WO2024013872A1 - Power supply control ic and method for diagnosing power supply control ic - Google Patents
Power supply control ic and method for diagnosing power supply control ic Download PDFInfo
- Publication number
- WO2024013872A1 WO2024013872A1 PCT/JP2022/027531 JP2022027531W WO2024013872A1 WO 2024013872 A1 WO2024013872 A1 WO 2024013872A1 JP 2022027531 W JP2022027531 W JP 2022027531W WO 2024013872 A1 WO2024013872 A1 WO 2024013872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- circuit
- supply control
- abnormality
- startup
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 151
- 230000008569 process Effects 0.000 claims abstract description 137
- 238000003745 diagnosis Methods 0.000 claims abstract description 71
- 230000004913 activation Effects 0.000 claims abstract description 30
- 230000005856 abnormality Effects 0.000 claims description 173
- 238000001514 detection method Methods 0.000 claims description 110
- 238000012937 correction Methods 0.000 claims description 72
- 238000012545 processing Methods 0.000 claims description 59
- 238000001994 activation Methods 0.000 claims description 27
- 230000006870 function Effects 0.000 claims description 15
- 238000004092 self-diagnosis Methods 0.000 claims 1
- 230000007420 reactivation Effects 0.000 abstract 2
- 230000003213 activating effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 19
- 238000003708 edge detection Methods 0.000 description 11
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 9
- 238000013459 approach Methods 0.000 description 8
- 230000000630 rising effect Effects 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
Definitions
- the present invention relates to the configuration of a semiconductor device and its control, and particularly to a technique that is effective when applied to a power control IC installed in an on-vehicle ECU that requires high reliability.
- Patent Document 1 discloses a technique for cooling electronic devices by flowing a refrigerant circulating inside an automobile into an ECU housing for the purpose of suppressing heat generation in the electronic devices.
- Patent Document 2 discloses a power control IC that has a diagnostic function that performs diagnosis when the power control IC is activated when the vehicle is in a stopped state.
- Patent Document 3 describes a diagnostic method that determines a failure only when an abnormality is detected multiple times in a row in a power supply control IC, in order to avoid erroneous diagnosis due to environmental factors such as electromagnetic noise during vehicle operation. Disclosed.
- JP2014-121228A Japanese Patent Application Publication No. 2013-81349 JP 2021-154993 Publication
- characteristics change over time the life of the power control IC, that is, the time at which it will fail, becomes earlier.
- the car can be continued to be used by replacing the ECU equipped with the power control IC.
- ECU replacement it is desirable to be able to reduce the frequency of replacement, and to achieve this, it is necessary to extend the operating time of the power supply control IC itself.
- Patent Document 1 By using the technology disclosed in Patent Document 1, it is possible to suppress the rise in the junction temperature of the power supply control IC, and by slowing down the change in characteristics over time, the operating time of the power supply control IC is extended compared to the case without cooling. can. However, it is necessary to provide a path for the refrigerant to flow through the ECU casing, and an ECU casing with high heat dissipation properties is expensive.
- the ECU equipped with the power control IC may stop functioning, and if the ECU stops functioning while the car is running, it may lead to an accident. Therefore, it is desirable to be able to detect and notify a pre-failure sign when the power supply control IC is activated while the vehicle is in a stopped state.
- failures caused by changes in characteristics over time are characterized by the fact that abnormalities begin to be detected as the failure time approaches, and the probability of abnormality occurrence increases as the failure time approaches.
- detecting as a sign of a failure it is necessary to detect it in a state where the probability of detecting an abnormality is low, which is before the failure.
- Patent Document 3 can distinguish between a failure and a misdiagnosis due to environmental factors, depending on whether or not abnormalities are detected continuously. However, since the probability of occurrence of an abnormality is low and a sign of a failure cannot be detected, there is a possibility that the ECU will not be replaced until a failure occurs.
- an object of the present invention is to provide a power control IC installed in an ECU that has a function of restarting according to the processing of an internal circuit or an external circuit, and that enables more accurate predictive failure diagnosis.
- Our goal is to provide the following.
- the present invention provides a power supply circuit that generates at least one voltage from a power supply voltage, a starting pin for starting the power supply circuit, and a predetermined voltage input to the starting pin.
- the power supply circuit is characterized by comprising a startup circuit that performs restart processing of the power supply circuit based on a restart signal.
- the present invention also provides the following steps: (a) inputting a startup signal for the power supply control IC; (b) counting up the number of times of diagnosis by one and storing it in memory; and (c) diagnosing the startup of the power supply control IC. (d) if an abnormality is detected in step (c), incrementing the number of abnormality detections by one and storing it in the memory; (e) counting the number of times of diagnosis and abnormality detection from the memory; and (f) comparing the abnormality detection frequency calculated in step (e) with a predetermined threshold.
- the detection frequency is less than the predetermined threshold, it is determined to be normal and a restart signal for the power supply control IC is output, and if the abnormality detection frequency is greater than or equal to the predetermined threshold, it is determined to be a sign of a failure and the failure occurs. It is characterized by outputting a notification of a sign of.
- a power supply control IC installed in an ECU has a function of restarting according to the processing of internal circuits or external circuits, and is capable of more accurate failure symptom diagnosis. can do.
- the operating time of the power supply control IC and the ECU equipped with it can be extended while suppressing cost increases.
- FIG. 1 is a diagram showing a schematic configuration of an ECU according to Example 1 of the present invention.
- 2 is a block diagram showing a configuration example of a power supply control IC 100 in FIG. 1.
- FIG. 3 is a diagram illustrating a configuration example of a startup circuit 20 in FIG. 2.
- FIG. 3 is a diagram showing a configuration example of the power supply circuit 10 of FIG. 2.
- FIG. 3 is a diagram showing an example of the configuration of a startup diagnostic circuit 31 in FIG. 2.
- FIG. 3 is a flowchart schematically showing a startup process of the power control IC 100 of FIG. 2.
- FIG. FIG. 2 is a block diagram showing the configuration of a power supply control IC 100 according to a second embodiment of the present invention.
- FIG. 8 is a diagram showing a configuration example of the counter circuit 40 of FIG. 7.
- FIG. 8 is a flowchart schematically showing a startup process of the power control IC 100 of FIG. 7.
- FIG. 12 is a flowchart schematically showing a startup process of a power supply control IC according to a third embodiment of the present invention.
- FIG. 3 is a block diagram showing the configuration of a power supply control IC 100 according to a fourth embodiment of the present invention.
- 12 is a block diagram showing a configuration example of a characteristic control circuit 60 in FIG. 11.
- FIG. 12 is a timing chart schematically showing a correction operation of the characteristic control circuit 60 of FIG. 11.
- FIG. 12 is a flowchart schematically showing startup processing of the power control IC 100 of FIG. 11.
- FIG. 11 is a diagram showing a configuration example of the counter circuit 40 of FIG. 7.
- FIG. 8 is a flowchart schematically showing a startup process of the power control IC 100 of FIG. 7.
- FIG. 7 is a block diagram showing the configuration of a power supply control IC 100 according to Example 5 of the present invention.
- 16 is a flowchart schematically showing startup processing of the power control IC 100 of FIG. 15.
- FIG. 7 is a block diagram showing the configuration of a power supply control IC 100 according to a sixth embodiment of the present invention.
- 18 is a flowchart schematically showing startup processing of the power supply control IC 100 of FIG. 17.
- 7 is a block diagram showing the configuration of a power supply control IC 100 according to Example 7 of the present invention.
- FIG. 20 is a block diagram showing a configuration example of the restart setting circuit 50 of FIG. 19.
- FIG. 20 is a flowchart schematically showing startup processing of the power control IC 100 of FIG. 19.
- FIGS. 1 to 6 a power supply control IC and its diagnosis method according to a first embodiment of the present invention will be described.
- a process is performed in which the power control IC is stopped according to a predetermined process (hereinafter referred to as internal process) executed within the power control IC, and then the start process is restarted (hereinafter referred to as restart process).
- a predetermined process hereinafter referred to as internal process
- restart process the start process is restarted.
- the configuration and operation of the power supply control IC which is characterized by executing the following steps) and can be restarted by restart processing when a temporary abnormality occurs in the power supply control IC due to noise or the like, will be described.
- FIG. 1 shows an example of the configuration of an ECU 1 equipped with a power supply control IC 100.
- the ECU 1 includes a CPU 200 that performs control and a power control IC 100 that supplies power to the CPU 200.
- the power supply control IC 100 performs a startup process and supplies power to the CPU 200 by generating an output voltage Voutput from the power supply voltage Vpower.
- FIG. 2 is a block diagram showing a configuration example of the power supply control IC 100 of FIG. 1.
- the power supply control IC 100 shown in FIG. 2 includes a power supply circuit 10 that generates at least one voltage from the power supply voltage Vpower, an internal processing section 30 that performs internal processing and outputs a restart signal Srepup as necessary, and a restart signal Srepup. It is comprised of a startup circuit 20 that executes restart processing of the power supply control IC 100 when a startup signal Srepup is input.
- the startup circuit 20 performs startup processing of the power supply control IC 100 when the startup signal Spup is input, and performs a shutdown processing of the power supply control IC 100 when the stop signal Spdown is input. Further, when the restart signal Srepup is input while the activation signal line 102 is high, restart processing is executed.
- the power supply circuit 10 includes a startup pin (not shown) for starting the power supply circuit 10, and when a predetermined voltage is input to the startup pin, the startup circuit 20 starts the power supply circuit based on a restart signal. 10 restart processing is performed.
- the startup circuit 20 shown in FIG. 3 includes a startup signal detection section 21 that detects the startup signal Spup, a diagnostic signal generation section 22 that outputs the diagnostic signal Sdiag during the diagnostic time Tdiag after detecting the startup signal Spup, and a diagnostic signal generation section 22 that outputs the diagnostic signal Sdiag during the diagnostic time Tdiag after detecting the startup signal Spup. If the restart signal Srepup is not input later, the control signal generation unit 23 outputs a logical high level (hereinafter referred to as High) to the control signal line 104, and if the restart signal Srepup is input, the control signal generation unit 23 keeps the startup signal Spup constant.
- High logical high level
- the delay circuit 26a and the delay circuit 26b are configured to be initialized when the restart signal Srepup is input.
- the initial state of the startup circuit 20 is a state in which a logical low level (hereinafter referred to as "Low") is output to the diagnostic signal line 105 and the control signal line 104. Further, since the restart signal line 101 is Low, the switch element 24 is connected, and when High is input to the startup signal line 102 as the startup signal Spup, the startup signal detection unit 21 compares it with the startup signal determination threshold voltage Vth_pup. However, if it is larger than the activation signal determination threshold voltage Vth_pup, it is determined that the activation signal Spup is present and outputs High to the diagnostic signal generation section 22.
- Vth_pup logical low level
- the diagnostic signal generating section 22 When the diagnostic signal generating section 22 receives a High signal from the activation signal detecting section 21, it outputs a High signal to the diagnostic signal line 105 as a diagnostic signal Sdiag.
- the delay time of the delay circuit 26a becomes the diagnosis time Tdiag, and after the diagnosis is completed and Tdiag has elapsed, it outputs Low.
- the delay time of the delay circuit 26b in the control signal generation unit 23 By setting the delay time of the delay circuit 26b in the control signal generation unit 23 to be longer than Tdiag, it is determined whether the power supply circuit 10 is disabled or enabled depending on whether there is a restart signal Srepup after Tdiag. . Since it is known that the delay circuit can be easily realized by a plurality of NOT circuits, a description of the configuration and operation will be omitted.
- the power supply circuit 10 has a function (function A) of supplying power necessary for startup to internal circuits when a power supply voltage Vpower is input to a power supply line 103, and a function (function A) that supplies power necessary for starting up the internal circuit when a power supply voltage Vpower is input to a power supply line 103, and a voltage level of a control signal line 104.
- a function (function A) that supplies power necessary for starting up the internal circuit when a power supply voltage Vpower is input to a power supply line 103, and a voltage level of a control signal line 104.
- Possible circuits that implement these functions include switching regulators, linear regulators, bandgap references, etc., and a configuration that includes one or more of them, or a configuration that combines them may also be used.
- the former function (function A) is configured by a linear regulator 12b
- the latter function (function B) is configured by a linear regulator 12a
- a switch element 11 that disconnects or connects the power line 103 and the linear regulator 12a.
- An example of the configuration of the linear regulator 12a includes a feedback resistor 16 and a feedback resistor 17 that divide the output voltage Voutput to generate a feedback voltage Vfb, and a reference voltage generator 13 that generates a reference voltage Vref that is a reference for the output voltage Voutput. and an error amplifier 15 that outputs the difference between the voltage values of the feedback voltage Vfb and the reference voltage Vref as a difference signal Sdiff, and generates an output voltage Voutput from the power supply voltage Vpower by controlling the resistance value according to the difference signal Sdiff.
- An example configured with MOSFET 14 is given.
- the switch element 11 electrically connects the power supply voltage Vpower and the MOSFET 14 while a high level is input to the control signal line 104, and electrically connects the power supply voltage Vpower and the MOSFET 14 while a low level is input to the control signal line 104. cut the target.
- the reference voltage generation unit 13 can be easily realized using a bandgap reference circuit or the like, and outputs a reference voltage Vref whose voltage value does not change due to changes in the surrounding environment such as input voltage and temperature.
- the output voltage line 108 of the linear regulator 12a has a reference value as shown in equation (1).
- the output voltage Voutput determined by the voltage Vref and the feedback resistance values Rfbu and Rfbd is stably output.
- Voutput Vref ⁇ (Rfbu+Rfbd) ⁇ Rfbd (1) Note that since the linear regulator 12b is the same as the linear regulator 12a, explanations of the configuration and operation will be omitted.
- the internal processing unit 30 outputs a restart signal Srepup when a predetermined characteristic (hereinafter referred to as an internal characteristic) within the power supply control IC 100 satisfies a predetermined condition.
- a predetermined characteristic hereinafter referred to as an internal characteristic
- the internal characteristics refer to physical quantities (voltage value, current value, frequency, etc.) possessed by the waveform.
- the startup diagnostic circuit 31 shown in FIG. 5 compares the internal characteristics with the abnormality determination threshold voltage Vth_diag and outputs the restart signal Srepup.
- the startup diagnostic circuit 31 can detect abnormalities in the internal characteristics by monitoring the internal characteristics using the signal line 111 to be diagnosed.
- the startup diagnostic circuit 31 has an abnormality determination unit 32 that compares the internal characteristics monitored by the diagnosed signal line 111 with the abnormality determination threshold voltage Vth_diag, and a high level is input to the diagnostic signal line 105. It is comprised of a diagnostic control unit 33 that outputs the diagnostic results for a period, and a filter circuit 34 that determines an abnormality only when High is output during the abnormality determination filter time Tfilter. The delay amount of the delay circuit 26c determines the filter time Tfilter.
- the startup diagnostic circuit 31 diagnoses whether there is an abnormality in the internal characteristics by comparing the internal characteristics with the abnormality determination threshold voltage Vth_diag when the voltage level of the diagnostic signal line 105 is High from the startup circuit 20. If the internal characteristic is larger than the abnormality determination threshold voltage Vth_diag, it is determined to be normal, and a Low signal is output to the restart signal line 101. On the other hand, if the internal characteristic is less than or equal to the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is abnormal, and a High signal is output to the restart signal line 101.
- FIG. This will be explained using a flowchart.
- step S1 when the power supply voltage Vpower is applied to the power supply line 103 (START), a voltage level High is inputted to the startup signal line 102 as the startup signal Spup in step S1.
- the starting circuit 20 outputs a High signal to the diagnostic signal line 105 as a diagnostic signal, and the process proceeds to step S2.
- step S2 the startup diagnostic circuit 31 compares the internal characteristics and the abnormality determination threshold voltage Vth_diag. If the internal characteristic is larger than the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is normal (OK), and the process proceeds to step S3. If the internal characteristic is less than or equal to the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is abnormal (NG), and the process proceeds to step S5.
- step S3 the startup circuit 20 outputs High to the control signal line 104.
- the power supply circuit 10 starts operating and proceeds to step S4.
- step S4 the power supply circuit 10 generates an output voltage Voutput from the power supply voltage Vpower.
- the output voltage Voutput is supplied to the load, the load starts operating, and the startup process ends (END).
- step S5 the startup diagnostic circuit 31 outputs High to the restart signal line 101 as the restart signal Srepup, and the process proceeds to step S6.
- step S6 the starting circuit 20 enters the initial state as a stop process, and returns to step S2. Then, when an abnormality occurs after the last startup, the restart is repeated until no abnormality is detected. Note that the restart process may be set to be executed a predetermined number of times.
- the startup process refers to the process from a state in which the power supply voltage Vpower is applied to the power supply line 103 (START) to a state in which the circuit to which power is supplied to the power supply control IC 100 operates (END).
- the restart process is a process of restarting the start process in the middle of the start process, and refers to the process from step S5 to step S6.
- this embodiment shows a configuration example in which restart processing is performed by internal processing of the power supply control IC 100, by electrically connecting the startup circuit 20 of the power supply control IC 100 and external elements of the power supply control IC 100, It is also possible to perform restart processing of the power supply control IC 100 by processing in an external element (hereinafter referred to as external processing).
- external processing an external element
- the diagnosis by the startup diagnosis circuit 31 in this embodiment is merely an example described from the perspective of comparing voltage values, and similar diagnosis can be realized in various other forms.
- the abnormality determination unit 32 which is a comparison circuit, may be a current input type comparator circuit for comparing current values, or a circuit such as a digital counter or a phase comparator for comparing frequencies.
- the power supply control IC 100 of this embodiment is characterized by executing restart processing according to internal processing, and restarts when a temporary abnormality occurs in the power supply control IC 100 due to noise or the like. It can be restarted using the startup process.
- a power supply control IC and its diagnosis method according to a second embodiment of the present invention will be described with reference to FIGS. 7 to 9.
- the frequency of abnormality detection is determined by detecting the number of times of diagnosis and the number of times of abnormality detection, and when the frequency of abnormality detection is equal to or higher than a predetermined threshold value, it is determined that it is a sign of failure.
- the configuration and operation of the power supply control IC will be explained. Note that the following description focuses on the points that are different from the first embodiment.
- FIG. 7 is a block diagram showing the configuration of the power supply control IC 100 of this embodiment. Focusing on the difference from Example 1 (FIG. 2), the power supply control IC 100 of this example includes a counter circuit 40 that counts the number of diagnoses Ndiag performed at startup and the number of abnormality detections Ndet_err; A stop signal line 110 connected to the counter circuit 40 is provided.
- a diagnostic signal line 105 and a diagnostic result signal line 106 are connected to the counter circuit 40, and each time a high level is input to the diagnostic signal line 105 as a diagnostic signal, the number of times of diagnosis Ndiag is counted up, and the diagnostic result is determined as an abnormality. Every time High is input to the signal line 106, the number of abnormality detections Ndet_err is counted up.
- the abnormality detection frequency Rdet_err obtained from the number of diagnoses Ndiag and the number of abnormality detections Ndet_err is compared with the predictive judgment threshold Rth_preerr, and if the abnormality detection frequency Rdet_err is less than the predictive judgment threshold Rth_preerr, the voltage level of the restart signal line 101 is changed from Low to High. If the abnormality detection frequency Rdet_err is equal to or higher than the predictive judgment threshold Rth_preerr, the number of diagnosis times Ndiag and the number of abnormality detections Ndet_err in the counter circuit memory 47 of the counter circuit 40, which will be described later in FIG. 8, are cleared to initial values, and the stop signal line The voltage level of 110 is changed from Low to High.
- the counter circuit 40 has a configuration or means that can hold the number of diagnoses Ndiag and the number of abnormality detections Ndet_err even if the power supply circuit 10 stops.
- abnormality detection frequency Rdet_err can be calculated using the following equation (2).
- Rdet_err Ndet_err/Ndiag (2) Considering accuracy, it is desirable to calculate the abnormality detection frequency Rdet_err from the number of activations of three or more times.
- the counter circuit 40 shown in FIG. 8 includes a diagnostic result edge detection unit 41 that detects the rising edge of the voltage level of the diagnostic result signal line 106 from Low to High, and a diagnostic result edge detection unit 41 that detects the rising edge of the voltage level of the diagnostic signal line 105 from Low to High.
- a diagnostic signal edge detection unit 42 that detects an edge an abnormality detection counter circuit 44 that counts up the number of abnormality detections Ndet_err every time a rising edge is detected by the diagnostic result edge detection unit 41, and a diagnostic signal edge detection unit 42 that detects a rising edge.
- a diagnostic counter circuit 45 that counts up the number of diagnoses Ndiag every time an edge is detected, a counter circuit memory 47 that stores the number of abnormality detections Ndet_err, and calculates the abnormality detection frequency Rdet_err and determines the abnormality detection frequency Rdet_err and the sign. It also includes an abnormality detection frequency determination unit 46 that determines whether to start by comparing a threshold value Rth_preerr.
- the abnormality detection frequency determination unit 46 calculates the abnormality detection frequency Rdet_err, which is the ratio of the number of abnormality detections Ndet_err to the number of diagnoses Ndiag, and compares the abnormality detection frequency Rdet_err with the premonition determination threshold Rth_preerr, so that the abnormality detection frequency Rdet_err becomes the predetermined threshold. If it is less than Rth_preerr, it is determined to be normal, and the voltage level of the restart signal line 101 is changed from Low to High.
- abnormality detection frequency Rdet_err is equal to or higher than the sign determination threshold Rth_preerr, it is determined that it is a sign of failure, and the abnormality detection frequency Ndet_err in the counter circuit memory 47 is cleared to the initial value, and the voltage level of the stop signal line 110 is changed from Low to Low. Set it to High.
- the abnormality detection frequency determination unit 46 can also notify the user via an external element by outputting High to the communication signal line 109 when a sign of a failure is detected.
- the flowchart shown in FIG. 9 shows that when the power supply control IC 100 detects an abnormality in the startup diagnosis, it restarts the startup by performing a restart process, calculates the abnormality detection frequency Rdet_err every time an abnormality is detected in the startup diagnosis, This is a process flow in which it is determined that it is a sign of failure when the abnormality detection frequency Rdet_err is equal to or greater than the sign determination threshold Rth_preerr, and the load is notified of the failure sign, and then the power supply control IC 100 is not activated.
- step S1 when the power supply voltage Vpower is applied to the power supply line 103 (START), in step S1, the voltage level High is inputted to the startup signal line 102 as the startup signal Spup, similarly to the first embodiment (FIG. 6).
- the starting circuit 20 outputs a High signal to the diagnostic signal line 105 as a diagnostic signal, and the process proceeds to step S2.
- step S2 the number of diagnoses Ndiag is counted up by one, stored in the counter circuit memory 47, and the process proceeds to step S3.
- step S3 the startup diagnostic circuit 31 compares the internal characteristics and the abnormality determination threshold voltage Vth_diag. If the internal characteristics are larger than the abnormality determination threshold voltage Vth_diag and it is determined that the internal characteristics are normal (OK), steps S4 and S5 corresponding to steps S3 and S4 of the first embodiment (FIG. 6) are executed. , ends the startup process (END).
- step S3 if the internal characteristic is equal to or lower than the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is abnormal (NG), and the process proceeds to step S6.
- step S6 by detecting the rising edge of the voltage level of the diagnostic result signal line 106 from Low to High by the diagnostic result edge detection unit 41, the number of abnormality detections Ndet_err is counted up by one and stored in the counter circuit memory 47. The process then proceeds to step S7.
- step S7 the number of diagnoses Ndiag and the number of abnormality detections Ndet_err are read from the counter circuit memory 47, and the abnormality detection frequency Rdet_err is calculated. If the abnormality detection frequency Rdet_err is less than the sign determination threshold Rth_preerr ( ⁇ Rth_preerr), it is determined to be normal, and the process proceeds to step S8. If the abnormality detection frequency Rdet_err is greater than or equal to the sign determination threshold Rth_preerr ( ⁇ Rth_preerr), it is determined that it is a sign of failure, and the process proceeds to step S10.
- step S10 the power supply circuit 10 is temporarily enabled, and the process proceeds to step S11.
- step S11 power is temporarily supplied to the load, and the load is notified that there is a sign of failure.
- step S12 the number of diagnoses Ndiag and the number of abnormality detections Ndet_err (that is, the abnormality detection frequency Rdet_err) in the counter circuit memory 47 are cleared to initial values, and the process proceeds to step S13.
- step S13 after the power control IC 100 is stopped, the process returns to step S1 and the processes from step S1 onwards are repeated.
- step S7 if the abnormality detection frequency Rdet_err is less than the sign determination threshold Rth_preerr ( ⁇ Rth_preerr) and is determined to be normal, the processing in steps S8 and S9 corresponding to steps S5 and S6 in the first embodiment (FIG. 6) is executed, the process returns to step S2, and the processes from step S2 onwards are repeated.
- Rth_preerr sign determination threshold
- the abnormality detection frequency is cleared every time the stop signal is input, but the abnormality detection frequency obtained by inputting the start signal multiple times may be used. Judgments can be made based on the abnormality detection frequency obtained over a longer period of time.
- the power supply control IC 100 of this embodiment determines the abnormality detection frequency by detecting the number of times of diagnosis and the number of times of abnormality detection, and determines that it is a sign of failure when the abnormality detection frequency is equal to or higher than a predetermined threshold. be able to.
- the counter circuit memory 47 in the counter circuit 40 further stores the number of startups Npup, which is the number of startups including restarts after inputting the startup signal Spup. It is characterized by storing the maximum number of activations Nmax_pup, which is the number of times the activation is performed in response to one input of the activation signal Spup.
- the counter circuit 40 compares the abnormality detection frequency Rdet_err, which is the ratio of the number of abnormality detections Ndet_err to the number of diagnoses Ndiag, with the predictive judgment threshold Rth_preerr, and determines the abnormality detection frequency Rdet_err. If it is less than the premonitory determination threshold Rth_preerr, it is determined to be normal and the voltage level of the restart signal line 101 is changed from Low to High.
- abnormality detection frequency Rdet_err is equal to or higher than the sign determination threshold Rth_preerr, it is determined to be a sign of a failure, and the load is notified that it is a sign of a failure, and the abnormality detection frequency Ndet_err in the counter circuit memory 47 is cleared to the initial value. to change the voltage level of the stop signal line 110 from Low to High.
- the number of activations Npup, the maximum number of restarts Nmax_pup, and the omen determination threshold Rth_preerr stored in the counter circuit memory 47 are retained.
- the maximum number of restarts Nmax_pup and the predictive sign determination threshold Rth_preerr can be changed as appropriate by external processing if they can be rewritten from an external element via a communication signal line or the like.
- the values may be written in advance during manufacturing, and the values may be fixed during use.
- the flowchart shown in FIG. 10 is a flow of a startup process in which restarting is performed a predetermined number of times at startup, and a sign of failure can be determined from the abnormality detection frequency.
- step S3 The processing from START to step S3 is the same as in the second embodiment (FIG. 9).
- step S3 if it is determined that the internal characteristic is larger than the abnormality determination threshold voltage Vth_diag and the internal characteristic is normal (OK), the process proceeds to step S4.
- step S5 the number of diagnoses Ndiag and the number of abnormality detections Ndet_err stored in the counter circuit memory 47 are read out, and the abnormality detection frequency Rdet_err is calculated. If the abnormality detection frequency Rdet_err is less than the sign determination threshold Rth_preerr ( ⁇ Rth_preerr), the process advances to step S6.
- the processing from step S6 to END is similar to the processing from step S4 to END in the second embodiment (FIG. 9).
- step S8 If the abnormality detection frequency Rdet_err is greater than or equal to the sign determination threshold Rth_preerr ( ⁇ Rth_preerr), the process advances to step S8.
- the processing from step S8 to step S13 is similar to the processing from step S10 to step S11 in the second embodiment (FIG. 9).
- step S14 the number of activations Npup, the number of abnormality detections Ndet_err, and the number of diagnoses Ndiag stored in the counter circuit memory 47 are cleared to their initial values, and the process proceeds to step S15.
- step S15 after the power control IC 100 is stopped, the process returns to step S1 and the processes from step S1 onwards are repeated.
- step S3 if the internal characteristic is less than or equal to the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is abnormal (NG), and the process proceeds to step S10.
- step S10 the diagnostic result edge detection unit 41 detects the rising edge of the voltage level of the diagnostic result signal line 106 from Low to High, thereby incrementing the number of abnormality detections Ndet_err by one, and storing it in the counter circuit memory 47. The process then proceeds to step S4.
- step S9 the number of activations Npup stored in the counter circuit memory 47 is counted up, and the process proceeds to step S11.
- the processing in step S11 and step S12 is similar to the processing in step S8 and step S9 of the second embodiment (FIG. 9).
- the power supply control IC 100 of this embodiment determines the abnormality detection frequency by restarting a fixed number of times at startup, and determines that it is a sign of failure when the abnormality detection frequency is equal to or higher than the sign determination threshold. be able to.
- a characteristic in which an abnormality has been detected is corrected according to the abnormality detection frequency, and whether or not the corrected characteristic has been improved is detected based on the abnormality detection frequency, and furthermore, when the characteristic variation over time is equal to or greater than a predetermined value.
- a configuration and an operation example that can set a flag when this occurs will be described. Note that the following description will focus on the points that are different from the second embodiment.
- FIG. 11 is a block diagram showing the configuration of the power supply control IC 100 of this embodiment. Focusing on the difference from Example 2 (FIG. 7), the power supply control IC 100 of this example further includes a characteristic control circuit 60 that controls the characteristic value of the internal characteristic based on the abnormality detection frequency Rdet_err.
- the characteristic control circuit 60 shown in FIG. 12 includes a characteristic adjustment circuit 61 that determines the correction amount of the internal characteristic based on the abnormality detection frequency Rdet_err, and a characteristic value of the internal characteristic that is fixed based on the correction signal output from the characteristic adjustment circuit 61. It includes a correction circuit 63 that can perform correction with correction resolution, and a characteristic control circuit memory 62 that stores the correction signal calculated by the characteristic adjustment circuit 61.
- An example of a circuit installed in the characteristic adjustment circuit 61 is an up/down counter circuit.
- the up/down counter circuit counts up when the voltage level of the correction request signal line 116 transitions from Low to High while High is input to the correction polarity signal line 117, and when Low is input to the correction polarity signal line 117.
- the voltage level of the correction request signal line 116 changes from Low to High in this state, it counts down and outputs the count value to the characteristic control circuit memory 62 as a correction amount.
- the correction circuit 63 reads the correction amount stored in the characteristic control circuit memory 62 at startup, and performs correction according to the correction amount.
- FIG. 13 shows the operation of correcting the characteristic value of the output voltage of the power supply circuit 10 based on the abnormality detection frequency Rdet_err. It is assumed that the correction circuit 63 can perform correction with a correction resolution Dcomp.
- the abnormality detection frequency Rdet_err increases, and when it exceeds the sign determination threshold, the counter circuit 40 determines that it is a sign of failure.
- the counter circuit 40 Since the abnormality diagnosed as a sign of failure is a low voltage abnormality in the output voltage, the counter circuit 40 outputs High to the correction polarity signal line 117 and High to the correction request signal line 116, and the characteristic adjustment circuit 61 outputs the correction amount. is counted up, and the correction amount is set to 1 and stored in the characteristic control circuit memory 62.
- the correction circuit 63 reads the correction amount 1 from the characteristic control circuit memory 62 and applies the correction resolution Dcomp.
- the characteristic adjustment circuit 61 counts up the correction amount and stores the correction amount as 2 in the characteristic control circuit memory 62.
- the correction circuit 63 reads the correction amount 2 from the characteristic control circuit memory 62 and applies 2 (correction amount) ⁇ correction resolution Dcomp.
- the characteristic control circuit 60 sets the voltage level of the maximum correction signal line 112 to High, and the counter circuit memory 47 sets the voltage level of the maximum correction signal line 112 (High). or Low).
- any part in the ECU detects that High is output to the maximum correction signal line 112
- the power supply control IC 100 and the parts equipped with the power supply control IC 100 in the vehicle will need to be replaced. It is possible to notify the car user, etc. of this fact.
- FIG. 13 shows an example of a low voltage abnormality
- the counter circuit 40 outputs Low to the correction polarity signal line 117 and High to the correction request signal line 116.
- the characteristic adjustment circuit 61 operates to count down the amount of correction, and performs correction to lower the output voltage.
- FIG. 11 An example of the startup process of the power control IC 100 of this embodiment (FIG. 11) will be described using the flowchart of FIG. 14.
- the flowchart shown in FIG. 14 shows that the power supply circuit 10 is restarted after correcting the internal characteristics determined to be a sign of failure in the start-up process, and the power supply circuit 10 is restarted unless the abnormality detection frequency Rdet_err is improved to less than the sign judgment threshold Rth_preerr.
- This is a flow of a startup process in which the maximum correction signal is set to High when the correction amount Dcomp reaches the maximum correction value Dmax_comp without being made effective.
- step S2 the correction amount Dcomp in the characteristic control circuit memory 62 is applied, and the process proceeds to step S3.
- step S3, step S5, and step S7 to END is the same as the processing from step S3 to END in the third embodiment (FIG. 10).
- steps S6, S4, S16, and S17 are similar to the processes in steps S9 to S12 of the third embodiment (FIG. 10).
- step S10 a correction amount Dcomp to be applied at the next restart is calculated for the characteristic for which an abnormality was detected in the startup diagnosis, and the process proceeds to step S11.
- step S11 the correction amount Dcomp is stored in the characteristic control circuit memory 62, and the process proceeds to step S12.
- step S13 the voltage level of the maximum correction signal line 112 is switched from Low to High.
- the counter circuit memory 47 stores the maximum correction signal at the rise of the voltage level of the maximum correction signal line 112, and the process proceeds to step S14.
- step S14 the power supply circuit 10 is enabled, and the process proceeds to step S15.
- step S15 the user is notified of the maximum correction signal and the presence of a sign of failure, and the process proceeds to step S18.
- step S18 after the power control IC 100 is stopped, the process returns to step S1 and the processes from step S1 onwards are repeated.
- the power supply control IC 100 of the present embodiment corrects the characteristics in which an abnormality has been detected according to the abnormality detection frequency, and detects whether or not the corrected characteristics have been improved based on the abnormality detection frequency. Further, a flag is set if the amount of variation in characteristics over time exceeds a predetermined value.
- startup diagnosis is performed after controlling the internal characteristics of the power supply control IC during startup diagnosis, and after the startup diagnosis, the internal characteristics are returned to the state before startup diagnosis, compared to a case where no control is performed during startup diagnosis.
- a configuration and operation example that can make it easier to detect an abnormality before a failure of the power supply control IC will be described. Note that the following description will focus on the points that are different from the fourth embodiment.
- FIG. 15 is a block diagram showing the configuration of the power supply control IC 100 of this embodiment. Focusing on the difference from the fourth embodiment (FIG. 11), the characteristic control circuit 60 has a configuration in which the correction request signal line 116 is connected to the diagnostic signal line 105, and further controls the internal characteristics so as to approach the diagnostic threshold during the diagnostic period. A characteristic control circuit 60 is provided.
- a conceivable configuration includes a correction circuit 63 that performs control so as to approach the diagnostic threshold according to a control amount within the range, and a characteristic control circuit memory 62 that stores the control amount.
- FIG. 15 An example of the startup process of the power supply control IC 100 of this embodiment (FIG. 15) will be described using the flowchart of FIG. 16.
- the flowchart shown in FIG. 16 is a flow of a startup process in which the internal characteristics are controlled to be close to the diagnostic threshold only during the startup diagnosis period, thereby making it easier to detect abnormalities compared to a case where no control is performed.
- step S2 the internal characteristics inside the power supply control IC 100 are controlled to approach the diagnostic threshold before startup diagnosis, and the process proceeds to step S3.
- step S3 the startup diagnostic circuit 31 compares the internal characteristics and the abnormality determination threshold voltage Vth_diag. If the internal characteristics are larger than the abnormality determination threshold voltage Vth_diag and it is determined that the internal characteristics are normal (OK), the process proceeds to step S4.
- step S4 the characteristics controlled after startup diagnosis are returned to the characteristics before control, and the process proceeds to step S5.
- step S5 to END is similar to the processing from step S7 to END in the fourth embodiment (FIG. 14).
- step S3 if the internal characteristic is equal to or lower than the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is abnormal (NG), and the process proceeds to step S8.
- step S8 the characteristics controlled after the start-up diagnosis are returned to the characteristics before the control, and the process proceeds to step S9.
- step S9 by detecting the rising edge of the voltage level of the diagnostic result signal line 106 from Low to High by the diagnostic result edge detection unit 41, the number of abnormality detections Ndet_err is incremented by one and stored in the counter circuit memory 47. The process then proceeds to step S10.
- step S10 and step S11 is similar to the processing in step S16 and step S17 of the fourth embodiment (FIG. 14).
- step S5 if the abnormality detection frequency Rdet_err is greater than or equal to the sign determination threshold Rth_preerr ( ⁇ Rth_preerr), the process proceeds to step S12.
- step S12 after the power control IC 100 is stopped, the process returns to step S1 and the processes from step S1 onwards are repeated.
- the power supply control IC 100 of this embodiment performs the startup diagnosis after controlling the internal characteristics to approach the diagnosis threshold only during the startup diagnosis period, so that an abnormality occurs before the power supply control IC fails during the startup diagnosis.
- the startup diagnosis By making it easier to detect and returning the internal characteristics to the state before the control after the startup diagnosis, it is possible to operate with a margin for the control amount relative to the diagnostic threshold.
- setting information of past setting terminals is saved in memory, and by comparing the setting terminal settings detected at startup with the settings of the past setting terminals, the validity of the terminal settings detected at startup is determined.
- a configuration and operation example that can distinguish between misdiagnosis due to an accidental abnormality caused by the environment and intentionally changed settings by rereading the setting information by restarting the system if the judgment results do not match. I will explain about it. Note that the following description will focus on the points that are different from Example 2 (FIG. 7).
- FIG. 17 is a block diagram showing the configuration of the power supply control IC 100 of this embodiment. Focusing on the difference from Example 2 (FIG. 7), the power control IC 100 of this example further adjusts the predetermined settings (hereinafter referred to as , an internal setting), and a memory 70 for storing past terminal settings Dpre_set set at past startups, and a comparison circuit 32 in the startup diagnostic circuit 31 detects the settings detected at startup. It is characterized by comparing the terminal setting Dset and the past terminal setting Dpre_set.
- predetermined settings hereinafter referred to as , an internal setting
- a memory 70 for storing past terminal settings Dpre_set set at past startups
- a comparison circuit 32 in the startup diagnostic circuit 31 detects the settings detected at startup. It is characterized by comparing the terminal setting Dset and the past terminal setting Dpre_set.
- the comparison circuit 32 compares the past terminal setting Dpre_set and the setting terminal Dset read in the startup process, and if they match, reflects the contents of the terminal setting Dset in the internal settings. If they do not match, the number of abnormality detections Ndet_err is counted up, and the startup diagnostic circuit 31 outputs High to the restart signal line 101. When the number of abnormality detections Ndet_err reaches the startup determination threshold number Nth_pup, it is determined that there is no misdiagnosis due to environmental factors, and the terminal setting Dset is reflected in the power supply control IC 100.
- FIG. 17 An example of the startup process of the power supply control IC 100 of this embodiment (FIG. 17) will be described using the flowchart of FIG. 18.
- the flowchart shown in FIG. 18 is a flow of a startup process in which an abnormality in the terminal setting Dset is detected during startup diagnosis and restart is performed.
- step S2 the terminal setting Dset is detected from the potential of the setting terminal 115, and the process proceeds to step S3.
- step S4 the comparison circuit 32 compares the terminal setting Dset and the past terminal setting Dpre_set. If they match, the process advances to step S5. If they do not match, the process advances to step S7.
- step S5 to END is the same as the processing from step S4 to END in the second embodiment (FIG. 9).
- step S7 the number of abnormality detections Ndet_err is counted up and stored in the memory 70, and the process proceeds to step S8.
- step S8 and step S9 is similar to the processing in step S8 and step S9 of the second embodiment (FIG. 9).
- the past terminal setting Dpre_set is saved in the memory 70, and the validity of the detected setting terminal is checked by comparing the terminal setting Dset detected at startup with the past terminal setting Dpre_set in the memory 70.
- the determination can be made has been shown, configurations other than this configuration are also possible.
- a configuration may be considered in which the value of the nonvolatile memory is used as a comparison target, and the validity of the detected setting terminal is determined by comparing it with the expected value of the setting terminal written in advance at the time of manufacturing.
- the power supply control IC 100 of this embodiment stores past terminal settings in memory and determines the validity of the terminal settings by comparing the terminal settings detected at startup with the past terminal settings. If the judgment results do not match, the configuration information can be reread through restart processing, and if the startup judgment thresholds do not match, it is determined that the terminal settings have been intentionally changed and the terminal settings are controlled by the power source. It can be reflected on the IC.
- the configuration and operation example are such that the process to be executed and the number of times to be executed can be selected when executing the reboot process, so that an optimal reboot can be carried out while suppressing the time required for the reboot process. I will explain about it. Note that the following description will focus on the points that are different from Example 6 (FIG. 17).
- FIG. 19 is a block diagram showing the configuration of the power supply control IC 100 of this embodiment. Focusing on the differences from Example 6 (FIG. 17), the power supply control IC 100 of this example further includes a setting pin readout process and a diagnostic process that are performed in the restart process, and a restart process that can set the number of times each is performed. A setting circuit 50 is provided.
- the restart setting circuit 50 is connected to the diagnosis result signal line 106 of the startup diagnosis circuit 31, and sets the startup process and stop process to be performed at the time of restart according to the diagnosis result. Furthermore, by connecting the restart setting circuit 50 to the startup circuit 20 through the re-diagnosis signal line 113 and the re-setting pin readout signal line 114, it is possible to control the process to be re-implemented.
- the counter circuit 40 stores the number of readings of the setting terminal and the number of diagnostics in a memory, and outputs them to the restart setting circuit 50 at startup. Note that the process can be set not to be executed by setting the number of times of execution to 0.
- the restart setting circuit 50 shown in FIG. 20 includes a restart setting circuit memory 51 in which a target number of diagnosis Ndiag_target and a target terminal setting read number Npinread_target are stored, a number of times of diagnosis Ndiag output from the counter circuit 40, and a counter circuit
- a comparison circuit 52a that compares the target diagnosis number Ndiag_target stored in the memory 47 compares the terminal setting read number Npinread outputted from the counter circuit 40 and the target terminal setting read number Npinread_target stored in the counter circuit memory 47. and a comparison circuit 52b.
- the flowchart shown in FIG. 21 is a flowchart of a startup process in which only the flow for which an abnormality is detected by reading the setting terminal 115 and startup diagnosis at startup is re-implemented.
- step S4 the terminal setting read count Npinread is counted up.
- the terminal setting Dset and the past terminal setting Dpre_set are compared, and if they match, the process advances to step S6. If they do not match, the process advances to step S5.
- step S5 the number of abnormality detections Ndet_err is counted up and stored in the memory 70, and the process proceeds to step S6.
- step S7 the startup diagnostic circuit 31 compares the internal characteristics and the abnormality determination threshold voltage Vth_diag. If the internal characteristics are larger than the abnormality determination threshold voltage Vth_diag and it is determined that the internal characteristics are normal (OK), the process proceeds to step S9. If the internal characteristic is less than or equal to the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is abnormal (NG), and the process proceeds to step S8.
- step S8 by detecting the rising edge of the voltage level of the diagnostic result signal line 106 from Low to High by the diagnostic result edge detection unit 41, the number of abnormality detections Ndet_err is counted up by one and stored in the counter circuit memory 47. The process then proceeds to step S9.
- step S9 if the number of times of diagnosis Ndiag is less than the target number of times of diagnosis Ndiag_target, High is output to the re-diagnosis signal line 113, and if the number of terminal setting read times Npinread is less than the target number of terminal setting read times Npinread_target, a reset pin read signal is output. High is output to the line 114, and the process advances to step S14. On the other hand, if the number of times of diagnosis Ndiag has reached the target number of times of diagnosis Ndiag_target and the number of terminal setting read times Npinread has reached the target number of terminal setting read times Npinread_target, the process advances to step S10.
- step S10 if the number of abnormality detections Ndet_err is less than the activation determination threshold number Nth_pup ( ⁇ Nth_pup), the process advances to step S11.
- the process advances to step S15.
- step S11 to END is the same as the processing from step S5 to END in the sixth embodiment (FIG. 18).
- step S15 is similar to the process in step S9 of the sixth embodiment (FIG. 18).
- a restart setting circuit is installed inside the power supply control IC 100, and by inputting the diagnosis result of the diagnostic circuit, it is possible to set the startup process and stop process to be executed at restart according to the startup diagnosis result.
- a possible example has been shown, configurations other than this configuration are also possible.
- restart processing can be set in response to an abnormality detected during operation of a circuit (for example, a CPU) outside the power supply control IC 100.
- a circuit for example, a CPU
- the restart setting may be set in advance at the time of manufacturing by storing the process to be executed in the restart process and the number of execution times of the process in a non-volatile memory.
- the power supply control IC 100 of the present embodiment allows the user to select the process to be executed and the number of times it is executed when executing the reboot process, thereby reducing the time required for the reboot process and optimizing the reboot process. can be carried out.
- the power control IC As explained in each embodiment, by using the power control IC according to the present invention, it is possible to notify the user in the form of a parts replacement notification or the like before the power control IC fails, and it is possible to notify the user before the failure of the power control IC. In comparison, it can be used for almost the same lifespan. Further, since the power control IC can be used for a long time by detecting signs without using an ECU housing with high heat dissipation as in Patent Document 1, the operating time of the ECU housing can be extended and costs can be reduced. Furthermore, by combining an ECU housing with high heat dissipation and predictive detection, the operating time can be further extended. In addition, by installing a mechanism to correct for characteristics where the frequency of abnormality detection has increased, it is possible to further extend the period until parts are replaced, and it is also possible to reduce costs by reducing the number of replacements and inspection frequency. .
- the present invention is not limited to the above-described embodiments, and includes various modifications.
- the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
- it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
- Stop signal line 111... Signal line to be diagnosed, 112... Maximum correction signal line, 113... Re-diagnosis signal line, 114... Resetting pin read signal line, 115... Setting terminal, 116... Correction request signal line, 117...Correction polarity signal line, 118...Diagnosis count signal line, 119...Terminal setting readout count signal line, 200...CPU, Vpower...Power supply voltage, Vth_pup...Start signal determination threshold voltage, Voperate_min...Minimum operating voltage, Voutput...Output voltage , Vref...Reference voltage, Vfb...Feedback voltage, Internal...Internal voltage, Vth_diag...Low voltage abnormality determination threshold voltage, Srepup...Restart signal, Spup...Start signal, Spdown...Stop signal, Spower_en...Control signal, Sdiff...Difference signal , Sdiag...Diagnosis signal, Smax_comp...Maximum correction signal, Ndiag...Number of diagnosis, Ndet_err...Number
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
Provided is a power supply control IC that is mounted on an ECU, that has a function capable of reactivating through a process of an internal circuit or an external circuit, and that can perform highly accurate failure predictive diagnosis. This power supply control IC is characterized by comprising: a power supply circuit that generates at least one voltage from a power supply voltage; an activation pin for activating the power supply circuit; and an activation circuit that performs a reactivation process for the power supply circuit on the basis of a reactivation signal when a prescribed voltage is applied to the activation pin.
Description
本発明は、半導体装置の構成とその制御に係り、特に、高信頼性が要求される車載ECUに搭載される電源制御ICに適用して有効な技術に関する。
The present invention relates to the configuration of a semiconductor device and its control, and particularly to a technique that is effective when applied to a power control IC installed in an on-vehicle ECU that requires high reliability.
カーシェアリングや完全自動運転において、一日あたりの自動車の稼働時間は増え、それに伴い車載半導体部品の稼働時間も増える。また、自動運転レベル4以上が実用化されると、運転操作の全てを自動車に搭載した自動運転システムが担うこととなり、自動運転の制御を担うECU(Electronic Control Unit)内に搭載されるCPU(Central Processing Unit)での処理量の増大や、それに伴う電源制御IC(Integrated Circuit)での損失の増大が予想される。
With car sharing and fully automated driving, the operating hours of cars per day will increase, and the operating hours of in-vehicle semiconductor components will also increase accordingly. Furthermore, when autonomous driving level 4 or above is put into practical use, all driving operations will be handled by the automatic driving system installed in the car, and the CPU installed in the ECU (Electronic Control Unit), which is responsible for controlling automatic driving, will It is expected that the processing amount in the central processing unit (Central Processing Unit) will increase and the loss in the power supply control IC (Integrated Circuit) will increase accordingly.
本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には、電子機器の発熱を抑制する目的で自動車内を循環する冷媒をECU筐体に流すことで電子機器を冷却する技術が開示されている。
As background technology in this technical field, there is, for example, a technology such as Patent Document 1. Patent Document 1 discloses a technique for cooling electronic devices by flowing a refrigerant circulating inside an automobile into an ECU housing for the purpose of suppressing heat generation in the electronic devices.
また、特許文献2には、自動車の停止状態である電源制御ICの起動時に診断を行う診断機能を備えた電源制御ICが開示されている。
Additionally, Patent Document 2 discloses a power control IC that has a diagnostic function that performs diagnosis when the power control IC is activated when the vehicle is in a stopped state.
また、特許文献3には、自動車の動作中における電磁ノイズなどの環境起因による誤診断を回避する目的で、電源制御ICで異常が複数回連続で検出された場合のみ故障と判定する診断方法が開示されている。
Additionally, Patent Document 3 describes a diagnostic method that determines a failure only when an abnormality is detected multiple times in a row in a power supply control IC, in order to avoid erroneous diagnosis due to environmental factors such as electromagnetic noise during vehicle operation. Disclosed.
一般的に半導体部品のジャンクション温度(動作温度)が高いほど、短時間で摩耗故障(寿命)に至り、特性によっては稼働時間に対して特性が初期値から変動する現象(以降、経時特性変動とする)が加速される場合がある。前述したようにECUに搭載される電源制御ICの稼働時間が長くなり、且つ損失の増大に伴い電源制御ICのジャンクション温度が上昇すると、電源制御ICの寿命、すなわち故障到達時期が早くなる。
In general, the higher the junction temperature (operating temperature) of a semiconductor component, the faster it will lead to wear-out failure (life span), and depending on the characteristics, the characteristics may change from their initial values over the operating time (hereinafter referred to as characteristics change over time). ) may be accelerated. As described above, when the operating time of the power control IC installed in the ECU becomes longer and the junction temperature of the power control IC increases due to the increase in loss, the life of the power control IC, that is, the time at which it will fail, becomes earlier.
このような場合、電源制御ICの寿命が近づいてきたら、電源制御ICを搭載したECUを交換することで自動車を使い続けることができる。ECU交換を含めて自動車を使用する場合は交換の頻度を少なくできることが望ましく、そのためには電源制御ICそのものの稼働時間を延ばす必要がある。
In such cases, when the life of the power control IC approaches the end of its life, the car can be continued to be used by replacing the ECU equipped with the power control IC. When using a vehicle, including ECU replacement, it is desirable to be able to reduce the frequency of replacement, and to achieve this, it is necessary to extend the operating time of the power supply control IC itself.
上記特許文献1の技術を用いることで、電源制御ICのジャンクション温度の上昇を抑制することができ、経時特性変動を遅くすることで、冷却しない場合と比較して電源制御ICの稼働時間を長くできる。しかしながら、ECU筐体に冷媒を流すための経路を設ける必要があり、放熱性の高いECU筐体はコストが高くなる。
By using the technology disclosed in Patent Document 1, it is possible to suppress the rise in the junction temperature of the power supply control IC, and by slowing down the change in characteristics over time, the operating time of the power supply control IC is extended compared to the case without cooling. can. However, it is necessary to provide a path for the refrigerant to flow through the ECU casing, and an ECU casing with high heat dissipation properties is expensive.
一方で、電源制御ICが故障すると電源制御ICを搭載したECUが機能しなくなる可能性があり、自動車の走行中にECUが機能しなくなると事故の発生につながる可能性がある。従って、自動車の停止状態である電源制御IC起動時に故障前の予兆を検出して通知できることが望ましい。特に経時特性変動に起因する故障は故障到達時期に近づくと異常が検出され始め、故障到達時期に近づくにつれて異常の発生確率が上昇するという特徴がある。故障の予兆として検知する場合は、故障前である異常の検出確率が低い状態で検知する必要がある。
On the other hand, if the power control IC fails, the ECU equipped with the power control IC may stop functioning, and if the ECU stops functioning while the car is running, it may lead to an accident. Therefore, it is desirable to be able to detect and notify a pre-failure sign when the power supply control IC is activated while the vehicle is in a stopped state. In particular, failures caused by changes in characteristics over time are characterized by the fact that abnormalities begin to be detected as the failure time approaches, and the probability of abnormality occurrence increases as the failure time approaches. When detecting as a sign of a failure, it is necessary to detect it in a state where the probability of detecting an abnormality is low, which is before the failure.
上記特許文献2に記載の技術は、故障を予兆する時点では異常の発生確率が低いため、起動時の一度の診断で故障の予兆を検出することは難しい。さらに、環境起因による誤診断の可能性があり、誤診断すると自動車が起動できず、再度起動するためにはイグニッションスイッチ(以降、IG-SWとする)をオフした後に、再度オンするユーザー操作が必要な上に、検出された異常はユーザー操作に伴いクリアされるため、再度起動しても起動不良の異常を特定できない。原因不明の起動不良があると、電源制御ICが故障に至るまでには稼働時間に余裕があるにも関わらず、ECUが交換される可能性がある。
In the technique described in Patent Document 2, the probability of occurrence of an abnormality is low at the time when a sign of a failure is predicted, so it is difficult to detect a sign of a failure with a single diagnosis at startup. Furthermore, there is a possibility of misdiagnosis due to environmental factors, and if a misdiagnosis is made, the car will not be able to start, and in order to start it again, the user will have to turn off the ignition switch (hereinafter referred to as IG-SW) and then turn it on again. In addition to this, the detected abnormality is cleared by user operation, so even if the system is restarted, it is not possible to identify the abnormality due to startup failure. If there is a startup failure of unknown cause, there is a possibility that the ECU will be replaced even though there is plenty of operating time before the power control IC fails.
上記特許文献3に記載の技術は、異常が連続で検出されるか否かで故障と環境起因による誤診断とを判別できる。しかしながら、故障の予兆は異常の発生確率が低く検知できないため、故障が発生するまでECUが交換されない可能性がある。
The technology described in Patent Document 3 can distinguish between a failure and a misdiagnosis due to environmental factors, depending on whether or not abnormalities are detected continuously. However, since the probability of occurrence of an abnormality is low and a sign of a failure cannot be detected, there is a possibility that the ECU will not be replaced until a failure occurs.
以上のことから、ECU内でIC寿命の観点で厳しい使用条件となる電源制御ICの稼働時間を長くする手法を低コストで提供することと、故障の予兆を検知できる手法を提供することが重要となる。
Given the above, it is important to provide a low-cost method to extend the operating time of the power control IC, which has severe usage conditions in terms of IC life in an ECU, and to provide a method that can detect signs of failure. becomes.
そこで、本発明の目的は、ECUに搭載される電源制御ICにおいて、内部回路または外部回路の処理に応じて再起動できる機能を有し、より精度の高い故障の予兆診断が可能な電源制御ICを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a power control IC installed in an ECU that has a function of restarting according to the processing of an internal circuit or an external circuit, and that enables more accurate predictive failure diagnosis. Our goal is to provide the following.
上記課題を解決するために、本発明は、電源電圧から少なくとも1つ以上の電圧を生成する電源回路と、前記電源回路を起動するための起動ピンと、前記起動ピンに所定電圧が入力されている時に、再起動信号に基づいて前記電源回路の再起動処理を行う起動回路と、を備えることを特徴とする。
In order to solve the above problems, the present invention provides a power supply circuit that generates at least one voltage from a power supply voltage, a starting pin for starting the power supply circuit, and a predetermined voltage input to the starting pin. At times, the power supply circuit is characterized by comprising a startup circuit that performs restart processing of the power supply circuit based on a restart signal.
また、本発明は、(a)電源制御ICの起動信号を入力するステップと、(b)診断回数を1つカウントアップし、メモリに格納するステップと、(c)前記電源制御ICの起動診断を行うステップと、(d)前記(c)ステップにおいて、異常を検出した場合、異常検出回数を1つカウントアップし、前記メモリに格納するステップと、(e)前記メモリから診断回数および異常検出回数を読出し、異常検出頻度を算出するステップと、(f)前記(e)ステップにおいて算出した異常検出頻度を所定の閾値と比較するステップと、を有し、前記(f)ステップにおいて、前記異常検出頻度が前記所定の閾値未満の場合は正常と判定して前記電源制御ICの再起動信号を出力し、前記異常検出頻度が前記所定の閾値以上の場合は故障の予兆と判定して当該故障の予兆の通知を出力することを特徴とする。
The present invention also provides the following steps: (a) inputting a startup signal for the power supply control IC; (b) counting up the number of times of diagnosis by one and storing it in memory; and (c) diagnosing the startup of the power supply control IC. (d) if an abnormality is detected in step (c), incrementing the number of abnormality detections by one and storing it in the memory; (e) counting the number of times of diagnosis and abnormality detection from the memory; and (f) comparing the abnormality detection frequency calculated in step (e) with a predetermined threshold. If the detection frequency is less than the predetermined threshold, it is determined to be normal and a restart signal for the power supply control IC is output, and if the abnormality detection frequency is greater than or equal to the predetermined threshold, it is determined to be a sign of a failure and the failure occurs. It is characterized by outputting a notification of a sign of.
本発明によれば、ECUに搭載される電源制御ICにおいて、内部回路または外部回路の処理に応じて再起動できる機能を有し、より精度の高い故障の予兆診断が可能な電源制御ICを実現することができる。
According to the present invention, a power supply control IC installed in an ECU has a function of restarting according to the processing of internal circuits or external circuits, and is capable of more accurate failure symptom diagnosis. can do.
これにより、コスト上昇を抑えつつ、電源制御IC及びそれを搭載するECUの稼働時間を長くすることができる。
As a result, the operating time of the power supply control IC and the ECU equipped with it can be extended while suppressing cost increases.
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
Problems, configurations, and effects other than those described above will be made clear by the description of the embodiments below.
以下、図面を参照しつつ、本発明の実施の形態について説明する。なお、図面は簡略的なものであるから、この図面の記載を根拠として本発明の技術的範囲を狭く解釈してはならない。また、同一の要素には同一の符号を付し、重複する説明は省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that since the drawings are simplified, the technical scope of the present invention should not be interpreted narrowly based on the descriptions in the drawings. In addition, the same elements are given the same reference numerals, and redundant explanations will be omitted.
図1から図6を参照して、本発明の実施例1に係る電源制御ICとその診断方法について説明する。
With reference to FIGS. 1 to 6, a power supply control IC and its diagnosis method according to a first embodiment of the present invention will be described.
本実施例では、電源制御IC内部で実施される所定の処理(以降、内部処理とする)に応じて電源制御ICの停止処理を行った後に再度起動処理をやり直す処理(以降、再起動処理とする)を実行することを特徴とし、電源制御ICでノイズ等が原因で一時的に異常が発生した場合に再起動処理により起動し直すことができる電源制御ICの構成及び動作について説明する。
In this embodiment, a process is performed in which the power control IC is stopped according to a predetermined process (hereinafter referred to as internal process) executed within the power control IC, and then the start process is restarted (hereinafter referred to as restart process). The configuration and operation of the power supply control IC, which is characterized by executing the following steps) and can be restarted by restart processing when a temporary abnormality occurs in the power supply control IC due to noise or the like, will be described.
図1に、電源制御IC100を搭載したECU1の構成の一例を示す。ECU1は、制御を担うCPU200と、CPU200に電力を供給する電源制御IC100とを備える。電源制御IC100は、ユーザー操作でIG-SW2がオンされると起動処理を実施して、電源電圧Vpowerから出力電圧Voutputを生成することでCPU200へ電力を供給する。
FIG. 1 shows an example of the configuration of an ECU 1 equipped with a power supply control IC 100. The ECU 1 includes a CPU 200 that performs control and a power control IC 100 that supplies power to the CPU 200. When the IG-SW 2 is turned on by a user operation, the power supply control IC 100 performs a startup process and supplies power to the CPU 200 by generating an output voltage Voutput from the power supply voltage Vpower.
図2は、図1の電源制御IC100の構成例を示すブロック図である。図2に示す電源制御IC100は、電源電圧Vpowerから少なくとも1つ以上の電圧を作り出す電源回路10と、内部処理を実施して必要に応じて再起動信号Srepupを出力する内部処理部30と、再起動信号Srepupが入力されると電源制御IC100の再起動処理を実施する起動回路20とで構成される。
FIG. 2 is a block diagram showing a configuration example of the power supply control IC 100 of FIG. 1. The power supply control IC 100 shown in FIG. 2 includes a power supply circuit 10 that generates at least one voltage from the power supply voltage Vpower, an internal processing section 30 that performs internal processing and outputs a restart signal Srepup as necessary, and a restart signal Srepup. It is comprised of a startup circuit 20 that executes restart processing of the power supply control IC 100 when a startup signal Srepup is input.
起動回路20は、起動信号Spupが入力されると電源制御IC100の起動処理を実施し、停止信号Spdownが入力されると電源制御IC100の停止処理を実施する。さらに、起動信号線102にHighが入力されている時に再起動信号Srepupが入力されると再起動処理を実施する。
The startup circuit 20 performs startup processing of the power supply control IC 100 when the startup signal Spup is input, and performs a shutdown processing of the power supply control IC 100 when the stop signal Spdown is input. Further, when the restart signal Srepup is input while the activation signal line 102 is high, restart processing is executed.
電源回路10は、電源回路10を起動するための起動ピン(図示せず)を備えており、起動ピンに所定電圧が入力されている時に、起動回路20は、再起動信号に基づいて電源回路10の再起動処理を行う。
The power supply circuit 10 includes a startup pin (not shown) for starting the power supply circuit 10, and when a predetermined voltage is input to the startup pin, the startup circuit 20 starts the power supply circuit based on a restart signal. 10 restart processing is performed.
本実施例における起動回路20の一例を挙げると、図3に示すような回路構成が考えられる。図3に示す起動回路20は、起動信号Spupを検出する起動信号検出部21と、起動信号Spupを検出後に診断時間Tdiagの間、診断信号Sdiagを出力する診断信号生成部22と、診断時間Tdiag後に再起動信号Srepupが入力されなかったら制御信号線104に論理的ハイレベル(以降、Highとする)を出力する制御信号生成部23と、再起動信号Srepupが入力されると起動信号Spupを一定時間遮断して再度接続することで起動回路20を初期状態にするスイッチ素子24とで構成されている。さらに、遅延回路26aと遅延回路26bは、再起動信号Srepupが入力されると初期化できる構成とする。
To give an example of the starting circuit 20 in this embodiment, a circuit configuration as shown in FIG. 3 can be considered. The startup circuit 20 shown in FIG. 3 includes a startup signal detection section 21 that detects the startup signal Spup, a diagnostic signal generation section 22 that outputs the diagnostic signal Sdiag during the diagnostic time Tdiag after detecting the startup signal Spup, and a diagnostic signal generation section 22 that outputs the diagnostic signal Sdiag during the diagnostic time Tdiag after detecting the startup signal Spup. If the restart signal Srepup is not input later, the control signal generation unit 23 outputs a logical high level (hereinafter referred to as High) to the control signal line 104, and if the restart signal Srepup is input, the control signal generation unit 23 keeps the startup signal Spup constant. It is comprised of a switch element 24 which sets the starting circuit 20 to an initial state by shutting it off for a time and then connecting it again. Further, the delay circuit 26a and the delay circuit 26b are configured to be initialized when the restart signal Srepup is input.
起動回路20の初期状態は、診断信号線105と制御信号線104に論理的Lowレベル(以降、Lowとする)を出力した状態である。また、再起動信号線101はLowのため、スイッチ素子24は接続されており、起動信号Spupとして起動信号線102にHighが入力されると起動信号検出部21は起動信号判定閾電圧Vth_pupと比較し、起動信号判定閾電圧Vth_pupより大きいことをもって、起動信号Spupと判断し診断信号生成部22へHighを出力する。
The initial state of the startup circuit 20 is a state in which a logical low level (hereinafter referred to as "Low") is output to the diagnostic signal line 105 and the control signal line 104. Further, since the restart signal line 101 is Low, the switch element 24 is connected, and when High is input to the startup signal line 102 as the startup signal Spup, the startup signal detection unit 21 compares it with the startup signal determination threshold voltage Vth_pup. However, if it is larger than the activation signal determination threshold voltage Vth_pup, it is determined that the activation signal Spup is present and outputs High to the diagnostic signal generation section 22.
診断信号生成部22は、起動信号検出部21からHighが入力されると診断信号Sdiagとして診断信号線105にHighを出力する。遅延回路26aの遅延時間が診断時間Tdiagとなり、診断が完了するTdiag経過後にLowを出力する。制御信号生成部23内の遅延回路26bの遅延時間をTdiagより長く設定することで、Tdiag後に再起動信号Srepupがあるか否かで、電源回路10を無効にするか有効にするかを判断する。遅延回路は複数のNOT回路で容易に実現できることが知られているため、構成及び動作の説明を省略する。
When the diagnostic signal generating section 22 receives a High signal from the activation signal detecting section 21, it outputs a High signal to the diagnostic signal line 105 as a diagnostic signal Sdiag. The delay time of the delay circuit 26a becomes the diagnosis time Tdiag, and after the diagnosis is completed and Tdiag has elapsed, it outputs Low. By setting the delay time of the delay circuit 26b in the control signal generation unit 23 to be longer than Tdiag, it is determined whether the power supply circuit 10 is disabled or enabled depending on whether there is a restart signal Srepup after Tdiag. . Since it is known that the delay circuit can be easily realized by a plurality of NOT circuits, a description of the configuration and operation will be omitted.
診断時間Tdiag後に再起動信号Srepupがなければ、制御信号線104にHighを出力し、電源回路10は動作を開始する。Tdiag後に再起動信号Srepupがあれば制御信号線104にLowを出力したまま、スイッチ素子24が切断され、起動回路20が初期化される。また、起動信号線102にLowが入力されると、起動信号検出部21は、起動信号判定閾電圧Vth_pupより小さいことをもって停止信号Spdownと判断し、診断信号生成部22へLowを出力する。停止処理として、起動回路20は診断信号線105と制御信号線104にLowを出力した初期状態となる。
If there is no restart signal Srepup after the diagnostic time Tdiag, High is output to the control signal line 104, and the power supply circuit 10 starts operating. If there is a restart signal Srepup after Tdiag, the switch element 24 is disconnected and the startup circuit 20 is initialized while outputting Low to the control signal line 104. Further, when Low is input to the activation signal line 102, the activation signal detection unit 21 determines that the stop signal Spdown is smaller than the activation signal determination threshold voltage Vth_pup, and outputs Low to the diagnostic signal generation unit 22. As a stop process, the startup circuit 20 enters an initial state in which it outputs Low to the diagnostic signal line 105 and the control signal line 104.
電源回路10は、電源線103に電源電圧Vpowerが入力されると内部回路へ起動時に必要な電力を供給する機能(機能A)と、電源電圧Vpowerが入力され、且つ制御信号線104の電圧レベルがLowからHighになる制御信号Spower_enが入力されると電源電圧Vpowerから少なくとも1つ以上の出力電圧を生成し、内部回路若しくは外部回路へECU動作に必要な電力を供給する機能(機能B)を備える。
The power supply circuit 10 has a function (function A) of supplying power necessary for startup to internal circuits when a power supply voltage Vpower is input to a power supply line 103, and a function (function A) that supplies power necessary for starting up the internal circuit when a power supply voltage Vpower is input to a power supply line 103, and a voltage level of a control signal line 104. When the control signal Power_en that changes from Low to High is input, at least one output voltage is generated from the power supply voltage Vpower, and the function (Function B) of supplying the power necessary for ECU operation to the internal circuit or external circuit is performed. Be prepared.
これらの機能を実現する回路として、スイッチングレギュレータやリニアレギュレータ、バンドギャップリファレンスなどが考えられ、そのうちの1つまたは複数搭載した構成若しくは、それらを組み合わせた構成としても良い。
Possible circuits that implement these functions include switching regulators, linear regulators, bandgap references, etc., and a configuration that includes one or more of them, or a configuration that combines them may also be used.
本実施例における電源回路10の一例を挙げると、図4に示すような回路構成が考えられる。前者の機能(機能A)をリニアレギュレータ12b、後者の機能(機能B)をリニアレギュレータ12aでそれぞれ構成し、電源線103とリニアレギュレータ12aを切断若しくは接続するスイッチ素子11で構成する。
To give an example of the power supply circuit 10 in this embodiment, a circuit configuration as shown in FIG. 4 can be considered. The former function (function A) is configured by a linear regulator 12b, the latter function (function B) is configured by a linear regulator 12a, and is configured by a switch element 11 that disconnects or connects the power line 103 and the linear regulator 12a.
リニアレギュレータ12aの構成の一例としては、出力電圧Voutputを分圧して帰還電圧Vfbを生成する帰還抵抗16と帰還抵抗17と、出力電圧Voutputの基準となる基準電圧Vrefを生成する基準電圧生成部13と、帰還電圧Vfbと基準電圧Vrefの電圧値の差分量を差分信号Sdiffとして出力するエラーアンプ15と、差分信号Sdiffに応じて抵抗値を制御することで電源電圧Vpowerから出力電圧Voutputを生成するMOSFET14とで構成される例が挙げられる。
An example of the configuration of the linear regulator 12a includes a feedback resistor 16 and a feedback resistor 17 that divide the output voltage Voutput to generate a feedback voltage Vfb, and a reference voltage generator 13 that generates a reference voltage Vref that is a reference for the output voltage Voutput. and an error amplifier 15 that outputs the difference between the voltage values of the feedback voltage Vfb and the reference voltage Vref as a difference signal Sdiff, and generates an output voltage Voutput from the power supply voltage Vpower by controlling the resistance value according to the difference signal Sdiff. An example configured with MOSFET 14 is given.
スイッチ素子11は、制御信号線104にHighが入力されている間は電源電圧VpowerとMOSFET14を電気的に接続し、制御信号線104にLowが入力されている間は電源電圧VpowerとMOSFET14を電気的に切断する。
The switch element 11 electrically connects the power supply voltage Vpower and the MOSFET 14 while a high level is input to the control signal line 104, and electrically connects the power supply voltage Vpower and the MOSFET 14 while a low level is input to the control signal line 104. cut the target.
基準電圧生成部13は、バンドギャップリファレンス回路などで容易に実現できることが知られており、入力電圧や温度などの周辺環境の変化に対して電圧値が変動しない基準電圧Vrefを出力する。
It is known that the reference voltage generation unit 13 can be easily realized using a bandgap reference circuit or the like, and outputs a reference voltage Vref whose voltage value does not change due to changes in the surrounding environment such as input voltage and temperature.
出力電圧Voutputの変化に対して帰還電圧Vfbと基準電圧Vrefの電圧値の差分が小さくなるように制御を行うことで、リニアレギュレータ12aの出力電圧線108には(1)式で示すような基準電圧Vrefと帰還抵抗値Rfbu,Rfbdで決まる出力電圧Voutputが安定して出力されることとなる。
By performing control so that the difference between the voltage values of the feedback voltage Vfb and the reference voltage Vref becomes small with respect to changes in the output voltage Voutput, the output voltage line 108 of the linear regulator 12a has a reference value as shown in equation (1). The output voltage Voutput determined by the voltage Vref and the feedback resistance values Rfbu and Rfbd is stably output.
Voutput=Vref×(Rfbu+Rfbd)÷Rfbd (1)
なお、リニアレギュレータ12bは、リニアレギュレータ12aと同じであるため構成及び動作の説明は省略する。 Voutput=Vref×(Rfbu+Rfbd)÷Rfbd (1)
Note that since thelinear regulator 12b is the same as the linear regulator 12a, explanations of the configuration and operation will be omitted.
なお、リニアレギュレータ12bは、リニアレギュレータ12aと同じであるため構成及び動作の説明は省略する。 Voutput=Vref×(Rfbu+Rfbd)÷Rfbd (1)
Note that since the
内部処理部30は、電源制御IC100内の所定の特性(以降、内部特性とする)が所定の条件を満たした場合に再起動信号Srepupを出力する。ここで、内部特性とは、波形の持つ物理量(電圧値や電流値、周波数など)を指す。
The internal processing unit 30 outputs a restart signal Srepup when a predetermined characteristic (hereinafter referred to as an internal characteristic) within the power supply control IC 100 satisfies a predetermined condition. Here, the internal characteristics refer to physical quantities (voltage value, current value, frequency, etc.) possessed by the waveform.
本実施例における内部処理部30内に搭載される回路の例を挙げると、図5に示すような回路構成が考えられる。図5に示す起動診断回路31は、内部特性と異常判定閾電圧Vth_diagを比較して再起動信号Srepupを出力する。起動診断回路31は、内部特性を被診断信号線111でモニタ出来るようにすることで内部特性の異常を検出することが可能となる。
As an example of the circuit installed in the internal processing section 30 in this embodiment, a circuit configuration as shown in FIG. 5 can be considered. The startup diagnostic circuit 31 shown in FIG. 5 compares the internal characteristics with the abnormality determination threshold voltage Vth_diag and outputs the restart signal Srepup. The startup diagnostic circuit 31 can detect abnormalities in the internal characteristics by monitoring the internal characteristics using the signal line 111 to be diagnosed.
起動診断回路31は、図5に示すように、被診断信号線111でモニタされる内部特性と異常判定閾電圧Vth_diagを比較する異常判定部32と、診断信号線105にHighが入力されている期間の診断結果を出力する診断制御部33と、異常判定のフィルタ時間Tfilterの間にHighが出力された場合のみ異常と判定するフィルタ回路34とで構成される。遅延回路26cの遅延量は、フィルタ時間Tfilterを決めている。
As shown in FIG. 5, the startup diagnostic circuit 31 has an abnormality determination unit 32 that compares the internal characteristics monitored by the diagnosed signal line 111 with the abnormality determination threshold voltage Vth_diag, and a high level is input to the diagnostic signal line 105. It is comprised of a diagnostic control unit 33 that outputs the diagnostic results for a period, and a filter circuit 34 that determines an abnormality only when High is output during the abnormality determination filter time Tfilter. The delay amount of the delay circuit 26c determines the filter time Tfilter.
起動診断回路31は、起動回路20から診断信号線105の電圧レベルにHighが入力されている時に、内部特性と異常判定閾電圧Vth_diagを比較することで内部特性の異常の有無を診断する。内部特性が異常判定閾電圧Vth_diagよりも大きい場合は正常と判定し、再起動信号線101にLowを出力する。一方、内部特性が異常判定閾電圧Vth_diag以下の場合は内部特性の異常と判定し、再起動信号線101にHighを出力する。
The startup diagnostic circuit 31 diagnoses whether there is an abnormality in the internal characteristics by comparing the internal characteristics with the abnormality determination threshold voltage Vth_diag when the voltage level of the diagnostic signal line 105 is High from the startup circuit 20. If the internal characteristic is larger than the abnormality determination threshold voltage Vth_diag, it is determined to be normal, and a Low signal is output to the restart signal line 101. On the other hand, if the internal characteristic is less than or equal to the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is abnormal, and a High signal is output to the restart signal line 101.
本実施例における電源制御IC100を内部処理で再起動する起動処理の一例として、起動診断でノイズ等が原因で一時的に異常が発生した場合に再起動処理により起動し直す処理のフローを図6のフローチャートを用いて説明する。
As an example of a startup process for restarting the power supply control IC 100 in this embodiment by internal processing, FIG. This will be explained using a flowchart.
先ず、電源線103に電源電圧Vpowerが印可されると(START)、ステップS1において、起動信号Spupとして起動信号線102に電圧レベルHighが入力される。起動回路20は診断信号として診断信号線105にHighを出力し、ステップS2に進む。
First, when the power supply voltage Vpower is applied to the power supply line 103 (START), a voltage level High is inputted to the startup signal line 102 as the startup signal Spup in step S1. The starting circuit 20 outputs a High signal to the diagnostic signal line 105 as a diagnostic signal, and the process proceeds to step S2.
次に、ステップS2において、起動診断回路31は内部特性と異常判定閾電圧Vth_diagを比較する。内部特性が異常判定閾電圧Vth_diagよりも大きい場合は内部特性が正常であると判定し(OK)、ステップS3に進む。内部特性が異常判定閾電圧Vth_diag以下の場合は内部特性が異常であると判定し(NG)、ステップS5に進む。
Next, in step S2, the startup diagnostic circuit 31 compares the internal characteristics and the abnormality determination threshold voltage Vth_diag. If the internal characteristic is larger than the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is normal (OK), and the process proceeds to step S3. If the internal characteristic is less than or equal to the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is abnormal (NG), and the process proceeds to step S5.
ステップS3において、起動回路20は制御信号線104にHighを出力する。電源回路10は動作を開始し、ステップS4に進む。
In step S3, the startup circuit 20 outputs High to the control signal line 104. The power supply circuit 10 starts operating and proceeds to step S4.
続いて、ステップS4において、電源回路10は電源電圧Vpowerから出力電圧Voutputを生成する。負荷に出力電圧Voutputが供給され、負荷が動作を開始すると共に、起動処理を終了する(END)。
Subsequently, in step S4, the power supply circuit 10 generates an output voltage Voutput from the power supply voltage Vpower. The output voltage Voutput is supplied to the load, the load starts operating, and the startup process ends (END).
一方、ステップS5においては、起動診断回路31は再起動信号Srepupとして再起動信号線101にHighを出力し、ステップS6に進む。
On the other hand, in step S5, the startup diagnostic circuit 31 outputs High to the restart signal line 101 as the restart signal Srepup, and the process proceeds to step S6.
ステップS6において、起動回路20は停止処理として初期状態となり、ステップS2に戻る。そして、最後の起動後に異常が発生した際に、異常が検出されなくなるまで再起動を繰り返す。なお、再起動処理を所定の回数実施するように設定しても良い。
In step S6, the starting circuit 20 enters the initial state as a stop process, and returns to step S2. Then, when an abnormality occurs after the last startup, the restart is repeated until no abnormality is detected. Note that the restart process may be set to be executed a predetermined number of times.
ここで、起動処理とは電源線103に電源電圧Vpowerが印可されている状態(START)から、電源制御IC100の電力供給先の回路が動作する状態(END)までの処理のことを指す。また、再起動処理とは起動処理の途中で起動処理をやり直す処理のことで、ステップS5からステップS6までの処理のことを指す。
Here, the startup process refers to the process from a state in which the power supply voltage Vpower is applied to the power supply line 103 (START) to a state in which the circuit to which power is supplied to the power supply control IC 100 operates (END). Further, the restart process is a process of restarting the start process in the middle of the start process, and refers to the process from step S5 to step S6.
なお、本実施例では、電源制御IC100の内部処理で再起動処理を行う構成例を示しているが、電源制御IC100の起動回路20と電源制御IC100の外部素子を電気的に接続することで、外部素子での処理(以降、外部処理とする)で電源制御IC100の再起動処理を実施することもできる。
Although this embodiment shows a configuration example in which restart processing is performed by internal processing of the power supply control IC 100, by electrically connecting the startup circuit 20 of the power supply control IC 100 and external elements of the power supply control IC 100, It is also possible to perform restart processing of the power supply control IC 100 by processing in an external element (hereinafter referred to as external processing).
本実施例における起動診断回路31での診断は、あくまで電圧値の比較の観点で記載された一例であり、他にも多様な形態で同様の診断が実現可能である。例えば、比較回路である異常判定部32は電流値同士を比較するための電流入力型のコンパレータ回路や周波数同士を比較するためのデジタルカウンタや位相比較器といった回路であっても良い。
The diagnosis by the startup diagnosis circuit 31 in this embodiment is merely an example described from the perspective of comparing voltage values, and similar diagnosis can be realized in various other forms. For example, the abnormality determination unit 32, which is a comparison circuit, may be a current input type comparator circuit for comparing current values, or a circuit such as a digital counter or a phase comparator for comparing frequencies.
以上説明したように、本実施例の電源制御IC100は、内部処理に応じて再起動処理を実行することを特徴とし、電源制御IC100でノイズ等が原因で一時的に異常が発生した場合に再起動処理により起動し直すことができる。
As explained above, the power supply control IC 100 of this embodiment is characterized by executing restart processing according to internal processing, and restarts when a temporary abnormality occurs in the power supply control IC 100 due to noise or the like. It can be restarted using the startup process.
図7から図9を参照して、本発明の実施例2に係る電源制御ICとその診断方法について説明する。
A power supply control IC and its diagnosis method according to a second embodiment of the present invention will be described with reference to FIGS. 7 to 9.
本実施例では、実施例1の構成に加えて、さらに診断回数と異常検出回数を検出することで異常検出頻度を求め、異常検出頻度が所定の閾値以上であることをもって故障の予兆と判断する電源制御ICの構成とその動作について説明する。なお、以下では、実施例1と異なる点を中心に説明する。
In this embodiment, in addition to the configuration of Embodiment 1, the frequency of abnormality detection is determined by detecting the number of times of diagnosis and the number of times of abnormality detection, and when the frequency of abnormality detection is equal to or higher than a predetermined threshold value, it is determined that it is a sign of failure. The configuration and operation of the power supply control IC will be explained. Note that the following description focuses on the points that are different from the first embodiment.
図7は、本実施例の電源制御IC100の構成を示すブロック図である。実施例1(図2)との差分に着目すると、本実施例の電源制御IC100は、起動時に実施された診断回数Ndiagと異常検出回数Ndet_errをカウントするカウンタ回路40を有し、起動回路20はカウンタ回路40と接続された停止信号線110を備える。
FIG. 7 is a block diagram showing the configuration of the power supply control IC 100 of this embodiment. Focusing on the difference from Example 1 (FIG. 2), the power supply control IC 100 of this example includes a counter circuit 40 that counts the number of diagnoses Ndiag performed at startup and the number of abnormality detections Ndet_err; A stop signal line 110 connected to the counter circuit 40 is provided.
停止信号線110の電圧レベルがLowからHighになると、停止処理として起動回路20は初期状態となる。カウンタ回路40には、診断信号線105と診断結果信号線106が接続されており、診断信号として診断信号線105にHighが入力される度に診断回数Ndiagをカウントアップし、異常判定として診断結果信号線106にHighが入力される度に異常検出回数Ndet_errをカウントアップする。
When the voltage level of the stop signal line 110 changes from Low to High, the startup circuit 20 enters the initial state as a stop process. A diagnostic signal line 105 and a diagnostic result signal line 106 are connected to the counter circuit 40, and each time a high level is input to the diagnostic signal line 105 as a diagnostic signal, the number of times of diagnosis Ndiag is counted up, and the diagnostic result is determined as an abnormality. Every time High is input to the signal line 106, the number of abnormality detections Ndet_err is counted up.
診断回数Ndiagと異常検出回数Ndet_errから求めた異常検出頻度Rdet_errと予兆判定閾値Rth_preerrを比較し、異常検出頻度Rdet_errが予兆判定閾値Rth_preerr未満の場合は、再起動信号線101の電圧レベルをLowからHighにし、異常検出頻度Rdet_errが予兆判定閾値Rth_preerr以上の場合は、図8で後述するカウンタ回路40のカウンタ回路用メモリ47内の診断回数Ndiagと異常検出回数Ndet_errを初期値にクリアし、停止信号線110の電圧レベルをLowからHighにする。
The abnormality detection frequency Rdet_err obtained from the number of diagnoses Ndiag and the number of abnormality detections Ndet_err is compared with the predictive judgment threshold Rth_preerr, and if the abnormality detection frequency Rdet_err is less than the predictive judgment threshold Rth_preerr, the voltage level of the restart signal line 101 is changed from Low to High. If the abnormality detection frequency Rdet_err is equal to or higher than the predictive judgment threshold Rth_preerr, the number of diagnosis times Ndiag and the number of abnormality detections Ndet_err in the counter circuit memory 47 of the counter circuit 40, which will be described later in FIG. 8, are cleared to initial values, and the stop signal line The voltage level of 110 is changed from Low to High.
さらに、カウンタ回路40は、電源回路10が停止しても診断回数Ndiagと異常検出回数Ndet_errを保持できる構成若しくは手段を有する。
Furthermore, the counter circuit 40 has a configuration or means that can hold the number of diagnoses Ndiag and the number of abnormality detections Ndet_err even if the power supply circuit 10 stops.
なお、異常検出頻度Rdet_errは下記(2)式で算出することができる。
Note that the abnormality detection frequency Rdet_err can be calculated using the following equation (2).
Rdet_err=Ndet_err/Ndiag (2)
精度を考慮すると、3回以上の起動回数から異常検出頻度Rdet_errを算出するのが望ましい。 Rdet_err=Ndet_err/Ndiag (2)
Considering accuracy, it is desirable to calculate the abnormality detection frequency Rdet_err from the number of activations of three or more times.
精度を考慮すると、3回以上の起動回数から異常検出頻度Rdet_errを算出するのが望ましい。 Rdet_err=Ndet_err/Ndiag (2)
Considering accuracy, it is desirable to calculate the abnormality detection frequency Rdet_err from the number of activations of three or more times.
本実施例におけるカウンタ回路40の一例を挙げると、図8に示すような構成が考えられる。図8に示すカウンタ回路40は、診断結果信号線106の電圧レベルのLowからHighへの立ち上がりエッジを検出する診断結果エッジ検出部41と、診断信号線105の電圧レベルのLowからHighへの立ち上がりエッジを検出する診断信号エッジ検出部42と、診断結果エッジ検出部41で立ち上がりエッジが検出される度に異常検出回数Ndet_errをカウントアップする異常検出カウンタ回路44と、診断信号エッジ検出部42で立ち上がりエッジが検出される度に診断回数Ndiagをカウントアップする診断カウンタ回路45と、異常検出回数Ndet_errを格納しておくカウンタ回路用メモリ47と、異常検出頻度Rdet_errの算出及び異常検出頻度Rdet_errと予兆判定閾値Rth_preerrを比較することで起動するか否かを判定する異常検出頻度判定部46とを備える。
To give an example of the counter circuit 40 in this embodiment, a configuration as shown in FIG. 8 can be considered. The counter circuit 40 shown in FIG. 8 includes a diagnostic result edge detection unit 41 that detects the rising edge of the voltage level of the diagnostic result signal line 106 from Low to High, and a diagnostic result edge detection unit 41 that detects the rising edge of the voltage level of the diagnostic signal line 105 from Low to High. A diagnostic signal edge detection unit 42 that detects an edge, an abnormality detection counter circuit 44 that counts up the number of abnormality detections Ndet_err every time a rising edge is detected by the diagnostic result edge detection unit 41, and a diagnostic signal edge detection unit 42 that detects a rising edge. A diagnostic counter circuit 45 that counts up the number of diagnoses Ndiag every time an edge is detected, a counter circuit memory 47 that stores the number of abnormality detections Ndet_err, and calculates the abnormality detection frequency Rdet_err and determines the abnormality detection frequency Rdet_err and the sign. It also includes an abnormality detection frequency determination unit 46 that determines whether to start by comparing a threshold value Rth_preerr.
異常検出頻度判定部46は、診断回数Ndiagに対する異常検出回数Ndet_errの割合である異常検出頻度Rdet_errを算出し、異常検出頻度Rdet_errと予兆判定閾値Rth_preerrを比較して、異常検出頻度Rdet_errが予兆判定閾値Rth_preerr未満の場合は正常と判断し、再起動信号線101の電圧レベルをLowからHighにする。一方、異常検出頻度Rdet_errが予兆判定閾値Rth_preerr以上の場合は故障の予兆と判断し、カウンタ回路用メモリ47内の異常検出回数Ndet_errを初期値にクリアして停止信号線110の電圧レベルをLowからHighにする。
The abnormality detection frequency determination unit 46 calculates the abnormality detection frequency Rdet_err, which is the ratio of the number of abnormality detections Ndet_err to the number of diagnoses Ndiag, and compares the abnormality detection frequency Rdet_err with the premonition determination threshold Rth_preerr, so that the abnormality detection frequency Rdet_err becomes the predetermined threshold. If it is less than Rth_preerr, it is determined to be normal, and the voltage level of the restart signal line 101 is changed from Low to High. On the other hand, if the abnormality detection frequency Rdet_err is equal to or higher than the sign determination threshold Rth_preerr, it is determined that it is a sign of failure, and the abnormality detection frequency Ndet_err in the counter circuit memory 47 is cleared to the initial value, and the voltage level of the stop signal line 110 is changed from Low to Low. Set it to High.
また、異常検出頻度判定部46は、故障の予兆が検出されたことをもって通信信号線109にHighを出力することで、外部素子を経由してユーザーに通知することもできる。
Furthermore, the abnormality detection frequency determination unit 46 can also notify the user via an external element by outputting High to the communication signal line 109 when a sign of a failure is detected.
図9のフローチャートを用いて、本実施例における起動時の異常検出頻度Rdet_errで故障の予兆を判定する起動処理の一例を説明する。
An example of the startup process of determining a sign of failure based on the abnormality detection frequency Rdet_err at startup in this embodiment will be described using the flowchart in FIG.
図9に示すフローチャートは、電源制御IC100が起動診断で異常があった場合、再起動処理を行うことで起動をやり直しつつ、起動診断で異常が検出される度に異常検出頻度Rdet_errを算出し、異常検出頻度Rdet_errが予兆判定閾値Rth_preerr以上であることをもって故障の予兆と判定し、負荷に故障の予兆を通知した上で電源制御IC100を起動しない処理のフローである。
The flowchart shown in FIG. 9 shows that when the power supply control IC 100 detects an abnormality in the startup diagnosis, it restarts the startup by performing a restart process, calculates the abnormality detection frequency Rdet_err every time an abnormality is detected in the startup diagnosis, This is a process flow in which it is determined that it is a sign of failure when the abnormality detection frequency Rdet_err is equal to or greater than the sign determination threshold Rth_preerr, and the load is notified of the failure sign, and then the power supply control IC 100 is not activated.
なお、以下では、実施例1(図6)の処理と異なる点を中心に説明する。
Note that the following description will focus on the points that are different from the processing in Example 1 (FIG. 6).
先ず、電源線103に電源電圧Vpowerが印可されると(START)、実施例1(図6)と同様に、ステップS1において、起動信号Spupとして起動信号線102に電圧レベルHighが入力される。起動回路20は診断信号として診断信号線105にHighを出力し、ステップS2に進む。
First, when the power supply voltage Vpower is applied to the power supply line 103 (START), in step S1, the voltage level High is inputted to the startup signal line 102 as the startup signal Spup, similarly to the first embodiment (FIG. 6). The starting circuit 20 outputs a High signal to the diagnostic signal line 105 as a diagnostic signal, and the process proceeds to step S2.
ステップS2において、診断回数Ndiagを1つカウントアップし、カウンタ回路用メモリ47に格納してステップS3に進む。
In step S2, the number of diagnoses Ndiag is counted up by one, stored in the counter circuit memory 47, and the process proceeds to step S3.
ステップS3において、起動診断回路31は内部特性と異常判定閾電圧Vth_diagを比較する。内部特性が異常判定閾電圧Vth_diagよりも大きく、内部特性が正常であると判定した場合(OK)、実施例1(図6)のステップS3,S4に相当するステップS4,S5の処理を実行し、起動処理を終了する(END)。
In step S3, the startup diagnostic circuit 31 compares the internal characteristics and the abnormality determination threshold voltage Vth_diag. If the internal characteristics are larger than the abnormality determination threshold voltage Vth_diag and it is determined that the internal characteristics are normal (OK), steps S4 and S5 corresponding to steps S3 and S4 of the first embodiment (FIG. 6) are executed. , ends the startup process (END).
一方、ステップS3において、内部特性が異常判定閾電圧Vth_diag以下の場合は内部特性が異常であると判定し(NG)、ステップS6に進む。
On the other hand, in step S3, if the internal characteristic is equal to or lower than the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is abnormal (NG), and the process proceeds to step S6.
ステップS6において、診断結果信号線106の電圧レベルのLowからHighへの立ち上がりエッジを診断結果エッジ検出部41で検出することで異常検出回数Ndet_errを1つカウントアップし、カウンタ回路用メモリ47に格納してステップS7に進む。
In step S6, by detecting the rising edge of the voltage level of the diagnostic result signal line 106 from Low to High by the diagnostic result edge detection unit 41, the number of abnormality detections Ndet_err is counted up by one and stored in the counter circuit memory 47. The process then proceeds to step S7.
次に、ステップS7において、カウンタ回路用メモリ47から診断回数Ndiagと異常検出回数Ndet_errを読出し、異常検出頻度Rdet_errを算出する。異常検出頻度Rdet_errが予兆判定閾値Rth_preerr未満(<Rth_preerr)の場合は正常と判定し、ステップS8に進む。異常検出頻度Rdet_errが予兆判定閾値Rth_preerr以上(≧Rth_preerr)の場合は故障の予兆と判定し、ステップS10に進む。
Next, in step S7, the number of diagnoses Ndiag and the number of abnormality detections Ndet_err are read from the counter circuit memory 47, and the abnormality detection frequency Rdet_err is calculated. If the abnormality detection frequency Rdet_err is less than the sign determination threshold Rth_preerr (<Rth_preerr), it is determined to be normal, and the process proceeds to step S8. If the abnormality detection frequency Rdet_err is greater than or equal to the sign determination threshold Rth_preerr (≧Rth_preerr), it is determined that it is a sign of failure, and the process proceeds to step S10.
ステップS10において、電源回路10を一時的に有効にし、ステップS11に進む。
In step S10, the power supply circuit 10 is temporarily enabled, and the process proceeds to step S11.
続いて、ステップS11において、負荷に一時的に電力供給を行い、故障の予兆があったことを負荷に通知する。
Subsequently, in step S11, power is temporarily supplied to the load, and the load is notified that there is a sign of failure.
次に、ステップS12において、カウンタ回路用メモリ47内の診断回数Ndiagと異常検出回数Ndet_err(すなわち、異常検出頻度Rdet_err)を初期値にクリアし、ステップS13に進む。
Next, in step S12, the number of diagnoses Ndiag and the number of abnormality detections Ndet_err (that is, the abnormality detection frequency Rdet_err) in the counter circuit memory 47 are cleared to initial values, and the process proceeds to step S13.
ステップS13において、電源制御IC100の停止処理を実施した後、ステップS1に戻り、ステップS1以降の処理を繰り返す。
In step S13, after the power control IC 100 is stopped, the process returns to step S1 and the processes from step S1 onwards are repeated.
一方、ステップS7において、異常検出頻度Rdet_errが予兆判定閾値Rth_preerr未満(<Rth_preerr)であり正常と判定した場合は、実施例1(図6)のステップS5,S6に相当するステップS8,S9の処理を実行し、ステップS2に戻り、ステップS2以降の処理を繰り返す。
On the other hand, in step S7, if the abnormality detection frequency Rdet_err is less than the sign determination threshold Rth_preerr (<Rth_preerr) and is determined to be normal, the processing in steps S8 and S9 corresponding to steps S5 and S6 in the first embodiment (FIG. 6) is executed, the process returns to step S2, and the processes from step S2 onwards are repeated.
なお、本実施例では、停止信号が入力される度に異常検出頻度をクリアしたが、複数回の起動信号の入力によって得られた異常検出頻度を用いても良く、その場合は一度の起動信号で判断するよりも長い期間で得られた異常検出頻度で判断することができる。
In this embodiment, the abnormality detection frequency is cleared every time the stop signal is input, but the abnormality detection frequency obtained by inputting the start signal multiple times may be used. Judgments can be made based on the abnormality detection frequency obtained over a longer period of time.
また、本実施例では故障の予兆と判断した場合、故障の予兆を通知するのみで通常動作は行わないフローを示したが、故障の予兆を通知した上で通常動作を行うフローとしても良い。
Further, in this embodiment, when it is determined that there is a sign of failure, a flow is shown in which the failure sign is only notified and normal operation is not performed, but a flow may be adopted in which normal operation is performed after notifying the failure sign.
以上説明したように、本実施例の電源制御IC100は、診断回数と異常検出回数を検出することで異常検出頻度を求め、異常検出頻度が所定の閾値以上であることをもって故障の予兆と判断することができる。
As explained above, the power supply control IC 100 of this embodiment determines the abnormality detection frequency by detecting the number of times of diagnosis and the number of times of abnormality detection, and determines that it is a sign of failure when the abnormality detection frequency is equal to or higher than a predetermined threshold. be able to.
図8から図10を参照して、本発明の実施例3に係る電源制御ICとその診断方法について説明する。
With reference to FIGS. 8 to 10, a power supply control IC and its diagnosis method according to a third embodiment of the present invention will be described.
本実施例では、実施例2の電源制御IC100の変形例として、起動時に固定回数の再起動を行う構成及び動作例について説明する。なお、以下では、実施例2と異なる点を中心に説明する。
In this embodiment, as a modification of the power supply control IC 100 of the second embodiment, a configuration and an operation example will be described in which restarting is performed a fixed number of times at startup. Note that the following description will focus on the points that are different from the second embodiment.
実施例2のカウンタ回路40との差分に着目すると、本実施例では、カウンタ回路40内のカウンタ回路用メモリ47は、さらに起動信号Spup入力後に再起動も含めて起動した回数である起動回数Npupと1度の起動信号Spupの入力に対して起動を行う回数である最大起動回数Nmax_pupを格納することを特徴とする。
Focusing on the difference from the counter circuit 40 of the second embodiment, in this embodiment, the counter circuit memory 47 in the counter circuit 40 further stores the number of startups Npup, which is the number of startups including restarts after inputting the startup signal Spup. It is characterized by storing the maximum number of activations Nmax_pup, which is the number of times the activation is performed in response to one input of the activation signal Spup.
さらに、カウンタ回路40は、起動回数Npupが最大起動回数Nmax_pupに到達したら、診断回数Ndiagに対する異常検出回数Ndet_errの割合である異常検出頻度Rdet_errと予兆判定閾値Rth_preerrを比較して、異常検出頻度Rdet_errが予兆判定閾値Rth_preerr未満の場合は、正常と判断し再起動信号線101の電圧レベルをLowからHighにする。異常検出頻度Rdet_errが予兆判定閾値Rth_preerr以上の場合は、故障の予兆と判断し負荷に故障の予兆である旨を通知した上で、カウンタ回路用メモリ47内の異常検出回数Ndet_errを初期値にクリアして停止信号線110の電圧レベルをLowからHighにする。
Furthermore, when the number of activations Npup reaches the maximum number of activations Nmax_pup, the counter circuit 40 compares the abnormality detection frequency Rdet_err, which is the ratio of the number of abnormality detections Ndet_err to the number of diagnoses Ndiag, with the predictive judgment threshold Rth_preerr, and determines the abnormality detection frequency Rdet_err. If it is less than the premonitory determination threshold Rth_preerr, it is determined to be normal and the voltage level of the restart signal line 101 is changed from Low to High. If the abnormality detection frequency Rdet_err is equal to or higher than the sign determination threshold Rth_preerr, it is determined to be a sign of a failure, and the load is notified that it is a sign of a failure, and the abnormality detection frequency Ndet_err in the counter circuit memory 47 is cleared to the initial value. to change the voltage level of the stop signal line 110 from Low to High.
ここで、カウンタ回路40では、電源制御IC100が停止してもカウンタ回路用メモリ47内に格納された起動回数Npupと最大再起動回数Nmax_pup、予兆判定閾値Rth_preerrは保持される。特に最大再起動回数Nmax_pupや予兆判定閾値Rth_preerrは、通信信号線などを介して外部素子から書き換え可能としておけば外部処理で適宜変更することが可能である。
Here, in the counter circuit 40, even if the power supply control IC 100 is stopped, the number of activations Npup, the maximum number of restarts Nmax_pup, and the omen determination threshold Rth_preerr stored in the counter circuit memory 47 are retained. In particular, the maximum number of restarts Nmax_pup and the predictive sign determination threshold Rth_preerr can be changed as appropriate by external processing if they can be rewritten from an external element via a communication signal line or the like.
また、最大再起動回数Nmax_pupと予兆判定閾値Rth_preerrは、電源制御IC100が停止しても値を保持できれば良いため、カウンタ回路40以外の回路(例えば電源制御IC100内の別回路や電源制御IC100外のメモリ)で値を保持しておく構成でも良い。
In addition, since the maximum number of restarts Nmax_pup and the predictive sign determination threshold Rth_preerr only need to be able to hold their values even if the power supply control IC 100 stops, A configuration in which the value is held in memory (memory) may also be used.
さらに、最大再起動回数Nmax_pupと予兆判定閾値Rth_preerrを不揮発性メモリで保持することで製造時に予め値を書き込み、使用時は値を固定する使い方としても良い。
Further, by storing the maximum number of restarts Nmax_pup and the predictive sign determination threshold Rth_preerr in a non-volatile memory, the values may be written in advance during manufacturing, and the values may be fixed during use.
図10のフローチャートを用いて、本実施例における異常検出頻度に応じて処理を分ける起動処理の一例を説明する。
An example of the startup process in which the process is divided according to the abnormality detection frequency in this embodiment will be explained using the flowchart in FIG. 10.
図10に示すフローチャートは、起動時に所定回数再起動を行い、異常検出頻度から故障の予兆を判断することができる起動処理のフローである。
The flowchart shown in FIG. 10 is a flow of a startup process in which restarting is performed a predetermined number of times at startup, and a sign of failure can be determined from the abnormality detection frequency.
なお、以下では、実施例2(図9)の処理と異なる点を中心に説明する。
Note that the following description will focus on the points that are different from the processing in Example 2 (FIG. 9).
STARTからステップS3までの処理は、実施例2(図9)と同様である。
The processing from START to step S3 is the same as in the second embodiment (FIG. 9).
ステップS3において、内部特性が異常判定閾電圧Vth_diagよりも大きく、内部特性が正常であると判定した場合(OK)、ステップS4に進む。
In step S3, if it is determined that the internal characteristic is larger than the abnormality determination threshold voltage Vth_diag and the internal characteristic is normal (OK), the process proceeds to step S4.
ステップS4において、カウンタ回路用メモリ47に格納されている起動回数Npupを読出し、最大起動回数Nmax_pupと比較する。起動回数Npupが最大起動回数Nmax_pup未満(<Nmax_pup)の場合はステップS5に進む。起動回数Npupが最大起動回数Nmax_pupに到達している場合(=Nmax_pup)はステップS9に進む。
In step S4, the number of activations Npup stored in the counter circuit memory 47 is read and compared with the maximum number of activations Nmax_pup. If the number of activations Npup is less than the maximum number of activations Nmax_pup (<Nmax_pup), the process advances to step S5. If the number of activations Npup has reached the maximum number of activations Nmax_pup (=Nmax_pup), the process advances to step S9.
ステップS5において、カウンタ回路用メモリ47に格納されている診断回数Ndiagと異常検出回数Ndet_errを読出し、異常検出頻度Rdet_errを算出する。異常検出頻度Rdet_errが予兆判定閾値Rth_preerr未満(<Rth_preerr)の場合はステップS6に進む。ステップS6からENDまでの処理は、実施例2(図9)のステップS4からENDまでの処理と同様である。
In step S5, the number of diagnoses Ndiag and the number of abnormality detections Ndet_err stored in the counter circuit memory 47 are read out, and the abnormality detection frequency Rdet_err is calculated. If the abnormality detection frequency Rdet_err is less than the sign determination threshold Rth_preerr (<Rth_preerr), the process advances to step S6. The processing from step S6 to END is similar to the processing from step S4 to END in the second embodiment (FIG. 9).
異常検出頻度Rdet_errが予兆判定閾値Rth_preerr以上(≧Rth_preerr)の場合はステップS8に進む。ステップS8からステップS13の処理は、実施例2(図9)のステップS10からステップS11までの処理と同様である。
If the abnormality detection frequency Rdet_err is greater than or equal to the sign determination threshold Rth_preerr (≧Rth_preerr), the process advances to step S8. The processing from step S8 to step S13 is similar to the processing from step S10 to step S11 in the second embodiment (FIG. 9).
ステップS14において、カウンタ回路用メモリ47に格納されている起動回数Npup、異常検出回数Ndet_err、診断回数Ndiagをそれぞれ初期値にクリアし、ステップS15に進む。
In step S14, the number of activations Npup, the number of abnormality detections Ndet_err, and the number of diagnoses Ndiag stored in the counter circuit memory 47 are cleared to their initial values, and the process proceeds to step S15.
ステップS15において、電源制御IC100の停止処理を実施した後、ステップS1に戻り、ステップS1以降の処理を繰り返す。
In step S15, after the power control IC 100 is stopped, the process returns to step S1 and the processes from step S1 onwards are repeated.
ステップS3において、内部特性が異常判定閾電圧Vth_diag以下の場合は内部特性が異常であると判定し(NG)、ステップS10に進む。
In step S3, if the internal characteristic is less than or equal to the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is abnormal (NG), and the process proceeds to step S10.
ステップS10において、診断結果信号線106の電圧レベルのLowからHighへの立ち上がりエッジを診断結果エッジ検出部41で検出することで異常検出回数Ndet_errを1つカウントアップし、カウンタ回路用メモリ47に格納してステップS4に進む。
In step S10, the diagnostic result edge detection unit 41 detects the rising edge of the voltage level of the diagnostic result signal line 106 from Low to High, thereby incrementing the number of abnormality detections Ndet_err by one, and storing it in the counter circuit memory 47. The process then proceeds to step S4.
ステップS9において、カウンタ回路用メモリ47に格納されている起動回数Npupをカウントアップし、ステップS11に進む。ステップS11及びステップS12での処理は、実施例2(図9)のステップS8及びステップS9での処理と同様である。
In step S9, the number of activations Npup stored in the counter circuit memory 47 is counted up, and the process proceeds to step S11. The processing in step S11 and step S12 is similar to the processing in step S8 and step S9 of the second embodiment (FIG. 9).
以上説明したように、本実施例の電源制御IC100は、起動時に固定回数の再起動を行うことで異常検出頻度を求め、異常検出頻度が予兆判定閾値以上であることをもって故障の予兆と判断することができる。
As explained above, the power supply control IC 100 of this embodiment determines the abnormality detection frequency by restarting a fixed number of times at startup, and determines that it is a sign of failure when the abnormality detection frequency is equal to or higher than the sign determination threshold. be able to.
図11から図14を参照して、本発明の実施例4に係る電源制御ICとその診断方法について説明する。
With reference to FIGS. 11 to 14, a power supply control IC and its diagnosis method according to a fourth embodiment of the present invention will be described.
本実施例では、異常検出頻度に応じて異常が検出された特性に補正をかけ、補正後の特性が改善されたか否かを異常検出頻度で検出し、さらに経時特性変動量が所定の値以上となった場合にフラグを立てることが可能な構成及び動作例について説明する。なお、以下では、実施例2と異なる点を中心に説明する。
In this embodiment, a characteristic in which an abnormality has been detected is corrected according to the abnormality detection frequency, and whether or not the corrected characteristic has been improved is detected based on the abnormality detection frequency, and furthermore, when the characteristic variation over time is equal to or greater than a predetermined value. A configuration and an operation example that can set a flag when this occurs will be described. Note that the following description will focus on the points that are different from the second embodiment.
図11は、本実施例の電源制御IC100の構成を示すブロック図である。実施例2(図7)との差分に着目すると、本実施例の電源制御IC100は、さらに異常検出頻度Rdet_errに基づいて内部特性の特性値を制御する特性制御回路60を備える。
FIG. 11 is a block diagram showing the configuration of the power supply control IC 100 of this embodiment. Focusing on the difference from Example 2 (FIG. 7), the power supply control IC 100 of this example further includes a characteristic control circuit 60 that controls the characteristic value of the internal characteristic based on the abnormality detection frequency Rdet_err.
本実施例における特性制御回路60の一例を挙げると、図12に示すような構成が考えられる。図12に示す特性制御回路60は、異常検出頻度Rdet_errに基づいて内部特性の補正量を決める特性調整回路61と、特性調整回路61で出力される補正信号に基づき内部特性の特性値を固定の補正分解能で補正できる補正回路63と、特性調整回路61で算出された補正信号を格納する特性制御回路用メモリ62とを備える。特性調整回路61に搭載される回路例としてアップダウンカウンタ回路が挙げられる。
To give an example of the characteristic control circuit 60 in this embodiment, a configuration as shown in FIG. 12 can be considered. The characteristic control circuit 60 shown in FIG. 12 includes a characteristic adjustment circuit 61 that determines the correction amount of the internal characteristic based on the abnormality detection frequency Rdet_err, and a characteristic value of the internal characteristic that is fixed based on the correction signal output from the characteristic adjustment circuit 61. It includes a correction circuit 63 that can perform correction with correction resolution, and a characteristic control circuit memory 62 that stores the correction signal calculated by the characteristic adjustment circuit 61. An example of a circuit installed in the characteristic adjustment circuit 61 is an up/down counter circuit.
アップダウンカウンタ回路は、補正極性信号線117にHighが入力されている状態で補正要求信号線116の電圧レベルがLowからHighに遷移するとカウントアップし、補正極性信号線117にLowが入力されている状態で補正要求信号線116の電圧レベルがLowからHighに遷移するとカウントダウンし、カウント値を補正量として特性制御回路用メモリ62に出力する。補正回路63は、起動時に特性制御回路用メモリ62に格納された補正量を読み出し、補正量に応じた補正を行う。
The up/down counter circuit counts up when the voltage level of the correction request signal line 116 transitions from Low to High while High is input to the correction polarity signal line 117, and when Low is input to the correction polarity signal line 117. When the voltage level of the correction request signal line 116 changes from Low to High in this state, it counts down and outputs the count value to the characteristic control circuit memory 62 as a correction amount. The correction circuit 63 reads the correction amount stored in the characteristic control circuit memory 62 at startup, and performs correction according to the correction amount.
ここで、異常検出頻度Rdet_errに基づいて電源回路10の出力電圧の特性値を補正する動作を図13に示す。なお、補正回路63は、補正分解能Dcompで補正できるものとする。
Here, FIG. 13 shows the operation of correcting the characteristic value of the output voltage of the power supply circuit 10 based on the abnormality detection frequency Rdet_err. It is assumed that the correction circuit 63 can perform correction with a correction resolution Dcomp.
時間t1において、経時特性変動により電圧値が低電圧閾値まで近づくと、異常検出頻度Rdet_errが上昇し、予兆判定閾値を超えるとカウンタ回路40は故障の予兆と判定する。
At time t1, when the voltage value approaches the low voltage threshold due to changes in characteristics over time, the abnormality detection frequency Rdet_err increases, and when it exceeds the sign determination threshold, the counter circuit 40 determines that it is a sign of failure.
故障の予兆と診断された異常が出力電圧の低電圧異常であることをもって、カウンタ回路40から補正極性信号線117にHigh、補正要求信号線116にHighが出力され、特性調整回路61は補正量をカウントアップし、補正量を1として特性制御回路用メモリ62に格納する。補正回路63は、特性制御回路用メモリ62内から補正量である1を読出し、補正分解能Dcompを適用する。
Since the abnormality diagnosed as a sign of failure is a low voltage abnormality in the output voltage, the counter circuit 40 outputs High to the correction polarity signal line 117 and High to the correction request signal line 116, and the characteristic adjustment circuit 61 outputs the correction amount. is counted up, and the correction amount is set to 1 and stored in the characteristic control circuit memory 62. The correction circuit 63 reads the correction amount 1 from the characteristic control circuit memory 62 and applies the correction resolution Dcomp.
時間t2において、カウンタ回路40で故障の予兆と判定されると、特性調整回路61は補正量をカウントアップし、補正量を2として特性制御回路用メモリ62に格納する。補正回路63は、特性制御回路用メモリ62内から補正量である2を読出し、2(補正量)×補正分解能Dcompを適用する。
At time t2, when the counter circuit 40 determines that there is a sign of a failure, the characteristic adjustment circuit 61 counts up the correction amount and stores the correction amount as 2 in the characteristic control circuit memory 62. The correction circuit 63 reads the correction amount 2 from the characteristic control circuit memory 62 and applies 2 (correction amount)×correction resolution Dcomp.
さらに、特性制御回路60は、既補正量が最大補正値Dmax_compに達した場合は、最大補正信号線112の電圧レベルをHighにし、カウンタ回路用メモリ47は最大補正信号線112の電圧レベル(High若しくはLow)を格納する。
Further, when the already-corrected amount reaches the maximum correction value Dmax_comp, the characteristic control circuit 60 sets the voltage level of the maximum correction signal line 112 to High, and the counter circuit memory 47 sets the voltage level of the maximum correction signal line 112 (High). or Low).
さらに、最大補正信号線112にHighが出力されたことをECU内のいずれかの部品で検出する仕組みを設ければ、電源制御IC100や自動車内の電源制御IC100を搭載した部品の交換が必要である旨を自動車のユーザー等へ通知できる。
Furthermore, if a mechanism is provided in which any part in the ECU detects that High is output to the maximum correction signal line 112, the power supply control IC 100 and the parts equipped with the power supply control IC 100 in the vehicle will need to be replaced. It is possible to notify the car user, etc. of this fact.
図13では低電圧異常の例を示したが、故障の予兆と診断された異常が過電圧異常の場合はカウンタ回路40から補正極性信号線117にLow、補正要求信号線116にHighが出力され、特性調整回路61は補正量をカウントダウンする動作となり、出力電圧を下げる補正を行う。
Although FIG. 13 shows an example of a low voltage abnormality, if the abnormality diagnosed as a sign of failure is an overvoltage abnormality, the counter circuit 40 outputs Low to the correction polarity signal line 117 and High to the correction request signal line 116. The characteristic adjustment circuit 61 operates to count down the amount of correction, and performs correction to lower the output voltage.
図14のフローチャートを用いて、本実施例(図11)の電源制御IC100の起動処理の一例を説明する。
An example of the startup process of the power control IC 100 of this embodiment (FIG. 11) will be described using the flowchart of FIG. 14.
図14に示すフローチャートは、起動処理で故障の予兆と判定された内部特性に対して補正を行った上で再度起動し、異常検出頻度Rdet_errが予兆判定閾値Rth_preerr未満に改善されない限り電源回路10を有効とせず、さらに補正量Dcompが最大補正値Dmax_compに達した場合は最大補正信号をHighとする起動処理のフローである。
The flowchart shown in FIG. 14 shows that the power supply circuit 10 is restarted after correcting the internal characteristics determined to be a sign of failure in the start-up process, and the power supply circuit 10 is restarted unless the abnormality detection frequency Rdet_err is improved to less than the sign judgment threshold Rth_preerr. This is a flow of a startup process in which the maximum correction signal is set to High when the correction amount Dcomp reaches the maximum correction value Dmax_comp without being made effective.
なお、以下では、実施例3(図10)の処理と異なる点を中心に説明する。
Note that the following description will focus on the differences from the processing in Example 3 (FIG. 10).
ステップS2において、特性制御回路用メモリ62の補正量Dcompを適用し、ステップS3に進む。
In step S2, the correction amount Dcomp in the characteristic control circuit memory 62 is applied, and the process proceeds to step S3.
ステップS3、ステップS5、ステップS7からENDまでの処理は、実施例3(図10)のステップS3からENDまでの処理と同様である。
The processing from step S3, step S5, and step S7 to END is the same as the processing from step S3 to END in the third embodiment (FIG. 10).
また、ステップS6、ステップS4、ステップS16、ステップS17での処理は、実施例3(図10)のステップS9からステップS12での処理と同様である。
Furthermore, the processes in steps S6, S4, S16, and S17 are similar to the processes in steps S9 to S12 of the third embodiment (FIG. 10).
ステップS10において、起動診断で異常が検出された特性に対して、次の再起動時に適用する補正量Dcompを算出し、ステップS11に進む。
In step S10, a correction amount Dcomp to be applied at the next restart is calculated for the characteristic for which an abnormality was detected in the startup diagnosis, and the process proceeds to step S11.
ステップS11において、補正量Dcompを特性制御回路用メモリ62に保存し、ステップS12に進む。
In step S11, the correction amount Dcomp is stored in the characteristic control circuit memory 62, and the process proceeds to step S12.
ステップS12において、補正量Dcompと最大補正値Dmax_compを比較する。補正量Dcompが最大補正値Dmax_compに達している場合(=Dmax_comp)は、ステップS13に進む。補正量Dcompが最大補正値Dmax_compに達していない場合(<Dmax_comp)は、ステップS16に進む。
In step S12, the correction amount Dcomp and the maximum correction value Dmax_comp are compared. If the correction amount Dcomp has reached the maximum correction value Dmax_comp (=Dmax_comp), the process advances to step S13. If the correction amount Dcomp has not reached the maximum correction value Dmax_comp (<Dmax_comp), the process advances to step S16.
ステップS13において、最大補正信号線112の電圧レベルをLowからHighに切り替える。カウンタ回路用メモリ47は最大補正信号線112の電圧レベルの立ち上がりをもって最大補正信号を格納し、ステップS14へ進む。
In step S13, the voltage level of the maximum correction signal line 112 is switched from Low to High. The counter circuit memory 47 stores the maximum correction signal at the rise of the voltage level of the maximum correction signal line 112, and the process proceeds to step S14.
ステップS14において、電源回路10を有効にし、ステップS15に進む。
In step S14, the power supply circuit 10 is enabled, and the process proceeds to step S15.
ステップS15において、最大補正信号及び故障の予兆があることをユーザーに通知し、ステップS18に進む。
In step S15, the user is notified of the maximum correction signal and the presence of a sign of failure, and the process proceeds to step S18.
ステップS18において、電源制御IC100の停止処理を実施した後、ステップS1に戻り、ステップS1以降の処理を繰り返す。
In step S18, after the power control IC 100 is stopped, the process returns to step S1 and the processes from step S1 onwards are repeated.
以上説明したように、本実施例の電源制御IC100は、異常検出頻度に応じて異常が検出された特性に補正をかけ、補正後の特性が改善されたか否かを異常検出頻度で検出し、さらに経時特性変動量が所定の値以上となった場合にフラグを立てる。
As described above, the power supply control IC 100 of the present embodiment corrects the characteristics in which an abnormality has been detected according to the abnormality detection frequency, and detects whether or not the corrected characteristics have been improved based on the abnormality detection frequency. Further, a flag is set if the amount of variation in characteristics over time exceeds a predetermined value.
図15及び図16を参照して、本発明の実施例5に係る電源制御ICとその診断方法について説明する。
With reference to FIGS. 15 and 16, a power supply control IC and its diagnosis method according to a fifth embodiment of the present invention will be described.
本実施例では、起動診断時に電源制御ICの内部特性を制御した上で起動診断を行い、起動診断後は内部特性を起動診断前の状態に戻すことで起動診断時に制御しない場合と比較して電源制御ICの故障前に異常を検出しやすくすることができる構成及び動作例について説明する。なお、以下では、実施例4と異なる点を中心に説明する。
In this embodiment, startup diagnosis is performed after controlling the internal characteristics of the power supply control IC during startup diagnosis, and after the startup diagnosis, the internal characteristics are returned to the state before startup diagnosis, compared to a case where no control is performed during startup diagnosis. A configuration and operation example that can make it easier to detect an abnormality before a failure of the power supply control IC will be described. Note that the following description will focus on the points that are different from the fourth embodiment.
図15は、本実施例の電源制御IC100の構成を示すブロック図である。実施例4(図11)との差分に着目すると、特性制御回路60は補正要求信号線116を診断信号線105と接続する構成とし、さらに診断期間中に内部特性を診断閾値に近づくように制御することを特徴とした特性制御回路60を備える。
FIG. 15 is a block diagram showing the configuration of the power supply control IC 100 of this embodiment. Focusing on the difference from the fourth embodiment (FIG. 11), the characteristic control circuit 60 has a configuration in which the correction request signal line 116 is connected to the diagnostic signal line 105, and further controls the internal characteristics so as to approach the diagnostic threshold during the diagnostic period. A characteristic control circuit 60 is provided.
本実施例における特性制御回路60の構成の一例を挙げると、図12に準拠した構成において、起動診断回路31の診断信号線105の電圧レベルがHighの期間に内部特性を特性制御回路用メモリ62内の制御量に従って診断閾値に近づくように制御する補正回路63と、制御量を記憶しておく特性制御回路用メモリ62とを備える構成が考えられる。
To give an example of the configuration of the characteristic control circuit 60 in this embodiment, in the configuration based on FIG. A conceivable configuration includes a correction circuit 63 that performs control so as to approach the diagnostic threshold according to a control amount within the range, and a characteristic control circuit memory 62 that stores the control amount.
図16のフローチャートを用いて、本実施例(図15)の電源制御IC100の起動処理の一例を説明する。
An example of the startup process of the power supply control IC 100 of this embodiment (FIG. 15) will be described using the flowchart of FIG. 16.
図16に示すフローチャートは、起動診断期間中だけ内部特性を診断閾値に近くなるように制御することで、制御していない場合と比較して異常を検出しやすい起動処理のフローである。
The flowchart shown in FIG. 16 is a flow of a startup process in which the internal characteristics are controlled to be close to the diagnostic threshold only during the startup diagnosis period, thereby making it easier to detect abnormalities compared to a case where no control is performed.
なお、以下では、実施例4(図14)の処理と異なる点を中心に説明する。
Note that the following description will focus on the differences from the processing in Example 4 (FIG. 14).
ステップS2において、起動診断前に電源制御IC100内部の内部特性を診断閾値に近づくように制御し、ステップS3に進む。
In step S2, the internal characteristics inside the power supply control IC 100 are controlled to approach the diagnostic threshold before startup diagnosis, and the process proceeds to step S3.
ステップS3において、起動診断回路31は内部特性と異常判定閾電圧Vth_diagを比較する。内部特性が異常判定閾電圧Vth_diagよりも大きく、内部特性が正常であると判定した場合(OK)、ステップS4に進む。
In step S3, the startup diagnostic circuit 31 compares the internal characteristics and the abnormality determination threshold voltage Vth_diag. If the internal characteristics are larger than the abnormality determination threshold voltage Vth_diag and it is determined that the internal characteristics are normal (OK), the process proceeds to step S4.
ステップS4において、起動診断後に制御させた特性を制御前の特性に戻し、ステップS5に進む。
In step S4, the characteristics controlled after startup diagnosis are returned to the characteristics before control, and the process proceeds to step S5.
ステップS5からENDまでの処理は、実施例4(図14)のステップS7からENDまでの処理と同様である。
The processing from step S5 to END is similar to the processing from step S7 to END in the fourth embodiment (FIG. 14).
一方、ステップS3において、内部特性が異常判定閾電圧Vth_diag以下の場合は内部特性が異常であると判定し(NG)、ステップS8に進む。
On the other hand, in step S3, if the internal characteristic is equal to or lower than the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is abnormal (NG), and the process proceeds to step S8.
ステップS8において、起動診断後に制御させた特性を制御前の特性に戻し、ステップS9に進む。
In step S8, the characteristics controlled after the start-up diagnosis are returned to the characteristics before the control, and the process proceeds to step S9.
ステップS9において、診断結果信号線106の電圧レベルのLowからHighへの立ち上がりエッジを診断結果エッジ検出部41で検出することで異常検出回数Ndet_errを1つカウントアップし、カウンタ回路用メモリ47に格納してステップS10に進む。
In step S9, by detecting the rising edge of the voltage level of the diagnostic result signal line 106 from Low to High by the diagnostic result edge detection unit 41, the number of abnormality detections Ndet_err is incremented by one and stored in the counter circuit memory 47. The process then proceeds to step S10.
ステップS10、ステップS11での処理は、実施例4(図14)のステップS16、ステップS17での処理と同様である。
The processing in step S10 and step S11 is similar to the processing in step S16 and step S17 of the fourth embodiment (FIG. 14).
ステップS5において、異常検出頻度Rdet_errが予兆判定閾値Rth_preerr以上(≧Rth_preerr)の場合はステップS12に進む。
In step S5, if the abnormality detection frequency Rdet_err is greater than or equal to the sign determination threshold Rth_preerr (≧Rth_preerr), the process proceeds to step S12.
ステップS12において、電源制御IC100の停止処理を実施した後、ステップS1に戻り、ステップS1以降の処理を繰り返す。
In step S12, after the power control IC 100 is stopped, the process returns to step S1 and the processes from step S1 onwards are repeated.
以上説明したように、本実施例の電源制御IC100は、起動診断期間のみ内部特性を診断閾値に近づくように制御した上で起動診断を行うことで、起動診断時に電源制御ICの故障前に異常を検出しやすくし、さらに起動診断後は内部特性を制御前の状態に戻すことで診断閾値に対して制御量分の余裕を確保して動作させることができる。
As explained above, the power supply control IC 100 of this embodiment performs the startup diagnosis after controlling the internal characteristics to approach the diagnosis threshold only during the startup diagnosis period, so that an abnormality occurs before the power supply control IC fails during the startup diagnosis. By making it easier to detect and returning the internal characteristics to the state before the control after the startup diagnosis, it is possible to operate with a margin for the control amount relative to the diagnostic threshold.
図17及び図18を参照して、本発明の実施例6に係る電源制御ICとその診断方法について説明する。
With reference to FIGS. 17 and 18, a power supply control IC and its diagnosis method according to a sixth embodiment of the present invention will be described.
本実施例では、過去設定端子の設定情報をメモリに保存しておき、起動時に検出された設定端子の設定と過去設定端子の設定とを比較することで、起動時に検出された端子設定の妥当性を判定し、判定結果が不一致の場合は再起動処理により再度設定情報を読み直すことで、環境起因による偶発的な異常による誤診断と意図的に変更した設定とを判別可能な構成及び動作例について説明する。なお、以下では、実施例2(図7)と異なる点を中心に説明する。
In this embodiment, setting information of past setting terminals is saved in memory, and by comparing the setting terminal settings detected at startup with the settings of the past setting terminals, the validity of the terminal settings detected at startup is determined. A configuration and operation example that can distinguish between misdiagnosis due to an accidental abnormality caused by the environment and intentionally changed settings by rereading the setting information by restarting the system if the judgment results do not match. I will explain about it. Note that the following description will focus on the points that are different from Example 2 (FIG. 7).
図17は、本実施例の電源制御IC100の構成を示すブロック図である。実施例2(図7)との差分に着目すると、本実施例の電源制御IC100は、さらに起動時に入力されている電圧レベル(High若しくはLow)に応じて電源制御IC100内の所定の設定(以降、内部設定とする)を設定する設定端子115と、過去起動時に設定された過去端子設定Dpre_setを保存しておくメモリ70とを備え、起動診断回路31内の比較回路32は起動時に検出された端子設定Dsetと過去端子設定Dpre_setを比較することを特徴とする。
FIG. 17 is a block diagram showing the configuration of the power supply control IC 100 of this embodiment. Focusing on the difference from Example 2 (FIG. 7), the power control IC 100 of this example further adjusts the predetermined settings (hereinafter referred to as , an internal setting), and a memory 70 for storing past terminal settings Dpre_set set at past startups, and a comparison circuit 32 in the startup diagnostic circuit 31 detects the settings detected at startup. It is characterized by comparing the terminal setting Dset and the past terminal setting Dpre_set.
比較回路32は、過去端子設定Dpre_setと起動処理で読み出した設定端子Dsetとを比較し、一致している場合は端子設定Dsetの内容を内部設定に反映する。一致していない場合は異常検出回数Ndet_errをカウントアップし、起動診断回路31が再起動信号線101にHighを出力する。異常検出回数Ndet_errが起動判定閾回数Nth_pupに到達した場合は、環境起因による誤診断でないと判断し、端子設定Dsetを電源制御IC100に反映する。
The comparison circuit 32 compares the past terminal setting Dpre_set and the setting terminal Dset read in the startup process, and if they match, reflects the contents of the terminal setting Dset in the internal settings. If they do not match, the number of abnormality detections Ndet_err is counted up, and the startup diagnostic circuit 31 outputs High to the restart signal line 101. When the number of abnormality detections Ndet_err reaches the startup determination threshold number Nth_pup, it is determined that there is no misdiagnosis due to environmental factors, and the terminal setting Dset is reflected in the power supply control IC 100.
図18のフローチャートを用いて、本実施例(図17)の電源制御IC100の起動処理の一例を説明する。
An example of the startup process of the power supply control IC 100 of this embodiment (FIG. 17) will be described using the flowchart of FIG. 18.
図18に示すフローチャートは、起動診断時に端子設定Dsetの異常を検出し再起動を行う起動処理のフローである。
The flowchart shown in FIG. 18 is a flow of a startup process in which an abnormality in the terminal setting Dset is detected during startup diagnosis and restart is performed.
なお、以下では、実施例2(図9)の処理と異なる点を中心に説明する。
Note that the following description will focus on the points that are different from the processing in Example 2 (FIG. 9).
ステップS2において、設定端子115の電位から端子設定Dsetを検出し、ステップS3に進む。
In step S2, the terminal setting Dset is detected from the potential of the setting terminal 115, and the process proceeds to step S3.
ステップS3において、異常検出回数Ndet_errをメモリ70から読出す。異常検出回数Ndet_errが起動判定閾回数Nth_pup未満(<Nth_pup)である場合はステップS4に進む。異常検出回数Ndet_errが起動判定閾回数Nth_pupに到達した場合(=Nth_pup)はステップS5に進む。
In step S3, the number of abnormality detections Ndet_err is read from the memory 70. If the number of abnormality detections Ndet_err is less than the activation determination threshold number Nth_pup (<Nth_pup), the process advances to step S4. When the number of abnormality detections Ndet_err reaches the activation determination threshold number Nth_pup (=Nth_pup), the process advances to step S5.
ステップS4において、端子設定Dsetと過去端子設定Dpre_setを比較回路32で比較する。一致している場合はステップS5に進む。一致していない場合はステップS7に進む。
In step S4, the comparison circuit 32 compares the terminal setting Dset and the past terminal setting Dpre_set. If they match, the process advances to step S5. If they do not match, the process advances to step S7.
ステップS5からENDまでの処理は、実施例2(図9)のステップS4からENDまでの処理と同様である。
The processing from step S5 to END is the same as the processing from step S4 to END in the second embodiment (FIG. 9).
ステップS7において、異常検出回数Ndet_errをカウントアップし、メモリ70に格納し、ステップS8に進む。
In step S7, the number of abnormality detections Ndet_err is counted up and stored in the memory 70, and the process proceeds to step S8.
ステップS8、ステップS9での処理は、実施例2(図9)のステップS8、ステップS9での処理と同様である。
The processing in step S8 and step S9 is similar to the processing in step S8 and step S9 of the second embodiment (FIG. 9).
本実施例では、過去端子設定Dpre_setをメモリ70に保存しておき、起動時に検出された端子設定Dsetとメモリ70内の過去端子設定Dpre_setを比較することで、検出された設定端子の妥当性を判定することができる例を示したが、本構成以外の構成も考えられる。例えば、不揮発性メモリの値を比較対象とする構成とすることで、製造時に予め書き込んでおいた設定端子の期待値と比較し、検出された設定端子の妥当性を判断する構成も考えられる。
In this embodiment, the past terminal setting Dpre_set is saved in the memory 70, and the validity of the detected setting terminal is checked by comparing the terminal setting Dset detected at startup with the past terminal setting Dpre_set in the memory 70. Although an example in which the determination can be made has been shown, configurations other than this configuration are also possible. For example, a configuration may be considered in which the value of the nonvolatile memory is used as a comparison target, and the validity of the detected setting terminal is determined by comparing it with the expected value of the setting terminal written in advance at the time of manufacturing.
以上説明したように、本実施例の電源制御IC100は、過去設定端子をメモリに保存しておき、起動時に検出された端子設定と過去端子設定を比較することで端子設定の妥当性を判定し、判定結果が一致しない場合は再起動処理により再度設定情報を読み直すことができ、さらに起動判定閾回数が一致しなかった場合は意図的に端子設定が変更されたと判定して端子設定を電源制御ICに反映させることができる。
As explained above, the power supply control IC 100 of this embodiment stores past terminal settings in memory and determines the validity of the terminal settings by comparing the terminal settings detected at startup with the past terminal settings. If the judgment results do not match, the configuration information can be reread through restart processing, and if the startup judgment thresholds do not match, it is determined that the terminal settings have been intentionally changed and the terminal settings are controlled by the power source. It can be reflected on the IC.
図19から図21を参照して、本発明の実施例7に係る電源制御ICとその診断方法について説明する。
With reference to FIGS. 19 to 21, a power supply control IC and its diagnosis method according to a seventh embodiment of the present invention will be described.
本実施例では、再起動処理実行時に実行する処理と実行する回数を選択できるようにすることで、再起動処理の時間を抑制しつつ、最適な再起動を実施することができる構成及び動作例について説明する。なお、以下では、実施例6(図17)と異なる点を中心に説明する。
In this embodiment, the configuration and operation example are such that the process to be executed and the number of times to be executed can be selected when executing the reboot process, so that an optimal reboot can be carried out while suppressing the time required for the reboot process. I will explain about it. Note that the following description will focus on the points that are different from Example 6 (FIG. 17).
図19は、本実施例の電源制御IC100の構成を示すブロック図である。実施例6(図17)との差分に着目すると、本実施例の電源制御IC100は、さらに再起動処理で実施される設定ピンの読出処理及び診断処理、及びそれぞれの実施回数を設定できる再起動設定回路50を備える。
FIG. 19 is a block diagram showing the configuration of the power supply control IC 100 of this embodiment. Focusing on the differences from Example 6 (FIG. 17), the power supply control IC 100 of this example further includes a setting pin readout process and a diagnostic process that are performed in the restart process, and a restart process that can set the number of times each is performed. A setting circuit 50 is provided.
再起動設定回路50は、起動診断回路31の診断結果信号線106と接続され、診断結果に応じて再起動時に実施する起動処理と停止処理を設定する。また、再起動設定回路50を起動回路20と再診断信号線113、再設定ピン読出信号線114で接続することで、再度実施し直す処理を制御することができる。
The restart setting circuit 50 is connected to the diagnosis result signal line 106 of the startup diagnosis circuit 31, and sets the startup process and stop process to be performed at the time of restart according to the diagnosis result. Furthermore, by connecting the restart setting circuit 50 to the startup circuit 20 through the re-diagnosis signal line 113 and the re-setting pin readout signal line 114, it is possible to control the process to be re-implemented.
カウンタ回路40は、設定端子の読出回数と診断回数をそれぞれメモリに格納し、起動時に再起動設定回路50へ出力する。なお、実施回数を0に設定することで処理を実行しない設定にもできる。
The counter circuit 40 stores the number of readings of the setting terminal and the number of diagnostics in a memory, and outputs them to the restart setting circuit 50 at startup. Note that the process can be set not to be executed by setting the number of times of execution to 0.
本実施例における再起動設定回路50の一例を挙げると、図20に示すような構成が考えられる。図20に示す再起動設定回路50は、目標診断回数Ndiag_targetと目標端子設定読出し回数Npinread_targetが格納されている再起動設定回路用メモリ51と、カウンタ回路40から出力された診断回数Ndiagとカウンタ回路用メモリ47に格納されている目標診断回数Ndiag_targetを比較する比較回路52aと、カウンタ回路40から出力された端子設定読出回数Npinreadとカウンタ回路用メモリ47に格納されている目標端子設定読出し回数Npinread_targetを比較する比較回路52bとで構成される。
To give an example of the restart setting circuit 50 in this embodiment, a configuration as shown in FIG. 20 can be considered. The restart setting circuit 50 shown in FIG. 20 includes a restart setting circuit memory 51 in which a target number of diagnosis Ndiag_target and a target terminal setting read number Npinread_target are stored, a number of times of diagnosis Ndiag output from the counter circuit 40, and a counter circuit A comparison circuit 52a that compares the target diagnosis number Ndiag_target stored in the memory 47 compares the terminal setting read number Npinread outputted from the counter circuit 40 and the target terminal setting read number Npinread_target stored in the counter circuit memory 47. and a comparison circuit 52b.
図21のフローチャートを用いて、本実施例(図19)の電源制御IC100の再起動処理の一例を説明する。
An example of the restart process of the power supply control IC 100 of this embodiment (FIG. 19) will be described using the flowchart of FIG. 21.
図21に示すフローチャートは、起動時に設定端子115の読出しと起動診断で異常が検出されたフローのみ再度実施し直す起動処理のフローである。
The flowchart shown in FIG. 21 is a flowchart of a startup process in which only the flow for which an abnormality is detected by reading the setting terminal 115 and startup diagnosis at startup is re-implemented.
なお、以下では、実施例6(図18)の処理と異なる点を中心に説明する。
Note that the following description will focus on the points that are different from the processing in Example 6 (FIG. 18).
ステップS4において、端子設定読出し回数Npinreadをカウントアップする。端子設定Dsetと過去端子設定Dpre_setを比較して、一致の場合はステップS6に進む。不一致の場合はステップS5に進む。
In step S4, the terminal setting read count Npinread is counted up. The terminal setting Dset and the past terminal setting Dpre_set are compared, and if they match, the process advances to step S6. If they do not match, the process advances to step S5.
ステップS5において、異常検出回数Ndet_errをカウントアップし、メモリ70に格納し、ステップS6に進む。
In step S5, the number of abnormality detections Ndet_err is counted up and stored in the memory 70, and the process proceeds to step S6.
ステップS6において、診断回数Ndiagと目標診断回数Ndiag_targetを読出して比較する。診断回数Ndiagが目標診断回数Ndiag_target未満(<Ndiag_target)の場合はステップS7に進む。診断回数Ndiagが目標診断回数Ndiag_targetに到達している場合(=Ndiag_target)はステップS9に進む。
In step S6, the number of times of diagnosis Ndiag and the target number of times of diagnosis Ndiag_target are read and compared. If the number of diagnoses Ndiag is less than the target number of diagnoses Ndiag_target (<Ndiag_target), the process advances to step S7. If the number of diagnoses Ndiag has reached the target number of diagnoses Ndiag_target (=Ndiag_target), the process advances to step S9.
ステップS7において、起動診断回路31は内部特性と異常判定閾電圧Vth_diagを比較する。内部特性が異常判定閾電圧Vth_diagよりも大きく、内部特性が正常であると判定した場合(OK)、ステップS9に進む。内部特性が異常判定閾電圧Vth_diag以下の場合は内部特性が異常であると判定し(NG)、ステップS8に進む。
In step S7, the startup diagnostic circuit 31 compares the internal characteristics and the abnormality determination threshold voltage Vth_diag. If the internal characteristics are larger than the abnormality determination threshold voltage Vth_diag and it is determined that the internal characteristics are normal (OK), the process proceeds to step S9. If the internal characteristic is less than or equal to the abnormality determination threshold voltage Vth_diag, it is determined that the internal characteristic is abnormal (NG), and the process proceeds to step S8.
ステップS8において、診断結果信号線106の電圧レベルのLowからHighへの立ち上がりエッジを診断結果エッジ検出部41で検出することで異常検出回数Ndet_errを1つカウントアップし、カウンタ回路用メモリ47に格納してステップS9に進む。
In step S8, by detecting the rising edge of the voltage level of the diagnostic result signal line 106 from Low to High by the diagnostic result edge detection unit 41, the number of abnormality detections Ndet_err is counted up by one and stored in the counter circuit memory 47. The process then proceeds to step S9.
ステップS9において、診断回数Ndiagが目標診断回数Ndiag_target未満の場合は、再診断信号線113にHighを出力し、端子設定読出し回数Npinreadが目標端子設定読出し回数Npinread_target未満の場合は、再設定ピン読出信号線114にHighを出力し、ステップS14に進む。一方、診断回数Ndiagが目標診断回数Ndiag_targetに到達しており、且つ端子設定読出し回数Npinreadが目標端子設定読出し回数Npinread_targetに到達している場合は、ステップS10に進む。
In step S9, if the number of times of diagnosis Ndiag is less than the target number of times of diagnosis Ndiag_target, High is output to the re-diagnosis signal line 113, and if the number of terminal setting read times Npinread is less than the target number of terminal setting read times Npinread_target, a reset pin read signal is output. High is output to the line 114, and the process advances to step S14. On the other hand, if the number of times of diagnosis Ndiag has reached the target number of times of diagnosis Ndiag_target and the number of terminal setting read times Npinread has reached the target number of terminal setting read times Npinread_target, the process advances to step S10.
ステップS14において、端子設定読出し回数Npinreadと目標端子設定読出し回数Npinread_targetを読出して比較する。端子設定読出し回数Npinreadが目標端子設定読出し回数Npinread_target未満(<Npinread_target)の場合はステップS3に進む。一方、端子設定読出し回数Npinreadが目標端子設定読出し回数Npinread_targetに到達している場合(=Npinread_target)はステップS6に進む。
In step S14, the terminal setting read count Npinread and the target terminal setting read count Npinread_target are read and compared. If the terminal setting readout count Npinread is less than the target terminal setting readout count Npinread_target (<Npinread_target), the process advances to step S3. On the other hand, if the terminal setting readout number Npinread has reached the target terminal setting readout number Npinread_target (=Npinread_target), the process advances to step S6.
ステップS10において、異常検出回数Ndet_errが起動判定閾回数Nth_pup未満(<Nth_pup)である場合はステップS11に進む。異常検出回数Ndet_errが起動判定閾回数Nth_pupに到達した場合(=Nth_pup)はステップS15に進む。
In step S10, if the number of abnormality detections Ndet_err is less than the activation determination threshold number Nth_pup (<Nth_pup), the process advances to step S11. When the number of abnormality detections Ndet_err reaches the activation determination threshold number Nth_pup (=Nth_pup), the process advances to step S15.
ステップS11からENDまでの処理は、実施例6(図18)のステップS5からENDまでの処理と同様である。
The processing from step S11 to END is the same as the processing from step S5 to END in the sixth embodiment (FIG. 18).
ステップS15での処理は、実施例6(図18)のステップS9での処理と同様である。
The process in step S15 is similar to the process in step S9 of the sixth embodiment (FIG. 18).
本実施例では、再起動設定回路を電源制御IC100内部に搭載し、診断回路の診断結果を入力とすることで起動診断結果に応じて再起動時に実施する起動処理と停止処理を設定することができる例を示したが、本構成以外の構成も考えられる。
In this embodiment, a restart setting circuit is installed inside the power supply control IC 100, and by inputting the diagnosis result of the diagnostic circuit, it is possible to set the startup process and stop process to be executed at restart according to the startup diagnosis result. Although a possible example has been shown, configurations other than this configuration are also possible.
例えば、通信インターフェース回路を経由して再起動設定を入力する構成とすれば電源制御IC100外の回路(例えばCPU)の動作中に検出された異常に応じて以降の再起動処理を設定することができる。また、不揮発性メモリに再起動処理で実行する処理及び当該処理の実行回数を格納しておくことで、製造時に予め再起動設定を設定しておく方法でも良い。
For example, if the configuration is such that restart settings are input via a communication interface circuit, subsequent restart processing can be set in response to an abnormality detected during operation of a circuit (for example, a CPU) outside the power supply control IC 100. can. Alternatively, the restart setting may be set in advance at the time of manufacturing by storing the process to be executed in the restart process and the number of execution times of the process in a non-volatile memory.
以上説明したように、本実施例の電源制御IC100は、再起動処理実行時に実行する処理と実行する回数を選択できるようにすることで、再起動処理の時間を抑制しつつ、最適な再起動を実施することができる。
As explained above, the power supply control IC 100 of the present embodiment allows the user to select the process to be executed and the number of times it is executed when executing the reboot process, thereby reducing the time required for the reboot process and optimizing the reboot process. can be carried out.
各実施例において説明したように、本発明による電源制御ICを用いれば、電源制御ICの故障前に部品の交換通知などの形でユーザーへ知らせることが可能となり、予兆検知ができない電源制御ICと比較して寿命近くまで使用できる。また、上記特許文献1のような放熱性の高いECU筐体を使用せずに予兆検知により電源制御ICを長く使用できることから、ECU筐体の稼働時間を延ばしつつ、且つ低コスト化できる。また、放熱性の高いECU筐体と予兆検知を組み合わせれば、さらに稼働時間を延ばすことができる。また、異常検出頻度が大きくなってきた特性に対して補正する仕組みを搭載することで、部品交換までの期間をさらに延ばすことができ、交換回数や点検頻度を減らすことでコスト低減も可能となる。
As explained in each embodiment, by using the power control IC according to the present invention, it is possible to notify the user in the form of a parts replacement notification or the like before the power control IC fails, and it is possible to notify the user before the failure of the power control IC. In comparison, it can be used for almost the same lifespan. Further, since the power control IC can be used for a long time by detecting signs without using an ECU housing with high heat dissipation as in Patent Document 1, the operating time of the ECU housing can be extended and costs can be reduced. Furthermore, by combining an ECU housing with high heat dissipation and predictive detection, the operating time can be further extended. In addition, by installing a mechanism to correct for characteristics where the frequency of abnormality detection has increased, it is possible to further extend the period until parts are replaced, and it is also possible to reduce costs by reducing the number of replacements and inspection frequency. .
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
Note that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add, delete, or replace a part of the configuration of each embodiment with other configurations.
1…ECU、2…イグニッションスイッチ(IG-SW)、10…電源回路、11,24…スイッチ素子、12a,12b…リニアレギュレータ、13…基準電圧生成部、14…MOSFET、15…エラーアンプ、16,17…帰還抵抗、20…起動回路、21…起動信号検出部、22…診断信号生成部、23…制御信号生成部、25a,25b,25c…NOT回路、26a,26b,26c…遅延回路、27a,27b…AND回路、30…内部処理部、31…起動診断回路、32…異常判定部(比較回路)、33…診断制御部、34…フィルタ回路、40…カウンタ回路、41…診断結果エッジ検出部、42…診断信号エッジ検出部、44…異常検出カウンタ回路、45…診断カウンタ回路、46…異常検出頻度判定部、47…カウンタ回路用メモリ、50…再起動設定回路、51…再起動設定回路用メモリ、52a,52b…比較回路、60…特性制御回路、61…特性調整回路、62…特性制御回路用メモリ、63…補正回路、70…メモリ、100…電源制御IC、101…再起動信号線、102…起動信号線、103…電源線、104…制御信号線、105…診断信号線、106…診断結果信号線、107…内部電圧線、108…出力電圧線、109…通信信号線、110…停止信号線、111…被診断信号線、112…最大補正信号線、113…再診断信号線、114…再設定ピン読出信号線、115…設定端子、116…補正要求信号線、117…補正極性信号線、118…診断回数信号線、119…端子設定読出回数信号線、200…CPU、Vpower…電源電圧、Vth_pup…起動信号判定閾電圧、Voperate_min…最低動作電圧、Voutput…出力電圧、Vref…基準電圧、Vfb…帰還電圧、Vinternal…内部電圧、Vth_diag…低電圧異常判定閾電圧、Srepup…再起動信号、Spup…起動信号、Spdown…停止信号、Spower_en…制御信号、Sdiff…差分信号、Sdiag…診断信号、Smax_comp…最大補正信号、Ndiag…診断回数、Ndet_err…異常検出回数、Nth_pup…起動判定閾回数、Npup…起動回数、Nmax_pup…最大起動回数、Nerr_set…端子設定異常回数、Npinread…端子設定読出し回数、Ndiag_target…目標診断回数、Npinread_target…目標端子設定読出し回数、Rdet_err…異常検出頻度、Rth_pup…起動判定閾頻度、Rth_preerr…予兆判定閾値、Dset…端子設定、Dpre_set…過去端子設定、Dcomp…補正分解能(補正量)、Dmax_comp…最大補正値。
DESCRIPTION OF SYMBOLS 1... ECU, 2... Ignition switch (IG-SW), 10... Power supply circuit, 11, 24... Switch element, 12a, 12b... Linear regulator, 13... Reference voltage generation part, 14... MOSFET, 15... Error amplifier, 16 , 17... feedback resistor, 20... starting circuit, 21... starting signal detection section, 22... diagnostic signal generation section, 23... control signal generation section, 25a, 25b, 25c... NOT circuit, 26a, 26b, 26c... delay circuit, 27a, 27b...AND circuit, 30...Internal processing unit, 31...Start-up diagnostic circuit, 32...Abnormality determination unit (comparison circuit), 33...Diagnostic control unit, 34...Filter circuit, 40...Counter circuit, 41...Diagnosis result edge Detection unit, 42...Diagnostic signal edge detection unit, 44...Abnormality detection counter circuit, 45...Diagnostic counter circuit, 46...Abnormality detection frequency determination unit, 47...Memory for counter circuit, 50...Restart setting circuit, 51...Restart Setting circuit memory, 52a, 52b...comparison circuit, 60...characteristic control circuit, 61...characteristic adjustment circuit, 62...characteristic control circuit memory, 63...correction circuit, 70...memory, 100...power supply control IC, 101...return Start signal line, 102...Start signal line, 103...Power supply line, 104...Control signal line, 105...Diagnosis signal line, 106...Diagnosis result signal line, 107...Internal voltage line, 108...Output voltage line, 109...Communication signal Line, 110... Stop signal line, 111... Signal line to be diagnosed, 112... Maximum correction signal line, 113... Re-diagnosis signal line, 114... Resetting pin read signal line, 115... Setting terminal, 116... Correction request signal line, 117...Correction polarity signal line, 118...Diagnosis count signal line, 119...Terminal setting readout count signal line, 200...CPU, Vpower...Power supply voltage, Vth_pup...Start signal determination threshold voltage, Voperate_min...Minimum operating voltage, Voutput...Output voltage , Vref...Reference voltage, Vfb...Feedback voltage, Internal...Internal voltage, Vth_diag...Low voltage abnormality determination threshold voltage, Srepup...Restart signal, Spup...Start signal, Spdown...Stop signal, Spower_en...Control signal, Sdiff...Difference signal , Sdiag...Diagnosis signal, Smax_comp...Maximum correction signal, Ndiag...Number of diagnosis, Ndet_err...Number of abnormality detection, Nth_pup...Number of startup judgment thresholds, Npup...Number of startups, Nmax_pup...Maximum number of startups, Nerr_set...Number of abnormal terminal settings, Npinread... Number of terminal settings read, Ndiag_target...Target number of diagnosis, Npinread_target...Target number of terminal settings read, Rdet_err...Abnormality detection frequency, Rth_pup...Startup judgment threshold frequency, Rth_preerr...Predictive judgment threshold, Dset...Terminal setting, Dpre_set...Past terminal setting, Dcomp ...Correction resolution (correction amount), Dmax_comp...Maximum correction value.
Claims (12)
- 電源電圧から少なくとも1つ以上の電圧を生成する電源回路と、
前記電源回路を起動するための起動ピンと、
前記起動ピンに所定電圧が入力されている時に、再起動信号に基づいて前記電源回路の再起動処理を行う起動回路と、
を備える電源制御IC。 a power supply circuit that generates at least one voltage from a power supply voltage;
a start pin for starting the power supply circuit;
a startup circuit that performs restart processing of the power supply circuit based on a restart signal when a predetermined voltage is input to the startup pin;
A power supply control IC. - 請求項1に記載の電源制御ICであって、
前記電源回路の起動時に前記電源制御ICの自己診断を行う診断回路を備え、
前記電源回路の起動異常または前記診断回路で検出された異常を検知した際に、前記起動回路に再起動信号を送信する電源制御IC。 The power supply control IC according to claim 1,
comprising a diagnostic circuit that performs a self-diagnosis of the power supply control IC when the power supply circuit starts up;
A power supply control IC that transmits a restart signal to the startup circuit when detecting a startup abnormality in the power supply circuit or an abnormality detected by the diagnostic circuit. - 請求項2に記載の電源制御ICであって、
前記診断回路での異常検出回数をカウントするカウンタ回路を備え、
前記カウンタ回路は、診断回数に対する異常検出回数の割合である異常検出頻度を算出し、
前記電源回路の動作によらず前記診断回数と前記異常検出回数を保持し、
前記異常検出頻度が所定の値より大きい場合に、故障の予兆または故障と判断する電源制御IC。 The power supply control IC according to claim 2,
comprising a counter circuit that counts the number of abnormality detections in the diagnostic circuit,
The counter circuit calculates an abnormality detection frequency that is a ratio of the number of abnormality detections to the number of diagnoses,
retaining the number of times of diagnosis and the number of times of abnormality detection regardless of the operation of the power supply circuit;
A power supply control IC that determines a sign of failure or a failure when the abnormality detection frequency is greater than a predetermined value. - 請求項3に記載の電源制御ICであって、
最後の起動後に異常が発生した際に、異常が検出されなくなるまで再起動を繰り返す電源制御IC。 The power supply control IC according to claim 3,
A power supply control IC that repeatedly restarts when an abnormality occurs after the last startup until the abnormality is no longer detected. - 請求項1に記載の電源制御ICであって、
前記再起動処理を所定の回数実施する電源制御IC。 The power supply control IC according to claim 1,
A power supply control IC that performs the restart process a predetermined number of times. - 請求項3に記載の電源制御ICであって、
前記カウンタ回路は、3回以上の起動回数から前記異常検出頻度を算出する電源制御IC。 The power supply control IC according to claim 3,
The counter circuit is a power supply control IC that calculates the abnormality detection frequency from the number of activations of three or more times. - 請求項3に記載の電源制御ICであって、
前記再起動信号、前記起動異常、前記診断回路で検出された異常、前記故障の予兆、前記故障のいずれかを検知した場合に外部に通知する通知機能を備える電源制御IC。 The power supply control IC according to claim 3,
A power supply control IC having a notification function for notifying an external device when any of the restart signal, the startup abnormality, the abnormality detected by the diagnostic circuit, the sign of failure, or the failure is detected. - 請求項3に記載の電源制御ICであって、
前記異常検出頻度が前記所定の値を超えた場合に補正量を算出する特性制御回路と、
前記補正量を記憶する記憶部と、
前記補正量に従って、異常が検出された特性値を補正する補正回路と、を備え、
前記カウンタ回路は、前記補正量を適用する前の異常検出頻度よりも前記補正量を適用した後の異常検出頻度が小さいことをもって、前記異常が検出された特性値が補正されたと判断する電源制御IC。 The power supply control IC according to claim 3,
a characteristic control circuit that calculates a correction amount when the abnormality detection frequency exceeds the predetermined value;
a storage unit that stores the correction amount;
a correction circuit that corrects a characteristic value in which an abnormality has been detected according to the correction amount,
The counter circuit determines that the characteristic value in which the abnormality is detected has been corrected when the abnormality detection frequency after applying the correction amount is smaller than the abnormality detection frequency before applying the correction amount. I.C. - 請求項3に記載の電源制御ICであって、
所定の特性値を制御する制御回路を備え、
前記制御回路は、起動診断期間に前記所定の特性値を異常が発生しやすくなるように制御する電源制御IC。 The power supply control IC according to claim 3,
Equipped with a control circuit that controls predetermined characteristic values,
The control circuit is a power supply control IC that controls the predetermined characteristic value during a start-up diagnosis period so that abnormalities are more likely to occur. - 請求項3に記載の電源制御ICであって、
起動時に入力されている電圧値に応じて所定の設定値を定める設定端子と、
前記設定端子の過去の設定値を格納するメモリと、
前記所定の設定値と前記過去の設定値とを比較する比較回路と、を備え、
前記メモリは、前記電源回路の動作によらず格納した値を保持し、
前記診断回路は、前記比較回路での比較結果に応じて前記起動回路に再起動信号を送る電源制御IC。 The power supply control IC according to claim 3,
a setting terminal that determines a predetermined setting value according to the voltage value input at startup;
a memory for storing past setting values of the setting terminal;
a comparison circuit that compares the predetermined set value and the past set value,
The memory retains the stored value regardless of the operation of the power supply circuit,
The diagnostic circuit is a power supply control IC that sends a restart signal to the startup circuit according to the comparison result of the comparison circuit. - 請求項1に記載の電源制御ICであって、
前記再起動処理の各処理毎に実行回数を設定可能な再起動設定回路を備え、
前記再起動処理を実行する際に、各処理毎に設定された前記設定した実行回数の処理を実行する電源制御IC。 The power supply control IC according to claim 1,
comprising a restart setting circuit that can set the number of executions for each process of the restart process,
A power supply control IC that executes a process the set number of times set for each process when executing the restart process. - (a)電源制御ICの起動信号を入力するステップと、
(b)診断回数を1つカウントアップし、メモリに格納するステップと、
(c)前記電源制御ICの起動診断を行うステップと、
(d)前記(c)ステップにおいて、異常を検出した場合、異常検出回数を1つカウントアップし、前記メモリに格納するステップと、
(e)前記メモリから診断回数および異常検出回数を読出し、異常検出頻度を算出するステップと、
(f)前記(e)ステップにおいて算出した異常検出頻度を所定の閾値と比較するステップと、
を有し、
前記(f)ステップにおいて、前記異常検出頻度が前記所定の閾値未満の場合は正常と判定して前記電源制御ICの再起動信号を出力し、前記異常検出頻度が前記所定の閾値以上の場合は故障の予兆と判定して当該故障の予兆の通知を出力する電源制御ICの診断方法。 (a) inputting a startup signal for the power supply control IC;
(b) counting up the number of diagnosis by one and storing it in memory;
(c) performing a startup diagnosis of the power supply control IC;
(d) in the step (c), when an abnormality is detected, counting up the number of abnormality detections by one and storing it in the memory;
(e) reading the number of diagnoses and the number of abnormality detections from the memory and calculating the frequency of abnormality detection;
(f) comparing the abnormality detection frequency calculated in step (e) with a predetermined threshold;
has
In step (f), if the abnormality detection frequency is less than the predetermined threshold, it is determined to be normal and a restart signal for the power supply control IC is output, and if the abnormality detection frequency is greater than or equal to the predetermined threshold, A method for diagnosing a power supply control IC that determines that it is a sign of failure and outputs a notification of the sign of failure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/027531 WO2024013872A1 (en) | 2022-07-13 | 2022-07-13 | Power supply control ic and method for diagnosing power supply control ic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/027531 WO2024013872A1 (en) | 2022-07-13 | 2022-07-13 | Power supply control ic and method for diagnosing power supply control ic |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024013872A1 true WO2024013872A1 (en) | 2024-01-18 |
Family
ID=89536126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/027531 WO2024013872A1 (en) | 2022-07-13 | 2022-07-13 | Power supply control ic and method for diagnosing power supply control ic |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024013872A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020084966A1 (en) * | 2018-10-23 | 2020-04-30 | 日立オートモティブシステムズ株式会社 | Electronic control device |
JP2021093841A (en) * | 2019-12-10 | 2021-06-17 | ローム株式会社 | Power supply device |
-
2022
- 2022-07-13 WO PCT/JP2022/027531 patent/WO2024013872A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020084966A1 (en) * | 2018-10-23 | 2020-04-30 | 日立オートモティブシステムズ株式会社 | Electronic control device |
JP2021093841A (en) * | 2019-12-10 | 2021-06-17 | ローム株式会社 | Power supply device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7956587B2 (en) | Power supply apparatus | |
JP6377067B2 (en) | Electronic control unit | |
JP6326141B2 (en) | Fuel injection valve drive control device | |
US9377497B2 (en) | Device and method for monitoring a voltage supply for a vehicle system | |
CN109477862B (en) | Vehicle-mounted control device | |
KR101949509B1 (en) | An Apparatus and A Method For Testing A Motor Driving IC | |
US8698353B2 (en) | Method for operating a redundant system and system therefor | |
US11429468B2 (en) | Window type watchdog timer and semiconductor device | |
US11708801B2 (en) | Load drive device, engine system | |
WO2024013872A1 (en) | Power supply control ic and method for diagnosing power supply control ic | |
JP3990669B2 (en) | Load fault diagnosis method and apparatus, and load fault processing method and apparatus | |
US11336281B2 (en) | Output module for industrial control system | |
US10770886B2 (en) | Electromagnetic load drive device and in-vehicle control system | |
US11519973B2 (en) | Output module of industrial control apparatus | |
CN111122957A (en) | Overvoltage detection circuit, overvoltage detection method, inverter, and air conditioner | |
JP2024525796A (en) | Method for monitoring a short-circuit switching process in a circuit of a control device | |
WO2022254780A1 (en) | Vehicle-mounted control device | |
JP2020016511A (en) | Semiconductor integrated circuit and rotation detector | |
JP7417209B2 (en) | power supply device | |
CN113039383B (en) | Method and apparatus for diagnosing abnormal state of valve | |
KR20200069677A (en) | Apparatus for driving warning light and method for driving the same | |
JP7345721B2 (en) | Abnormal current detection circuit | |
WO2024214252A1 (en) | Onboard control system | |
JP2020035503A (en) | Automobile electronic control device | |
JP2023122184A (en) | electronic controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22951086 Country of ref document: EP Kind code of ref document: A1 |