polymerizable liquid crystal compound.
  • the leveling agent has the function of adjusting the fluidity of the polymerizable liquid crystal composition and making the light absorption anisotropic film 11 more flat, and includes, for example, a surfactant.
  • Preferred leveling agents include leveling agents containing a polyacrylate compound as a main component and leveling agents containing a fluorine atom-containing compound as a main component.
  • Leveling agents containing polyacrylate compounds as main ingredients include BYK-350, BYK-352, BYK-353, BYK-354, BYK-355, BYK-358N, BYK-361N, BYK-380, BYK-381 and BYK -392 (BYK Chemie), etc.
  • Leveling agents containing fluorine atom-containing compounds as main ingredients include Megafac (registered trademark) R-08, R-30, R-90, F-410, F-411, F-443, F-445, F- 470, F-471, F-477, F-479, F-482, F-483 (DIC Corporation); Surflon (registered trademark) S-381, S-382, S-383, S-393, SC -101, SC-105, KH-40 and SA-100 (AGC Seimi Chemical Co., Ltd.); E1830 and E5844 (Daikin Industries, Ltd.); )) etc.
  • the content of the leveling agent is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and preferably 5 parts by mass or less, more preferably 3 parts by mass, based on 100 parts by mass of the polymerizable liquid crystal compound. Parts by mass or less. It is preferable that the content of the leveling agent is within the above range because the resulting light absorption anisotropic film 11 tends to be smoother. If the content of the leveling agent in the polymerizable liquid crystal compound exceeds the above range, it is not preferable because the resulting light absorption anisotropic film 11 tends to be uneven or tends to be oriented in the horizontal direction.
  • the light absorption anisotropic film 11 may contain two or more types of leveling agents.
  • the solvent is preferably one that can completely dissolve the polymerizable liquid crystal compound, and more preferably a solvent that is inert to the polymerization reaction.
  • solvents examples include alcoholic solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, and ⁇ -butyrolactone.
  • ester solvents such as propylene glycol methyl ether acetate and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane and heptane; toluene and aromatic hydrocarbon solvents such as xylene; nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran and dimethoxyethane; chlorine-containing solvents such as chloroform and chlorobenzene; and the like. These solvents may be used alone or in combination of two or more.
  • the content of the solvent is preferably 50 to 98% by mass based on the total amount of the polymerizable liquid crystal composition.
  • the proportion of the light-absorbing anisotropic film 11 components is preferably 2 to 50% by mass based on the total amount of the polymerizable liquid crystal composition.
  • the antioxidant may be a primary antioxidant selected from phenolic antioxidants, amine antioxidants, quinone antioxidants, nitroso antioxidants, or phosphorus antioxidants and sulfur antioxidants. It may also be a secondary antioxidant selected from type antioxidants.
  • the content of the antioxidant is usually 0.01 to 10 parts by mass based on 100 parts by mass of the polymerizable liquid crystal compound. The amount is preferably 0.1 to 5 parts by weight, more preferably 0.1 to 3 parts by weight.
  • Antioxidants can be used alone or in combination of two or more.
  • Photosensitizer By using a photosensitizer, the sensitivity of the photopolymerization initiator can be increased.
  • the photosensitizer include xanthone such as xanthone and thioxanthone; anthracenes having substituents such as anthracene and alkyl ether; phenothiazine; and rubrene.
  • the photosensitizers can be used alone or in combination of two or more.
  • the content of the photosensitizer is usually 0.01 to 10 parts by weight, preferably 0.05 to 5 parts by weight, and more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the polymerizable liquid crystal compound. 3 parts by mass.
  • the light absorption anisotropic film 11 is, for example, obtaining a composition for forming a light-absorbing anisotropic film by stirring a polymerizable liquid crystal compound, a dichroic dye, and optionally an additive such as a solvent at a predetermined temperature; forming a coating film of a composition for forming a light-absorbing anisotropic film; It can be produced by a method including a step of drying the above coating film to form a dry coating film, and a step of irradiating the dried coating film with active energy rays to form a cured liquid crystal film.
  • the temperature at which the polymerizable liquid crystal compound, the dichroic dye, and optionally additives such as a solvent are stirred is usually 0 to 50°C, preferably 10 to 40°C.
  • the stirring method is not particularly limited, and any conventionally known method can be used.
  • a coating film of the composition for forming a light-absorbing anisotropic film can be formed, for example, by applying the composition for forming a light-absorbing anisotropic film onto a substrate or an alignment film.
  • Examples of the base material include glass base materials, film base materials, etc., but resin film base materials are preferred from the viewpoint of processability.
  • resins constituting the film base material include polyolefins such as polyethylene, polypropylene, and norbornene polymers; cyclic olefin resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic esters; polyacrylic esters; triacetyl cellulose, diacetyl cellulose and cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyether sulfone; polyether ketone; and plastics such as polyphenylene sulfide and polyphenylene oxide.
  • Such a resin can be formed into a film by known means such as a solvent casting method and a melt extrusion method to form a base material.
  • the surface of the base material may have a protective layer formed from acrylic resin, methacrylic resin, epoxy resin, oxetane resin, urethane resin, melamine resin, etc., and may be subjected to mold release treatment such as silicone treatment, corona treatment, Surface treatment such as plasma treatment may be performed.
  • the base material may have a hard coat layer described below.
  • a light absorption anisotropic film can also be formed on the hard coat layer.
  • the base material may be peeled off from the optical laminate leaving the hard coat layer, or may be incorporated into the optical laminate.
  • cellulose ester base materials include, for example, cellulose ester base materials manufactured by Fuji Photo Film Co., Ltd. such as Fuji Tac Film; cellulose manufactured by Konica Minolta Opto Co., Ltd. such as "KC8UX2M”, “KC8UY”, and “KC4UY”; Examples include ester base materials.
  • cyclic olefin resins include, for example, cyclic olefin resins manufactured by Ticona (Germany) such as “Topas (registered trademark)”; cyclic olefin resins manufactured by JSR Corporation such as “Arton (registered trademark)”; Cyclic olefin resins manufactured by Nippon Zeon Co., Ltd. such as “ZEONOR (registered trademark)” and “ZEONEX (registered trademark)”; Examples include cyclic olefin resins.
  • a commercially available cyclic olefin resin base material can also be used.
  • cyclic olefin resin base materials include cyclic olefin resin base materials manufactured by Sekisui Chemical Co., Ltd. such as “Escina (registered trademark)” and “SCA40 (registered trademark)”; “Zeonor film (registered trademark)” Examples include cyclic olefin resin base materials manufactured by Optes Co., Ltd.; and cyclic olefin resin base materials manufactured by JSR Corporation such as "Arton Film (registered trademark)".
  • a commercially available polyethylene terephthalate film includes "SP-PLR382050" manufactured by Lintec.
  • the thickness of the base material is usually 5 to 300 ⁇ m, preferably 10 to 150 ⁇ m.
  • Methods for applying the composition for forming a light-absorbing anisotropic film to a substrate include coating methods such as spin coating, extrusion, gravure coating, die coating, bar coating, and applicator methods, and flexography. Examples include known methods such as printing methods such as methods.
  • a dry coating film is formed by removing the solvent by drying or the like.
  • the drying method include natural drying, ventilation drying, heating drying, and reduced pressure drying.
  • the heating temperature of the coating film can be determined as appropriate, taking into consideration the polymerizable liquid crystal compound used and the material of the base material forming the coating film. It is necessary that the temperature is higher than the phase transition temperature.
  • the light-absorbing anisotropic film 11 is formed in order to vertically align the polymerizable liquid crystal compound while removing the solvent contained in the polymerizable liquid crystal composition for forming the light-absorbing anisotropic film 11. It can be heated to a temperature approximately equal to or higher than the liquid crystal phase transition temperature (smectic phase transition temperature or nematic phase transition temperature) of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition.
  • the liquid crystal phase transition temperature can be measured using, for example, a polarizing microscope equipped with a temperature control stage, a differential scanning calorimeter (DSC), a thermogravimetric differential thermal analyzer (TG-DTA), or the like.
  • the above phase transition temperature is such that the total polymerizable liquid crystal compound constituting the polymerizable liquid crystal composition for forming the light-absorbing anisotropic film 11 is It refers to the temperature measured using a mixture of polymerizable liquid crystal compounds mixed in the same ratio as the composition in a polymerizable liquid crystal composition in the same manner as when one type of polymerizable liquid crystal compound is used. It is generally known that the liquid crystal phase transition temperature of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition may be lower than the liquid crystal phase transition temperature of the polymerizable liquid crystal compound alone.
  • the heating time can be appropriately determined depending on the heating temperature, the type of polymerizable liquid crystal compound used, the type of solvent, its boiling point, its amount, etc., but is usually 15 seconds to 10 minutes, preferably 0.5 to 10 minutes. It's 5 minutes.
  • the light-absorbing anisotropic film 11 is formed by polymerizing the polymerizable liquid crystal compound while maintaining the vertical alignment state of the polymerizable liquid crystal compound.
  • the polymerization method include a thermal polymerization method and a photopolymerization method, and the photopolymerization method is preferable from the viewpoint of easy control of the polymerization reaction.
  • the light irradiated to the dry coating film depends on the type of photopolymerization initiator contained in the dry coating film, the type of polymerizable liquid crystal compound (especially the type of polymerizable group possessed by the polymerizable liquid crystal compound) and the amount thereof is selected as appropriate.
  • Specific examples include one or more types of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, ⁇ -rays, ⁇ -rays, and ⁇ -rays, and active electron beams.
  • ultraviolet light is preferable because it is easy to control the progress of the polymerization reaction and it is possible to use photopolymerization equipment that is widely used in the field.
  • the polymerization temperature can also be controlled by irradiating the dry coating film with light while cooling it with an appropriate cooling means.
  • the light-absorbing anisotropic film 11 can be appropriately formed even if a base material with relatively low heat resistance is used. can. It is also possible to promote the polymerization reaction by increasing the polymerization temperature within a range that does not cause problems due to heat during light irradiation (such as deformation of the base material due to heat).
  • a patterned light-absorbing anisotropic film can also be obtained by performing masking, development, etc. during photopolymerization.
  • Examples of the light source of the active energy rays include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excimer laser, and a wavelength range of 380.
  • Examples include an LED light source that emits light at ⁇ 440 nm, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, and a metal halide lamp.
  • the ultraviolet irradiation intensity is usually 10 to 3,000 mW/cm 2 .
  • the ultraviolet irradiation intensity is preferably an intensity in a wavelength range effective for activating the photopolymerization initiator.
  • the time for irradiating the light is usually 0.1 seconds to 10 minutes, preferably 0.1 seconds to 5 minutes, more preferably 0.1 seconds to 3 minutes, and even more preferably 0.1 seconds to 1 minute. be.
  • the cumulative amount of light is 10 to 3,000 mJ/cm 2 , preferably 50 to 2,000 mJ/cm 2 , more preferably 100 to 1,000 mJ/cm It is 2 .
  • a coating film of a polymerizable liquid crystal composition for forming the light-absorbing anisotropic film 11 can be formed on an alignment film.
  • the alignment film has an alignment regulating force that causes the polymerizable liquid crystal compound to align the liquid crystal in a desired direction.
  • an alignment film having an alignment regulating force for aligning the polymerizable liquid crystal compound in the vertical direction is sometimes called a vertical alignment film
  • an alignment film having an alignment regulating force for aligning the polymerizable liquid crystal compound in the horizontal direction is sometimes called a horizontal alignment film.
  • the alignment regulating force can be arbitrarily adjusted depending on the type of alignment film, surface condition, rubbing conditions, etc., and if the alignment film is made of a photo-alignable polymer, it can be arbitrarily adjusted by changing the polarized light irradiation conditions, etc. It is possible to do so.
  • the alignment film is preferably one that has a solvent resistance that does not dissolve when the liquid crystal composition is applied, etc., and also has heat resistance in heat treatment for removing the solvent and for aligning the polymerizable liquid crystal compound described below.
  • the alignment film include an alignment film containing an alignment polymer, a photo-alignment film, a groove alignment film having a concavo-convex pattern or a plurality of grooves on the surface, and a stretched film stretched in the alignment direction.
  • a photo-alignment film is preferred from the viewpoint of quality.
  • oriented polymers include polyamides and gelatins having an amide bond in the molecule, polyimide having an imide bond in the molecule, and polyamic acid, which is a hydrolyzate thereof, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, and polyamide. Mention may be made of oxazole, polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid and polyacrylic esters. Among them, polyvinyl alcohol is preferred.
  • the oriented polymers can be used alone or in combination of two or more.
  • An oriented film containing an oriented polymer is usually prepared by applying a composition in which an oriented polymer is dissolved in a solvent (hereinafter sometimes referred to as an "oriented polymer composition") to a base material, and then removing the solvent, or It is obtained by applying an oriented polymer composition to a base material, removing the solvent, and rubbing it (rubbing method).
  • a solvent hereinafter sometimes referred to as an "oriented polymer composition”
  • the solvent include the same solvents as those exemplified above as solvents that can be used in the liquid crystal composition.
  • the concentration of the oriented polymer in the oriented polymer composition may be within a range that allows the oriented polymer material to be completely dissolved in the solvent, but it is preferably 0.1 to 20% in terms of solid content with respect to the solution. It is more preferably about .1 to 10%.
  • alignment film materials may be used as they are as the alignment polymer composition.
  • Commercially available alignment film materials include Sunever (registered trademark, manufactured by Nissan Chemical Industries, Ltd.), Optomer (registered trademark, manufactured by JSR Corporation), and the like.
  • Examples of the method for applying the oriented polymer composition to the substrate include the same methods as those exemplified as the method for applying the liquid crystal composition to the substrate.
  • Examples of methods for removing the solvent contained in the oriented polymer composition include natural drying, ventilation drying, heat drying, and reduced pressure drying.
  • rubbing treatment can be performed as necessary (rubbing method).
  • a method of imparting an orientation regulating force by a rubbing method a rubbing cloth is wrapped around a rotating rubbing roll, and an oriented polymer composition is applied to a substrate and annealed to form an oriented polymer composition on the surface of the substrate. Examples include a method of bringing oriented polymer films into contact with each other. If masking is performed when performing the rubbing process, a plurality of regions (patterns) with different orientation directions can be formed on the alignment film.
  • a photo-alignment film is usually produced by coating a base material with a composition containing a polymer or monomer having a photo-reactive group and a solvent (hereinafter also referred to as "composition for forming a photo-alignment film"), and after removing the solvent, polarized light is produced. (preferably polarized UV).
  • composition for forming a photo-alignment film a composition containing a polymer or monomer having a photo-reactive group and a solvent
  • polarized light preferably polarized UV.
  • the photo-alignment film is also advantageous in that the direction of the alignment regulating force can be arbitrarily controlled by selecting the polarization direction of the polarized light to be irradiated.
  • a photoreactive group refers to a group that produces liquid crystal alignment ability when irradiated with light. Specifically, groups that are involved in molecular alignment induction caused by light irradiation or photoreactions that are the origin of liquid crystal alignment ability, such as isomerization reactions, dimerization reactions, photocrosslinking reactions, or photodecomposition reactions, can be mentioned. Among these, groups that participate in a dimerization reaction or a photocrosslinking reaction are preferable because they have excellent orientation.
  • Examples of the photoreactive group having a C ⁇ C bond include a vinyl group, a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a chalcone group, and a cinnamoyl group.
  • Examples of the photoreactive group having a C ⁇ O bond include a benzophenone group, a coumarin group, an anthraquinone group, and a maleimide group. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, or a halogenated alkyl group.
  • photoreactive groups that participate in photodimerization reactions are preferred, in that the amount of polarized light irradiation required for photoalignment is relatively small, and it is easy to obtain a photoalignment film with excellent thermal stability and stability over time. Cinnamoyl and chalcone groups are preferred.
  • the polymer having a photoreactive group one having a cinnamoyl group such that the end of the polymer side chain has a cinnamic acid structure is particularly preferred.
  • a photo-alignment inducing layer can be formed on the base material by applying the composition for forming a photo-alignment film onto the base material.
  • the solvent contained in the composition may be the same as the solvents listed above as solvents that can be used in the liquid crystal composition, and should be appropriately selected depending on the solubility of the polymer or monomer having a photoreactive group. Can be done.
  • the content of the polymer or monomer having a photoreactive group in the composition for forming a photo-alignment film can be adjusted as appropriate depending on the type of polymer or monomer and the desired thickness of the photo-alignment film.
  • the amount is preferably at least 0.2% by weight, more preferably from 0.3 to 10% by weight.
  • the composition for forming a photo-alignment film may contain a polymeric material such as polyvinyl alcohol or polyimide, and a photosensitizer as long as the properties of the photo-alignment film are not significantly impaired.
  • Examples of the method for applying the photoalignment film-forming composition to the substrate include the same method as the method for applying the alignment polymer composition to the substrate.
  • Examples of methods for removing the solvent from the applied composition for forming a photoalignment film include natural drying, ventilation drying, heat drying, and reduced pressure drying.
  • polarized UV can be irradiated directly onto the composition for forming a photo-alignment film coated on the substrate, from which the solvent has been removed, or the polarized light can be irradiated from the substrate side and the polarized light can be transmitted. It may also be a form of irradiation. Moreover, it is particularly preferable that the polarized light is substantially parallel light.
  • the wavelength of the polarized light to be irradiated is preferably in a wavelength range in which a polymer having a photoreactive group or a photoreactive group of a monomer can absorb light energy.
  • UV ultraviolet light
  • Light sources used for polarized light irradiation include xenon lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, and ultraviolet lasers such as KrF and ArF. Lamps are more preferred.
  • high-pressure mercury lamps, ultra-high-pressure mercury lamps, and metal halide lamps are preferable because they emit a high intensity of ultraviolet light with a wavelength of 313 nm.
  • Polarized UV can be irradiated by passing the light from the light source through a suitable polarizer.
  • a polarizing filter, a polarizing prism such as Glan-Thompson or Glan-Taylor, or a wire grid type polarizer can be used.
  • a groove alignment film is a film that has an uneven pattern or a plurality of grooves on its surface.
  • a liquid crystal compound is applied to a film having a plurality of linear grooves arranged at equal intervals, liquid crystal molecules are aligned in the direction along the grooves.
  • the groove alignment film can be obtained by exposing the surface of a photosensitive polyimide film to light through an exposure mask having pattern-shaped slits, followed by development and rinsing to form a concavo-convex pattern, and by using a plate with grooves on the surface.
  • fluorine-based polymers such as perfluoroalkyl, silane compounds, and condensation reactions thereof are used as materials exhibiting an alignment regulating force that aligns a polymerizable liquid crystal compound in a direction perpendicular to the plane of the coating film.
  • a polysiloxane compound obtained by the above method may also be used.
  • the constituent elements include Si element and C element from the viewpoint of easily reducing surface tension and increasing adhesion with layers adjacent to the alignment film.
  • Compounds are preferred, and silane compounds can be suitably used.
  • silane compounds By using a silane compound, the ability to regulate orientation can be increased.
  • These silane compounds may be used alone, in combination of two or more, or in combination with other materials.
  • the thickness of the alignment film is usually in the range of 10 to 10,000 nm, preferably in the range of 10 to 1,000 nm, more preferably in the range of 10 to 500 nm, and even more preferably is in the range of 10 to 300 nm, particularly preferably 50 to 250 nm.
  • the coating film of the liquid crystal composition does not require an alignment film and can be formed directly on the substrate.
  • the polymerizable liquid crystal composition for forming the light-absorbing anisotropic film 11 may contain an alignment promoter.
  • the alignment promoter refers to a material that promotes liquid crystal alignment of a liquid crystal compound in a desired direction. Examples of the alignment promoter that promotes alignment of the liquid crystal compound include ionic compounds made of nonmetallic atoms, nonionic silane compounds, and the like.
  • the polymerizable liquid crystal composition for forming the light-absorbing anisotropic film 11 contains at least one of an ionic compound made of non-metal atoms and a non-ionic silane compound; It is more preferable to include both an ionic compound and a nonionic silane compound.
  • Examples of ionic compounds consisting of nonmetallic atoms include onium salts (more specifically, quaternary ammonium salts and tertiary sulfonium salts in which the nitrogen atom has a positive charge, and phosphorus atoms in which the phosphorus atom has a positive charge).
  • onium salts more specifically, quaternary ammonium salts and tertiary sulfonium salts in which the nitrogen atom has a positive charge, and phosphorus atoms in which the phosphorus atom has a positive charge.
  • quaternary phosphonium salts, etc. are preferred from the viewpoint of further improving the vertical alignment of the polymerizable liquid crystal compound, and quaternary phosphonium salts or quaternary onium salts are preferred from the viewpoint of improving availability and mass production.
  • Ammonium salts are more preferred.
  • the onium salt may have two or more quaternary onium salt sites in the molecule, and may be an oli
  • Nonionic silane compounds include, for example, silicon polymers such as polysilanes, silicone resins such as silicone oils and silicone resins, as well as organic and inorganic silane compounds (more specifically (silane coupling agents, etc.), silicone leveling agents, etc.
  • the adhesive layer 12 can have the function of bonding the light-absorbing anisotropic film 11 and the optical film 13 together.
  • the adhesive layer 12 includes a cured product of a cation-curable adhesive described below.
  • the thickness of the adhesive layer 12 may be, for example, 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and still more preferably 2 ⁇ m or less. Further, the adhesive layer 12 may have a thickness of 0.05 ⁇ m or more, and preferably 0.1 ⁇ m or more.
  • the adhesive layer 12 has a temperature [°C] at which the loss modulus (hereinafter also referred to as loss modulus) [MPa] obtained by dynamic viscoelasticity measurement at a frequency of 10 Hz in a tensile mode has a maximum value, and From the viewpoint of suppressing a decrease in transmittance, the temperature may preferably be 60°C or higher, more preferably 80°C or higher, and still more preferably 100°C or higher.
  • the temperature at which the loss modulus reaches the maximum value can be measured according to the viscoelasticity evaluation method described in the Examples section below.
  • the temperature at which the loss modulus reaches its maximum value is usually 150°C or lower, and preferably 120°C or lower from the viewpoint of adhesion.
  • the storage modulus [MPa] of the adhesive layer 12 at 80° C. may be preferably 50 [MPa] or more, more preferably 500 [MPa] or more, from the viewpoint of suppressing a decrease in front transmittance in a heat resistance durability test. More preferably, it is 1500 [MPa] or more, and from the viewpoint of adhesion, it is preferably 3000 [MPa] or less.
  • the storage modulus [MPa] at 80° C. can be determined according to the viscoelasticity evaluation method described in the Examples section below.
  • the temperature at which tan ⁇ is maximum may be, for example, higher than 30° C., preferably 50° C. or higher, more preferably 95° C. or higher, and even more preferably is 100°C or higher, more preferably 120°C or higher, and preferably 150°C or lower from the viewpoint of adhesion.
  • the temperature at which tan ⁇ becomes maximum can be determined according to the viscoelasticity evaluation method described in the Examples section below.
  • a cationic curable adhesive can be cured by irradiation with active energy rays.
  • the cationically curable adhesive can contain a cationically polymerizable compound and a cationic photopolymerization initiator. It is preferable that the cationic curable adhesive further contains a photosensitizer.
  • a cationic polymerizable compound is a component that can be cured by causing cationic polymerization by irradiation with active energy rays. Adhesive strength is developed by polymerization and curing of the cationically polymerizable compound.
  • the cationic polymerizable compound can include at least one selected from the group consisting of oxetane compounds, alicyclic epoxy compounds, aliphatic epoxy compounds, and aromatic epoxy compounds.
  • the oxetane compound is a compound having an oxetanyl group, and may be an aliphatic compound, an alicyclic compound, or an aromatic compound.
  • the oxetane compound referred to herein is a compound that does not have an epoxy group.
  • the oxetane compound may be a monofunctional oxetane having only one oxetanyl group, or a polyfunctional oxetane having two or more oxetanyl groups.
  • the oxetane compound is preferably a polyfunctional oxetane compound, and preferably a bifunctional oxetane having two oxetanyl groups.
  • the cationic polymerizable compound one or more monofunctional oxetanes or one or more polyfunctional oxetanes can be used alone, or one or more monofunctional oxetanes and one or more polyfunctional oxetanes can be used in combination.
  • oxetane compounds include 3,7-bis(3-oxetanyl)-5-oxanonane, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, 1,2-bis [(3-ethyl-3-oxetanylmethoxy)methyl]ethane, 1,3-bis[(3-ethyl-3-oxetanylmethoxy)methyl]propane, ethylene glycol bis(3-ethyl-3-oxetanylmethyl)ether, Triethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, tetraethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, 1,4-bis(3-ethyl-3-oxetanylmethoxy)butane, 1 , 6-bis(3-ethyl-3-oxetanylmethoxy)hexan
  • oxetane compound (A1) one type of oxetane compound may be used alone, or a plurality of different types may be used in combination. Among them, 3-ethyl-3-hydroxymethyloxetane, xylylenebisoxetane, 3-ethyl-3-(phenoxymethyl)oxetane, 3-ethyl-3 ⁇ [(3-ethyloxetan-3-yl)methoxy] methyl ⁇ oxetane, 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, and 3-ethyl-3-(cyclohexyloxymethyl)oxetane.
  • oxetane compound commercially available products can be used, such as the "Aron Oxetane (registered trademark)” series sold by Toagosei Co., Ltd. and the “Aron Oxetane (registered trademark)” series sold by Ube Industries, Ltd. under the respective trade names. Examples include the ETERNACOLL (registered trademark) series.
  • the content of the oxetane compound in the cationically polymerizable compound may be, for example, 5 parts by mass or more and 70 parts by mass or less based on 100 parts by mass of all the cationically polymerizable compounds. , preferably 20 parts by mass or more and 60 parts by mass or less. If the content of the oxetane compound is too high, the adhesion tends to decrease, and if the content is too low, the front transmittance in the heat resistance durability test tends to decrease.
  • a cycloaliphatic epoxy compound is a compound having one or more cycloaliphatic epoxy groups.
  • the alicyclic epoxy compound may further have an epoxy group other than the alicyclic epoxy group, as long as it has one or more alicyclic epoxy groups.
  • the alicyclic epoxy compound may be a monofunctional alicyclic epoxy having only one alicyclic epoxy group, or a polyfunctional alicyclic epoxy having two or more alicyclic epoxy groups. good.
  • the alicyclic epoxy compound is preferably a polyfunctional alicyclic epoxy, and preferably a bifunctional alicyclic epoxy having two alicyclic epoxy groups.
  • the cationic polymerizable compound may include one or more monofunctional alicyclic epoxy or one or more polyfunctional alicyclic epoxy alone, or one or more monofunctional alicyclic epoxy and one or more polyfunctional alicyclic epoxy. Combinations of cyclic epoxies can be used.
  • the alicyclic epoxy group refers to an epoxy group bonded to an alicyclic ring, and refers to a bridging oxygen atom -O- in the structure represented by the following formula (a).
  • m is an integer from 2 to 5.
  • a compound in which a group in which one or more hydrogen atoms in (CH 2 ) m in formula (a) are removed is bonded to another chemical structure can be an alicyclic epoxy compound.
  • One or more hydrogen atoms in (CH 2 ) m may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
  • the curing speed of the cationically curable adhesive can be adjusted by using the alicyclic epoxy compound.
  • alicyclic epoxy compounds include 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 1,2-epoxy-4-vinylcyclohexane, 1,2-epoxy-1-methyl-4-( 4-(1,2-epoxyethyl)-1,2-epoxycyclohexane addition of 1-methylepoxyethyl)cyclohexane, 3,4-epoxycyclohexylmethyl methacrylate, and 2,2-bis(hydroxymethyl)-1-butanol ethylene bis(3,4-epoxycyclohexanecarboxylate), oxydiethylene bis(3,4-epoxycyclohexanecarboxylate), 1,4- Cyclohexane dimethyl bis(3,4-epoxycyclohexanecarboxylate), and 3-(3,4-epoxycyclohexylmethoxycarbonyl)propyl 3,4-epoxycyclohexane
  • alicyclic epoxy compounds 3,4-epoxycyclohexylmethyl and 3,4-epoxycyclohexanecarboxylate are preferably used because they have appropriate curability and are available at relatively low prices.
  • the alicyclic epoxy compound one type of alicyclic epoxy compound may be used alone, or a plurality of different types may be used in combination.
  • alicyclic epoxy compound commercially available products can be used.
  • the "Celoxide (registered trademark)” series, “EHPE3150”, and “Cyclomer (registered trademark)” are sold by Daicel Corporation under the respective trade names. )” and the “Cyracure UVR” series sold by Dow Chemical Company.
  • the content of the alicyclic epoxy compound may be, for example, 10 parts by mass or more and 90 parts by mass or less based on 100 parts by mass of the total amount of all cationically polymerizable compounds. , preferably 20 parts by mass or more and 80 parts by mass or less, more preferably 35 parts by mass or more and 80 parts by mass or less. If the content of the alicyclic epoxy compound is too high, the adhesion tends to decrease, and if the content is too low, it tends to be difficult to suppress the decrease in the front transmittance in the heat resistance durability test.
  • the aromatic epoxy compound can be an aromatic compound that is a compound having one or more epoxy groups. However, the aromatic epoxy compound as used herein excludes a compound having an alicyclic epoxy group in the molecule, which is included in the alicyclic epoxy compound.
  • the aromatic epoxy compound may be a monofunctional aromatic epoxy having one epoxy group, or a polyfunctional aromatic epoxy having two or more epoxy groups.
  • the aromatic epoxy compound is preferably a polyfunctional aromatic epoxy, and preferably a difunctional aromatic epoxy having two epoxy groups.
  • the cationic polymerizable compound may be one or more monofunctional aromatic epoxy or one or more polyfunctional aromatic epoxy alone, or one or more monofunctional aromatic epoxy and one or more polyfunctional aromatic epoxy. Can be used in combination.
  • monofunctional aromatic epoxies include monohydric phenols such as phenol, cresol, and butylphenol, bisphenol derivatives such as bisphenol A and bisphenol F, or monoglycidyl etherified products of alkylene oxide adducts thereof; epoxy novolac resins; resorcinol and hydroquinone; A monoglycidyl etherified product of an aromatic compound having two or more phenolic hydroxyl groups such as catechol; a monoglycidyl etherified product of an aromatic compound having two or more alcoholic hydroxyl groups such as benzenedimethanol, benzenediethanol, and benzenedibutanol; Monoglycidyl esters of polybasic acid aromatic compounds having two or more carboxyl groups such as phthalic acid, terephthalic acid, and trimellitic acid; monoglycidyl esters of benzoic acid, toluic acid, and naphthoic acid.
  • monohydric phenols such as phenol, cresol, and
  • polyfunctional aromatic epoxy examples include polyglycidyl etherified products of naphthalene or naphthalene derivatives (also referred to as “naphthalene type epoxy compounds”); polyglycidyl etherified products of bisphenol derivatives such as bisphenol A and bisphenol F ("bisphenol A”); epoxy novolac resins; polyglycidyl etherified aromatic compounds having two or more phenolic hydroxyl groups such as resorcinol, hydroquinone, and catechol; benzenedimethanol and Polyglycidyl etherified aromatic compounds having two or more alcoholic hydroxyl groups such as benzenediethanol and benzenedibutanol; polybasic acid aromatic compounds having two or more carboxyl groups such as phthalic acid, terephthalic acid, trimellitic acid, etc.
  • polyglycidyl esters of benzoic acid, toluic acid, naphthoic acids, etc. examples include styrene oxides, alkylated styrene oxides, styrene oxides such as vinylnaphthalene epoxides, divinylbenzene diepoxides, etc. .
  • polyfunctional aromatic epoxy one type of compound may be used alone, or a plurality of different types may be used in combination.
  • polyfunctional aromatic epoxies can be used, such as “Denacol EX-201,” “Denacol EX-711,” and “Denacol EX-721” (all manufactured by Nagase ChemteX Co., Ltd.).
  • the content of the aromatic epoxy compound may be, for example, 10 parts by mass or more and 60 parts by mass or less, based on 100 parts by mass of the total amount of all cationic polymerizable compounds, and is preferably is 15 parts by mass or more and 50 parts by mass or less, more preferably 15 parts by mass or more and 45 parts by mass or less. If the content of the aromatic epoxy compound is too high, the viscosity tends to increase and it becomes difficult to form a thin film, and if the content is too low, it becomes difficult to suppress the decrease in the front transmittance in the heat resistance durability test.
  • examples of the aliphatic epoxy compound include monofunctional aliphatic epoxy, which is a compound having one epoxy group, and polyfunctional aliphatic epoxy, which is a compound having two or more epoxy groups.
  • Polyfunctional aliphatic epoxy is preferred from the viewpoint of maintaining the cohesive force of the cured product and improving adhesion.
  • the cationic polymerizable compound may include one or more monofunctional aliphatic epoxy or one or more polyfunctional aliphatic epoxy alone, or one or more monofunctional aliphatic epoxy and one or more polyfunctional aliphatic epoxy. Can be used in combination.
  • a monofunctional aliphatic epoxy can adjust the viscosity of a cationically curable adhesive.
  • the monofunctional aliphatic epoxy include glycidyl ethers of aliphatic alcohols and glycidyl esters of alkyl carboxylic acids. Specific examples include allyl glycidyl ether, butyl glycidyl ether, sec-butylphenyl glycidyl ether, and 2-ethylhexyl.
  • glycidyl ethers include mixed alkyl glycidyl ethers having 12 and 13 carbon atoms, glycidyl ethers of alcohols, monoglycidyl ethers of aliphatic higher alcohols, glycidyl esters of higher fatty acids, and the like.
  • monofunctional aliphatic epoxy one type of monofunctional epoxy compound may be used alone, or a plurality of different types may be used in combination.
  • a polyfunctional aliphatic epoxy is a compound that has two or more epoxy groups and does not have an aromatic ring.
  • the term "polyfunctional aliphatic epoxy” as used herein excludes compounds having an alicyclic epoxy group, which are included in the alicyclic epoxy compounds.
  • the adhesion of the adhesive layer 12 can be adjusted by using the polyfunctional aliphatic epoxy.
  • an aliphatic diepoxy compound represented by the following formula (b) is more preferable.
  • the aliphatic diepoxy compound represented by the following formula (b) as a polyfunctional aliphatic epoxy compound, it is possible to obtain an active energy ray-curable adhesive that has a low viscosity and is easy to apply.
  • Z is an alkylene group having 1 to 9 carbon atoms, an alkylidene group having 3 or 4 carbon atoms, a divalent alicyclic hydrocarbon group, or a formula -C m H 2m -Z 1 -C n H It is a divalent group represented by 2n -. Furthermore, in the above formula -C m H 2m -Z 1 -C n H 2n -, -Z 1 - is -O-, -CO-O-, -O-CO-, -SO 2 -, -SO- or CO-, m and n each independently represent an integer of 1 or more, and the sum of m and n is 9 or less.
  • the divalent alicyclic hydrocarbon group may be, for example, a divalent alicyclic hydrocarbon group having 4 to 8 carbon atoms, such as a divalent group represented by the following formula (b-1). Can be mentioned.
  • Specific examples of the compound represented by formula (b) include diglycidyl ethers of alkanediols, diglycidyl ethers of oligoalkylene glycols having a repeating number of up to about 4, diglycidyl ethers of alicyclic diols, and the like.
  • diols examples include ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-butyl- 2-ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl -1,5-pentanediol, 2-methyl-2,4-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 3,5- Alkanediols such as heptanediol, 1,8-octanediol, 2-methyl
  • 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and neopentyl glycol diglycidyl ether are preferred from the viewpoint of obtaining a cationically curable adhesive that has a low viscosity and is easy to apply.
  • the aliphatic epoxy compound one type of aliphatic epoxy compound may be used alone, or a plurality of different types may be used in combination.
  • aliphatic epoxy compounds can be used, such as "EP-4088S”, “ED-523T” (manufactured by ADEKA Corporation), “EX-211L”, “EX-212L” (manufactured by ADEKA Corporation), Both are manufactured by Nagase ChemteX Co., Ltd.) and the like.
  • the content of the aliphatic epoxy compound may be, for example, 1 part by mass or more and 90 parts by mass or less, based on 100 parts by mass of the total amount of all cationic polymerizable compounds. is 2.5 parts by mass or more and 80 parts by mass or less, more preferably 5 parts by mass or more and 40 parts by mass or less. If the content of the aliphatic epoxy compound is too high, the front transmittance in the heat resistance durability test tends to decrease, and if the content is too low, the adhesion tends to decrease.
  • the cationically curable adhesive preferably contains a cationic polymerizable compound from the viewpoint of suppressing a decrease in frontal transmittance in a heat resistance durability test, and more preferably comprises a polyfunctional alicyclic epoxy, a polyfunctional aromatic epoxy, and a polyfunctional oxetane. It contains at least one selected from the group, more preferably at least one selected from polyfunctional alicyclic epoxy and polyfunctional oxetane, particularly preferably polyfunctional alicyclic epoxy and polyfunctional oxetane.
  • the cationically curable adhesive preferably contains a polyfunctional alicyclic epoxy compound, a polyfunctional aromatic epoxy compound, and a polyfunctional alicyclic epoxy compound based on 100 parts by mass of the total amount of cationically polymerizable compounds from the viewpoint of suppressing a decrease in front transmittance in a heat resistance durability test. and a polyfunctional oxetane compound.
  • the cationic curable adhesive does not contain a solvent. The details of each component will be explained below.
  • curable components should not be diluted with organic solvents etc. in order to make the cationic curable adhesive solvent-free. It is preferable to use
  • the above-mentioned curable components are usually liquid at room temperature, have appropriate fluidity even without the presence of a solvent, and are selected to provide appropriate adhesive strength, and are combined with an appropriate photocationic polymerization initiator.
  • the cationically curable adhesive can omit drying equipment for evaporating the solvent in the process of bonding the linearly polarizing plate and the retardation layer laminate in the manufacturing equipment for optical laminates. Moreover, by irradiating an appropriate active energy dose, the curing speed can be accelerated and the production speed can be improved.
  • the cationically polymerizable compound contained in the cationically curable adhesive is not limited to the above-mentioned curable components, and may include cationically polymerizable curable components other than the above-mentioned cationically polymerizable curable components, and radically polymerizable components. It may contain a curable component.
  • An example of the radically polymerizable curable component is an acrylic compound.
  • the cationically curable adhesive contains only a cationically polymerizable curable component as the cationically polymerizable compound.
  • the cationically curable adhesive By containing a photocationic polymerization initiator, the cationically curable adhesive can form an adhesive layer by curing the cationically polymerizable compound through cationic polymerization by irradiation with active energy rays.
  • the curable component By containing 1 part by mass or more of a photocationic polymerization initiator per 100 parts by mass of the total amount of cationic polymerizable compounds, the curable component can be sufficiently cured, and the adhesive has sufficient adhesive strength and hardness. A hardened layer can be obtained.
  • the amount increases, the amount of ionic substances in the cured product increases, which increases the hygroscopicity of the cured product and may reduce the durability performance of the optical laminate 1.
  • the amount is 10 parts by mass or less based on 100 parts by mass of the total amount of cationically polymerizable compounds.
  • the content of the photocationic polymerization initiator in the cationically curable adhesive is preferably 1.5 parts by mass or more and 8 parts by mass or less, more preferably 2 parts by mass or more, based on 100 parts by mass of the total amount of cationically polymerizable compounds. It is 6 parts by mass or less.
  • a photocationic polymerization initiator generates cationic species or Lewis acids upon irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates the polymerization reaction of cationically polymerizable compounds. Since a photocationic polymerization initiator acts catalytically with light, it has excellent storage stability and workability even when mixed with a cationically polymerizable compound.
  • Photocationic polymerization initiators include, for example, aromatic diazonium salts; onium salts such as aromatic iodonium salts and aromatic sulfonium salts; Examples include arene complexes.
  • the photocationic polymerization initiator is preferably at least one ionic compound selected from the group consisting of aromatic sulfonium salts and aromatic iodonium salts.
  • aromatic diazonium salts examples include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, and benzenediazonium hexafluoroborate.
  • aromatic iodonium salts include diphenyliodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di(4-nonylphenyl) Examples include iodonium hexafluorophosphate.
  • aromatic sulfonium salts include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis(pentafluorophenyl)borate, 4,4'-bis[diphenylsulfonio]diphenylsulfide bishexa Fluorophosphate, 4,4'-bis[di( ⁇ -hydroxyethoxy)phenylsulfonio]diphenylsulfide bishexafluoroantimonate, 4,4'-bis[di( ⁇ -hydroxyethoxy)phenylsulfonio]diphenylsulfide bis Hexafluorophosphate, 7-[di(p-tolyl)sulfonio]-2-isopropylthioxanthone hexafluoroantimonate, 7-[di(p-
  • iron-arene complexes examples include xylene-cyclopentadienyl iron(II) hexafluoroantimonate, cumene-cyclopentadienyl iron(II) hexafluorophosphate, xylene-cyclopentadienyl iron(II) tris( (trifluoromethylsulfonyl) methanide.
  • the photocationic polymerization initiators may be used alone or in combination of two or more.
  • aromatic sulfonium salts are particularly preferred because they have ultraviolet absorbing properties even in the wavelength region of around 300 nm, have excellent curability, and can provide a cured adhesive layer with good mechanical strength and adhesive strength. used.
  • Photosensitizer By including a photosensitizer (hereinafter also referred to as photosensitizer) that exhibits maximum absorption in light with a wavelength longer than 400 nm in a cationic curing adhesive, the adhesive's Curability can be improved.
  • photosensitizer a photosensitizer that exhibits maximum absorption in light with a wavelength longer than 400 nm in a cationic curing adhesive
  • the photosensitizer has the following general formula (H):
  • R 1 and R 2 independently represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 12 carbon atoms
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • anthracene compounds include, for example, 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-diisopropoxyanthracene, 9,10-dibutoxyanthracene, 9,10-dipentyloxyanthracene, 9,10-dihexyloxyanthracene, 9,10-bis(2-methoxyethoxy)anthracene, 9,10-bis(2-ethoxyethoxy)anthracene, 9,10-bis(2-butoxyethoxy)anthracene, 9,10-bis(3-butoxypropoxy)anthracene, 2-methyl or 2-ethyl-9,10-dimethoxyanthracene, 2-methyl or 2-ethyl-9,10-diethoxyanthracene, 2-methyl or 2-ethyl-9,10-dipropoxyanthracene, 2-methyl or 2-eth
  • the content of the photosensitizer in the cationically curable adhesive is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, more preferably 0.5 parts by mass, based on 100 parts by mass of the total amount of cationic polymerizable compounds. It is not less than 3.0 parts by mass and not more than 3.0 parts by mass.
  • the cationically curable adhesive may contain a photosensitizer.
  • the photosensitizer is preferably a naphthalene photosensitizer.
  • naphthalene photosensitizers include, for example: 4-methoxy-1-naphthol, 4-ethoxy-1-naphthol, 4-propoxy-1-naphthol, 4-butoxy-1-naphthol, 4-hexyloxy-1-naphthol, 1,4-dimethoxynaphthalene, 1-ethoxy-4-methoxynaphthalene, 1,4-diethoxynaphthalene, 1,4-dipropoxynaphthalene, 1,4-dibutoxynaphthalene is mentioned.
  • the curing speed of the adhesive can be improved compared to a case where it is not included.
  • Such an effect can be achieved by setting the content of the naphthalene photosensitizer to 0.1 part by mass or more based on 100 parts by mass of the total amount of cationic polymerizable compounds.
  • the content of the naphthalene-based photosensitizer increases, problems such as precipitation may occur during low-temperature storage. It is preferable that The content of the naphthalene photosensitizer is preferably 3 parts by mass or less based on 100 parts by mass of the total amount of cationic polymerizable compounds.
  • the cationically curable adhesive may contain additive components as other optional components as long as the effects of the present invention are not impaired.
  • Additive components include ion trapping agents, antioxidants, light stabilizers, chain transfer agents, tackifiers, thermoplastic resins, fillers, fluidity regulators, plasticizers, antifoaming agents, leveling agents, pigments, and organic Examples include solvents.
  • the content is preferably 10 parts by mass or less based on 100 parts by mass of the total amount of cationically polymerizable compounds.
  • the photocationic polymerization initiator, photosensitizer, photosensitization aid, and additive components described above may be added without containing a solvent or diluted with a solvent when preparing a cationically curable adhesive. It can also be added directly after. All of the numerical ranges for the content described above are based on solid content.
  • the cationic curable adhesive can be used in an electron beam curable or ultraviolet ray curable form.
  • an active energy ray is defined as an energy ray that can generate active species by decomposing a compound that generates active species. Examples of such active energy rays include visible light, ultraviolet rays, infrared rays, X-rays, ⁇ -rays, ⁇ -rays, ⁇ -rays, and electron beams.
  • any suitable electron beam irradiation conditions can be adopted as long as the conditions are such that the cationic curing type adhesive can be cured.
  • the acceleration voltage is preferably 5 kV or more and 300 kV or less, more preferably 10 kV or more and 250 kV or less. If the accelerating voltage is less than 5 kV, the electron beam may not reach the adhesive, resulting in insufficient curing. If the accelerating voltage exceeds 300 kV, the penetrating force through the sample will be too strong and the electron beam will bounce back, causing damage to the transparent protective film and There is a risk of damaging the polarizer.
  • the irradiation dose is 5 kGy or more and 100 kGy or less, more preferably 10 kGy or more and 75 kGy or less. If the irradiation dose is less than 5 kGy, the adhesive will be insufficiently cured, and if it exceeds 100 kGy, the optical layer will be damaged, resulting in a decrease in mechanical strength and yellowing, making it impossible to obtain the desired optical properties.
  • Electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or with a small amount of oxygen introduced. By appropriately introducing oxygen, it is possible to intentionally cause oxygen inhibition in the optical layer that is first hit by the electron beam, preventing damage to other optical layers, and allowing the electron beam to be efficiently irradiated only to the adhesive. Can be done.
  • the light irradiation intensity of the cationic curing adhesive is determined depending on the composition of the adhesive and is not particularly limited, but is 10 mW/cm 2 or more and 1,000 mW/cm 2 It is preferable that it is below. If the light irradiation intensity to the resin composition is less than 10 mW/cm 2 , the reaction time will be too long, and if it exceeds 1,000 mW/cm 2 , the reaction time will be too long due to the heat radiated from the light source and the heat generated during polymerization of the composition. , yellowing of the constituent materials of the adhesive may occur.
  • the irradiation intensity is preferably an intensity in a wavelength range effective for activating a photocationic polymerization initiator, a photosensitizer, and a photosensitizer, and more preferably an intensity in a wavelength range of 400 nm or less. More preferably, the intensity is in a wavelength range of 280 nm or more and 320 nm or less.
  • the cumulative light intensity is preferably 10 mJ/cm 2 or more, more preferably 100 mJ/cm 2 or more 1,000 mJ/cm 2 or more by irradiating with such light irradiation intensity once or multiple times. Set so that it is less than mJ/cm 2 .
  • the cumulative amount of light to the adhesive is less than 10 mJ/cm 2 , the generation of active species derived from the polymerization initiator will not be sufficient, resulting in insufficient curing of the adhesive.
  • the cumulative amount of light exceeds 1,000 mJ/cm 2 , the irradiation time becomes long, which is disadvantageous for improving productivity.
  • the cumulative amount of light in which wavelength range depends on the type of light absorption anisotropic film 11 and optical film 13, the combination of adhesive types, etc. It depends on whether it is necessary.
  • the light source used to polymerize and cure the cationic curable adhesive by irradiation with active energy rays is not particularly limited, but includes, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a halogen lamp, and a carbon lamp.
  • Examples include arc lamps, tungsten lamps, gallium lamps, excimer lasers, LED light sources that emit light in a wavelength range of 380 nm to 440 nm, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps. From the viewpoint of energy stability and device simplicity, it is preferable that the ultraviolet light source has an emission distribution at a wavelength of 400 nm or less.
  • the optical film 13 can be provided on the light-absorbing anisotropic film 11 via the adhesive layer 12.
  • the optical film 13 can prevent dimensional changes, cracks, etc. of the light-absorbing anisotropic film 11 or other layers due to heat and/or humidity. Further, it is possible to prevent deterioration when exposed to ultraviolet rays and the like, and it is possible to prevent scratches and deterioration of the surface of the light-absorbing anisotropic film 11 during storage and transportation.
  • the optical film 13 is preferably a transparent film that is transparent enough to transmit light, particularly visible light, and preferably has a transmittance of 80% or more for light rays having a wavelength of 380 to 780 nm.
  • the optical film 13 may be provided with a hard coat layer, which will be described later, on one or both sides.
  • the hard coat layer is preferably arranged on the opposite side of the optical film 13 from the adhesive layer 12.
  • the surface of the optical film 13 opposite to the adhesive layer 12 side may be subjected to hard coat treatment, antireflection treatment, antisticking treatment, antiglare treatment, or the like.
  • the thickness of the optical film 13 is preferably 3 to 40 ⁇ m, more preferably 5 to 30 ⁇ m. When the thickness of the transparent optical film 13 is within the above range, the surface of the light-absorbing anisotropic film 11 can be sufficiently protected. Further, it may be possible to make the optical laminate 1 thinner.
  • the thickness of the above-mentioned optical film is the thickness including the hard coat layer when the optical film has a hard coat layer described below.
  • Examples of the optical film 13 include glass films and resin films. Among these, a resin film is preferred. Examples of the resin constituting the resin film include the resins exemplified for the above-mentioned base material.
  • the resin film is preferably a cyclic polyolefin resin (COP) film.
  • the hard coat layer (sometimes referred to as HC layer) can have a function of protecting the surfaces of the light absorption anisotropic film 11 and the optical film 13.
  • the hard coat layer can be placed on one side or both sides of the light-absorbing anisotropic film 11.
  • the hard coat layer may be arranged on the side of the light-absorbing anisotropic film 11 opposite to the adhesive layer 12 side, or on the side of the optical film 13 opposite to the adhesive layer 12 side.
  • the hard coat layer When the hard coat layer is disposed on the opposite side of the light absorption anisotropic film 11 from the adhesive layer 12 side, the hard coat layer may be disposed in direct contact with the light absorption anisotropic film 11, It may be arranged as an optical film with a hard coat layer separate from the optical film 13.
  • the hard coat layer When the hard coat layer is placed on the side of the optical film 13 opposite to the adhesive layer 12 side, it may be placed in direct contact with the optical film 13 .
  • the hard coat layer is preferably a cured layer of any suitable ultraviolet curable resin.
  • the ultraviolet curable resin include acrylic resin, silicone resin, polyester resin, urethane resin, amide resin, and epoxy resin. These resins may be used alone or in combination.
  • the hard coat layer can be a cured product layer of a curable composition for forming a hard coat layer containing the above-mentioned ultraviolet curable resin.
  • the curable composition for forming a hard coat layer may contain a polymerization initiator, a solvent, and the like, if necessary. Examples of the polymerization initiator include radical polymerization initiators.
  • the thickness of the hard coat layer can be set to any appropriate value. It is preferably 30 ⁇ m or less, more preferably 1 to 20 ⁇ m, even more preferably 1 to 15 ⁇ m, and particularly preferably 1 to 10 ⁇ m.
  • the hard coat layer is a laminate in which a curable composition for forming a hard coat layer is applied onto a base material such as a release film or the above-mentioned optical film, and then cured to form a cured product layer. can be laminated into an optical laminate.
  • the release film may be peeled off and removed when the optical laminate is bonded to the optical member.
  • the base material the base material used in the method for manufacturing the light-absorbing anisotropic film 11 described above may be employed.
  • the optical laminate may include a protect film for protecting its surface (typically, the surface of the optical laminate 1 on the optical film 13 side). After the optical laminate 1 is bonded to, for example, an image display element or an optical member, the protect film is peeled off together with the adhesive layer it has.
  • the protect film is composed of, for example, a base film and an adhesive layer laminated thereon.
  • the adhesive layer the above description is cited.
  • the resin constituting the base film may be, for example, a polyethylene resin such as polyethylene, a polypropylene resin such as polypropylene, a polyester resin such as polyethylene terephthalate or polyethylene naphthalate, or a thermoplastic resin such as polycarbonate resin. can.
  • it is a polyester resin such as polyethylene terephthalate.
  • the thickness of the protect film is not particularly limited, but is preferably in the range of 20 ⁇ m or more and 200 ⁇ m or less. When the thickness of the base film is 20 ⁇ m or more, strength tends to be easily imparted to the optical laminate 1.
  • the optical laminate of the present invention can be manufactured by laminating the light-absorbing anisotropic film 11 and the optical film 13 with an adhesive layer 12 in between.
  • the optical laminate can be manufactured, for example, by a so-called roll-to-roll method in which long films are laminated while being conveyed continuously.
  • the light-absorbing anisotropic film 11 and the optical film 13 may be bonded together via the adhesive layer 12 while being conveyed continuously.
  • the optical laminate of the present invention may further include a hard coat layer on one or both sides of the optical laminate 1.
  • An example of the optical laminate 2 is shown in No. 3.
  • the optical laminate 2 shown in FIG. 3 includes a first hard coat layer 21, a light absorption anisotropic film 22, an adhesive layer 23, and an optical film 24 in this order.
  • the optical film 24 is a resin film 25 on which a second hard coat layer 26 is formed.
  • the optical laminate of the present invention may further include a polarizing layer (for example, a linear polarizing plate), or both a polarizing layer and a retardation layer having an in-plane retardation (for example, a polarizing layer and a retardation layer having an in-plane retardation).
  • a polarizing layer for example, a linear polarizing plate
  • a retardation layer having an in-plane retardation for example, a polarizing layer and a retardation layer having an in-plane retardation.
  • a circularly polarizing plate including a retardation layer having a retardation layer.
  • the adhesive layer side of the light-absorbing anisotropic film is It is preferable that a polarizing layer and a retardation layer having an in-plane retardation layer be included in this order from the light absorption anisotropic film side.
  • a polarizing layer and a retardation layer having an in-plane retardation layer be included in this order from the light absorption anisotropic film side.
  • the optical laminate 3 with a linear polarizing plate shown in FIG. 4 includes a polarizing layer 37, a bonding layer 38, a first hard coat layer 31, a light absorption anisotropic film 32, an adhesive layer 33, and an optical film 34 in this order.
  • the optical film 34 is a resin film 35 on which a second hard coat layer 36 is formed.
  • the polarizing layer 37 is a linear polarizing plate having a structure of a protective film 39, a bonding layer 40, a polarizer 41, a bonding layer 42, and a protective film 43.
  • the circularly polarizing plate 69 includes a retardation layer 57 having an in-plane retardation, a bonding layer 58, and a polarizing layer 59.
  • the optical film 54 is a resin film 55 on which a second hard coat layer 56 is formed.
  • the retardation layer 57 having an in-plane retardation includes a first retardation layer 61 , a bonding layer 62 , and a second retardation layer 63 .
  • the polarizing layer 59 is a linear polarizing plate having a structure of a protective film 64 , a bonding layer 65 , a polarizer 66 , a bonding layer 67 , and a protective film 68 .
  • the bonding layer can be interposed between the layers to be bonded and have the function of bonding the layers together.
  • a known pressure-sensitive adhesive layer or adhesive layer can be used as the bonding layer.
  • the adhesive layer is a layer formed using an adhesive.
  • the adhesive is an adhesive that exhibits adhesive properties by pasting itself onto an adherend, and is referred to as a so-called pressure-sensitive adhesive.
  • any conventionally known adhesive with excellent optical transparency can be used without any particular restriction.
  • an adhesive having a base polymer such as acrylic, urethane, silicone, or polyvinyl ether can be used. be able to.
  • the bonding layer is an adhesive layer formed from an adhesive, its thickness may be 3 ⁇ m or more, 5 ⁇ m or more, or 35 ⁇ m or less, 30 ⁇ m or less. It's okay.
  • the adhesive layer contains additives such as ultraviolet absorbers, antistatic agents using ionic compounds, solvents, crosslinking catalysts, tackifying resins (tackifiers), plasticizers, softeners, dyes, pigments, and inorganic fillers. May contain.
  • additives such as ultraviolet absorbers, antistatic agents using ionic compounds, solvents, crosslinking catalysts, tackifying resins (tackifiers), plasticizers, softeners, dyes, pigments, and inorganic fillers. May contain.
  • the adhesive layer used as the bonding layer can be formed by curing a curable component in the adhesive.
  • Adhesives for forming the adhesive layer used as the bonding layer include adhesives other than pressure-sensitive adhesives (adhesives), such as active energy ray adhesives such as water-based adhesives and ultraviolet-curable adhesives. Examples include curable adhesives.
  • the bonding layer is an adhesive layer formed from a water-based adhesive, its thickness may be 5 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, It may be 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more.
  • the bonding layer is an adhesive layer formed from an active energy ray-curable adhesive
  • its thickness may be 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and 0. It may be .1 ⁇ m or more, and preferably 0.5 ⁇ m or more.
  • the polarizing layer is a linearly polarizing layer that has the property of transmitting linearly polarized light having a plane of vibration perpendicular to the absorption axis when unpolarized light is incident thereon.
  • the polarizing layer may include a polarizer, such as a polarizer that is a stretched film on which a dye having absorption anisotropy is adsorbed, a polarizer formed by coating a base film with a dye having absorption anisotropy, etc. can.
  • the polarizing layer may be incorporated into the optical laminate as a linear polarizing plate in which a transparent protective film is laminated on one or both sides of a polarizer via an adhesive.
  • the polarizer may be a stretched film on which a dye having absorption anisotropy is adsorbed.
  • Polarizers made of such stretched films are usually manufactured by uniaxially stretching a polyvinyl alcohol resin film or by dyeing the polyvinyl alcohol resin film with a dye having absorption anisotropy. It can be produced through the steps of adsorbing a dye having absorption anisotropy, treating a polyvinyl alcohol resin film on which a dye having absorption anisotropy has been adsorbed with an aqueous boric acid solution, and washing with water after treatment with an aqueous boric acid solution. .
  • Polyvinyl alcohol-based resin is obtained by saponifying polyvinyl acetate-based resin.
  • polyvinyl acetate resin in addition to polyvinyl acetate, which is a homopolymer of vinyl acetate, a copolymer of vinyl acetate and another monomer copolymerizable therewith can be used.
  • Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, acrylamides having an ammonium group, and the like.
  • the degree of saponification of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used.
  • the degree of polymerization of the polyvinyl alcohol resin is usually about 1,000 to 10,000, preferably in the range of 1,500 to 5,000.
  • a film made of such a polyvinyl alcohol resin is used as the original film of a polarizer.
  • the method of forming a polyvinyl alcohol resin into a film is not particularly limited, and any known method can be used to form the film.
  • the thickness of the polyvinyl alcohol base film can be, for example, about 10 to 150 ⁇ m.
  • Uniaxial stretching of the polyvinyl alcohol resin film can be performed before, simultaneously with, or after dyeing with a dye having absorption anisotropy.
  • this uniaxial stretching may be performed before or during the boric acid treatment.
  • the uniaxial stretching it may be uniaxially stretched between rolls having different circumferential speeds, or it may be uniaxially stretched using hot rolls.
  • the uniaxial stretching may be dry stretching in which the film is stretched in the atmosphere, or wet stretching in which the polyvinyl alcohol resin film is stretched in a swollen state using a solvent.
  • the stretching ratio is usually about 3 to 8 times.
  • Staining of a polyvinyl alcohol resin film with a dye having absorption anisotropy is carried out, for example, by immersing the polyvinyl alcohol resin film in an aqueous solution containing a dye having absorption anisotropy.
  • iodine and dichroic organic dyes are used as the dye having absorption anisotropy.
  • a dichroic organic dye C.I. I. Examples include dichroic direct dyes made of disazo compounds such as DIRECT RED 39, and dichroic direct dyes made of compounds such as trisazo and tetrakisazo. It is preferable that the polyvinyl alcohol resin film is immersed in water before being dyed.
  • iodine When using iodine as a dye having absorption anisotropy, a method of dyeing by immersing a polyvinyl alcohol resin film in an aqueous solution containing iodine and potassium iodide is usually adopted.
  • the content of iodine in this aqueous solution is usually about 0.01 to 1 part by mass per 100 parts by mass of water.
  • the content of potassium iodide is usually about 0.5 to 20 parts by mass per 100 parts by mass of water.
  • the temperature of the aqueous solution used for dyeing is usually about 20 to 40°C.
  • the immersion time (staining time) in this aqueous solution is usually about 20 to 1,800 seconds.
  • a method of dyeing the polyvinyl alcohol resin film by immersing it in an aqueous solution containing a water-soluble dichroic dye is usually employed.
  • the content of the dichroic organic dye in this aqueous solution is usually about 1 ⁇ 10 ⁇ 4 to 10 parts by mass, preferably 1 ⁇ 10 ⁇ 3 to 1 part by mass, per 100 parts by mass of water, and Preferably it is 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 parts by mass.
  • This aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing aid.
  • the temperature of the aqueous solution containing the dichroic dye used for dyeing is usually about 20 to 80°C.
  • the immersion time (staining time) in this aqueous solution is usually about 10 to 1,800 seconds.
  • the boric acid treatment after dyeing with a dye having absorption anisotropy can usually be carried out by immersing the dyed polyvinyl alcohol-based resin film in an aqueous boric acid solution.
  • the content of boric acid in this boric acid aqueous solution is usually about 2 to 15 parts by weight, preferably 5 to 12 parts by weight, per 100 parts by weight of water.
  • the boric acid aqueous solution contains potassium iodide, and the content of potassium iodide in this case is usually 0% per 100 parts by mass of water.
  • the amount is about .1 to 15 parts by weight, preferably 5 to 12 parts by weight.
  • the immersion time in the boric acid aqueous solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds.
  • the temperature of the boric acid treatment is usually 50°C or higher, preferably 50 to 85°C, more preferably 60 to 80°C.
  • the polyvinyl alcohol resin film is usually washed with water.
  • the water washing treatment can be performed, for example, by immersing a boric acid-treated polyvinyl alcohol resin film in water.
  • the temperature of water in the washing process is usually about 5 to 40°C.
  • the immersion time is usually about 1 to 120 seconds.
  • a drying process is performed to obtain a polarizer.
  • the drying process can be performed using, for example, a hot air dryer or a far-infrared heater.
  • the temperature of the drying treatment is usually about 30 to 100°C, preferably 50 to 80°C.
  • the drying time is usually about 60 to 600 seconds, preferably 120 to 600 seconds.
  • the drying process reduces the moisture content of the polarizer to a practical level. Its moisture content is usually about 5 to 20% by weight, preferably 8 to 15% by weight. When the moisture content is less than 5% by weight, the flexibility of the polarizer is lost and the polarizer may be damaged or broken after drying. Furthermore, if the moisture content exceeds 20% by mass, the thermal stability of the polarizer may deteriorate.
  • the thickness of the polarizer obtained by uniaxially stretching the polyvinyl alcohol resin film, dyeing with a dye having absorption anisotropy, boric acid treatment, washing with water, and drying is preferably 5 to 40 ⁇ m.
  • a polarizer formed by applying a dye having absorption anisotropy to a base film may be a composition containing a dye having liquid crystallinity and absorption anisotropy, or a composition containing a dye having absorption anisotropy and a polymerizable liquid crystal.
  • Examples include a polarizer obtained by applying a composition containing the above to a base film to form a polarizing film.
  • Examples of the base film include those exemplified above as base materials that can be used for manufacturing the light-absorbing anisotropic film.
  • the thickness of the polarizer prefferably small, but if it is too small, the strength tends to decrease and the workability tends to be poor. be.
  • polarizer examples include polarizing layers described in JP-A-2013-33249 and the like.
  • the polarizer obtained as described above is coated with a bonding layer (preferably an adhesive) on one or both sides. It may be incorporated into an optical laminate in the form of a polarizing plate in which a protective film (transparent protective film) is laminated with a protective film (transparent protective film) interposed therebetween.
  • a protective film transparent protective film
  • a protective film transparent protective film
  • a protective film transparent protective film
  • a protective film transparent protective film
  • the base film described above may be used as a protective film.
  • the protective film may have a hard coat layer on one or both sides.
  • the retardation layer has an in-plane retardation.
  • the value of the in-plane retardation that the retardation layer has is not particularly limited, but preferably satisfies the optical properties shown in the following formula (1), and the following formula (1), the following formula (2), and the following formula (3) It is preferable that the optical properties shown in the following are satisfied. 100nm ⁇ Re(550) ⁇ 160nm...(1) [In the formula, Re (550) represents an in-plane retardation value (in-plane retardation) for light with a wavelength of 550 nm.
  • Re (450) is the in-plane retardation value for light with a wavelength of 450 nm
  • Re (550) is the in-plane retardation value for light with a wavelength of 550 nm
  • Re (650) is the in-plane retardation value for light with a wavelength of 650 nm. Represents the phase difference value.
  • Re(450)/Re(550) is preferably 0.7 or more and 1.0 or less, more preferably 0.80 or more and 0.95 or less, and even more preferably 0.80 or more and 0.92 or less. , particularly preferably 0.82 or more and 0.88 or less.
  • the in-plane retardation value ReA( ⁇ ) of the retardation layer at the wavelength ⁇ can be derived from the equation expressed by the following equation (4). Therefore, in order to obtain the desired in-plane retardation value (Re( ⁇ )), it is sufficient to adjust (nxA( ⁇ ) ⁇ nyA( ⁇ )) and the film thickness d.
  • nxA( ⁇ ) represents the principal refractive index at wavelength ⁇ nm in the plane of the retardation layer
  • nyA( ⁇ ) represents the refractive index at wavelength ⁇ nm in a direction perpendicular to the direction of nxA( ⁇ ) in the same plane as nxA( ⁇ )
  • dA indicates the thickness of the retardation layer.
  • the retardation layer having an in-plane retardation may be, for example, a stretched film having an in-plane retardation, and is directed in a direction perpendicular to the lamination direction of the optical laminate 1 (hereinafter sometimes referred to as "horizontal direction”).
  • ) may be a cured layer in which a polymerizable liquid crystal compound is oriented in a state (hereinafter sometimes referred to as a "horizontally aligned liquid crystal layer").
  • the retardation layer is preferably a horizontally aligned liquid crystal layer because the retardation layer having an in-plane retardation can be easily controlled to a desired in-plane retardation value and can be made thin.
  • the horizontal alignment alignment liquid crystal layer is described, for example, in JP-A No.
  • Examples include cured layers in which polymerizable liquid crystal compounds described in Japanese Patent Publication No. 2016-81035, International Publication No. 2017/043438, and Japanese Patent Publication No. 2011-207765 are cured in an oriented state.
  • the thickness of the retardation layer is usually 5 ⁇ m or more and 200 ⁇ m or less, preferably 10 ⁇ m or more and 80 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the thickness of the retardation layer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and preferably 5 ⁇ m or less, more preferably It is 3 ⁇ m or less.
  • a retardation layer having an in-plane retardation characteristic is a layer having an arbitrary angle between the slow axes of each layer, such as a combination of a layer having a retardation characteristic of ⁇ /4 and a layer having a retardation characteristic of ⁇ /2.
  • the retardation layer having an in-plane retardation is a laminate including a layer having a retardation characteristic of ⁇ /4 and a layer having a retardation characteristic of ⁇ /2, for example, the slow axes of each layer may A structure in which the angle between the two layers is 50° or more and 70° or less can be suitably used.
  • the circularly polarizing plate-equipped optical laminate 4 may further include a layer having anisotropy in the thickness direction (positive C plate).
  • the positive C layer has a retardation value Rth (550) in the thickness direction at a wavelength of 550 nm, which is usually in the range of -170 nm or more and -10 nm or less, preferably -150 nm or more and -20 nm or less, and more preferably -100 nm or more and -40 nm. range.
  • Rth 550
  • the optical laminate 4 with a circularly polarizing plate includes a positive C layer, it is preferable to laminate a retardation layer having an in-plane retardation and a positive C layer via a bonding layer.
  • an organic EL display device As the display device, an organic EL display device is preferable.
  • the optical laminate is provided on the viewing side of the panel of the display device, and in the display device, it is preferable that the optical film 13 is arranged on the viewing side rather than the light-absorbing anisotropic film 11.
  • the adhesive composition prepared below was coated on one side of a COP film ("ZB" manufactured by Nippon Zeon Co., Ltd.) using a bar coater (manufactured by Daiichi Rika Co., Ltd.) to a film thickness of approximately 25 ⁇ m. Then, the coated surface was further covered with a COP film. Next, the H bulb of the ultraviolet irradiation device [manufactured by Fusion UV Systems Co., Ltd.] was used to irradiate ultraviolet light with a cumulative light intensity of 600 mJ/cm 2 (UV-B), and when the adhesive layer became solid, one of the COP films was was peeled off and allowed to cure in an atmosphere at a temperature of 23° C.
  • UV-B cumulative light intensity
  • ⁇ Adhesion evaluation> The release film of the optical laminate produced in Examples and Comparative Examples was peeled off, the exposed hard coat layer was subjected to corona treatment, and the prepared acrylic adhesive (manufactured by Lintec, film thickness 5 ⁇ m) was laminated using a laminator. did. Next, it was cut into 200 mm x 25 mm, the adhesive side was pasted on soda glass, and the protective film/16HC-COP film/adhesive layer/light absorption anisotropic film/hard coat layer/acrylic adhesive/ An adhesion evaluation sample having a laminated structure of soda glass was obtained.
  • a 180 degree peel test was conducted at a gripping movement speed of 300 mm/min, and the average peeling force over a length of 170 mm excluding 30 mm of the grip portion was determined and evaluated based on the following criteria.
  • 180° peeling force is 0.5 N or more, or the cutter blade does not enter between the 16HC-COP film and the light-absorbing anisotropic film.
  • 180° peeling force is 0.3 N or more and less than 0.5 N.
  • 180° peeling force is less than 0.3 N, or peeling occurs between the 16HC-COP film and the light-absorbing anisotropic film when the release film is peeled off.
  • composition for forming a light-absorbing anisotropic film was obtained by mixing the following components and stirring at 80° C. for 1 hour.
  • dichroic dye an azo dye described in Examples of JP-A No. 2013-101328 was used.
  • ⁇ Polymerization initiator 6 parts of 2-dimethylamino-2-benzyl-1-(4-morpholinophenyl)butan-1-one (Irgacure 369; manufactured by Ciba Specialty Chemicals) ⁇ Isocyanate crosslinking agent (“LR9000” manufactured by BASF) ) 2 parts Leveling agent: F-556 (Megafac F-556, manufactured by DIC Corporation) 1 part Solvent: o-xylene 650 parts
  • a curable composition for forming a hard coat layer (X) was prepared by mixing the following components and stirring at 80° C. for 1 hour.
  • ⁇ Acrylate compound 50 parts of dipentaerythritol hexaacrylate
  • ⁇ Urethane acrylate compound 50 parts of urethane acrylate (“Ebecryl 4858” manufactured by Daicel Allnex Corporation)
  • the light-absorbing anisotropic film-forming composition obtained above was applied to the surface of the hard coat layer using a bar coater, and dried at 100° C. for 1 minute.
  • Adhesive compositions 1 to 7 were prepared by blending the following components in the proportions shown in Table 2.
  • A-3 Bisphenol A type epoxy resin (product name: EP-4100E, manufactured by ADEKA Co., Ltd.)
  • the optical film is a hard coat cyclic olefin resin film (thickness 16 ⁇ m) in which a hard coat layer (HC layer, thickness 3 ⁇ m) is formed on one side of a cyclic polyolefin resin film (COP film, thickness 13 ⁇ m) that has been given an ultraviolet absorption function. , hereinafter referred to as "16HC-COP film”) was prepared. A protect film was attached to the hard coat layer side of this 16HC-COP film.
  • Corona treatment was applied to the COP film side of the 16HC-COP film (the side opposite to the hard coat layer side) and the light-absorbing anisotropic film surface of the laminate (1) consisting of the light-absorbing anisotropic film obtained above.
  • the corona-treated surfaces were bonded together using a laminator using Adhesive Composition 1 so that the adhesive thickness was 1.5 ⁇ m.
  • the adhesive composition 1 is cured by irradiating ultraviolet rays with a cumulative light intensity of 500 mJ/cm 2 (UV-A) using the H bulb of an ultraviolet irradiation device [manufactured by Fusion UV Systems Co., Ltd.].
  • An optical laminate of Example 1 having a laminated structure of protect film/16HC-COP film/adhesive layer/light-absorbing anisotropic film/hard coat layer/release film was obtained.
  • the obtained optical laminate was evaluated for adhesion and subjected to a heat resistance and durability test. The results are shown in Table 3.
  • Examples 2 to 6 and Comparative Example 1 An optical laminate was produced in the same manner as in Example 1 except that the adhesive composition shown in Table 3 was used in place of Adhesive Composition 1 in Example 1. The results are shown in Table 3.
  • Example 7 ⁇ Preparation of water-based adhesive> Dissolve 3 parts of carboxyl group-modified polyvinyl alcohol [trade name "KL-318” obtained from Kuraray Co., Ltd.] in 100 parts of water, and add a polyamide epoxy additive [Taoka Chemical Industry Co., Ltd.], which is a water-soluble epoxy resin, to the aqueous solution.
  • a water-based adhesive was prepared by adding 1.5 parts of an aqueous solution with a solid content concentration of 30% under the trade name "SUMIREZ RESIN (registered trademark) 650 (30)" obtained from Co., Ltd.
  • polarizing layer (polarizing plate)> A 20 ⁇ m thick polyvinyl alcohol resin film was stretched and dyed with iodine to obtain a polarizing film (8 ⁇ m thick) in which iodine was adsorbed and oriented on the polyvinyl alcohol resin film. The total stretching ratio in this stretching was 5.2 times.
  • a hard coat cyclic olefin resin film (HC-COP film 2) was prepared in which a hard coat layer (HC layer) (thickness 3 ⁇ m) was formed on one side of a cyclic polyolefin resin film (COP film) (thickness 13 ⁇ m).
  • This HC-COP film 2 had a pencil hardness of 5B on the HC layer side surface.
  • the COP film side (opposite side to the HC layer side) of this HC-COP film 2 was laminated to one side of the polarizing film obtained above via the water-based adhesive prepared above (the side opposite to the HC layer side), and the HC- A polarizing plate having a laminated structure of COP film 2/water-based adhesive layer/polarizing film was obtained.
  • the in-plane retardation value Re (550) of this HC-COP film 2 at a wavelength of 550 nm is 0 (zero) nm.
  • the total light transmittance Ht (%) was measured in accordance with JIS K7105 and was 0.1%.
  • the luminous sensitivity correction single transmittance was 42.1%
  • the luminous sensitivity correction polarization degree was 99. 996%
  • the single hue a was -1.1
  • the single hue b was 3.7.
  • polymerizable liquid crystal compounds A polymerizable liquid crystal compound (X1) and a polymerizable liquid crystal compound (X2) having the following molecular structures were respectively prepared.
  • Polymerizable liquid crystal compound (X1) was produced according to the method described in JP-A-2010-31223. Further, the polymerizable liquid crystal compound (X2) was produced according to the method described in JP-A-2009-173893.
  • a solution was obtained by dissolving 1 mg of polymerizable liquid crystal compound (X1) in 50 mL of tetrahydrofuran.
  • the obtained solution was placed in a measurement cell with an optical path length of 1 cm to serve as a measurement sample.
  • the measurement sample was set in an ultraviolet-visible spectrophotometer ("UV-2450" manufactured by Shimadzu Corporation) and the absorption spectrum was measured, and the wavelength at which the maximum absorption occurred was read from the obtained absorption spectrum.
  • the maximum absorption wavelength ⁇ max in the 400 nm range was 350 nm.
  • NMP N-methyl-2-pyrrolidone
  • the polymerizable liquid crystal composition (AA1) obtained above was coated on the horizontal alignment film using a bar coater, heated at 120°C for 60 seconds, and then heated using a high-pressure mercury lamp (Unicure VB-15201BY-A, Ushio
  • a high-pressure mercury lamp Unicure VB-15201BY-A, Ushio
  • ultraviolet rays integrated amount of light at a wavelength of 365 nm in a nitrogen atmosphere: 500 mJ/cm 2
  • a polymerizable liquid crystal composition manufactured by Denki Co., Ltd.
  • a laminated structure (A1) having a layered structure of COP film/horizontal alignment film/horizontal alignment liquid crystal layer was obtained. After confirming that there is no retardation in the COP film, using KOBRA-WPR manufactured by Oji Scientific Instruments Co., Ltd., the in-plane retardation values ReA (450) and When ReA (550) was measured, ReA (550) was 139 nm, and when ReA (450)/ReA (550) was calculated, it was 0.87.
  • ⁇ Cationic curable component a1 70 parts: 3',4'-epoxycyclohexylmethyl 3',4'-epoxycyclohexane carboxylate (product name: CEL2021P, manufactured by Daicel Corporation)
  • ⁇ Cationic curable component a2 (20 parts): Neopentyl glycol diglycidyl ether (product name: EX-211, manufactured by Nagase ChemteX Corporation)
  • ⁇ Cationic curable component a3 (10 parts): 2-Ethylhexyl glycidyl ether (product name: EX-121, manufactured by Nagase ChemteX Corporation)
  • ⁇ Cationic polymerization initiator (2.25 parts (solid content)):
  • Product name: CPI-100 manufactured by San-Apro Co., Ltd.
  • 50% propylene carbonate solution/sensitizer 2 parts): 1,4-diethoxynaphthalene
  • composition for forming vertical alignment film 0.5 parts by mass of polyimide ("Sunever SE-610" manufactured by Nissan Chemical Industries, Ltd.), 72.3 parts by mass of N-methyl-2-pyrrolidone, 18.
  • a composition for forming a vertical alignment film was prepared by mixing 1 part by mass of 2-butoxyethanol, 9.1 parts by mass of ethylcyclohexane, and 0.01 part by mass of DPHA (manufactured by Shin Nakamura Chemical).
  • a polymerizable liquid crystal composition for forming a vertically aligned liquid crystal cured film was applied onto the produced vertically aligned film to form a coating film.
  • a high-pressure mercury lamp (Unicure VB-15201BY-A, manufactured by Ushio Inc.) with an integrated light intensity of 500 mJ/cm 2 at a wavelength of 365 nm.
  • the dried coating film was irradiated with ultraviolet rays under the following conditions to form a vertically aligned retardation film (vertically aligned liquid crystal cured film).
  • Corona treatment was applied to the polarizing layer side of the obtained laminate and the liquid crystal layer of the horizontally oriented retardation film produced above, respectively, and the corona treated surfaces were bonded together via the prepared acrylic adhesive (film thickness 5 ⁇ m). Pasted with a laminator. At this time, they were laminated so that the angle between the absorption axis of the polarizing layer and the slow axis of the horizontally aligned liquid crystal layer was 45°.
  • the COP film (ZF-14-50) on the horizontally aligned retardation film side was peeled off, and corona treatment was applied to the exposed horizontal alignment film and the liquid crystal layer of the vertically aligned retardation film prepared above, respectively.
  • the corona-treated surfaces were bonded together using a laminator using the ultraviolet curable adhesive A prepared above so that the adhesive thickness was 1.5 ⁇ m.
  • the adhesive was cured by irradiating ultraviolet rays from the vertically aligned retardation film side with an H bulb of an ultraviolet irradiation device (manufactured by Fusion UV Systems Co., Ltd.) at a cumulative light intensity of 500 mJ/cm 2 (UV-A).
  • the COP film (ZF-14-50) on the vertically aligned retardation film side was peeled off, the exposed vertically aligned film was subjected to corona treatment, and the prepared acrylic adhesive (manufactured by Lintec, film thickness 25 ⁇ m) was applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

(課題)密着性に優れた光学積層体を提供すること。 (解決手段)光吸収異方性膜と、接着層と、光学フィルムとがこの順に接して積層された光学積層体であって、光吸収異方性膜は、二色性色素と重合性液晶化合物とが光学積層体の積層方向に配向した状態で硬化した硬化物層であり、接着層はカチオン硬化型接着剤の硬化物を含む、光学積層体。

Description

光学積層体
 本発明は、光学積層体に関する。
 有機エレクトロルミネッセンス(以下、有機ELともいう)表示装置において、黒表示時の斜方反射色相の向上を目的として垂直配向液晶硬化膜を配置することが提案されている(特許文献1)。
特開2020-76920号公報
 垂直配向液晶硬化膜は、二色性色素および重合性液晶化合物を含む組成物を、重合性液晶化合物が垂直方向に配向した状態で硬化させた硬化膜である場合が多い。このような垂直配向液晶硬化膜は、密着性に劣る場合があった。
 本発明の目的は、密着性に優れた光学積層体を提供することである。
 本発明は、以下の光学積層体を提供する。
[1] 光吸収異方性膜と、接着層と、光学フィルムとがこの順に接して積層された光学積層体であって、
 前記光吸収異方性膜は、二色性色素と重合性液晶化合物とが前記光学積層体の積層方向に配向した状態で硬化した硬化物層であり、
 前記接着層はカチオン硬化型接着剤の硬化物を含む、光学積層体。
[2] 前記接着層は、周波数10Hzの引張モードで動的粘弾性測定により得られる損失弾性率の最大値の温度が60℃以上である、[1]に記載の光学積層体。
[3] 前記カチオン硬化型接着剤は、カチオン重合性化合物を含み、
 前記カチオン重合性化合物の総量100質量部に対して、多官能脂環式エポキシ、多官能芳香族エポキシおよび多官能オキセタンからなる群から選択される少なくとも一種の合計含有量が60質量部以上である、[1]に記載の光学積層体。
[4] 前記カチオン硬化型接着剤は、カチオン重合性化合物を含み、
 前記カチオン重合性化合物の総量100質量部に対して、多官能脂環式エポキシ、多官能芳香族エポキシおよび多官能オキセタンからなる群から選択される少なくとも一種の合計含有量が、全カチオン重合性化合物の総量100質量部に対して60質量部以上である、[2]に記載の光学積層体。
[5] 前記光学フィルムが樹脂フィルムである、[1]~[4]のいずれかに記載の光学積層体。
[6] [1]~[4]のいずれかに記載の光学積層体と、前記光学積層体における前記光吸収異方性膜の前記接着層側とは反対側に、偏光層および面内位相差を有する位相差層を含む円偏光板とを備える、円偏光板付き光学積層体。
[7] [5]に記載の光学積層体と、前記光学積層体における前記光吸収異方性膜の前記接着層側とは反対側に、偏光層および面内位相差を有する位相差層を含む円偏光板とを備える、円偏光板付き光学積層体。
[8] 前記面内位相差を有する位相差層が、下記式(1)~(3):
 100nm<Re(550)<160nm  ・・・(1)
[式中、Re(550)は波長550nmの光に対する面内位相差値(面内リタデーション)を表す。]
 Re(450)/Re(550)≦1.0  ・・・(2)
 1.00≦Re(650)/Re(550) ・・・(3)
[式中、Re(450)は波長450nmの光に対する面内位相差値を、Re(550)は波長550nmの光に対する面内位相差値を、Re(650)は波長650nmの光に対する面内位相差値を表す。]
を満たす、[6]に記載の円偏光板付き光学積層体。
[9] 前記面内位相差を有する位相差層が、下記式(1)~(3):
 100nm<Re(550)<160nm  ・・・(1)
[式中、Re(550)は波長550nmの光に対する面内位相差値(面内リタデーション)を表す。]
 Re(450)/Re(550)≦1.0  ・・・(2)
 1.00≦Re(650)/Re(550) ・・・(3)
[式中、Re(450)は波長450nmの光に対する面内位相差値を、Re(550)は波長550nmの光に対する面内位相差値を、Re(650)は波長650nmの光に対する面内位相差値を表す。]
を満たす、[7]に記載の円偏光板付き光学積層体。
 本発明は、以下の光学積層体をさらに提供する。
[a] 光吸収異方性膜と、接着層と、光学フィルムとがこの順に接して積層された光学積層体であって、
 前記光吸収異方性膜は、二色性色素と重合性液晶化合物とが前記光学積層体の積層方向に配向した状態で硬化した硬化物層であり、
 前記接着層はカチオン硬化型接着剤の硬化物を含む、光学積層体。
[b] 前記接着層は、周波数10Hzの引張モードで動的粘弾性測定により得られる損失弾性率の最大値の温度が60℃以上である、[a]に記載の光学積層体。
[c」 前記カチオン硬化型接着剤は、カチオン重合性化合物を含み、
 前記カチオン重合性化合物の総量100質量部に対して、多官能脂環式エポキシ、多官能芳香族エポキシおよび多官能オキセタンからなる群から選択される少なくとも一種の合計含有量が60質量部以上である、[a]または[b]に記載の光学積層体。
[d] 前記光学フィルムが樹脂フィルムである、[a]~[c]のいずれかに記載の光学積層体。
[e] [a]~[d]のいずれかに記載の光学積層体と、前記光学積層体における前記光吸収異方性膜の前記接着層側とは反対側に、偏光層および面内位相差を有する位相差層を含む円偏光板とを備える、円偏光板付き光学積層体。
[f] 前記面内位相差を有する位相差層が、下記式(1)~(3):
 100nm<Re(550)<160nm  ・・・(1)
[式中、Re(550)は波長550nmの光に対する面内位相差値(面内リタデーション)を表す。]
 Re(450)/Re(550)≦1.0  ・・・(2)
 1.00≦Re(650)/Re(550) ・・・(3)
[式中、Re(450)は波長450nmの光に対する面内位相差値を、Re(550)は波長550nmの光に対する面内位相差値を、Re(650)は波長650nmの光に対する面内位相差値を表す。]
を満たす、[e]に記載の円偏光板付き光学積層体。
 本発明によれば、密着性に優れた光学積層体を提供することができる。さらに、本発明によれば、密着性に優れると共に耐熱耐久試験における正面透過率の低下を抑制することもできる光学積層体を提供することができる。
光学積層体の層構成の一例を示す概略断面図である。 光学積層体に含まれる光吸収異方性膜中のX軸、Y軸およびZ軸を示す図である。 光学積層体の層構成の一例を示す概略断面図である。 光学部材を貼合した光学積層体の層構成の一例を示す概略断面図である。 光学部材を貼合した光学積層体の層構成の一例を示す概略断面図である。
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。以下の全ての図面においては、各構成要素を理解し易くするために縮尺を適宜調整して示しており、図面に示される各構成要素の縮尺と実際の構成要素の縮尺とは必ずしも一致しない。
 <光学積層体>
 本発明の一実施形態に係る光学積層体は、光吸収異方性膜と、接着層と、光学フィルムとがこの順に接して積層され、光吸収異方性膜は、二色性色素と重合性液晶化合物とが光学積層体の積層方向に配向した状態で硬化した硬化物層であり、接着層はカチオン硬化型接着剤の硬化物を含む光学積層体である。光学積層体について図面を参照しながら説明する。
 図1は、本発明の光学積層体を模式的に示す断面図である。図1に示す光学積層体1は、光吸収異方性膜11、接着層12および光学フィルム13をこの順に備える。図示されていないが、光学積層体1は、光学積層体1の片側または両側に後述のハードコート層をさらに備えていてもよい。本発明の光学積層体は、光吸収異方性膜と光学フィルムとをカチオン硬化型接着剤の硬化物を含む接着層を介して積層することにより、光吸収異方性膜と光学フィルムとの間で優れた密着性が発揮することができる。本明細書において密着性は、後述の実施例の欄において説明する方法にしたがって評価することができる。
 光学積層体1は表示装置に用いることができ、特に有機EL表示装置に好適に用いることができる。表示装置において光学積層体1は、光学フィルム13が光吸収異方性膜11よりも視認側になるように配置されることができる。
(光吸収異方性膜)
 光吸収異方性膜11は、二色性色素と重合性液晶化合物とが光学積層体の積層方向に配向した状態で硬化した硬化物層である。光吸収異方性膜11は、二色性色素と少なくとも1種の重合性液晶化合物とを含む重合性液晶組成物の硬化物であることが好ましい。光学積層体1は、上記硬化物層に直接接するように重合性液晶化合物の配向を規制するための配向膜を有していてもよく、上記硬化物層または配向膜を形成するための基材を有していてもよい。上記硬化物層または配向膜と基材とは、直接接するように設けることができる。本明細書において、光学積層体の積層方向を垂直方向、垂直方向への配向を垂直配向ともいう。
 光吸収異方性膜11は、二色性色素と重合性液晶化合物とが光学積層体1の積層方向に配向した状態で硬化した硬化物層である。光吸収異方性膜11は、膜面内の任意の方向をx軸、膜面内でx軸に直交する方向をy軸、x軸およびy軸に直交する膜厚方向(光学積層体1の積層方向)をz軸とした際に(図2を参照)、下記式(i)~(iii):
 Az>(Ax+Ay)/2   (i)
 Ax(z=60°)/Ax>5 (ii)
 Ay(z=60°)/Ay>5 (iii)
満たすことが好ましい。
 ここで、式(i)~(iii)中、Ax、Ay、Az、Ax(z=60°)およびAy(z=60°)は、いずれも光吸収異方性膜11中の二色性色素の光吸収異方性膜11中での吸収極大波長における吸光度である。
 Axは、x軸方向に振動する直線偏光の吸光度を表す。Axは、z軸方向から膜面に向かって、x軸方向に振動する直線偏光を入射して測定することができる。
 Ayは、y軸方向に振動する直線偏光の吸光度を表す。Ayは、z軸方向から膜面に向かって、y軸方向に振動する直線偏光を入射して測定することができる。
 Azは、z軸方向に振動する直線偏光の吸光度を表す。Azは、例えばx-y平面方向から膜側面に向かって、すなわち膜をx-y平面としたとき、その側面(厚み方向)に向かって垂直に、z軸方向に振動する直線偏光を入射して測定することができる。
 Ax(z=60°)は、y軸を回転軸として光吸収異方性膜11を60°回転させたときのx軸方向に振動する直線偏光の吸光度を表す。Ax(z=60°)は、y軸を回転軸として光吸収異方性膜11を60°回転させた状態で、Axを測定した直線偏光と同一の直線偏光を入射して測定することができる。ここで、膜の回転は、Axを測定した状態の膜を、y軸を回転軸として直線偏光の入射方向に60°回転させて行う。
 Ay(z=60°)は、x軸を回転軸として光吸収異方性膜11を60°回転させたときのy軸方向に振動する直線偏光の吸光度を表す。Ay(z=60°)は、x軸を回転軸として光吸収異方性膜11を60°回転させた状態で、Ayを測定した直線偏光と同一の直線偏光を入射して測定することができる。ここで、膜の回転は、Ayを測定した状態の膜を、x軸を回転軸として直線偏光の入射方向に60°回転させて行う。
 式(i)におけるz方向の吸光度は、膜側面からの光入射となるため測定が難しい。そこで、測定光である直線偏光の振動面と膜のx-y平面とがなす角を90°としたとき、この振動面に対して、膜のx-y平面を直線偏光の入射方向に30°および60°傾けて測定することによりAz方向の吸光度を見積もることができる。
 具体的には、以下の方法等で見積もることができる。
 y軸を回転軸として光吸収異方性膜11を30°および60°回転させた状態で、Axを測定した直線偏光と同一の直線偏光を入射することによりAx(z=30°)およびAx(z=60°)を測定し、同様に、x軸を回転軸として光吸収異方性膜11を30°および60°回転させた状態で、Ayを測定した直線偏光と同一の直線偏光を入射することによりAy(z=30)およびAy(z=60)を測定する。
 このとき、Ax(z=30°)<Ax(z=60°)かつAy(z=30°)=Ay(z=60°)であれば、Ax(z=30°)<Ax(z=60°)<Ax(z=90°)=Azであり、かつAy(z=30°)<Ay(z=60°)かつAx(z=30°)=Ax(z=60°)であれば、Ay(z=30°)<Ay(z=60°)<Ay(z=90°)=Azであるから、必然的に式(i)を満たす。
 特に、x-y平面に吸収異方性がない場合、すなわちAxおよびAyが等しい場合においては、Ax(z=30°)=Ay(z=30°)かつAx(z=60°)=Ay(z=60°)であるから、Ax(z=30°)およびAy(z=30°)をA(z=30°)とすることができ、Ax(z=60°)およびAy(z=60°)をA(z=60°)とすることができる。すなわち、A(z=30°)<A(z=60°)であれば、A(z=30°)<A(z=60°)<A(z=90°)=Azの関係を満たす。さらに、A(z=30°)>(Ax+Ay)/2であれば、必然的にAzは式(i)を満たす。
 光吸収異方性膜11は上記式(ii)および(iii)を満たすことが好ましい。
 Ax(z=60°)/AxおよびAy(z=60°)/Ayは、その数値が大きいほど優れた光吸収異方性を示すことを意味する。これらの数値は、例えば50以下であってもよく、また30以下であってもよい。
 また、光吸収異方性膜11は、好ましくは、式(ii’)および(iii’):
 Ax(z=60°)/Ax>10 (ii’)
 Ay(z=60°)/Ay>10 (iii’)
を満たすことが好ましい。
 光吸収異方性膜11が、式(i)~(iii)を満たすとき、二色性色素は、優れた吸収異方性、すなわち、優れた偏光性能を有する傾向にある。この優れた特性によって、正面方向からの光を効果的に透過し、かつ、斜め方向からの光を効果的に吸収し易くなる。
 光吸収異方性膜11の膜厚は、好ましくは0.1~5μm、より好ましくは0.2~3μm、さらに好ましくは0.4~2μmである。光吸収異方性膜11の膜厚が上記範囲内であると、斜め方向における光吸収の低減が起こりにくい傾向にあり、また二色性色素の配向が乱れにくいため、正面方向における透過性が高まりやすい。光吸収異方性膜11の厚みは、例えばレーザー顕微鏡、触針式膜厚計等を用いて測定することができる。
(二色性色素)
 二色性色素とは、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する色素をいう。二色性色素としては、光吸収異方性膜中にて波長300~700nmの範囲に吸収極大波長(λMAX)を有するものが好ましく、波長500~600nmの範囲に極大吸収波長を有するものがより好ましい。人の視感度が高い波長500~600nmの範囲に極大吸収波長を有することによって、二色性色素の使用量を低減し易くなり、および光吸収異方性膜を薄膜化し易い傾向となる。
 このような二色性色素としては、例えばアクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素およびアントラキノン色素等が挙げられるが、中でもアゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素およびスチルベンアゾ色素などが挙げられ、好ましくはビスアゾ色素およびトリスアゾ色素である。二色性色素は単独でも、組み合わせてもよいが、可視光全域にわたって偏光特性が求められる場合には3種類以上の二色性色素を組み合わせるのが好ましく、3種類以上のアゾ色素を組み合わせるのがより好ましい。
 複数種の二色性色素を組み合わせる場合には、光吸収異方性膜中において波長500~600nmの範囲に極大吸収波長を有するものを少なくとも1種含むことが好ましい。2種類の二色性色素を組み合わせるときは、さらに350~499nm、または601~750nmの範囲に極大吸収波長を有するものを含むことが好ましく、3種類の二色性色素を組み合わせるときは、350~499nm、500~600nmおよび601~750nmの範囲に極大吸収波長を有する二色性色素をそれぞれ含むことが好ましい。
 アゾ色素としては、例えば式(I):
 A(-N=N-A)p-N=N-A (I)
[式(I)中、
 AおよびAは、互いに独立に、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基または置換基を有していてもよい1価の複素環基を表す。Aは、置換基を有していてもよいp-フェニレン基、置換基を有していてもよいナフタレン-1,4-ジイル基または置換基を有していてもよい2価の複素環基を表す。pは1~4の整数を表す。pが2以上の整数である場合、複数のAは互いに同一でも異なっていてもよい。可視域に吸収を示す範囲で-N=N-結合が-C=C-、-COO-、-NHCO-、-N=CH-結合に置き換わっていてもよい]
で表される化合物(以下、「化合物(I)」ということがある)が挙げられる。
 1価の複素環基としては、キノリン、チアゾール、ベンゾチアゾール、チエノチアゾール、イミダゾール、ベンゾイミダゾール、オキサゾールおよびベンゾオキサゾール等の複素環化合物から1個の水素原子を除いた基が挙げられる。2価の複素環基としては、上記複素環化合物から2個の水素原子を除いた基が挙げられる。
 AおよびAにおけるフェニル基、ナフチル基および1価の複素環基、ならびにAにおけるp-フェニレン基、ナフタレン-1,4-ジイル基および2価の複素環基が任意に有する置換基としては、炭素数1~20のアルキル基、重合性基を有する炭素数1~20のアルキル基、炭素数1~4のアルケニル基;メトキシ基、エトキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;重合性基を有する炭素数1~20のアルコキシ基;トリフルオロメチル基等の炭素数1~4のフッ化アルキル基;シアノ基;ニトロ基;ハロゲン原子;アミノ基、ジエチルアミノ基、ピロリジノ基等の置換または無置換アミノ基(置換アミノ基とは、炭素数1~6のアルキル基を1つまたは2つ有するアミノ基、重合性基を有する炭素数1~6のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は-NHである。)等が挙げられる。なお、ここで、上記重合性基としては、アクリロイル基、メタアクリロイル基、アクリロイルオキシ基、メタアクリロイルオキシ基等が挙げられる。
 化合物(I)の中でも、以下の式(I-1)~式(I-8)のいずれかで表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001

[式(I-1)~(I-8)中、
 B~B30は、互いに独立して、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルケニル基、炭素数1~4のアルコキシ基、シアノ基、ニトロ基、置換または無置換のアミノ基(置換アミノ基および無置換アミノ基の定義は上記のとおり)、塩素原子またはトリフルオロメチル基を表わす。
 n1~n4は、互いに独立に0~3の整数を表わす。
 n1が2以上である場合、複数のBは互いに同一でも異なっていてもよく、
 n2が2以上である場合、複数のBは互いに同一でも異なっていてもよく、
 n3が2以上である場合、複数のBは互いに同一でも異なっていてもよく、
 n4が2以上である場合、複数のB14は互いに同一でも異なっていてもよい。]
 アントラキノン色素としては、式(I-9)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000002

[式(I-9)中、
 R~Rは、互いに独立して、水素原子、-R、-NH、-NHR、-NR 、-SRまたはハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基または炭素数6~12のアリール基を表す。]
 オキサゾン色素としては、式(I-10)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003

[式(I-10)中、
 R~R15は、互いに独立して、水素原子、-R、-NH、-NHR、-NR 、-SRまたはハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基または炭素数6~12のアリール基を表す。]
 アクリジン色素としては、式(I-11)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000004

[式(I-11)中、
 R16~R23は、互いに独立して、水素原子、-R、-NH、-NHR、-NR 、-SRまたはハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基または炭素数6~12のアリール基を表す。]
 式(I-9)、式(I-10)および式(I-11)における、Rで表される炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基およびブチル基等が挙げられ、炭素数6~12のアリール基としては、フェニル基、トルイル基、キシリル基およびナフチル基等が挙げられる。
 シアニン色素としては、式(I-12)で表される化合物および式(I-13)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005

[式(I-12)中、
 DおよびDは、互いに独立に、式(I-12a)~式(I-12d)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000006

 n5は、1~3の整数を表す。]
Figure JPOXMLDOC01-appb-C000007

[式(I-13)中、
 DおよびDは、互いに独立に、式(I-13a)~式(I-13h)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000008

 n6は、1~3の整数を表す。]
 光吸収異方性膜11を形成するための重合性液晶組成物(以下、光吸収異方性膜形成用組成物ともいう)における二色性色素の含有量は、二色性色素の配向を良好にする観点から、重合性液晶組成物の固形分100質量部に対して、0.1質量部以上30質量部以下が好ましく、0.1質量部以上20質量部以下がより好ましく、0.1質量部以上10質量部以下がさらに好ましく、0.1質量部以上5質量部以下が特に好ましい。二色性色素の含有量がこの範囲内であれば、液晶性化合物の液晶配向を乱し難いため好ましい。
(重合性液晶化合物)
 光吸収異方性膜は、重合性液晶化合物の重合体を含む。
 本明細書において「重合性液晶化合物」とは、分子内に少なくとも1つの重合性基を有する液晶化合物をいう。重合性液晶化合物は、重合性基を有する単量体(以下、「重合性液晶モノマー」ともいう。)であってもよいし、単量体の重合物であって重合性基を有するポリマー又はオリゴマー(以下、単に「重合性液晶ポリマー」ともいう。)であってもよい。
 また、本明細書において「重合性液晶化合物の重合体」とは、重合性液晶化合物が有する重合性基の重合により形成される、重合性液晶化合物に由来する繰り返し単位を有する化合物をいい、上記重合性基の重合により得られる重合体に対して、特定の官能基(例えば重合性基)を導入する反応等の反応を行って得られる重合体も含まれる。
 重合性液晶化合物の重合体は、重合性基を有していてもよいし、有していなくてもよい。重合性液晶化合物の重合体であって重合性基を有する化合物は、光吸収異方性膜の形成において、該化合物が重合されているときには、上述の「重合性液晶ポリマー」に相当すると考えることもでき、この解釈においては、該化合物(重合性液晶ポリマー)の重合物が、本明細書における「重合性液晶化合物の重合体」に相当する。
 重合性液晶化合物の重合体は、液晶性を有していてもよいし、有していなくてもよい。該重合体は、重合性液晶化合物に由来する繰り返し単位を2種以上有していてもよい。また、該重合体は、重合性液晶化合物に由来する繰り返し単位以外の繰り返し単位を有していてもよい。光吸収異方性膜は、重合性液晶化合物の重合体を1種又は2種以上含むことができる。
 上記重合性基とは、重合開始剤から発生する活性ラジカルや酸等によって重合反応に関与し得る基のことをいう。重合性基としては、例えば、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、(メタ)アクリロイルオキシ基、(メタ)アクリロイル基がより好ましい。
 重合性液晶化合物が有する液晶性は、サーモトロピック液晶でもリオトロピック液晶でもよいが、サーモトロピック液晶が好ましい。また、光吸収異方性層を形成する重合性液晶化合物が、配向膜を形成する化合物が有する官能基と同じ官能基(重合性基)、例えば(メタ)アクリロイル基を有すると、配向膜と光吸収異方性膜との間の相溶性が高く、層間の優れた密着性を発現できる。
 重合性液晶化合物が示す液晶状態は、スメクチック液晶相であることが好ましく、高次スメクチック相であれば高性能化の観点からより好ましい。中でも、重合性液晶化合物は、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相、又はスメクチックL相を形成する高次スメクチック液晶化合物であることがより好ましく、スメクチックB相、スメクチックF相、又はスメクチックI相を形成する高次スメクチック液晶化合物であることがさらに好ましい。重合性液晶化合物が形成する液晶相がこれらの高次スメクチック相であると、より高い光吸収異方特性が得られやすい。
 重合性液晶化合物としては、分子内に少なくとも1つの重合性基を有する液晶化合物であれば特に限定されず、公知の重合性液晶化合物を用いることができる。中でも、(高次)スメクチック液晶性を示し得る重合性液晶化合物としては、例えば、下記式(L-1)で表される化合物が挙げられる。
 U-V-W-(X-Y-X-T   (L-1)
[式(L-1)中、
 X及びXは、互いに独立して、置換基を有していてもよい2価の芳香族基又は2価の脂環式炭化水素基を表し、該2価の芳香族基又は2価の脂環式炭化水素基を構成する炭素原子は、酸素原子、硫黄原子又は窒素原子に置換されていてもよい。ただし、X及びXのうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基又は置換基を有していてもよいシクロヘキサン-1,4-ジイル基である。
 Yは、単結合又は2価の連結基を表す。
 nは1~4を表し、nが2以上の場合、複数のXは互いに同一でも異なっていてもよい。Xは、複数のXのうちのいずれか又は全てと同一でも異なっていてもよい。また、nが2以上の場合、複数のYは互いに同一でも異なっていてもよい。
 Uは、重合性基を表す。
 Wは、単結合又は2価の連結基を表す。
 Vは、置換基を有していてもよい炭素数1~20のアルカンジイル基を表し、該アルカンジイル基を構成する-CH-は、-O-、-CO-、-S-、又は-NH-に置き換わっていてもよい。
 Tは、水素原子又は1価の基を表す。]
 X及びXに関し、2価の芳香族基又は2価の脂環式炭化水素基が有していてもよい置換基としては、例えば、ハロゲン原子、メチル基、エチル基及びブチル基等の炭素数1~4のアルキル基、炭素数1~4のフッ化アルキル基、炭素数1~4のアルコキシ基、シアノ基、ニトロ基、1価の芳香族基等が挙げられる。1,4-フェニレン基又はシクロヘキサン-1,4-ジイル基が有していてもよい置換基についても同様である。X及びXは、互いに独立して、好ましくは、置換基を有していてもよい1,4-フェニレン基、又は、置換基を有していてもよいシクロヘキサン-1,4-ジイル基である。シクロヘキサン-1,4-ジイル基は、トランス-シクロへキサン-1,4-ジイル基であることが好ましい。1つの好ましい実施形態において、1,4-フェニレン基及びシクロヘキサン-1,4-ジイル基は無置換である。
 Yは、好ましくは、-CHCH-、-CHO-、-OCH-、-CHCHO-、-OCHCH-、-COO-、-OCO-、-OCOO-、単結合、-N=N-、-CR=CR-、-C≡C-、-CR=N-、又は-CO-NR-である。R及びRは、互いに独立して、水素原子又は炭素数1~4のアルキル基を表わす。Yは、より好ましくは、-CHCH-、-CHO-、-OCH-、-COO-、-OCO-、-N=N-、又は単結合である。X及びXが全て同一構造である場合、互いに異なる結合方式である2以上のYが存在することが好ましい。互いに異なる結合方式である複数のYが存在する場合には、非対称構造となるため、スメクチック液晶性が発現しやすい傾向にある。
 Uは、重合性基であり、好ましくはラジカル重合性基である。重合性基としては、重合性液晶化合物が有する重合性基として先に例示した基と同様のものが挙げられる。Uで表される重合性基は、好ましくは(メタ)アクリロイル基又は(メタ)アクリロイルオキシ基である。
 Vで表されるアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、デカン-1,10-ジイル基、テトラデカン-1,14-ジイル基、イコサン-1,20-ジイル基等が挙げられる。Vは、好ましくは、炭素数2~12のアルカンジイル基であり、より好ましくは、炭素数4~12のアルカンジイル基であり、さらに好ましくは、炭素数6~12のアルカンジイル基である。該アルカンジイル基を構成する-CH-は、-O-、-CO-、-S-、又は-NH-に置き換わっていてもよい。
 該アルカンジイル基が有していてもよい置換基としては、シアノ基及びハロゲン原子等が挙げられるが、該アルカンジイル基は、無置換であることが好ましく、無置換の直鎖状アルカンジイル基又は該アルカンジイル基を構成する少なくとも1つの-CH-が-O-、-CO-、-S-、又は-NH-に置き換わった基であることがより好ましい。
 Wは、好ましくは、単結合、-O-、-S-、-COO-、又は-OCOO-であり、より好ましくは、単結合又は-O-である。
 Tは、好ましくは1価の基である。Tが1価の基である重合性液晶化合物は、下記式(L-2)で表される化合物であることが好ましい。
 U-V-W-(X-Y-X-W-V-U   (L-2)
[式(L-2)中、
 X、X、Y、n、U、W及びVは、それぞれ、前記と同じ意味を表す。
 Uは、水素原子又は重合性基を表す。
 Wは、単結合又は2価の連結基を表す。
 Vは、置換基を有していてもよい炭素数1~20のアルカンジイル基を表し、該アルカンジイル基を構成する-CH-は、-O-、-CO-、-S-、又は-NH-に置き換わっていてもよい。]
 Uで表される重合性基としては、重合性液晶化合物が有する重合性基として先に例示した基と同様のものが挙げられる。1つの好ましい実施形態において、U及びUはいずれも重合性基であり、より好ましくは、いずれもラジカル重合性基である。U及びUがいずれも重合性基である場合、Uで表される重合性基とUで表される重合性基とは、互いに異なっていてもよいが、U及びUの少なくとも一方は、(メタ)アクリロイル基又は(メタ)アクリロイルオキシ基であることが好ましく、両方が(メタ)アクリロイル基又は(メタ)アクリロイルオキシ基であることがより好ましい。U及びUは、同じ種類の基であることが好ましい。
 Vの詳細については、Vについての上記説明が引用される。Wの詳細については、Wについての上記説明が引用される。
 式(L-1)及び式(L-2)中に存在する、式(L-1A):
 -(X-Y-X-    (L-1A)
[式(L-1A)中、X、Y、X及びnは、それぞれ、前記と同じ意味を表す。]で示される部分構造〔以下、部分構造(L-1A)ともいう。〕は、非対称構造であることが、スメクチック液晶性を発現し易い点で好ましい。
 部分構造(L-1A)が非対称構造である重合性液晶化合物としては、例えば、nが1であり、1つのXとXとが互いに異なる構造である重合性液晶化合物が挙げられる。
また、nが2であり、2つのYが互いに同じ構造である化合物であって、2つのXが互いに同じ構造であり、1つのXはこれら2つのXとは異なる構造である重合性液晶化合物、2つのXのうちのWに結合するXが、他方のX及びXとは異なる構造であり、他方のXとXとは互いに同じ構造である重合性液晶化合物も挙げられる。さらに、nが3であり、3つのYが互いに同じ構造である化合物であって、3つのX及び1つのXのうちのいずれか1つが他の3つの全てと異なる構造である重合性液晶化合物が挙げられる。
 重合性液晶化合物は、下記式(L-1B)で表される部分構造を有しスメクチック液晶性を示す重合性液晶化合物であることがより好ましい。重合性液晶化合物は、式(L-1B)で表される部分構造を2以上有していてもよい。
 -X-Y-X-Y-X-    (L-1B)
[式(L-1B)中、
 X、X及びXは、互いに独立して、置換基を有していてもよい1,4-フェニレン基又は置換基を有していてもよいシクロヘキサン-1,4-ジイル基である。
 Y及びYは、互いに独立して、-CHCH-、-CHO-、-OCH-、-COO-、-OCO-、-OCOO-、単結合、-N=N-、-CR=CR-、-C≡C-、-CR=N-、又は-CO-NR-を表す。
 ただし、式(L-1B)で表される部分構造は、全体として非対称構造である。]
 式(L-1B)中のX、Y、X、Y及びXの組み合わせの例を以下に示すが、これに限定されるものではない。表中、Phは1,4-フェニレン基を表し、CHはシクロヘキサン-1,4-ジイル基を表す。
Figure JPOXMLDOC01-appb-T000009
 重合性液晶化合物としては、例えば以下の化合物が挙げられる。
 式(L-1)で表される化合物、
 式(L-2)で表される化合物、
 非対称構造である部分構造(L-1A)を有する式(L-1)で表される化合物、
 非対称構造である部分構造(L-1A)を有する式(L-2)で表される化合物、
 非対称構造である部分構造(L-1A)を有し、部分構造(L-1A)が式(L-1B
)で表される部分構造である式(L-1)で表される化合物、
 非対称構造である部分構造(L-1A)を有し、部分構造(L-1A)が式(L-1B)で表される部分構造である式(L-2)で表される化合物。
 重合性液晶化合物の具体例を以下に示すが、これに限定されるものではない。下記の例において、重合性液晶化合物がシクロヘキサン-1,4-ジイル基を有する場合、そのシクロヘキサン-1,4-ジイル基は、トランス体であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 重合性液晶化合物の重合体は、上記重合性液晶化合物が有する重合性基の重合により形成される、重合性液晶化合物に由来する繰り返し単位を有する化合物であり、上述のように、上記重合性基の重合により得られる重合体に対して、特定の官能基(例えば重合性基)を導入する反応等の反応を行って得られる重合体も含まれる。このような重合体の一例として、下記式で表される、末端に重合性基を備える繰り返し単位を有する重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記繰り返し単位は、重合性基への変換が可能な基を末端に有する重合性液晶化合物を重合させた後、該重合性基への変換が可能な基を重合性基に変換することによって得ることができる。上記繰り返し単位を有する重合体は、下記式で表される重合性液晶モノマーの重合体に相当し、偏光膜の形成において重合されているときには重合性液晶ポリマーに相当するともいえる。
Figure JPOXMLDOC01-appb-C000014
 光吸収異方性膜11を形成するための重合性液晶組成物における重合性液晶化合物(2種以上含む場合はその合計)の含有割合は、重合性液晶化合物の配向性を高くするという観点から、光吸収異方性膜100質量部に対して、好ましくは70質量部以上、より好ましくは80質量部以上であり、好ましくは99.5質量部以下、より好ましくは99質量部以下、さらに好ましくは94質量部以下、よりさらに好ましくは90質量部以下である。重合性液晶化合物の含有割合は、光吸収異方性膜11を形成するための重合性液晶組成物の固形分100質量部に対する重合性液晶化合物の割合として算出することができる。また、光吸収異方性膜における重合性液晶化合物の重合体の含有量は、該組成物の固形分に対する重合性液晶化合物の割合として算出されてもよい。
 二色性色素および液晶化合物を含む光吸収異方性膜11において、二色性色素が重合性液晶化合物に包摂されて存在し、二色性色素と重合性液晶化合物とが光吸収異方性膜11の垂直方向に高い秩序度をもって配向していることが好ましい。重合性液晶化合物と二色性色素とが高い秩序度をもって配向していることにより、光吸収異方性膜11を含む光学積層体を有機EL表示装置に組み込んだ場合に、正面方向における透過性に優れ、かつ斜め方向における光吸収特性の方向異方性を低減し易い傾向にある。
 光吸収異方性膜11の形成に用いる重合性液晶組成物は二色性色素および重合性液晶化合物以外の成分を含んでいてもよい。そのような成分としては、例えば重合開始剤、レベリング剤、溶剤、酸化防止剤、光増感剤、架橋剤等が挙げられる。これらの成分は、それぞれ1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
(重合開始剤)
 重合開始剤は、重合性液晶化合物等の重合反応を開始し得る化合物である。重合開始剤としては、光の作用により活性ラジカルを発生する光重合開始剤が好ましい。
 重合開始剤としては、例えばベンゾイン化合物、ベンゾフェノン化合物、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、トリアジン化合物、ヨードニウム塩およびスルホニウム塩等が挙げられる。
 ベンゾフェノン化合物としては、例えばベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノンおよび2,4,6-トリメチルベンゾフェノン等が挙げられる。
 アルキルフェノン化合物としては、例えばジエトキシアセトフェノン、2-メチル-2-モルホリノ-1-(4-メチルチオフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1,2-ジフェニル-2,2-ジメトキシエタン-1-オン、2-ヒドロキシ-2-メチル-1-〔4-(2-ヒドロキシエトキシ)フェニル〕プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトンおよび2-ヒドロキシ-2-メチル-1-〔4-(1-メチルビニル)フェニル〕プロパン-1-オンのオリゴマー等が挙げられる。
 アシルホスフィンオキサイド化合物としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドおよびビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド等が挙げられる。
 トリアジン化合物としては、例えば2,4-ビス(トリクロロメチル)-6-(4-メトキシフェニル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシナフチル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシスチリル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(5-メチルフラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(フラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(4-ジエチルアミノ-2-メチルフェニル)エテニル〕-1,3,5-トリアジンおよび2,4-ビス(トリクロロメチル)-6-〔2-(3,4-ジメトキシフェニル)エテニル〕-1,3,5-トリアジン等が挙げられる。
 重合開始剤には市販のものを用いることができる。市販の重合開始剤としては、イルガキュア(Irgacure)(登録商標)907、184、651、819、250および369(BASF社);セイクオール(登録商標)BZ、ZおよびBEE(精工化学(株));カヤキュアー(kayacure)(登録商標)BP100およびUVI-6992(日本化薬(株));アデカオプトマーSP-152およびSP-170((株)ADEKA);TAZ-AおよびTAZ-PP(DKSHジャパン(株));ならびにTAZ-104((株)三和ケミカル)等が挙げられる。
 重合開始剤の含有量は、重合性液晶化合物の配向を乱しにくいという観点から、重合性液晶化合物100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上であり、好ましくは30質量部以下、より好ましくは10質量部以下、さらに好ましくは8質量部以下である。
(架橋剤)
 架橋剤としては、その分子内に炭素-炭素不飽和結合と活性水素反応性基とを有するものが好ましい。なお、ここでいう「活性水素反応性基」とは、カルボキシル基(-COOH)、水酸基(-OH)、アミノ基(-NH)等の活性水素を有する基に対して反応性を有する基を意味し、グリシジル基、オキサゾリン基、カルボジイミド基、アジリジン基、イミド基、イソシアナト基、チオイソシアナト基、無水マレイン酸基等がその代表例である。
 架橋剤は、分子内に活性水素反応性基を2つ以上存在する化合物であることが好ましく、この場合、複数存在する活性水素反応性基は同一でも、異なるものであってもよい。
 架橋剤が有する炭素-炭素不飽和結合とは、炭素-炭素二重結合又は炭素-炭素三重結合、あるいはそれらの組み合わせであってよいが、炭素-炭素二重結合であると好ましい。中でも、架橋剤としては、ビニル基及び/又は(メタ)アクリル基として炭素-炭素不飽和結合を含むと好ましい。さらに、活性水素反応性基が、エポキシ基、グリシジル基及びイソシアナト基からなる群から選ばれる少なくとも1種であるものが好ましく、アクリル基と、イソシアナト基とを有する架橋剤(イソシアネート系架橋剤)が特に好ましい。
 反応性添加剤の具体例としては、メタクリロキシグリシジルエーテルやアクリロキシグリシジルエーテルなどの、(メタ)アクリル基とエポキシ基とを有する化合物;オキセタンアクリレートやオキセタンメタクリレートなどの、(メタ)アクリル基とオキセタン基とを有する化合物;ラクトンアクリレートやラクトンメタクリレートなどの、(メタ)アクリル基とラクトン基とを有する化合物;ビニルオキサゾリンやイソプロペニルオキサゾリンなどの、ビニル基とオキサゾリン基とを有する化合物;イソシアナトメチルアクリレート、イソシアナトメチルメタクリレート、2-イソシアナトエチルアクリレート及び2-イソシアナトエチルメタクリレートなどの、(メタ)アクリル基とイソシアナト基とを有する化合物のオリゴマー等が挙げられる。また、メタクリル酸無水物、アクリル酸無水物、無水マレイン酸及びビニル無水マレイン酸などの、ビニル基やビニレン基と酸無水物とを有する化合物などが挙げられる。中でも、メタクリロキシグリシジルエーテル、アクリロキシグリシジルエーテル、イソシアナトメチルアクリレート、イソシアナトメチルメタクリレート、ビニルオキサゾリン、2-イソシアナトエチルアクリレート、2-イソシアナトエチルメタクリレート及び前記のオリゴマーが好ましく、イソシアナトメチルアクリレート、2-イソシアナトエチルアクリレート及び前記のオリゴマーが特に好ましい。
 活性水素反応性基としてイソシアナト基を有する架橋剤は、下記式(Y)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000015

[式(Y)中、
 nは1~10までの整数を表わし、R1’は、炭素数2~20の2価の脂肪族又は脂環式炭化水素基、或いは炭素数5~20の2価の芳香族炭化水素基を表わす。各繰り返し単位にある2つのR2’は、一方が-NH-であり、他方が>N-C(=O)-R3’で示される基である。R3’は、水酸基又は炭素-炭素不飽和結合を有する基を表す。
 式(Y)中のR3’のうち、少なくとも1つのR3’は炭素-炭素不飽和結合を有する基である。]
 前記式(Y)で表される化合物は、下記式(YY)で表される化合物(以下、場合により「化合物(YY)」という。)であることがより好ましい(なお、nは式(Y)における定義と同じである)。
Figure JPOXMLDOC01-appb-C000016

 化合物(YY)には、市販品をそのまま又は必要に応じて精製して用いることができる。市販品としては、例えば、Laromer(登録商標)LR-9000(BASF社製)等が挙げられる。
 架橋剤の含有量は、重合性液晶化合物100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上であり、好ましくは5質量部以下である。
(レベリング剤)
 レベリング剤とは、重合性液晶組成物の流動性を調整し、光吸収異方性膜11をより平坦にする機能を有するものであり、例えば界面活性剤を挙げることができる。好ましいレベリング剤としては、ポリアクリレート化合物を主成分とするレベリング剤およびフッ素原子含有化合物を主成分とするレベリング剤が挙げられる。
 ポリアクリレート化合物を主成分とするレベリング剤としては、BYK-350、BYK-352、BYK-353、BYK-354、BYK-355、BYK-358N、BYK-361N、BYK-380、BYK-381およびBYK-392(BYK Chemie社)等が挙げられる。
 フッ素原子含有化合物を主成分とするレベリング剤としては、メガファック(登録商標)R-08、R-30、R-90、F-410、F-411、F-443、F-445、F-470、F-471、F-477、F-479、F-482、F-483(DIC(株));サーフロン(登録商標)S-381、S-382、S-383、S-393、SC-101、SC-105、KH-40およびSA-100(AGCセイミケミカル(株));E1830およびE5844(ダイキン工業(株));エフトップEF301、EF303、EF351およびEF352(三菱マテリアル電子化成(株))等が挙げられる。
 レベリング剤の含有量は、重合性液晶化合物100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上であり、好ましくは5質量部以下、より好ましくは3質量部以下である。レベリング剤の含有量が上記の範囲内であると、得られる光吸収異方性膜11がより平滑となる傾向があるため好ましい。重合性液晶化合物に対するレベリング剤の含有量が上記の範囲を超えると、得られる光吸収異方性膜11にムラが生じやすくなったり、水平方向へ配向する傾向があったりするため好ましくない。光吸収異方性膜11は、レベリング剤を2種類以上含有していてもよい。
(溶剤)
 溶剤としては、重合性液晶化合物を完全に溶解し得るものが好ましく、さらに重合反応に不活性な溶剤であることが好ましい。
 溶剤としては、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテルおよびプロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトンまたはプロピレングリコールメチルエーテルアセテートおよび乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノンおよびメチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサンおよびヘプタン等の脂肪族炭化水素溶剤;トルエンおよびキシレン等の芳香族炭化水素溶剤、アセトニトリル等のニトリル溶剤;テトラヒドロフランおよびジメトキシエタン等のエーテル溶剤;クロロホルムおよびクロロベンゼン等の塩素含有溶剤;等が挙げられる。これら溶剤は、単独で用いてもよいし、2種以上を組み合わせてもよい。
 溶剤の含有量は、重合性液晶組成物の総量に対して50~98質量%が好ましい。換言すると、光吸収異方性膜11成分の割合は、重合性液晶組成物の総量に対して2~50質量%が好ましい。
 重合性液晶組成物の総量に対して、該固形分が50質量%以下であると、重合性液晶組成物の粘度が低くなることから、光吸収異方性膜11の厚みが略均一になることで、光吸収異方性膜11にムラが生じにくくなる傾向がある。また、かかる固形分は、製造しようとする光吸収異方性膜11の厚みを考慮して定めることができる。
(酸化防止剤)
 酸化防止剤を配合することにより、重合性液晶化合物の重合反応をコントロールすることができる。酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、キノン系酸化防止剤、ニトロソ系酸化防止剤から選ばれる一次酸化防止剤であってもよいし、リン系酸化防止剤および硫黄系酸化防止剤から選ばれる二次酸化防止剤であってもよい。重合性液晶化合物の配向を乱すことなく、重合性液晶化合物を重合するためには、酸化防止剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01~10質量部であり、好ましくは0.1~5質量部であり、さらに好ましくは0.1~3質量部である。酸化防止剤は単独または2種以上を組み合わせて使用できる。
(光増感剤)
 光増感剤を用いることにより、光重合開始剤を高感度化することができる。光増感剤としては、例えば、キサントン、チオキサントン等のキサントン類;アントラセンおよびアルキルエーテル等の置換基を有するアントラセン類;フェノチアジン;ルブレンが挙げられる。光増感剤は単独または2種以上を組み合わせて使用できる。光増感剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01~10質量部であり、好ましくは0.05~5質量部であり、さらに好ましくは0.1~3質量部である。
 光吸収異方性膜11は、例えば、
 重合性液晶化合物および二色性色素と、場合により溶剤等の添加剤とを所定温度で撹拌等することによって光吸収異方性膜形成用組成物を得る工程、
 光吸収異方性膜形成用組成物の塗膜を形成する工程、
 上記塗膜を乾燥させて乾燥塗膜を形成する工程、および
 乾燥塗膜に活性エネルギー線を照射し、液晶硬化膜を形成する工程
を含む方法により製造することができる。
 重合性液晶化合物および二色性色素と、場合により溶剤等の添加剤とを撹拌する際の温度は、通常0~50℃、好ましくは10~40℃である。撹拌する方法は特に限定されず、従来公知の方法で撹拌することができる。
 光吸収異方性膜形成用組成物の塗膜の形成は、例えば、基材または配向膜上に光吸収異方性膜形成用組成物を塗布することにより行うことができる。
 基材としては、例えば、ガラス基材、フィルム基材等が挙げられるが、加工性の観点から樹脂フィルム基材が好ましい。フィルム基材を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレンおよびノルボルネン系ポリマー等のポリオレフィン;環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロースおよびセルロースアセテートプロピオネート等のセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィドおよびポリフェニレンオキシド等のプラスチックが挙げられる。このような樹脂を、溶媒キャスト法、溶融押出法等の公知の手段により製膜して基材とすることができる。基材表面には、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、オキセタン樹脂、ウレタン樹脂、メラミン樹脂等から形成される保護層を有していてもよく、シリコーン処理のような離型処理、コロナ処理、プラズマ処理等の表面処理が施されていてもよい。
 基材は、後述のハードコート層を有していてよい。基材がハードコート層を有する場合、ハードコート層上に光吸収異方性膜を形成することもできる。基材はハードコート層を残して光学積層体から剥離除去されてもよいし、光学積層体に組み込まれてもよい。
 基材として市販の製品を用いてもよい。市販のセルロースエステル基材としては、例えば、フジタックフィルム等の富士写真フィルム株式会社製のセルロースエステル基材;「KC8UX2M」、「KC8UY」、および「KC4UY」等のコニカミノルタオプト株式会社製のセルロースエステル基材等が挙げられる。市販の環状オレフィン系樹脂としては、例えば「Topas(登録商標)」等のTicona社(独)製の環状オレフィン系樹脂;「アートン(登録商標)」等のJSR株式会社製の環状オレフィン系樹脂;「ゼオノア(ZEONOR)(登録商標)」、および「ゼオネックス(ZEONEX)(登録商標)」等の日本ゼオン株式会社製の環状オレフィン系樹脂;「アペル(登録商標)」等の三井化学株式会社製の環状オレフィン系樹脂が挙げられる。市販されている環状オレフィン系樹脂基材を用いることもできる。市販の環状オレフィン系樹脂基材としては、「エスシーナ(登録商標)」および「SCA40(登録商標)」等の積水化学工業株式会社製の環状オレフィン系樹脂基材;「ゼオノアフィルム(登録商標)」等のオプテス株式会社製の環状オレフィン系樹脂基材;「アートンフィルム(登録商標)」等のJSR株式会社製の環状オレフィン系樹脂基材が挙げられる。市販のポリエチレンテレフタレートフィルムとしてはリンテック社製の「SP-PLR382050」が挙げられる。
 基材の剥離容易性、基材のハンドリング性等の観点から、基材の厚みは通常、5~300μmであり、好ましくは10~150μmである。
 光吸収異方性膜形成用組成物を基材等に塗布する方法としては、スピンコーティング法、エクストルージョン法、グラビアコーティング法、ダイコーティング法、バーコーティング法、アプリケータ法などの塗布法、フレキソ法などの印刷法等の公知の方法が挙げられる。
 次いで、溶媒を乾燥等により除去することにより、乾燥塗膜が形成される。乾燥方法としては、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられる。この際、液晶組成物から得られた塗膜を加熱することにより、塗膜から溶媒を乾燥除去させるとともに、重合性液晶化合物を塗膜平面に対して垂直方向に配向させることができる。塗膜の加熱温度は、用いる重合性液晶化合物および塗膜を形成する基材等の材質などを考慮して、適宜決定し得るが、重合性液晶化合物を液晶層状態へ相転移させるために液晶相転移温度以上の温度であることが必要である。光吸収異方性膜11を形成するための重合性液晶組成物に含まれる溶媒を除去しながら、重合性液晶化合物を垂直配向状態とするため、例えば、光吸収異方性膜11を形成するための重合性液晶組成物に含まれる重合性液晶化合物の液晶相転移温度(スメクチック相転移温度またはネマチック相転移温度)程度以上の温度まで加熱することができる。
 なお、液晶相転移温度は、例えば、温度調節ステージを備えた偏光顕微鏡や、示差走査熱量計(DSC)、熱重量示差熱分析装置(TG-DTA)等を用いて測定することができる。また、重合性液晶化合物として2種以上を組み合わせて用いる場合、上記相転移温度は、光吸収異方性膜11を形成するための重合性液晶組成物を構成する全重合性液晶化合物を上記重合性液晶組成物における組成と同じ比率で混合した重合性液晶化合物の混合物を用いて、1種の重合性液晶化合物を用いる場合と同様にして測定される温度を意味する。なお、一般に上記重合性液晶組成物中における重合性液晶化合物の液晶相転移温度は、重合性液晶化合物単体としての液晶相転移温度よりも下がる場合もあることが知られている。
 加熱時間は、加熱温度、用いる重合性液晶化合物の種類、溶剤の種類やその沸点およびその量等に応じて適宜決定し得るが、通常、15秒~10分であり、好ましくは0.5~5分である。
 次いで、得られた乾燥塗膜において、重合性液晶化合物の垂直配向状態を保持したまま、重合性液晶化合物を重合させることにより、光吸収異方性膜11が形成される。重合方法としては、熱重合法、または光重合法が挙げられるが、重合反応を制御しやすい観点から光重合法が好ましい。光重合において、乾燥塗膜に照射する光としては、当該乾燥塗膜に含まれる光重合開始剤の種類、重合性液晶化合物の種類(特に、該重合性液晶化合物が有する重合性基の種類)およびその量に応じて適宜選択される。その具体例としては、可視光、紫外光、赤外光、X線、α線、β線およびγ線からなる群より選択される1種以上の光および活性電子線が挙げられる。中でも、重合反応の進行を制御しやすい点や、光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって、光重合可能なように、光吸収異方性膜11を形成するための重合性液晶組成物に含有される重合性液晶化合物や光重合開始剤の種類を選択しておくことが好ましい。また、重合時に、適切な冷却手段により乾燥塗膜を冷却しながら光照射することで、重合温度を制御することもできる。このような冷却手段の採用により、より低温で重合性液晶化合物の重合を実施すれば、基材が比較的耐熱性が低いものを用いたとしても、適切に光吸収異方性膜11を形成できる。また、光照射時の熱による不具合(基材の熱による変形等)が発生しない範囲で重合温度を高くすることにより重合反応を促進することも可能である。光重合の際、マスキング、現像を行う等によって、パターニングされた光吸収異方性膜を得ることもできる。
 上記活性エネルギー線の光源としては、例えば低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。
 紫外線照射強度は、通常、10~3,000mW/cmである。紫外線照射強度は、好ましくは光重合開始剤の活性化に有効な波長領域における強度である。光を照射する時間は、通常0.1秒~10分であり、好ましくは0.1秒~5分、より好ましくは0.1秒~3分、さらに好ましくは0.1秒~1分である。このような紫外線照射強度で1回または複数回照射すると、その積算光量は、10~3,000mJ/cm、好ましくは50~2,000mJ/cm、より好ましくは100~1,000mJ/cmである。
 本発明の一態様において、光吸収異方性膜11を形成するための重合性液晶組成物の塗膜は配向膜上に形成されることができる。配向膜は、重合性液晶化合物を所望の方向に液晶配向させる、配向規制力を有するものである。この中でも、垂直方向に配向させる配向規制力を有する配向膜を垂直配向膜、重合性液晶化合物を水平方向に配向させる配向規制力を有する配向膜を水平配向膜と呼ぶことがある。配向規制力は、配向膜の種類、表面状態、ラビング条件等によって任意に調整することが可能であり、配向膜が光配向性ポリマーから形成されている場合は、偏光照射条件等によって任意に調整することが可能である。
 配向膜としては、液晶組成物の塗布等により溶解しない溶媒耐性を有し、また、溶媒の除去や後述する重合性液晶化合物の配向のための加熱処理における耐熱性を有するものが好ましい。配向膜としては、配向性ポリマーを含む配向膜、光配向膜および表面に凹凸パターンや複数の溝を有するグルブ配向膜、配向方向に延伸してある延伸フィルム等が挙げられ、配向角の精度および品質の観点から光配向膜が好ましい。
 配向性ポリマーとしては、例えば、分子内にアミド結合を有するポリアミドやゼラチン類、分子内にイミド結合を有するポリイミドおよびその加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸およびポリアクリル酸エステル類が挙げられる。中でも、ポリビニルアルコールが好ましい。配向性ポリマーは単独または2種以上を組み合わせて使用できる。
 配向性ポリマーを含む配向膜は、通常、配向性ポリマーが溶媒に溶解した組成物(以下、「配向性ポリマー組成物」ということがある)を基材に塗布し、溶媒を除去する、または、配向性ポリマー組成物を基材に塗布し、溶媒を除去し、ラビングする(ラビング法)ことで得られる。溶媒としては、液晶組成物に用い得る溶媒として先に例示した溶媒と同様のものが挙げられる。
 配向性ポリマー組成物中の配向性ポリマーの濃度は、配向性ポリマー材料が、溶媒に完溶できる範囲であればよいが、溶液に対して固形分換算で0.1~20%が好ましく、0.1~10%程度がさらに好ましい。
 配向性ポリマー組成物として、市販の配向膜材料をそのまま使用してもよい。市販の配向膜材料としては、サンエバー(登録商標、日産化学工業(株)製)、オプトマー(登録商標、JSR(株)製)などが挙げられる。
 配向性ポリマー組成物を基材に塗布する方法としては、液晶組成物を基材へ塗布する方法として例示したものと同様のものが挙げられる。
 配向性ポリマー組成物に含まれる溶媒を除去する方法としては、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられる。
 配向膜に配向規制力を付与するために、必要に応じてラビング処理を行うことができる(ラビング法)。ラビング法により配向規制力を付与する方法としては、ラビング布が巻きつけられ、回転しているラビングロールに、配向性ポリマー組成物を基材に塗布しアニールすることで基材表面に形成された配向性ポリマーの膜を接触させる方法が挙げられる。ラビング処理を行う時に、マスキングを行えば、配向の方向が異なる複数の領域(パターン)を配向膜に形成することもできる。
 光配向膜は、通常、光反応性基を有するポリマーまたはモノマーと溶媒とを含む組成物(以下、「光配向膜形成用組成物」ともいう)を基材に塗布し、溶媒を除去後に偏光(好ましくは、偏光UV)を照射することで得られる。光配向膜は、照射する偏光の偏光方向を選択することにより、配向規制力の方向を任意に制御することができる点でも有利である。
 光反応性基とは、光照射することにより液晶配向能を生じる基をいう。具体的には、光照射により生じる分子の配向誘起または異性化反応、二量化反応、光架橋反応もしくは光分解反応等の液晶配向能の起源となる光反応に関与する基が挙げられる。中でも、二量化反応または光架橋反応に関与する基が、配向性に優れる点で好ましい。光反応性基として、不飽和結合、特に二重結合を有する基が好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)および炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも1つを有する基が特に好ましい。
 C=C結合を有する光反応性基としては、ビニル基、ポリエン基、スチルベン基、スチルバゾ-ル基、スチルバゾリウム基、カルコン基およびシンナモイル基等が挙げられる。C=N結合を有する光反応性基としては、芳香族シッフ塩基、芳香族ヒドラゾンなどの構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基、および、アゾキシベンゼン構造を有する基等が挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基およびマレイミド基等が挙げられる。これらの基は、アルキル基、アルコキシ基、アリ-ル基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基などの置換基を有していてもよい。
 中でも、光二量化反応に関与する光反応性基が好ましく、光配向に必要な偏光照射量が比較的少なく、かつ、熱安定性および経時安定性に優れる光配向膜が得られやすいという点で、シンナモイル基およびカルコン基が好ましい。光反応性基を有するポリマーとしては、当該ポリマー側鎖の末端部が桂皮酸構造となるようなシンナモイル基を有するものが特に好ましい。
 光配向膜形成用組成物を基材上に塗布することにより、基材上に光配向誘起層を形成することができる。該組成物に含まれる溶媒としては、液晶組成物に用い得る溶媒として先に例示した溶媒と同様のものが挙げられ、光反応性基を有するポリマーあるいはモノマーの溶解性に応じて適宜選択することができる。
 光配向膜形成用組成物中の光反応性基を有するポリマーまたはモノマーの含有量は、ポリマーまたはモノマーの種類や目的とする光配向膜の厚みによって適宜調節できるが、光配向膜形成用組成物の質量に対して、少なくとも0.2質量%とすることが好ましく、0.3~10質量%の範囲がより好ましい。光配向膜の特性が著しく損なわれない範囲で、光配向膜形成用組成物は、ポリビニルアルコ-ルやポリイミドなどの高分子材料や光増感剤を含んでいてもよい。
 光配向膜形成用組成物を基材に塗布する方法としては、配向性ポリマー組成物を基材に塗布する方法と同様の方法が挙げられる。塗布された光配向膜形成用組成物から、溶媒を除去する方法としては例えば、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられる。
 偏光を照射するには、基板上に塗布された光配向膜形成用組成物から、溶媒を除去したものに直接、偏光UVを照射する形式でも、基材側から偏光を照射し、偏光を透過させて照射する形式でもよい。また、当該偏光は、実質的に平行光であると特に好ましい。照射する偏光の波長は、光反応性基を有するポリマーまたはモノマーの光反応性基が、光エネルギーを吸収し得る波長領域のものがよい。具体的には、波長250~400nmの範囲のUV(紫外線)が特に好ましい。当該偏光照射に用いる光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArFなどの紫外光レ-ザ-などが挙げられ、高圧水銀ランプ、超高圧水銀ランプおよびメタルハライドランプがより好ましい。これらの中でも、高圧水銀ランプ、超高圧水銀ランプおよびメタルハライドランプが、波長313nmの紫外線の発光強度が大きいため好ましい。上記光源からの光を、適当な偏光子を通過して照射することにより、偏光UVを照射することができる。かかる偏光子としては、偏光フィルターやグラントムソン、グランテ-ラ-などの偏光プリズムやワイヤーグリッドタイプの偏光子を用いることができる。
 なお、ラビングまたは偏光照射を行う時に、マスキングを行えば、液晶配向の方向が異なる複数の領域(パターン)を形成することもできる。
 グルブ(groove)配向膜は、膜表面に凹凸パターンまたは複数のグルブ(溝)を有する膜である。等間隔に並んだ複数の直線状のグルブを有する膜に液晶化合物を塗布した場合、その溝に沿った方向に液晶分子が配向する。
 グルブ配向膜を得る方法としては、感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光後、現像およびリンス処理を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、硬化前のUV硬化樹脂の層を形成し、形成された樹脂層を基材へ移してから硬化する方法、および、基材に形成した硬化前のUV硬化樹脂の膜に、複数の溝を有するロール状の原盤を押し当てて凹凸を形成し、その後硬化する方法等が挙げられる。
 重合性液晶化合物を塗膜平面に対して垂直方向に配向させる配向規制力を示す材料としては、上述した配向性ポリマー等の他にパーフルオロアルキル等のフッ素系ポリマーおよびシラン化合物並びにそれらの縮合反応により得られるポリシロキサン化合物などを用いてもよい。
 配向膜を形成する材料としてシラン化合物を使用する場合には、表面張力を低下させやすく、配向膜に隣接する層との密着性を高めやすい観点から、構成元素にSi元素とC元素とを含む化合物が好ましく、シラン化合物を好適に使用することができる。シラン化合物を使用することにより配向規制力を高めることができる。これらのシラン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよく、その他材料と混合して使用してもよい。
 配向膜(配向性ポリマーを含む配向膜または光配向膜)の厚みは、通常10~10000nmの範囲であり、好ましくは10~1000nmの範囲であり、より好ましくは10~500nm以下であり、さらに好ましくは10~300nm、特に好ましくは50~250nmの範囲である。
 本発明の別の一態様において、液晶組成物の塗膜は配向膜を必要とせず、基材上に直接形成し得る。かかる態様において、光吸収異方性膜11を形成するための重合性液晶組成物は、配向促進剤を含んでいてもよい。本発明において、配向促進剤とは所望の方向への液晶化合物の液晶配向を促進させる材料を意味する。液晶化合物の配向を促進させる配向促進剤としては、非金属原子からなるイオン性化合物および非イオン性シラン化合物等が挙げられる。光吸収異方性膜11を形成するための重合性液晶組成物が、非金属原子からなるイオン性化合物および非イオン性シラン化合物のうちの少なくとも1種を含むことが好ましく、非金属原子からなるイオン性化合物および非イオン性シラン化合物をともに含むことがより好ましい。
 非金属原子からなるイオン性化合物としては、たとえば、オニウム塩(より具体的には、窒素原子がプラスの電荷を有する第四級アンモニウム塩、第三級スルホニウム塩、およびリン原子がプラスの電荷を有する第四級ホスホニウム塩等)が挙げられる。これらのオニウム塩のうち、重合性液晶化合物の垂直配向性をより向上させ得る観点から第四級オニウム塩が好ましく、入手性および量産性を向上させる観点から、第四級ホスホニウム塩または第四級アンモニウム塩がより好ましい。オニウム塩は分子内に2つ以上の第四級オニウム塩部位を有していてもよく、オリゴマーやポリマーであってもよい。
 非イオン性シラン化合物としては、例えば、ポリシランのようなケイ素ポリマー、シリコーンオイルおよびシリコーンレジンのようなシリコーン樹脂、並びにシリコーンオリゴマー、シルセスシロキサンおよびアルコキシシランのような有機無機シラン化合物(より具体的には、シランカップリング剤等)、シリコーン系レベリング剤等が挙げられる。
(接着層)
 接着層12は光吸収異方性膜11と光学フィルム13とを接合する機能を有することができる。接着層12は、後述のカチオン硬化型接着剤の硬化物を含む。
 接着層12の厚みは、例えば10μm以下であってよく、好ましくは5μm以下であり、より好ましくは3μm以下、さらに好ましくは2μm以下である。また、接着層12は0.05μm以上であればよく、0.1μm以上であることが好ましい。
 接着層12は、周波数10Hzの引張モードで動的粘弾性測定により得られる損失弾性率(以下、損失弾性率ともいう)[MPa]が最大値となる温度[℃]が、耐熱耐久試験における正面透過率の低下抑制の観点から好ましくは60℃以上であってよく、より好ましくは80℃以上、さらに好ましくは100℃以上である。損失弾性率の最大値の温度は、後述の実施例の欄において説明する粘弾性の評価方法に従って測定することができる。損失弾性率が最大値となる温度は通常150℃以下であり、密着性の観点からは好ましくは120℃以下である。
 接着層12は、80℃における貯蔵弾性率[MPa]が、耐熱耐久試験における正面透過率の低下抑制の観点から好ましくは50[MPa]以上であってよく、より好ましくは500[MPa]以上、さらに好ましくは1500[MPa]以上であり、密着性の観点からは好ましくは3000[MPa]以下であることが好ましい。80℃における貯蔵弾性率[MPa]は、後述の実施例の欄に記載の粘弾性の評価方法に従って求めることができる。
 接着層12は、tanδが最大となる温度が、耐熱耐久試験における正面透過率の低下抑制の観点から例えば30℃超であってよく、好ましくは50℃以上、より好ましくは95℃以上、さらに好ましくは100℃以上、より好ましくは120℃以上であり、密着性の観点からは好ましくは150℃以下である。tanδが最大となる温度は、後述の実施例の欄に記載の粘弾性の評価方法に従って求めることができる。
(カチオン硬化型接着剤)
 カチオン硬化型接着剤は、活性エネルギー線を照射して硬化することができる。カチオン硬化型接着剤は、カチオン重合性化合物と、光カチオン重合開始剤を含有することができる。カチオン硬化型接着剤は、さらに光増感助剤を含有することが好ましい。
(カチオン重合性化合物)
 カチオン重合性化合物は、活性エネルギー線の照射によりカチオン重合を起こして硬化し得る成分である。カチオン重合性化合物の重合硬化により接着力が発現する。カチオン重合性化合物は、オキセタン化合物、脂環式エポキシ化合物、脂肪族エポキシ化合物、芳香族エポキシ化合物からなる群から選択される少なくとも1種を含むことができる。
(オキセタン化合物)
 本明細書において、オキセタン化合物は、オキセタニル基を有する化合物であり、脂肪族化合物、脂環式化合物または芳香族化合物であってもよい。本明細書でいうオキセタン化合物は、エポキシ基を有さない化合物とする。
 オキセタン化合物は、オキセタニル基を1つのみ有する単官能オキセタンであってもよいし、オキセタニル基を2つ以上有する多官能オキセタンであってもよい。オキセタン化合物は多官能オキセタン化合物であることが好ましく、オキセタニル基を2つ有する2官能オキセタンであることが好ましい。カチオン重合性化合物は、1種以上の単官能オキセタンまたは1種以上の多官能オキセタンを単独で、または1種以上の単官能オキセタンおよび1種以上の多官能オキセタンを組み合わせて用いることができる。
 オキセタン化合物は、具体例として、3,7-ビス(3-オキセタニル)-5-オキサ-ノナン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,2-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エタン、1,3-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]プロパン、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、トリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、テトラエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス(3-エチル-3-オキセタニルメトキシ)ブタン、1,6-ビス(3-エチル-3-オキセタニルメトキシ)ヘキサン、3-エチル-3-(フェノキシ)メチルオキセタン、3-エチル-3-(シクロヘキシルオキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(クロロメチル)オキセタン、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、キシリレンビスオキセタン等を含む。オキセタン化合物(A1)としては、1種のオキセタン化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。中でも好ましくは、3-エチル-3-ヒドロキシメチルオキセタン、キシリレンビスオキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(シクロヘキシルオキシメチル)オキセタンからなる群から選択される少なくとも1種である。
 オキセタン化合物は、市販品を用いることができ、例えば、それぞれ商品名で、東亞合成(株)から販売されている“アロンオキセタン(登録商標)”シリーズ、宇部興産(株)から販売されている“ETERNACOLL(登録商標)”シリーズなどが挙げられる。
 カチオン重合性化合物がオキセタン化合物を含む場合、カチオン重合性化合物中のオキセタン化合物の含有量は、全カチオン重合性化合物の総量100質量部に対して例えば5質量部以上70質量部以下であってよく、好ましくは20質量部以上60質量部以下である。オキセタン化合物の含有量が多すぎると密着性が低下する傾向があり、少なすぎると耐熱耐久試験における正面透過率が低下しやすくなる傾向にある。
(脂環式エポキシ化合物)
 脂環式エポキシ化合物は、脂環式エポキシ基を1つ以上有する化合物である。脂環式エポキシ化合物は、脂環式エポキシ基を1つ以上有する化合物であれば、脂環式エポキシ基以外のエポキシ基をさらに有していてもよい。脂環式エポキシ化合物は、脂環式エポキシ基を1つのみ有する単官能脂環式エポキシであってもよいし、脂環式エポキシ基を2つ以上有する多官能脂環式エポキシであってもよい。脂環式エポキシ化合物は多官能脂環式エポキシであることが好ましく、脂環式エポキシ基を2つ有する2官能脂環式エポキシであることが好ましい。カチオン重合性化合物は、1種以上の単官能脂環式エポキシまたは1種以上の多官能脂環式エポキシを単独で、または1種以上の単官能脂環式エポキシおよび1種以上の多官能脂環式エポキシを組み合わせて用いることができる。
 本明細書において、脂環式エポキシ基とは、脂環式環に結合したエポキシ基を意味し、下記式(a)で示される構造における橋かけの酸素原子-O-を意味する。
Figure JPOXMLDOC01-appb-C000017
 上記式(a)中、mは2~5の整数である。上記式(a)における(CH中の1個または複数個の水素原子を取り除いた形の基が他の化学構造に結合している化合物が、脂環式エポキシ化合物となり得る。(CH中の1個または複数個の水素原子は、メチル基やエチル基のような直鎖状アルキル基で適宜置換されていてもよい。脂環式エポキシ化合物により、カチオン硬化型接着剤の硬化速度を調整することができる。
 脂環式エポキシ化合物の具体例は、3,4-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、1,2-エポキシ-4-ビニルシクロヘキサン、1,2-エポキシ-1-メチル-4-(1-メチルエポキシエチル)シクロヘキサン、3,4-エポキシシクロヘキシルメチルメタアクリレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの4-(1,2-エポキシエチル)-1,2-エポキシシクロヘキサン付加物、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、オキシジエチレン ビス(3,4-エポキシシクロヘキサンカルボキシレート)、1,4-
シクロヘキサンジメチル ビス(3,4-エポキシシクロヘキサンカルボキシレート)、
および3-(3,4-エポキシシクロヘキシルメトキシカルボニル)プロピル3,4-エポキシシクロヘキサンカルボキシレート等が挙げられる。
 脂環式エポキシ化合物の中でも、適度な硬化性を有するとともに、比較的廉価に入手できることから、3,4-エポキシシクロヘキシルメチル、3,4-エポキシシクロヘキサンカルボキシレートが好ましく用いられる。脂環式エポキシ化合物としては、1種の脂環式エポキシ化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。
 脂環式エポキシ化合物は、市販品を用いることができ、例えば、それぞれ商品名で、(株)ダイセルから販売されている“セロキサイド(登録商標)”シリーズおよび”EHPE3150”、“サイクロマー(登録商標)”、ダウケミカル社から販売されている“サイラキュア UVR”シリーズ等が挙げられる。
 カチオン重合性化合物が脂環式エポキシ化合物を含む場合、脂環式エポキシ化合物の含有量は、全カチオン重合性化合物の総量100質量部に対して例えば10質量部以上90質量部以下であってよく、好ましくは20質量部以上80質量部以下、より好ましくは35質量部以上80質量部以下である。脂環式エポキシ化合物の含有量が多すぎると密着性が低下する傾向にあり、少なすぎると耐熱耐久試験における正面透過率の低下が抑制されにくくなる傾向にある。
(芳香族エポキシ化合物)
 芳香族エポキシ化合物は、エポキシ基を1つ以上有する化合物である芳香族化合物であることができる。ただし、本明細書でいう芳香族エポキシ化合物は、脂環式エポキシ化合物に含まれる、分子内に脂環式エポキシ基を有する化合物を除く。芳香族エポキシ化合物は、エポキシ基を1つ有する単官能芳香族エポキシであってよく、エポキシ基を2以上有する多官能芳香族エポキシであってよい。芳香族エポキシ化合物は多官能芳香族エポキシであることが好ましく、エポキシ基を2つ有する2官能芳香族エポキシであることが好ましい。カチオン重合性化合物は、1種以上の単官能芳香族エポキシまたは1種以上の多官能芳香族エポキシを単独で、または1種以上の単官能芳香族エポキシおよび1種以上の多官能芳香族エポキシを組み合わせて用いることができる。
 単官能芳香族エポキシとしては、フェノール、クレゾール、ブチルフェノール等の1価フェノール若しくはビスフェノールA、ビスフェノールF等のビスフェノール誘導体、またはそれらのアルキレンオキサイド付加物のモノグリシジルエーテル化物;エポキシノボラック樹脂;レゾルシノールやハイドロキノン、カテコール等の2個以上のフェノール性水酸基を有する芳香族化合物のモノグリシジルエーテル化物;ベンゼンジメタノールやベンゼンジエタノール、ベンゼンジブタノール等のアルコール性水酸基を2個以上有する芳香族化合物のモノグリシジルエーテル化物;フタル酸、テレフタル酸、トリメリット酸等の2個以上のカルボキシル基を有する多塩基酸芳香族化合物のモノグリシジルエステル;安息香酸のグリシジルエステルやトルイル酸、ナフトエ酸のモノグリシジルエステル等が挙げられる。
 単官能芳香族エポキシは市販品を用いることができ、例えば、“EX-142”、“EX-146”、EX-147”、“EX-121”(以上、いずれもナガセケムテックス(株)製)等が挙げられる。
 多官能芳香族エポキシの具体例は、ナフタレン、またはナフタレン誘導体のポリグリシジルエーテル化物(「ナフタレン型エポキシ化合物」とも称する。);ビスフェノールA、ビスフェノールF等のビスフェノール誘導体のポリグリシジルエーテル化物(「ビスフェノールA型エポキシ化合物」、「ビスフェノールF型エポキシ化合物」とも称する。);エポキシノボラック樹脂;レゾルシノールやハイドロキノン、カテコール等の2個以上のフェノール性水酸基を有する芳香族化合物のポリグリシジルエーテル化物;ベンゼンジメタノールやベンゼンジエタノール、ベンゼンジブタノール等のアルコール性水酸基を2個以上有する芳香族化合物のポリグリシジルエーテル化物;フタル酸、テレフタル酸、トリメリット酸等の2個以上のカルボキシル基を有する多塩基酸芳香族化合物のポリグリシジルエステル;安息香酸のグリシジルエステルやトルイル酸、ナフトエ酸のポリグリシジルエステル等;スチレンオキサイドやアルキル化スチレンオキサイド、ビニルナフタレンのエポキシ化物等のスチレンオキサイド類またはジビニルベンゼンのジエポキシ化物等が挙げられる。多官能芳香族エポキシとしては、1種の化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。
 多官能芳香族エポキシは、市販品を用いることができ、例えば、“デナコールEX-201”、“デナコールEX-711”および“デナコールEX-721”(以上、いずれもナガセケムテックス(株)製);“オグソールEG-280”および“オグソールCG-400”(以上、いずれも大阪ガスケミカル(株)製);“EXA-80CRP”および“HP4032D”(以上、いずれもDIC(株)製);“jER828”および“jER828EL”(以上、いずれも三菱ケミカル(株)製);“アデカレジンEP-4100”、“アデカレジンEP-4100G”、“アデカレジンEP-4100E”、“アデカレジンEP-4100L”、“アデカレジンEP-4100TX”、“アデカレジンEP-4000”、“アデカレジンEP-4005”、“アデカレジンEP-4901”、“アデカレジンEP-4901E”(以上、いずれも(株)ADEKA製)等が挙げられる。
 カチオン重合性化合物が芳香族エポキシ化合物を含む場合、芳香族エポキシ化合物の含有量は、全カチオン重合性化合物の総量100質量部に対して例えば10質量部以上60質量部以下であってよく、好ましくは15質量部以上50質量部以下であり、より好ましくは15質量部以上45質量部以下である。芳香族エポキシ化合物の含有量が多すぎると粘度が増加し薄膜化が困難になる傾向があり、少なすぎると耐熱耐久試験における正面透過率の低下が抑制されにくくなる。
(脂肪族エポキシ化合物)
 本発明において、脂肪族エポキシ化合物としては、例えばエポキシ基を1つ有する化合物である単官能脂肪族エポキシ、2つ以上のエポキシ基を有する多官能脂肪族エポキシ等が挙げられる。硬化物の凝集力を維持し、密着性を向上させる観点から、多官能脂肪族エポキシが好ましい。カチオン重合性化合物は、1種以上の単官能脂肪族エポキシまたは1種以上の多官能脂肪族エポキシを単独で、または1種以上の単官能脂肪族エポキシおよび1種以上の多官能脂肪族エポキシを組み合わせて用いることができる。
 単官能脂肪族エポキシは、カチオン硬化型接着剤の粘度を調整することができる。単官能脂肪族エポキシとしては、脂肪族アルコールのグリシジルエーテル化物、アルキルカルボン酸のグリシジルエステル等が挙げられ、その具体例は、アリルグリシジルエーテル、ブチルグリシジルエーテル、sec-ブチルフェニルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、炭素数12および13混合アルキルグリシジルエーテル、アルコールのグリシジルエーテル、脂肪族高級アルコールのモノグリシジルエーテル、高級脂肪酸のグリシジルエステル等を含む。単官能脂肪族エポキシとしては、1種の単官能エポキシ化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。
 多官能脂肪族エポキシは、2個以上のエポキシ基を有し、芳香環を有さない化合物である。ただし、本明細書でいう多官能脂肪族エポキシは、脂環式エポキシ化合物に含まれる、脂環式エポキシ基を有する化合物を除く。多官能脂肪族エポキシにより、接着層12の密着性を調整することができる。
 多官能脂肪族エポキシとしては、下記式(b)で表される脂肪族ジエポキシ化合物がより好ましい。下記式(b)で表される脂肪族ジエポキシ化合物を多官能脂肪族エポキシ化合物として含むことにより、粘度が低く、塗布し易い活性エネルギー線硬化型接着剤を得ることができる。
Figure JPOXMLDOC01-appb-C000018
 式(b)中、Zは炭素数1~9のアルキレン基、炭素数3もしくは4のアルキリデン基、2価の脂環式炭化水素基、または式-C2m-Z-C2n-で示される2価の基である。また、上記式-C2m-Z-C2n-中、-Z-は、-O-、-CO-O-、-O-CO-、-SO-、-SO-またはCO-であり、mおよびnは各々独立に1以上の整数を表し、mおよびnの合計は9以下である。
 2価の脂環式炭化水素基は、例えば、炭素数4~8の2価の脂環式炭化水素基であってよく、例えば下記式(b-1)で示される2価の基等が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 式(b)で示される化合物の具体例としては、例えばアルカンジオールのジグリシジルエーテル、繰り返し数4程度までのオリゴアルキレングリコールのジグリシジルエーテル、または脂環式ジオールのジグリシジルエーテル等が挙げられる。
 上記式(b)で示される化合物を形成し得るジオール(グリコール)としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチル-2,4-ペンタンジオール、2,4-ペンタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、3,5-ヘプタンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール等のアルカンジオール;ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール等のオリゴアルキレングリコール;シクロヘキサンジオール、シクロヘキサンジメタノール等の脂環式ジオールが挙げられる。
 粘度が低く、塗布しやすいカチオン硬化型接着剤が得られるとの観点から、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテルが好ましい。脂肪族エポキシ化合物としては、1種の脂肪族エポキシ化合物を単独で用いても、異なる複数種を組み合わせて用いてもよい。
 脂肪族エポキシ化合物は市販品を用いることができ、例えば、“EP-4088S”、“ED-523T”(以上、(株)ADEKA製)、“EX-211L”、“EX-212L”(以上、いずれもナガセケムテックス(株)製)等が挙げられる。
 カチオン重合性化合物は脂肪族エポキシ化合物を含む場合、脂肪族エポキシ化合物の含有量は、全カチオン重合性化合物の総量100質量部に対して例えば1質量部以上90質量部以下であってよく、好ましくは2.5質量部以上80質量部以下、より好ましくは5質量部以上40質量部以下である。脂肪族エポキシ化合物の含有量が多すぎると、耐熱耐久試験における正面透過率が低下しやすくなる傾向にあり、少なすぎると密着性が低下する傾向にある。
 カチオン硬化型接着剤は、耐熱耐久試験における正面透過率の低下抑制の観点から好ましくはカチオン重合性化合物を含み、より好ましくは多官能脂環式エポキシ、多官能芳香族エポキシおよび多官能オキセタンからなる群から選択される少なくとも1種を含み、さらに好ましくは多官能脂環式エポキシおよび多官能オキセタンから選択される少なくとも1種を含み、特に好ましくは多官能脂環式エポキシおよび多官能オキセタンを含む。
 カチオン硬化型接着剤は、耐熱耐久試験における正面透過率の低下抑制の観点から好ましくは、カチオン重合性化合物の総量100質量部に対して、多官能脂環式エポキシ化合物、多官能芳香族エポキシ化合物および多官能オキセタン化合物からなる群から選択される少なくとも一種の合計含有量が60質量部以上、より好ましくは70質量部以上、さらに好ましくは80質量部以上である。
 カチオン硬化型接着剤は、溶剤を含まないことが好ましい。以下、各成分について詳細を説明する。
 上記した硬化性成分[オキセタン化合物、脂環式エポキシ化合物、芳香族エポキシ化合物、脂肪族エポキシ化合物]は、カチオン硬化型接着剤を無溶剤とするために、有機溶剤などで希釈されていないものを用いることが好ましい。
 上記した硬化性成分は、通常室温において液体であり、溶剤を存在させなくても適度な流動性を有し、適切な接着強度を与えるものを選択し、それに適した光カチオン重合開始剤を配合したカチオン硬化型接着剤は、光学積層体の製造設備において、直線偏光板と位相差層積層体とを接着する工程で溶剤を蒸発させるための乾燥設備を省くことができる。また、適切な活性エネルギー線量を照射することで硬化速度を促進させ、生産速度を向上させることができる。
(その他の硬化性成分)
 カチオン硬化型接着剤に含まれるカチオン重合性化合物は、上記した硬化性成分に限定されることはなく、上記したカチオン重合性の硬化性成分以外のカチオン重合性の硬化性成分、およびラジカル重合性の硬化性成分を含んでいてもよい。ラジカル重合性の硬化性成分としては、アクリル系化合物が例示される。
 ただし、ラジカル重合は硬化収縮が大きい傾向にあるため、カチオン硬化型接着剤は、カチオン重合性化合物としてカチオン重合性の硬化性成分のみを含むことが好ましい。
(光カチオン重合開始剤)
 カチオン硬化型接着剤は、光カチオン重合開始剤を含有することにより、カチオン重合性化合物を活性エネルギー線の照射によるカチオン重合で硬化させて接着層を形成することができる。
 光カチオン重合開始剤をカチオン重合性化合物の合計量100質量部に対し1質量部以上含有させることにより、硬化性成分を十分に硬化させることができ、十分な接着強度と硬度とを有する接着剤硬化層を得ることができる。一方、その量が多くなると、硬化物中のイオン性物質が増加することで硬化物の吸湿性が高くなり、光学積層体1の耐久性能を低下させる可能性があるため、光カチオン重合開始剤の量は、カチオン重合性化合物の合計量100質量部に対して10質量部以下とする。カチオン硬化型接着剤中の光カチオン重合開始剤の含有量は、カチオン重合性化合物の合計量100質量部に対し、好ましくは1.5質量部以上8質量部以下、より好ましくは2質量部以上6質量部以下である。
 光カチオン重合開始剤は、可視光線、紫外線、X線、電子線のような活性エネルギー線の照射によって、カチオン種またはルイス酸を発生し、カチオン重合性化合物の重合反応を開始させるものである。光カチオン重合開始剤は光で触媒的に作用するため、カチオン重合性化合物に混合しても保存安定性や作業性に優れる。光カチオン重合開始剤として使用し得る、活性エネルギー線の照射によりカチオン種やルイス酸を生じる化合物として、例えば、芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩のようなオニウム塩;鉄-アレーン錯体等を挙げることができる。光カチオン重合開始剤は、好ましくは芳香族スルホニウム塩および芳香族ヨードニウム塩からなる群から選択される少なくとも1種のイオン性化合物である。
 芳香族ジアゾニウム塩としては、例えば、ベンゼンジアゾニウム ヘキサフルオロアンチモネート、ベンゼンジアゾニウムヘキサフルオロホスフェート、ベンゼンジアゾニウム
 ヘキサフルオロボレート、が挙げられる。
 芳香族ヨードニウム塩としては、例えば、ジフェニルヨードニウム テトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウム ヘキサフルオロホスフェート、ジフェニルヨードニウム ヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)
ヨードニウム ヘキサフルオロホスフェート、が挙げられる。
 芳香族スルホニウム塩としては、例えば、トリフェニルスルホニウム ヘキサフルオロホスフェート、トリフェニルスルホニウム ヘキサフルオロアンチモネート、トリフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート、4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロアンチモネート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィドビスヘキサフルオロホスフェート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンヘキサフルオロアンチモネート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン テトラキス(ペンタフルオロフェニル)ボレート、4-フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド ヘキサフルオロホスフェート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオ-ジフェニルスルフィド ヘキサフルオロアンチモネート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィドテトラキス(ペンタフルオロフェニル)ボレート、が挙げられる。
 鉄-アレーン錯体としては、例えば、キシレン-シクロペンタジエニル鉄(II)ヘキサフルオロアンチモネート、クメン-シクロペンタジエニル鉄(II) ヘキサフルオロ
ホスフェート、キシレン-シクロペンタジエニル鉄(II) トリス(トリフルオロメチ
ルスルホニル)メタナイド、が挙げられる。
 光カチオン重合開始剤は、1種のみを単独で使用してもよいし2種以上を併用してもよい。上記の中でも特に芳香族スルホニウム塩は、300nm付近の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械強度や接着強度を有する接着剤硬化層を得ることができるため、好ましく用いられる。
(光増感剤)
 カチオン硬化型接着剤に400nmより長い波長の光に極大吸収を示す光増感剤(以下、略して光増感剤ともいう)を含有させることにより、それを含有しない場合に比べ、接着剤の硬化性を向上させることができる。
 光増感剤は、下記一般式(H):
Figure JPOXMLDOC01-appb-C000020

(式中、RおよびRは互いに独立に炭素数1~6のアルキル基または炭素数2~12のアルコキシアルキル基を表し、Rは水素原子または炭素数1~6のアルキル基を表す)
で示されるアントラセン系化合物を含む。上記の光カチオン重合開始剤は、300nm付近またはそれより短い波長域に極大吸収を示し、その付近の波長の光に感応してカチオン種またはルイス酸を発生し、カチオン重合性の硬化性成分のカチオン重合を開始させるが、一般式(H)で示されるアントラセン系化合物は、400nmより長い波長域に極大吸収を示すものであるため、それよりも長い波長の光にも感応することができるようになる。
 アントラセン系化合物の具体例としては、例えば、
 9,10-ジメトキシアントラセン、
 9,10-ジエトキシアントラセン、
 9,10-ジプロポキシアントラセン、
 9,10-ジイソプロポキシアントラセン、
 9,10-ジブトキシアントラセン、
 9,10-ジペンチルオキシアントラセン、
 9,10-ジヘキシルオキシアントラセン、
 9,10-ビス(2-メトキシエトキシ)アントラセン、
 9,10-ビス(2-エトキシエトキシ)アントラセン、
 9,10-ビス(2-ブトキシエトキシ)アントラセン、
 9,10-ビス(3-ブトキシプロポキシ)アントラセン、
 2-メチルまたは2-エチル-9,10-ジメトキシアントラセン、
 2-メチルまたは2-エチル-9,10-ジエトキシアントラセン、
 2-メチルまたは2-エチル-9,10-ジプロポキシアントラセン、
 2-メチルまたは2-エチル-9,10-ジイソプロポキシアントラセン、
 2-メチルまたは2-エチル-9,10-ジブトキシアントラセン、
 2-メチルまたは2-エチル-9,10-ジペンチルオキシアントラセン、
 2-メチルまたは2-エチル-9,10-ジヘキシルオキシアントラセン
が挙げられる。
 カチオン硬化型接着剤中の光増感剤の含有量は、カチオン重合性化合物の合計量100質量部に対し、好ましくは0.1質量部以上5.0質量部以下、より好ましくは0.5質量部以上3.0質量部以下である。
(光増感助剤)
 カチオン硬化型接着剤は、光増感助剤を含有してもよい。光増感助剤は、好ましくはナフタレン系光増感助剤である。
 ナフタレン系光増感助剤の具体例としては、例えば、
 4-メトキシ-1-ナフトール、
 4-エトキシ-1-ナフトール、
 4-プロポキシ-1-ナフトール、
 4-ブトキシ-1-ナフトール、 4-ヘキシルオキシ-1-ナフトール、
 1,4-ジメトキシナフタレン、
 1-エトキシ-4-メトキシナフタレン、
 1,4-ジエトキシナフタレン、
 1,4-ジプロポキシナフタレン、
 1,4-ジブトキシナフタレン
が挙げられる。
 カチオン硬化型接着剤にナフタレン系光増感助剤を含有させることにより、それを含有しない場合に比べ、接着剤の硬化速度を向上させることができる。ナフタレン系光増感助剤の含有量はカチオン重合性化合物の合計量100質量部に対し0.1質量部以上とすることにより、このような効果を発現させることができる。一方、ナフタレン系光増感助剤の含有量が多くなると、低温保管時に析出する等の問題を生じることから、その含有量は、カチオン重合性化合物の合計量100質量部に対し5質量部以下とすることが好ましい。ナフタレン系光増感助剤の含有量は、好ましくは、カチオン重合性化合物の合計量100質量部に対し3質量部以下である。
(添加剤成分)
 カチオン硬化型接着剤には、本発明の効果を損なわない限り、任意成分である他の成分として、添加剤成分を含有させることができる。添加剤成分としては、イオントラップ剤、酸化防止剤、光安定剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、レベリング剤、色素、有機溶剤等を挙げることができる。
 添加剤成分を含有させる場合、その含有量は、カチオン重合性化合物の合計量100質量部に対し10質量部以下であることが好ましい。
 上記した光カチオン重合開始剤、光増感剤、光増感助剤および添加剤成分は、カチオン硬化型接着剤の調製時に、溶剤を含まない状態で添加してもよいし、溶剤に希釈してから直接添加してもよい。上記した含有量の数値範囲は、いずれも固形分基準での数値範囲である。
(硬化方法)
 カチオン硬化型接着剤は、電子線硬化型、紫外線硬化型の態様で用いることができる。本明細書において、活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、紫外線、赤外線、X線、α線、β線、γ線および電子線等が挙げられる。
 電子線硬化型において、電子線の照射条件は、カチオン硬化型接着剤を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV以上300kV以下であり、さらに好ましくは10kV以上250kV以下である。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて電子線が跳ね返り、透明保護フィルムや偏光子に損傷を与えるおそれがある。照射線量としては、5kGy以上100kGy以下、さらに好ましくは10kGy以上75kGy以下である。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、光学層に損傷を与え、機械的強度の低下や黄変を生じ、所望の光学特性を得ることができない。
 電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。酸素を適宜導入することによって、最初に電子線があたる光学層にあえて酸素阻害を生じさせ、他の光学層へのダメージを防ぐことができ、接着剤にのみ効率的に電子線を照射させることができる。
 紫外線硬化型において、カチオン硬化型接着剤の光照射強度は、接着剤の組成ごとに決定されるものであって特に限定されないが、10mW/cm2以上1,000mW/cm2
以下であることが好ましい。樹脂組成物への光照射強度が10mW/cm2未満であると
、反応時間が長くなりすぎ、1,000mW/cm2を超えると、光源から輻射される熱および組成物の重合時の発熱により、接着剤の構成材料の黄変を生じる可能性がある。なお、照射強度は、好ましくは光カチオン重合開始剤、および光増感剤、光増感助剤の活性化に有効な波長領域における強度であり、より好ましくは波長400nm以下の波長領域における強度であり、さらに好ましくは波長280nm以上320nm以下の波長領域における強度である。このような光照射強度で1回あるいは複数回照射して、その積算光量を、好ましくは10mJ/cm2以上、さらに好ましくは100mJ/cm2以上1,000
mJ/cm2以下となるように設定する。上記接着剤への積算光量が10mJ/cm2未満であると、重合開始剤由来の活性種の発生が十分でなく、接着剤の硬化が不十分となる。一方でその積算光量が1,000mJ/cm2を超えると、照射時間が長くなり、生産性向上には不利なものとなる。この際、光吸収異方性膜11や光学フィルム13の種類、接着剤種の組み合わせなどによって、どの波長領域(UVA(320nm以上390nm以下)やUVB(280nm以上320nm以下)など)での積算光量が必要かは異なる。
 活性エネルギー線の照射によりカチオン硬化型接着剤の重合硬化を行うために用いる光源は、特に限定されないが、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380nm以上440nm以下を発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプが挙げられる。エネルギーの安定性や装置の簡便さという観点から、波長400nm以下に発光分布を有する紫外光源であることが好ましい。
(光学フィルム)
 光学フィルム13は、光吸収異方性膜11に接着層12を介して設けることができる。光学フィルム13は、光吸収異方性膜11あるいはその他の層の熱および/または湿度による寸法変化、割れおよびクラック等を防止することができる。また、紫外線等に曝露した際の劣化を防止することができ、保管時および輸送時の光吸収異方性膜11の表面の傷や劣化を防ぐことができる。
 光学フィルム13としては、光、特に可視光を透過し得る透明性を有する透明フィルムが好ましく、波長380~780nmにわたる光線に対しての透過率が80%以上となる特性を有するものが好ましい。
 光学フィルム13は、片側または両側に後述のハードコート層が設けられていてもよい。光学フィルム13が片側にハードコート層を有する場合、好ましくは光学フィルム13の接着層12とは反対側となるようにハードコート層が配置される。光学フィルム13の接着層12側とは反対側の表面に、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等を行ってもよい。
 光学フィルム13の厚みは、好ましくは3~40μm、より好ましくは5~30μmである。透明光学フィルム13の膜厚が上記範囲内であると、光吸収異方性膜11の表面を十分に保護し得る。また、光学積層体1の薄型化が可能となり得る。上記光学フィルムの厚みは、光学フィルムが後述のハードコート層を有する場合はハードコート層を含めた厚みである。
 光学フィルム13としては、例えばガラスフィルムおよび樹脂フィルム等が挙げられる。中でも好ましくは樹脂フィルムである。樹脂フィルムを構成する樹脂としては上述の基材について例示した樹脂が挙げられる。樹脂フィルムとして、好ましくは環状ポリオレフィン系樹脂(COP)フィルムである。
(ハードコート層)
 ハードコート層(HC層ということもある)は、光吸収異方性膜11および光学フィルム13の表面を保護する機能を有することができる。ハードコート層は、光吸収異方性膜11の片側または両側に配置されることができる。ハードコート層は、光吸収異方性膜11の接着層12側とは反対側に配置されてもよいし、光学フィルム13の接着層12側とは反対側に配置されてもよい。ハードコート層が、光吸収異方性膜11の接着層12側とは反対側に配置される場合、ハードコート層は光吸収異方性膜11に直接的に接して配置されてよいし、光学フィルム13とは別のハードコート層付光学フィルムとして配置されてもよい。ハードコート層が、光学フィルム13の接着層12側とは反対側に配置される場合、光学フィルム13に直接的に接して配置されてよい。
 ハードコート層は、好ましくは、任意の適切な紫外線硬化型樹脂の硬化物層である。紫外線硬化型樹脂としては、例えば、アクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂等が挙げられる。これらの樹脂は単独で用いてもよいし、混合して用いることもできる。ハードコート層は、上記紫外線硬化型樹脂を含むハードコート層形成用硬化性組成物の硬化物層であることができる。ハードコート層形成用硬化性組成物は、必要に応じて、重合開始剤、溶剤等を含み得る。重合開始剤としては、例えばラジカル重合開始剤等が挙げられる。
 ハードコート層の厚みは、任意の適切な値に設定し得る。好ましくは30μm以下であり、より好ましくは1~20μmであり、さらに好ましくは1~15μmであり、特に好ましくは1~10μmである。
 ハードコート層は、例えば離型フィルムや上述の光学フィルム等の基材上にハードコート層形成用硬化性組成物を塗布し、次いで硬化させることにより硬化物層を形成して積層体とした状態で光学積層体に積層することができる。離型フィルムは、光学積層体が光学部材に貼合されるときに剥離除去されてよい。基材は、上記した光吸収異方性膜11の製造方法で用いた基材を採用し得る。
(プロテクトフィルム)
 光学積層体は、その表面(典型的には、光学積層体1の光学フィルム13側の表面)を保護するためのプロテクトフィルムを含むことができる。プロテクトフィルムは、例えば画像表示素子や光学部材に光学積層体1が貼合された後、それが有する粘着剤層ごと剥離除去される。
 プロテクトフィルムは、例えば、基材フィルムとその上に積層される粘着剤層とで構成される。粘着剤層については上述の記述が引用される。基材フィルムを構成する樹脂は、例えば、ポリエチレンのようなポリエチレン系樹脂、ポリプロピレン等のポリプロピレン系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂、ポリカーボネート系樹脂等の熱可塑性樹脂であることができる。好ましくは、ポリエチレンテレフタレート等のポリエステル系樹脂である。
 プロテクトフィルムの厚みとしては、特に限定されないが、20μm以上200μm以下の範囲とすることが好ましい。基材フィルムの厚みが20μm以上であると、光学積層体1に強度が付与され易くなる傾向にある。
(光学積層体の製造方法)
 本発明の光学積層体は、光吸収異方性膜11と光学フィルム13とを接着剤層12を介して積層させることにより製造することができる。光学積層体は、例えば長尺のフィルムを連続的に搬送しながら積層する、いわゆるロールトゥロールによって光学積層体を製造することができる。例えば、光吸収異方性膜11と、光学フィルム13とを連続的に搬送しながら接着層12を介して貼合すればよい。
 ロールトゥロールによって光学積層体1を製造することにより、光学積層体1の製造工程を短縮することができ、また、層間に異物が混入することを防止して視認性に優れた光学積層体1を製造することができる。
(光学積層体の層構成)
 本発明の光学積層体は、上述のように、光学積層体1の片側または両側にハードコート層をさらに備えていてもよく、光学積層体の両側にハードコート層を備えた光学積層体は図3に示す光学積層体2が挙げられる。
 図3に示す光学積層体2は、第一ハードコート層21、光吸収異方性膜22、接着層23および光学フィルム24をこの順に備える。光学積層体2において、光学フィルム24は、第二ハードコート層26が形成された樹脂フィルム25である。
 本発明の光学積層体は、さらに偏光層(例えば直線偏光板)を含んでいてもよいし、偏光層と面内位相差を有する位相差層との両方(例えば偏光層および面内位相差を有する位相差層を含む円偏光板)を含んでいてもよい。本発明の光学積層体が偏光層と面内位相差を有する位相差層とを両方を含む場合は、光学積層体1又は光学積層体2において、光吸収異方性膜の接着層側と反対側に、光吸収異方性膜側から偏光層、面内位相差を有する位相差層をこの順に含むことが好ましい。本発明の光学積層体が偏光層を含む場合は、具体的には図4に示す直線偏光板付き光学積層体3が挙げられる。本発明の光学積層体が偏光層と面内位相差を有する層とを両方を含む場合は、図5に示す円偏光板付き光学積層体4が挙げられる。
 図4に示す直線偏光板付き光学積層体3は、偏光層37、貼合層38、第一ハードコート層31、光吸収異方性膜32、接着層33および光学フィルム34をこの順に備える。光学フィルム34は、第二ハードコート層36が形成された樹脂フィルム35である。偏光層37は、保護フィルム39、貼合層40、偏光子41、貼合層42、保護フィルム43の構成を有する直線偏光板である。
 図5に示す円偏光板付き光学積層体4は、円偏光板69、貼合層60、第一ハードコート層51、光吸収異方性膜52、接着層53および光学フィルム54をこの順に備える。円偏光板69は、面内位相差を有する位相差層57、貼合層58、偏光層59を備える。光学フィルム54は、第二ハードコート層56が形成された樹脂フィルム55である。面内位相差を有する位相差層57は、第1位相差層61、貼合層62および第2位相差層63を備える。偏光層59は、保護フィルム64、貼合層65、偏光子66、貼合層67、保護フィルム68の構成を有する直線偏光板である。
(貼合層)
 貼合層は貼り合わせる層同士の間に介在させて層同士を接合する機能を有することができる。貼合層は、公知の粘着剤層または接着剤層を用いることができる。粘着剤層は、粘着剤を用いて形成された層である。本明細書において粘着剤とは、それ自体を被着体に張り付けることで接着性を発現するものであり、いわゆる感圧型接着剤と称されるものである。粘着剤としては、従来公知の光学的な透明性に優れる粘着剤を特に制限なく用いることができ、例えば、アクリル系、ウレタン系、シリコーン系、ポリビニルエーテル系等のベースポリマーを有する粘着剤を用いることができる。
 貼合層が粘着剤から形成される粘着剤層である場合、その厚みは3μm以上であってもよく、5μm以上であってもよく、また、35μm以下であってもよく、30μm以下であってもよい。
 粘着剤層は、紫外線吸収剤、イオン性化合物等を用いた帯電防止剤、溶媒、架橋触媒、粘着付与樹脂(タッキファイヤー)、可塑剤、軟化剤、染料、顔料、無機フィラー等の添加剤を含んでいてもよい。
 貼合層として用いる接着剤層は、接着剤中の硬化性成分を硬化させることによって形成することができる。貼合層として用いる接着剤層を形成するための接着剤としては、感圧型接着剤(粘着剤)以外の接着剤であって、例えば、水系接着剤、紫外線硬化型接着剤等の活性エネルギー線硬化型接着剤が挙げられる。
 貼合層が水系接着剤から形成される接着剤層である場合、その厚みは5μm以下であってよく、1μm以下であることが好ましく、0.5μm以下であることがより好ましく、
0.01μm以上であってよく、0.05μm以上であることが好ましい。
 貼合層が活性エネルギー線硬化型接着剤から形成される接着剤層である場合、その厚みは10μm以下であってよく、5μm以下であることが好ましく、3μm以下であることがより好ましく、0.1μm以上であってもよく、0.5μm以上であることが好ましい。
(偏光層)
 偏光層は、無偏光の光を入射させたとき、吸収軸に直交する振動面をもつ直線偏光を透過させる性質を有する直線偏光層である。偏光層は、偏光子、例えば吸収異方性を有する色素を吸着させた延伸フィルムである偏光子、吸収異方性を有する色素を基材フィルムに塗布して形成した偏光子等を含むことができる。偏光層は、偏光子の片面または両面に接着剤を介して透明保護フィルムを積層した直線偏光板として、光学積層体に組み込まれてもよい。
(偏光層を構成する延伸フィルムで形成された偏光子)
 偏光子は、吸収異方性を有する色素を吸着させた延伸フィルムであってもよい。このような延伸フィルムで構成された偏光子は、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを吸収異方性を有する色素で染色することにより、その吸収異方性を有する色素を吸着させる工程、吸収異方性を有する色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、およびホウ酸水溶液による処理後に水洗する工程を経て製造することができる。
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルとそれに共重合可能な他の単量体との共重合体が用いられる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類等が挙げられる。
 ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールも使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000の範囲である。
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光子の原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系原反フィルムの膜厚は、例えば、10~150μm程度とすることができる。
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、吸収異方性を有する色素による染色の前、染色と同時、または染色の後で行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。また、これらの複数の段階で一軸延伸を行うことも可能である。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また一軸延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶媒を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は、通常3~8倍程度である。
 ポリビニルアルコール系樹脂フィルムの吸収異方性を有する色素による染色は、例えば、吸収異方性を有する色素を含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬する方法によって行われる。
 吸収異方性を有する色素として、具体的には、ヨウ素や二色性の有機染料が用いられる。二色性の有機染料としては、C.I.DIRECT RED 39等のジスアゾ化合物からなる二色性直接染料、および、トリスアゾ、テトラキスアゾ等の化合物からなる二色性直接染料等が挙げられる。ポリビニルアルコール系樹脂フィルムは、染色処理前に、水への浸漬処理を施しておくことが好ましい。
 吸収異方性を有する色素としてヨウ素を用いる場合は通常、ヨウ素およびヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液におけるヨウ素の含有量は、水100質量部あたり、通常、0.01~1質量部程度である。また、ヨウ化カリウムの含有量は、水100質量部あたり、通常、0.5~20質量部程度である。染色に用いる水溶液の温度は、通常20~40℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常20~1,800秒程度である。
 一方、吸収異方性を有する色素として二色性の有機染料を用いる場合は通常、水溶性二色性染料を含む水溶液にポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液における二色性の有機染料の含有量は、水100質量部あたり、通常、1×10-4~10質量部程度であり、好ましくは1×10-3~1質量部であり、さらに好ましくは1×10-3~1×10-2質量部である。この水溶液は、硫酸ナトリウム等の無機塩を染色助剤として含んでいてもよい。染色に用いる二色性染料を含む水溶液の温度は、通常、20~80℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常、10~1,800秒程度である。
 吸収異方性を有する色素による染色後のホウ酸処理は通常、染色されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液に浸漬する方法により行うことができる。このホウ酸水溶液におけるホウ酸の含有量は、水100質量部あたり、通常2~15質量部程度であり、好ましくは5~12質量部である。吸収異方性を有する色素としてヨウ素を用いた場合には、このホウ酸水溶液はヨウ化カリウムを含有することが好ましく、その場合のヨウ化カリウムの含有量は、水100質量部あたり、通常0.1~15質量部程度であり、好ましくは5~12質量部である。ホウ酸水溶液への浸漬時間は、通常60~1,200秒程度であり、好ましくは150~600秒、さらに好ましくは200~400秒である。ホウ酸処理の温度は、通常50℃以上であり、好ましくは50~85℃、さらに好ましくは60~80℃である。
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムは通常、水洗処理される。水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬する方法により行うことができる。水洗処理における水の温度は、通常5~40℃程度である。また浸漬時間は、通常1~120秒程度である。
 水洗後に乾燥処理が施されて、偏光子が得られる。乾燥処理は例えば、熱風乾燥機や遠赤外線ヒーターを用いて行うことができる。乾燥処理の温度は、通常30~100℃程度であり、好ましくは50~80℃である。乾燥処理の時間は、通常60~600秒程度であり、好ましくは120~600秒である。乾燥処理により、偏光子の水分率は実用程度にまで低減される。その水分率は、通常5~20重量%程度であり、好ましくは8~15重量%である。水分率が5重量%を下回ると、偏光子の可撓性が失われ、偏光子がその乾燥後に損傷したり、破断したりすることがある。また、水分率が20質量%を上回ると、偏光子の熱安定性が悪くなる可能性がある。
 こうしてポリビニルアルコール系樹脂フィルムに、一軸延伸、吸収異方性を有する色素による染色、ホウ酸処理、水洗および乾燥をして得られる偏光子の厚みは、好ましくは5~40μmである。
(吸収異方性を有する色素を基材フィルムに塗布して形成した偏光子)
 吸収異方性を有する色素を基材フィルムに塗布して形成した偏光子としては、液晶性および吸収異方性を有する色素を含む組成物、または吸収異方性を有する色素と重合性液晶とを含む組成物を基材フィルムに塗布し偏光膜を形成して得られる偏光子が挙げられる。基材フィルムとしては、光吸収異方性膜の製造に用い得る基材として先に例示したものが挙げられる。
 偏光子の厚みは小さい方が好ましいが、小さすぎると強度が低下し、加工性に劣る傾向があるため、通常20μm以下であり、好ましくは5μm以下であり、より好ましくは0.5~3μmである。
 上記偏光子としては、具体的には、特開2013-33249号公報等に記載の偏光層が挙げられる。
 上記のようにして得られた偏光子(延伸フィルム、吸収異方性を有する色素を基材フィルムに塗布して形成した偏光子)は、その片面または両面に、貼合層(好ましくは接着剤層)を介して保護フィルム(透明保護フィルム)を積層した偏光板とした状態で光学積層体に組み込まれてもよい。保護フィルムは、光吸収異方性膜の製造に用い得る基材として先に例示したもの等を用いることができる。吸収異方性を有する色素を基材フィルムに塗布して形成した偏光子では、上記した基材フィルムを保護フィルムとしてもよい。保護フィルムは片側または両側にハードコート層を有していてもよい。
(面内位相差を有する位相差層)
 位相差層は、面内位相差を有する。位相差層が有する面内位相差の値は特に限定されないが、下記式(1)に示される光学特性を満たすことが好ましく、下記式(1)、下記式(2)及び下記式(3)で示される光学特性を満たすことが好ましい。
 100nm<Re(550)<160nm  ・・・(1)
[式中、Re(550)は波長550nmの光に対する面内位相差値(面内リタデーション)を表す。]
 Re(450)/Re(550)≦1.0  ・・・(2)
 1.00≦Re(650)/Re(550) ・・・(3)
[式中、Re(450)は波長450nmの光に対する面内位相差値を、Re(550)は波長550nmの光に対する面内位相差値を、Re(650)は波長650nmの光に対する面内位相差値を表す。]
 式(2)における、Re(450)/Re(550)は好ましくは0.7以上1.0以下、より好ましくは0.80以上0.95以下、さらに好ましくは0.80以上0.92以下、特に好ましくは0.82以上0.88以下である。
 波長λにおける位相差層の面内位相差値ReA(λ)は、下記式(4)で表される式から導きだすことができる。そのため、所望の面内位相差値(Re(λ))を得るには、(nxA(λ)-nyA(λ))と膜厚dとを調整すればよい。
  ReA(λ)=(nxA(λ)-nyA(λ))×dA  (4)
[式(6)中、
 nxA(λ)は、位相差層の面内における波長λnmでの主屈折率を表し、
 nyA(λ)は、nxA(λ)と同一面内で、nxA(λ)の方向に対して直交する方向の波長λnmでの屈折率を表し、
 dAは、位相差層の厚みを示す。]
 面内位相差を有する位相差層は、例えば、面内位相差を有する延伸フィルムであってもよく、光学積層体1の積層方向に直交する方向(以下、「水平方向」ということがある。)に重合性液晶化合物が配向した状態で硬化した硬化物層(以下、「水平配向液晶層」ということがある。)であってもよい。面内位相差を有する位相差層を所望する面内位相差値に容易に制御可能であること、薄膜化が可能であることから、位相差層は、水平配向液晶層であることが好ましい。
 水平配向配向液晶層は、例えば、特開2010-31223号公報、特開2010-270108号公報、特開2011-6360号公報、特開2011-207765号公報、特開2011-162678号公報、特開2016-81035号公報、国際公開第2017/043438号及び特表2011-207765号公報に記載の重合性液晶化合物が配向した状態で硬化した硬化物層等が挙げられる。
 面内位相差を有する位相差層が延伸フィルムである場合、位相差層の厚みは、通常5μm以上200μm以下であり、好ましくは10μm以上80μm以下、さらに好ましくは40μm以下である。位相差層が水平配向液晶層である場合、位相差層の厚みは、好ましくは0.1μm以上であり、より好ましくは0.2μm以上であり、また、好ましくは5μm以下であり、より好ましくは3μm以下である。
 面内位相差を有する位相差層は、λ/4の位相差特性を有する層とλ/2の位相差特性を有する層との組み合わせ等、各層の遅相軸どうしのなす角度が任意の角度となるように複数の層を積層することにより、全体として上記式(1)~(3)の関係を満たすものであってもよい。面内位相差を有する位相差層がλ/4の位相差特性を有する層とλ/2の位相差特性を有する層とを積層した積層体である場合は、例えば、各層の遅相軸どうしのなす角度が50°以上70°以下とするように積層したものを好適に用いることができる。
 また、円偏光板付き光学積層体4は、さらに、厚み方向に異方性を有する層(ポジティブCプレート)を含んでいてもよい。ポジティブC層は、波長550nmにおける厚み方向の位相差値Rth(550)が、通常-170nm以上-10nm以下の範囲であり、好ましくは-150nm以上-20nm以下、より好ましくは-100nm以上-40nmの範囲である。
 円偏光板付き光学積層体4がポジティブC層を含む場合は、貼合層を介して面内位相差を有する位相差層とポジティブC層とを積層させることが好ましい。
(表示装置)
 表示装置としては、有機EL表示装置が好ましい。光学積層体は表示装置のパネルの視認側に設けられ、表示装置においては、光学フィルム13が光吸収異方性膜11よりも視認側になるように配置されることが好ましい。
 以下、実施例および比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中の「%」および「部」は、特記のない限り、質量%および質量部である。
<粘弾性の評価>
 以下で作製した接着剤組成物を、COPフィルム〔日本ゼオン(株)製「ZB」〕の片面に、バーコーター〔第一理化(株)製〕を用いて膜厚およそ25μmとなるよう塗工し、その塗工面に更にCOPフィルムを被せた。次に、紫外線照射装置〔フュージョンUVシステムズ(株)製〕のHバルブで積算光量600mJ/cm(UV-B)の紫外線を照射し、接着層が固体となった段階で、片方のCOPフィルムを剥がし、温度23℃相対湿度55%の雰囲気中で3日以上養生させ、接着剤を硬化させた。これを30mm×5mmの大きさに裁断し、もう片方のCOPフィルムを剥がし、接着剤硬化物層を得た。得られた硬化物層を動的粘弾性測定装置〔アイティー計測制御(株)製「DVA―220」〕に、つかみ具間20mmでセットし、周波数10Hz、引張モードで粘弾性測定を行い、損失弾性率[MPa]の最大値の温度[℃]、温度80℃における貯蔵弾性率[MPa]、tanδが最大となる温度[℃]を求めた。tanδは、貯蔵弾性率をE’および損失弾性率をE’’としたとき以下の関係を有する。
Figure JPOXMLDOC01-appb-M000021
<密着性評価>
 実施例および比較例で作製した光学積層体の離型フィルムを剥離し、露出したハードコート層にコロナ処理を施し、準備したアクリル系粘着剤(リンテック社製、膜厚5μm)をラミネーターで貼合した。次に、それを200mm×25mmに裁断し、粘着剤面をソーダガラスに貼合し、プロテクトフィルム/16HC-COPフィルム/接着層/光吸収異方性膜/ハードコート層/アクリル系粘着剤/ソーダガラスの積層構造を有する密着性評価サンプルを得た。得られた評価サンプルのプロテクトフィルムを剥離し、16HC-COPフィルムと光吸収異方性膜の間にカッターの刃を入れ、長さ方向に端から30mm剥離し、その剥離部分を万能引張試験機〔(株)島津製作所製「AG-1」〕のつかみ部でつかんだ。この状態の試験片を、温度23℃相対湿度55%の雰囲気中にて、JIS K 6854-2:1999「接着剤-はく離接着強さ試験方法-第2部:180度はく離」に準じて、つかみ移動速度300mm/分で180度はく離試験を行い、つかみ部の30mmを除く170mmの長さにわたる平均剥離力を求め、以下の基準に基づいて評価した。
 ◎:180°剥離力が0.5N以上、もしくは、カッター刃が16HC-COPフィルムと光吸収異方性膜の間に入らない。
 ○:180°剥離力が0.3N以上0.5N未満。
 ×:180°剥離力が0.3N未満、もしくは、離型フィルム剥離時に、16HC-COPフィルムと光吸収異方性膜の間で剥がれが発生。
<耐熱耐久試験>
 実施例および比較例で作製した光学積層体の離型フィルムを剥離し、露出したハードコート層にコロナ処理を施し、準備したアクリル系粘着剤(リンテック社製、膜厚5μm)をラミネーターで貼合した。次に、それを40mm×40mmに裁断し、粘着剤面を無アルカリガラスに貼合し、プロテクトフィルム/16HC-COPフィルム/接着層/光吸収異方性膜/ハードコート層/アクリル系粘着剤/無アルカリガラスの積層構造を有する耐久性評価サンプルを得た。得られた評価サンプルのプロテクトフィルムを剥離し、温度50℃、圧力5kg/cm(490.3kPa)で20分間オートクレーブ処理を施し、温度23℃、相対湿度55%の環境下で24時間放置した。その後、80℃dry×500hrの条件で耐熱耐久試験を行い、オートクレーブ処理前と耐久試験後での正面透過率変化を、紫外可視分光光度計〔(株)島津製作所製「UV―2450」〕を用いて測定し、以下の基準に基づいて評価した。
 ◎:波長620nmでの正面透過率変化の絶対値が3%未満。
 ○:波長620nmでの正面透過率変化の絶対値が3%以上5%未満。
 ×:波長620nmでの正面透過率変化の絶対値が5%以上、もしくは、光学積層体作製時のUV照射で外観異常が発生。
<光吸収異方性膜形成用組成物の調製>
 下記成分を混合し、80℃で1時間攪拌することにより、光吸収異方性膜形成用組成物を得た。二色性色素には、特開2013-101328号公報の実施例に記載のアゾ系色素を用いた。
・式(A-6)で表される重合性液晶化合物 75部
Figure JPOXMLDOC01-appb-C000022

・式(A-7)で表される重合性液晶化合物 25部
Figure JPOXMLDOC01-appb-C000023

・下記に示す二色性色素(1)(極大吸収波長:602nm) 1部
Figure JPOXMLDOC01-appb-C000024

・重合開始剤:2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369;チバスペシャルティケミカルズ社製) 6部
・イソシアネート系架橋剤(BASF社製「LR9000」)  2部
・レベリング剤:F-556(メガファックF-556、DIC(株)製) 1部
・溶剤:o-キシレン 650部
<ハードコート層形成用硬化性組成物の調製>
 下記成分を混合し、80℃で1時間攪拌することにより、ハードコート層形成用硬化性組成物(X)を調製した。
・アクリレート化合物:ジペンタエリスリトールヘキサアクリレート 50部
・ウレタンアクリレート化合物:ウレタンアクリレート(ダイセル・オルネクス(株)製「エベクリル4858」) 50部
・ラジカル重合開始剤:2-[4-(メチルチオ)ベンゾイル]-2-(4-モルホリニル)プロパン(BASF社製「イルガキュア907」) 3部
・溶剤:メチルエチルケトン 10部
<光吸収異方性膜の作製>
 離型処理が施されたポリエチレンテレフタレートフィルム(リンテック社製「SP-PLR382050」)の離型処理面に、コロナ処理を実施した後、上記ハードコート層形成用硬化性組成物(X)をバーコート法(#2、30mm/s)により塗布し、紫外線照射装置〔ウシオ電機(株)製SPOT CURE SP-7〕を用いて、積算光量500mJ/cm(波長365nm、窒素雰囲気下)の紫外線を塗膜に照射することにより、
離型フィルム表面にハードコート層が形成されたハードコート層付き離型フィルムを得た。接触式膜厚計で測定したハードコート層の厚みは2μmであった。
 上記ハードコート層の表面に、上記で得られた光吸収異方性膜形成用組成物を、バーコーターを用いて塗布し、100℃で1分間乾燥した。
 次に、紫外線照射装置〔ウシオ電機(株)製ユニキュアVB-15201BY-A〕の高圧水銀ランプで積算光量1000mJ/cm(波長365nm、窒素雰囲気下)の紫外線を照射することにより、重合性液晶化合物および二色性色素が塗膜平面に対して垂直配向した光吸収異方性膜を形成し、離型フィルム/ハードコート層/光吸収異方性膜からなる積層体(1)を得た。この際、光吸収異方性膜の厚さをエリプソメータにより測定したところ、0.4μmであった。
<接着剤組成物の調製>
 以下に示す各成分を表2に示す割合で配合し、接着剤組成物1~7を作製した。
(エポキシ化合物)
A-1:3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(商品名:CEL2021P、株式会社ダイセル製)
A-2:2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(商品名:EHPE3150、株式会社ダイセル製)
A-3:ビスフェノールA型エポキシ樹脂(商品名:EP-4100E、株式会社ADEKA製)
A-4:ネオペンチルグリコールジグリシジルエーテル(商品名:EX-211L、ナガセケムテックス株式会社製)
A-5:1,6-ヘキサンジオールジグリシジルエーテル(商品名:EX-212L、ナガセケムテックス株式会社製)
A-6:下記式で表される化合物
Figure JPOXMLDOC01-appb-C000025

(オキセタン化合物)
B-1:3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(商品名:OXT-221、東亜合成株式会社製)
(アクリル化合物)
C-1:トリシクロデカンジメタノールジアクリレート(商品名:A-DCP、新中村化学株式会社製)
(開始剤)
D-1:カチオン重合開始剤(商品名:CPI-100P、50質量%溶液、サンアプロ株式会社製)
D-2:ラジカル重合開始剤(商品名:Omnirad 907、IGM RESINS製)
(光増感助剤)
E-1:1,4-ジエトキシナフタレン
(レベリング剤)
F-1:シリコーン系レベリング剤(商品名:SH710、東レ・ダウコーニング株式会社製)
F-2:シリコーン系レベリング剤(商品名:BYK-307、ビッグケミー・ジャパン株式会社製)
Figure JPOXMLDOC01-appb-T000026
<実施例1>
<光学積層体の作製>
 光学フィルムとして、紫外線吸収機能が付与された環状ポリオレフィン系樹脂フィルム(COPフィルム、厚み13μm)の片面にハードコート層(HC層、厚み3μm)が形成されたハードコート環状オレフィン系樹脂フィルム(厚み16μm、以下、「16HC-COPフィルム」という)を用意した。この16HC-COPフィルムのハードコート層側にはプロテクトフィルムを貼合した。
 16HC-COPフィルムのCOPフィルム側(ハードコート層側とは反対側)と、上記で得られた光吸収異方性膜からなる積層体(1)の光吸収異方性膜面にそれぞれコロナ処理を施し、接着剤組成物1を介して、接着剤厚みが1.5μmとなるようコロナ処理面同士をラミネーターで貼合した。
 次に、離型フィルム側から、紫外線照射装置〔フュージョンUVシステムズ(株)製〕のHバルブで積算光量500mJ/cm(UV-A)の紫外線を照射し、接着剤組成物1を硬化させ、プロテクトフィルム/16HC-COPフィルム/接着層/光吸収異方性膜/ハードコート層/離型フィルムの積層構造を有する実施例1の光学積層体を得た。得られた光学積層体について密着性の評価および耐熱耐久試験を行った。結果を表3に示す。
<実施例2~6および比較例1>
 実施例1において接着剤組成物1に代えて表3に示す接着剤組成物を用いたこと以外は実施例1と同様にして光学積層体を作製した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000027
<実施例7>
<水系接着剤の調製>
 水100部に対し、カルボキシル基変性ポリビニルアルコール〔株式会社クラレから入手した商品名「KL-318」〕を3部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤〔田岡化学工業株式会社から入手した商品名「スミレーズレジン(登録商標)650(30)」、固形分濃度30%の水溶液〕を1.5部添加して、水系接着剤を調製した。
<偏光層(偏光板)の作製>
 厚み20μmのポリビニルアルコール系樹脂フィルムを延伸し、ヨウ素で染色することにより、ポリビニルアルコール系樹脂フィルムにヨウ素が吸着配向した偏光フィルム(厚み8μm)を得た。かかる延伸におけるトータル延伸倍率は5.2倍であった。
 環状ポリオレフィン系樹脂フィルム(COPフィルム)(厚み13μm)の片面にハードコート層(HC層)(厚み3μm)が形成されたハードコート環状オレフィン系樹脂フィルム(HC-COPフィルム2)を準備した。このHC-COPフィルム2はHC層側表面の鉛筆硬度が5Bであった。上記で得た偏光フィルムの一方の面に、上記(で調製した水系接着剤を介して、このHC-COPフィルム2のCOPフィルム側(HC層側とは反対側)を貼合し、HC-COPフィルム2/水系接着剤層/偏光フィルムの積層構造を有する偏光板を得た。
 このHC-COPフィルム2の波長550nmにおける面内位相差値Re(550)は0(ゼロ)nmであり、積分球式光線透過率測定装置(スガ試験機株式会社製「Haze
 Meter Hz-V3」)を用いて、JIS K7105に準拠して、全光線透過率Ht(%)を測定すると、0.1%であった。
 偏光板の偏光フィルム側を入射面として分光光度計(V7100、日本分光製)を用いて光学特性を確認したところ、視感度補正単体透過率は42.1%、視感度補正偏光度は99.996%、単体色相aは-1.1、単体色相bは3.7であった。
<面内位相差を有する層(水平配向位相差フィルム(λ/4板))の作製>
(1)水平配向膜形成用組成物の調製
 下記構造の光配向性材料5部(重量平均分子量:30000)とシクロペンタノン(溶媒)95部とを成分として混合し、得られた混合物を80℃で1時間撹拌することにより、水平配向膜形成用組成物を得た。
Figure JPOXMLDOC01-appb-C000028
 (2)重合性液晶化合物の調製
 下記分子構造を有する重合性液晶化合物(X1)および重合性液晶化合物(X2)を、それぞれ調製した。重合性液晶化合物(X1)は、特開2010-31223号公報に記載の方法に準じて製造した。また、重合性液晶化合物(X2)は、特開2009-173893号公報に記載の方法に準じて製造した。
 重合性液晶化合物(X1):
Figure JPOXMLDOC01-appb-C000029

 重合性液晶化合物(X2):
Figure JPOXMLDOC01-appb-C000030
 テトラヒドロフラン50mLに重合性液晶化合物(X1)1mgを溶解させて溶液を得た。得られた溶液を光路長1cmの測定用セルに入れて測定用試料とした。測定用試料を紫外可視分光光度計(株式会社島津製作所製「UV-2450」)にセットして吸収スペクトルを測定し、得られた吸収スペクトルから極大吸収となる波長を読み取ったところ、波長300~400nmの範囲における吸収極大波長λmaxは350nmであった。
 (3)水平配向液晶層の形成用の重合性液晶組成物(AA1)の調製
 重合性液晶化合物(X1)および重合性液晶化合物(X2)を質量比90:10で混合し、混合物を得た。得られた混合物100部に対して、レベリング剤「BYK-361N」(BM Chemie社製)0.1部と、光重合開始剤として2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(BASFジャパン株式会社製「イルガキュア(登録商標)369(Irg369)」)6部を添加した。さらに、固形分濃度が13%となるようにN-メチル-2-ピロリドン(NMP)を添加した。この混合物を80℃で1時間撹拌することにより、水平配向液晶層の形成用の重合性液晶組成物(AA1)を得た。
 (4)水平配向液晶層の作製
 日本ゼオン株式会社製のCOPフィルム(ZF-14-50)上に、コロナ処理を実施した後、上記で得た水平配向膜形成用組成物をバーコーター塗布し、80℃で1分間乾燥し、偏光UV照射装置(SPOT CURE SP-9;ウシオ電機株式会社製)を用いて、波長313nmにおける積算光量:100mJ/cmで偏光UV露光を実施し、水平配向膜を得た。得られた水平配向膜の膜厚をエリプソメータで測定したところ、200nmであった。
 続いて、水平配向膜上にバーコーターを用いて上記で得た重合性液晶組成物(AA1)を塗布し、120℃で60秒間加熱した後、高圧水銀ランプ(ユニキュアVB-15201BY-A、ウシオ電機株式会社製)を用いて、重合性液晶組成物(A1)を塗布した面から紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:500mJ/cm)することにより、水平配向液晶層を形成し、COPフィルム/水平配向膜/水平配向液晶層の層構造を有する積層構造体(A1)を得た。COPフィルムに位相差がないことを確認した後、王子計測機器株式会社製のKOBRA-WPRを用いて、積層構造体(A1)の波長450nmおよび波長550nmにおける面内位相差値ReA(450)およびReA(550)を測定したところ、ReA(550)は139nmであり、ReA(450)/ReA(550)を算出したところ、0.87であった。
<紫外線硬化型接着剤組成物Aの調製>
 下記に示すカチオン硬化性成分a1~a3およびカチオン重合開始剤を混合した後、下記に示すカチオン重合開始剤および増感剤をさらに混合し、得られた混合物を脱泡して、紫外線硬化型接着剤組成物を調製した。なお、下記の配合量は固形分量に基づく。
・カチオン硬化性成分a1(70部):
 3’,4’-エポキシシクロヘキシルメチル 3’,4’-エポキシシクロヘキサンカルボキシレート(商品名:CEL2021P、株式会社ダイセル製)
・カチオン硬化性成分a2(20部):
 ネオペンチルグリコールジグリシジルエーテル(商品名:EX-211、ナガセケムテックス株式会社製)
・カチオン硬化性成分a3(10部):
 2-エチルヘキシルグリシジルエーテル(商品名:EX-121、ナガセケムテックス株式会社製)
・カチオン重合開始剤(2.25部(固形分量)):
 商品名:CPI-100(サンアプロ株式会社製)の50%プロピレンカーボネート溶液
・増感剤(2部):
 1,4-ジエトキシナフタレン
<垂直配向位相差フィルム(Posi-C)の作製>
(1)垂直配向膜形成用組成物の調製
 0.5質量部のポリイミド(日産化学工業株式会社製「サンエバーSE-610」)、72.3質量部のN-メチル-2-ピロリドン、18.1質量部の2-ブトキシエタノール、9.1質量部のエチルシクロヘキサン、および0.01質量部のDPHA(新中村化学製)を混合して、垂直配向膜形成用組成物を調製した。
(2)垂直配向液晶硬化膜形成用重合性液晶組成物の調製
 下記式(LC242)に示す液晶化合物LC242:PaliocolorLC242(BASF社 登録商標)100質量部に対して、レベリング剤(DIC社製「F-556」)0.1質量部と、重合開始剤Irg369 3質量部とを添加し、固形分濃度が13質量部となるようにシクロペンタノンを添加した。これらを混合し、垂直配向液晶硬化膜形成用重合性液晶組成物を得た。
 なお、液晶化合物LC242:PaliocolorLC242(BASF社登録商標)は下記式で表される。
Figure JPOXMLDOC01-appb-C000031
(3)垂直配向位相差フィルム(垂直配向液晶硬化膜)の作製
 基材としてCOPフィルム(日本ゼオン株式会社「ZF-14-23」)を用い、該COPフィルムに対してコロナ処理を実施した。コロナ処理を実施したCOPフィルムにバーコーターを用いて、垂直配向膜形成用組成物を塗布し、塗膜を形成した。塗膜を80℃で1分間乾燥させ、垂直配向膜を得た。得られた垂直配向膜の膜厚をエリプソメータで測定したところ0.2μmであった。続いて、作製した垂直配向膜上に垂直配向液晶硬化膜形成用重合性液晶組成物を塗布し、塗膜を形成した。塗膜を80℃で1分乾燥させた後、高圧水銀ランプ(ウシオ電機株式会社製「ユニキュアVB-15201BY-A」)を用いて、窒素雰囲気下、および波長365nmにおける積算光量500mJ/cmの条件で乾燥塗膜に紫外線を照射して、垂直配向位相差フィルム(垂直配向液晶硬化膜)を形成した。
<円偏光板付き光学積層体の作製>
 実施例1で作製した光学積層体1の離型フィルムを剥離し、剥き出しとなったハードコート層と、上記で作製した偏光板のハードコート層にそれぞれコロナ処理を施し、準備したアクリル系粘着剤(リンテック社製、膜厚5μm)を介して、コロナ処理面同士をラミネーターで貼合し、プロテクトフィルム/16HC-COPフィルム/接着層/光吸収異方性膜/ハードコート層/粘着剤/HC-COPフィルム2/水系接着剤層/偏光フィルムの積層構造を有する積層体を得た。
 得られた積層体の偏光層側と、上記で作製した水平配向位相差フィルムの液晶層にそれぞれコロナ処理を施し、準備したアクリル系粘着剤(膜厚5μm)を介して、コロナ処理面同士をラミネーターで貼合した。この際、偏光層の吸収軸と水平配向液晶層の遅相軸とのなす角が45°となるように貼合した。
 次に、水平配向位相差フィルム側のCOPフィルム(ZF-14-50)を剥離し、剥き出しとなった水平配向膜と上記で作製した垂直配向位相差フィルムの液晶層にそれぞれコロナ処理を施し、上記で調整した紫外線硬化型接着剤Aを介して、接着剤厚みが1.5μmとなるようコロナ処理面同士をラミネーターで貼合した。その後、垂直配向位相差フィルム側から、紫外線照射装置〔フュージョンUVシステムズ(株)製〕のHバルブで積算光量500mJ/cm(UV-A)の紫外線を照射し、接着剤を硬化させた。
 続いて、垂直配向位相差フィルム側のCOPフィルム(ZF-14-50)を剥離し、剥き出しとなった垂直配向膜にコロナ処理を施し、準備したアクリル系粘着剤(リンテック社製、膜厚25μm)をラミネーターで貼合し、プロテクトフィルム/16HC-COPフィルム/接着層/光吸収異方性膜/ハードコート層/粘着剤/HC-COPフィルム2/水系接着剤層/偏光フィルム/粘着剤/水平配向液晶層/水平配向膜/紫外線硬化型接着A層/垂直配向液晶層/垂直配向膜/粘着剤の積層構造を有する円偏光板付き光学積層体を得た。
 1,2 光学積層体、3 直線偏光板付き光学積層体、4 円偏光板付き光学積層体、11,22,32,52 光吸収異方性膜、12,23,33,53 接着層、13,24,34,54 光学フィルム、21,31,51 第一ハードコート層、25,35,55 樹脂フィルム、26,36,56 第二ハードコート層、37,59 偏光層(直線偏光板)、38,40,42,58,60,62,65,67 貼合層、39,43,64,68 保護フィルム 41,66 偏光子、57 面内位相差を有する位相差層、61 第1位相差層、63 第2位相差層、69 円偏光板。

Claims (9)

  1.  光吸収異方性膜と、接着層と、光学フィルムとがこの順に接して積層された光学積層体であって、
     前記光吸収異方性膜は、二色性色素と重合性液晶化合物とが前記光学積層体の積層方向に配向した状態で硬化した硬化物層であり、
     前記接着層はカチオン硬化型接着剤の硬化物を含む、光学積層体。
  2.  前記接着層は、周波数10Hzの引張モードで動的粘弾性測定により得られる損失弾性率の最大値の温度が60℃以上である、請求項1に記載の光学積層体。
  3.  前記カチオン硬化型接着剤は、カチオン重合性化合物を含み、
     前記カチオン重合性化合物の総量100質量部に対して、多官能脂環式エポキシ、多官能芳香族エポキシおよび多官能オキセタンからなる群から選択される少なくとも一種の合計含有量が60質量部以上である、請求項1に記載の光学積層体。
  4.  前記カチオン硬化型接着剤は、カチオン重合性化合物を含み、
     前記カチオン重合性化合物の総量100質量部に対して、多官能脂環式エポキシ、多官能芳香族エポキシおよび多官能オキセタンからなる群から選択される少なくとも一種の合計含有量が60質量部以上である、請求項2に記載の光学積層体。
  5.  前記光学フィルムが樹脂フィルムである、請求項1~4のいずれか一項に記載の光学積層体。
  6.  請求項1~4のいずれか一項に記載の光学積層体と、前記光学積層体における前記光吸収異方性膜の前記接着層側とは反対側に、偏光層および面内位相差を有する位相差層を含む円偏光板とを備える、円偏光板付き光学積層体。
  7.  請求項5に記載の光学積層体と、前記光学積層体における前記光吸収異方性膜の前記接着層側とは反対側に、偏光層および面内位相差を有する位相差層を含む円偏光板とを備える、円偏光板付き光学積層体。
  8.  前記面内位相差を有する位相差層が、下記式(1)~(3):
     100nm<Re(550)<160nm  ・・・(1)
    [式中、Re(550)は波長550nmの光に対する面内位相差値(面内リタデーション)を表す。]
     Re(450)/Re(550)≦1.0  ・・・(2)
     1.00≦Re(650)/Re(550) ・・・(3)
    [式中、Re(450)は波長450nmの光に対する面内位相差値を、Re(550)は波長550nmの光に対する面内位相差値を、Re(650)は波長650nmの光に対する面内位相差値を表す。]
    を満たす、請求項6に記載の円偏光板付き光学積層体。
  9.  前記面内位相差を有する位相差層が、下記式(1)~(3):
     100nm<Re(550)<160nm  ・・・(1)
    [式中、Re(550)は波長550nmの光に対する面内位相差値(面内リタデーション)を表す。]
     Re(450)/Re(550)≦1.0  ・・・(2)
     1.00≦Re(650)/Re(550) ・・・(3)
    [式中、Re(450)は波長450nmの光に対する面内位相差値を、Re(550)
    は波長550nmの光に対する面内位相差値を、Re(650)は波長650nmの光に対する面内位相差値を表す。]
    を満たす、請求項7に記載の円偏光板付き光学積層体。
PCT/JP2023/027574 2022-07-29 2023-07-27 光学積層体 WO2024024889A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-121876 2022-07-29
JP2022121876 2022-07-29
JP2023118296A JP2024019045A (ja) 2022-07-29 2023-07-20 光学積層体
JP2023-118296 2023-07-20

Publications (1)

Publication Number Publication Date
WO2024024889A1 true WO2024024889A1 (ja) 2024-02-01

Family

ID=89706519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027574 WO2024024889A1 (ja) 2022-07-29 2023-07-27 光学積層体

Country Status (2)

Country Link
TW (1) TW202423677A (ja)
WO (1) WO2024024889A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145776A (ja) * 2007-12-17 2009-07-02 Nitto Denko Corp 視角制御システムならびに画像表示装置
JP2020056988A (ja) * 2018-09-28 2020-04-09 住友化学株式会社 光学積層体、偏光板複合体、及び画像表示装置
JP2021047245A (ja) * 2019-09-17 2021-03-25 住友化学株式会社 積層体およびこれを含む楕円偏光板
JP2021105713A (ja) * 2019-12-26 2021-07-26 住友化学株式会社 積層体
JP2021113969A (ja) * 2019-12-26 2021-08-05 住友化学株式会社 光学積層体
JP2022104558A (ja) * 2020-12-28 2022-07-08 住友化学株式会社 偏光板
JP2022109653A (ja) * 2021-01-15 2022-07-28 住友化学株式会社 光吸収異方性板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145776A (ja) * 2007-12-17 2009-07-02 Nitto Denko Corp 視角制御システムならびに画像表示装置
JP2020056988A (ja) * 2018-09-28 2020-04-09 住友化学株式会社 光学積層体、偏光板複合体、及び画像表示装置
JP2021047245A (ja) * 2019-09-17 2021-03-25 住友化学株式会社 積層体およびこれを含む楕円偏光板
JP2021105713A (ja) * 2019-12-26 2021-07-26 住友化学株式会社 積層体
JP2021113969A (ja) * 2019-12-26 2021-08-05 住友化学株式会社 光学積層体
JP2022104558A (ja) * 2020-12-28 2022-07-08 住友化学株式会社 偏光板
JP2022109653A (ja) * 2021-01-15 2022-07-28 住友化学株式会社 光吸収異方性板

Also Published As

Publication number Publication date
TW202423677A (zh) 2024-06-16

Similar Documents

Publication Publication Date Title
JP2022183147A (ja) 光学フィルム
WO2018139358A1 (ja) 偏光板及び画像表示装置
JP5267919B2 (ja) 偏光板、光学部材および液晶表示装置
JP2021099496A (ja) 液晶硬化膜、液晶硬化膜を含む光学フィルム、及び表示装置
TWI732772B (zh) 積層體、含有該積層體之圓偏光板,及具備該積層體之顯示裝置
JP2013160775A (ja) 偏光板及び光学部材
WO2019013092A1 (ja) 楕円偏光板
US20160146995A1 (en) Optical film
JP7250827B2 (ja) 光学積層体
JP2022109928A (ja) 光吸収異方性板
JP7185460B2 (ja) 偏光フィルム並びにそれを含む偏光板および表示装置
WO2024024890A1 (ja) 光学積層体
JP6089512B2 (ja) 積層体および光学フィルム
JP2024019045A (ja) 光学積層体
KR20190035848A (ko) 적층 필름
WO2024024889A1 (ja) 光学積層体
WO2022239767A1 (ja) 積層体および表示装置
WO2021132234A1 (ja) 積層体
JP2022120975A (ja) 偏光板
JP2024019046A (ja) 光学積層体
JP7302954B2 (ja) 水平配向液晶硬化膜を含む積層体
JP2016206684A (ja) 偏光板及び光学部材
CN118922752A (zh) 光学层叠体
JP5971039B2 (ja) 基材および光学フィルム
WO2024038667A1 (ja) 光学積層体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846619

Country of ref document: EP

Kind code of ref document: A1