[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024019362A1 - 반사굴절 렌즈계 및 이를 채용한 비디오 시스루 장치 - Google Patents

반사굴절 렌즈계 및 이를 채용한 비디오 시스루 장치 Download PDF

Info

Publication number
WO2024019362A1
WO2024019362A1 PCT/KR2023/009318 KR2023009318W WO2024019362A1 WO 2024019362 A1 WO2024019362 A1 WO 2024019362A1 KR 2023009318 W KR2023009318 W KR 2023009318W WO 2024019362 A1 WO2024019362 A1 WO 2024019362A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
catadioptric
lens system
catadioptric lens
mtf
Prior art date
Application number
PCT/KR2023/009318
Other languages
English (en)
French (fr)
Inventor
정영모
최종철
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230018985A external-priority patent/KR20240013024A/ko
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP23843213.2A priority Critical patent/EP4542279A1/en
Publication of WO2024019362A1 publication Critical patent/WO2024019362A1/ko
Priority to US19/033,197 priority patent/US20250164765A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present disclosure relates to a catadioptric lens system and a video see-through device employing the same.
  • the video see-through method is a method of enjoying virtual reality (VR) or augmented reality (AR) by wearing a head mounted display (HMD) with a camera attached.
  • VR virtual reality
  • AR augmented reality
  • Video see-through devices are required to be lightweight and compact, and optical systems used in video see-through devices are required to deliver wide viewing angles and high-quality images.
  • This optical system has a lens system composed of one or more lens elements arranged along the optical axis from the user's pupil side to the display surface side.
  • the lens system has been designed to provide maximum performance for the maximum angle of view from a fixed viewpoint.
  • a catadioptric lens system also called a pancake lens, is adopted to implement a thin optical system for a video see-through device.
  • a catadioptric lens system is a catadioptric lens system used in a video see-through device, and includes a first lens, a second lens, a third lens, and a fourth lens, which are sequentially arranged along the direction of the optical axis from the user's eye side to the image surface side. Equipped with a lens.
  • the second surface facing the image surface of the first lens reflects at least a portion of the light coming from the second lens
  • the fourth surface facing the image surface of the second lens reflects at least a portion of the light reflected from the first lens.
  • the first lens, second lens, third lens, and fourth lens may sequentially have positive, positive, negative, and positive refractive powers.
  • the first lens may be installed to be movable in the optical axis direction within a distance from the second lens of 0.1 mm to 1.1 mm.
  • the change in refractive power within the movement range of the first lens may be within the range of -7D to +1D.
  • a video see-through device includes a display panel through which image light is emitted; and a catadioptric lens system, wherein the catadioptric lens system includes a first lens, a second lens, a third lens, and a fourth lens that are sequentially arranged along the direction of the optical axis from the user's eye side toward the image surface side.
  • the second surface facing the image surface of the first lens reflects at least a portion of the light coming from the second lens
  • the fourth surface facing the image surface of the second lens reflects at least a portion of the light reflected from the first lens. It can be configured as follows.
  • the first lens, second lens, third lens, and fourth lens may sequentially have positive, positive, negative, and positive refractive powers.
  • the first lens may be installed to be movable in the direction of the optical axis within a distance of 0.1 mm to 1.1 mm from the second lens.
  • the change in refractive power within the movement range of the first lens may be within the range of -7D to +1D.
  • Figure 1 schematically shows a video see-through device according to an embodiment of the present disclosure.
  • Figure 2 schematically shows a case where a catadioptric lens system according to an embodiment of the present disclosure has a first refractive power.
  • Figure 3 schematically shows a case where a catadioptric lens system according to an embodiment of the present disclosure has a second refractive power.
  • Figure 4 is a graph showing the amount of change in distance between the first lens and the second lens while the catadioptric lens system according to an embodiment of the present disclosure changes the refractive power.
  • Figure 5 schematically shows a display panel according to an embodiment of the present disclosure.
  • Figure 6 schematically shows a display panel according to an embodiment of the present disclosure.
  • Figure 7 schematically shows a display panel according to an embodiment of the present disclosure.
  • Figure 8 is an MFT chart of a catadioptric lens system for red wavelength at refractive power -7D.
  • Figure 9 is an MFT chart of a catadioptric lens system for red wavelength at refractive power -5D.
  • Figure 10 is an MFT chart of a catadioptric lens system for red wavelength at refractive power -3D.
  • Figure 11 is an MFT chart of a catadioptric lens system for red wavelength at refractive power -1D.
  • Figure 12 is an MFT chart of a catadioptric lens system for red wavelength at refractive power +1D.
  • Figure 13 is an MFT chart of a catadioptric lens system for green wavelengths at a refractive power of -7D.
  • Figure 14 is an MFT chart of a catadioptric lens system for green wavelength at refractive power -5D.
  • Figure 15 is an MFT chart of a catadioptric lens system for green wavelength at refractive power -3D.
  • Figure 16 is an MFT chart of a catadioptric lens system for green wavelength at refractive power -1D.
  • Figure 17 is an MFT chart of a catadioptric lens system for green wavelength at refractive power +1D.
  • Figure 18 is an MFT chart of a catadioptric lens system for blue wavelengths at a refractive power of -7D.
  • Figure 19 is an MFT chart of a catadioptric lens system for blue wavelengths at a refractive power of -5D.
  • Figure 20 is an MFT chart of a catadioptric lens system for blue wavelengths at refractive power -3D.
  • Figure 21 is an MFT chart of a catadioptric lens system for blue wavelengths at refractive power -1D.
  • Figure 22 is an MFT chart of a catadioptric lens system for blue wavelengths at refractive power +1D.
  • Figure 23 is an aberration diagram showing longitudinal spherical aberration, astigmatism, and distortion of a catadioptric lens system at a refractive power of -7D.
  • Figure 24 is an aberration diagram showing longitudinal spherical aberration, astigmatism, and distortion of a catadioptric lens system at a refractive power of -5D.
  • Figure 25 is an aberration diagram showing longitudinal spherical aberration, astigmatism, and distortion of a catadioptric lens system at refractive power -3D.
  • Figure 26 is an aberration diagram showing longitudinal spherical aberration, astigmatism, and distortion of a catadioptric lens system at a refractive power of -1D.
  • Figure 27 is an aberration diagram showing longitudinal spherical aberration, astigmatism, and distortion of a catadioptric lens system at refractive power +1D.
  • FIG. 1 schematically shows a video see-through device according to an embodiment of the present disclosure
  • FIG. 2 schematically shows a case where the catadioptric lens system 100 according to an embodiment of the present disclosure has a first refractive power
  • FIG. 3 schematically shows a case where the catadioptric lens system 100 according to an embodiment of the present disclosure has a second refractive power.
  • the electronic device includes a catadioptric lens system 100 and a display panel 190.
  • the electronic device may be a video see-through device, such as a head mounted display (HMD), that allows the user to view images displayed on the display panel 190 while wearing it.
  • the catadioptric lens system 100 directs the image generated by the display panel 190 toward the user's pupil.
  • the catadioptric lens system 100 is positioned adjacent to the user's pupil.
  • the electronic device can be understood as a near-eye display apparatus in that the catadioptric lens system 100 is located adjacent to the user's pupil.
  • an electronic device may be understood as a wearable device.
  • the electronic device may be configured to include a separate camera to photograph a real scene and provide the real scene to the user through the display panel 190.
  • These electronic devices may be virtual reality devices that provide virtual reality or augmented reality devices that provide augmented reality.
  • the drawing shows the catadioptric lens system 100 and the display panel 190 for one eye (E), the catadioptric lens system 100 and the display panel 190 will be provided for each of the user's left and right eyes. You can.
  • the catadioptric lens system 100 includes first to fourth lenses 110, 120, 130, and 140.
  • the first to fourth lenses 110, 120, 130, and 140 are sequentially arranged from the object side (ie, the user's eye) to the image surface 191 side.
  • the user's eye (E) is located at the front end of the first lens 110.
  • the first to fourth lenses 110, 120, 130, and 140 may sequentially have positive (+), positive (+), negative (-), and positive (+) refractive powers.
  • the first to fourth lenses 110, 120, 130, and 140 may be made of plastic material.
  • the first to fourth lenses 110, 120, 130, and 140 may each be an aspherical lens with at least one surface having an aspherical surface.
  • the first surface S2 of the first lens 110 facing the user's eye E may be an aspherical surface whose vertex is convex toward the object and has at least one inflection point.
  • the second surface S3 of the first lens 110 facing the display panel 190 may be flat.
  • a circular polarizer 150 and a reflective polarizer 155 may be provided on the second surface S3 of the first lens 110.
  • the reflective polarizer 155 may be attached to the second surface S3 of the first lens 110 in the form of a film, and the circular polarizer 150 may be attached to the reflective polarizer 155 in the form of a film.
  • the circular polarizer 150 and the reflective polarizer 155 are not shown in FIGS. 2 and 3 .
  • the reflective polarizer 155 may be, for example, a wire grid polarizer, but is not limited thereto.
  • the reflective polarizer 155 may be configured to reflect light of the first linearly polarized light and transmit light of the second linearly polarized light orthogonal to the first linearly polarized light.
  • the first linearly polarized light may be polarized along the x-axis and the second linearly polarized light may be polarized along the y-axis, but are not limited thereto.
  • the circular polarizer 150 is an element that converts linearly polarized light into left-circularly polarized light or right-handed circularly polarized light.
  • the circular polarizer 150 converts the polarization of the first linearly polarized light into first circularly polarized light (for example, left circularly polarized light), and converts the light of the second linearly polarized light into a second circularly polarized light (for example, left circularly polarized light) orthogonal to the first circularly polarized light.
  • it may be an optical element that converts polarization into right-circular polarization.
  • the third surface S4 of the second lens 120 may be an aspherical surface that is convex at its vertex toward the object and has at least one inflection point.
  • the fourth surface S5 of the second lens 120 may be an aspherical surface that is convex toward the image surface.
  • a half mirror 160 may be attached to the fourth surface S5 of the second lens 120 in the form of a film.
  • the half mirror 160 is an optical element that transmits part of the incident light (for example, 50% of the light) and reflects another part of the incident light (for example, 50% of the light). In FIGS. 2 and 3 , the half mirror 160 is not shown for convenience.
  • the fifth surface S6 of the third lens 130 may be an aspherical surface that is concave at its vertex toward the object and has at least one inflection point.
  • the sixth surface S6 of the third lens 130 may be an aspherical surface that is convex at the vertex toward the image surface and has at least one inflection point.
  • the seventh surface S7 of the fourth lens 140 may be an aspherical surface that is convex at the vertex toward the object.
  • the eighth surface S8 of the fourth lens 140 may be an aspherical surface that is convex at the vertex toward the image surface.
  • the first lens 110 is installed to be movable along the optical axis direction.
  • the movable holder 180 supporting the first lens 110 may be controlled by a control signal from a control unit (not shown) to move the first lens 110 along the optical axis (OA) direction. It is not limited.
  • the movable holder 180 may be manually operated to move the first lens 110 along the optical axis (OA) direction.
  • the movement of the first lens 110 in the optical axis (OA) direction is such that the distance d between the first lens 110 and the second lens 120 is 0.1 mm to 1.1 mm, preferably 0.15 mm to 1.03 mm. It can be done within the scope.
  • the catadioptric lens system 100 has a first refractive power when the distance d between the first lens 110 and the second lens 120 is at a first distance, and the first lens 110 and the second lens ( 120) has a second refractive power when the distance d between them is at a second distance, and the distance d between the first lens 110 and the second lens 120 is between the first distance and the second distance.
  • it may be configured to have a value between the first refractive power and the second refractive power.
  • FIG. 4 is a graph showing the amount of change in the distance d between the first lens 110 and the second lens 120 while the catadioptric lens system 100 changes the refractive power according to an embodiment of the present disclosure.
  • the horizontal axis represents the refractive power (unit: diopter, D) of the catadioptric lens system 100
  • the vertical axis represents the distance (d) between the first lens 110 and the second lens 120 (unit: mm).
  • the first refractive power is -7D
  • the second refractive power is +1D
  • the refractive power of the catadioptric lens system 100 may be within the range of -7D to +1D.
  • the magnification of the catadioptric lens system 100 is adjusted by adjusting the position of the first lens 110 in the direction of the optical axis (OA). Accordingly, the user's vision can be corrected, and even a person with low vision can receive a separate prescription. Allows the use of video see-through devices without using clips.
  • the eye relief (ER) changes according to the movement of the first lens 110 in the optical axis (OA) direction.
  • ER may change depending on the refractive power of the catadioptric lens system 100.
  • ER refers to the distance between the user's eyes and the eyepiece (ie, the first lens 110).
  • the catadioptric lens system 100 of this embodiment can keep the ER within the range of 11 mm to 14 mm even if the position of the first lens 110 is adjusted to correct the user's vision.
  • ER may be within the range of 12mm to 13mm.
  • ER may be within the range of 12.12mm to 13.0mm.
  • ER when the refractive power of the catadioptric lens system 100 is -7D, ER may be 13.0 mm, and when the refractive power of the catadioptric lens system 100 is +1D, ER may be 12.12 mm.
  • ER had to be increased because a space to accommodate the prescription clip had to be secured.
  • the catadioptric lens system 100 of this embodiment corrects vision by adjusting the position of the first lens 110. Therefore, there is no need to increase ER. Additionally, the catadioptric lens system 100 of this embodiment can minimize ER changes while providing vision correction of -7D to +1D.
  • the catadioptric lens system 100 of this embodiment can be designed to satisfy the following MFT (Modulation Transfer Function) at the design representative wavelength and design representative visual acuity so that uniform performance can be maintained even if the magnification is adjusted.
  • the representative design wavelength is red wavelength (656.0nm). It may be at least one of a green wavelength (587.0 nm) and a blue wavelength (486.0 nm).
  • the design representative visual acuity may be at least one of -7D, -5D, -3D, -1D, and +1D.
  • the catadioptric lens system 100 has an MTF of 0.5 field of 0.6 or more at fs/4 at the design representative wavelength and design representative visual acuity, and the MTF of 0.5 field within the range in which the magnification is adjusted is 70% or more of 0.6. It can be designed to do this.
  • fs refers to the Nyquist frequency, which is the limit frequency of theoretical resolution.
  • the catadioptric lens system 100 has an MTF of 0.7 field at fs/4 or more at the design representative wavelength and design representative visual acuity, and the MTF of 0.7 field within the range in which the magnification is adjusted is 70% or more of 0.5. It can be designed to do this.
  • the catadioptric lens system 100 has an MTF of 0.8 field at fs/4 or more at the design representative wavelength and design representative visual acuity, and the MTF of 0.8 field within the range in which the magnification is adjusted is 70% or more of 0.4. It can be designed to do this.
  • the catadioptric lens system 100 of one embodiment may be designed to satisfy OT ⁇ 2*ER.
  • f means the focal length of the catadioptric lens system 100.
  • OT Overall thickness
  • S2 first surface
  • S9 sixth surface
  • the catadioptric lens system 100 of one embodiment may be designed to provide a field of view (FOV) of 70° to 100° (deg) or more.
  • FOV field of view
  • the catadioptric lens system 100 of one embodiment may be designed to provide a field of view of 85° to 95°.
  • the catadioptric lens system 100 of one embodiment may be designed to provide a field of view of 89° to 90.3°.
  • the catadioptric lens system 100 provides an angle of view of 90° to utilize maximum resolution at a refractive power of -1D, which is expected to have high usability, and an angle of view of 90.3° at a refractive power of +1D, and a refractive power of -1D. It can be designed to provide a field of view of 89° in 7D. In this case, even if the refractive power is changed for vision correction, the change in angle of view and change in resolution can be minimized.
  • the catadioptric lens system 100 of one embodiment may be designed to satisfy f ⁇ 2*ER.
  • f means the focal length of the catadioptric lens system 100.
  • the display panel 190 may be a flat panel that displays an image using light of first circular polarization (eg, left circular polarization or right circular polarization).
  • first circular polarization eg, left circular polarization or right circular polarization.
  • the light of the image displayed on the display panel 190 sequentially passes through the fourth lens 140 and the third lens 130 and reaches the fourth surface S5 of the second lens 120. Some of the light is reflected in the half mirror 160 located on the fourth surface S5 of the second lens 120, and some of the light is transmitted. The light transmitted from the half mirror 160 passes through the second lens 120 and reaches the second surface S3 of the first lens 110 while maintaining the first circular polarization. The first circularly polarized light is converted into the first linearly polarized light by the 1/4 wave plate 150 located on the second surface S3 of the first lens 110, and is reflected by the reflective polarizer 155.
  • the reflective polarizer 155 Since the reflective polarizer 155 does not change the polarization direction of linearly polarized light, the light reflected from the reflective polarizer 155 maintains the first linearly polarized light.
  • the first linearly polarized light passes through the 1/4 wave plate 150 again and is converted back into the first circularly polarized light.
  • the light converted back into the first circularly polarized light passes through the second lens 120 and is partially re-reflected from the half mirror 160. Reflection in the half mirror 160 changes the first circularly polarized light into the second circularly polarized light orthogonal to the first circularly polarized light.
  • the second circularly polarized light re-reflected from the half mirror 160 passes through the second lens 120 and is converted into second linearly polarized light orthogonal to the first linearly polarized light by the 1/4 wave plate 150.
  • the second linearly polarized light passes through the reflective polarizer 155 and is directed to the user's eyes (E).
  • FIG. 5 schematically shows a display panel 290 according to an embodiment of the present disclosure.
  • the display panel 290 may be a Liquid Crystal Display (LCD) panel.
  • a second quarter wave plate 275 may be attached to the front of the display panel 290 in the form of a film. Since the LCD panel itself displays images using linearly polarized light, the linearly polarized light emitted from the display panel 290 is converted into circularly polarized light by the second quarter wave plate 175.
  • LCD Liquid Crystal Display
  • Figure 6 schematically shows a display panel 290 according to an embodiment of the present disclosure.
  • the second quarter wave plate 270 may be attached to a flat substrate and provided separately from the display panel 290.
  • the second quarter wave plate 270 may be disposed in contact with the front of the display panel 290 or may be spaced apart.
  • FIG. 7 schematically shows a display panel 390 according to an embodiment of the present disclosure.
  • the display panel 390 may be an Organic Light Emitting Diode (OLED) panel or a micro Light Emitting Diode ( ⁇ LED) panel. Since an OLED panel or ⁇ LED can display an image with unpolarized light, a linear polarizer 371 and a second 1/4 wave plate 370 may be attached in the form of a film on the front of the display panel 390. there is.
  • the linear polarizer 371 and the second quarter wave plate 370 may be attached to a flat substrate and arranged to be spaced apart from each other on the front of the display panel 390.
  • the light emitted from the display panel 390 is converted into linearly polarized light by the linear polarizer 371 and then converted into circularly polarized light by the second quarter wave plate 370.
  • Y represents the radius of curvature
  • thickness represents the thickness of the lens or the gap between the lenses.
  • the definition of the aspherical surface used in the catadioptric lens system 100 according to an embodiment of the present invention is as follows.
  • the aspherical shape can be expressed as follows using the Forbes Q-con polynomial in a cylindrical polar coordinate system with respect to the optical axis direction when the z-axis is the optical axis direction.
  • a 0 is the apex position along the optical axis (measured from the display plane)
  • k is the conic constant
  • 1/Y
  • Y is the radius of the apex
  • g 2 i+ 4 is the coefficient of the Forbes Q-con polynomial Qi con (Forbes, Shape specification for axially symmetric optical surfaces, Optics Express, Vol. 15, Issue 8, pp. 5218-5226 (2007)).
  • the angle of view of the catadioptric lens system 100 is 90°, and the length of the image surface S10 is 9.25 mm.
  • the numerical data in the column belonging to S9 is about the light traveling from the image surface side to the object side
  • the numerical data in the column belonging to the symbols S4-2 and S5-2 is about the light reflected from the lens surface and returned. It can be seen that the numerical data in the column belonging to S4-3 is for light reflected twice and is substantially the same as the numerical data in the S4 column.
  • Y represents the radius of curvature
  • T represents the thickness of the lens or the air gap between the lenses
  • the lengths are all in mm.
  • FIG. 8 shows the catadioptric lens system 100 for the red wavelength (656.0 nm) at -7D. It is an MFT chart, Figure 9 is an MFT chart of the catadioptric lens system 100 for red wavelength in -5D, Figure 10 is an MFT chart of the catadioptric lens system 100 for red wavelength in -3D, and Figure 11 is - This is an MFT chart of the catadioptric lens system 100 for a red wavelength in 1D, and Figure 12 is an MFT chart of the catadioptric lens system 100 for a red wavelength in +1D.
  • Figure 13 is an MFT chart of the catadioptric lens system 100 for a green wavelength (587.0 nm) at -7D
  • Figure 14 is an MFT chart of the catadioptric lens system 100 for a green wavelength at -5D
  • Figure 15 is - This is the MFT chart of the catadioptric lens system 100 for green wavelengths in 3D
  • Figure 16 is the MFT chart of the catadioptric lens system 100 for green wavelengths in -1D
  • Figure 17 is the catadioptric chart for green wavelengths in +1D. This is the MFT chart of the lens system (100).
  • Figure 18 is an MFT chart of the catadioptric lens system 100 for a blue wavelength (486.0 nm) at -7D
  • Figure 19 is an MFT chart of the catadioptric lens system 100 for a blue wavelength at -5D
  • Figure 20 is - This is the MFT chart of the catadioptric lens system 100 for blue wavelengths in 3D
  • Figure 21 is the MFT chart of the catadioptric lens system 100 for blue wavelengths in -1D
  • Figure 22 is the catadioptric chart for blue wavelengths in +1D. This is the MFT chart of the lens system (100).
  • the horizontal axis represents spatial frequency
  • the vertical axis represents Through Focus MFT at 20lp/mm.
  • the curves indicated by solid lines mean the MTF for a line form spreading in a concentric direction from the center of the lens
  • the curves indicated by a dotted line mean the MTF for a line form spreading in a spoke shape from the center of the lens.
  • different curves mean MTF in different fields.
  • the catadioptric lens system 100 changes the design representative wavelengths (red wavelength (656.0 nm), green wavelength (587.0 nm) while the refractive power is changed from -7D to +1D. nm) and blue wavelength (486.0nm)) and design representative visual acuities (-7D, -5D, -3D, -1D, +1D), it can be seen that the MTF value of the target resolution of 35lp/mm is substantially maintained above 0.5. .
  • the MTF of the 0.5 field is more than 0.6 at fs/4, and the MTF of the 0.5 field within the range where the magnification is adjusted is more than 70% of 0.6.
  • the MTF of the 0.7 field is more than 0.5 at fs/4, and the MTF of the 0.7 field within the range where the magnification is adjusted is more than 70% of 0.5.
  • the MTF of the 0.8 field is more than 0.4 at fs/4, and the MTF of the 0.8 field within the range where the magnification is adjusted is more than 70% of 0.4.
  • Figure 23 is an aberration diagram showing the longitudinal spherical aberration, astigmatic field curves and distortion of the catadioptric lens system 100 at a refractive power of -7D
  • Figure 24 is an aberration diagram showing the reflection at a refractive power of -5D.
  • Figure 25 is an aberration diagram showing the longitudinal spherical aberration, astigmatism and distortion of the refractive lens system 100
  • Figure 26 is an aberration diagram showing the longitudinal spherical aberration, astigmatism and distortion of the catadioptric lens system 100 at a refractive power of -1D
  • Figure 27 is an aberration diagram showing the longitudinal spherical aberration and astigmatism of the catadioptric lens system 100 at a refractive power of +1D. and an aberration diagram showing distortion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

반사굴절 렌즈계 및 이를 채용한 비디오 시스루 장치가 개시된다. 개시된 반사굴절 렌즈계 및 이를 채용한 비디오 시스루 장치는 영상의 광이 출사되는 디스플레이 유닛; 및 사용자 안구측으로부터 디스플레이 유닛의 상면측을 향해 광축의 방향을 따라 순차적으로 배치되는 제1 렌즈, 제2 렌즈, 제3 렌즈 및 제4 렌즈를 구비하며, 제1 렌즈의 상면과 마주보는 제2 면은 제2 렌즈로부터 오는 광의 적어도 일부를 반사시키고, 제2 렌즈의 상면과 마주보는 제4 면은 제1 렌즈로부터 반사되어 오는 광의 적어도 일부를 재반사시키도록 구성되며, 제1 렌즈, 제2 렌즈, 제3 렌즈 및 제4 렌즈는 순차적으로 양, 양, 음 및 양의 굴절력을 가지며, 제1 렌즈는 제2 렌즈와의 거리가 0.1mm 내지 1.1mm 범위내에서 광축 방향으로 이동 가능하게 설치되며, 제1 렌즈의 이동 범위내에서의 굴절력의 변경은 -7D 내지 +1D의 범위내에 있다.

Description

반사굴절 렌즈계 및 이를 채용한 비디오 시스루 장치
본 개시는 반사굴절 렌즈계 및 이를 채용한 비디오 시스루 장치에 관한 것이다.
비디오 시스루(Video see-through, VST) 장치에 대한 관심이 증가하고 있다. 비디오 시스루 방식은 카메라가 부착된 헤드마운트 디스플레이(Head Mounted Display, HMD)를 착용하여 가상현실(virtual reality, VR)이나 증강현실(augmented reality, AR)을 즐기는 방식이다.
비디오 시스루 장치는 경량 및 소형화될 것을 요구받고 있으며, 비디오 시스루 장치에 채용되는 광학계는 넓은 화각과 고품질의 이미지를 전달할 것을 요구받고 있다. 이러한 광학계는 사용자의 동공측으로부터 디스플레이 면측까지 광축 방향을 따라 배치되는 하나 혹은 복수의 렌즈 요소로 이루어진 렌즈계를 가지고 있다. 렌즈계는 고정된 시점에서 최대 화각에 대한 최대 성능을 내도록 설계되어 왔으며, 예를 들어 팬케이크(Pancake) 렌즈라고도 불리우는 반사굴절 렌즈계를 채용하여, 얇은 두께의 비디오 시스루 장치용 광학계를 구현하도록 한다.
일 측면에 따르는 반사굴절 렌즈계는 비디오 시스루 장치에 사용되는 반사굴절 렌즈계로서, 사용자 안구측으로부터 상면측을 향해 광축의 방향을 따라 순차적으로 배치되는 제1 렌즈, 제2 렌즈, 제3 렌즈 및 제4 렌즈를 구비한다. 제1 렌즈의 상면과 마주보는 제2 면은 제2 렌즈로부터 오는 광의 적어도 일부를 반사시키고, 제2 렌즈의 상면과 마주보는 제4 면은 제1 렌즈로부터 반사되어 오는 광의 적어도 일부를 재반사시키도록 구성될 수 있다. 제1 렌즈, 제2 렌즈, 제3 렌즈 및 제4 렌즈는 순차적으로 양, 양, 음 및 양의 굴절력을 가질 수 있다. 제1 렌즈는 제2 렌즈와의 거리가 0.1mm 내지 1.1mm 범위내에서 광축 방향으로 이동 가능하게 설치될 수 있다. 제1 렌즈의 이동 범위내에서의 굴절력의 변경은 -7D 내지 +1D의 범위내에 있을 수 있다.
다른 측면에 따르는 비디오 시스루 장치는 영상의 광이 출사되는 디스플레이 패널; 및 반사굴절 렌즈계를 포함하며, 반사굴절 렌즈계는, 사용자 안구측으로부터 상면측을 향해 광축의 방향을 따라 순차적으로 배치되는 제1 렌즈, 제2 렌즈, 제3 렌즈 및 제4 렌즈를 구비한다. 제1 렌즈의 상면과 마주보는 제2 면은 제2 렌즈로부터 오는 광의 적어도 일부를 반사시키고, 제2 렌즈의 상면과 마주보는 제4 면은 제1 렌즈로부터 반사되어 오는 광의 적어도 일부를 재반사시키도록 구성될 수 있다. 제1 렌즈, 제2 렌즈, 제3 렌즈 및 제4 렌즈는 순차적으로 양, 양, 음 및 양의 굴절력을 가질 수 있다. 제1 렌즈는 상기 제2 렌즈와의 거리가 0.1mm 내지 1.1mm 범위내에서 광축 방향으로 이동 가능하게 설치될 수 있다. 제1 렌즈의 이동 범위내에서의 굴절력의 변경은 -7D 내지 +1D의 범위내에 있을 수 있다.
도 1은 본 개시의 일 실시예에 따른 비디오 시스루 장치를 개략적으로 도시한다.
도 2는 본 개시의 일 실시예에 따른 반사굴절 렌즈계가 제1 굴절력을 가지는 경우를 개략적으로 도시한다.
도 3은 본 개시의 일 실시예에 따른 반사굴절 렌즈계가 제2 굴절력을 가지는 경우를 개략적으로 도시한다.
도 4는 본 개시의 일 실시예에 따른 반사굴절 렌즈계가 굴절력을 변경하는 동안의 제1 렌즈와 제2 렌즈 사이의 거리 변화량을 보여주는 그래프이다.
도 5는 본 개시의 일 실시예에 따른 디스플레이 패널을 개략적으로 도시한다.
도 6은 본 개시의 일 실시예에 따른 디스플레이 패널을 개략적으로 도시한다.
도 7은 본 개시의 일 실시예에 따른 디스플레이 패널을 개략적으로 도시한다.
도 8은 굴절력 -7D에서 적색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 9는 굴절력 -5D에서 적색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 10은 굴절력 -3D에서 적색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 11은 굴절력 -1D에서 적색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 12는 굴절력 +1D에서 적색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 13은 굴절력 -7D에서 녹색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 14는 굴절력 -5D에서 녹색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 15는 굴절력 -3D에서 녹색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 16은 굴절력 -1D에서 녹색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 17은 굴절력 +1D에서 녹색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 18은 굴절력 -7D에서 청색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 19는 굴절력 -5D에서 청색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 20은 굴절력 -3D에서 청색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 21은 굴절력 -1D에서 청색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 22는 굴절력 +1D에서 청색 파장에 대한 반사굴절 렌즈계의 MFT 챠트이다.
도 23은 굴절력 -7D에서 반사굴절 렌즈계의 종방향 구면수차, 비점수차 및 왜곡을 보여주는 수차도이다.
도 24는 굴절력 -5D에서 반사굴절 렌즈계의 종방향 구면수차, 비점수차 및 왜곡을 보여주는 수차도이다.
도 25는 굴절력 -3D에서 반사굴절 렌즈계의 종방향 구면수차, 비점수차 및 왜곡을 보여주는 수차도이다.
도 26은 굴절력 -1D에서 반사굴절 렌즈계의 종방향 구면수차, 비점수차 및 왜곡을 보여주는 수차도이다.
도 27은 굴절력 +1D에서 반사굴절 렌즈계의 종방향 구면수차, 비점수차 및 왜곡을 보여주는 수차도이다.
아래에서는 첨부한 도면을 참조하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 개시의 실시예를 상세히 설명한다. 그러나 본 개시는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 개시를 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 명세서의 실시예들에서 사용되는 용어는 본 개시의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 실시예의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이하 첨부된 도면을 참고하여 본 개시를 상세히 설명하기로 한다.
도 1은 본 개시의 일 실시예에 따른 비디오 시스루 장치를 개략적으로 도시하며, 도 2는 본 개시의 일 실시예에 따른 반사굴절 렌즈계(100)가 제1 굴절력을 가지는 경우를 개략적으로 도시하며, 도 3은 본 개시의 일 실시예에 따른 반사굴절 렌즈계(100)가 제2 굴절력을 가지는 경우를 개략적으로 도시한다.
도 1을 참조하면, 전자 장치는 반사굴절 렌즈계(100)와 디스플레이 패널(190)을 포함한다. 전자 장치는 예를 들어 헤드 마운드 디스플레이(Head Moubted Display, HMD)와 같이 사용자가 착용한 상태에서 디스플레이 패널(190)에서 표시되는 이미지를 볼 수 있도록 구성된 비디오 시스루 장치일 수 있다. 반사굴절 렌즈계(100)는 디스플레이 패널(190)에서 생성된 이미지를 사용자의 동공으로 향하게 하는 것으로, 사용자가 전자 장치를 착용하게 되면, 반사굴절 렌즈계(100)는 사용자의 동공에 인접하여 위치하게 된다. 반사굴절 렌즈계(100)가 사용자의 동공에 인접하여 위치하게 된다는 점에서 전자 장치는 근안 디스플레이 장치(near-eye display apparatus)로 이해될 수 있다. 또한, 사용자가 전자 장치를 머리에 착용할 수 있다는 점에서, 전자 장치는 웨어러블 디바이스로 이해될 수도 있다. 도면에는 도시되지 않았으나, 전자 장치는 별도의 카메라를 구비하여 현실 장면(real scene)을 촬영하고 현실 장면을 디스플레이 패널(190)를 통해 사용자에게 제공하도록 구성될 수도 있다. 이러한 전자 장치는 가상현실을 제공하는 가상현실 디바이스, 증강현실을 제공하는 증강현실 디바이스일 수 잇다. 도면에는 하나의 안구(E)에 대한 반사굴절 렌즈계(100) 및 디스플레이 패널(190)를 도시하고 있으나, 사용자의 좌안 및 우안 각각에 대해 반사굴절 렌즈계(100) 및 디스플레이 패널(190)가 마련될 수 있다.
반사굴절 렌즈계(100)는 제1 내지 제4 렌즈(110, 120, 130, 140)을 포함한다. 제1 내지 제4 렌즈(110, 120, 130, 140)는 물체측(즉, 사용자의 눈)으로부터 상면(191)측으로 순차적으로 배치된다. 제1 렌즈(110)의 전단에는 사용자의 눈(E)이 예정되어 있다.
제1 내지 제4 렌즈(110, 120, 130, 140)는 순차적으로 양(+), 양(+), 음(-), 양(+)의 굴절력을 가질 수 있다.
제1 내지 제4 렌즈(110, 120, 130, 140)는 플라스틱 재질로 형성될 수 있다. 제1 내지 제4 렌즈(110, 120, 130, 140)는 각각 적어도 한 면이 비구면인 비구면 렌즈일 수 있다.
제1 렌즈(110)의 사용자의 눈(E)과 마주하는 제1 면(S2)은 정점이 물체측으로 볼록하고 적어도 하나의 변곡점을 갖는 비구면일 수 있다. 제1 렌즈(110)의 디스플레이 패널(190)에 마주하는 제2 면(S3)은 평면일 수 있다.
제1 렌즈(110)의 제2 면(S3)에는 원편광판(150)와 반사 편광자(155)가 마련될 수 있다. 반사 편광자(155)은 제1 렌즈(110)의 제2 면(S3)에 필름 형태로 부착되고, 원편광판(150)가 반사 편광자(155)에 필름 형태로 부착될 수 있다. 도 2 및 도 3에서는 편의상 원편광판(150)와 반사 편광자(155)가 도시되지 않았다.
반사 편광자(155)는 예를 들어 와이어 그리드 편광자(wire grid polarizer)일 수 있으나, 이에 제한되는 것은 아니다. 반사 편광자(155)는 제1 선편광의 광은 반사하고 제1 선편광에 직교하는 제2 선편광의 광은 투과시키도록 구성될 수 있다. 예를 들어, 광축(OA)의 방향을 z축 방향으로 할 때, 제1 선편광은 x축으로 편광되고 제2 선편광은 y축으로 편광된 것을 의미할 수 있으나, 이에 제한되는 것은 아니다.
원편광판(150)는 선편광의 광을 좌원편광 또는 우원편광의 광으로 변환시키는 소자이다. 예를 들어, 원편광판(150)는 제1 선편광의 광을 제1 원편광(예를 들어 좌원편광)으로 편광 변환시키고, 제2 선편광의 광을 제1 원편광에 직교하는 제2 원편광(예를 들어 우원편광)으로 편광 변환시키는 광학 소자일 수 있다.
제2 렌즈(120)의 제3 면(S4)은 물체측으로 정점에서 볼록하고 적어도 하나의 변곡점을 갖는 비구면일 수 있다. 제2 렌즈(120)의 제4 면(S5)은 상면측으로 볼록한 비구면일 수 있다.
제2 렌즈(120)의 제4 면(S5)에는 하프미러(160)가 필름 형태로 부착될 수 있다. 하프미러(160)는 입사되는 광의 일부(예를 들어 50%의 광)를 투과시키고, 입사되는 광의 다른 일부(예를 들어 50%의 광)를 반사키는 광학소자이다. 도 2 및 도 3에서는 편의상 하프미러(160)가 도시되지 않았다.
제3 렌즈(130)의 제5 면(S6)은 물체측으로 정점에서 오목하고 적어도 하나의 변곡점을 갖는 비구면일 수 있다. 제3 렌즈(130)의 제6 면(S6)은 상면측으로 정점에서 볼록하고 적어도 하나의 변곡점을 갖는 비구면일 수 있다.
제4 렌즈(140)의 제7 면(S7)은 물체측으로 정점에서 볼록한 비구면일 수 있다. 제4 렌즈(140)의 제8 면(S8)은 상면측으로 정점에서 볼록한 비구면일 수 있다.
도 2 및 도 3에 도시되듯이 제1 렌즈(110)는 광축 방향을 따라 이동가능하게 설치된다. 일 예로, 제1 렌즈(110)를 지지하는 가동홀더(180)는 제어부(미도시)의 제어신호에 의해 제어되어 제1 렌즈(110)를 광축(OA) 방향을 따라 이동시킬 수 있으나, 이에 제한되는 것은 아니다. 다른 예로, 가동홀더(180)는 수동적으로 조작되어 제1 렌즈(110)를 광축(OA) 방향을 따라 이동시킬 수도 있다. 제1 렌즈(110)의 광축(OA) 방향의 이동은 제1 렌즈(110)와 제2 렌즈(120) 사이의 거리(d)는 0.1mm 내지 1.1mm, 바람직하게는 0.15mm 내지 1.03mm의 범위내에서 이루어질 수 있다.
반사굴절 렌즈계(100)는 제1 렌즈(110)와 제2 렌즈(120) 사이의 거리(d)가 제1 거리에 있을 때에 제1 굴절력을 갖고, 제1 렌즈(110)와 제2 렌즈(120) 사이의 거리(d)가 제2 거리에 있을 때에 제2 굴절력을 갖고, 제1 렌즈(110)와 제2 렌즈(120) 사이의 거리(d)가 제1 거리와 제2 거리 사이에 있을 때에 제1 굴절력과 제2 굴절력의 사이 값을 갖도록 구성될 수 있다.
도 4는 본 개시의 일 실시예에 따른 반사굴절 렌즈계(100)가 굴절력을 변경하는 동안의 제1 렌즈(110)와 제2 렌즈(120) 사이의 거리(d)의 변화량을 보여주는 그래프이다. 도 4에서 가로축은 반사굴절 렌즈계(100)의 굴절력(단위: 디옵터(diopter), D)을 나타내며, 세로축은 제1 렌즈(110)와 제2 렌즈(120) 사이의 거리(d)(단위: mm)를 나타낸다. 도 4를 참조하면, 일 실시예에서 거리 d가 0.15mm일 때에 제1 굴절력은 -7D이고, 거리 d가 1.03mm일 때에 제2 굴절력은 +1D이고, 거리 d가 0.15mm ~ 1.03mm 사이에 있을 때, 반사굴절 렌즈계(100)의 굴절력은 -7D ~ +1D의 범위내에 있을 수 있다.
상기와 같이 제1 렌즈(110)의 광축(OA) 방향의 위치를 조절하여 반사굴절 렌즈계(100)의 배율을 조정하며, 이에 따라 사용자의 시력을 교정할 수 있게 되어, 저시력자일지라도 별도의 도수클립을 사용하지 않고 비디오 시스루 장치를 사용할 수 있게끔 한다.
아이릴리프(eye relief)(ER)는 제1 렌즈(110)의 광축(OA) 방향의 이동에 따라 변경된다. 달리 표현하면, 제1 렌즈(110)의 광축(OA) 방향의 이동에 따라 ER이 변경되므로, 반사굴절 렌즈계(100)의 굴절력에 따라 ER은 변경될 수 있다. 여기서, ER은 사용자의 눈과 접안렌즈(즉, 제1 렌즈(110)) 사이의 거리를 의미한다.
일 실시예에서 본 실시예의 반사굴절 렌즈계(100)는 사용자의 시력을 교정하기 위하여 제1 렌즈(110)의 위치를 조정하더라도, ER를 11mm ~ 14mm의 범위 내에 있도록 할 수 있다.
일 실시예에서 ER은 12mm ~ 13mm의 범위 내에 있도록 할 수 있다.
일 실시예에서 ER은 12.12mm ~ 13.0mm의 범위 내에 있도록 할 수 있다.
일 실시예에서 반사굴절 렌즈계(100)의 굴절력이 -7D일 때, ER은 13.0mm이고, 반사굴절 렌즈계(100)의 굴절력이 +1D일 때, ER은 12.12mm일 수 있다. 종래의 도수클립을 이용한 시력 교정의 경우, 도수클립이 수용될 공간이 확보되어야 하기에 ER을 늘려야 하였으나, 본 실시예의 반사굴절 렌즈계(100)는 제1 렌즈(110)의 위치 조정을 통해 시력 교정을 하므로, ER을 크게 할 필요가 없다. 또한, 본 실시예의 반사굴절 렌즈계(100)는 -7D ~ +1D의 시력 교정을 제공하면서도 ER 변화를 최소화시킬 수 있다.
본 실시예의 반사굴절 렌즈계(100)는 배율이 조정되더라도 균일한 성능을 유지할 수 있도록, 설계 대표 파장과 설계 대표 시력에서 다음과 같은 MFT(Modulation Transfer Fucntion)를 만족하도록 설계될 수 있다. 여기서, 설계 대표 파장은 적색 파장(656.0nm). 녹색 파장(587.0nm) 및 청색 파장(486.0nm) 중 적어도 어느 한 파장일 수 있다. 설계 대표 시력은 -7D, -5D, -3D, -1D, 및 +1D 중 적어도 어느 하나의 굴절력일 수 있다.
일 실시예에서 반사굴절 렌즈계(100)는 설계 대표 파장과 설계 대표 시력에서 0.5 필드의 MTF가 fs/4 에서 0.6 이상이며, 배율이 조정되는 범위 내에서의 0.5 필드의 MTF는 0.6의 70% 이상이 되도록 설계될 수 있다. 여기서 fs는 이론적인 분해능의 한계 주파수인 나이퀴스트 주파수(Nyquist frequency)를 의미한다.
일 실시예에서 반사굴절 렌즈계(100)는 설계 대표 파장과 설계 대표 시력에서 0.7 필드의 MTF가 fs/4 에서 0.5 이상이며, 배율이 조정되는 범위 내에서의 0.7 필드의 MTF는 0.5의 70% 이상이 되도록 설계될 수 있다.
일 실시예에서 반사굴절 렌즈계(100)는 설계 대표 파장과 설계 대표 시력에서 0.8 필드의 MTF가 fs/4 에서 0.4 이상이며, 배율이 조정되는 범위 내에서의 0.8 필드의 MTF는 0.4의 70% 이상이 되도록 설계될 수 있다.
일 실시예의 반사굴절 렌즈계(100)는 OT < 2*ER을 만족하도록 설계될 수 있다. 여기서, f는 반사굴절 렌즈계(100)의 초점거리를 의미한다. 여기서, OT(Overall thickness)은 반사굴절 렌즈계(100) 전체의 두께로서, 제1 렌즈(110)의 제1 면(S2)의 정점에서 제4 렌즈(140의 제6 면(S9)의 정점까지의 거리를 나타낸다.
일 실시예의 반사굴절 렌즈계(100)는 70° ~ 100°(deg) 이상의 화각(Field of View, FOV)을 제공하도록 설계될 수 있다.
일 실시예의 반사굴절 렌즈계(100)는 85° ~ 95°의 화각을 제공하도록 설계될 수 있다.
일 실시예의 반사굴절 렌즈계(100)는 89° ~ 90.3°의 화각을 제공하도록 설계될 수 있다.
일 실시예에서, 반사굴절 렌즈계(100)는 사용성이 높을 것으로 예상되는 굴절력 -1D에서 최대 해상도를 이용할 수 있도록 90°의 화각을 제공하고, 굴절력 +1D에서 90.3°의 화각을 제공하고, 굴절력 -7D에서 89°의 화각을 제공하도록 설계될 수 있다. 이러한 경우, 시력 교정을 위해 굴절력을 변경하더라도, 화각 변화 및 해상도 변화를 최소화시킬 수 있게 된다.
일 실시예의 반사굴절 렌즈계(100)는 f < 2*ER을 만족하도록 설계될 수 있다. 여기서, f는 반사굴절 렌즈계(100)의 초점거리를 의미한다.
디스플레이 패널(190)은 제1 원편광(예를 들어 좌원편광 또는 우원편광)의 광으로 영상을 표시하는 평판 패널일 수 있다.
다음으로 반사굴절 렌즈계(100)에서의 광 경로에 대해 설명하기로 한다.
디스플레이 패널(190)에서 표시되는 영상의 광은 제4 렌즈(140) 및 제3 렌즈(130)를 순차적으로 경유하여 제2 렌즈(120)의 제4 면(S5)에 도달한다. 제2 렌즈(120)의 제4 면(S5)에 위치한 하프미러(160)에서 일부의 광은 반사되고, 일부의 광의 투과된다. 하프미러(160)에서 투과된 광은 제1 원편광을 유지한 상태로 제2 렌즈(120)를 거쳐 제1 렌즈(110)의 제2 면(S3)에 도달한다. 제1 원편광의 광은 제1 렌즈(110)의 제2 면(S3)에 위치한 1/4파장판(150)에 의해 제1 선편광의 광으로 변환되고, 반사 편광자(155)에서 반사된다. 반사 편광자(155)는 선편광의 편광방향을 변경하지 않으므로, 반사 편광자(155)에서 반사된 광은 제1 선편광을 유지한다. 제1 선편광의 광은 1/4파장판(150)을 다시 통과하면서 제1 원편광으로 다시 변환된다. 제1 원편광으로 다시 변환된 광은 제2 렌즈(120)를 거쳐 하프미러(160)에서 부분적으로 재반사된다. 하프미러(160)에서 반사는 제1 원편광의 광을 제1 원편광에 직교하는 제2 원편광의 광으로 변경한다. 하프미러(160)에서 재반사된 제2 원편광의 광은 다시 제2 렌즈(120)를 거쳐 1/4파장판(150)에 의해 제1 선편광에 직교하는 제2 선편광의 광으로 변환된다. 제2 선편광의 광은 반사 편광자(155)을 투과하여 사용자의 눈(E)으로 향하게 된다.
도 5는 본 개시의 일 실시예에 따른 디스플레이 패널(290)을 개략적으로 도시한다. 도 5를 참조하면, 일 실시예에서 디스플레이 패널(290)은 LCD(Liquid Crystal Display) 패널일 수 있다. 디스플레이 패널(290)의 전면에는 제2의 1/4파장판(275)이 필름 형태로 부착되어 있을 수 있다. LCD 패널 자체는 선편광 광으로 영상을 표시하므로, 디스플레이 패널(290)에서의 방출되는 선편광의 광은 제2의 1/4파장판(175)에 의해 원편광의 광으로 변환된다.
도 6은 본 개시의 일 실시예에 따른 디스플레이 패널(290)을 개략적으로 도시한다. 도 6에 도시된 바와 같이, 제2의 1/4파장판(270)는 평면 기판에 부착되어 디스플레이 패널(290)과 별개로 마련될 수도 있다. 제2의 1/4파장판(270)은 디스플레이 패널(290)의 전면에 접하거나 또는 이격되어 배치될 수도 있다.
도 7은 본 개시의 일 실시예에 따른 디스플레이 패널(390)을 개략적으로 도시한다. 도 7을 참조하면, 일 실시예에서 디스플레이 패널(390)은 OLED(Organic Light Emitting Diode) 패널, 마이크로 LED(micro Light Emitting Diode, μLED) 패널일 수 있다. OLED 패널이나 μLED은 무편광의 광으로 영상을 표시할 수 있으므로, 디스플레이 패널(390)의 전면에는 선편광자(371)와 제2의 1/4파장판(370)이 필름 형태로 부착되어 있을 수 있다. 선편광자(371)와 제2의 1/4파장판(370)은 평면 기판에 부착된 형태로 디스플레이 패널(390)의 전면에 이격되어 배치될 수도 있다. 디스플레이 패널(390)에서의 방출되는 광은 선편광자(371)에 의해 선편광의 광으로 변환되고, 이후 제2의 1/4파장판(370)에 의해 원편광의 광으로 변환된다.
다음으로, 수치 실시예를 참조하여 반사굴절 렌즈계(100)를 설명하도록 한다.
수치 실시예에서 Y는 곡률 반경을, 두께는 렌즈의 두께 또는 렌즈와 렌즈 사이의 간격을 나타낸다.
한편, 본 발명의 실시예에 따른 반사굴절 렌즈계(100)에 사용되는 비구면의 정의를 나타내면 다음과 같다.
비구면 형상은 광축 방향을 z축으로 할 때, 광축 방향에 대해 원통형 극 좌표계에서 포브스(Forbes) Q-con 다항식을 이용하여 다음과 같은 식으로 나타낼 수 있다.
< 비구면 방정식 >
Figure PCTKR2023009318-appb-img-000001
여기서, a0은 (디스플레이 면으로부터 측정된) 광축을 따른 꼭지점 위치이고, k는 코닉 상수(conic constant)이고, δ=1/Y이고, Y는 정점(apex)의 반지름이고, g2 i+4는 포브스(Forbes) Q-con 다항식 Qi con의 계수이다(Forbes, Shape specification for axially symmetric optical surfaces, Optics Express, Vol. 15, Issue 8, pp. 5218-5226 (2007)).
반사굴절 렌즈계(100)의 화각은 90°이며, 상면(S10)의 길이는 9.25mm를 기준으로 한다.
표 1 및 표 2에서 부호 S2, S3, …, S9는 도 2 및 도 3에 도시된 렌즈 면을 나타낸다. S1은 스톱(Stop)을 의미하며, 사용자의 동공에 대응될 수 있다. S10은 디스플레이 패널(190)의 상면을 나타낸다.
표 1 및 표 2에서 부호 S1, S2, S3, S4, S5, S6, …, S9에 속하는 열의 수치 데이터는 상면측에서 물체측으로 진행하는 광에 대한 것이며, 부호 S4-2, S5-2에 속하는 열의 수치 데이터는 렌즈 면에서 반사되어 되돌아온 광에 대한 것이다. S4-3에 속하는 열의 수치 데이터는 2번 반사된 광에 대한 것으로 S4 열의 수치 데이터와 실질적으로 같음을 볼 수 있다. Y는 곡률 반경을, T는 렌즈의 두께 또는 렌즈와 렌즈 사이의 공기 간격을 나타내며, 길이는 모두 mm 단위이다.
면 유형 Y T 재질 굴절 모드
물체 Sphere Infinity -142.8571 Refract
S1 Sphere Infinity 13.0000 Refract
S2 Qcon Asphere 194.7172 1.9604 'EP900025' Refract
S3 Sphere Infinity 0.1500 Refract
S4 Qcon Asphere 133.0892 5.0432 'APEL5014' Refract
S5 Qcon Asphere -48.9477 -5.0432 'APEL5014' Reflect
S4-2 Qcon Asphere 133.0892 -0.1500 Refract
S3-2 Sphere Infinity 0.1500 Reflect
S4-3 Qcon Asphere 133.0892 5.0432 'APEL5014' Refract
S5-2 Qcon Asphere -48.9477 0.1500 Refract
S6 Qcon Asphere -56.1009 3.2731 'APEL5014' Refract
S7 Qcon Asphere 24.6043 0.1500 Refract
S8 Qcon Asphere 25.3506 3.5273 'EP900025' Refract
S9 Qcon Asphere -263.7871 0.5389 Refract
S10 Sphere Infinity -0.0297  
매개변수 S2 S4 S5 S6 S7 S8 S9
Y 반경 194.7172 133.0892 -48.9477 -56.1009 24.6043 25.3506 -263.7871
정규 반경 15.7464 17.2303 18.3653 14.9473 13.9669 12.6920 9.9401
4차 Qcon 계수 -0.1034 -1.0204 0.0549 7.7669 17.9614 -1.3531 0.1618
6차 Qcon 계수 -0.1124 -0.2239 -0.1256 3.0902 8.7554 0.1153 0.1147
8차 Qcon 계수 0.0109 0.0369 0.0214 1.5614 -5.2765 0.1577 0.0695
10차 Qcon 계수 -0.0117 0.0712 0.0381 0.8672 -8.6356 1.0137 0.0213
12차 Qcon 계수 0.0014 0.0074 0.0050 0.1982 -6.7673 1.4357 0.0128
14차 Qcon 계수 0.0017 -0.0118 -0.0052 0.1145 -1.9015 1.7700 -0.0535
16차 Qcon 계수 0.0021 -0.0115 -0.0054 -0.0291 0.1683 1.2264 -0.0292
18차 Qcon 계수 -0.0013 0.0104 0.0038 -0.0053 0.6796 0.7896 0.0442
20차 Qcon 계수 0.0001 -0.0024 -0.0011 -0.0484 0.0089 0.1952 -0.0180
다음으로 MTF 챠트를 참조하여, 전술한 수치 실시예에 따른 반사굴절 렌즈계(100)의 성능을 설명하기로 한다.도 8은 -7D에서 적색 파장(656.0nm)에 대한 반사굴절 렌즈계(100)의 MFT 챠트이며, 도 9는 -5D에서 적색 파장에 대한 반사굴절 렌즈계(100)의 MFT 챠트이며, 도 10은 -3D에서 적색 파장에 대한 반사굴절 렌즈계(100)의 MFT 챠트이며, 도 11은 -1D에서 적색 파장에 대한 반사굴절 렌즈계(100)의 MFT 챠트이며, 도 12는 +1D에서 적색 파장에 대한 반사굴절 렌즈계(100)의 MFT 챠트이다.
도 13은 -7D에서 녹색 파장(587.0nm)에 대한 반사굴절 렌즈계(100)의 MFT 챠트이며, 도 14는 -5D에서 녹색 파장에 대한 반사굴절 렌즈계(100)의 MFT 챠트이며, 도 15는 -3D에서 녹색 파장에 대한 반사굴절 렌즈계(100)의 MFT 챠트이며, 도 16은 -1D에서 녹색 파장에 대한 반사굴절 렌즈계(100)의 MFT 챠트이며, 도 17은 +1D에서 녹색 파장에 대한 반사굴절 렌즈계(100)의 MFT 챠트이다.
도 18은 -7D에서 청색 파장(486.0nm)에 대한 반사굴절 렌즈계(100)의 MFT 챠트이며, 도 19는 -5D에서 청색 파장에 대한 반사굴절 렌즈계(100)의 MFT 챠트이며, 도 20은 -3D에서 청색 파장에 대한 반사굴절 렌즈계(100)의 MFT 챠트이며, 도 21은 -1D에서 청색 파장에 대한 반사굴절 렌즈계(100)의 MFT 챠트이며, 도 22는 +1D에서 청색 파장에 대한 반사굴절 렌즈계(100)의 MFT 챠트이다.
도 8 내지 도 22에서 가로축은 공간주파수를 나타내며, 세로축은 20lp/mm에서의 초점관통(Through Focus) MFT를 나타낸다. 도 8 내지 도 22에서 실선으로 표시된 곡선들은 렌즈 중심에서의 동심원 방향으로 퍼지는 선 형태에 대한 MTF를 의미하며, 점선으로 표시된 곡선들은 렌즈 중심에서 바퀴 살 모양으로 퍼지는 선 형태에 대한 본 MTF를 의미한다. 도 8 내지 도 22에서 서로 다른 곡선들은 서로 다른 필드(field)에서의 MTF를 의미한다.
도 11 내지 도 25를 참조하면, 상술한 수치 실시예에 따른 반사굴절 렌즈계(100)는 굴절력이 -7D에서 +1D로 변경되는 동안, 설계 대표 파장(적색 파장(656.0nm). 녹색 파장(587.0nm) 및 청색 파장(486.0nm)) 및 설계 대표 시력(-7D, -5D, -3D, -1D, +1D)에서 타겟 해상도 35lp/mm의 MTF 값이 0.5 이상을 실질적으로 유지함을 볼 수 있다.
한편, 설계 대표 파장과 설계 대표 시력에서, 0.5 필드의 MTF가 fs/4에서 0.6 이상이며, 배율이 조정되는 범위 내에서의 0.5 필드의 MTF는 0.6의 70% 이상이 됨을 볼 수 있다.
설계 대표 파장과 설계 대표 시력에서, 0.7 필드의 MTF가 fs/4 에서 0.5 이상이며, 배율이 조정되는 범위 내에서의 0.7 필드의 MTF는 0.5의 70% 이상이 됨을 볼 수 있다.
설계 대표 파장과 설계 대표 시력에서, 0.8 필드의 MTF가 fs/4 에서 0.4 이상이며, 배율이 조정되는 범위 내에서의 0.8 필드의 MTF는 0.4의 70% 이상이 됨을 볼 수 있다.
도 23은 굴절력 -7D에서 반사굴절 렌즈계(100)의 종방향 구면수차(longitudinal spherical aberation), 비점수차(astigmatic field curves) 및 왜곡(distortion)을 보여주는 수차도이며, 도 24는 굴절력 -5D에서 반사굴절 렌즈계(100)의 종방향 구면수차, 비점수차 및 왜곡을 보여주는 수차도이며, 도 25는 굴절력 -3D에서 반사굴절 렌즈계(100)의 종방향 구면수차, 비점수차 및 왜곡을 보여주는 수차도이며, 도 26은 굴절력 -1D에서 반사굴절 렌즈계(100)의 종방향 구면수차, 비점수차 및 왜곡을 보여주는 수차도이며, 도 27은 굴절력 +1D에서 반사굴절 렌즈계(100)의 종방향 구면수차, 비점수차 및 왜곡을 보여주는 수차도이다.
전술한 본 발명인 반사굴절 렌즈계 및 이를 채용한 비디오 시스루 장치는 이해를 돕기 위하여 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다

Claims (15)

  1. 비디오 시스루 장치에 사용되는 반사굴절 렌즈계로서,
    사용자 안구측으로부터 상면측을 향해 광축의 방향을 따라 순차적으로 배치되는 제1 렌즈, 제2 렌즈, 제3 렌즈 및 제4 렌즈를 구비하며,
    상기 제1 렌즈의 상기 상면과 마주보는 제2 면은 상기 제2 렌즈로부터 오는 광의 적어도 일부를 반사시키고, 상기 제2 렌즈의 상기 상면과 마주보는 제4 면은 상기 제1 렌즈로부터 반사되어 오는 광의 적어도 일부를 재반사시키도록 구성되며,
    상기 제1 렌즈, 상기 제2 렌즈, 상기 제3 렌즈 및 상기 제4 렌즈는 순차적으로 양, 양, 음 및 양의 굴절력을 가지며,
    상기 제1 렌즈는 상기 제2 렌즈와의 거리가 0.1mm 내지 1.1mm 범위내에서 광축 방향으로 이동 가능하게 설치되며,
    상기 제1 렌즈의 이동 범위내에서의 굴절력의 변경은 -7D 내지 +1D의 범위내에 있는, 반사굴절 렌즈계.
  2. 제1 항에 있어서,
    상기 제1 렌즈는 상기 제2 렌즈와의 거리가 0.15mm 내지 1.03mm 범위내에서 광축 방향으로 이동 가능하게 설치되는, 반사굴절 렌즈계.
  3. 제1 항 또는 제2 항에 있어서,
    상기 광학 렌즈는 설계 대표 파장과 설계 대표 시력에서, 0.5 필드의 MTF가 fs/4에서 0.6 이상이며,
    상기 제1 렌즈의 이동 범위 내에서의 0.5 필드의 MTF는 0.6의 70% 이상인, 반사굴절 렌즈계.
  4. 제1 항 또는 제2 항에 있어서,
    상기 광학 렌즈는 설계 대표 파장과 설계 대표 시력에서, 0.7 필드의 MTF가 fs/4 에서 0.5 이상이며,
    배율이 조정되는 범위 내에서의 0.7 필드의 MTF는 0.5의 70% 이상인, 반사굴절 렌즈계.
  5. 제1 항 또는 제2 항에 있어서,
    상기 광학 렌즈는 설계 대표 파장과 설계 대표 시력에서, 0.8 필드의 MTF가 fs/4 에서 0.4 이상이며,
    배율이 조정되는 범위 내에서의 0.8 필드의 MTF는 0.4의 70% 이상인, 반사굴절 렌즈계.
  6. 제1 항 내지 제5 항 중 어느 한 항에 있어서,
    상기 반사굴절 렌즈계의 아이릴리프는 11mm ~ 14mm의 범위 내에 있는, 반사굴절 렌즈계.
  7. 제1 항 내지 제6 항 중 어느 한 항에 있어서,
    상기 반사굴절 렌즈계는 화각이 85° ~ 95°의 범위 내에 있는, 반사굴절 렌즈계.
  8. 제1 항 내지 제7 항 중 어느 한 항에 있어서,
    상기 제1 렌즈와 상기 제2 렌즈 사이에 마련되는 반사 편광자;
    상기 반사 편광자와 상기 제2 렌즈 사이에 마련되는 1/4파장판; 및
    상기 제2 렌즈와 제3 렌즈 사이에 마련되는 하프미러;를 더 포함하는, 반사굴절 렌즈계.
  9. 제8 항 에 있어서,
    상기 반사 편광자와 상기 1/4파장판은 상기 제1 렌즈의 상면측 렌즈면에 필름 형태로 부착된, 반사굴절 렌즈계.
  10. 제8 항에 있어서,
    상기 제4 렌즈와 상면 사이에 배치되는 제2의 1/4파장판을 더 포함하는, 반사굴절 렌즈계.
  11. 제8 항에 있어서,
    상기 제4 렌즈와 상면 사이에 배치되는 제2 선형 편광자와 제2 1/4파장판을 더 포함하는, 반사굴절 렌즈계.
  12. 제1 항 내지 제11 항 중 어느 한 항에 있어서,
    상기 제1 렌즈, 상기 제2 렌즈, 상기 제3 렌즈 및 상기 제4 렌즈는 플라스틱 렌즈인, 반사굴절 렌즈계.
  13. 제1 항 내지 제12 항 중 어느 한 항에 있어서,
    상기 제1 렌즈, 상기 제2 렌즈, 상기 제3 렌즈 및 상기 제4 렌즈는 비구면 렌즈인, 반사굴절 렌즈계.
  14. 제1 항 내지 제13 항 중 어느 한 항에 있어서,
    상기 제1 렌즈의 상면측 렌즈면은 평면인, 반사굴절 렌즈계.
  15. 영상의 광이 출사되는 디스플레이 패널; 및
    제1 항 내지 제14 항 중 어느 한 항의 반사 굴절 렌즈계;를 포함하는, 비디오 시스루 장치.
PCT/KR2023/009318 2022-07-21 2023-07-03 반사굴절 렌즈계 및 이를 채용한 비디오 시스루 장치 WO2024019362A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23843213.2A EP4542279A1 (en) 2022-07-21 2023-07-03 Catadioptric lens system and video see-through device equipped therewith
US19/033,197 US20250164765A1 (en) 2022-07-21 2025-01-21 Catadioptric lens system and video see-through device equipped therewith

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0090577 2022-07-21
KR20220090577 2022-07-21
KR10-2023-0018985 2023-02-13
KR1020230018985A KR20240013024A (ko) 2022-07-21 2023-02-13 반사굴절 렌즈계 및 이를 채용한 비디오 시스루 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US19/033,197 Continuation US20250164765A1 (en) 2022-07-21 2025-01-21 Catadioptric lens system and video see-through device equipped therewith

Publications (1)

Publication Number Publication Date
WO2024019362A1 true WO2024019362A1 (ko) 2024-01-25

Family

ID=89618176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009318 WO2024019362A1 (ko) 2022-07-21 2023-07-03 반사굴절 렌즈계 및 이를 채용한 비디오 시스루 장치

Country Status (3)

Country Link
US (1) US20250164765A1 (ko)
EP (1) EP4542279A1 (ko)
WO (1) WO2024019362A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160005557A (ko) * 2014-07-07 2016-01-15 엘지전자 주식회사 광학모듈 및 이를 구비한 헤드 마운티드 디스플레이 장치
US10007035B2 (en) * 2015-09-03 2018-06-26 3M Innovative Properties Company Head-mounted display
JP2020519964A (ja) * 2017-05-16 2020-07-02 スリーエム イノベイティブ プロパティズ カンパニー 光学システム
CN113866982A (zh) * 2021-09-24 2021-12-31 合肥视涯技术有限公司 一种近眼显示光学模组和vr显示设备
CN114415381A (zh) * 2022-03-30 2022-04-29 南昌龙旗信息技术有限公司 光学成像模组及虚拟现实设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160005557A (ko) * 2014-07-07 2016-01-15 엘지전자 주식회사 광학모듈 및 이를 구비한 헤드 마운티드 디스플레이 장치
US10007035B2 (en) * 2015-09-03 2018-06-26 3M Innovative Properties Company Head-mounted display
JP2020519964A (ja) * 2017-05-16 2020-07-02 スリーエム イノベイティブ プロパティズ カンパニー 光学システム
CN113866982A (zh) * 2021-09-24 2021-12-31 合肥视涯技术有限公司 一种近眼显示光学模组和vr显示设备
CN114415381A (zh) * 2022-03-30 2022-04-29 南昌龙旗信息技术有限公司 光学成像模组及虚拟现实设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FORBES: "Shape specification for axially symmetric optical surfaces", OPTICS EXPRESS, vol. 15, 2007, pages 5218 - 5226, XP002736912, DOI: 10.1364/OE.15.005218

Also Published As

Publication number Publication date
US20250164765A1 (en) 2025-05-22
EP4542279A1 (en) 2025-04-23

Similar Documents

Publication Publication Date Title
US8094377B2 (en) Head-mounted optical apparatus using an OLED display
WO2017146510A2 (en) Aberration corrected optical system for near-eye displays
CN108474946B (zh) 用于近眼显示的目镜光学系统及头戴显示装置
CN104932105A (zh) 一种拼接式头盔显示装置
WO2017022998A1 (ko) 헤드 마운트 디스플레이용 광학 시스템
WO2017034159A1 (en) Projection lens system and projection system
CN110824712A (zh) 一种大视场角高像质的目镜光学系统及设备
CN210835439U (zh) 一种大视场角高像质的目镜光学系统及设备
JP2004258653A (ja) 超小型ディスプレイデバイスとの使用に適した光学的拡大器
WO2021102685A1 (zh) 一种大视场角高像质的目镜光学系统及设备
EP4381340A1 (en) Augmented reality device based on waveguide with variable curvature, method for operating the augmented reality device, augmented reality glasses, optical compensator
CN215340543U (zh) 一种多棱镜光学镜组及近眼显示装置
CN113341558B (zh) 一种反射式目镜光学系统及头戴近眼显示装置
WO2024019362A1 (ko) 반사굴절 렌즈계 및 이를 채용한 비디오 시스루 장치
KR100926324B1 (ko) 양안 접안경
CN108463762B (zh) 用于近眼显示的目镜光学系统及头戴显示装置
WO2023048373A1 (en) Augmented reality device based on waveguide with variable curvature, method for operating the augmented reality device, augmented reality glasses, optical compensator
WO2022139472A1 (ko) 광학계
CN108463761B (zh) 用于近眼显示的目镜光学系统及头戴显示装置
US10067334B2 (en) Optical magnifier
CN213302681U (zh) 一种增强现实目镜系统
WO2022031017A1 (ko) 광학계
KR20240013024A (ko) 반사굴절 렌즈계 및 이를 채용한 비디오 시스루 장치
US11237380B2 (en) Eyepiece for a personal display and personal display comprising such eyepiece
WO2020138669A1 (ko) 증강 현실용 광학 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023843213

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023843213

Country of ref document: EP

Effective date: 20250120

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2023843213

Country of ref document: EP