[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024014008A1 - Router bit - Google Patents

Router bit Download PDF

Info

Publication number
WO2024014008A1
WO2024014008A1 PCT/JP2022/033001 JP2022033001W WO2024014008A1 WO 2024014008 A1 WO2024014008 A1 WO 2024014008A1 JP 2022033001 W JP2022033001 W JP 2022033001W WO 2024014008 A1 WO2024014008 A1 WO 2024014008A1
Authority
WO
WIPO (PCT)
Prior art keywords
router bit
flute
blade
region
shank
Prior art date
Application number
PCT/JP2022/033001
Other languages
French (fr)
Japanese (ja)
Inventor
史晶 高橋
真二 丹羽
剣華 張
Original Assignee
高橋刃物工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高橋刃物工業株式会社 filed Critical 高橋刃物工業株式会社
Priority to JP2023514115A priority Critical patent/JP7340310B1/en
Publication of WO2024014008A1 publication Critical patent/WO2024014008A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27GACCESSORY MACHINES OR APPARATUS FOR WORKING WOOD OR SIMILAR MATERIALS; TOOLS FOR WORKING WOOD OR SIMILAR MATERIALS; SAFETY DEVICES FOR WOOD WORKING MACHINES OR TOOLS
    • B27G13/00Cutter blocks; Other rotary cutting tools
    • B27G13/12Cutter blocks; Other rotary cutting tools for profile cutting

Definitions

  • the present invention relates to a router bit for cutting a material to be cut.
  • a router bit is known as a tool for cutting materials such as wood-based or resin-based organic materials, their composite materials, and ceramic-based inorganic materials (i.e., non-metallic materials) (Patent Document 1) reference).
  • Conventional router bits have a main body made of carbon steel, tool steel, or the like, and a blade made of an ultra-hard sintered body. Then, the router bit is attached to a cutting machine such as an NC router and used for drilling (in the Z direction) and pulling (in the X and Y directions) of the material to be cut.
  • Such router bits generally have a groove-like chip path called a flute formed in the body.
  • a flute formed in the body.
  • chips generated during cutting are guided by a flute and discharged upward in the Z direction.
  • the material to be cut is usually subjected to tension processing after drilling, so the router bit always performs cutting in a closed or semi-closed state. Therefore, the chips tend to stagnate within the flute, and the flute may become clogged with chips.
  • the chips tend to expand to a large extent (approximately three times the volume) and tend to clog the flute.
  • a router bit (10) for processing a material to be cut (20) comprising: A main body made of cemented carbide, a body (12) formed by grinding one end side of the main body portion and provided with a blade portion (14); The body (12) includes a main flute (18) and a secondary flute (19) for discharging chips of the material to be cut (20),
  • the porosity R in the overall effective blade length (L) of the body (12) is set to 52% ⁇ R ⁇ 75%.
  • FIG. 1 is a perspective view showing a router bit according to a first embodiment.
  • FIG. 2 is a side view showing the router bit according to the first embodiment.
  • FIG. 2 is an explanatory diagram conceptually showing the functions of the bottom blade and the outer peripheral blade of the router bit.
  • FIG. 2 is an explanatory diagram conceptually showing how a wooden board is drilled and stretched, and shows that up-cutting and down-cutting are performed simultaneously during stretching.
  • (a) is an explanatory diagram conceptually showing how a wooden board is up-cut
  • (b) is an explanatory diagram conceptually showing how a wooden board is down-cut.
  • 2 is a graph showing the experimental results of Experimental Example 1, showing the relationship between chip evacuation power and porosity.
  • FIG. 3 is a developed view schematically showing the body.
  • 7A is a sectional view of the body, (a) is a sectional view taken along the line IX(a)-IV(a) in FIG. 7;
  • FIG. (c) is a sectional view taken along line IX(c)-IV(c) in FIG. 7.
  • FIG. 7 is a cross-sectional view of the third region of the body.
  • FIG. 2 is a cross-sectional view showing a router bit according to a first embodiment and a router bit according to a comparative example, in which (a) shows the router bit according to the first embodiment, and (b) shows a router bit according to a comparative example. Shows router bits.
  • FIG. 7 is an exploded view schematically showing the body of a router bit according to a second embodiment.
  • FIG. 7 is an exploded view schematically showing the body of a router bit according to a third embodiment.
  • FIG. 7 is a developed view schematically showing the body of a router bit according to a fourth embodiment.
  • FIG. 1 is an overall perspective view showing a router bit 10 of the first embodiment
  • FIG. 2 is a side view of the router bit 10.
  • This router bit 10 is formed by sintering a columnar (round bar) main body made of cemented carbide and grinding the surface of one end of the main body with a grindstone. More specifically, a body 12 is formed by grinding one end side of the main body, and a plurality of blade parts 14 (more specifically, three peripheral blades 14a and a bottom blade 14b) are attached to the body 12. ing.
  • peripheral blades 14a that are closest to the bottom blade 14b may be referred to as first to third peripheral blades 14a in order.
  • the portion other than the body 12 is a shank 16, and the shank 16 is attached to a cutting machine (not shown) such as an NC router.
  • the effective blade length L of the router bit 10 is defined as the distance in the axial direction from the bottom blade 14b to the peripheral blade 14a (i.e., the third peripheral blade 14a) closest to the shank 16.
  • the effective blade length from the bottom blade 14b to the third outer peripheral blade 14a of this router bit 10 will be referred to as the overall effective blade length L.
  • the effective blade length formed by the three peripheral blades 14a is defined as the peripheral blade effective blade length l.
  • the total effective blade length L is increased by providing three peripheral blades 14a.
  • the overall effective blade length L of the router bit 10 is approximately twice the blade diameter (the length in the radial direction from the rotation center of the router bit 10 to the cutting edge of the blade portion 14).
  • the overall effective blade length L can be increased to about three times the blade diameter.
  • the body 12 is conceptually divided into a plurality of regions along the axial direction at a portion corresponding to the overall effective blade length L of the router bit 10.
  • the body 12 is divided into first to third regions A1 to A3 from the distal end toward the shank 16.
  • the body 12 is formed with flutes 18 and 19 for discharging chips generated during machining.
  • a single main flute 18 and a plurality of sub-flutes 19 are each formed by grinding using a grindstone.
  • the main flute 18 is formed from the tip end side (blade bottom side) of the body 12 to the shank 16 over the entire axial direction of the body 12.
  • the main flute 18 extends in the form of one groove over the first to third regions A1 to A3 of the body 12.
  • the main flute 18 is formed so as to hollow out the body 12 to the vicinity of the rotation center (see FIG. 9), and extends spirally from the tip of the body 12 toward the shank 16 in a clockwise direction.
  • the main flute 18 has a chip discharge function that sends out chips generated from the material to be cut during machining from the tip side of the body 12 to the shank 16 side.
  • the main flute 18 of this embodiment is set such that the lead angle ⁇ on the tip side of the body 12 is larger on the shank 16 side of the body 12 than on the tip side (blade edge side) of the body 12. More specifically, as shown in the developed view of FIG. 8, the lead angle ⁇ 3 in the third region A3 of the main flute 18 is larger than the lead angle ⁇ 2 in the second region A2, and the lead angle ⁇ 2 in the second region A2 is The lead angle ⁇ 1 is larger than the lead angle ⁇ 1 in the first region A1.
  • the lead angles ⁇ 1, ⁇ 2, and ⁇ 3 are set to 25°, 35°, and 53°, respectively, but the lead angles are not limited to these values.
  • the lead angle ⁇ 1 of the main flute 18 in the first region A1 has the smallest value. This is because it is necessary to reduce the lead angle ⁇ of the main flute 18 on the cutting edge side (that is, the first region A1) in order to make the rake angle of the bottom blade 14b 20° or less. This is because if the rake angle of the bottom blade 14b is made larger than 20°, chipping of the cutting edge is likely to occur.
  • the rake angle of the bottom blade 14b is defined by the lead angle ⁇ 1 on the cutting edge side of the main flute 18. Therefore, in order to make the rake angle of the bottom blade 14b 20 degrees or less, it is necessary to suppress the lead angle ⁇ 1 of the main flute 18 to about 25 degrees at the maximum. Therefore, in this embodiment, the lead angle ⁇ 1 of the main flute 18 is set to about 25°, and the values of the lead angles ⁇ 2 and ⁇ 3 are gradually increased toward the shank 16 side.
  • FIG. 9A to 9C are cross-sectional views of the router bit 10 in areas A1 to A3, respectively, and are cross-sectional views taken along lines IX(a)-IX(a) and IX(b)- This corresponds to a cross-sectional view taken along the line IX(b) and a cross-sectional view taken along the line IX(c)-IX(c).
  • the line IX(a)-IX(a) in FIG. 9(a) is located in the first region A1 and within the effective length l of the outer peripheral blade.
  • the circumferential width W of the main flute 18 is set to be larger on the shank 16 side (see FIG. 9(c)) than on the distal end side of the body 12 (see FIG.
  • the circumferential width W of the main flute 18 is larger on the shank 16 side than on the distal end side of the body 12 within the effective cutting length l of the outer peripheral edge of the body 12. Further, the width W in the circumferential direction of the main flute 18 gradually increases from the first to third regions A1 to A3 within the effective length l of the outer peripheral blade of the body 12. That is, when the circumferential widths of the main flute 18 in the first to third areas A1 to A3 are defined as W1 to W3, W1 ⁇ W2 ⁇ W3. Note that within the effective length l of the outer peripheral blade, the widths W1 to W3 of the main flute 18 in each region A1 to A3 are constant. Further, as shown in FIG. 9, the groove depth D of the main flute 18 in this embodiment is constant in all areas A1 to A3.
  • the front edge in the rotation direction of the router bit 10 is defined as the front edge 18a
  • the rear edge in the rotation direction of the router bit 10 is defined as the rear edge 18b.
  • the main flute 18 extends rearward in the rotational direction after the front edge 18a of the second region A2 once swells forward in the rotational direction with respect to the front edge 18a of the first region A1.
  • the front edge 18a of the third area A3 once swells forward in the rotational direction and then extends rearward in the rotational direction.
  • the front edge 18a of the first area A1 and the front edge 18a of the second area A2 are connected by a stepped connecting portion 22.
  • the front edge 18a of the second area A2 and the front edge 18a of the third area A3 are connected by a stepped connecting portion 22.
  • the front edge 18a and the rear edge 18b in the first region A1 extend linearly parallel to each other.
  • the front edge 18a and the rear edge 18b in the second area A2 and the front edge 18a and the rear edge 18b in the third area A3 extend linearly parallel to each other.
  • the front edge 18a of the main flute 18 is shaped to extend in the circumferential direction and has a clearance angle. Therefore, chips generated during cutting can be smoothly accommodated in the main flute 18 from the front edge 18a.
  • the rear edge 18b of the main flute 18 is formed into a sharp acute angle shape and has a rake angle. As a result, the chips stored in the main flute 18 are firmly captured by the rear edge 18b, making it difficult for them to escape from the main flute 18.
  • the main flute 18 can be largely expanded (extended) in the circumferential direction.
  • FIG. 10 when the main flute 18 is viewed from the axial direction, it is possible to increase the torsional expansion angle ⁇ indicating the range in which the main flute 18 extends in the circumferential direction of the body 12. As shown in FIG. 10, when the main flute 18 is viewed from the axial direction, it is possible to increase the torsional expansion angle ⁇ indicating the range in which the main flute 18 extends in the circumferential direction of the body 12. As shown in FIG.
  • this twist development angle ⁇ is calculated from a starting point P1 closest to the tip of the body 12 on the main flute 18 to an ending point P2 on the main flute 18 closest to the shank 16, with the center of rotation of the router bit 10 as the center. defined as the angle up to It is desirable that this twist development angle ⁇ is set to 150° or more. More preferably, the twist development angle ⁇ is set to 180° or more. In this embodiment, the twist development angle ⁇ is set to approximately 270°.
  • FIG. 11 is a diagram comparing the twist development angle ⁇ in the router bit 10 of this embodiment and a router bit as a comparative example.
  • FIG. 11(a) is a cross-sectional view of the router bit 10 of the present embodiment in areas A1 to A3, and
  • FIG. 11(b) is a cross-sectional view of the router bit according to the comparative example in areas A1 to A3.
  • the router bit according to the comparative example is made of a steel material commonly used in conventional products, and is formed by cutting the main flute with a ball end mill. In the router bit according to the comparative example, the lead angle of the main flute is constant at 15°.
  • the twist development angle ⁇ of the main flute is about 120 degrees, which is smaller than the twist development angle ⁇ of the router bit 10 of this embodiment.
  • the twist development angle ⁇ of the main flute 18 is made larger than 180°, the overall weight balance of the router bit 10 can be improved.
  • the cross section of the main flute has the same arc shape in all regions. Therefore, in the router bit of the comparative example, the width of the main flute is also constant (W). Furthermore, in the router bit of the comparative example, both the front edge and the rear edge of the main flute have an acute-angled shape. Therefore, in the router bit of the comparative example, the front edge of the main flute does not have a shape extending in the circumferential direction (a shape having a clearance angle) as in the present embodiment.
  • Each sub-flute 19 is provided in a portion of the body 12 where the main flute 18 is not formed, corresponding to each peripheral blade 14a described later.
  • the auxiliary flute 19, like the main flute 18, is ground into a groove shape using a grindstone.
  • the groove depth of the sub-flutes 19 is shallower than that of the main flute 18, and each sub-flute 19 communicates with the main flute 18.
  • the auxiliary flute 19 is configured to guide chips generated by the outer peripheral blade 18a to the main flute 18.
  • the body 12 of the router bit 10 (more specifically, the portion of the body 12 corresponding to the effective cutting length L) is largely ground away by forming the main flute 18 and the plurality of sub-flutes 19 through the grinding process. It has a solid structure.
  • the main flute 18 and the plurality of sub-flutes 19 which are present in a portion of the body 12 corresponding to the overall effective blade length L, greatly contribute to the porosity R.
  • the porosity R is not limited to the main flute 18 and the sub flute 19, but includes the portion removed to form the body 12.
  • the porosity R of the body 12 is defined by all the recesses formed by removing the portions other than the blade portion 14. A detailed definition of the porosity R will be described later.
  • the blade portion 14 consists of a plurality of peripheral blades 14a (three in this embodiment) and a single bottom blade 14b.
  • Each blade part 14 is a chip formed from an ultra-high pressure sintered body such as sintered diamond, and is joined to the side surface (more specifically, the blade body) of each sub-flute 19 in the body 12 by brazing or the like.
  • the bottom blade (core blade) 14b is joined to the tip of the body 12 and is used for drilling holes in the material to be cut.
  • the bottom blade 14b is also used for side surface machining of the material to be cut.
  • the bottom blade 14b is provided on the body 12 so as to have a positive twist angle.
  • the peripheral blade 14a is used for side surface machining of the material to be cut, and as shown in FIG. 3, is provided on the body 12 so as to have a negative twist angle.
  • the wood-based board 20 which is a wood-based material, is generally covered on both sides with a decorative sheet such as printed paper or resin film.
  • a router When processing such a wooden board 20 with a router, as shown in FIG.
  • the board 20 is in a state of being attracted to the suction plate 32.
  • the router bit 10 penetrates the wooden board 20 and is pushed down until its tip bites into the suction plate 32. In this state, tension processing is performed, and the router bit 10 cuts the wooden board 20 while scraping the suction plate 32 with its tip.
  • the bottom blade 14b cuts the lower surface 20b of the wooden board 20, and one of the plurality of peripheral blades 14a cuts the upper surface of the wooden board 20. 20a will be cut.
  • the bottom blade 14b performs cutting while applying a diagonally upward force (see arrow B in FIG. 3) to the lower surface 20b of the wooden board 20. For this reason, the decorative sheet covering the lower surface 20b of the wooden board 20 is prevented from turning up or fuzzing.
  • the decorative sheet covering the upper surface 20a of the wooden board 20 is cut while being subjected to an oblique downward force by the peripheral blade 14a having a negative twist angle (see arrow A in FIG. 3). For this reason, the decorative sheet on the upper surface 20a of the wooden board 20 is also prevented from turning up or fuzzing during cutting.
  • the lower surface 20b of the wooden board 20 is closed by the suction plate 32 during processing, so only the upper side of the wooden board 20 is closed during drilling, and the upper side of the wooden board 20 and the router are closed during tension processing. Only the opposite side of the bit 10 in the feeding direction is in an open state. Therefore, especially during drilling, there is almost no gap between the router bit 10 and the hole formed in the wooden board 20, and chips escape into the main flute 18. Therefore, the chips are sent upward along the main flute 18 and are discharged upward by the suction force of the dust collector.
  • the bottom blade 14b provided at the tip of the router bit 10 since the bottom blade 14b provided at the tip of the router bit 10 has a positive twist angle, the bottom blade 14b acts in the direction of pushing the chips upward.
  • the peripheral blade 14a since the peripheral blade 14a has a negative twist angle, it acts to suppress chips downward. Therefore, downward pressure is applied from the outer circumferential cutter 14a to the chips trying to move upward along the main flute 18. As a result, the discharge of chips is obstructed by the plurality of peripheral blades 14a, making it easier for chips to stagnate and accumulate within the main flute 18, which becomes a factor in increasing cutting resistance.
  • the router bit 10 having a long overall effective blade length L by being provided with a plurality of peripheral blades 14a as in the present embodiment stagnation and accumulation of chips becomes remarkable.
  • the inventors of the present application maximized the space (gap) in the overall effective flute length L of the body 12 between the main flute 18 and the sub flute 19, thereby reducing the amount of chips during cutting. I tried to make sure there was enough space for them to escape.
  • the inventors of the present application used steel, which has been used in router bits for non-metallic materials, as the base material of the router bit 10. We decided to use cemented carbide, which is difficult to mold, instead of solid wood.
  • the porosity R is defined as follows.
  • the space created by forming the main flute 18 and the sub-flutes 19 is the same as the space created by the main flute 18 and the sub-flutes 19, etc.
  • the ratio to the volume is defined as the porosity R.
  • the body 12 of the router bit 10 is immersed in a measurement container filled with water for the total effective blade length L, and the weight of the water overflowing from the container is measured. Measure.
  • the amount of water that overflows is the weight of a portion corresponding to the entire effective blade length L of the body 12 in a state where the main flute 18, the sub flute 19, etc. are formed by polishing.
  • the total body volume By removing the weight of the overflowing water from the volume of the body 12 before the main flute 18 and the sub-flutes 19 are formed (hereinafter referred to as the total body volume), the removed parts such as the main flute 18 and the sub-flutes 19 are removed.
  • the weight of the body 12 removed (hereinafter referred to as the void volume of the body 12) is determined as follows. Then, the void ratio R is determined by dividing the calculated void amount of the body 12 by the entire body amount.
  • the porosity R of the router bit 10 is set to 69%. However, the porosity R may be set to 52% to 75%. More preferably, the porosity R of the router bit 10 is set to 55% to 72%. As shown in Experimental Examples 1 and 2, which will be described later, by setting the porosity R to 55% or more, it becomes possible to efficiently discharge chips during cutting, and the power consumption during cutting (more details will be explained later). This makes it possible to significantly reduce the amount of power required for ejecting chips. On the other hand, if the porosity R of the body 12 is set too large, the rigidity and strength of the router bit 10 will be affected even if it is made of cemented carbide.
  • the porosity R be 72% or less. Note that the porosity R of the common steel-based router bits 10 that are currently in circulation is about 45%, and about 50% at most. This is because if the porosity R is greater than 50% in the router bit 10 made of a steel base material, the rigidity will be reduced and the cutting performance will be reduced due to deformation of the body and chips will easily occur.
  • the porosity due to the main flute 18 is defined as the flute porosity r.
  • This flute porosity r can be calculated from the design model of the router bit 10. For example, the flute porosity r is calculated by determining the ratio of the area of the main flute 18 to the area of the entire router bit 10 (area of a circle) in the cross-sectional view of the router bit 10 shown in FIG. be done. As described above, the lead angle ⁇ of the main flute 18 gradually increases from the distal end side of the body 12 to the shank 16 side.
  • the width W in the circumferential direction of the main flute 18 gradually increases from the tip side of the body 12 to the shank 16 side within the effective length l of the outer peripheral edge of the body 12.
  • the flute porosity r of the main flute 18 is larger on the shank 16 side than on the distal end side of the body 12 in the effective edge length l of the outer peripheral edge of the body 12.
  • the main flute 18 is formed large at the tip of the router bit 10. That is, as shown in FIG. 7, the flute porosity r of the main flute 18 is maximum on the outside (tip side) of the effective edge length l of the outer peripheral edge in the first region A1 including the bottom edge 14b.
  • the flute porosity r of the main flute 18 is larger on the shank 16 side of the body 12 than on the tip side of the body 12 within the effective edge length l of the outer peripheral blade.
  • FIG. 9(a) is a cross-sectional view taken along line IX(a)-IX(a) in the first region A1 and within the effective cutting length l of the outer peripheral blade). That is, assuming that the flute porosity in the first to third regions A1 to A3 is r1 to r3, r1 ⁇ r2 ⁇ r3 within the effective length l of the outer peripheral blade. More specifically, in this embodiment, the flute porosity r1, r2, and r3 are 18.2%, 20.4%, and 23.7%, respectively.
  • the chips generated during cutting are sent upward in the main flute 18 by the suction pressure from the dust collector. Therefore, the chips are likely to become clogged at a portion of the main flute 18 near the shank 16. Therefore, by increasing the flute porosity r on the shank 16 side, smooth discharge of chips can be realized even in the vicinity of the shank 16 of the main flute 18. As a result, clogging of chips and occurrence of "scorch" can be suitably avoided.
  • Example 1 In order to consider the influence of increasing the porosity R on the chip evacuation ability, the inventors of the present application verified the relationship between the porosity R and the power during cutting as Experimental Example 1. As shown in Table 1, a plurality of router bits 10 (experimental examples 1 to 7) with a porosity R in the range of 52% to 72% are formed from cemented carbide, and a plurality of sintered diamond tips are bonded to the body as blade parts. did. Then, the power of each router bit 10 during cutting was measured. In addition, a conventional steel router bit with a standard porosity R of 45.4% was manufactured from cemented carbide, and an experiment was conducted as Comparative Example 1.
  • the porosity R of each router bit 10 was adjusted by changing the groove depth and twist angle of the main flute 18, the number and size of the sub-flutes 19, etc.
  • the power consumption was calculated when the wooden board 20 was used as the material to be cut, and after drilling with each router bit 10, the board was pulled for a predetermined distance.
  • the chip evacuation power the amount of power required for ejecting chips (hereinafter referred to as the chip evacuation power) out of the total power required during cutting (hereinafter referred to as the required cutting power).
  • the power required for cutting with the router bit 10 can be divided as follows.
  • Required power for cutting Idle power + Chip generation power + Chip discharge power
  • Idle power is the power required to rotate the router bit 10
  • chip generation power is the power necessary for the router bit 10 to drill and process the material to be cut. This is the power required for stretching.
  • the chip discharge power is the power required to discharge chips during drilling and pulling processing.
  • the chip discharge power was calculated by excluding the idling power and the chip generation power from the required cutting power.
  • MDF medium density fiberboard
  • the inventors of the present application have found a method to obtain the chip discharge power by first estimating the chip generation power and excluding the estimated chip generation power and idling power from the chip required power using the following method.
  • the router bit 10 and the wooden board 20 are in close contact with each other, as shown in FIG. 4, and energy is required to discharge the chips. (equivalent to emitted power).
  • the wooden board 20 is in an airtight state in which all areas except the upper part are closed, and a large amount of energy is required to discharge the chips.
  • the rotation direction of the router bit 10 with respect to the other cutting surface 20B is from right to left. (rotated to) are facing each other (so-called down cut).
  • the chip generation power is the sum of the chip generation power due to the upcut and the chip generation power due to the downcut.
  • the chip evacuation power is determined by subtracting the idling power from the required cutting power, and further excluding the total value of the chip generation power in up-cutting and down-cutting.
  • FIG. 6 is a graph showing the relationship between the porosity R and the chip discharge power.
  • the porosity R increases, the chip evacuation power decreases.
  • the porosity R is 54.8% or more, the reduction rate of the chip discharge power becomes large. That is, through this experimental example, the inventors of the present invention have found that by setting the porosity R of the router bit 10 to 55% or more, the chip evacuation ability is significantly improved and the power required for chip evacuation can be reduced. I found out what I can do.
  • the router bit 10 has excellent chip evacuation ability by having a high porosity R of 55% or more, which is difficult to achieve with conventional router bits 10 made of steel or the like. can be provided. Further, when the porosity R is set to 69.3% as in the embodiment, the chip evacuation power can be reduced by 50% or more compared to Comparative Example 1.
  • Example 2 As described above, from the results of Experimental Example 1, it can be said that the larger the porosity R is, the more the chip discharge efficiency is improved and the power consumption can be suppressed. However, if the porosity R is too large, even if it is a cemented carbide, the rigidity will be insufficient, which may cause deflection and vibration during cutting, and damage to the router bit 10. Therefore, the inventors of the present application measured the amount of deflection of the router bit 10 in order to search for an upper limit value of the porosity R that can withstand practical use. Specifically, a constant load (weight 10.24 [kgf]) was applied to the router bit 10 according to Examples 1 to 7 used in Experimental Example 1, and the amount of deflection of the router bit 10 was measured. It is known that when the same load is applied to currently available steel router bits, the amount of deflection is within the range of 85 to 90 ⁇ m. The experimental results are shown in Table 3.
  • the porosity R increases, the amount of deflection gradually increases.
  • the porosity R is 72%, the amount of deflection is suppressed to 90 ⁇ m, which is within the range of the amount of deflection of the conventional steel router bit 10.
  • the porosity R is made larger than 72%, the amount of deflection increases to more than 90%, so it can be said that 72% is desirable as the upper limit of the porosity R.
  • Example 3 Next, the relationship between the twist development angle ⁇ of the main flute 18 and the weight balance of the router bit 10 was verified.
  • the lead angle ⁇ of the main flute 18 is increased stepwise from the tip side of the body 12 to the shank 16 side, thereby developing twisting.
  • a router bit 10 with an angle ⁇ of 270° was used.
  • Comparative Example 2 a conventional steel router bit was used, the lead angle ⁇ of the main flute 18 was kept constant (XX°), and the twist development angle ⁇ was about 110°.
  • Comparative Example 3 a conventional steel router bit was used, the lead angle ⁇ of the main flute 18 was kept constant (YY°), and the twist development angle ⁇ was about 130°.
  • the router bits of Experimental Example 8 and Comparative Examples 2 and 3 were attached to a Haimer balancer measuring device to measure the amount of unbalance. Then, a grade of balance (G: JIS standard B0905) was determined from the measured imbalance amount. The experimental results are shown in Table 4.
  • the body 12 is formed of cemented carbide and includes the main flute 18 and a plurality of sub-flutes 19 by grinding, so that the porosity R of the body 12 is 52. It is set as % ⁇ R ⁇ 75%.
  • the lead angle ⁇ of the main flute 18 is gradually increased from the tip side of the body 12 to the shank 16 side. That is, in the conventional router bit, the lead angle of the main flute is constant, but in the router bit 10 of this embodiment, the lead angle ⁇ of the main flute is multiplied by the shank 16 side to increase it stepwise.
  • the extension length of the main flute 18 in the second and third regions A2 and A3 can be increased.
  • the router bit 10 maintains sufficient rigidity even with a large porosity R of 52% or more, which was not possible with conventional router bits made of steel. There is. As a result, it was possible to provide a router bit 10 with high chip evacuation ability, and it became possible to suppress power consumption during cutting.
  • the lead angle ⁇ and the width W of the main flute 18 are increased in stages from the distal end side of the body 12 to the shank 16 side.
  • the flute porosity r of the main flute 18 gradually increases from the tip end side of the body 12 to the shank 16 side within the effective edge length l of the outer peripheral blade. Therefore, chips can be smoothly sent upward (towards the shank 16) along the main flute 18, and clogging of chips near the shank 16 can be suitably prevented.
  • the flute porosity r of the main flute is usually constant in the axial direction, or rather becomes smaller toward the shank side. This is because in steel materials, which have lower rigidity than cemented carbide, the main flute is formed shallower on the shank side in order to increase the strength of the shank held by the NC router.
  • the structure is based on an idea opposite to the previous one, in which the flute porosity r of the main flute 18 is increased on the shank 16 side. In this way, even if the flute porosity r is increased on the shank 16 side, the router bit 10 made of cemented carbide maintains its rigidity and enables stable cutting.
  • the router bit 10 of the embodiment has a long overall effective blade length L with three peripheral blades 14a, and has a structure in which the discharge of chips is easily obstructed. Therefore, by providing the body 12 with a large porosity R, even if the router bit 10 has a long overall effective blade length L, the chip discharge efficiency can be suitably increased, and power consumption can be suppressed. In particular, in recent years, with SDG management attracting attention, many companies are focusing on keeping power consumption low in the manufacturing process. In such a trend, the router bit as shown in the embodiment can contribute as one of the cutting tools that effectively suppresses power consumption during cutting. Moreover, by increasing the overall effective flute length L, even thick workpiece materials that conventionally required multiple machining can be processed in one process, improving machining efficiency. It is possible. Note that even if the router bit 10 has such a large overall effective cutting length L, stable machining can be ensured by forming it from a highly rigid cemented carbide.
  • the lead angle ⁇ of the main flute 18 is increased stepwise from the tip side of the body 12 to the shank 16 side, thereby ensuring the above-mentioned large porosity R (flute porosity r).
  • R fine porosity r
  • the router bit 10 can rotate stably, improving machining quality and suppressing noise generation during machining.
  • the front edge 18a of the main flute 18 is formed to gradually expand from the tip side of the body 12 to the shank 16 side. Further, the front edge 18a of the first area A1, the front edge 18a of the second area A2, the front edge 18a of the second area A2, and the front edge 18a of the third area A3 are connected by step-shaped connecting portions 22, respectively. There is.
  • the front edge 18a is formed to extend in the circumferential direction, so as to have a clearance angle. Therefore, chips generated during cutting can be smoothly introduced into the main flute 18 from the front edge 18a.
  • the rear edge 18b of the main flute 18 is provided with a rake angle by forming an acute angle. Therefore, the chips once accommodated in the main flute 18 can be captured by the rear edge 18b and can be prevented from escaping to the outside of the main flute 18.
  • FIG. 12 is a diagram schematically showing a developed view of the router bit 100 according to the second embodiment.
  • the main flute 18 is configured such that the lead angle ⁇ gradually increases from the distal end side of the body 12 to the shank 16 side.
  • the lead angle ⁇ of the main flute 18 is configured to continuously increase from the distal end side of the body 12 to the shank 16 side. That is, the main flute 18 has a curved shape extending from the distal end side of the body 12 to the shank 16 side in a developed view, and extends so that the curvature thereof gradually decreases.
  • lead angles ⁇ 1 to ⁇ 3 formed by tangents at arbitrary points of the main flute 18 in each region A1 to A3 are ⁇ 1 ⁇ 2 ⁇ 3, as in the first embodiment.
  • the circumferential width W of the main flute 18 increases continuously from the distal end side of the body 12 to the shank 16 side within the outer peripheral blade effective cutting length l. More specifically, the front edge 18a of the main flute 18 is gently curved (with a large radius of curvature) toward the rear in the rotational direction of the router bit 10 from the distal end side of the body 12 to the shank 16 side.
  • the rear edge 18b of the main flute 18 is curved rearward in the rotational direction of the router bit 10 with a relatively small radius of curvature from the distal end side of the body 12 to the shank 16 side.
  • the flute porosity r of the main flute 18 can be increased as in the first embodiment.
  • the router bit 100 can ensure a high porosity R, and can achieve the same effects as the first embodiment.
  • the router bit 100 according to the second embodiment the lead angle ⁇ and the circumferential width W of the main flute 18 are continuously increased toward the shank 16 side, so that the main flute 18 can be
  • the twist development angle ⁇ of the flute 18 can be set large (for example, 270°). Therefore, the router bit 100 according to the second embodiment can have the same effect as the first embodiment because the twist development angle ⁇ is large.
  • FIG. 13 is a diagram schematically showing a developed view of a router bit 200 according to the third embodiment.
  • the main flute 18 is configured such that the lead angle ⁇ gradually increases from the distal end side of the body 12 to the shank 16 side.
  • the lead angle ⁇ of the main flute 18 is constant at, for example, 25° in all areas A1 to A3.
  • the circumferential width W of the main flute 18 gradually increases from the tip side of the body 12 to the shank 16 side. More specifically, the front edge 18a of the main flute 18 is formed to gradually expand forward in the rotational direction from the distal end side of the body 12 to the shank 16 side.
  • the front edge 18a of the first area A1 and the front edge 18a of the second area A2 are connected by a stepped connecting portion 22.
  • the front edge 18a of the second area A2 and the front edge 18a of the third area A3 are connected by a stepped connecting portion 22.
  • the rear edge 18b of the main flute 18 extends linearly across the first to third areas A1 to A3.
  • the flute porosity r due to the main flute 18 can be adjusted to Within the length l, the length increases stepwise from the tip side of the body 12 to the shank 16 side.
  • the overall porosity R of the router bit 11 can be increased, and the same effects as in the first embodiment can be achieved.
  • a router bit 300 according to the fourth embodiment is a combination of the structure of the router bit 10 according to the first embodiment and the structure of the router bit 100 according to the second embodiment. That is, in the first region A1 of the main flute 18 of the router bit 300, the lead angle ⁇ 1 is constant (for example, about 25°) within the effective edge length l of the outer peripheral blade. In the second region A2 and the third region A3, the lead angles ⁇ 2 and ⁇ 3 of the main flute 18 continuously increase from the distal end side of the body 12 to the shank 16 side.
  • the lead angle ⁇ 2 of the main flute 18 is larger than the lead angle ⁇ 1 of the main flute 18, and the lead angle ⁇ 3 of the main flute 18 is larger than the lead angle ⁇ 2 of the main flute 18. Furthermore, the front edge 18a in the first area A1 and the front edge 18a in the second area A2 are smoothly connected. Similarly, the front edge 18a in the second area A2 and the front edge 18a in the third area A3 are smoothly connected. The front edge 18a and the rear edge 18b in the first region A1 extend linearly rearward in the rotational direction from the distal end side of the body 12 toward the shank 16 side.
  • the front edge 18a in the second region A2 and the third region A3 is largely and gently curved backward in the rotational direction from the distal end side of the body 12 toward the shank 16 side. Further, the rear edge 18b in the second region A2 and the third region A3 is curved rearward in the rotational direction from the distal end side of the body 12 toward the shank 16 side.
  • the lead angle ⁇ 1 of the main flute 18 is kept constant while the lead angles ⁇ 2 and ⁇ 3 of the main flute 18 are continuously greatly changed.
  • the flute porosity r is increased on the shank 16 side.
  • the porosity R of the router bit 300 can be increased, and the same effects as in the first embodiment can be achieved.
  • the manner in which the lead angle ⁇ changes is not limited to the fourth embodiment.
  • the lead angles ⁇ 1 and ⁇ 3 of the first region A1 and the third region A3 may be continuously increased, and the lead angle ⁇ 2 of the second region A2 may be constant.
  • the body 12 is conceptually divided into three regions A1 to A3, and the lead angle ⁇ of the main flute 18 is changed in stages in the three regions, but the configuration is limited to this. It's not a thing.
  • the body 12 may be divided into two regions and the lead angle ⁇ of the main flute 18 may be changed in two stages.
  • the body 12 may be divided into four or more regions, and the lead angle ⁇ of the main flute 18 may be changed in four or more steps.
  • a high porosity R was ensured by increasing the lead angle ⁇ and circumferential width W of the main flute 18 from the tip side of the body 12 to the shank 16 side.
  • the lead angle ⁇ of the main flute 18 may be increased toward the shank 16 side, and the width W in the circumferential direction may be constant.
  • the front edge 18a of the main flute 18 is expanded in stages.
  • the rear edge 18b of the main flute 18 is expanded in stages or continuously, or if both the front edge 18a and the rear edge 18b of the main flute 18 are expanded in stages or continuously, Good too.
  • the flutes were removed from the blade portion by grinding, but the flutes may be formed by electrical discharge machining. Further, in the first to third embodiments, a main flute and a plurality of sub-flutes are provided, but a structure having only a single main flute (a structure not including a sub-flute) may also be used. .
  • the blade portion is constructed by attaching a tip made of a hard sintered body to the body. However, it is also possible to use a so-called solid blade in which the blade portion is integrally formed by grinding a body made of cemented carbide.
  • a blade portion was formed by grinding a removed portion such as a flute on the surface of one end side of a round bar material made of sintered cemented carbide.
  • the removed portion may be formed by machining the cemented carbide in a semi-sintered state. Then, after forming the removed portion, main sintering is performed and the blade portion is joined to form the body.
  • the material to be cut is not limited to such wood-based materials.
  • the router bit of the present invention can be suitably used when cutting resin-based materials such as plastics as the material to be cut. This is because it has been pointed out that resin-based materials, like wood-based materials, have problems such as increased power consumption due to inhibition of chip discharge.
  • the bottom cutting edge had a positive rake angle
  • the outer peripheral cutting edge had a negative rake angle
  • both the bottom cutter and the outer peripheral cutter may have a positive rake angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Milling Processes (AREA)

Abstract

Provided is a router bit (10) which machines a material (20) to be cut and comprises a main body portion which is made of cemented carbide and a body (12) which is formed by cutting one end side of the main body portion and is provided with a blade portion (14). The body (12) is provided with a main flute (18) and a sub flute (19) which discharge chips of the material (20) to be cut. Porosity R in an overall effective blade length (L) of the body (12) is set to 52%≤R≤75%.

Description

ルータービットrouter bits
 本発明は、被切削材料を切削加工するルータービットに関する。 The present invention relates to a router bit for cutting a material to be cut.
 木質系または樹脂系の有機材料や、その複合材料、および窯業系などの無機質材料(すなわち、非金属材料)の被切削材料を切削加工する工具として、ルータービットが知られている(特許文献1参照)。従来のルータービットでは、炭素鋼や工具鋼などを基材とした本体部に、超硬質焼結体を接合した刃部を備えて構成されている。そして、ルータービットは、NCルータなどの切削加工機に装着されて、被切削材料の穴あけ加工(Z方向)や引っ張り加工(X,Y方向)に供される。 A router bit is known as a tool for cutting materials such as wood-based or resin-based organic materials, their composite materials, and ceramic-based inorganic materials (i.e., non-metallic materials) (Patent Document 1) reference). Conventional router bits have a main body made of carbon steel, tool steel, or the like, and a blade made of an ultra-hard sintered body. Then, the router bit is attached to a cutting machine such as an NC router and used for drilling (in the Z direction) and pulling (in the X and Y directions) of the material to be cut.
特開平10-146713号公報Japanese Patent Application Publication No. 10-146713
 このようなルータービットでは、ボディにフルートと呼ばれる溝状の切屑経路が形成されることが一般的である。例えば、被切削材料である木質系ボードを切削する場合、切削時(特に穴あけ加工)に生じた切屑がフルートに案内されてZ方向である上方に排出される。しかしながら、ルータービットによる加工は、通常、被切削材料を穴あけした後に引っ張り加工を行うため、ルータービットは、常に密閉状態または半密閉状態で切削を行う。そのため、切屑がフルート内で停滞し易くなり、フルート内で切屑が詰まってしまうことがあった。特に、木質系や樹脂系の材料では、切屑が大きく(体積の約3倍)膨張し易く、フルート内で詰まりが生じ易い傾向にある。 Such router bits generally have a groove-like chip path called a flute formed in the body. For example, when cutting a wooden board as a material to be cut, chips generated during cutting (particularly during drilling) are guided by a flute and discharged upward in the Z direction. However, in machining with a router bit, the material to be cut is usually subjected to tension processing after drilling, so the router bit always performs cutting in a closed or semi-closed state. Therefore, the chips tend to stagnate within the flute, and the flute may become clogged with chips. In particular, when using wood-based or resin-based materials, the chips tend to expand to a large extent (approximately three times the volume) and tend to clog the flute.
 この結果、フルートによる切屑の排出が阻害され、切削に要する電力、より正確には、切屑の排出に必要な電力が増大してしまう問題があった。また、切屑の排出が阻害されると、切削面が摩擦により高温となって、いわゆる「やけ」が生じることがあった。このようなやけが生ずると、切削品質が低下したり、最悪の場合には切削面が高温となって切屑や粉塵に着火し、火災が発生することもあった。また、切屑の排出が悪くなると、切削時の騒音が大きくなる難点もある。
 本開示が解決しようとする課題は、切削時に生ずる切屑の排出能力を顕著に向上させたルータービットを提供することにある。
As a result, there is a problem in that the discharge of chips by the flute is inhibited, and the power required for cutting, or more precisely, the power required for discharge of chips, increases. Further, when the discharge of chips is inhibited, the cutting surface becomes hot due to friction, and so-called "scorching" may occur. When such burns occur, cutting quality deteriorates, and in the worst case scenario, the cutting surface becomes so hot that chips and dust may ignite, resulting in a fire. In addition, there is also the problem that if the discharge of chips becomes poor, the noise during cutting increases.
The problem to be solved by the present disclosure is to provide a router bit that has significantly improved ability to discharge chips generated during cutting.
 上記課題に鑑み、本開示の一側面によれば、被切削材料(20)を加工するルータービット(10)であって、
 超硬合金からなる本体部と、
 前記本体部の一端側を研削して形成され、刃部(14)を備えたボディ(12)と、を備え、
 前記ボディ(12)は、前記被切削材料(20)の切屑を排出する主フルート(18)および副フルート(19)を含み、
 前記ボディ(12)の全体有効刃長(L)における空隙率Rが、52%≦R≦75%に設定されている。
In view of the above problems, according to one aspect of the present disclosure, there is provided a router bit (10) for processing a material to be cut (20), comprising:
A main body made of cemented carbide,
a body (12) formed by grinding one end side of the main body portion and provided with a blade portion (14);
The body (12) includes a main flute (18) and a secondary flute (19) for discharging chips of the material to be cut (20),
The porosity R in the overall effective blade length (L) of the body (12) is set to 52%≦R≦75%.
第一実施形態に係るルータービットを示す斜視図である。FIG. 1 is a perspective view showing a router bit according to a first embodiment. 第一実施形態に係るルータービットを示す側面図である。FIG. 2 is a side view showing the router bit according to the first embodiment. ルータービットの底刃および外周刃の機能を概念的に示す説明図である。FIG. 2 is an explanatory diagram conceptually showing the functions of the bottom blade and the outer peripheral blade of the router bit. 木質系ボードを穴あけ加工および引張り加工する様子を概念的に示す説明図であって、引張り加工時に、アップカットとダウンカットが同時に行われることを示す。FIG. 2 is an explanatory diagram conceptually showing how a wooden board is drilled and stretched, and shows that up-cutting and down-cutting are performed simultaneously during stretching. (a)は、木質系ボードをアップカットする様子を概念的に示す説明図であり、(b)は、木質系ボードをダウンカットする様子を概念的に示す説明図である。(a) is an explanatory diagram conceptually showing how a wooden board is up-cut, and (b) is an explanatory diagram conceptually showing how a wooden board is down-cut. 実験例1の実験結果であって、切屑排出電力と空隙率との関係を示すグラフである。2 is a graph showing the experimental results of Experimental Example 1, showing the relationship between chip evacuation power and porosity. ルータービットのボディを拡大して示す側面図である。It is a side view which expands and shows the body of a router bit. ボディを概略的に示す展開図である。FIG. 3 is a developed view schematically showing the body. ボディの断面図であって、(a)は、図7のIX(a)-IV(a)線断面図、(b)は、図7のIX(b)-IV(b)線断面図、(c)は、図7のIX(c)-IV(c)線断面図である。7A is a sectional view of the body, (a) is a sectional view taken along the line IX(a)-IV(a) in FIG. 7; FIG. (c) is a sectional view taken along line IX(c)-IV(c) in FIG. 7. ボディの第3領域における断面図である。FIG. 7 is a cross-sectional view of the third region of the body. 第一実施形態に係るルータービットと比較例に係るルータービットとを比較して示す断面図であって、(a)は第一実施形態に係るルータービットを示し、(b)は比較例に係るルータービットを示す。FIG. 2 is a cross-sectional view showing a router bit according to a first embodiment and a router bit according to a comparative example, in which (a) shows the router bit according to the first embodiment, and (b) shows a router bit according to a comparative example. Shows router bits. 第二実施形態に係るルータービットのボディを概略的に示す展開図である。FIG. 7 is an exploded view schematically showing the body of a router bit according to a second embodiment. 第三実施形態に係るルータービットのボディを概略的に示す展開図である。FIG. 7 is an exploded view schematically showing the body of a router bit according to a third embodiment. 第四実施形態に係るルータービットのボディを概略的に示す展開図である。FIG. 7 is a developed view schematically showing the body of a router bit according to a fourth embodiment.
(第一実施形態)
 次に、第一実施形態に係るルータービット10について、以下図面を参照しながら説明を行う。図1は、第一実施形態のルータービット10を示す全体斜視図、図2は、ルータービット10の側面図である。このルータービット10は、超硬合金からなる柱状(丸棒)の本体部を焼結し、本体部の一端側の表面を砥石により研削加工することで形成されている。より具体的には、本体部の一端側を研削加工することでボディ12を形成し、該ボディ12に複数の刃部14(より詳しくは、3つの外周刃14aおよび底刃14b)が取り付けられている。なお、以下の説明では、底刃14bに最も近い外周刃14aから順に第1~第3外周刃14aと指称する場合がある。また、本体部において、ボディ12以外の部位はシャンク16とされて、NCルータなどの切削加工機(図示せず)にシャンク16が装着されるようになっている。
(First embodiment)
Next, the router bit 10 according to the first embodiment will be explained below with reference to the drawings. FIG. 1 is an overall perspective view showing a router bit 10 of the first embodiment, and FIG. 2 is a side view of the router bit 10. This router bit 10 is formed by sintering a columnar (round bar) main body made of cemented carbide and grinding the surface of one end of the main body with a grindstone. More specifically, a body 12 is formed by grinding one end side of the main body, and a plurality of blade parts 14 (more specifically, three peripheral blades 14a and a bottom blade 14b) are attached to the body 12. ing. In the following description, the peripheral blades 14a that are closest to the bottom blade 14b may be referred to as first to third peripheral blades 14a in order. Further, in the main body, the portion other than the body 12 is a shank 16, and the shank 16 is attached to a cutting machine (not shown) such as an NC router.
 図7に示すように、ルータービット10の有効刃長Lは、底刃14bからシャンク16に最も近い外周刃14a(すなわち、第3外周刃14a)までの軸方向の距離と定義される。以下の説明では、このルータービット10の底刃14bから第3外周刃14aまでの有効刃長を全体有効刃長Lと称する。また、全体有効刃長Lのうち、3つの外周刃14aがなす有効刃長を外周刃有効刃長lと定義する。本実施形態では、3つの外周刃14aを設けることで、全体有効刃長Lが大きくなっている。より具体的には、ルータービット10の全体有効刃長Lは、刃径(ルータービット10の回転中心から刃部14の刃先までの径方向の長さ)の約2倍となっている。ただし、ルータービット10を超硬合金から形成することで、全体有効刃長Lの長さを、刃径の約3倍まで大きくすることが可能である。 As shown in FIG. 7, the effective blade length L of the router bit 10 is defined as the distance in the axial direction from the bottom blade 14b to the peripheral blade 14a (i.e., the third peripheral blade 14a) closest to the shank 16. In the following description, the effective blade length from the bottom blade 14b to the third outer peripheral blade 14a of this router bit 10 will be referred to as the overall effective blade length L. Further, among the overall effective blade length L, the effective blade length formed by the three peripheral blades 14a is defined as the peripheral blade effective blade length l. In this embodiment, the total effective blade length L is increased by providing three peripheral blades 14a. More specifically, the overall effective blade length L of the router bit 10 is approximately twice the blade diameter (the length in the radial direction from the rotation center of the router bit 10 to the cutting edge of the blade portion 14). However, by forming the router bit 10 from cemented carbide, the overall effective blade length L can be increased to about three times the blade diameter.
 図7に示すように、ボディ12は、ルータービット10の全体有効刃長Lに対応する部位が、軸方向に沿って複数の領域に概念的に分けられている。本実施形態では、先端側からシャンク16に向けてボディ12は、第1~第3領域A1~A3に区分けされる。ボディ12には、加工時に生ずる切屑を排出するためのフルート18,19が形成されている。図1および図2に示すように、本実施形態では、単一の主フルート18と、複数の副フルート19とがそれぞれ砥石による研削加工によって形成されている。主フルート18は、ボディ12の先端側(刃底側)からシャンク16に掛けてボディ12の軸方向全体に亘って形成されている。すなわち、主フルート18は、ボディ12の第1~第3領域A1~A3に掛けて1つの溝状に延在している。この主フルート18は、ボディ12を回転中心の近傍までえぐるように形成されており(図9参照)、ボディ12の先端からシャンク16に向けて時計回り方向にらせん状に延びている。後述するように、主フルート18は、加工時に被切削材料から生成される切屑をボディ12の先端側からシャンク16側へ送り出す切屑排出機能を有している。 As shown in FIG. 7, the body 12 is conceptually divided into a plurality of regions along the axial direction at a portion corresponding to the overall effective blade length L of the router bit 10. In this embodiment, the body 12 is divided into first to third regions A1 to A3 from the distal end toward the shank 16. The body 12 is formed with flutes 18 and 19 for discharging chips generated during machining. As shown in FIGS. 1 and 2, in this embodiment, a single main flute 18 and a plurality of sub-flutes 19 are each formed by grinding using a grindstone. The main flute 18 is formed from the tip end side (blade bottom side) of the body 12 to the shank 16 over the entire axial direction of the body 12. That is, the main flute 18 extends in the form of one groove over the first to third regions A1 to A3 of the body 12. The main flute 18 is formed so as to hollow out the body 12 to the vicinity of the rotation center (see FIG. 9), and extends spirally from the tip of the body 12 toward the shank 16 in a clockwise direction. As will be described later, the main flute 18 has a chip discharge function that sends out chips generated from the material to be cut during machining from the tip side of the body 12 to the shank 16 side.
 本実施形態の主フルート18は、ボディ12の先端側のリード角θが、ボディ12の先端側(刃先側)に比べて、ボディ12のシャンク16側が大きくなるよう設定されている。より詳しくは、図8の展開図に示すように、主フルート18の第3領域A3におけるリード角θ3は、第2領域A2におけるリード角θ2よりも大きく、第2領域A2におけるリード角θ2は、第1領域A1におけるリード角θ1よりも大きくなっている。例えば、リード角θ1、θ2,θ3は、それぞれ、25°、35°、53°に設定されるが、リード角としては、この数値に限定されるものではない。 The main flute 18 of this embodiment is set such that the lead angle θ on the tip side of the body 12 is larger on the shank 16 side of the body 12 than on the tip side (blade edge side) of the body 12. More specifically, as shown in the developed view of FIG. 8, the lead angle θ3 in the third region A3 of the main flute 18 is larger than the lead angle θ2 in the second region A2, and the lead angle θ2 in the second region A2 is The lead angle θ1 is larger than the lead angle θ1 in the first region A1. For example, the lead angles θ1, θ2, and θ3 are set to 25°, 35°, and 53°, respectively, but the lead angles are not limited to these values.
 前述のように、第1領域A1での主フルート18のリード角θ1は、最も小さな値となっている。これは、底刃14bのすくい角を20°以下とするために刃先側(すなわち、第1領域A1)の主フルート18のリード角θを小さくする必要があるからである。底刃14bのすくい角を20°より大きくすると、刃先のチッピングが生じ易くなるからである。底刃14bのすくい角は、主フルート18の刃先側のリード角θ1によって規定される。そのため、底刃14bのすくい角を20°以下とするためには、主フルート18のリード角θ1を最大でも約25°に抑える必要がある。そこで、本実施形態では、主フルート18のリード角θ1を約25°に設定しつつ、シャンク16側に掛けてリード角θ2,θ3の値を段階的に大きくしている。 As mentioned above, the lead angle θ1 of the main flute 18 in the first region A1 has the smallest value. This is because it is necessary to reduce the lead angle θ of the main flute 18 on the cutting edge side (that is, the first region A1) in order to make the rake angle of the bottom blade 14b 20° or less. This is because if the rake angle of the bottom blade 14b is made larger than 20°, chipping of the cutting edge is likely to occur. The rake angle of the bottom blade 14b is defined by the lead angle θ1 on the cutting edge side of the main flute 18. Therefore, in order to make the rake angle of the bottom blade 14b 20 degrees or less, it is necessary to suppress the lead angle θ1 of the main flute 18 to about 25 degrees at the maximum. Therefore, in this embodiment, the lead angle θ1 of the main flute 18 is set to about 25°, and the values of the lead angles θ2 and θ3 are gradually increased toward the shank 16 side.
 図9(a)~(c)は、それぞれ、ルータービット10の各領域A1~A3における断面図であって、図7のIX(a)-IX(a)線断面図、IX(b)-IX(b)線断面図、およびIX(c)-IX(c)線断面図に対応する。なお、図9(a)のIX(a)-IX(a)線は、第1領域A1であって、かつ外周刃有効刃長l内に位置している。本実施形態では、主フルート18の周方向の幅Wが、ボディ12の先端側(図9(a)参照)に比べて、シャンク16側(図9(c)参照)で大きくなるよう設定されている。より詳しくは、主フルート18の周方向の幅Wは、ボディ12の外周刃有効刃長l内において、ボディ12の先端側に比べてシャンク16側で大きくなっている。更に、主フルート18の周方向の幅Wは、ボディ12の外周刃有効刃長l内において、第1~第3領域A1~A3にかけて段階的に大きくなっている。すなわち、第1領域~第3領域A1~A3における主フルート18の周方向の幅をW1~W3とすると、W1<W2<W3となっている。なお、外周刃有効刃長l内において、各領域A1~A3での主フルート18の幅W1~W3は、一定となっている。また、図9に示すように、本実施形態での主フルート18の溝深さDは、全領域A1~A3において一定となっている。 9A to 9C are cross-sectional views of the router bit 10 in areas A1 to A3, respectively, and are cross-sectional views taken along lines IX(a)-IX(a) and IX(b)- This corresponds to a cross-sectional view taken along the line IX(b) and a cross-sectional view taken along the line IX(c)-IX(c). Note that the line IX(a)-IX(a) in FIG. 9(a) is located in the first region A1 and within the effective length l of the outer peripheral blade. In this embodiment, the circumferential width W of the main flute 18 is set to be larger on the shank 16 side (see FIG. 9(c)) than on the distal end side of the body 12 (see FIG. 9(a)). ing. More specifically, the circumferential width W of the main flute 18 is larger on the shank 16 side than on the distal end side of the body 12 within the effective cutting length l of the outer peripheral edge of the body 12. Further, the width W in the circumferential direction of the main flute 18 gradually increases from the first to third regions A1 to A3 within the effective length l of the outer peripheral blade of the body 12. That is, when the circumferential widths of the main flute 18 in the first to third areas A1 to A3 are defined as W1 to W3, W1<W2<W3. Note that within the effective length l of the outer peripheral blade, the widths W1 to W3 of the main flute 18 in each region A1 to A3 are constant. Further, as shown in FIG. 9, the groove depth D of the main flute 18 in this embodiment is constant in all areas A1 to A3.
 ここで、図8に示すように、主フルート18を規定するエッジのうち、ルータービット10の回転方向前方を前側エッジ18a、ルータービット10の回転方向後方を後側エッジ18bと定義する。本実施形態では、主フルート18は、第1領域A1の前側エッジ18aに対して、第2領域A2の前側エッジ18aが回転方向前方へ一旦膨らんだ後に回転方向後方へ延びている。さらに、第2領域A2の前側エッジ18aに対して、第3領域A3の前側エッジ18aが回転方向前方へ一旦膨らんだ後に、回転方向後方へ延びている。そして、第1領域A1の前側エッジ18aと、第2領域A2の前側エッジ18aとの間は、段状の接続部22によって接続されている。同様に、第2領域A2の前側エッジ18aと、第3領域A3の前側エッジ18aとの間は、段状の接続部22によって接続されている。このように、第1~第3領域A1~A3における前側エッジ18aを段階的に拡げ、かつ、主フルート18のリード角θ1~θ3を段階的に大きくすることで、主フルート18の周方向の幅W1~W3を段階的に大きくしている。 As shown in FIG. 8, among the edges defining the main flute 18, the front edge in the rotation direction of the router bit 10 is defined as the front edge 18a, and the rear edge in the rotation direction of the router bit 10 is defined as the rear edge 18b. In this embodiment, the main flute 18 extends rearward in the rotational direction after the front edge 18a of the second region A2 once swells forward in the rotational direction with respect to the front edge 18a of the first region A1. Furthermore, with respect to the front edge 18a of the second area A2, the front edge 18a of the third area A3 once swells forward in the rotational direction and then extends rearward in the rotational direction. The front edge 18a of the first area A1 and the front edge 18a of the second area A2 are connected by a stepped connecting portion 22. Similarly, the front edge 18a of the second area A2 and the front edge 18a of the third area A3 are connected by a stepped connecting portion 22. In this way, by expanding the front edge 18a in the first to third areas A1 to A3 in stages and increasing the lead angles θ1 to θ3 of the main flute 18 in stages, the circumferential direction of the main flute 18 can be increased. The widths W1 to W3 are increased in stages.
 ここで、第1領域A1での前側エッジ18aおよび後側エッジ18bは、互いに平行に直線的に延びている。同様に、第2領域A2での前側エッジ18aおよび後側エッジ18bや、第3領域A3での前側エッジ18aおよび後側エッジ18bについても、互いに平行に直線的に延びている。また、本実施形態におけるルータービット10では、図10の断面図に示すように、主フルート18の前側エッジ18aは、周方向側へ伸びた形状とされて、逃げ角を有している。このため、切削時に生じた切屑を、前側エッジ18aからスムーズに主フルート18内に収容することができる。一方、主フルート18の後側エッジ18bは、シャープな鋭角状に形成されて、すくい角が付与されている。その結果、主フルート18内に収容した切屑を後側エッジ18bでしっかりと補足し、主フルート18から逃がし難くしている。 Here, the front edge 18a and the rear edge 18b in the first region A1 extend linearly parallel to each other. Similarly, the front edge 18a and the rear edge 18b in the second area A2 and the front edge 18a and the rear edge 18b in the third area A3 extend linearly parallel to each other. Furthermore, in the router bit 10 of this embodiment, as shown in the cross-sectional view of FIG. 10, the front edge 18a of the main flute 18 is shaped to extend in the circumferential direction and has a clearance angle. Therefore, chips generated during cutting can be smoothly accommodated in the main flute 18 from the front edge 18a. On the other hand, the rear edge 18b of the main flute 18 is formed into a sharp acute angle shape and has a rake angle. As a result, the chips stored in the main flute 18 are firmly captured by the rear edge 18b, making it difficult for them to escape from the main flute 18.
 上記のように、主フルート18のリード角θをシャンク16側に掛けて段階的に大きくすると共に、主フルート18の周方向の幅Wをシャンク16側に掛けて段階的に大きくすることで、主フルート18を周方向に大きく展開(延在)させることができる。その結果、図10に示すように、主フルート18を軸方向から見た場合において、主フルート18がボディ12の周方向に延在する範囲を示すねじれ展開角αを大きくすることができる。このねじれ展開角αは、図8に示すように、ルータービット10の回転中心を中心として、主フルート18におけるボディ12の先端に最も近い始点P1から、主フルート18におけるシャンク16に最も近い終点P2までの角度として定義される。このねじれ展開角αは、150°以上に設定されることが望ましい。より望ましくは、ねじれ展開角αは、180°以上に設定される。本実施形態では、ねじれ展開角αは、約270°に設定されている。 As mentioned above, by multiplying the lead angle θ of the main flute 18 on the shank 16 side and increasing it in stages, and by multiplying the circumferential width W of the main flute 18 on the shank 16 side and increasing it in stages, The main flute 18 can be largely expanded (extended) in the circumferential direction. As a result, as shown in FIG. 10, when the main flute 18 is viewed from the axial direction, it is possible to increase the torsional expansion angle α indicating the range in which the main flute 18 extends in the circumferential direction of the body 12. As shown in FIG. 8, this twist development angle α is calculated from a starting point P1 closest to the tip of the body 12 on the main flute 18 to an ending point P2 on the main flute 18 closest to the shank 16, with the center of rotation of the router bit 10 as the center. defined as the angle up to It is desirable that this twist development angle α is set to 150° or more. More preferably, the twist development angle α is set to 180° or more. In this embodiment, the twist development angle α is set to approximately 270°.
 図11は、本実施形態のルータービット10および比較例としてのルータービットにおいて、ねじれ展開角αを比較した図である。図11(a)は、本実施形態のルータービット10の領域A1~A3における断面図であり、また、図11(b)は、比較例に係るルータービットの領域A1~A3における断面図である。比較例に係るルータービットは、従来品で一般的に用いられるスチール材からなり、主フルートをボールエンドミルで切削して形成されている。比較例に係るルータービットは、主フルートのリード角が15°で一定となっている。このように、リード角を15°に一定とした場合、主フルートのねじれ展開角αは120°程度となり、本実施形態のルータービット10のねじれ展開角αに比べて小さくなっている。後述するように、主フルート18のねじれ展開角αを180°より大きくすることで、ルータービット10全体の重量バランスを向上させることができる。 FIG. 11 is a diagram comparing the twist development angle α in the router bit 10 of this embodiment and a router bit as a comparative example. FIG. 11(a) is a cross-sectional view of the router bit 10 of the present embodiment in areas A1 to A3, and FIG. 11(b) is a cross-sectional view of the router bit according to the comparative example in areas A1 to A3. . The router bit according to the comparative example is made of a steel material commonly used in conventional products, and is formed by cutting the main flute with a ball end mill. In the router bit according to the comparative example, the lead angle of the main flute is constant at 15°. As described above, when the lead angle is kept constant at 15 degrees, the twist development angle α of the main flute is about 120 degrees, which is smaller than the twist development angle α of the router bit 10 of this embodiment. As will be described later, by making the twist development angle α of the main flute 18 larger than 180°, the overall weight balance of the router bit 10 can be improved.
 また、図11(b)に示されるように、比較例のルータービットでは、主フルートの断面が、いずれの領域においても同一の円弧形状をなしている。そのため、比較例のルータービットは、主フルートの幅も一定(W)となっている。さらに、比較例のルータービットでは、主フルートの前側エッジおよび後側エッジはいずれも鋭角な形状となっている。したがって、比較例のルータービットでは、本実施形態のように、主フルートの前側エッジが周方向に伸びた形状(逃げ角を有した形状)をなしていない。 Further, as shown in FIG. 11(b), in the router bit of the comparative example, the cross section of the main flute has the same arc shape in all regions. Therefore, in the router bit of the comparative example, the width of the main flute is also constant (W). Furthermore, in the router bit of the comparative example, both the front edge and the rear edge of the main flute have an acute-angled shape. Therefore, in the router bit of the comparative example, the front edge of the main flute does not have a shape extending in the circumferential direction (a shape having a clearance angle) as in the present embodiment.
 各副フルート19は、ボディ12の主フルート18が形成されていない部位において、後述する各外周刃14aに対応して設けられている。副フルート19は、主フルート18と同様に砥石によって溝状に研削加工される。副フルート19の溝深さは、主フルート18に比べて浅くなっており、各副フルート19は主フルート18に連通している。そして、副フルート19は、外周刃18aによって生じた切屑を主フルート18へ案内するようになっている。このように、ルータービット10のボディ12(より詳しくは、ボディ12における有効刃長Lに相当する部分)は、研削加工によって主フルート18および複数の副フルート19が形成されることで、大きく削り取られた構造をなしている。換言すれば、深く長い主フルート18と複数の副フルート19とをボディ12に形成することで、ルータービット10に大きな空隙が形成され、その結果、大きな空隙率Rを有すことになる。なお、空隙率Rは、ボディ12の全体有効刃長Lに対応する部位に存在する主フルート18および複数の副フルート19が大きく寄与する。ただし、空隙率Rを規定するものとしては、主フルート18や副フルート19に限られるものではなく、ボディ12を形成するために除去された部分が含まれる。換言すれば、ボディ12の空隙率Rは、刃部14を除く部位を除去して形成された全ての凹部によって規定される。空隙率Rの詳細な定義については、後述する。 Each sub-flute 19 is provided in a portion of the body 12 where the main flute 18 is not formed, corresponding to each peripheral blade 14a described later. The auxiliary flute 19, like the main flute 18, is ground into a groove shape using a grindstone. The groove depth of the sub-flutes 19 is shallower than that of the main flute 18, and each sub-flute 19 communicates with the main flute 18. The auxiliary flute 19 is configured to guide chips generated by the outer peripheral blade 18a to the main flute 18. In this way, the body 12 of the router bit 10 (more specifically, the portion of the body 12 corresponding to the effective cutting length L) is largely ground away by forming the main flute 18 and the plurality of sub-flutes 19 through the grinding process. It has a solid structure. In other words, by forming the deep and long main flute 18 and the plurality of sub-flutes 19 in the body 12, a large void is formed in the router bit 10, and as a result, it has a large void ratio R. Note that the main flute 18 and the plurality of sub-flutes 19, which are present in a portion of the body 12 corresponding to the overall effective blade length L, greatly contribute to the porosity R. However, what defines the porosity R is not limited to the main flute 18 and the sub flute 19, but includes the portion removed to form the body 12. In other words, the porosity R of the body 12 is defined by all the recesses formed by removing the portions other than the blade portion 14. A detailed definition of the porosity R will be described later.
 図2に示すように、刃部14は、複数の外周刃14a(本実施形態では3つ)と、単一の底刃14bとからなる。各刃部14は、焼結ダイヤなどの超高圧焼結体から形成されたチップであり、ボディ12において、各副フルート19の側面(より詳しくは刃体)にロウ付けなどにより接合されている。底刃(芯刃)14bは、ボディ12の先端に接合されており、被切削材料の穴あけ加工に供される。また、底刃14bは、被切削材料の側面加工にも供される。図3に示すように、底刃14bは、正のひねり角を有するようボディ12に設けられている。外周刃14aは、被切削材料の側面加工に供されるものであって、図3に示すように、負のひねり角を有するようにボディ12に設けられている。 As shown in FIG. 2, the blade portion 14 consists of a plurality of peripheral blades 14a (three in this embodiment) and a single bottom blade 14b. Each blade part 14 is a chip formed from an ultra-high pressure sintered body such as sintered diamond, and is joined to the side surface (more specifically, the blade body) of each sub-flute 19 in the body 12 by brazing or the like. . The bottom blade (core blade) 14b is joined to the tip of the body 12 and is used for drilling holes in the material to be cut. The bottom blade 14b is also used for side surface machining of the material to be cut. As shown in FIG. 3, the bottom blade 14b is provided on the body 12 so as to have a positive twist angle. The peripheral blade 14a is used for side surface machining of the material to be cut, and as shown in FIG. 3, is provided on the body 12 so as to have a negative twist angle.
 ここで、底刃14bと外周刃14aが、それぞれ、正のひねり角および負のひねり角を有するように設けられる理由について説明する。例えば、木質系材料である木質系ボード20は、その両面がプリント紙や樹脂フィルム等の化粧シートで被覆されることが一般的である。このような木質系ボード20をルータ加工する場合、図3に示すように、NCルータの定盤(図示せず)上に設置した吸着板32上に木質系ボード20を載置し、木質系ボード20は吸着板32に対して吸着された状態とされる。そして、穴あけ加工時には、ルータービット10は、木質系ボード20を貫通して、その先端が吸着板32に食い込むまで押し下げられる。その状態で、引っ張り加工が行われ、ルータービット10は、その先端で吸着板32を削りながら木質系ボード20を切削加工する。 Here, the reason why the bottom blade 14b and the peripheral blade 14a are provided to have a positive twist angle and a negative twist angle, respectively, will be explained. For example, the wood-based board 20, which is a wood-based material, is generally covered on both sides with a decorative sheet such as printed paper or resin film. When processing such a wooden board 20 with a router, as shown in FIG. The board 20 is in a state of being attracted to the suction plate 32. During drilling, the router bit 10 penetrates the wooden board 20 and is pushed down until its tip bites into the suction plate 32. In this state, tension processing is performed, and the router bit 10 cuts the wooden board 20 while scraping the suction plate 32 with its tip.
 このように、穴あけ加工時および引っ張り加工時には、木質系ボード20は上下面20a、20bがルータービット10によって貫通されるものの、吸着板32によって木質系ボード20の下面20bが常に閉塞された状態にある。そのため、加工時に生じた切屑は、木質系ボード20の下側から排出されることはなく、穴あけ加工時には、木質系ボード20の上側から、また、引っ張り加工時には、木質系ボード20の上側およびルータービット10の送り方向の反対側から切屑が排出されることになる。そこで、NCルータに集塵装置(図示せず)が設けられ、木質系ボード20の加工時に集塵装置から強力な上方向の吸引圧力が木質系ボード20に付与されて、切屑が上方へ吸い上げられるようになっている。 In this way, during drilling and tensioning, although the upper and lower surfaces 20a and 20b of the wooden board 20 are penetrated by the router bit 10, the lower surface 20b of the wooden board 20 is always closed by the suction plate 32. be. Therefore, the chips generated during machining are not discharged from the bottom of the wooden board 20, but are discharged from the top of the wooden board 20 during drilling, and from the top of the wooden board 20 and the router during tensioning. Chips are discharged from the opposite side of the bit 10 in the feeding direction. Therefore, a dust collector (not shown) is installed in the NC router, and when the wooden board 20 is processed, a strong upward suction pressure is applied from the dust collector to the wooden board 20, and the chips are sucked upward. It is now possible to
 ここで、引っ張り加工時の外周刃14aおよび底刃14bの機能に注目すると、底刃14bが木質系ボード20の下面20bを切削すると共に、複数の外周刃14aの1つが木質系ボード20の上面20aを切削することになる。そして、底刃14bに正のひねり角を持たせることで、木質系ボード20の下面20bに対して底刃14bが斜め上向きの力(図3の矢印B参照)を付与しながら切削を行う。このため、木質系ボード20の下面20bを覆う化粧シートのめくり上がりや毛羽立ちが発生するのを防止するようになっている。一方、木質系ボード20の上面20aを覆う化粧シートについては、負のひねり角を有する外周刃14aによって斜め下方の力を受けながら切削される(図3の矢印A参照)。このため、木質系ボード20の上面20aの化粧シートについても、切削時のめくり上がりや毛羽立ちが生ずるのを防止するようになっている。 Here, paying attention to the functions of the outer peripheral blade 14a and the bottom blade 14b during tension processing, the bottom blade 14b cuts the lower surface 20b of the wooden board 20, and one of the plurality of peripheral blades 14a cuts the upper surface of the wooden board 20. 20a will be cut. By giving the bottom blade 14b a positive twist angle, the bottom blade 14b performs cutting while applying a diagonally upward force (see arrow B in FIG. 3) to the lower surface 20b of the wooden board 20. For this reason, the decorative sheet covering the lower surface 20b of the wooden board 20 is prevented from turning up or fuzzing. On the other hand, the decorative sheet covering the upper surface 20a of the wooden board 20 is cut while being subjected to an oblique downward force by the peripheral blade 14a having a negative twist angle (see arrow A in FIG. 3). For this reason, the decorative sheet on the upper surface 20a of the wooden board 20 is also prevented from turning up or fuzzing during cutting.
 このように、底刃14bについては正のひねり角を付与するとともに、外周刃14aについては負のひねり角を付与することで、仕上がり品質の向上が図られる一方、以下のように切屑の排出が阻害される原因ともなる。上述のように、加工時に木質系ボード20の下面20bは吸着板32によって閉塞されるため、穴あけ加工時には木質系ボード20の上側のみが、また、引っ張り加工時には、木質系ボード20の上側およびルータービット10の送り方向の反対側のみが開放した状態となる。したがって、特に穴あけ加工時には、ルータービット10と木質系ボード20に形成された加工穴との間に隙間はほとんどなく、切屑は主フルート18内に逃げることになる。そのため、切屑は、主フルート18に沿って上方へ送られ、集塵装置の吸引力で上方へ排出されることになる。 In this way, by giving a positive helix angle to the bottom blade 14b and giving a negative helix angle to the peripheral blade 14a, it is possible to improve the finish quality, while also reducing the discharge of chips as described below. It can also be a cause of inhibition. As mentioned above, the lower surface 20b of the wooden board 20 is closed by the suction plate 32 during processing, so only the upper side of the wooden board 20 is closed during drilling, and the upper side of the wooden board 20 and the router are closed during tension processing. Only the opposite side of the bit 10 in the feeding direction is in an open state. Therefore, especially during drilling, there is almost no gap between the router bit 10 and the hole formed in the wooden board 20, and chips escape into the main flute 18. Therefore, the chips are sent upward along the main flute 18 and are discharged upward by the suction force of the dust collector.
 上述のように、ルータービット10の先端に設けた底刃14bでは、正のひねり角を有することから、底刃14bは切屑を上方へ押し上げる方向に作用する。一方、外周刃14aは、負のひねり角を有することから、切屑を下方へ抑え込むように作用する。そのため、主フルート18に沿って上方へ移動しようとする切屑に対し、外周刃14aから下側の圧力が付与される。その結果、複数の外周刃14aによって切屑の排出が阻害され、主フルート18内で切屑が停滞・集積し易くなり、切削抵抗が増大する要因となる。特に、本実施形態のように複数の外周刃14aを備えることで全体有効刃長Lの長いルータービット10においては、切屑の停滞・蓄積は顕著となる。このような切削抵抗の増大は、切削に必要なパワーの増大をもたらし、ひいては切削に要する消費電力の増加を招いてしまう。また、切削抵抗の増大は、加工時に生ずる騒音の増大をもたらし、主フルート18内に詰まった切屑によって被切削材料にやけが発生する原因ともなる。最悪のケースでは、摩擦抵抗の増大によって切屑や粉塵が着火し、粉塵爆発が発生する恐れもあった。 As described above, since the bottom blade 14b provided at the tip of the router bit 10 has a positive twist angle, the bottom blade 14b acts in the direction of pushing the chips upward. On the other hand, since the peripheral blade 14a has a negative twist angle, it acts to suppress chips downward. Therefore, downward pressure is applied from the outer circumferential cutter 14a to the chips trying to move upward along the main flute 18. As a result, the discharge of chips is obstructed by the plurality of peripheral blades 14a, making it easier for chips to stagnate and accumulate within the main flute 18, which becomes a factor in increasing cutting resistance. Particularly, in the router bit 10 having a long overall effective blade length L by being provided with a plurality of peripheral blades 14a as in the present embodiment, stagnation and accumulation of chips becomes remarkable. Such an increase in cutting resistance results in an increase in the power required for cutting, which in turn leads to an increase in power consumption required for cutting. Further, an increase in cutting resistance causes an increase in noise generated during machining, and also causes burns on the material to be cut due to chips stuck in the main flute 18. In the worst case scenario, the increased frictional resistance could ignite chips and dust, leading to a dust explosion.
 このような問題点を克服するため、本願の発明者らは、主フルート18および副フルート19によるボディ12の全体有効刃長Lにおける空間(隙間)を最大限に大きくすることで、切削時に切屑が逃げるためのスペースを十分確保することを試みた。そして、このように大きな空隙率Rを設けたとしても十分な剛性を確保するため、本願発明者らはルータービット10の基材として、これまで非金属材料用のルータービットで用いられてきたスチール材ではなく、成形加工が困難な超硬合金を敢えて採用するに至った。 In order to overcome such problems, the inventors of the present application maximized the space (gap) in the overall effective flute length L of the body 12 between the main flute 18 and the sub flute 19, thereby reducing the amount of chips during cutting. I tried to make sure there was enough space for them to escape. In order to ensure sufficient rigidity even with such a large porosity R, the inventors of the present application used steel, which has been used in router bits for non-metallic materials, as the base material of the router bit 10. We decided to use cemented carbide, which is difficult to mold, instead of solid wood.
 ここで、本実施形態では、空隙率Rを以下のように定義している。ルータービット10のボディ12の全体有効刃長Lにおいて、主フルート18および副フルート19などを形成することで生じる空間が、主フルート18および副フルート19などが形成されていなかった場合のボディ12の体積(図2の破線部分参照)に占める割合を空隙率Rとする。空隙率Rの具体的な測定方法としては、例えば、水を満たした測定用の容器にルータービット10のボディ12の全体有効刃長Lの分だけ浸漬させて、容器から溢れ出た水の重量を計測する。この溢れ出た水の量は、主フルート18および副フルート19などが研磨により形成された状態でのボディ12の全体有効刃長Lに相当する部分の重量である。そして、主フルート18および副フルート19が形成される前のボディ12の体積(以下、全体ボディ量という)から、溢れ出た水の重量を除くことで、主フルート18および副フルート19など除去部としてボディ12が除去された重量(以下、ボディ12の空隙量という)が求められる。そして、算出されたボディ12の空隙量を全体ボディ量で除することで、空隙率Rが求められる。 Here, in this embodiment, the porosity R is defined as follows. In the overall effective cutting length L of the body 12 of the router bit 10, the space created by forming the main flute 18 and the sub-flutes 19 is the same as the space created by the main flute 18 and the sub-flutes 19, etc. The ratio to the volume (see the broken line in FIG. 2) is defined as the porosity R. As a specific method for measuring the porosity R, for example, the body 12 of the router bit 10 is immersed in a measurement container filled with water for the total effective blade length L, and the weight of the water overflowing from the container is measured. Measure. The amount of water that overflows is the weight of a portion corresponding to the entire effective blade length L of the body 12 in a state where the main flute 18, the sub flute 19, etc. are formed by polishing. By removing the weight of the overflowing water from the volume of the body 12 before the main flute 18 and the sub-flutes 19 are formed (hereinafter referred to as the total body volume), the removed parts such as the main flute 18 and the sub-flutes 19 are removed. The weight of the body 12 removed (hereinafter referred to as the void volume of the body 12) is determined as follows. Then, the void ratio R is determined by dividing the calculated void amount of the body 12 by the entire body amount.
 本実施形態に係るルータービット10の空隙率Rは、69%に設定されている。ただし、この空隙率Rとしては、52%~75%に設定されていればよい。より好ましくは、ルータービット10の空隙率Rを、55%~72%に設定するとよい。後述する実験例1および2で示すように、空隙率Rを55%以上に設定することで、切削時に切屑を効率的に排出することが可能となり、切削時の消費電力(より詳しくは、後述する切屑排出電力)を顕著に抑えることが可能となる。一方、ボディ12の空隙率Rを余りに大きく設定すると、超硬合金であってもルータービット10の剛性や強度に影響が出てしまう。そこで、ルータービット10としての実用的な剛性を確保するため、空隙率Rを72%以下とすることが望ましい。なお、現在流通している一般的なスチール基材のルータービット10の空隙率Rは、通常のもので45%程度、最大でも50%程度である。これは、スチール基材のルータービット10において、空隙率Rを50%よりも大きくとると、剛性が小さくなり、ボディの変形により切削性能が低下したり、欠損が生じ易くなるためである。 The porosity R of the router bit 10 according to this embodiment is set to 69%. However, the porosity R may be set to 52% to 75%. More preferably, the porosity R of the router bit 10 is set to 55% to 72%. As shown in Experimental Examples 1 and 2, which will be described later, by setting the porosity R to 55% or more, it becomes possible to efficiently discharge chips during cutting, and the power consumption during cutting (more details will be explained later). This makes it possible to significantly reduce the amount of power required for ejecting chips. On the other hand, if the porosity R of the body 12 is set too large, the rigidity and strength of the router bit 10 will be affected even if it is made of cemented carbide. Therefore, in order to ensure practical rigidity as the router bit 10, it is desirable that the porosity R be 72% or less. Note that the porosity R of the common steel-based router bits 10 that are currently in circulation is about 45%, and about 50% at most. This is because if the porosity R is greater than 50% in the router bit 10 made of a steel base material, the rigidity will be reduced and the cutting performance will be reduced due to deformation of the body and chips will easily occur.
 ここで、ルータービット10の空隙率Rには、ボディ12の軸方向全体に亘って存在する主フルート18が大きく寄与している。ルータービット10の空隙率Rのうち、主フルート18による空隙率をフルート空隙率rと定義する。このフルート空隙率rは、ルータービット10の設計モデルから計算によって求めることができる。例えば、フルート空隙率rは、図10に示すルータービット10の断面図において、ルータービット10全体の面積(円の面積)に対して、主フルート18の空間がなす面積の割合を求めることで算出される。前述のように、主フルート18は、リード角αがボディ12の先端側からシャンク16側に掛けて段階的に大きくなっている。さらに、主フルート18の周方向の幅Wについては、ボディ12の外周刃有効刃長l内において、ボディ12の先端側からシャンク16側に掛けて段階的に大きくなっている。その結果、主フルート18のフルート空隙率rは、ボディ12の外周刃有効刃長lにおいて、ボディ12の先端側に対して、シャンク16側が大きくなっている。なお、主フルート18は、ルータービット10の先端で大きく形成されている。すなわち、図7に示すように、主フルート18のフルート空隙率rは、底刃14bを含む第1領域A1のうち、外周刃有効刃長lの外側(先端側)において、最大となる。しかしながら、主フルート18のフルート空隙率rは、外周刃有効刃長l内においては、ボディ12の先端側よりもボディ12のシャンク16側が大きくなっている。 Here, the main flute 18 that is present throughout the entire axial direction of the body 12 greatly contributes to the porosity R of the router bit 10. Among the porosity R of the router bit 10, the porosity due to the main flute 18 is defined as the flute porosity r. This flute porosity r can be calculated from the design model of the router bit 10. For example, the flute porosity r is calculated by determining the ratio of the area of the main flute 18 to the area of the entire router bit 10 (area of a circle) in the cross-sectional view of the router bit 10 shown in FIG. be done. As described above, the lead angle α of the main flute 18 gradually increases from the distal end side of the body 12 to the shank 16 side. Furthermore, the width W in the circumferential direction of the main flute 18 gradually increases from the tip side of the body 12 to the shank 16 side within the effective length l of the outer peripheral edge of the body 12. As a result, the flute porosity r of the main flute 18 is larger on the shank 16 side than on the distal end side of the body 12 in the effective edge length l of the outer peripheral edge of the body 12. Note that the main flute 18 is formed large at the tip of the router bit 10. That is, as shown in FIG. 7, the flute porosity r of the main flute 18 is maximum on the outside (tip side) of the effective edge length l of the outer peripheral edge in the first region A1 including the bottom edge 14b. However, the flute porosity r of the main flute 18 is larger on the shank 16 side of the body 12 than on the tip side of the body 12 within the effective edge length l of the outer peripheral blade.
 より具体的には、図9に示すように、主フルート18のフルート空隙率rは、外周刃有効刃長l内において、第1~第3領域A1~A3にかけて段階的に大きくなっている(前述のように、図9(a)は、第1領域A1であって、かつ外周刃有効刃長l内で切断したIX(a)-IX(a)線断面図である)。すなわち、第1~第3領域A1~A3におけるフルート空隙率をr1~r3とすると、外周刃有効刃長l内では、r1<r2<r3となっている。より具体的には、本実施形態では、フルート空隙率r1,r2,r3は、それぞれ、18.2%、20.4%、23.7%となっている。 More specifically, as shown in FIG. 9, the flute porosity r of the main flute 18 gradually increases from the first to third regions A1 to A3 within the effective length l of the outer peripheral blade ( As described above, FIG. 9(a) is a cross-sectional view taken along line IX(a)-IX(a) in the first region A1 and within the effective cutting length l of the outer peripheral blade). That is, assuming that the flute porosity in the first to third regions A1 to A3 is r1 to r3, r1<r2<r3 within the effective length l of the outer peripheral blade. More specifically, in this embodiment, the flute porosity r1, r2, and r3 are 18.2%, 20.4%, and 23.7%, respectively.
 前述したように、切削時に生ずる切屑は、集塵装置による吸引圧力によって主フルート18内を上方へ送られる。したがって、切屑は、主フルート18のシャンク16に近い箇所で詰まりが生じ易くなる。そこで、フルート空隙率rをシャンク16側で大きくとることで、主フルート18のシャンク16近傍においても切屑のスムーズな排出が実現される。その結果、切屑の詰まりや「やけ」の発生を好適に回避することができる。 As mentioned above, the chips generated during cutting are sent upward in the main flute 18 by the suction pressure from the dust collector. Therefore, the chips are likely to become clogged at a portion of the main flute 18 near the shank 16. Therefore, by increasing the flute porosity r on the shank 16 side, smooth discharge of chips can be realized even in the vicinity of the shank 16 of the main flute 18. As a result, clogging of chips and occurrence of "scorch" can be suitably avoided.
 このフルート空隙率rについて、図11で示した比較例に係るルータービットと比較すると、図11(b)に示すように、比較例に係るルータービットでは、主フルートの断面形状は、常に同じとなっている。このため、比較例に係るルータービットのフルート空隙率rは、いずれの領域A1~A3であっても同一である。したがって、比較例に係るルータービットでは、フルート空隙率rがシャンク側で大きくなることはなく、ルータービット全体の空隙率Rもシャンク側で大きくなることはない。 When comparing this flute porosity r with the router bit according to the comparative example shown in FIG. 11, as shown in FIG. 11(b), in the router bit according to the comparative example, the cross-sectional shape of the main flute is always the same. It has become. Therefore, the flute porosity r of the router bit according to the comparative example is the same in any of the regions A1 to A3. Therefore, in the router bit according to the comparative example, the flute porosity r does not increase on the shank side, and the porosity R of the router bit as a whole does not increase on the shank side.
(実験例1)
 本願発明者らは、空隙率Rを大きくすることによる切屑排出能力への影響を考察するため、実験例1として、空隙率Rと切削時の電力との関係を検証した。表1に示すように、空隙率R52%~72%の範囲で複数のルータービット10(実験例1~7)を超硬合金から形成し、ボディに刃部として複数の焼結ダイヤチップを接合した。そして、各ルータービット10の切削時の電力を計測した。また、従来品であるスチール製のルータービットの標準的な空隙率R45.4%のものを超硬合金から製造し、比較例1として実験を行った。各ルータービット10の空隙率Rは、主フルート18の溝深さやねじり角、副フルート19の数や大きさなどを変更することで調整した。また、木質系ボード20を被切削材料として、各ルータービット10で穴空け加工した後に、所定距離だけ引っ張り加工した場合の消費電力量を算出した。
Figure JPOXMLDOC01-appb-T000001
(Experiment example 1)
In order to consider the influence of increasing the porosity R on the chip evacuation ability, the inventors of the present application verified the relationship between the porosity R and the power during cutting as Experimental Example 1. As shown in Table 1, a plurality of router bits 10 (experimental examples 1 to 7) with a porosity R in the range of 52% to 72% are formed from cemented carbide, and a plurality of sintered diamond tips are bonded to the body as blade parts. did. Then, the power of each router bit 10 during cutting was measured. In addition, a conventional steel router bit with a standard porosity R of 45.4% was manufactured from cemented carbide, and an experiment was conducted as Comparative Example 1. The porosity R of each router bit 10 was adjusted by changing the groove depth and twist angle of the main flute 18, the number and size of the sub-flutes 19, etc. In addition, the power consumption was calculated when the wooden board 20 was used as the material to be cut, and after drilling with each router bit 10, the board was pulled for a predetermined distance.
Figure JPOXMLDOC01-appb-T000001
 ここで、空隙率Rによる切屑排出能力の影響をより正確に測るため、切削時に必要な全電力(以下、切削所要電力という)のうち、切屑の排出に必要な電力(以下、切屑排出電力という)を算出して空隙率Rとの対比を行った。ルータービット10による切削時の切削所要電力は、以下のように分けることができる。
切削所要電力=空転電力+切屑生成電力+切屑排出電力
 空転電力とは、ルータービット10を回転させるのに必要な電力であり、切屑生成電力とは、ルータービット10が被切削材料を穴あけ加工および引っ張り加工する際に必要な電力である。また、切屑排出電力とは、穴あけ加工および引っ張り加工する際に切屑を排出するために必要な電力である。空転電力および切屑生成電力は、空隙率Rに依存するものではないため、空隙率Rによる切屑排出効果を反映するものでない。そこで、本実験例では、切削所要電力から空転電力と切屑生成電力を除外することで、切屑排出電力を算出した。なお、本実験例では被切削材料として工業材料としてJIS規格で規定されている密度0.6のMDF(中密度繊維板)を採用した。
Here, in order to more accurately measure the influence of the porosity R on the chip evacuation ability, we calculated the amount of power required for ejecting chips (hereinafter referred to as the chip evacuation power) out of the total power required during cutting (hereinafter referred to as the required cutting power). ) was calculated and compared with the porosity R. The power required for cutting with the router bit 10 can be divided as follows.
Required power for cutting = Idle power + Chip generation power + Chip discharge power Idle power is the power required to rotate the router bit 10, and chip generation power is the power necessary for the router bit 10 to drill and process the material to be cut. This is the power required for stretching. Moreover, the chip discharge power is the power required to discharge chips during drilling and pulling processing. Since the idling power and the chip generation power do not depend on the porosity R, they do not reflect the chip evacuation effect due to the porosity R. Therefore, in this experimental example, the chip discharge power was calculated by excluding the idling power and the chip generation power from the required cutting power. In this experimental example, MDF (medium density fiberboard) with a density of 0.6, which is specified by the JIS standard as an industrial material, was used as the material to be cut.
 ここで、空転電力については、ルータービット10それぞれについて容易に得ることができる一方、切屑生成電力および切屑排出電力については、両者を区別することは難しい。そこで、本願発明者らは、以下の方法で、先ず切屑生成電力を推定し、推定した切屑生成電力と空転電力とを切屑所要電力から除外することで、切屑排出電力を求める方法を見出した。前述したように、通常のルータービット10の切削時には、図4に示すように、ルータービット10と木質系ボード20が密着した状態となり、切屑の排出にエネルギーが必要となる(このエネルギーが、切屑排出電力に相当する)。特に、穴あけ加工時(360°切削)には、木質系ボード20の上方以外が全て閉塞された密閉状態となり、切屑を排出するのに大きなエネルギーが必要となる。 Here, while the idling power can be easily obtained for each of the router bits 10, it is difficult to distinguish between the chip generation power and the chip discharge power. Therefore, the inventors of the present application have found a method to obtain the chip discharge power by first estimating the chip generation power and excluding the estimated chip generation power and idling power from the chip required power using the following method. As mentioned above, when cutting with a normal router bit 10, the router bit 10 and the wooden board 20 are in close contact with each other, as shown in FIG. 4, and energy is required to discharge the chips. (equivalent to emitted power). In particular, during drilling (360° cutting), the wooden board 20 is in an airtight state in which all areas except the upper part are closed, and a large amount of energy is required to discharge the chips.
 ルータービット10を引っ張り加工すると、木質系ボード20にルータービット10の送り方向に平行な2つの切削面20A,20Bが形成される。したがって、360°の穴あけ加工をした状態で引っ張り加工した場合(すなわち、図4の状態での加工)、切屑排出電力に加えて、この2つの切削面20A,20Bそれぞれについての切屑生成電力が生ずる。一方の切削面20A(図4では上側の切削面)は、送り方向と切削時の回転方向(図4では一方の切削面20Aに対してルータービット10が左から右へ回転)とが揃っている(いわゆるアップカット)。一方、他方の切削面20B(図4では下側の切削面)については、送り方向と切削時の回転方向(図4では他方の切削面20Bに対してルータービット10の回転方向が右から左へ回転)が対向している(いわゆるダウンカット)。そして、切屑生成電力は、このアップカットによる切屑生成電力と、ダウンカットによる切屑生成電力とを合わせたものである。 When the router bit 10 is stretched, two cutting surfaces 20A and 20B parallel to the feed direction of the router bit 10 are formed on the wooden board 20. Therefore, when tensile machining is performed after 360° drilling (that is, machining in the state shown in FIG. 4), in addition to the chip ejection power, chip generation power is generated for each of the two cutting surfaces 20A and 20B. . One cutting surface 20A (the upper cutting surface in FIG. 4) is aligned with the feeding direction and the rotation direction during cutting (in FIG. 4, the router bit 10 rotates from left to right with respect to one cutting surface 20A). (so-called up cut). On the other hand, regarding the other cutting surface 20B (the lower cutting surface in FIG. 4), the feed direction and the rotation direction during cutting (in FIG. 4, the rotation direction of the router bit 10 with respect to the other cutting surface 20B is from right to left. (rotated to) are facing each other (so-called down cut). The chip generation power is the sum of the chip generation power due to the upcut and the chip generation power due to the downcut.
 一方、図5(a)、(b)に示すように、木質系ボード20の開放した側面に対して、穴あけ加工(180°切削)をした後に引っ張り加工をした場合、図4の場合に比べて、ルータービット10と木質系ボード20との間の閉塞状態は緩和される。そのため、切屑は、ほとんど抵抗なく排出され、図5のような開放した側面を穴あけおよび引っ張り加工する際の切屑排出電力はゼロとみなすことができる。したがって、木質系ボード20の側面を切削した場合の電力を測定することで、切屑生成電力のみを求めることができる。換言すれば、図4のような密閉状態での加工時に必要な電力と、図5のような開放状態での加工時に必要な電力との差が、切屑排出電力となる。 On the other hand, as shown in FIGS. 5(a) and 5(b), when the open side of the wooden board 20 is subjected to tension processing after drilling (180° cutting), compared to the case of FIG. As a result, the blockage between the router bit 10 and the wooden board 20 is alleviated. Therefore, the chips are discharged with almost no resistance, and the chip discharge power when drilling and pulling the open side surface as shown in FIG. 5 can be considered to be zero. Therefore, by measuring the power when cutting the side surface of the wooden board 20, only the power generated by the chips can be determined. In other words, the difference between the power required for machining in a closed state as shown in FIG. 4 and the power required for machining in an open state as shown in FIG. 5 is the chip discharge power.
 ただし、切屑生成電力を正確に推定するため、図5(a)に示すように、木質系ボードの側面20Aをアップカットした場合の電力と、図5(b)に示すように、木質系ボード24の側面20Bをダウンカットする場合の電力とを測定し、その合計値を切屑生成電力とした。そして、切屑排出電力は、切削所要電力から空転電力を減算し、さらに、アップカットおよびダウンカットでの切屑生成電力の合計値を除くことで求められる。 However, in order to accurately estimate the chip generation power, the power when the side surface 20A of the wooden board is up-cut as shown in Figure 5(a), and the power when the side surface 20A of the wooden board is up-cut as shown in Figure 5(b), The power required to cut down the side surface 20B of 24 was measured, and the total value was taken as the chip generation power. Then, the chip evacuation power is determined by subtracting the idling power from the required cutting power, and further excluding the total value of the chip generation power in up-cutting and down-cutting.
 次に、実験結果を示す。表2は、各ルータービット10について算出した切屑排出電力を示す。また、図6は、空隙率Rと切屑排出電力との関係を示したグラフである。
Figure JPOXMLDOC01-appb-T000002
 このように、空隙率Rが大きくなると、切屑排出電力が小さくなることが分かる。特に、空隙率Rが54.8%以上となると、切屑排出電力の減少率が大きくなっていることが分かる。すなわち、本実験例を通して、本願発明者らは、ルータービット10の空隙率Rを55%以上とすることで、切屑の排出能力が顕著に向上し、切屑の排出に要する電力を小さくすることができることを見出した。このように、従来のスチール材などで形成されたルータービット10では、剛性の観点から困難であった55%以上の高い空隙率Rを持たせることで、優れた切屑排出能力を有するルータービット10を提供することができる。また、実施形態のように空隙率Rを69.3%とすると、比較例1の切屑排出電力に比べて50%以上小さくすることができる。
Next, the experimental results will be shown. Table 2 shows the chip evacuation power calculated for each router bit 10. Moreover, FIG. 6 is a graph showing the relationship between the porosity R and the chip discharge power.
Figure JPOXMLDOC01-appb-T000002
Thus, it can be seen that as the porosity R increases, the chip evacuation power decreases. In particular, it can be seen that when the porosity R is 54.8% or more, the reduction rate of the chip discharge power becomes large. That is, through this experimental example, the inventors of the present invention have found that by setting the porosity R of the router bit 10 to 55% or more, the chip evacuation ability is significantly improved and the power required for chip evacuation can be reduced. I found out what I can do. In this way, the router bit 10 has excellent chip evacuation ability by having a high porosity R of 55% or more, which is difficult to achieve with conventional router bits 10 made of steel or the like. can be provided. Further, when the porosity R is set to 69.3% as in the embodiment, the chip evacuation power can be reduced by 50% or more compared to Comparative Example 1.
(実験例2)
 このように実験例1の結果から、空隙率Rを大きくすればするほど、切屑の排出効率が向上し、電力消費を抑えることができるといえる。ただし、あまりに空隙率Rを大きくすると、超硬合金といえども剛性が不足し、切削時の撓みや振動が生じたり、ルータービット10が破損したりする要因となり得る。そこで、本願発明者らは、実用に耐え得る空隙率Rの上限値を探索するため、ルータービット10のたわみ量を計測した。具体的には、実験例1で用いた実施例1~7係るルータービット10に対し、一定の負荷(重さ10.24[kgf])を与え、ルータービット10のたわみ量を計測した。なお、現在流通しているスチール製のルータービットに対して、同一の負荷を与えると、たわみ量は85~90μmの範囲内にあることが分かっている。実験結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(Experiment example 2)
As described above, from the results of Experimental Example 1, it can be said that the larger the porosity R is, the more the chip discharge efficiency is improved and the power consumption can be suppressed. However, if the porosity R is too large, even if it is a cemented carbide, the rigidity will be insufficient, which may cause deflection and vibration during cutting, and damage to the router bit 10. Therefore, the inventors of the present application measured the amount of deflection of the router bit 10 in order to search for an upper limit value of the porosity R that can withstand practical use. Specifically, a constant load (weight 10.24 [kgf]) was applied to the router bit 10 according to Examples 1 to 7 used in Experimental Example 1, and the amount of deflection of the router bit 10 was measured. It is known that when the same load is applied to currently available steel router bits, the amount of deflection is within the range of 85 to 90 μm. The experimental results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 このように、空隙率Rを大きくするとたわみ量は徐々に大きくなることが分かる。ただし、空隙率R72%であっても、たわみ量は90μmに抑えられており、従来のスチール系ルータービット10のたわみ量の範囲に含まれる。換言すれば、空隙率Rを72%より大きくすると、たわみ量が90を超えて増加するため、空隙率Rの上限値として72%が望ましいといえる。 In this way, it can be seen that as the porosity R increases, the amount of deflection gradually increases. However, even if the porosity R is 72%, the amount of deflection is suppressed to 90 μm, which is within the range of the amount of deflection of the conventional steel router bit 10. In other words, if the porosity R is made larger than 72%, the amount of deflection increases to more than 90%, so it can be said that 72% is desirable as the upper limit of the porosity R.
(実験例3)
 次に、主フルート18のねじれ展開角αとルータービット10の重量バランスとの関係を検証した。本実験例では、実験例8として、第一実施形態で示したように、主フルート18のリード角θをボディ12の先端側からシャンク16側に掛けて段階的に大きくすることで、ねじれ展開角αが270°のルータービット10を用いた。また、比較例2として、従来品であるスチール製のルータービットを採用し、主フルート18のリード角θを一定(XX°)として、ねじれ展開角αを約110°とした。さらに、比較例3として、同じく従来品であるスチール製のルータービットを採用し、主フルート18のリード角θを一定(YY°)として、ねじれ展開角αを約130°とした。実験例8および比較例2および3のルータービットを、Haimer社のバランサー測定器に装着して、アンバランス量を測定した。そして、測定したアンバンス量から釣合い良さの等級(G:JIS規格B0905)を求めた。実験結果を表4に示す。
(Experiment example 3)
Next, the relationship between the twist development angle α of the main flute 18 and the weight balance of the router bit 10 was verified. In this experimental example, as experimental example 8, as shown in the first embodiment, the lead angle θ of the main flute 18 is increased stepwise from the tip side of the body 12 to the shank 16 side, thereby developing twisting. A router bit 10 with an angle α of 270° was used. Further, as Comparative Example 2, a conventional steel router bit was used, the lead angle θ of the main flute 18 was kept constant (XX°), and the twist development angle α was about 110°. Further, as Comparative Example 3, a conventional steel router bit was used, the lead angle θ of the main flute 18 was kept constant (YY°), and the twist development angle α was about 130°. The router bits of Experimental Example 8 and Comparative Examples 2 and 3 were attached to a Haimer balancer measuring device to measure the amount of unbalance. Then, a grade of balance (G: JIS standard B0905) was determined from the measured imbalance amount. The experimental results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
 このように、ねじれ展開角αが180°よりも大きい実験例8では、アンバランス量が8.0であるのに対して、ねじれ展開角αが180°未満の比較例2および3のルータービットでは、アンバランス量が極めて大きくなっている。このように、ねじれ展開角αを180°以上に大きくすることで、ルータービット10のバランスが良好となることが分かる。
Figure JPOXMLDOC01-appb-T000004
In this way, in Experimental Example 8 where the torsional development angle α is larger than 180°, the unbalance amount is 8.0, whereas in the router bits of Comparative Examples 2 and 3 where the twisting development angle α is less than 180°. In this case, the amount of imbalance is extremely large. Thus, it can be seen that by increasing the twist development angle α to 180° or more, the balance of the router bit 10 is improved.
 以上のように、実施形態に係るルータービット10では、超硬合金から形成すると共に、主フルート18および複数の副フルート19を含むボディ12を研削加工することで、ボディ12の空隙率Rが52%≦R≦75%に設定されている。特に、主フルート18のリード角θを、ボディ12の先端側からシャンク16側にかけて段階的に大きくなっている。すなわち、従来のルータービットでは、主フルートのリード角は一定であるところ、本実施形態のルータービット10では、主フルートのリード角θをシャンク16側に掛けて段階的に大きくすることで、第2および第3領域A2,A3での主フルート18の延在長さを大きくすることができる。しかも、主フルート18の周方向の幅Wも、外周刃有効刃長l内において、ボディ12の先端側からシャンク16側に掛けて段階的に大きくすることで、高いフルート空隙率rが実現されている。結果として、ルータービット10の全体の空隙率Rを52%以上といった従来にはない大きな値とすることができた。しかも、基材として超硬合金を採用することで、従来のスチール材からなるルータービットではなし得なかった52%以上といった大きな空隙率Rであっても、ルータービット10の剛性は十分確保されている。その結果、高い切屑排出能力を有するルータービット10を提供することができ、切削時の消費電力を抑えることが可能となった。 As described above, in the router bit 10 according to the embodiment, the body 12 is formed of cemented carbide and includes the main flute 18 and a plurality of sub-flutes 19 by grinding, so that the porosity R of the body 12 is 52. It is set as %≦R≦75%. In particular, the lead angle θ of the main flute 18 is gradually increased from the tip side of the body 12 to the shank 16 side. That is, in the conventional router bit, the lead angle of the main flute is constant, but in the router bit 10 of this embodiment, the lead angle θ of the main flute is multiplied by the shank 16 side to increase it stepwise. The extension length of the main flute 18 in the second and third regions A2 and A3 can be increased. Moreover, by increasing the circumferential width W of the main flute 18 in steps from the tip end of the body 12 to the shank 16 side within the effective length l of the outer peripheral blade, a high flute porosity r can be achieved. ing. As a result, the overall porosity R of the router bit 10 could be set to an unprecedentedly large value of 52% or more. Moreover, by using cemented carbide as the base material, the router bit 10 maintains sufficient rigidity even with a large porosity R of 52% or more, which was not possible with conventional router bits made of steel. There is. As a result, it was possible to provide a router bit 10 with high chip evacuation ability, and it became possible to suppress power consumption during cutting.
 切屑は、集塵装置で吸い上げられて主フルート18の上方へ送られるため、主フルート18内においてシャンク16に近い箇所で詰まり易い傾向にある。そこで、本実施形態では、主フルート18のリード角θおよび幅Wをボディ12の先端側からシャンク16側に掛けて段階的に大きくしている。その結果、主フルート18のフルート空隙率rが、外周刃有効刃長l内において、ボディ12の先端側からシャンク16側に掛けて段階的に大きくなっている。このため、主フルート18に沿って切屑を上方(シャンク16側)へスムーズに送ることができ、シャンク16近傍での切屑の詰まりを好適に防止している。なお、従来のスチール材からなるルータービットにおいては、通常、主フルートのフルート空隙率rは、軸方向において一定であるか、シャンク側に向けてフルート空隙率rがむしろ小さくなっていた。これは、超硬合金に比べて剛性の小さいスチール材においては、NCルータに把持されるシャンクの強度を大きくするため、主フルートをシャンク側で浅く形成していたためである。これに対し、本実施形態では、主フルート18のフルート空隙率rをシャンク16側で大きくするといった、これまでとは逆の発想による構造をなしている。このように、シャンク16側でフルート空隙率rを大きくしても、超硬合金からなるルータービット10では、その剛性がしっかり確保されて、安定的な切削が可能となる。 Since the chips are sucked up by the dust collector and sent above the main flute 18, they tend to become clogged in the main flute 18 near the shank 16. Therefore, in this embodiment, the lead angle θ and the width W of the main flute 18 are increased in stages from the distal end side of the body 12 to the shank 16 side. As a result, the flute porosity r of the main flute 18 gradually increases from the tip end side of the body 12 to the shank 16 side within the effective edge length l of the outer peripheral blade. Therefore, chips can be smoothly sent upward (towards the shank 16) along the main flute 18, and clogging of chips near the shank 16 can be suitably prevented. Note that in conventional router bits made of steel, the flute porosity r of the main flute is usually constant in the axial direction, or rather becomes smaller toward the shank side. This is because in steel materials, which have lower rigidity than cemented carbide, the main flute is formed shallower on the shank side in order to increase the strength of the shank held by the NC router. On the other hand, in this embodiment, the structure is based on an idea opposite to the previous one, in which the flute porosity r of the main flute 18 is increased on the shank 16 side. In this way, even if the flute porosity r is increased on the shank 16 side, the router bit 10 made of cemented carbide maintains its rigidity and enables stable cutting.
 実施形態のルータービット10では、3つの外周刃14aを備えた長い全体有効刃長Lを有しており、切屑の排出が阻害され易い構造となっている。そこで、ボディ12に大きな空隙率Rを持たせることで、全体有効刃長Lが長いルータービット10であっても好適に切屑の排出効率を高めることができ、消費電力を抑えることができる。特に、近年では、SDGs経営が注目される中、製造過程での電力消費を低く抑えることに多くの企業が注力している。そのようなトレンドの中、実施形態で示した如きルータービットは、切削時の電力消費を効果的に抑える切削工具の1つとして貢献し得るものである。しかも、全体有効刃長Lを大きくすることで、従来、複数回の加工が必要であった厚みのある被切削材料であっても、一度の加工で処理することができ、加工効率の向上を図り得る。なお、このような全体有効刃長Lの大きなルータービット10であっても、剛性の高い超硬合金から形成することで、安定的な加工は担保される。 The router bit 10 of the embodiment has a long overall effective blade length L with three peripheral blades 14a, and has a structure in which the discharge of chips is easily obstructed. Therefore, by providing the body 12 with a large porosity R, even if the router bit 10 has a long overall effective blade length L, the chip discharge efficiency can be suitably increased, and power consumption can be suppressed. In particular, in recent years, with SDG management attracting attention, many companies are focusing on keeping power consumption low in the manufacturing process. In such a trend, the router bit as shown in the embodiment can contribute as one of the cutting tools that effectively suppresses power consumption during cutting. Moreover, by increasing the overall effective flute length L, even thick workpiece materials that conventionally required multiple machining can be processed in one process, improving machining efficiency. It is possible. Note that even if the router bit 10 has such a large overall effective cutting length L, stable machining can be ensured by forming it from a highly rigid cemented carbide.
 また、実施形態では、切削時における切屑の排出に要するエネルギーに着目し、切屑排出電力を正確に測定した上で、空隙率Rと切屑排出電力との関係を検証した。その結果、空隙率Rが55%以上となったところで切屑排出電力が顕著に減少することを発見した。また、既存のスチール製のルータービットにおいて許容されるたわみ量と比較することで、空隙率Rの上限値を探索した。その結果、空隙率Rが72%以下であれば、既存のスチール製ルータービットと同程度の剛性を確保することが確認された。そこで、超硬合金からなるルータービット10の空隙率Rを55%≦R≦72%とすることで、切削時の電力消費を顕著に抑えた優れたルータービット10を提供することが可能となる。 Furthermore, in the embodiment, we focused on the energy required to discharge chips during cutting, accurately measured the chip discharge power, and then verified the relationship between the porosity R and the chip discharge power. As a result, it was discovered that when the porosity R became 55% or more, the chip evacuation power decreased significantly. We also searched for the upper limit of the porosity R by comparing it with the amount of deflection allowed in existing steel router bits. As a result, it was confirmed that if the porosity R is 72% or less, the same level of rigidity as existing steel router bits can be secured. Therefore, by setting the porosity R of the router bit 10 made of cemented carbide to 55%≦R≦72%, it is possible to provide an excellent router bit 10 that significantly reduces power consumption during cutting. .
 ここで、本実施形態では、主フルート18のリード角θをボディ12の先端側からシャンク16側に掛けて段階的に大きくすることで、上述した大きな空隙率R(フルート空隙率r)の確保に加えて、180°以上の大きなねじれ展開角αを持たせることができる。そして、ねじれ展開角αを180°以上に大きくとることで、ルータービット10の重量バランスが向上するといった利点が得られることを確認した。これは、主フルート18がルータービット10の周方向の180°以上に亘って存在するため、従来のように主フルートが周方向の一部の範囲に偏って存在する場合に比べて、ルータービット10の重心が回転中心からずれるのが抑制されるためと考えられる。そして、このように、重量バランスが向上することで、ルータービット10が安定的に回転することができ、加工品質の向上や加工時の騒音の発生を抑制し得る。 In this embodiment, the lead angle θ of the main flute 18 is increased stepwise from the tip side of the body 12 to the shank 16 side, thereby ensuring the above-mentioned large porosity R (flute porosity r). In addition to this, it is possible to have a large twisting angle α of 180° or more. It was also confirmed that by increasing the twisting angle α to 180° or more, the advantage of improving the weight balance of the router bit 10 can be obtained. This is because the main flute 18 is present over more than 180° in the circumferential direction of the router bit 10, so compared to the conventional case where the main flute is present unevenly in a part of the circumferential direction, the router bit This is thought to be because the center of gravity of 10 is prevented from shifting from the center of rotation. By improving the weight balance in this way, the router bit 10 can rotate stably, improving machining quality and suppressing noise generation during machining.
 本実施形態に係るルータービット10では、主フルート18の前側エッジ18aをボディ12の先端側からシャンク16側にかけて段階的に拡開するように形成した。また、第1領域A1の前側エッジ18aおよび第2領域A2の前側エッジ18a、第2領域A2の前側エッジ18aおよび第3領域A3の前側エッジ18aは、それぞれ段状の接続部22によって接続されている。そして、主フルート18の断面において、この前側エッジ18aを周方向に伸びるように形成して、逃げ角を有した形状とされる。そのため、切削時に生じた切屑が前側エッジ18aから主フルート18内にスムーズに導入することができる。一方、主フルート18の後側エッジ18bについては、鋭角にすることですくい角が付与されている。このため、一旦、主フルート18内に収容した切屑を後側エッジ18bで補足して、主フルート18の外部に逃げてしまうのを抑制し得る。 In the router bit 10 according to the present embodiment, the front edge 18a of the main flute 18 is formed to gradually expand from the tip side of the body 12 to the shank 16 side. Further, the front edge 18a of the first area A1, the front edge 18a of the second area A2, the front edge 18a of the second area A2, and the front edge 18a of the third area A3 are connected by step-shaped connecting portions 22, respectively. There is. In the cross section of the main flute 18, the front edge 18a is formed to extend in the circumferential direction, so as to have a clearance angle. Therefore, chips generated during cutting can be smoothly introduced into the main flute 18 from the front edge 18a. On the other hand, the rear edge 18b of the main flute 18 is provided with a rake angle by forming an acute angle. Therefore, the chips once accommodated in the main flute 18 can be captured by the rear edge 18b and can be prevented from escaping to the outside of the main flute 18.
(第二実施形態)
 次に、第二実施形態に係るルータービット100について、以下説明する。以下の説明では、第一実施形態と相違する部分のみ説明することとし、重複する部分については、同じ符号を付してその説明は省略する。図12は、第二実施形態に係るルータービット100の展開図を概略的に示した図である。第一実施形態に係るルータービット10では、主フルート18は、リード角θがボディ12の先端側からシャンク16側に掛けて段階的に大きくなる構成とされた。第二実施形態に係るルータービット100では、主フルート18のリード角θがボディ12の先端側からシャンク16側に掛けて連続的に大きくなるよう構成されている。すなわち、主フルート18は、展開図においてボディ12の先端側からシャンク16側に掛けて曲線状で、その曲率が徐々に小さくなるように延びている。
(Second embodiment)
Next, the router bit 100 according to the second embodiment will be described below. In the following explanation, only the parts that are different from the first embodiment will be explained, and the same reference numerals will be given to the overlapping parts, and the explanation thereof will be omitted. FIG. 12 is a diagram schematically showing a developed view of the router bit 100 according to the second embodiment. In the router bit 10 according to the first embodiment, the main flute 18 is configured such that the lead angle θ gradually increases from the distal end side of the body 12 to the shank 16 side. In the router bit 100 according to the second embodiment, the lead angle θ of the main flute 18 is configured to continuously increase from the distal end side of the body 12 to the shank 16 side. That is, the main flute 18 has a curved shape extending from the distal end side of the body 12 to the shank 16 side in a developed view, and extends so that the curvature thereof gradually decreases.
 図12に示すように、各領域A1~A3における主フルート18の任意の点での接線がなすリード角θ1~θ3は、第一実施形態と同様に、θ1<θ2<θ3となっている。また、第二実施形態においては、主フルート18の周方向の幅Wが、外周刃有効刃長l内において、ボディ12の先端側からシャンク16側に掛けて連続的に大きくなっている。より具体的には、主フルート18の前側エッジ18aは、ボディ12の先端側からシャンク16側に掛けてルータービット10の回転方向後方へ緩やかに(大きな曲率半径で)湾曲している。一方、主フルート18の後側エッジ18bは、ボディ12の先端側からシャンク16側に掛けてルータービット10の回転方向後方へ比較的小さな曲率半径で湾曲している。このように、主フルート18のリード角θおよび周方向の幅Wをシャンク16側に向けて連続的に大きくすることで、第1実施形態と同様に、主フルート18によるフルート空隙率rが、外周刃有効刃長l内において、ボディ12の先端側からシャンク16側に掛けて徐々に大きくなっている。したがって、ルータービット100は高い空隙率Rを確保することができ、第一実施形態と同様な作用効果を奏することができる。 As shown in FIG. 12, lead angles θ1 to θ3 formed by tangents at arbitrary points of the main flute 18 in each region A1 to A3 are θ1<θ2<θ3, as in the first embodiment. Further, in the second embodiment, the circumferential width W of the main flute 18 increases continuously from the distal end side of the body 12 to the shank 16 side within the outer peripheral blade effective cutting length l. More specifically, the front edge 18a of the main flute 18 is gently curved (with a large radius of curvature) toward the rear in the rotational direction of the router bit 10 from the distal end side of the body 12 to the shank 16 side. On the other hand, the rear edge 18b of the main flute 18 is curved rearward in the rotational direction of the router bit 10 with a relatively small radius of curvature from the distal end side of the body 12 to the shank 16 side. In this way, by continuously increasing the lead angle θ and the circumferential width W of the main flute 18 toward the shank 16 side, the flute porosity r of the main flute 18 can be increased as in the first embodiment. Within the effective cutting length l of the outer peripheral blade, it gradually increases from the tip side of the body 12 to the shank 16 side. Therefore, the router bit 100 can ensure a high porosity R, and can achieve the same effects as the first embodiment.
 しかも、第二実施形態に係るルータービット100では、主フルート18のリード角θおよび周方向の幅Wをシャンク16側に向けて連続的に大きくすることで、第一実施形態と同様に、主フルート18のねじれ展開角αを大きくとることができる(例えば、270°)。したがって、第二実施形態に係るルータービット100は、ねじれ展開角αが大きいことで、第一実施形態と同様な作用効果を奏することができる。 Moreover, in the router bit 100 according to the second embodiment, the lead angle θ and the circumferential width W of the main flute 18 are continuously increased toward the shank 16 side, so that the main flute 18 can be The twist development angle α of the flute 18 can be set large (for example, 270°). Therefore, the router bit 100 according to the second embodiment can have the same effect as the first embodiment because the twist development angle α is large.
(第三実施形態)
 次に、第三実施形態に係るルータービット200について、以下説明する。以下の説明では、第一実施形態と相違する部分のみ説明することとし、重複する部分については、同じ符号を付してその説明は省略する。図13は、第三実施形態に係るルータービット200の展開図を概略的に示した図である。第一実施形態に係るルータービット10では、主フルート18は、リード角θがボディ12の先端側からシャンク16側に掛けて段階的に大きくなる構成とされた。これに対して、第三実施形態に係るルータービット200では、主フルート18のリード角θは、全領域A1~A3において、例えば25°で一定とされている。
(Third embodiment)
Next, a router bit 200 according to a third embodiment will be described below. In the following explanation, only the parts that are different from the first embodiment will be explained, and the same reference numerals will be given to the overlapping parts, and the explanation thereof will be omitted. FIG. 13 is a diagram schematically showing a developed view of a router bit 200 according to the third embodiment. In the router bit 10 according to the first embodiment, the main flute 18 is configured such that the lead angle θ gradually increases from the distal end side of the body 12 to the shank 16 side. On the other hand, in the router bit 200 according to the third embodiment, the lead angle θ of the main flute 18 is constant at, for example, 25° in all areas A1 to A3.
 一方、主フルート18の周方向の幅Wは、ボディ12の先端側からシャンク16側に掛けて段階的に大きくなっている。より具体的には、主フルート18の前側エッジ18aが、ボディ12の先端側からシャンク16側に掛けて回転方向前方に段階的に拡開するように形成されている。そして、第1領域A1の前側エッジ18aと、第2領域A2の前側エッジ18aとの間は、段状の接続部22によって接続されている。同様に、第2領域A2の前側エッジ18aと、第3領域A3の前側エッジ18aとの間が、段状の接続部22によって接続されている。一方、主フルート18の後側エッジ18bについては、第1~第3領域A1~A3に亘って直線状に延びている。このように、主フルート18の周方向の幅Wをシャンク16側に向けて段階的に大きくすることで、第1実施形態と同様に、主フルート18によるフルート空隙率rが、外周刃有効刃長l内において、ボディ12の先端側からシャンク16側に掛けて段階的に大きくなる。その結果、ルータービット11の全体の空隙率Rを大きくすることができ、第一実施形態と同様な作用効果を奏することができる。 On the other hand, the circumferential width W of the main flute 18 gradually increases from the tip side of the body 12 to the shank 16 side. More specifically, the front edge 18a of the main flute 18 is formed to gradually expand forward in the rotational direction from the distal end side of the body 12 to the shank 16 side. The front edge 18a of the first area A1 and the front edge 18a of the second area A2 are connected by a stepped connecting portion 22. Similarly, the front edge 18a of the second area A2 and the front edge 18a of the third area A3 are connected by a stepped connecting portion 22. On the other hand, the rear edge 18b of the main flute 18 extends linearly across the first to third areas A1 to A3. In this way, by increasing the circumferential width W of the main flute 18 in stages toward the shank 16 side, the flute porosity r due to the main flute 18 can be adjusted to Within the length l, the length increases stepwise from the tip side of the body 12 to the shank 16 side. As a result, the overall porosity R of the router bit 11 can be increased, and the same effects as in the first embodiment can be achieved.
(第四実施形態)
 次に、第四実施形態に係るルータービット300について、以下説明を行う。第四実施形態のルータービット300は、第一実施形態に係るルータービット10の構造と第二実施に係るルータービット100の構造とを組み合わせたものとなっている。すなわち、ルータービット300の主フルート18は、第1領域A1においては、外周刃有効刃長l内でリード角θ1が一定(例えば、約25°)となっている。そして、第2領域A2および第3領域A3において、主フルート18のリード角θ2,θ3がボディ12の先端側からシャンク16側に掛けて連続的に大きくなっている。
(Fourth embodiment)
Next, a router bit 300 according to a fourth embodiment will be explained below. A router bit 300 according to the fourth embodiment is a combination of the structure of the router bit 10 according to the first embodiment and the structure of the router bit 100 according to the second embodiment. That is, in the first region A1 of the main flute 18 of the router bit 300, the lead angle θ1 is constant (for example, about 25°) within the effective edge length l of the outer peripheral blade. In the second region A2 and the third region A3, the lead angles θ2 and θ3 of the main flute 18 continuously increase from the distal end side of the body 12 to the shank 16 side.
 主フルート18のリード角θ2は、主フルート18のリード角θ1よりも大きく、また、主フルート18のリード角θ3は、主フルート18のリード角θ2よりも大きくなっている。また、第1領域A1での前側エッジ18aと、第2領域A2での前側エッジ18aとは、滑らかに接続されている。同様に、第2領域A2での前側エッジ18aと、第3領域A3での前側エッジ18aとは、滑らかに接続されている。第1領域A1での前側エッジ18aおよび後側エッジ18bは、ボディ12の先端側からシャンク16側に向けて回転方向後方へ直線的に延びている。一方、第2領域A2および第3領域A3での前側エッジ18aは、ボディ12の先端側からシャンク16側に向けて大きく緩やかに回転方向後方へ湾曲している。また、第2領域A2および第3領域A3での後側エッジ18bは、ボディ12の先端側からシャンク16側に向けて回転方向後方へ湾曲している。 The lead angle θ2 of the main flute 18 is larger than the lead angle θ1 of the main flute 18, and the lead angle θ3 of the main flute 18 is larger than the lead angle θ2 of the main flute 18. Furthermore, the front edge 18a in the first area A1 and the front edge 18a in the second area A2 are smoothly connected. Similarly, the front edge 18a in the second area A2 and the front edge 18a in the third area A3 are smoothly connected. The front edge 18a and the rear edge 18b in the first region A1 extend linearly rearward in the rotational direction from the distal end side of the body 12 toward the shank 16 side. On the other hand, the front edge 18a in the second region A2 and the third region A3 is largely and gently curved backward in the rotational direction from the distal end side of the body 12 toward the shank 16 side. Further, the rear edge 18b in the second region A2 and the third region A3 is curved rearward in the rotational direction from the distal end side of the body 12 toward the shank 16 side.
 このように、第四実施形態に係るルータービット300では、主フルート18のリード角θ1を一定としつつ、主フルート18のリード角θ2,θ3を連続的に大きく変化させることで、主フルート18のフルート空隙率rをシャンク16側で大きくしている。その結果、ルータービット300の空隙率Rを大きくすることができ、第一実施形態と同様な作用効果を奏することができる。なお、リード角θの変化の仕方は、第四実施例に限定されるものではない。例えば、第1領域A1および第3領域A3のリード角θ1,θ3を連続的に大きくさせ、第2領域A2のリード角θ2については、一定としてもよい。 As described above, in the router bit 300 according to the fourth embodiment, the lead angle θ1 of the main flute 18 is kept constant while the lead angles θ2 and θ3 of the main flute 18 are continuously greatly changed. The flute porosity r is increased on the shank 16 side. As a result, the porosity R of the router bit 300 can be increased, and the same effects as in the first embodiment can be achieved. Note that the manner in which the lead angle θ changes is not limited to the fourth embodiment. For example, the lead angles θ1 and θ3 of the first region A1 and the third region A3 may be continuously increased, and the lead angle θ2 of the second region A2 may be constant.
(変更例)
 第一実施形態では、ボディ12を3つの領域A1~A3に概念的に区分けし、主フルート18のリード角θを3つの領域で段階的に変化させた構成としたが、これに限定されるものではない。例えば、ボディ12を2つの領域に分けて、主フルート18のリード角θを2段階で変化する構成としてもよい。また、ボディ12を4以上の領域に分けて、主フルート18のリード角θを4段階以上変化する形状としてもよい。
(Example of change)
In the first embodiment, the body 12 is conceptually divided into three regions A1 to A3, and the lead angle θ of the main flute 18 is changed in stages in the three regions, but the configuration is limited to this. It's not a thing. For example, the body 12 may be divided into two regions and the lead angle θ of the main flute 18 may be changed in two stages. Further, the body 12 may be divided into four or more regions, and the lead angle θ of the main flute 18 may be changed in four or more steps.
 第一および第二実施形態においては、主フルート18のリード角θおよび周方向の幅Wをボディ12の先端側からシャンク16側に掛けて大きくすることで、高い空隙率Rを確保した。しかしながら、主フルート18のリード角θのみをシャンク16側に向けて大きくし、周方向の幅Wについては一定としてもよい。また、第一および第三実施形態においては、主フルート18の前側エッジ18aを段階的に拡開する構成とした。しかしながら、主フルート18の後側エッジ18bを段階的または連続的に拡開する構成としたり、主フルート18の前側エッジ18aおよび後側エッジ18bの双方を段階的または連続的に拡開する構成としてもよい。 In the first and second embodiments, a high porosity R was ensured by increasing the lead angle θ and circumferential width W of the main flute 18 from the tip side of the body 12 to the shank 16 side. However, only the lead angle θ of the main flute 18 may be increased toward the shank 16 side, and the width W in the circumferential direction may be constant. In the first and third embodiments, the front edge 18a of the main flute 18 is expanded in stages. However, if the rear edge 18b of the main flute 18 is expanded in stages or continuously, or if both the front edge 18a and the rear edge 18b of the main flute 18 are expanded in stages or continuously, Good too.
 上述した第一~第三実施形態においては、主フルート18のリード角θおよび/または周方向の幅Wをボディ12の先端側からシャンク16側に掛けて大きくすることで、ルータービットの高い空隙率を確保する構成とした。これに対して、主フルート18の溝深さDを、ボディ12の刃先側に比べて、ボディ12のシャンク16側が大きくなるよう設定することで、フルート空隙率r、ひいてはボディ12全体の空隙率Rを高くすることも可能となる。すなわち、主フルート18の(1)リード角θ、(2)周方向の幅W、および(3)溝深さDの何れか1つまたはそれらの組み合わせについて、ボディ12の先端側からシャンク16側に掛けて大きくすることで、ルータービットの高い空隙率Rを実現することができる。 In the first to third embodiments described above, by increasing the lead angle θ and/or the circumferential width W of the main flute 18 from the tip side of the body 12 to the shank 16 side, a high air gap of the router bit can be achieved. The structure was designed to ensure a high rate. On the other hand, by setting the groove depth D of the main flute 18 to be larger on the shank 16 side of the body 12 than on the cutting edge side of the body 12, the flute porosity r, and by extension the porosity of the entire body 12. It also becomes possible to increase R. That is, for any one or a combination of (1) lead angle θ, (2) circumferential width W, and (3) groove depth D of the main flute 18, from the tip side of the body 12 to the shank 16 side. A high porosity R of the router bit can be achieved by increasing the porosity R by multiplying by .
 第一~第三実施形態では、フルートを研削により刃部から除去したが、フルートを放電加工により形成してもよい。また、第一~第三実施形態では、主フルートおよび複数の副フルートを設けた場合を示したが、単一の主フルートのみを有した構成(副フルートを含まない構成)であってもよい。第一~第三実施形態では、刃部は、硬質焼結体からなるチップをボディに取り付けて構成した。しかしながら、超硬合金からなるボディを研削加工して刃部を一体的に形成したいわゆる無垢刃としてもよい。 In the first to third embodiments, the flutes were removed from the blade portion by grinding, but the flutes may be formed by electrical discharge machining. Further, in the first to third embodiments, a main flute and a plurality of sub-flutes are provided, but a structure having only a single main flute (a structure not including a sub-flute) may also be used. . In the first to third embodiments, the blade portion is constructed by attaching a tip made of a hard sintered body to the body. However, it is also possible to use a so-called solid blade in which the blade portion is integrally formed by grinding a body made of cemented carbide.
 第一~第三実施形態では、焼結した超硬合金からなる丸棒素材の一端部側の表面に、フルートなどの除去部を研削加工して刃部を形成した。しかしながら、半焼結状態とした超硬合金に対して機械加工することで、除去部を形成するようにしてもよい。そして、除去部を形成後に本焼結を行い、刃部を接合することでボディが形成される。 In the first to third embodiments, a blade portion was formed by grinding a removed portion such as a flute on the surface of one end side of a round bar material made of sintered cemented carbide. However, the removed portion may be formed by machining the cemented carbide in a semi-sintered state. Then, after forming the removed portion, main sintering is performed and the blade portion is joined to form the body.
 第一~第三実施形態では、被切削材料として、木質系ボードを切削する場合を示したが、被切削材料としては、このような木質系の材料に限定されるわけではない。例えば、被切削材料として、プラスチックなどの樹脂系材料を切削する際にも、本発明のルータービットを好適に使用することができる。樹脂系材料についても、木質系材料と同様に、切屑の排出阻害による電力消費量の増大といった課題が従来から指摘されていたためである。 In the first to third embodiments, the case where a wood-based board is cut as the material to be cut is shown, but the material to be cut is not limited to such wood-based materials. For example, the router bit of the present invention can be suitably used when cutting resin-based materials such as plastics as the material to be cut. This is because it has been pointed out that resin-based materials, like wood-based materials, have problems such as increased power consumption due to inhibition of chip discharge.
 第一~第三実施形態では、底刃が正のすくい角を有する一方、外周刃が負のすくい角を有していた。これに対して、底刃および外周刃が、いずれも正のすくい角を有していてもよい。 In the first to third embodiments, the bottom cutting edge had a positive rake angle, while the outer peripheral cutting edge had a negative rake angle. On the other hand, both the bottom cutter and the outer peripheral cutter may have a positive rake angle.
 10…ルータービット
 12…ボディ
 14…刃部
 14a…外周刃
 14b…底刃
 16…シャンク
 18…主フルート
 18a…前側エッジ
 18b…後側エッジ
 19…副フルート
 20…被切削材料
 22…接続部
 A1…第1領域
 A2…第2領域
 A3…第3領域
 L…全体有効刃長
 l…外周刃有効刃長
10...Router bit 12...Body 14...Blade portion 14a...Peripheral blade 14b...Bottom blade 16...Shank 18...Main flute 18a...Front edge 18b...Rear edge 19...Sub-flute 20...Material to be cut 22...Connection part A1... First area A2...Second area A3...Third area L...Overall effective blade length l...Peripheral edge effective blade length

Claims (17)

  1.  被切削材料(20)を加工するルータービット(10)であって、
     超硬合金からなる本体部と、
     前記本体部の一端側を研削して形成され、刃部(14)を備えたボディ(12)と、を備え、
     前記ボディ(12)は、前記被切削材料(20)の切屑を排出する主フルート(18)および副フルート(19)を含み、
     前記ボディ(12)の全体有効刃長(L)における空隙率Rが、52%≦R≦75%に設定されている
     ことを特徴とするルータービット。
    A router bit (10) for processing a material to be cut (20),
    A main body made of cemented carbide,
    a body (12) formed by grinding one end side of the main body portion and provided with a blade portion (14);
    The body (12) includes a main flute (18) and a secondary flute (19) for discharging chips of the material to be cut (20),
    A router bit characterized in that a porosity R in the overall effective blade length (L) of the body (12) is set to 52%≦R≦75%.
  2.  前記空隙率Rは、55%≦R≦72%に設定されている請求項1記載のルータービット。 The router bit according to claim 1, wherein the porosity R is set to 55%≦R≦72%.
  3.  前記刃部(14)は、超高圧焼結体から形成されて前記ボディ(12)に接合されている請求項1記載のルータービット。 The router bit according to claim 1, wherein the blade portion (14) is formed from an ultra-high pressure sintered body and joined to the body (12).
  4.  前記刃部(14)は、前記本体部を切削加工することで形成された無垢刃である請求項1記載のルータービット。 The router bit according to claim 1, wherein the blade portion (14) is a solid blade formed by cutting the main body portion.
  5.  前記刃部は、正のひねり角を有する底刃(14b)と、負のひねり角を有する外周刃(14a)とを備える請求項1記載のルータービット。 The router bit according to claim 1, wherein the blade portion includes a bottom blade (14b) having a positive twist angle and a peripheral blade (14a) having a negative twist angle.
  6.  前記主フルート(18)のリード角θが、前記ボディ(12)の刃先側に比べて、前記ボディ(12)のシャンク(16)側が大きくなるよう設定されている請求項1~5の何れか一項に記載のルータービット。 Any one of claims 1 to 5, wherein the lead angle θ of the main flute (18) is set to be larger on the shank (16) side of the body (12) than on the cutting edge side of the body (12). The router bit described in item 1.
  7.  前記ボディ(12)の前記全体有効刃長(L)に対応する部分が、軸方向に沿って複数の領域(A1~A3)に区分けされ、
     前記リード角θは、前記ボディ(12)の刃先側の領域(A1)から前記ボディ(12)のシャンク(16)側の領域(A3)に掛けて、段階的に大きくなっている請求項6記載のルータービット。
    A portion of the body (12) corresponding to the overall effective blade length (L) is divided into a plurality of regions (A1 to A3) along the axial direction,
    6. The lead angle θ increases stepwise from a region (A1) on the cutting edge side of the body (12) to a region (A3) on the shank (16) side of the body (12). Router bits listed.
  8.  前記主フルート(18)は、ルータービットの回転方向前方の前側エッジ(18a)と、ルータービットの回転方向後方の後側エッジ(18b)とによって規定され、
     前記複数の領域(A1~A3)は、第1領域(A1)と、前記第1領域(A1)に対して前記ボディ(12)のシャンク(16)側に隣接する第2領域(A2)とを備え、
     前記第1領域(A1)での前記前側エッジ(18a)に対して、前記第2領域(A2)での前記前側エッジ(18a)が拡開している請求項7記載のルータービット。
    The main flute (18) is defined by a front edge (18a) at the front in the direction of rotation of the router bit and a rear edge (18b) at the rear in the direction of rotation of the router bit;
    The plurality of regions (A1 to A3) include a first region (A1) and a second region (A2) adjacent to the first region (A1) on the shank (16) side of the body (12). Equipped with
    Router bit according to claim 7, characterized in that the front edge (18a) in the second area (A2) is widened with respect to the front edge (18a) in the first area (A1).
  9.  前記第1領域(A1)での前記前側エッジ(18a)と前記第2領域(A2)での前記前側エッジ(18a)とを接続する段状の接続部(22)が形成されている請求項8記載のルータービット。 A stepped connecting portion (22) is formed to connect the front edge (18a) in the first region (A1) and the front edge (18a) in the second region (A2). Router bit described in 8.
  10.  前記リード角θは、前記ボディ(12)の刃先側から前記ボディ(12)のシャンク(16)側に掛けて、連続的に大きくなっている請求項6記載のルータービット。 The router bit according to claim 6, wherein the lead angle θ continuously increases from the cutting edge side of the body (12) to the shank (16) side of the body (12).
  11.  前記刃部は、底刃(14b)と、外周刃(14a)とを備え、
     前記ボディ(12)は、前記全体有効刃長(L)に対応する部分において、前記底刃(14b)を含む第1領域(A1)と、前記第1領域(A1)に対して前記ボディ(12)のシャンク(16)側に隣接する第2領域(A2)とを含み、
     前記第1領域(A1)での主フルート(18)のリード角θ1は一定とされ、
     前記第2領域(A1)での主フルート(18)のリード角θ2は、前記第1領域(A1)での主フルート(18)のリード角θ1よりも大きく、かつ、前記第1領域(A1)側から前記ボディ(12)のシャンク(16)側に向けて連続的に大きくなっている請求項6記載のルータービット。
    The blade portion includes a bottom blade (14b) and a peripheral blade (14a),
    The body (12) has a first region (A1) including the bottom blade (14b) in a portion corresponding to the overall effective blade length (L), and a portion of the body (12) that corresponds to the first region (A1). a second region (A2) adjacent to the shank (16) side of 12);
    The lead angle θ1 of the main flute (18) in the first region (A1) is constant;
    The lead angle θ2 of the main flute (18) in the second region (A1) is larger than the lead angle θ1 of the main flute (18) in the first region (A1), and 7. The router bit according to claim 6, wherein the router bit becomes larger continuously from the ) side toward the shank (16) of the body (12).
  12.  前記主フルート(18)のねじれ展開角αが、180°以上に設定されている請求項6記載のルータービット。 The router bit according to claim 6, wherein the twist development angle α of the main flute (18) is set to 180° or more.
  13.  前記刃部は、底刃(14b)と、外周刃(14a)とを備え、
     前記ボディ(12)の前記全体有効刃長(L)に対応する部分が、軸方向に沿って複数の領域(A1~A3)に区分けされ、
     前記主フルート(18)の周方向の幅Wは、前記ボディ(12)の前記外周刃(14a)による有効刃長(l)内において、前記ボディ(12)の刃先側の領域(A1)に対して、前記ボディ(12)のシャンク(16)側の領域(A2,A3)が大きくなっている請求項1~5の何れか一項に記載のルータービット。
    The blade portion includes a bottom blade (14b) and a peripheral blade (14a),
    A portion of the body (12) corresponding to the overall effective blade length (L) is divided into a plurality of regions (A1 to A3) along the axial direction,
    The width W in the circumferential direction of the main flute (18) is within the effective cutting length (l) of the outer circumferential cutting edge (14a) of the body (12), in the area (A1) on the cutting edge side of the main flute (12). The router bit according to any one of claims 1 to 5, wherein the areas (A2, A3) of the body (12) on the shank (16) side are larger.
  14.  前記主フルート(18)は、ルータービットの回転方向前方の前側エッジ(18a)と、ルータービットの回転方向後方の後側エッジ(18b)とによって規定され、
     前記複数の領域(A1~A3)は、第1領域(A1)と、前記第1領域(A1)に対して前記ボディ(12)のシャンク(16)側に隣接する第2領域(A2)とを備え、
     前記第1領域(A1)での前記前側エッジ(18a)に対して、前記第2領域(A2)での前記前側エッジ(18a)が拡開している請求項13記載のルータービット。
    The main flute (18) is defined by a front edge (18a) at the front in the direction of rotation of the router bit and a rear edge (18b) at the rear in the direction of rotation of the router bit;
    The plurality of regions (A1 to A3) include a first region (A1) and a second region (A2) adjacent to the first region (A1) on the shank (16) side of the body (12). Equipped with
    Router bit according to claim 13, characterized in that the front edge (18a) in the second area (A2) is widened with respect to the front edge (18a) in the first area (A1).
  15.  前記第1領域(A1)での前記前側エッジ(18a)と前記第2領域(A2)での前記前側エッジ(18a)とを接続する段状の接続部(22)が形成されている請求項14記載のルータービット。 A stepped connecting portion (22) is formed to connect the front edge (18a) in the first region (A1) and the front edge (18a) in the second region (A2). Router bit described in 14.
  16.  前記刃部は、底刃(14b)と、外周刃(14a)とを備え、
     前記ボディ(12)の前記外周刃(14a)による有効刃長(l)内において、主フルート(18)によるフルート空隙率rが、前記ボディ(12)の刃先側に比べて、前記ボディ(12)のシャンク(16)側が大きくなるよう設定されている請求項1~5の何れか一項に記載のルータービット。
    The blade portion includes a bottom blade (14b) and a peripheral blade (14a),
    Within the effective flute length (l) of the peripheral cutting edge (14a) of the body (12), the flute porosity r of the main flute (18) is larger than that of the body (12) on the cutting edge side of the body (12). 6. The router bit according to claim 1, wherein the shank (16) side of the router bit is set to be larger.
  17.  前記主フルート(18)の溝深さDが、前記ボディ(12)の刃先側に比べて、前記ボディ(12)のシャンク(16)側が大きくなるよう設定されている請求項1~5の何れか一項に記載のルータービット。 Any one of claims 1 to 5, wherein the groove depth D of the main flute (18) is set to be larger on the shank (16) side of the body (12) than on the cutting edge side of the body (12). The router bit described in item 1.
PCT/JP2022/033001 2022-07-13 2022-09-01 Router bit WO2024014008A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023514115A JP7340310B1 (en) 2022-07-13 2022-09-01 router bits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-112388 2022-07-13
JP2022112388 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014008A1 true WO2024014008A1 (en) 2024-01-18

Family

ID=89536290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033001 WO2024014008A1 (en) 2022-07-13 2022-09-01 Router bit

Country Status (1)

Country Link
WO (1) WO2024014008A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283109A (en) * 1988-09-19 1990-03-23 Kobe Steel Ltd End mill
JPH0646816U (en) * 1992-11-30 1994-06-28 三菱マテリアル株式会社 End mill
JPH0717413U (en) * 1993-08-27 1995-03-28 兼房株式会社 Rotary tool with shank
JP2000246728A (en) * 1998-12-29 2000-09-12 Yuji Ezaki Bit for flash panel constitutional body
US20040120777A1 (en) * 2002-12-24 2004-06-24 Noland Dennis L. Rotary cutting tool
JP2008511465A (en) * 2004-09-01 2008-04-17 バークシャー プレシジョン ツール リミテッド ライアビリティ カンパニー Spiral groove end mill with multi-section cutting edge
JP2014210324A (en) * 2013-04-19 2014-11-13 株式会社不二越 Unequal reed end mill
WO2019163677A1 (en) * 2018-02-26 2019-08-29 京セラ株式会社 Cutting tool and method for manufacturing cut workpiece
JP2021053794A (en) * 2019-09-30 2021-04-08 山崎機工株式会社 Router end mill

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283109A (en) * 1988-09-19 1990-03-23 Kobe Steel Ltd End mill
JPH0646816U (en) * 1992-11-30 1994-06-28 三菱マテリアル株式会社 End mill
JPH0717413U (en) * 1993-08-27 1995-03-28 兼房株式会社 Rotary tool with shank
JP2000246728A (en) * 1998-12-29 2000-09-12 Yuji Ezaki Bit for flash panel constitutional body
US20040120777A1 (en) * 2002-12-24 2004-06-24 Noland Dennis L. Rotary cutting tool
JP2008511465A (en) * 2004-09-01 2008-04-17 バークシャー プレシジョン ツール リミテッド ライアビリティ カンパニー Spiral groove end mill with multi-section cutting edge
JP2014210324A (en) * 2013-04-19 2014-11-13 株式会社不二越 Unequal reed end mill
WO2019163677A1 (en) * 2018-02-26 2019-08-29 京セラ株式会社 Cutting tool and method for manufacturing cut workpiece
JP2021053794A (en) * 2019-09-30 2021-04-08 山崎機工株式会社 Router end mill

Similar Documents

Publication Publication Date Title
JP5945283B2 (en) drill
JP5013435B2 (en) Ball end mill
JP3071466B2 (en) Twist drill
US7267514B2 (en) Self-centering drill bit with pilot tip
CA1298994C (en) Self-centering drill bit with pilot tip
JP4919182B2 (en) Drilling tool
US5288183A (en) Self-centering drill bit with pilot tip
JP5276486B2 (en) drill
KR101329881B1 (en) Drilling tool
US20100124466A1 (en) Trepanning Drill
JP2019181615A (en) Drill
CN103282149A (en) Two-material one-iece cutting tool
JPS625726B2 (en)
TWI438047B (en) Drilling tools
JP4699526B2 (en) Drill
JP4919298B2 (en) Cutting tool exchangeable rotary tool for high-feed machining
JP7340310B1 (en) router bits
WO2024014008A1 (en) Router bit
JP2008142834A (en) Drill
JP2003159610A (en) Radius end mill
JP5975340B2 (en) drill
JP3851804B2 (en) Replaceable twist drill
JP4056403B2 (en) Deep hole twist drill
JPS6125941Y2 (en)
JP2021151681A (en) Drill

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023514115

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951214

Country of ref document: EP

Kind code of ref document: A1