[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024021652A1 - 一种无线通信方法及设备、存储介质 - Google Patents

一种无线通信方法及设备、存储介质 Download PDF

Info

Publication number
WO2024021652A1
WO2024021652A1 PCT/CN2023/084100 CN2023084100W WO2024021652A1 WO 2024021652 A1 WO2024021652 A1 WO 2024021652A1 CN 2023084100 W CN2023084100 W CN 2023084100W WO 2024021652 A1 WO2024021652 A1 WO 2024021652A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
modulation mode
noise ratio
cqi
signal
Prior art date
Application number
PCT/CN2023/084100
Other languages
English (en)
French (fr)
Inventor
汪玲
Original Assignee
哲库科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哲库科技(北京)有限公司 filed Critical 哲库科技(北京)有限公司
Publication of WO2024021652A1 publication Critical patent/WO2024021652A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication

Definitions

  • the present application relates to mobile communication technology, and in particular, to a wireless communication method and device, and a storage medium.
  • the resource scheduling and link adaptation strategy in the Long Term Evolution (LTE)/New Radio (NR) system are completely controlled by the base station, which uses the uplink channel quality indicator (Channel Quantity Indicator, CQI) or downlink CQI Select the appropriate modulation and coding level for the UE to achieve the purpose of optimizing system throughput based on channel quality information. How to reduce the computational complexity of CQI is an urgent technical issue that needs to be solved.
  • Embodiments of the present application provide a wireless communication method, device, and storage medium, which can reduce the computational complexity of CQI.
  • embodiments of the present application provide a wireless communication method, including;
  • embodiments of the present application provide a telecommunications device, including a processor, where the processor is configured to:
  • embodiments of the present application provide a communication device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, the above-mentioned wireless communication is implemented. steps in the method.
  • embodiments of the present application provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the above wireless communication method is implemented.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned wireless communication method.
  • the chip includes: a processor for calling and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned method.
  • Wireless communication methods are used to implement the above-mentioned wireless communication method.
  • the wireless communication method, device and storage medium provided by the embodiments of the present application select a first modulation mode set from multiple modulation modes supported by the terminal device according to the reference channel information; select a target modulation mode from the first modulation mode set ; Generate a first channel quality indication based on the mutual information corresponding to the target modulation mode; thereby predicting the modulation mode that the current channel may adopt, that is, the first modulation mode set, by referring to the channel information, and perform the CQI based on the predicted first modulation mode set Therefore, there is no need to determine the CQI value based on all modulation modes supported by the terminal equipment without losing the performance of the channel, and the calculation complexity of the CQI is reduced.
  • Figure 1 is an optional architectural schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 2A is an optional flow diagram of the wireless communication method provided by the embodiment of the present application.
  • Figure 2B is an optional flow diagram of the wireless communication method provided by the embodiment of the present application.
  • Figure 3 is an optional flow diagram of the wireless communication method provided by the embodiment of the present application.
  • Figure 4 is an optional flow diagram of the wireless communication method provided by the embodiment of the present application.
  • Figure 5 is an optional flow diagram of the wireless communication method provided by the embodiment of the present application.
  • Figure 6 is an optional flow diagram of the wireless communication method provided by the embodiment of the present application.
  • Figure 7 is an optional flow diagram of the wireless communication method provided by the embodiment of the present application.
  • Figure 8 is an optional flow diagram of the wireless communication method provided by the embodiment of the present application.
  • Figure 9 is an optional flow diagram of the wireless communication method provided by the embodiment of the present application.
  • Figure 10 is an optional structural schematic diagram of a wireless communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Figure 13 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • Embodiments of the present application may be provided as wireless communication methods and devices, equipment and storage media.
  • the wireless communication method can be implemented by a wireless communication device.
  • Each functional entity in the wireless communication device can be implemented by hardware resources of computer equipment (such as terminal equipment, network equipment and other electronic equipment), such as processors and other computing resources, communication resources (for example, it is used to support the collaborative implementation of various communication methods such as optical cables and cellular.
  • embodiments of the present application are not limited to being provided as methods and hardware, and can also be implemented in a variety of ways, such as being provided as a storage medium (which stores instructions for executing the wireless communication method provided by the embodiments of the present application).
  • Figure 1 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120.
  • the embodiment of the present application is only exemplified by using the communication system 100, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: LTE system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), IoT Internet of Things (IoT) systems, Narrow Band Internet of Things (NB-IoT) systems, enhanced Machine-Type Communications (eMTC) systems, fifth generation (5th generation, 5G) ) communication system (also called NR communication system), or future communication system, etc.
  • LTE system LTE Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • 5G fifth generation
  • 5G fifth generation
  • future communication system etc.
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network equipment can provide communication coverage for a specific geographical area and can communicate with terminal equipment 110 (such as user equipment (User Equipment, UE)) located within the coverage area.
  • terminal equipment 110 such as user equipment (User Equipment, UE) located within the coverage area.
  • the network device 120 may be an evolutionary base station (Evolutional Node B, eNB or eNodeB) in the LTE system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) device, or a base station ( gNB), or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device 120 can be a relay station, access point, vehicle-mounted device, wearable device, hub, switch, or bridge , routers, or network equipment in the future evolved Public Land Mobile Network (PLMN), etc.
  • Evolutional Node B, eNB or eNodeB next generation radio access network
  • gNB next generation Radio Access Network
  • CRAN Cloud Radio Access Network
  • PLMN Public Land Mobile Network
  • the terminal device 110 may be any terminal device, including but not limited to terminal devices that are wired or wirelessly connected to the network device 120 or other terminal devices.
  • the terminal device 110 may refer to an access terminal, a UE, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device .
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, an IoT device, a satellite handheld terminal, a Wireless Local Loop (WLL) station, or a Personal Digital Assistant (Personal Digital Assistant). , PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, vehicle-mounted device equipment, wearable devices, terminal equipment in 5G networks or terminal equipment in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 can be used for device to device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, such as an access and mobility management function (Access and Mobility Management Function). , AMF), for example, Authentication Server Function (AUSF), for example, User Plane Function (UPF), for example, Session Management Function (Session Management Function, SMF).
  • AMF Access and Mobility Management Function
  • AUSF Authentication Server Function
  • UPF User Plane Function
  • Session Management Function Session Management Function
  • SMF Session Management Function
  • the core network device 130 may also be an Evolved Packet Core (EPC) device of the LTE network, for example, a session management function + core network data gateway (Session Management Function + Core Packet Gateway, SMF + PGW- C) Equipment.
  • EPC Evolved Packet Core
  • SMF+PGW-C can simultaneously realize the functions that SMF and PGW-C can realize.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited by the embodiments of this application.
  • Various functional units in the communication system 100 can also establish connections through next generation network (NG) interfaces to achieve communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the Uu interface for transmitting user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (referred to as N1); access Network equipment, such as the next generation wireless access base station (gNB), can establish user plane data connections with UPF through NG interface 3 (referred to as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (referred to as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (referred to as N4); UPF can exchange user plane data with the data network through NG interface 6 (referred to as N6); AMF can communicate with SMF through NG interface 11 (referred to as N11) SMF establishes a control plane signaling connection; SMF can establish a control plane signaling connection with PCF through NG interface 7 (referred to as N7).
  • N1 the next generation wireless access base station
  • gNB next generation wireless access base station
  • Figure 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base stations and other numbers of terminal devices may be included within the coverage of each base station. , the embodiment of the present application does not limit this.
  • FIG. 1 only illustrates the system to which the present application is applicable in the form of an example.
  • the method shown in the embodiment of the present application can also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence" mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , configuration and configured relationship.
  • predefined can refer to what is defined in the protocol.
  • protocol may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • the resource scheduling and link adaptation strategy in the LTE/NR system are completely controlled by the base station.
  • the base station selects the appropriate modulation and coding mode level for the UE through the value of the uplink CQI or downlink CQI to optimize the system throughput based on the channel quality information. the goal of. It can be understood that the modulation and coding mode level can indicate the modulation mode and coding rate.
  • the base station For the uplink CQI, that is, the CQI measured by the base station, the base station measures the value of the Signal to Interference plus Noise Ratio (SINR) that represents the link quality information through the Sounding Reference Signal (SRS). Then the CQI value is calculated based on the SINR value, and appropriate frequency domain resources and modulation and coding method levels are selected for the UE based on the CQI value. As shown in Figure 2A, the base station 210 obtains the SRS measurement result through the physical layer 211 measurement, and sends the SRS measurement result to the Medium Access Control (Medium Access Control, MAC) layer 212. The MAC layer 212 obtains the CQI value based on the SRS measurement result.
  • SINR Signal to Interference plus Noise Ratio
  • SRS Sounding Reference Signal
  • the modulation and coding method level, time-frequency resource location and redundancy version (Redundancy Version, RV) version number are determined.
  • the physical layer 211 also reports a cyclic redundancy check (Cyclic Redundan) to the MAC layer 212. cy Check, CRC) verification information.
  • the terminal For downlink CQI, that is, the CQI calculated by the terminal, the terminal first calculates the CQI value and feeds it back to the base station through the uplink channel. Then the base station selects appropriate frequency domain resources, modulation and coding mode levels and transmission for the UE based on the fed back CQI value. model. As shown in Figure 2B, the physical layer 221 of the UE 220 calculates the CQI value and sends the CQI value to the physical layer 211 of the base station 210. The physical layer 211 sends the received CQI value to the MAC layer 212. The MAC layer 212 responds according to the UE feedback. The CQI value selects the following for UE220: transmission mode, multiple-input multiple-output (MIMO) mode, modulation and coding mode level, time-frequency resource location and RV version number.
  • MIMO multiple-input multiple-output
  • the uplink CQI that is, the uplink CQI, or the downlink CQI, that is, the downlink CQI
  • CQI is uniformly described as CQI, where the uplink CQI refers to the CQI calculated by the equivalent SINR value obtained by the base station measurement, and the downlink CQI refers to the CQI that the UE transmits to the base station.
  • Feedback CQI the uplink CQI
  • the UE or base station maps the detected SINR value to the MI value through SINR to Mutual Information (MI) mapping (SINR to MI mapping), or maps the MI value according to the channel capacity through capacity to MI mapping.
  • the MI value is mapped to the actual modulation method, and the MI value will correspond to the actual modulation method.
  • the upper limit of the MI value corresponding to the quadrature phase shift keying (Quad-Phase Shift Keyed, QPSK) modulation is 2, 16 quadrature amplitude
  • the upper limit of the MI value corresponding to Quadrature Amplitude Modulation (QAM) is 4, the upper limit of the MI value corresponding to 64QAM is 6, and the upper limit of the MI value corresponding to 256QAM is 8.
  • i is the sample point index
  • the value of i is less than the number N of sample points in the subband or broadband
  • l is the layer index
  • the value of l can be equal to 1 or less than 1.
  • ⁇ i,l is the equivalent signal-to-noise ratio corresponding to the layer number l of sample point i
  • C i,l is the capacity corresponding to the layer number l of sample point i
  • I is the identity matrix.
  • the number of sample points is the number of subcarriers
  • the number of layers refers to the value of the supported rank.
  • the rank value is used to indicate the maximum number of MIMO streams supported by the terminal, that is, how many data streams the terminal device can transmit.
  • the rank of rank can be understood as the number of transmission layers.
  • the value of MI is the value of MI of a subband or wideband.
  • the value of m is incremented by 1, and S2023 continues to be executed to calculate the MI value corresponding to the m-th modulation method.
  • the value range of m is determined based on the number of modulation modes supported by the terminal device.
  • the terminal device supports 4 modulation modes, so the value of m is 1 to 4.
  • the MI value corresponding to the m-th modulation mode is calculated through steps S30221 and S30222 shown in Figure 5, where the value of m is 1 to 4.
  • the modulation method is QPSK.
  • the modulation method is 16QAM.
  • the modulation method is 64QAM.
  • the modulation method is 256QAM.
  • the MI accumulation process of sample points needs to be mapped for all modulation methods.
  • the UE supports a maximum of 64QAM, and three modulation methods need to be mapped.
  • the UE supports a maximum of 64QAM.
  • 256QAM four modulation methods need to be mapped.
  • 1024QAM five modulation methods need to be mapped.
  • the complexity increases linearly with the increase in modulation methods.
  • the wireless communication method provided by the embodiment of the present application is applied to communication equipment.
  • the communication equipment can be a terminal equipment or a network equipment, as shown in Figure 6, including:
  • the communication device selects a first modulation mode set from multiple modulation modes supported by the terminal device according to the reference channel information.
  • the communication device selects some modulation modes from multiple modulation modes supported by the terminal device to form a first modulation mode set, and the first modulation mode set includes one or more modulation modes.
  • the modulation modes supported by the terminal device include: QPSK, 16QAM, 64QAM, and 256QAM
  • the first modulation mode set selected by the communication device from the modulation modes supported by the terminal device includes the following modulation modes: QPSK, 16QAM, and 64QAM.
  • the selection method for the communication device to select the first modulation method set from the modulation methods supported by the terminal device may support one or more of the following:
  • Selection method 2 Select based on reference channel information.
  • the reference channel information may be a priori channel information.
  • the reference channel information may include: one or more of the signal-to-noise ratio of the signal sent by the network device and the second CQI, wherein the signal-to-noise ratio of the signal sent by the network device may be determined by channel state information (Channel State Information, CSI) determines that the second CQI is the previous CQI corresponding to the terminal device.
  • CSI Channel State Information
  • the communication device when the communication device selects the first modulation mode set from the modulation modes supported by the terminal device, it may directly select some modulation modes from the modulation modes supported by the terminal device to form the first modulation mode set, or the terminal device may The modulation modes supported by the device are divided into multiple different candidate modulation mode sets, and the first modulation mode set is selected based on the multiple candidate modulation mode sets.
  • the union of the modulation modes included in the at least two candidate modulation mode sets is all modulation modes supported by the terminal device, and different candidates The modulation modes included in the modulation mode set are different, wherein a candidate modulation mode set includes at least one modulation mode supported by the terminal device.
  • the first modulation mode set selected by the communication device may be a candidate modulation mode set among multiple candidate modulation mode sets, or may be a subset of a candidate modulation mode set among multiple candidate modulation mode sets.
  • the modulation modes supported by the terminal device include: modulation mode one, modulation mode two, modulation mode three and modulation mode four.
  • the modulation modes supported by the terminal device are divided into the following two candidate modulation mode sets: including modulation mode one and modulation mode Candidate modulation mode set 1 of modulation mode 2, candidate modulation mode set 2 including modulation mode 2, modulation mode 3 and modulation mode 4, target modulation
  • the modulation mode set is candidate modulation mode set 2.
  • at least one target modulation mode includes: modulation mode two, modulation mode three, and modulation mode four.
  • the modulation modes supported by the terminal device include: modulation mode one, modulation mode two, modulation mode three and modulation mode four.
  • the modulation modes supported by the terminal device are divided into the following two candidate debugging mode sets: including modulation mode one and Candidate modulation mode set 1 of modulation mode 2, candidate modulation mode set 2 including modulation mode 2, modulation mode 3 and modulation mode 4, the target modulation mode set is a subset of candidate modulation mode set 2 ⁇ modulation mode 3, modulation mode 4 ⁇ , at least one target modulation mode includes: modulation mode three and modulation mode four.
  • At least one of the following sets of different candidate modulation modes is different:
  • the maximum modulation order is the largest modulation order among the modulation orders corresponding to each modulation method included in the candidate modulation method set;
  • Minimum modulation order is the smallest modulation order among the modulation orders corresponding to each modulation method included in the candidate modulation method set;
  • Parameter 3 The number of modulation methods included.
  • the maximum modulation order of a candidate modulation method set is the largest modulation order among the modulation orders corresponding to the modulation methods included in the candidate modulation method set. It is understandable that the modulation order corresponding to the modulation method indicates the number of bits transmitted in the next symbol of the modulation method. For example: the modulation order corresponding to QPSK is 2, the modulation order corresponding to 16QAM is 4, and the modulation order corresponding to 64QAM is 6. The modulation order corresponding to 256QAM is 8.
  • the candidate modulation method set A includes QPSK and 16QAM, and the maximum modulation order of the candidate modulation method set A is 4.
  • the minimum modulation order of a candidate modulation method set is the smallest modulation order among the modulation orders corresponding to the modulation methods included in the candidate modulation method set.
  • the candidate modulation method set A includes QPSK and 16QAM, then the minimum modulation order of the candidate modulation method set A is 2.
  • one or more parameters among parameter 1, parameter 2 and parameter 3 of different candidate modulation mode sets are different.
  • the modulation modes supported by the terminal device include: QPSK, 16QAM, 64QAM, and 256QAM
  • at least two candidate modulation mode sets include candidate modulation mode set 1 and candidate modulation mode set 2, wherein candidate modulation mode set 1 includes the following Modulation methods: QPSK, 16QAM, 64QAM.
  • candidate modulation mode set 1 includes the following Modulation methods: QPSK, 16QAM, 64QAM.
  • candidate modulation method set 2 includes the following modulation methods: 16QAM, 64QAM, 256QAM.
  • the maximum modulation order and minimum modulation order of candidate modulation method set 1 and candidate modulation method set 2 are different.
  • the maximum modulation order of candidate modulation method set 1 is 6
  • the minimum modulation order of candidate modulation method set 1 is 2
  • the maximum modulation order of candidate modulation method set 2 is 8
  • the minimum modulation order of candidate modulation method set 2 is is 4.
  • the modulation modes supported by the terminal device include: QPSK, 16QAM, 64QAM, and 256QAM, and at least two candidate modulation mode sets include candidate modulation mode set 1 and candidate modulation mode set 2, wherein candidate modulation mode set 1 includes the following Modulation mode: 16QAM, 64QAM.
  • candidate modulation mode set 2 includes the following modulation modes: 16QAM, 64QAM, 256QAM. At this time, candidate modulation mode set 1 and candidate modulation mode set 2 have different maximum modulation orders and the number of included modulation modes.
  • the maximum modulation order of the candidate modulation method set 1 is 6, the number of modulation methods included in the candidate modulation method set 1 is 2, the maximum modulation order of the candidate modulation method set 2 is 8, the modulation methods included in the candidate modulation method set 2
  • the quantity is 3.
  • the communication device selects a target modulation mode from the first modulation mode set.
  • the communication device determines the modulation mode as the target modulation mode, and calculates the current CQI of the channel, that is, the first CQI, based on the target modulation mode.
  • the communication device selects one modulation mode from the first modulation mode set as the target modulation mode to calculate the first CQI based on the target modulation mode.
  • the modulation modes supported by the terminal device include: QPSK, 16QAM, 64QAM, and 256QAM.
  • the first modulation mode set selected by the communication device from the modulation modes supported by the terminal device is ⁇ QPSK, 16QAM, 64QAM ⁇ .
  • the communication device selects 16QAM as the target modulation mode from the first modulation mode set ⁇ QPSK, 16QAM, 64QAM ⁇ , and calculates the first CQI based on 16QAM. It does not need to select from all the modulation modes supported by the terminal device: QPSK, 16QAM, 64QAM, and 256QAM. to select the target modulation method.
  • the communication device generates the first CQI based on the MI corresponding to the target modulation mode.
  • the communication device After the communication device selects the target modulation mode from multiple modulation modes supported by the terminal device, the communication device calculates the first CQI based on the target modulation mode. It can be understood that the first CQI is used by the base station to select at least one of the following for the terminal equipment: frequency domain resources, modulation mode, and transmission mode. Among them, the transmission mode indicates the size of the data block.
  • the value of the first CQI is used to reflect the channel quality of the first channel of the terminal device.
  • the first channel is a channel through which the terminal equipment performs uplink services or downlink services.
  • the first channel includes: Physical Downlink Shared Channel (PDSCH), Physical Uplink Shared Channel (Physical Uplink Shared Channel, PUSCH), etc.
  • the communication device is a network device, and the first CQI belongs to the uplink CQI.
  • the communication device is the terminal device, and the first CQI belongs to the downlink CQI.
  • the wireless communication method provided by the embodiment of the present application selects a first modulation mode set from multiple modulation modes supported by the terminal device according to the reference channel information; selects a target modulation mode from the first modulation mode set; based on the target
  • the MI corresponding to the modulation mode generates the first CQI; thereby predicting the modulation mode that the current channel may use, that is, the first modulation mode set, by referring to the channel information, and calculating the CQI value based on the predicted first modulation mode set, so as to avoid loss.
  • the CQI value does not need to be determined based on all modulation modes supported by the terminal equipment, thereby reducing the computational complexity of the CQI.
  • the communication device selects a first modulation mode set from multiple modulation modes supported by the terminal device based on the reference channel information in S601, which may include at least one of the following:
  • Method 1 Select the first set of modulation methods from multiple modulation methods according to the signal-to-noise ratio of the signal sent by the network device;
  • Method 2 Select the first modulation mode set from the plurality of modulation modes according to the second CQI.
  • the reference channel information includes the signal-to-noise ratio of the signal sent by the network device.
  • the signal-to-noise ratio (SINR) of the signal sent by the network device can be indicated by CSI.
  • CSI is the information reported by the terminal device to the base station indicating the propagation characteristics of the channel. It can be based on the base station. The emitted pilot signal or data signal is measured.
  • CSI is used to determine the reference signal receiving power (RSRP) of the channel, the number of transmission layers, and other information that characterizes the status of the channel.
  • RSRP reference signal receiving power
  • the communication device determines the value of the signal-to-noise ratio of the signal sent by the network device through the RSRP indicated by the CSI, and selects a first set of modulation modes from multiple modulation modes supported by the terminal device based on the value of the signal-to-noise ratio of the signal sent by the network device.
  • the communication device determines the value of the signal-to-noise ratio SINR of the signal sent by the network device through formula (7):
  • N pwr represents the power of interference plus noise.
  • method one selects the implementation of the first modulation method set from the plurality of modulation methods based on the signal-to-noise ratio of the signal sent by the network device, including: based on the signal-to-noise ratio of the signal and at least one target signal. Comparison of noise ratio threshold values, and selecting the first set of modulation methods from the plurality of modulation methods.
  • the communication device compares the SINR value indicated by the CSI with at least one target signal-to-noise ratio threshold value, thereby determining the relationship between the signal-to-noise ratio value and each target signal-to-noise ratio threshold value, based on the signal-to-noise ratio value and each target signal-to-noise ratio threshold value.
  • the first modulation mode set is selected from a plurality of modulation modes based on the relationship between the signal-to-noise ratio threshold value.
  • the multiple modulation modes are divided into multiple candidate modulation mode sets, and the communication device selects the first modulation from the multiple candidate modulation mode sets based on a comparison of the signal-to-noise ratio of the signal and at least one target signal-to-noise ratio threshold. collection of ways.
  • the modulation modes supported by the terminal device include: modulation mode one, modulation mode two, modulation mode three and modulation mode four.
  • the modulation modes supported by the terminal device are divided into the following two candidate debugging mode sets: including modulation mode one and The candidate modulation mode set 1 of modulation mode 2, and the candidate modulation mode set 2 including modulation mode 2, modulation mode 3 and modulation mode 4, the communication device selects the candidate modulation mode set 2 as the first modulation mode set based on the SINR.
  • At least one target signal-to-noise ratio threshold is a set fixed signal-to-noise ratio threshold.
  • the at least one target signal-to-noise ratio threshold value has an associated relationship with a first number, where the first number is the number of transmission layers indicated by the CSI.
  • the at least one target signal-to-noise ratio threshold value used in selecting the first modulation method set is at least one signal-to-noise ratio threshold value corresponding to the first quantity.
  • Noise ratio threshold the communication device selects at least one signal-to-noise ratio threshold value corresponding to the number of transmission layers indicated by the CSI as the target signal-to-noise ratio threshold value. It can be understood that the number of transmission layers indicated by the CSI is the value of the rank indicated by the CSI.
  • the value of rank is 1, the corresponding signal-to-noise ratio threshold is SINR 1 , the value of rank is 2, and the corresponding signal-to-noise ratio threshold is The value is SINR 2 , the value of rank is 3, the corresponding signal-to-noise ratio threshold value is SINR 3 , the value of rank is 4, the corresponding signal-to-noise ratio threshold value is SINR 4 ; if the value of rank indicated by CSI is 4 , then used to select the first modulation method
  • the set target signal-to-noise ratio thresholds include SINR 4 .
  • the value of rank is 1, the corresponding signal-to-noise ratio thresholds include SINR 11 and SINR 12 , and SINR 11 is less than SINR 12 , the value of rank is 2, the corresponding signal-to-noise ratio thresholds include SINR 21 and SINR 22 , and SINR 21 is less than SINR 22.
  • the value of rank is 3, and the corresponding signal-to-noise ratio thresholds include SINR 31 and SINR 32 , and SINR 31 is less than SINR 32 , the value of rank is 4, the corresponding signal-to-noise ratio thresholds include SINR 41 and SINR 42 , and SINR 41 is less than SINR 42 ; if the value of rank indicated by CSI is 4, it is used to select the first modulation method set
  • the target signal-to-noise ratio thresholds include SINR 41 and SINR 42 .
  • different signal-to-noise ratio thresholds are used to compare with the signal-to-noise ratio corresponding to the CSI, so that based on the channel Depending on the quality, different signal-to-noise ratio thresholds are used to select the first modulation mode set, so that the first modulation mode set suitable for the current channel quality is selected.
  • different numbers of transmission layers correspond to at least one target signal-to-noise ratio threshold value that is different.
  • Different numbers of transmission layers correspond to different at least one signal-to-noise ratio threshold value, which can be understood to mean that at least one signal-to-noise ratio corresponding to different transmission layers is independent of each other.
  • the target signal-to-noise ratio threshold determined by the first device is different.
  • the value of rank is 1, and the corresponding signal-to-noise ratio threshold is SINR 1.
  • the value of rank is 2, and the corresponding signal-to-noise ratio threshold is SINR 1.
  • the value is SINR 2 , the value of rank is 3, the corresponding signal-to-noise ratio threshold value is SINR 3 , the value of rank is 4, the corresponding signal-to-noise ratio threshold value is SINR 4 ; if the transmission layer indicated by CSI is 1, Then the target signal-to-noise ratio threshold is SINR 1 ; if the transmission layer indicated by CSI is 2, the target signal-to-noise ratio threshold is SINR 2 ; if the transmission layer indicated by CSI is 3, the target signal-to-noise ratio threshold is SINR 3 ; if the transmission layer indicated by CSI is 4, the target signal-to-noise ratio threshold is SINR 4 .
  • the greater the number of transmission layers the greater the signal-to-noise ratio threshold at the same position in at least one corresponding signal-to-noise ratio threshold.
  • the position of the signal-to-noise ratio threshold value in the at least one signal-to-noise ratio threshold value is determined based on the size of each signal-to-noise ratio threshold value in the at least one signal-to-noise ratio threshold value.
  • the value of rank is 1, and the corresponding signal-to-noise ratio threshold is SINR 1.
  • the value of rank is 2, and the corresponding signal-to-noise ratio threshold is SINR 1.
  • the value is SINR 2 , the value of rank is 3, the corresponding signal-to-noise ratio threshold value is SINR 3 , the value of rank is 4, the corresponding signal-to-noise ratio threshold value is SINR 4 , then the signal-to-noise ratio corresponding to each transmission layer number
  • the order of the ratio threshold values from large to small is: SINR 4 , SINR 3 , SINR 2 , SINR 1 .
  • the value of rank is 1, the corresponding signal-to-noise ratio thresholds include SINR 11 and SINR 12 , and SINR 11 is less than SINR 12 , the value of rank is 2, the corresponding signal-to-noise ratio thresholds include SINR 21 and SINR 22 , and SINR 21 is less than SINR 22.
  • the value of rank is 3, and the corresponding signal-to-noise ratio thresholds include SINR 31 and SINR 32 , and SINR 31 is less than SINR 32 , the rank value is 4, the corresponding signal-to-noise ratio thresholds include SINR 41 and SINR 42 , and SINR 41 is less than SINR 42 , then the smaller signal-to-noise ratio threshold values corresponding to each transmission layer number range from large to The smallest ones are: SINR 41 , SINR 31 , SINR 21 , SINR 11.
  • the larger signal-to-noise ratio threshold values corresponding to each transmission layer number are arranged from largest to smallest: SINR 42 , SINR 32 , SINR 22 , SINR 12 .
  • selecting the first modulation mode set from the at least two candidate modulation mode sets based on the relationship between the SINR value and at least one target signal-to-noise ratio threshold value includes: based on: The at least one target signal-to-noise ratio threshold value determines at least two signal-to-noise ratio ranges; determines the target signal-to-noise ratio range to which the SINR value in the at least two signal-to-noise ratio ranges belongs; and modulates at least two candidates The candidate modulation modes corresponding to the target signal-to-noise ratio range in the mode set are determined as the first modulation mode set.
  • the communication device can obtain at least two signal-to-noise ratio ranges based on at least one target signal-to-noise ratio threshold value, and different signal-to-noise ratio ranges correspond to different candidate modulation mode sets among at least two candidate modulation mode sets.
  • the signal-to-noise ratio range with a larger signal-to-noise ratio is more suitable for The larger the maximum modulation order of the corresponding set of candidate modulation methods is.
  • the communication device compares the signal-to-noise ratio of the signal sent by the network device with at least one target signal-to-noise ratio threshold, based on the relationship between the SINR value and the at least one target signal-to-noise ratio threshold. , determine a target signal-to-noise ratio range in at least two signal-to-noise ratio ranges, and determine a set of candidate modulation methods corresponding to the target signal-to-noise ratio range as a first modulation method set. Wherein, the value of the signal-to-noise ratio belongs to the target signal-to-noise ratio range.
  • the following three signal-to-noise ratio ranges are determined based on SINR 41 and SINR 42 : Noise ratio range 1 (less than SINR 41 ), noise ratio range 2 (between SINR 41 and SINR 42 ), noise ratio range 3 (greater than SINR 42 ), and the noise ratio range corresponds to the candidate modulation method set 1, the noise ratio range 2 corresponds to the candidate modulation method set 2, the noise ratio Range 3 corresponds to candidate modulation mode set 3; if the signal-to-noise ratio value belongs to noise ratio range 3, that is, the signal-to-noise ratio value is greater than SINR 42 , then the first modulation mode set is candidate modulation mode set 3.
  • the two threshold values in the embodiment of the present application include the two threshold values themselves.
  • the value of the signal-to-noise ratio is between SINR 41 and SINR 42. It can be understood that the value of the signal-to-noise ratio belongs to [SINR 41 , SINR 42 ].
  • the at least one target signal-to-noise ratio threshold value includes a first target signal-to-noise ratio threshold value
  • the at least two candidate modulation mode sets include a first candidate modulation mode set and a second candidate modulation mode set.
  • the first candidate modulation mode set and the second candidate modulation mode set include the same number of modulation modes, and the maximum modulation order of the first candidate modulation mode set is smaller than the second candidate modulation mode set.
  • the minimum modulation order of the first candidate modulation method set is less than the minimum modulation order of the second candidate modulation method set; if the value of the signal-to-noise ratio is less than the first target signal-to-noise ratio threshold value, then the first modulation mode set is the first candidate modulation mode set; if the value of the signal-to-noise ratio is greater than or equal to the first target signal-to-noise ratio threshold value, then the first The modulation mode set is the second candidate modulation mode set.
  • the target signal-to-noise ratio threshold included in at least one target signal-to-noise ratio threshold is the first target signal-to-noise ratio threshold, and two signal-to-noise ratio ranges are determined based on the first target signal-to-noise ratio threshold. : less than the first target signal-to-noise ratio threshold (first signal-to-noise ratio range), greater than or equal to the first target signal-to-noise ratio threshold (second signal-to-noise ratio range), and the first signal-to-noise ratio range corresponds to the A set of candidate modulation methods, the second signal-to-noise ratio range corresponds to the second set of candidate modulation methods.
  • the first candidate modulation mode set and the second candidate modulation mode set include the same number of debugging modes, and the maximum modulation order and the minimum modulation order of the second candidate modulation mode set are respectively greater than the maximum modulation order of the first candidate modulation mode set. order and minimum modulation order,
  • the highest modulation mode supported by the terminal device is 256QAM
  • the first candidate modulation mode set is ⁇ QPSK, 16QAM, 64QAM ⁇
  • the second candidate modulation mode set is ⁇ 16QAM, 64QAM, 256QAM ⁇ . It can be understood that the modulation modes supported by the terminal device include the highest modulation mode supported by the terminal and all modulation modes lower than the highest modulation mode supported.
  • the communication device compares the SINR value of the signal sent by the network device with the first target signal-to-noise ratio threshold. If the SINR value is less than the first target signal-to-noise ratio threshold, that is, the target signal-to-noise ratio range is the first signal-to-noise ratio. ratio range, then the first modulation mode set is the first candidate modulation mode set. If the value of SINR is greater than or equal to the first target signal-to-noise ratio threshold value, that is, the target signal-to-noise ratio range is the second signal-to-noise ratio range, then the One modulation mode set is a second candidate modulation mode set.
  • the wireless communication method provided by the embodiment of the present application uses the signal-to-noise ratio of the signal sent by the network device to pre-judge the range of the current channel quality, and selects the first modulation method set based on the range of the channel quality.
  • select a high-order modulation mode that is, a set of candidate modulation modes corresponding to a modulation mode with a large modulation order.
  • select a low-order modulation mode that is, a set of candidate modulation modes corresponding to a modulation mode with a small modulation order, so that Based on the channel quality, select a modulation method that matches the channel quality to improve channel transmission efficiency.
  • the second CQI is the previous CQI corresponding to the terminal device, that is, the CQI value closest to the current time among the historical CQI values calculated by the communication device.
  • the value of the second CQI can be understood as the CQI level of the second CQI.
  • method two selects the implementation of the first modulation method set from the plurality of modulation methods according to the second CQI, including: selecting from the plurality of modulation methods according to the relationship between the second CQI and at least one CQI threshold value. Select the first modulation mode set among the modulation modes.
  • the multiple modulation modes are divided into multiple candidate modulation mode sets, and the communication device selects the first modulation mode set from the multiple candidate modulation mode sets based on a comparison between the second CQI and at least one target signal-to-noise ratio threshold. .
  • the communication device compares the second CQI value with at least one CQI threshold value, thereby determining the difference between the second CQI value and each CQI gate.
  • the first modulation mode set is selected from at least two candidate modulation mode sets based on the relationship between the second CQI value and each CQI threshold value.
  • At least one CQI threshold value is a set fixed CQI threshold value.
  • At least one CQI threshold value is determined based on the change amount of two adjacent CQI values in the historical CQI.
  • the value range of CQI is 1 to 15, and the change amount of the CQI value reported in two consecutive times will not exceed 5, then at least one CQI threshold value includes: 6 and 10.
  • selecting the first modulation mode set from the at least two candidate modulation mode sets based on the relationship between the second CQI value and at least one CQI threshold value includes: based on the The at least one CQI threshold value determines at least two CQI ranges; determines a target CQI range to which the value of the second CQI in the at least two CQI ranges belongs; and combines at least two candidate modulation mode sets with the target CQI The candidate modulation modes corresponding to the range are determined as the first modulation mode set.
  • the communication device can obtain at least two CQI value ranges based on at least one CQI threshold value, and different CQI value ranges correspond to different candidate modulation mode sets in the at least two candidate modulation mode sets.
  • the communication device compares the second CQI value with at least one CQI threshold value, and determines the second CQI in at least two CQI value ranges based on the relationship between the second CQI value and each CQI threshold value in the at least one CQI threshold value.
  • the target CQI value range it belongs to determines the candidate modulation mode set corresponding to the target CQI value range as the first modulation mode set.
  • At least one CQI threshold value includes: CQI 1 , and the following two CQI value ranges are determined based on CQI 1 : CQI value range 1 (less than CQI 1 ), CQI value range 2 (greater than or equal to CQI 1 ), and CQI value range 1 corresponds to candidate modulation method set 1, and CQI value range 2 corresponds to candidate modulation method set 2. If the second CQI value belongs to CQI value range 2, that is, the second CQI value is greater than or equal to CQI 1 , Then the first modulation mode set is candidate modulation mode set 2.
  • At least one CQI threshold value includes: CQI 1 and CQI 2. Based on CQI 1 and CQI 2 , the following three CQI value ranges are determined: CQI value range 1 (less than CQI 1 ), CQI value range 2 (between CQI 1 and CQI 2 ), CQI value range 3 (greater than or equal to CQI 2 ), and CQI value range 1 corresponds to candidate modulation method set 1, CQI value range 2 corresponds to candidate modulation method set 2, CQI value range Value range 3 corresponds to candidate modulation mode set 3. If the second CQI value belongs to CQI value range 2, that is, the second CQI value is between CQI 1 and CQI 2 , then the first modulation mode set is candidate modulation mode set 2.
  • the at least one CQI threshold value includes: a first CQI threshold value and a second CQI threshold value, the first CQI threshold value is smaller than the second CQI threshold value, and the The at least two candidate modulation mode sets include a third candidate modulation mode set and a fourth candidate modulation mode set.
  • the third candidate modulation mode set and the fourth candidate modulation mode set include the same number of modulation modes.
  • the third candidate modulation mode set includes the same number of modulation modes.
  • the maximum modulation order of the three candidate modulation method sets is less than the maximum modulation order of the fourth candidate modulation method set, and the minimum modulation order of the third candidate modulation method set is less than the minimum modulation order of the fourth candidate modulation method set.
  • the first modulation method set is the third candidate modulation method set; if the second CQI value is located in the first between the CQI threshold value and the second CQI threshold value, then the first modulation method set is the first modulation method set selected last time; if the second CQI value is greater than the second CQI threshold value, the first modulation mode set is the fourth candidate modulation mode set.
  • the communication device determines two CQI value ranges based on the first CQI threshold value and the second CQI threshold value: less than the first CQI threshold value (first CQI value range), and the first CQI threshold value and between the second CQI thresholds (the second CQI value range) and greater than the second CQI threshold value (the third CQI value range), and the first CQI value range corresponds to the third candidate modulation mode set, the second CQI value range
  • the candidate modulation mode set corresponding to the value range is the same as the first modulation mode set selected last time, and the third CQI value range corresponds to the fourth candidate modulation mode set. It can be understood that the first modulation mode set selected by the communication device last time is a modulation mode set used to calculate the first CQI among at least two candidate modulation mode sets.
  • the first CQI threshold value is 5 and the second CQI threshold value is 10.
  • the wireless communication method provided by the embodiment of the present application uses the last calculated CQI value to pre-judge the modulation mode that the current channel may adopt, and calculates the current CQI value based on the determined modulation mode that the current channel may adopt, so that the current CQI value can be calculated in advance. Reduce the complexity of CQI calculation at the expense of channel performance.
  • the communication device may support selection of the first modulation method set through one or both information of the signal-to-noise ratio of the signal sent by the network device and the second CQI.
  • the method in which the communication device selects a first modulation mode set from multiple modulation modes supported by the terminal device based on the reference channel information in S601 may also include at least one of the following:
  • Method 3 Select a second modulation mode set from the plurality of modulation modes according to the signal-to-noise ratio of the signal sent by the network device; select the modulation mode set from the modulation modes included in the second modulation mode set according to the second CQI.
  • the first set of modulation methods are described in detail below.
  • Method 4 Select a second modulation mode set from the plurality of modulation modes according to the second CQI; select the modulation mode set from the modulation modes included in the second modulation mode set according to the signal-to-noise ratio of the signal sent by the network device.
  • the first set of modulation methods are used to select a second modulation mode set from the plurality of modulation modes according to the second CQI; select the modulation mode set from the modulation modes included in the second modulation mode set according to the signal-to-noise ratio of the signal sent by the network device.
  • the communication device first selects the second modulation mode set from the modulation modes supported by the terminal device based on the signal-to-noise ratio of the signal sent by the network device, and then selects the first modulation mode from the second modulation mode set based on the second CQI. gather.
  • the communication device selects the second modulation mode set from multiple modulation modes supported by the terminal device based on the signal-to-noise ratio of the signal sent by the network device.
  • the signal-to-noise ratio of the signal sent by the communication device network device is the same.
  • the selected modulation method set is called the second modulation method set.
  • the selected modulation method set is called the second modulation method set.
  • the modulation mode set selected in is called the first modulation mode set.
  • the selection method for the communication device to select the first modulation mode set from the modulation modes included in the second modulation mode set based on the second CQI is the same as the method for selecting from multiple modulation modes supported by the terminal device based on the second CQI.
  • the selection method of the first modulation mode set will not be described again here.
  • the communication device first selects the second modulation mode set from the modulation modes supported by the terminal device based on the second CQI, and then selects the first modulation mode from the second modulation mode set based on the signal-to-noise ratio of the signal sent by the network device. gather.
  • the second CQI of the communication device selects the second modulation mode set from the modulation modes supported by the terminal device.
  • the communication device selects the first modulation mode from the modulation modes supported by the terminal device based on the second CQI.
  • the method of selecting the set will not be described in detail here. The difference between the two is that in method four, the selected modulation method set is called the second modulation method set, and in method two, the selected modulation method set is called the first modulation method set.
  • the communication device selects the first modulation mode set from the modulation modes included in the second modulation mode set based on the signal-to-noise ratio of the signal sent by the network device.
  • the selection method is the same as the signal-to-noise ratio SINR based on the CSI indication in mode 1.
  • the method for selecting the first modulation mode set among the modulation modes supported by the terminal device will not be described again here.
  • selecting a target modulation mode from the first modulation mode set in S602 includes:
  • the communication device calculates the mutual information of the first modulation mode in the first modulation mode set and the mutual information of the second modulation mode in the first modulation mode set;
  • the communication device determines the second modulation mode as the target modulation mode based on determining that the mutual information of the second modulation mode is greater than the mutual information of the first modulation mode.
  • the second modulation mode is any modulation mode in the first modulation mode set
  • the first modulation mode is any modulation mode in the first modulation mode set except the second modulation mode.
  • the second modulation mode when the mutual information of the second modulation mode is greater than the mutual information of other modulation modes in the first modulation mode set, the second modulation mode is the target modulation mode.
  • the communication device may traverse all modulation modes in the first modulation mode set, determine the MI corresponding to each modulation mode according to the value of the equivalent signal-to-noise ratio or the value of the capacity, and select the largest MI value corresponding to all modulation modes.
  • the value of MI is used as the final MI value, and the modulation method corresponding to the final MI value is the target modulation method.
  • the channel in, Indicates the MI corresponding to the m-th modulation method in the first modulation method set in the l-th transmission layer.
  • the first CQI corresponding to each transmission layer is calculated independently, that is, The corresponding MI of each l-th transport layer is calculated independently. In the case where the channel includes 1 transport layer, the value of l is only 1, or l is ignored.
  • the communication device when mapping the value of MI, the communication device only traverses each modulation mode in the first modulation mode set.
  • modulation modes other than the first modulation mode set are , there is no need to determine the MI value of the modulation method, thereby reducing the number of modulation methods that need to be traversed, and the final MI value is determined from a smaller selection range relative to the determination of the final MI value shown in Figure 5 selection, thereby improving the calculation efficiency of CQI and reducing the computational complexity of CQI.
  • the implementation of S6021 to calculate the MI corresponding to each first modulation mode in the first modulation mode set includes: performing the following processing for each first modulation mode in the first modulation mode set: obtaining the Mutual information of each sample point under the first modulation mode; superimpose the mutual information of each sample point to obtain mutual information corresponding to the first modulation mode.
  • the calculation of the MI value corresponding to the first modulation mode can be realized through formula (5):
  • the MI of the sample point can be understood as the sample point on the transmission layer l and the MI of the transmission layer l.
  • obtaining the mutual information of each sample value point in the first modulation mode includes: performing the following processing for each sample value point:
  • the equivalent signal-to-noise ratio of the sample point can be mapped to the MI of the sample point in the first modulation mode through formula (3):
  • the capacity of the sample point can be mapped to the MI of the sample point in the first modulation mode through formula (4):
  • the communication device can calculate the equivalent signal-to-noise ratio value or capacity corresponding to the MMSE detection or SD detection based on the equivalent channel state information Heq,i .
  • S603 generates a first channel quality indicator based on the mutual information corresponding to the target modulation method, including: mapping the mutual information to the channel quality indicator, and mapping the mutual information to the channel quality indicator corresponding to the value of the target modulation method.
  • the quality indication is determined to be the first channel quality indication.
  • the communication device further performs processing of updating the reference channel information with the first channel quality indication.
  • the communication device may update the second CQI in the reference channel information based on the first CQI to calculate the next first CQI based on the current first CQI.
  • the communication device further performs the following step: sending the first channel quality indication to a network device, so that the network device schedules spectrum resources based on the first channel quality indication.
  • the communication device is a terminal device, and the first CQI belongs to the downlink CQI.
  • the terminal device reports the first CQI to the network device.
  • the value of the first CQI reported by the network device according to the terminal device is The terminal device schedules frequency domain resources.
  • the communication device further performs the step of scheduling spectrum resources based on the first channel quality indication.
  • the first CQI belongs to the uplink CQI
  • the communication device is a network device
  • the network device schedules frequency domain resources for the terminal device based on the calculated value of the first CQI.
  • the network device may also select a modulation and coding method for the terminal device based on the value of the first CQI.
  • the network device performs SRS measurements to obtain the equivalent signal-to-noise ratio, calculates the uplink CQI value based on the equivalent signal-to-noise ratio, and selects frequency domain resources for the terminal device based on the calculated uplink CQI value.
  • the wireless communication method provided by the embodiment of the present application can be applied to the scenario where the base station calculates the value of the uplink CQI, and can also be applied to the scenario where the terminal device calculates the value of the downlink CQI. Therefore, the method of calculating the value of the CQI provided by the embodiment of the present application It can be applied to multiple different communication scenarios and can reduce the complexity of calculating CQI in each communication scenario.
  • a set of candidate modulation modes that is, a set of candidate modulation modes, is selected based on the a priori information of the channel. For example, when the signal-to-noise ratio is high When the signal-to-noise ratio is low, mapping is performed for low-order modulation methods, or the number of modulation methods in the set of appropriate candidate modulation methods is reduced based on the CQI information reported by the UE historically. , thereby reducing implementation complexity.
  • the wireless communication method provided by the embodiment of the present application is as shown in Figure 8.
  • the plurality of candidate modulation mode sets are divided by the modulation modes supported by the terminal equipment.
  • the wireless communication method shown in Figure 8 can be implemented on a terminal device or a base station.
  • the wireless communication method shown in FIG. 8 adds S801 before calculating the CQI value in the wireless communication method shown in FIG. 3 to select the first modulation method set.
  • a candidate modulation mode selection process may be performed based on channel state information or historically reported CQI information.
  • Embodiment 1 Selecting a set of candidate modulation methods based on channel state information
  • the candidate modulation methods are divided into two sets, the low modulation method set ⁇ QPSK, 16QAM, 64QAM ⁇ , and the high modulation method set ⁇ 16QAM, 64QAM, 256QAM ⁇ .
  • the steps for the terminal device to select a set of candidate modulation methods include:
  • the terminal device calculates the equivalent SINR value corresponding to the current channel state information.
  • the equivalent SINR value corresponding to the current channel state information can be calculated through formula (7):
  • RSRP represents the power of the signal
  • N pwr represents the power of interference plus noise.
  • the terminal device determines a first modulation mode set based on the equivalent SINR value.
  • the range of the current channel quality can be pre-judged using the a priori information of the channel, such as the signal-to-noise ratio.
  • a priori information of the channel such as the signal-to-noise ratio.
  • a set of candidate modulation methods for high-order modulation methods is selected.
  • a set of candidate modulation methods is selected.
  • a set of candidate modulation modes for low-order modulation modes is selected.
  • Embodiment 2 Select a candidate modulation method set of modulation methods based on historically reported CQI information
  • the CQI level table we can get the actual modulation method level. Assume that the change of the channel during the two reports is within 10dB, so that the CQI value reported twice will not exceed 5 levels (this assumption can be considered as basically when reporting periodically Satisfied) For example, when the historically reported CQI value ⁇ CQI6, a low-order modulation mode candidate modulation mode set can be selected; when the historically reported CQI value >CQI10, a high-order modulation mode candidate modulation mode set can be selected. When the reported CQI value is between [6,10], the same set of modulation candidate modulation methods as reported last time is selected. The relationship between the CQI value and the CQI level can be shown in Expression 1.
  • Embodiment 2 historical CQI reported values and characteristics of channel changes are used to pre-judge possible modulation methods for the current channel and select a suitable set of candidate modulation methods to reduce implementation complexity without losing performance.
  • the wireless communication method provided by the embodiment of the present application is explained by taking the selection of the first modulation method set, that is, the target modulation method set, from two candidate modulation method sets as an example. It can be extended to select from 3 or more candidates. Select the first modulation method set among the modulation method sets. At this time, you only need to add more thresholds to achieve flexible implementation.
  • the wireless communication method provided by the embodiments of the present application can also be applied to the base station.
  • the wireless communication method provided by the embodiment of the present application uses channel state information or a priori information of historically reported CQI to predict the value of the CQI reported this time.
  • the implementation complexity can be effectively reduced without losing performance. For example, for a UE that supports 256QAM modulation, four traversals are required using the existing technology. When this technical solution is adopted, only three traversals are required, reducing the complexity by 25%.
  • a wireless communication device is applied to communication equipment.
  • the device 1000 includes:
  • the first selection module 1001 is configured to select a first set of modulation methods from multiple modulation methods supported by the terminal device according to the reference channel information;
  • the second selection module 1002 is configured to select a target modulation mode from the first modulation mode set
  • the generation module 1003 is configured to generate a first channel quality indication based on mutual information corresponding to the target modulation mode.
  • the first selection module 1001 is further configured to:
  • the first selection module 1001 is further configured to:
  • the first modulation mode set is selected from the plurality of modulation modes according to the relationship between the SINR value and at least one target signal-to-noise ratio threshold value.
  • the at least one target signal-to-noise ratio threshold value is associated with a first number, and the first number is the number of transmission layers indicated by the channel state information.
  • the first selection module 1001 is further configured to:
  • the second selection module 1002 is further configured to:
  • the second modulation mode is determined as the target modulation mode.
  • the second selection module 1002 is further configured to:
  • the mutual information of each sample value point is superimposed to obtain the mutual information corresponding to the first modulation method.
  • the second selection module 1002 is further configured to:
  • the equivalent signal-to-noise ratio or the capacity is mapped to the mutual information of the sample point in the first modulation mode.
  • the generation module 1003 is further configured to:
  • the channel quality indication corresponding to the mutual information value of the target modulation mode is determined as the first channel quality indication.
  • the device 1000 further includes: an update module configured to:
  • the first selection module 1001 is further configured to:
  • the first selection module 1001 is further configured to:
  • the first modulation mode set is selected from the modulation modes included in the second modulation mode set according to the signal-to-noise ratio of the signal sent by the network device.
  • the apparatus 1000 further includes: a sending module configured to send the first channel quality indication to a network device, so that the network device schedules spectrum resources based on the first channel quality indication.
  • the apparatus 1000 further includes: a scheduling module configured to schedule spectrum resources based on the first channel quality indication.
  • Figure 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 1100 shown in Figure 11 includes a processor 1110, which is configured to:
  • the processor 1110 can call and run a computer program from the memory to implement the wireless communication method in this embodiment of the present application.
  • the communication device 1100 may further include a memory 1120.
  • the processor 1110 can call and run the computer program from the memory 1120 to implement the wireless communication method in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated into the processor 1110.
  • the communication device 1100 may also include a transceiver 1130.
  • the processor 1110 may control the transceiver 1130 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1100 can implement the corresponding processes implemented by the communication device in each method of the embodiment of the present application. For the sake of brevity, details will not be described here.
  • the communication device 1100 may be a terminal device or a network device.
  • Figure 12 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1200 shown in Figure 12 includes a processor 1210.
  • the processor 1210 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1200 may also include a memory 3320.
  • the processor 1210 can call and run the computer program from the memory 1220 to implement the method in the embodiment of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or may be integrated into the processor 1210.
  • the chip 1200 may also include an input interface 1230.
  • the processor 1210 can control the input interface 1230 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1200 may also include an output interface 1240.
  • the processor 1210 can control the output interface 1240 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the communication device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the communication device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 13 is a schematic block diagram of a communication system 1300 provided by an embodiment of the present application. As shown in Figure 13, the communication system 1300 includes a terminal device 1310 and a network device 1320.
  • the terminal device 1310 or the network device 1320 may be used to implement the corresponding functions implemented by the communication device in the above method, which will not be described again here.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the communication device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the communication device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the communication device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the communication device in the various methods of the embodiment of the present application. For the sake of brevity, they are not included here. Again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the communication device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the communication device in the various methods of the embodiment of the present application. For the sake of simplicity, , which will not be described in detail here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无线通信方法、设备、存储介质,其中,所述方法包括:根据参考信道信息,从终端设备支持的多个调制方式中选择第一调制方式集合;从所述第一调制方式集合中选择目标调制方式;基于所述目标调制方式对应的互信息生成第一信道质量指示。

Description

一种无线通信方法及设备、存储介质
相关申请的交叉引用
本申请基于申请号为202210877837.9、申请日为2022年7月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及移动通信技术,尤其涉及一种无线通信方法及设备、存储介质。
背景技术
长期演进(Long Term Evolution,LTE)/新无线(New Radio,NR)系统中的资源调度和链路自适应策略完全由基站控制,基站通过上行信道质量指示(Channel Quantity Indicator,CQI)或下行CQI为UE选择合适的调制编码方式等级,以达到根据信道质量信息使系统吞吐量最优的目的,如何减少CQI的计算复杂度为亟需解决的技术问题。
发明内容
本申请实施例提供一种无线通信方法及设备、存储介质,能够减少CQI的计算复杂度。
本申请实施例的技术方案是这样实现的:
第一方面,本申请实施例提供一种无线通信方法,包括;
根据参考信道信息,从终端设备支持的多个调制方式中选择第一调制方式集合;
从所述第一调制方式集合中选择目标调制方式;
基于所述目标调制方式对应的互信息生成第一信道质量指示。
第二方面,本申请实施例提供一种信通信设备,包括处理器,所述处理器被配置成:
根据参考信道信息,从终端设备支持的多个调制方式中选择第一调制方式集合;
从所述第一调制方式集合中选择目标调制方式;
基于所述目标调制方式对应的互信息生成第一信道质量指示。
第三方面,本申请实施例提供一种通信设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现上述无线通信方法中的步骤。
第四方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,实现上述无线通信方法。
第五方面,本申请实施例提供的芯片,用于实现上述的无线通信方法,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的无线通信方法。
本申请实施例提供的无线通信方法、设备及存储介质,根据参考信道信息,从终端设备支持的多个调制方式中选择第一调制方式集合;从所述第一调制方式集合中选择目标调制方式;基于所述目标调制方式对应的互信息生成第一信道质量指示;从而通过参考信道信息预测当前信道可能采用的调制方式即第一调制方式集合,基于预测的第一调制方式集合来进行CQI的值的计算,从而在不损失信道的性能的基础上不需要根据终端设备支持的全部调制方式来确定CQI的值,降低CQI的计算复杂度。
附图说明
图1是本申请实施例提供的通信系统的一个可选的架构示意图;
图2A是本申请实施例提供的无线通信方法的一个可选的流程示意图;
图2B是本申请实施例提供的无线通信方法的一个可选的流程示意图;
图3是本申请实施例提供的无线通信方法的一个可选的流程示意图;
图4是本申请实施例提供的无线通信方法的一个可选的流程示意图;
图5是本申请实施例提供的无线通信方法的一个可选的流程示意图;
图6是本申请实施例提供的无线通信方法的一个可选的流程示意图;
图7是本申请实施例提供的无线通信方法的一个可选的流程示意图;
图8是本申请实施例提供的无线通信方法的一个可选的流程示意图;
图9是本申请实施例提供的无线通信方法的一个可选的流程示意图;
图10是本申请实施例提供的无线通信装置的一个可选地结构示意图;
图11是本申请实施例提供的通信设备示意性结构图;
图12是本申请实施例的芯片的示意性结构图;
图13是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,所描述的实施例不应视为对本申请的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例可提供为无线通信方法及装置、设备和存储介质。实际应用中,无线通信方法可由无线通信装置实现,无线通信装置中的各功能实体可以由计算机设备(如终端设备、网络设备等电子设备)的硬件资源,如处理器等计算资源、通信资源(如用于支持实现光缆、蜂窝等各种方式通信)协同实现。
当然,本申请实施例不局限于提供为方法和硬件,还可有多种实现方式,例如提供为存储介质(存储有用于执行本申请实施例提供的无线通信方法的指令)。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:LTE系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、第五代(5th generation,5G)通信系统(也称为NR通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如用户设备(User Equipment,UE))进行通信。
网络设备120可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、UE、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设 备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过Uu接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
LTE/NR系统中的资源调度和链路自适应策略完全由基站控制,基站通过上行CQI或下行CQI的值为UE选择合适的调制编码方式等级,以达到根据信道质量信息使系统吞吐量最优的目的。可理解的,调制编码方式等级能够指示调制方式和编码速率。
对于上行CQI,即基站测量得到的CQI,基站通过探测参考信号(Sounding Reference Signal,SRS)测量得到表征链路质量信息的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)的值,然后根据SINR值来计算CQI的值,并根据CQI的值为UE选择合适的频域资源及调制编码方式等级。如图2A所示,基站210通过物理层211测量得到SRS测量结果,将SRS测量结果发送至媒体接入控制(Medium Access Control,MAC)层212,MAC层212基于SRS测量结果得到CQI的值,并基于CQI的值确定调制编码方式等级、时频资源位置和冗余版本(Redundancy Version,RV)版本号。可选地,物理层211还向MAC层212上报循环冗余校验(Cyclic Redundan cy Check,CRC)校验信息。
对于下行CQI,即终端计算得到的CQI,终端首先计算CQI的值,并通过上行信道反馈至基站,然后基站根据反馈的CQI的值来为UE选择合适的频域资源,调制编码方式等级和传输模式。如图2B所示,UE220的物理层221计算CQI值,并将CQI值发送至基站210的物理层211,物理层211将接收到的CQI值发送至MAC层212,MAC层212根据UE反馈的CQI值为UE220选择以下内容:传输方式、多入多出(Multiple-Input Multiple-Output,MIMO)方式、调制编码方式等级、时频资源位置和RV版本号。
本申请实施例中,将上行的CQI即上行CQI或下行的CQI即下行CQI统一描述为CQI,其中上行CQI是指基站通过测量得到的等效SINR值计算的CQI,下行CQI是指UE向基站反馈的CQI。
在计算CQI时,UE或基站根据检测后的SINR值通过SINR至互信息(Mutual Information,MI)的映射(SINR to MI mapping)的方式映射得到MI值,或根据信道容量通过容量到MI的映射的方式映射得到MI值,而MI值会和实际的调制方式相对应,比如正交相移键控的(Quad-Phase Shift Keyed,QPSK)调制对应的MI值的上限为2,16正交幅相调制(Quadrature Amplitude Modulation,QAM)对应的MI值的上限为4,64QAM对应的MI值的上限为6,256QAM对应的MI值的上限为8,因此,在SINR值或容量映射到MI过程中需要针对不同的调制方式分别计算对应的MI的值,而最后在计算最终的MI值时也需要对所有调制方式进行遍历得到最大的MI值,将最终的MI值得到CQI的值。以UE支持的调制方式包括:QPSK,16QAM,64QAM、256QAM为例,计算CQI的值的实现过程如图3所示:
S301、根据等效信道状态信息计算等效信噪比的值或容量的值。
根据等效信道状态信息Heq,i计算最小均方差(minimum mean-square error,MMSE)检测或球形译码(Sphere Decoder,SD)检测对应的等效信噪比的值或容量的值。
可选地,通过公式(1)计算等效信噪比的值,并通过公式(1)和公式(2)计算容量的值:

Ci,l=log 2(1+γi,l)        公式(2);
其中,i为样值点索引,i的取值小于子带或宽带中样值点的数量N,l为层数索引,l的取值可等于1或小于1。γi,l为样值点i层数l对应的等效信噪比,Ci,l为样值点i层数l对应的容量,I为单位矩阵。
这里,样值点数为子载波的个数,层数是指支持的秩(rank)的值,秩的值用于指示终端支持的最大MIMO的流数,即终端设备可以传输多少个数据流,其中,rank的秩可理解为传输层数。
S302、遍历所有的调制方式,根据等效信噪比的值或容量的值确定各调制方式对应的MI的值。
这里,MI的值为子带或宽带的MI的值。
在S302中,如图4所示,包括:
S3021、初始m为1;
S3022、计算第m个调制方式对应的MI的值;
在计算第m个调制方式对应的MI的值后,如果m的取值小于m的最大取值,则执行S3023,否则,认为遍历完所有的调制方式,计算得到所有调制方式对应的MI的值。
S3023、m的值加1。
m的取值加1,并继续执行S2023计算第m个调制方式对应的MI的值。
这里,m的取值范围基于终端设备支持的调制方式的数量确定,终端设备支持4个调制方式,则m的取值为1至4。
对于所有调制方式中的第m个调制方式通过图5所示的步骤S30221、S30222计算得到第m个调制方式对应的MI的值,其中,m的取值为1至4,m为1时,调制方式为QPSK,m为2时,调制方式为16QAM,m为3时,调制方式为64QAM,m为4时,调制方式为256QAM。
第m个调制方式对应的MI的值的计算如图5所示,包括以下步骤:
S30221、将等效SINR值或容量值映射至MI的值。
如公式(3)所示将等效SINR值映射至MI的值或如公式(4)所示,将容量的值映射至MI的值:

其中,表示第m个调制方式中样值点i层数l对应的MI。
S30222、将各样值点上的MI的值进行累加得到第m个调制方式对应的MI的值。
第m个调制方式对应的MI的值的计算如公式(5)所示:
S303、从所有的调制方式对应的MI的值中,选择最大的MI的值作为最终的MI的值。
最终的MI的值可表示为公式(6):
S304、根据MI的值和MI至CQI映射得到对应的CQI的值。
在从等效SINR的值或容量的值到MI映射,样值点的MI累加过程中需要针对所有的调制方式进行映射,如UE最大支持64QAM,需要对3个调制方式进行映射,UE最大支持256QAM,则需要对4个调制方式进行映射,当UE支持1024QAM,需要对5个调制方式进行映射,复杂度随着调制方式的增加而线性增长。
下面,结合图1所示的通信系统的示意图,对本申请实施例提供的无线通信方法、装置、设备和存储介质的各实施例进行说明。
本申请实施例提供的无线通信方法,应用于通信设备,通信设备可为终端设备或网络设备,如图6所示,包括:
S601、通信设备根据参考信道信息,从终端设备支持的多个调制方式中选择第一调制方式集合。
通信设备从终端设备支持的多个调制方式中选择部分调制方式构成第一调制方式集合,第一调制方式集合中包括一个或多个调制方式。
在一示例中,终端设备支持的调制方式包括:QPSK、16QAM、64QAM、256QAM,通信设备从终端设备支持的调制方式中选择的第一调制方式集合包括以下调制方式:QPSK、16QAM、64QA M。
本申请实施例中,通信设备从终端设备支持的调制方式中选择第一调制方式集合的选择方式可支持以下一种或多种:
选择方式一、随机选择;
选择方式二、根据参考信道信息选择。
在选择方式二中,参考信道信息可为先验信道信息。可选地,参考信道信息可包括:网络设备发送的信号的信噪比和第二CQI中的一个或多个,其中,网络设备发送的信号的信噪比可由信道状态信息(Channel State Information,CSI)确定,第二CQI为该终端设备对应的前一次CQI。
本申请实施例中,对通信设备选择第一调制方式集合的选择方式不进行任何限定。
本申请实施例中,通信设备从终端设备支持的调制方式中选择第一调制方式集合时,可直接从终端设备支持的调制方式中选择部分调制方式来构成第一调制方式集合,也可将终端设备支持的调制方式划分为多个不同的候选调制方式集合,基于多个候选调制方式集合选择第一调制方式集合。
终端设备支持的多个调制方式被划分为至少两个候选调制方式集合的情况下,至少两个候选调制方式集合所包括的调制方式的并集为终端设备支持的全部调制方式,且不同的候选调制方式集合中所包括的调制方式不同,其中,一个候选调制方式集合包括终端设备支持的至少一个调制方式。
通信设备选择的第一调制方式集合可为多个候选调制方式集合中一候选调制方式集合,也可为多个候选调制方式集合中一候选调制方式集合的子集。
在一示例中,终端设备支持的调制方式包括:调制方式一、调制方式二、调制方式三和调制方式四,终端设备支持的调制方式划分为以下两个候选调制方式集合:包括调制方式一和调制方式二的候选调制方式集合1、包括调制方式二、调制方式三和调制方式四的候选调制方式集合2,目标调 制方式集合为候选调制方式集合2,此时,至少一个目标调制方式包括:调制方式二、调制方式三和调制方式四。
在一示例中,终端设备支持的调制方式包括:调制方式一、调制方式二、调制方式三和调制方式四,终端设备支持的调制方式划分为以下两个候选调试方式集合:包括调制方式一和调制方式二的候选调制方式集合1、包括调制方式二、调制方式三和调制方式四的候选调制方式集合2,目标调制方式集合为候选调制方式集合2的子集{调制方式三,调制方式四},至少一个目标调制方式包括:调制方式三和调制方式四。
在一些实施例中,不同候选调制方式集合的以下至少之一不同:
参数1、最大调制阶数,所述最大调制阶数为所述候选调制方式集合包括的各调制方式对应的调制阶数中最大的调制阶数;
参数2、最小调制阶数,所述最小调制阶数为所述候选调制方式集合包括的各调制方式对应的调制阶数中最小的调制阶数;
参数3、包括的调制方式的数量。
对于参数1,一候选调制方式集合的最大调制阶数为该候选调制方式集合所包括的调制方式对应的调制阶数中最大的调制阶数。可理解的,调制方式对应的调制阶数表示该调制方式下一个符号传送的比特数,比如:QPSK对应的调制阶数为2,16QAM对应的调制阶数为4,64QAM对应的调制阶数为6,256QAM对应的调制阶数为8。
在一示例中,候选调制方式集合A包括QPSK和16QAM,则候选调制方式集合A的最大调制阶数为4。
对于参数2,一候选调制方式集合的最小调制阶数为该候选调制方式集合所包括的调制方式对应的调制阶数中最小的调制阶数。
在一示例中,候选调制方式集合A包括QPSK和16QAM,则候选调制方式集合A的最小调制阶数为2。
本申请实施例中,终端设备支持的多个调制方式所划分的至少两个候选调制方式集合中,不同的候选调制方式集合的参数1、参数2和参数3中的一个或多个参数不同。
在一示例中,终端设备支持的调制方式包括:QPSK、16QAM、64QAM、256QAM,至少两个候选调制方式集合包括候选调制方式集合1和候选调制方式集合2,其中,候选调制方式集合1包括以下调制方式:QPSK、16QAM、64QAM,候选调制方式集合2包括以下调制方式:16QAM、64QAM、256QAM,此时,候选调制方式集合1和候选调制方式集合2的最大调制阶数和最小调制阶数不同,候选调制方式集合1的最大调制阶数为6,候选调制方式集合1的最小调制阶数为2,候选调制方式集合2的最大调制阶数为8,候选调制方式集合2的最小调制阶数为4。
在一示例中,终端设备支持的调制方式包括:QPSK、16QAM、64QAM、256QAM,至少两个候选调制方式集合包括候选调制方式集合1和候选调制方式集合2,其中,候选调制方式集合1包括以下调制方式:16QAM、64QAM,候选调制方式集合2包括以下调制方式:16QAM、64QAM、256QAM,此时,候选调制方式集合1和候选调制方式集合2的最大调制阶数和包括的调制方式的数量不同,候选调制方式集合1的最大调制阶数为6,候选调制方式集合1包括的调制方式的数量为2,候选调制方式集合2的最大调制阶数为8,候选调制方式集合2包括的调制方式的数量为3。
S602、通信设备从所述第一调制方式集合中选择目标调制方式。
在第一调制方式集合包括一个调制方式的情况下,通信设备将该调制方式确定为目标调制方式,以基于该目标调制方式来进行信道当前的CQI即第一CQI的计算。
在第一调制方式集合包括多个调制方式的情况下,通信设备从第一调制方式集合中选择一个调制方式为目标调制方式,以基于该目标调制方式来进行第一CQI的计算。
在一示例中,终端设备支持的调制方式包括:QPSK、16QAM、64QAM、256QAM,通信设备从终端设备支持的调制方式中选择的第一调制方式集合为{QPSK,16QAM,64QAM},此时,通信设备从第一调制方式集合{QPSK,16QAM,64QAM}中选择16QAM为目标调制方式,基于16QAM来计算第一CQI,不需要从终端设备支持的全部调制方式:QPSK、16QAM、64QAM、256QAM中来选择目标调制方式。
S603、通信设备基于所述目标调制方式对应的MI生成第一CQI。
通信设备从终端设备支持的多个调制方式中选择目标调制方式后,基于目标调制方式计算第一CQI。可理解的,第一CQI用于基站为终端设备选择以下至少之一:频域资源、调制方式、传输方式。其中,传输方式指示数据块的大小。
可理解的,第一CQI的值用于反映终端设备的第一信道的信道质量。第一信道为终端设备进行上行业务或下行业务的信道。可选地,第一信道包括:物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)等。
可选地,通信设备为网络设备,所述第一CQI属于上行CQI。
可选地,通信设备为所述终端设备,第一CQI属于下行CQI。
本申请实施例提供的无线通信方法,根据参考信道信息,从终端设备支持的多个调制方式中选择第一调制方式集合;从所述第一调制方式集合中选择目标调制方式;基于所述目标调制方式对应的MI生成第一CQI;从而通过参考信道信息预测当前信道可能采用的调制方式即第一调制方式集合,基于预测的第一调制方式集合来进行CQI的值的计算,从而在不损失信道的性能的基础上不需要根据终端设备支持的全部调制方式来确定CQI的值,降低CQI的计算复杂度。
在一些实施例中,S601中通信设备根据参考信道信息,从终端设备支持的多个调制方式中选择第一调制方式集合的方式可包括以下至少之一:
方式一、根据网络设备发出的信号的信噪比从多个调制方式中选取所述第一调制方式集合;
方式二、根据第二CQI从所述多个调制方式中选取所述第一调制方式集合。
对于方式一
参考信道信息包括网络设备发出的信号的信噪比,网络设备发出的信号的信噪比(SINR)可由CSI来指示,CSI为终端设备上报至基站的表示信道的传播特性的信息,可基于基站所发出的导频信号或数据信号的测量得到。CSI用于确定信道的参考信号接收功率(Reference Signal Receiving Power,RSRP)、传输层数等表征信道的状态的信息。
通信设备通过CSI指示的RSRP确定网络设备发出的信号的信噪比的值,并基于网络设备发出的信号的信噪比的值从终端设备支持的多个调制方式中选择第一调制方式集合。
可选地,通信设备通过公式(7)确定网络设备发出的信号的信噪比SINR的值:
其中,Npwr表征干扰加噪声的功率。
在一些实施例中,方式一根据网络设备发出的信号的信噪比从所述多个调制方式中选择第一调制方式集合的实施,包括:根据所述信号的信噪比与至少一个目标信噪比门限值的比较,从所述多个调制方式中选择所述第一调制方式集合。
通信设备将CSI指示的SINR的值与至少一个目标信噪比门限值进行比较,从而确定信噪比的值与各个目标信噪比门限值的关系,基于信噪比的值与各个目标信噪比门限值的关系从多个调制方式中选择第一调制方式集合。
可选地,多个调制方式划分为多个候选调制方式集合,通信设备根据信号的信噪比与至少一个目标信噪比门限值的比较,从多个候选调制方式集合中选择第一调制方式集合。
在一示例中,终端设备支持的调制方式包括:调制方式一、调制方式二、调制方式三和调制方式四,终端设备支持的调制方式划分为以下两个候选调试方式集合:包括调制方式一和调制方式二的候选调制方式集合1、包括调制方式二、调制方式三和调制方式四的候选调制方式集合2,通信设备基于SINR选择候选调制方式集合2为第一调制方式集合。
可选地,至少一个目标信噪比门限值为设定的固定的信噪比门限值。
可选地,所述至少一个目标信噪比门限值与第一数量具有关联关系,所述第一数量为所述CSI指示的传输层数。
在所述至少一个目标信噪比门限值与第一数量具有关联关系的情况下,选择第一调制方式集合所使用的至少一个目标信噪比门限值为第一数量对应的至少一个信噪比门限值。此时,通信设备将CSI指示的传输层数对应的至少一个信噪比门限值选择为目标信噪比门限值。可理解的,CSI指示的传输层数为CSI指示的rank的值。
以传输层数对应的信噪比门限值的数量为1为例,rank的值为1,对应的信噪比门限值为SINR1,rank的值为2,对应的信噪比门限值为SINR2,rank的值为3,对应的信噪比门限值为SINR3,rank的值为4,对应的信噪比门限值为SINR4;若CSI指示的rank的值为4,则用于选择第一调制方式 集合的目标信噪比门限值包括SINR4
以传输层数对应的信噪比门限值的数量为2为例,rank的值为1,对应的信噪比门限值包括SINR11和SINR12,且SINR11小于SINR12,rank的值为2,对应的信噪比门限值包括SINR21和SINR22,且SINR21小于SINR22,rank的值为3,对应的信噪比门限值包括SINR31和SINR32,且SINR31小于SINR32,rank的值为4,对应的信噪比门限值包括SINR41和SINR42,且SINR41小于SINR42;若CSI指示的rank的值为4,则用于选择第一调制方式集合的目标信噪比门限值包括SINR41和SINR42
本申请实施例中,基于CSI指示的SINR选择第一调制方式集合的情况下,基于传输层数的不同,使用不同的信噪比门限值与CSI对应的信噪比进行比较,从而基于信道质量的不同,使用不同的信噪比门限值进行第一调制方式集合的选择,使得选择适合当前信道质量的第一调制方式集合。
可选地,不同的传输层数对应的至少一个目标信噪比门限值不同。
不同的传输层数对应不同的至少一个信噪比门限值可理解为不同的传输层对应的至少一个信噪比是相互独立的。当CSI指示的传输层数不同,则第一设备确定的目标信噪比门限值不同。
以传输层数对应的信噪比门限值的数量为1为例,rank的值为1,对应的信噪比门限值为SINR1,rank的值为2,对应的信噪比门限值为SINR2,rank的值为3,对应的信噪比门限值为SINR3,rank的值为4,对应的信噪比门限值为SINR4;若CSI指示的传输层为1,则目标信噪比门限值为SINR1;若CSI指示的传输层为2,则目标信噪比门限值为SINR2;若CSI指示的传输层为3,则目标信噪比门限值为SINR3;若CSI指示的传输层为4,则目标信噪比门限值为SINR4
可选的,传输层数越多,在对应的至少一个信噪比门限值中处于相同位置的信噪比门限值越大。这里信噪比门限值在所属的至少一个信噪比门限值中的位置基于该至少一个信噪比门限值中各信噪比门限值的大小确定。
以传输层数对应的信噪比门限值的数量为1为例,rank的值为1,对应的信噪比门限值为SINR1,rank的值为2,对应的信噪比门限值为SINR2,rank的值为3,对应的信噪比门限值为SINR3,rank的值为4,对应的信噪比门限值为SINR4,则各传输层数对应的信噪比门限值从大到小的排序为:SINR4、SINR3、SINR2、SINR1
以传输层数对应的信噪比门限值的数量为2为例,rank的值为1,对应的信噪比门限值包括SINR11和SINR12,且SINR11小于SINR12,rank的值为2,对应的信噪比门限值包括SINR21和SINR22,且SINR21小于SINR22,rank的值为3,对应的信噪比门限值包括SINR31和SINR32,且SINR31小于SINR32,rank的值为4,对应的信噪比门限值包括SINR41和SINR42,且SINR41小于SINR42,则各传输层数对应的较小的信噪比门限值从大到小的排序为:SINR41、SINR31、SINR21、SINR11,各传输层数对应的较大的信噪比门限值从大到小的排序为:SINR42、SINR32、SINR22、SINR12
在一些实施例中,所述根据所述SINR的值与至少一个目标信噪比门限值的关系,从所述至少两个候选调制方式集合中选择所述第一调制方式集合,包括:基于所述至少一个目标信噪比门限值确定至少两个信噪比范围;确定所述至少两个信噪比范围中所述SINR的值所属的目标信噪比范围;将至少两个候选调制方式集合中与所述目标信噪比范围对应的候选调制方式确定为所述第一调制方式集合。
通信设备基于至少一个目标信噪比门限值能够得到至少两个信噪比范围,且不同的信噪比范围对应至少两个候选调制方式集合中不同的候选调制方式集合。可选地,信噪比越大的信噪比范围对 应的候选调制方式集合的最大调制阶数越大。
通信设备将网络设备发出的信号的信噪比与至少一个目标信噪比门限值进行比较,根据SINR的值与至少一个目标信噪比门限值中各目标信噪比门限值的关系,确定至少两个信噪比范围中的目标信噪比范围,将目标信噪比范围对应的候选调制方式集合确定为第一调制方式集合。其中,所述信噪比的值属于目标信噪比范围。
以至少一个目标信噪比门限值包括:SINR41和SINR42,且SINR41小于SINR42为例,基于SINR41和SINR42确定以下三个信噪比范围:噪声比范围1(小于SINR41),噪声比范围2(SINR41与SINR42之间)、噪声比范围3(大于SINR42),且噪声比范围对应候选调制方式集合1、噪声比范围2对应候选调制方式集合2,噪声比范围3对应候选调制方式集合3;若信噪比的值属于噪声比范围3即信噪比的值大于SINR42,则第一调制方式集合为候选调制方式集合3。可理解的,本申请实施例中的两个门限值之间包括两个门限值本身,例如:信噪比的值位于SINR41与SINR42之间,可理解为信噪比的值属于[SINR41,SINR42]。
在一些实施例中,所述至少一个目标信噪比门限值包括第一目标信噪比门限值,所述至少两个候选调制方式集合包括第一候选调制方式集合和第二候选调制方式集合,所述第一候选调制方式集合与所述第二候选调制方式集合包括的调制方式的数量相同,所述第一候选调制方式集合的最大调制阶数小于所述第二候选调制方式集合的最大调制阶数,所述第一候选调制方式集合的最小调制阶数小于所述第二候选调制方式集合的最小调制阶数;若所述信噪比的值小于所述第一目标信噪比门限值,则所述第一调制方式集合为所述第一候选调制方式集合;若所述信噪比的值大于或等于所述第一目标信噪比门限值,则所述第一调制方式集合为所述第二候选调制方式集合。
此时,至少一个目标信噪比门限值所包括的目标信噪比门限值为第一目标信噪比门限值,基于第一目标信噪比门限值确定两个信噪比范围:小于第一目标信噪比门限值(第一信噪比范围)、大于或等于第一目标信噪比门限值(第二信噪比范围),且第一信噪比范围对应第一候选调制方式集合,第二信噪比范围对应第二候选调制方式集合。
第一候选调制方式集合和第二候选调制方式集合所包括的调试方式的数量相同,且第二候选调制方式集合的最大调制阶数和最小调制阶数分别大于第一候选调制方式集合的最大调制阶数和最小调制阶数,
在一示例中,终端设备支持的最高调制方式为256QAM,第一候选调制方式集合为{QPSK,16QAM,64QAM},第二候选调制方式集合为{16QAM,64QAM,256QAM}。可理解的,终端设备支持的调制方式包括终端支持的最高调制方式和低于所支持的最高调制方式的所有调制方式。
通信设备将网络设备发出信号的SINR的值和第一目标信噪比门限值进行比较,若SINR的值小于第一目标信噪比门限值,即目标信噪比范围为第一信噪比范围,则第一调制方式集合为第一候选调制方式集合,若SINR的值大于或等于第一目标信噪比门限值,即目标信噪比范围为第二信噪比范围,则第一调制方式集合为第二候选调制方式集合。
本申请实施例提供的无线通信方法,利用网络设备发出的信号的信噪比预先判断当前信道质量的范围,并基于信道质量的范围进行第一调制方式集合的选择,其中,当信道质量较好时,选择高阶调制方式即调制阶数大的调制方式对应的候选调制方式集合,当信道质量较差时,选择低阶调制方式即调制阶数小的调制方式对应的候选调制方式集合,从而基于信道质量选择与信道质量匹配的调制方式,提高信道传输效率。
对于方式二
第二CQI为该终端设备对应的前一次CQI,即通信设备计算的历史CQI的值中距离当前时间最接近的CQI的值。第二CQI的值可以理解为第二CQI的CQI等级。
在一些实施例中,方式二根据第二CQI,从所述多个调制方式中选择第一调制方式集合的实施,包括:根据所述第二CQI与至少一个CQI门限值的关系,从多个调制方式中选择所述第一调制方式集合。
可选地,多个调制方式划分为多个候选调制方式集合,通信设备根据第二CQI与至少一个目标信噪比门限值的比较,从多个候选调制方式集合中选择第一调制方式集合。
通信设备将第二CQI值与至少一个CQI门限值进行比较,从而确定第二CQI值与各个CQI门 限值的关系,基于第二CQI值与各个CQI门限值的关系从至少两个候选调制方式集合中选择第一调制方式集合。
可选地,至少一个CQI门限值为设定的固定的CQI门限值。
可选地,至少一个CQI门限值为历史CQI中相邻两次CQI的值的变化量确定。
在一示例中,CQI的取值范围为1至15,相邻两次上报的CQI的值的变化量不会超过5,则至少一个CQI门限值包括:6和10。
在一些实施例中,所述根据所述第二CQI的值与至少一个CQI门限值的关系,从所述至少两个候选调制方式集合中选择所述第一调制方式集合,包括:基于所述至少一个CQI门限值确定至少两个CQI范围;确定所述至少两个CQI范围中所述第二CQI的值所属的目标CQI范围;将至少两个候选调制方式集合中与所述目标CQI范围对应的候选调制方式确定为所述第一调制方式集合。
通信设备基于至少一个CQI门限值能够得到至少两个CQI取值范围,不同的CQI取值范围对应至少两个候选调制方式集合中不同的候选调制方式集合。
通信设备将第二CQI值与至少一个CQI门限值进行比较,根据第二CQI值与至少一个CQI门限值中各CQI门限值的关系,确定至少两个CQI取值范围中第二CQI所属的目标CQI取值范围,将目标CQI取值范围对应的候选调制方式集合确定为第一调制方式集合。
在一示例中,至少一个CQI门限值包括:CQI1,基于CQI1确定以下两个CQI取值范围:CQI取值范围1(小于CQI1)、CQI取值范围2(大于或等于CQI1),且CQI取值范围1对应候选调制方式集合1、CQI取值范围2对应候选调制方式集合2,若第二CQI值属于CQI取值范围2,即第二CQI值大于或等于CQI1,则第一调制方式集合为候选调制方式集合2。
在一示例中,至少一个CQI门限值包括:CQI1和CQI2,基于CQI1和CQI2确定以下三个CQI取值范围:CQI取值范围1(小于CQI1)、CQI取值范围2(CQI1与CQI2之间)、CQI取值范围3(大于或等于CQI2),且CQI取值范围1对应候选调制方式集合1、CQI取值范围2对应候选调制方式集合2,CQI取值范围3对应候选调制方式集合3,若第二CQI值属于CQI取值范围2,即第二CQI值位于CQI1与CQI2之间,则第一调制方式集合为候选调制方式集合2。
在一些实施例中,所述至少一个CQI门限值包括:第一CQI门限值和第二CQI门限值,所述第一CQI门限值小于所述第二CQI门限值,所述至少两个候选调制方式集合包括第三候选调制方式集合和第四候选调制方式集合,所述第三候选调制方式集合与所述第四候选调制方式集合包括的调制方式的数量相同,所述第三候选调制方式集合的最大调制阶数小于所述第四候选调制方式集合的最大调制阶数,所述第三候选调制方式集合的最小调制阶数小于所述第四候选调制方式集合的最小调制阶数;若所述第二CQI值小于所述第一CQI门限值,则所述第一调制方式集合为所述第三候选调制方式集合;若所述第二CQI值位于所述第一CQI门限值与所述第二CQI门限值之间,则所述第一调制方式集合为上一次选择的第一调制方式集合;若所述第二CQI值大于所述第二CQI门限值,则所述第一调制方式集合为所述第四候选调制方式集合。
此时,通信设备基于第一CQI门限值和第二CQI门限值确定两个CQI取值范围:小于第一CQI门限值(第一CQI取值范围)、第一CQI门限值与第二CQI门限之间(第二CQI取值范围)、大于第二CQI门限值(第三CQI取值范围),且第一CQI取值范围对应第三候选调制方式集合,第二CQI取值范围对应的候选调制方式集合同上一次选择的第一调制方式集合,第三CQI取值范围对应第四候选调制方式集合。可理解的,通信设备上一次选择的第一调制方式集合为至少两个候选调制方式集合中计算第一CQI所使用的调制方式集合。
可选地,CQI的取值范围为1至15的情况下,第一CQI门限值为5,第二CQI门限值为10。
本申请实施例提供的无线通信方法,利用上一次计算的CQI的值预先判断当前信道可能采用的调制方式,基于判断的当前信道可能采用的调制方式进行本次CQI的值的计算,从而在不损失信道性能的基础上降低CQI计算的复杂度。
本申请实施例中,本申请实施例中,通信设备可支持通过网络设备发出的信号的信噪比和第二CQI中的一种或两种信息来进行第一调制方式集合的选择。
在一些实施例中,S601中通信设备根据参考信道信息,从终端设备支持的多个调制方式中选择第一调制方式集合的方式还可包括以下至少之一:
方式三、根据网络设备发出的信号的信噪比从所述多个调制方式中选择第二调制方式集合;根据第二CQI,从所述第二调制方式集合所包括的调制方式中选择所述第一调制方式集合。
方式四、根据第二CQI,从所述多个调制方式中选择第二调制方式集合;根据网络设备发出的信号的信噪比从所述第二调制方式集合所包括的调制方式中选择所述第一调制方式集合。
在方式三中,通信设备先基于网络设备发出的信号的信噪比从终端设备支持的调制方式中选择第二调制方式集合,再基于第二CQI从第二调制方式集合中选择第一调制方式集合。
可理解的,通信设备基于网络设备发出的信号的信噪比从终端设备支持的多个调制方式中选择第二调制方式集合的选择方法,同方式一中通信设备网络设备发出的信号的信噪比从终端设备支持的多个调制方式中选择第一调制方式集合的选择方法,这里不再赘述,二者区别在于:方式三中将选择的调制方式集合称为第二调制方式集合,方式一中选择的调制方式集合称为第一调制方式集合。
可理解的,通信设备基于第二CQI从第二调制方式集合所包括的调制方式中选择第一调制方式集合的选择方法同方式二中基于第二CQI从终端设备支持的多个调制方式中选择第一调制方式集合的选择方法,这里不再赘述。
在方式四中,通信设备先基于第二CQI从终端设备支持的调制方式中选择第二调制方式集合,再基于网络设备发出的信号的信噪比从第二调制方式集合中选择第一调制方式集合。
可理解的,通信设备第二CQI从终端设备支持的调制方式中选择第二调制方式集合的选择方法,同方式二中通信设备基于第二CQI从终端设备支持的调制方式中选择第一调制方式集合的选择方法,这里不再赘述,二者区别在于:方式四中将选择的调制方式集合称为第二调制方式集合,方式二中选择的调制方式集合称为第一调制方式集合。
可理解的,通信设备基于网络设备发出的信号的信噪比从第二调制方式集合所包括的调制方式中选择第一调制方式集合的选择方法同方式一中基于CSI指示的信噪比SINR从终端设备支持的调制方式中选择第一调制方式集合的选择方法,这里不再赘述。
在一些实施例中,如图7所示,S602所述从所述第一调制方式集合中选择目标调制方式,包括:
S6021、通信设备计算所述第一调制方式集合中的第一调制方式的互信息和所述第一调制方式集合中的第二调制方式的互信息;
S6022、通信设备基于确定所述第二调制方式的互信息大于所述第一调制方式的互信息,将所述第二调制方式确定为所述目标调制方式。
第二调制方式为第一调制方式集合中任一调制方式,第一调制方式为第一调制方式集合中除第二调制方式以外的任一调制方式。对于第二调制方式,当该第二调制方式的互信息大于第一调制方式集合中其他调制方式的互信息,则该第二调制方式为目标调制方式。
通信设备可遍历第一调制方式集合中所有的调制方式,根据等效信噪比的值或容量的值确定各调制方式对应的MI,并从所有的调制方式对应的MI的值中,选择最大的MI的值作为最终的MI的值,最终的MI的值对应的调制方式为目标调制方式。
本申请实施例中,最终的MI的值可表示为公式(6):
其中,表示第l个传输层中第一调制方式集合中第m个调制方式对应的MI,在实际应用中,在信道包括多个传输层的情况下,各传输层对应的第一CQI独立计算,即各第l个传输层的对应的MI独立计算。在信道包括1个传输层的情况下,l的取值仅为1,或将l忽略。
本申请实施例提供的无线通信方法中,通信设备在映射MI的值时,仅遍历第一调制方式集合中的各调制方式,对于终端设备支持的调制方式中第一调制方式集合以外的调制方式,不需要确定该调制方式的MI的值,从而减少需要遍历的调制方式的数量,且从相对于图5所示的确定最终的MI的值的更小的选择范围中进行最终的MI的值的选择,从而提高CQI的计算效率,降低CQI的计算复杂度。
在一些实施例中,S6021计算所述第一调制方式集合中各第一调制方式对应的MI的实施包括:针对所述第一调制方式集合中各第一调制方式,执行以下处理:获取所述第一调制方式下各样值点的互信息;将各样值点的互信息进行叠加,得到所述第一调制方式对应的互信息。
对于一第一调制方式,该第一调制方式对应的MI的值的计算可通过公式(5)实现:
本申请实施例中,样值点的MI可理解为传输层l上的样值点与传输层l的MI。
在一些实施例中,获取所述第一调制方式下各样值点的互信息,包括:针对各样值点,执行以下处理:
获取所述样值点的等效信噪比或容量;将所述等效信噪比或所述容量映射为所述第一调制方式下所述样值点的互信息。
这里,可通过公式(3)将样值点的等效信噪比映射为第一调制方式下所述样值点的MI:
这里,可通过公式(4)将样值点的容量映射为第一调制方式下所述样值点的MI:
本申请实施例中,通信设备可根据等效信道状态信息Heq,i计算MMSE检测或SD检测对应的等效信噪比的值或容量。
在一些实施例中,S603基于所述目标调制方式对应的互信息生成第一信道质量指示,包括:将互信息至信道质量指示的映射中,所述目标调制方式的互信息的值对应的信道质量指示确定为所述第一信道质量指示。
在一些实施例中,通信设备还实施以下处理:以所述第一信道质量指示更新所述参考信道信息。
通信设备得到第一CQI后,可基于第一CQI对参考信道信息中的第二CQI进行更新,以基于当前的第一CQI计算下一个第一CQI。
在一些实施例中,通信设备还实施以下步骤:将所述第一信道质量指示发送至网络设备,使得所述网络设备基于所述第一信道质量指示调度频谱资源。
此时,通信设备为终端设备,所述第一CQI属于下行CQI,终端设备得到第一CQI后,将第一CQI上报给网络设备,网络设备根据所述终端设备上报的第一CQI的值为所述终端设备调度频域资源。
在一些实施例中,通信设备还实施以下步骤:基于所述第一信道质量指示调度频谱资源。
此时,所述第一CQI属于上行CQI,通信设备为网络设备,网络设备基于计算的第一CQI的值为终端设备调度频域资源。
在实际应用中,网络设备还可基于第一CQI的值为所述终端设备选择调制编码方式。
以通信设备为网络设备为例,网络设备进行SRS测量得到等效信噪比,并基于等效信噪比计算上行CQI的值,以基于计算的上行CQI的值为终端设备选择频域资源。
本申请实施例提供的无线通信方法,可应用于基站计算上行CQI的值的场景,也可以应用于终端设备计算下行CQI的值的场景,因此,本申请实施例提供的计算CQI的值的方式能够适用于多个不同的通信场景,能够减少各通信场景下计算CQI的复杂度。
下面,对本申请实施例提供的无线通信方法进行进一步说明。
本申请实施例提供的无线通信方法中,并不是对所有的调制方式都进行映射,而是根据信道的先验信息进行候选调制方式集合即候选调制方式集合的选择,如当信噪比较高时,针对高阶调制方式进行映射,当信噪比较低时,针对低阶调制方式进行映射,或根据UE历史上报的CQI信息进行一些适当的候选调制方式集合中的调制方式的数量的减少,从而降低实现复杂度。
本申请实施例提供的无线通信方法,如图8所示,
S801、从多个候选调制方式集合中选择第一调制方式集合。
其中,多个候选调制方式集合是由终端设备支持的调制方式所划分的。
S802、根据等效信道状态信息计算等效信噪比的值或容量的值。
S803、遍历第一调制方式集合中的调制方式,根据等效信噪比的值或容量的值确定第一调制方式集合中各调制方式对应的MI的值。
S804、从第一调制方式集合中的调制方式对应的MI的值中,选择最大的MI的值作为最终的MI的值。
S805、根据MI的值和MI至CQI表格得到对应的CQI的值。
图8所示的无线通信方法的可实施于终端设备,也可实施于基站。
如图8所示的无线通信方法在图3所示的无线通信方法计算CQI的值之前,增加S801,以进行第一调制方式集合的选择。在S801中,可根据信道状态信息或历史上报的CQI信息进行候选调制方式的选择过程。在根据等效信噪比的值和容量的值确定所有的随机方式对应的MI的值之前,针对S302和S303,在图8所示的无线通信方法中,只需要对候选调制方式集合中的调制方式进行遍历,并不需要对所有的调制方式进行遍历。因此降低了CQI计算的复杂度。
本申请实施例提供的无线通信方法能够实施且不限于以下实施例:
实施例一、根据信道状态信息选择调制方式的候选调制方式集合
将调制方式分成两个集合组。以支持256QAM调制的UE为例,将候选调制方式分为两个集合,低调制方式集合{QPSK,16QAM,64QAM},高调制方式集合{16QAM,64QAM,256QAM}。
如图9所示,终端设备选择候选调制方式集合的步骤包括:
S901、终端设备计算当前信道状态信息对应的等效SINR的值。
这里,可通过公式(7)计算当前信道状态信息对应的等效SINR的值:
其中,RSRP表示信号的功率;Npwr表征干扰加噪声的功率。
S902、终端设备基于等效SINR的值确定第一调制方式集合。
若UE上报的rank=1,则当SINR>SINR1,选择的第一调制方式集合为高阶调制方式集合,否则,选择的第一调制方式集合为低阶调制方式集合;若UE上报的rank=2,则当SINR>SINR2,选择的第一调制方式集合为高阶调制方式集合,否则,选择的第一调制方式集合为低阶调制方式集合;若UE上报的rank=3,则当SINR>SINR3,选择的第一调制方式集合为高阶调制方式集合,否则,选择的第一调制方式集合为低阶调制方式集合;若UE上报的rank=4,则当SINR>SINR4,选择的第一调制方式集合为高阶调制方式集合,否则,选择的第一调制方式集合为低阶调制方式集合。
在实施例一中,利用信道的先验信息如信噪比可以预先判断当前信道质量的范围,当信道质量较好时,选择高阶调制方式候选调制方式集合,当信道质量较差时,选择低阶调制方式候选调制方式集合。
实施例二、根据历史上报的CQI信息来选择调制方式的候选调制方式集合;
根据CQI等级表格我们可以得到实际的调制方式等级,假设两次上报时信道的变化在10dB以内,这样两次上报的CQI值不会超过5个等级(该假设在周期上报时可以认为基本上是满足的)例如当历史上报的CQI值<CQI6,则可以选择低阶的调制方式候选调制方式集合,当历史上报的CQI值>CQI10时,则选择高阶的调制方式候选调制方式集合,当历史上报的CQI值位于[6,10]之间时,则选择和上一次上报相同的调制方式候选调制方式集合。CQI的值与CQI等级之间的关系可如表示1所示。
表1、CQI的值与CQI等级示例

在实施例二中,利用历史CQI上报值和信道变化的特点预先判断当前信道可能采用的调制方式,选择合适的候选调制方式集合,在不损失性能的基础上降低实现复杂度。
在上述实施例中,以从2个候选调制方式集合中选择第一调制方式集合即目标调制方式集合为例对本申请实施例提供的无线通信方法进行说明,可以扩展至从3或更多个候选调制方式集合中选择第一调制方式集合,此时只需要增加更多的门限即可灵活实现。
上述实施例应用于终端设备侧,在实际应用中,本申请实施例提供的无线通信方法也可应用于基站。
本申请实施例提供的无线通信方法,利用信道状态信息或历史上报CQI的先验信息对本次上报的CQI的值进行预测,在实现过程中并不需要对所有的调制方式进行遍历,仅需要对候选调制方式集合中的调制方式进行遍历,同时利用了信道的一些先验信息,在不损失性能的基础上能有效降低实现复杂度。如对于支持256QAM调制的UE来说,采用现有技术,需要进行4次遍历,当采用本技术方案,可仅需要3次遍历,复杂度降低25%。
本申请实施例的一种无线通信装置,应用于通信设备,如图10所示,装置1000包括:
第一选择模块1001,配置为根据参考信道信息,从终端设备支持的多个调制方式中选择第一调制方式集合;
第二选择模块1002,配置为从所述第一调制方式集合中选择目标调制方式;
生成模块1003,配置为基于所述目标调制方式对应的互信息生成第一信道质量指示。
在一些实施例中,第一选择模块1001还配置为:
根据网络设备发出的信号的信噪比,从所述多个调制方式中选取第一调制方式集合。
在一些实施例中,第一选择模块1001还配置为:
根据所述SINR的值与至少一个目标信噪比门限值的关系,从所述多个调制方式中选取所述第一调制方式集合。
在一些实施例中,所述至少一个目标信噪比门限值与第一数量具有关联关系,所述第一数量为信道状态信息指示的传输层数。
在一些实施例中,第一选择模块1001还配置为:
根据第二信道质量指示,从所述多个调制方式中选取所述第一调制方式集合。
在一些实施例中,第二选择模块1002还配置为:
计算所述第一调制方式集合中的第一调制方式的互信息和所述第一调制方式集合中的第二调制方式的互信息;
基于确定所述第二调制方式的互信息大于所述第一调制方式的互信息,将所述第二调制方式确定为所述目标调制方式。
在一些实施例中,第二选择模块1002还配置为:
针对所述第一调制方式集合中各第一调制方式,执行以下处理:
获取所述第一调制方式下各样值点的互信息;
将各样值点的互信息进行叠加,得到所述第一调制方式对应的互信息。
在一些实施例中,第二选择模块1002还配置为:
针对各样值点,获取所述样值点的等效信噪比或容量;
针对各样值点,将所述等效信噪比或所述容量映射为所述第一调制方式下所述样值点的互信息。
在一些实施例中,生成模块1003还配置为:
将互信息至信道质量指示的映射中,所述目标调制方式的互信息的值对应的信道质量指示确定为所述第一信道质量指示。
在一些实施例中,装置1000还包括:更新模块,配置为:
以所述第一信道质量指示更新所述参考信道信息。
在一些实施例中,第一选择模块1001还配置为:
根据网络设备发出的信号的信噪比从所述多个调制方式中选择第二调制方式集合;
根据第二信道质量指示从所述第二调制方式集合所包括的调制方式中选择所述第一调制方式集 合。
在一些实施例中,第一选择模块1001还配置为:
根据第二信道质量指示从所述多个调制方式中选择第二调制方式集合;
根据网络设备发出的信号的信噪比从所述第二调制方式集合所包括的调制方式中选择所述第一调制方式集合。
在一些实施例中,装置1000还包括:发送模块,配置为将所述第一信道质量指示发送至网络设备,使得所述网络设备基于所述第一信道质量指示调度频谱资源。
在一些实施例中,装置1000还包括:调度模块,配置为基于所述第一信道质量指示调度频谱资源。
本领域技术人员应当理解,本申请实施例的上述无线通信装置的相关描述可以参照本申请实施例的无线通信方法的相关描述进行理解。
图11是本申请实施例提供的一种通信设备1100示意性结构图。该通信设备可以为终端设备或网络设备。图11所示的通信设备1100包括处理器1110,处理器1110被配置为:
根据参考信道信息,从终端设备支持的多个调制方式中选择第一调制方式集合;
从所述第一调制方式集合中选择目标调制方式;
基于所述目标调制方式对应的互信息生成第一信道质量指示CQI。
本申请实施例中,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的无线通信方法。
可选地,如图11所示,通信设备1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的无线通信方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,如图11所示,通信设备1100还可以包括收发器1130,处理器1110可以控制该收发器1130与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1100可以实现本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。可选地,该通信设备1100可为终端设备或网络设备。
图12是本申请实施例的芯片的示意性结构图。图12所示的芯片1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,芯片1200还可以包括存储器3320。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,该芯片1200还可以包括输入接口1230。其中,处理器1210可以控制该输入接口1230与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1200还可以包括输出接口1240。其中,处理器1210可以控制该输出接口1240与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的通信设备,并且该芯片可以实现本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统1300的示意性框图。如图13所示,该通信系统1300包括终端设备1310和网络设备1320。
其中,该终端设备1310或网络设备1320可以用于实现上述方法中由通信设备实现的相应的功能,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或 者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的通信设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的通信设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的通信设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 一种无线通信方法,所述方法包括:
    根据参考信道信息,从终端设备支持的多个调制方式中选择第一调制方式集合;
    从所述第一调制方式集合中选择目标调制方式;
    基于所述目标调制方式对应的互信息生成第一信道质量指示。
  2. 根据权利要求1所述的方法,其中,所述方法进一步包括:
    根据网络设备发出的信号的信噪比,从所述多个调制方式中选取所述第一调制方式集合。
  3. 根据权利要求2所述的方法,其中,所述方法进一步包括:
    根据所述信号的信噪比与至少一个目标信噪比门限值的比较,从所述多个调制方式中选择所述第一调制方式集合。
  4. 根据权利要求3所述的方法,其中,所述至少一个目标信噪比门限值与第一数量具有关联关系,所述第一数量为信道状态信息指示的传输层数。
  5. 根据权利要求1所述的方法,其中,所述方法进一步包括:
    根据第二信道质量指示从所述多个调制方式中选取所述第一调制方式集合。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述方法进一步包括:
    计算所述第一调制方式集合中的第一调制方式的互信息和所述第一调制方式集合中的第二调制方式的互信息;
    基于确定所述第二调制方式的互信息大于所述第一调制方式的互信息,将所述第二调制方式确定为所述目标调制方式。
  7. 根据权利要求6所述的方法,其中,所述方法进一步包括:
    针对所述第一调制方式集合中各第一调制方式,执行以下处理:
    获取所述第一调制方式下各样值点的互信息;
    将各样值点的互信息进行叠加,得到所述第一调制方式对应的互信息。
  8. 根据权利要求7所述的方法,其中,所述方法进一步包括:
    针对各样值点,执行以下处理:
    获取所述样值点的等效信噪比或容量;
    将所述等效信噪比或所述容量映射为所述第一调制方式下所述样值点的互信息。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述方法进一步包括:
    将互信息至信道质量指示的映射中所述目标调制方式的互信息的值对应的信道质量指示确定为所述第一信道质量指示。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述方法进一步包括:
    以所述第一信道质量指示更新所述参考信道信息。
  11. 根据权利要求1所述的方法,其中,所述方法进一步包括:
    根据网络设备发出的信号的信噪比从所述多个调制方式中选择第二调制方式集合;
    根据第二信道质量指示从所述第二调制方式集合所包括的调制方式中选择所述第一调制方式集合。
  12. 根据权利要求1所述的方法,其中,所述方法进一步包括:
    根据第二信道质量指示从所述多个调制方式中选择第二调制方式集合;
    根据网络设备发出的信号的信噪比从所述第二调制方式集合所包括的调制方式中选择所述第一调制方式集合。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述方法进一步包括:
    将所述第一信道质量指示发送至网络设备,使得所述网络设备基于所述第一信道质量指示调度频谱资源。
  14. 根据权利要求1至12中任一项所述的方法,其中,所述方法进一步包括:
    基于所述第一信道质量指示调度频谱资源。
  15. 一种通信设备,包括处理器,所述处理器被配置成:
    根据参考信道信息,从终端设备支持的多个调制方式中选择第一调制方式集合;
    从所述第一调制方式集合中选择目标调制方式;
    基于所述目标调制方式对应的互信息生成第一信道质量指示。
  16. 一种通信设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现权利要求1至14任一项所述无线通信方法中的步骤。
  17. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至14任一项所述的无线通信方法。
  18. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备,执行如权利要求1至14中任一项所述的无线通信方法。
  19. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至14中任一项所述的方法。
  20. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
PCT/CN2023/084100 2022-07-25 2023-03-27 一种无线通信方法及设备、存储介质 WO2024021652A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210877837.9 2022-07-25
CN202210877837.9A CN115276908B (zh) 2022-07-25 2022-07-25 一种无线通信方法及设备、存储介质

Publications (1)

Publication Number Publication Date
WO2024021652A1 true WO2024021652A1 (zh) 2024-02-01

Family

ID=83768532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084100 WO2024021652A1 (zh) 2022-07-25 2023-03-27 一种无线通信方法及设备、存储介质

Country Status (2)

Country Link
CN (1) CN115276908B (zh)
WO (1) WO2024021652A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276908B (zh) * 2022-07-25 2023-09-22 哲库科技(北京)有限公司 一种无线通信方法及设备、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102271026A (zh) * 2011-07-27 2011-12-07 东南大学 用于高级长期演进系统上行链路的闭环自适应传输方法
CN104660544A (zh) * 2013-11-22 2015-05-27 华为技术有限公司 一种兼容高阶调制和低阶调制的传输方法、装置
CN107222248A (zh) * 2016-03-17 2017-09-29 深圳市中兴微电子技术有限公司 信道质量指示确定方法及装置、通信设备
US20190349235A1 (en) * 2018-05-14 2019-11-14 At&T Intellectual Property I, L.P. Conveying modulation and coding information for an uplink data transmission
CN115276908A (zh) * 2022-07-25 2022-11-01 哲库科技(北京)有限公司 一种无线通信方法及设备、存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2380303B1 (en) * 2008-12-23 2018-04-18 Telefonaktiebolaget LM Ericsson (publ) Channel quality determination of a wireless communication channel based on received data
CN102122977B (zh) * 2010-01-11 2013-12-04 电信科学技术研究院 反馈cqi信息及信道质量估计的方法、用户终端及基站
EP2547022A1 (en) * 2011-07-13 2013-01-16 Intel Mobile Communications Technology Dresden GmbH Method and apparatus for determining channel state information
CN102752092B (zh) * 2012-07-23 2015-09-16 东南大学 基于虚拟混合自动请求重传的卫星链路自适应传输方法
CN104580033B (zh) * 2013-10-22 2018-12-04 电信科学技术研究院 信道状态信息的反馈方法和装置、及信息传输方法和装置
CN104753635B (zh) * 2013-12-31 2018-03-23 展讯通信(上海)有限公司 通信系统中信道质量指示的反馈方法与装置、通信终端
CN109039409A (zh) * 2017-06-09 2018-12-18 深圳市金立通信设备有限公司 Cqi反馈方法、终端、网络设备及相关计算机可读介质
CN110247690B (zh) * 2018-03-09 2021-10-01 华为技术有限公司 通知信道质量的方法和装置
CN110881221B (zh) * 2019-12-13 2022-11-15 无锡职业技术学院 一种无线自组网分布式频率选择方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102271026A (zh) * 2011-07-27 2011-12-07 东南大学 用于高级长期演进系统上行链路的闭环自适应传输方法
CN104660544A (zh) * 2013-11-22 2015-05-27 华为技术有限公司 一种兼容高阶调制和低阶调制的传输方法、装置
CN107222248A (zh) * 2016-03-17 2017-09-29 深圳市中兴微电子技术有限公司 信道质量指示确定方法及装置、通信设备
US20190349235A1 (en) * 2018-05-14 2019-11-14 At&T Intellectual Property I, L.P. Conveying modulation and coding information for an uplink data transmission
CN115276908A (zh) * 2022-07-25 2022-11-01 哲库科技(北京)有限公司 一种无线通信方法及设备、存储介质

Also Published As

Publication number Publication date
CN115276908A (zh) 2022-11-01
CN115276908B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
US10742383B2 (en) System and method for link adaptation for low cost user equipments
US10951381B2 (en) CSI reference resource definition for CSI report in NR
EP4418762A2 (en) Uplink power control method, terminal device, and network device
WO2019196801A1 (zh) 数据传输的方法、通信装置及系统
CN110719137B (zh) 一种信道质量通知方法、接收方法和装置
US11075711B2 (en) Wireless device specific maximum code rate limit adjustment
CN101106765A (zh) 调度器、包括该调度器的无线电基站设备以及调度方法
WO2022012609A1 (zh) 一种测量反馈方法及装置
WO2020057375A1 (zh) 一种资源配置方法及通信装置
CN114257331B (zh) 卫星通信系统的调度方法、装置及存储介质
CN115473614A (zh) 一种csi上报方法及装置、终端设备、网络设备
WO2024021652A1 (zh) 一种无线通信方法及设备、存储介质
WO2017076220A1 (zh) 一种信道状态信息csi反馈方法、终端及基站
WO2022057461A1 (en) Method and device for beam failure recovery, user equipment
WO2015027469A1 (zh) 下行信道聚合级别的确定方法、设备和系统
WO2014108049A1 (zh) 通信模式转换方法以及装置
WO2019052370A1 (zh) 用于进行数据传输的方法和装置
CN113037442B (zh) 一种控制信道单元cce聚合等级调整方法及装置
CN111756420A (zh) 通信方法和通信装置
WO2022205797A1 (zh) 无线通信方法、终端设备和网络设备
US11108527B2 (en) CQI codepoint reinterpretation
CN115706608A (zh) 一种通信方法和通信装置
CN115190526A (zh) 发送信道状态信息报告的方法和装置
CN113287275A (zh) 非正交多址接入混合自动重发请求
WO2023083236A1 (zh) 用于无线通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844870

Country of ref document: EP

Kind code of ref document: A1