WO2024013175A1 - Laundry composition - Google Patents
Laundry composition Download PDFInfo
- Publication number
- WO2024013175A1 WO2024013175A1 PCT/EP2023/069197 EP2023069197W WO2024013175A1 WO 2024013175 A1 WO2024013175 A1 WO 2024013175A1 EP 2023069197 W EP2023069197 W EP 2023069197W WO 2024013175 A1 WO2024013175 A1 WO 2024013175A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition according
- oil
- laundry composition
- laundry
- ester
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 84
- 125000002091 cationic group Chemical group 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 15
- 230000006641 stabilisation Effects 0.000 claims abstract description 13
- 230000008021 deposition Effects 0.000 claims abstract description 7
- 238000004900 laundering Methods 0.000 claims abstract description 6
- 239000003921 oil Substances 0.000 claims description 29
- -1 sorbitan ester Chemical class 0.000 claims description 23
- 239000010696 ester oil Substances 0.000 claims description 22
- 229920002670 Fructan Polymers 0.000 claims description 19
- 229920006037 cross link polymer Polymers 0.000 claims description 10
- 150000004676 glycans Chemical class 0.000 claims description 7
- 229920005862 polyol Polymers 0.000 claims description 7
- 229920001282 polysaccharide Polymers 0.000 claims description 7
- 239000005017 polysaccharide Substances 0.000 claims description 7
- 229920002678 cellulose Polymers 0.000 claims description 6
- 239000001913 cellulose Substances 0.000 claims description 6
- 238000011105 stabilization Methods 0.000 claims description 5
- 239000002736 nonionic surfactant Substances 0.000 claims description 4
- 239000004359 castor oil Substances 0.000 claims description 2
- 235000019438 castor oil Nutrition 0.000 claims description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 239000002304 perfume Substances 0.000 description 47
- 235000019198 oils Nutrition 0.000 description 26
- 230000008901 benefit Effects 0.000 description 13
- 239000004615 ingredient Substances 0.000 description 11
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 10
- 229920001202 Inulin Polymers 0.000 description 10
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 10
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 10
- 238000006467 substitution reaction Methods 0.000 description 10
- 239000003093 cationic surfactant Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000003945 anionic surfactant Substances 0.000 description 8
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 8
- 229940029339 inulin Drugs 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000004744 fabric Substances 0.000 description 7
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 6
- ZFTFOHBYVDOAMH-XNOIKFDKSA-N (2r,3s,4s,5r)-5-[[(2r,3s,4s,5r)-5-[[(2r,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-2-(hydroxymethyl)oxolan-2-yl]oxymethyl]-2-(hydroxymethyl)oxolane-2,3,4-triol Chemical class O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@@H]1[C@@H](O)[C@H](O)[C@](CO)(OC[C@@H]2[C@H]([C@H](O)[C@@](O)(CO)O2)O)O1 ZFTFOHBYVDOAMH-XNOIKFDKSA-N 0.000 description 6
- PUAQLLVFLMYYJJ-UHFFFAOYSA-N 2-aminopropiophenone Chemical compound CC(N)C(=O)C1=CC=CC=C1 PUAQLLVFLMYYJJ-UHFFFAOYSA-N 0.000 description 6
- 125000000129 anionic group Chemical group 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000003094 microcapsule Substances 0.000 description 6
- 235000015112 vegetable and seed oil Nutrition 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000003599 detergent Substances 0.000 description 5
- 239000010773 plant oil Substances 0.000 description 5
- 125000001453 quaternary ammonium group Chemical group 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229920000742 Cotton Polymers 0.000 description 4
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical class CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000002979 fabric softener Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000007046 ethoxylation reaction Methods 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 3
- 239000000346 nonvolatile oil Substances 0.000 description 3
- 229950004959 sorbitan oleate Drugs 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OYINQIKIQCNQOX-UHFFFAOYSA-M 2-hydroxybutyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCC(O)C[N+](C)(C)C OYINQIKIQCNQOX-UHFFFAOYSA-M 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 235000004431 Linum usitatissimum Nutrition 0.000 description 2
- 240000006240 Linum usitatissimum Species 0.000 description 2
- IJCWFDPJFXGQBN-RYNSOKOISA-N [(2R)-2-[(2R,3R,4S)-4-hydroxy-3-octadecanoyloxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCCCC IJCWFDPJFXGQBN-RYNSOKOISA-N 0.000 description 2
- LWZFANDGMFTDAV-BURFUSLBSA-N [(2r)-2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O LWZFANDGMFTDAV-BURFUSLBSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- FGKJLKRYENPLQH-UHFFFAOYSA-N isocaproic acid Chemical compound CC(C)CCC(O)=O FGKJLKRYENPLQH-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 125000005496 phosphonium group Chemical group 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000005956 quaternization reaction Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 235000011067 sorbitan monolaureate Nutrition 0.000 description 2
- 235000011078 sorbitan tristearate Nutrition 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- JNYAEWCLZODPBN-SLPGGIOYSA-N (2r,3r,4r)-2-[(1s)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@H](O)[C@H]1OC[C@@H](O)[C@H]1O JNYAEWCLZODPBN-SLPGGIOYSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- MPCAJMNYNOGXPB-SLPGGIOYSA-N 1,5-anhydro-D-glucitol Chemical compound OC[C@H]1OC[C@H](O)[C@@H](O)[C@@H]1O MPCAJMNYNOGXPB-SLPGGIOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 244000125300 Argania sideroxylon Species 0.000 description 1
- 240000005343 Azadirachta indica Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 235000007689 Borago officinalis Nutrition 0.000 description 1
- 240000004355 Borago officinalis Species 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 244000056139 Brassica cretica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 244000188595 Brassica sinapistrum Species 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- 235000016401 Camelina Nutrition 0.000 description 1
- 244000197813 Camelina sativa Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 235000007542 Cichorium intybus Nutrition 0.000 description 1
- 244000298479 Cichorium intybus Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 240000007154 Coffea arabica Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241001329133 Cuphea viscosissima Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- RFSUNEUAIZKAJO-VRPWFDPXSA-N D-fructofuranose Chemical group OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-VRPWFDPXSA-N 0.000 description 1
- 235000012040 Dahlia pinnata Nutrition 0.000 description 1
- 244000033273 Dahlia variabilis Species 0.000 description 1
- 241000522215 Dipteryx odorata Species 0.000 description 1
- 235000001950 Elaeis guineensis Nutrition 0.000 description 1
- 244000127993 Elaeis melanococca Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical group OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 235000003230 Helianthus tuberosus Nutrition 0.000 description 1
- 240000008892 Helianthus tuberosus Species 0.000 description 1
- 241000221089 Jatropha Species 0.000 description 1
- 238000007696 Kjeldahl method Methods 0.000 description 1
- 241000208467 Macadamia Species 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 235000013500 Melia azadirachta Nutrition 0.000 description 1
- 235000011347 Moringa oleifera Nutrition 0.000 description 1
- 244000179886 Moringa oleifera Species 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 235000014643 Orbignya martiana Nutrition 0.000 description 1
- 244000021150 Orbignya martiana Species 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000010678 Paulownia tomentosa Nutrition 0.000 description 1
- 240000002834 Paulownia tomentosa Species 0.000 description 1
- 235000004347 Perilla Nutrition 0.000 description 1
- 244000124853 Perilla frutescens Species 0.000 description 1
- 241000893896 Physaria fendleri Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001219 Polysorbate 40 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 235000012377 Salvia columbariae var. columbariae Nutrition 0.000 description 1
- 240000005481 Salvia hispanica Species 0.000 description 1
- 235000001498 Salvia hispanica Nutrition 0.000 description 1
- 244000057114 Sapium sebiferum Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- 244000044822 Simmondsia californica Species 0.000 description 1
- 235000004433 Simmondsia californica Nutrition 0.000 description 1
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 241001135917 Vitellaria paradoxa Species 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HVUMOYIDDBPOLL-XGKPLOKHSA-N [2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XGKPLOKHSA-N 0.000 description 1
- LPGFSDGXTDNTCB-UHFFFAOYSA-N [3-(16-methylheptadecanoyloxy)-2,2-bis(16-methylheptadecanoyloxymethyl)propyl] 16-methylheptadecanoate Chemical compound CC(C)CCCCCCCCCCCCCCC(=O)OCC(COC(=O)CCCCCCCCCCCCCCC(C)C)(COC(=O)CCCCCCCCCCCCCCC(C)C)COC(=O)CCCCCCCCCCCCCCC(C)C LPGFSDGXTDNTCB-UHFFFAOYSA-N 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 235000014167 chia Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 238000001595 flow curve Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000002772 monosaccharides Chemical group 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000019488 nut oil Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 239000008165 rice bran oil Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229950006451 sorbitan laurate Drugs 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 229950003429 sorbitan palmitate Drugs 0.000 description 1
- 229950011392 sorbitan stearate Drugs 0.000 description 1
- 239000001589 sorbitan tristearate Substances 0.000 description 1
- 229960004129 sorbitan tristearate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229940114926 stearate Drugs 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/835—Mixtures of non-ionic with cationic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0068—Deodorant compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2093—Esters; Carbonates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
- C11D3/227—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3707—Polyethers, e.g. polyalkyleneoxides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/667—Neutral esters, e.g. sorbitan esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/12—Soft surfaces, e.g. textile
Definitions
- the present invention relates to novel laundry compositions suitable for providing benefits to fabric during the laundry process.
- a laundry composition comprising: a) oil b) stabilisation system comprising a functionalized alkylpolyglucoside c) cationic deposition aid
- composition as described herein is added in the wash or rinse stage.
- a composition as described herein is an ancillary and used in combination with a second laundry composition in the wash or rinse stage.
- a laundry composition in the context of the present invention is a laundry composition intended for use in addition to a traditional detergent or fabric conditioner formulation.
- a traditional detergent or fabric conditioner formulation As an ancillary laundry composition, it provides an additional benefit over and above those delivered by a detergent or fabric conditioner and they provide the consumer with the ability to customise the levels of benefit agents delivered in the wash.
- the ancillary laundry composition may be in a liquid form.
- Natural oils preferably comprise plant oils, and exclude mineral oils derived from petroleum. Plant oils
- Plant oils include vegetable, nut and seed oils.
- Plant oils include microbial oils, which are oils that produced by microbes or other organisms, including algal oils and including genetically modified or engineered microbes that produce oils.
- Plant oils preferably include triglycerides, free fatty acids, or a combination of both.
- Seed oils include almond, argan, babassu, borage, camelina , canola ®, castor, chia, cherry, coconut, corn, cotton, coffee, Cuphea Viscosissima , flax (linseed), grape, hemp, hepar, jatropha, jojoba, Lesquerella Fendleri oil, Moringa Oleifera oil, macadamia, mango, mustard, neem, oil palm, perilla, rapeseed, safflower, sesame, shea, stillingia, soybean, sunflower, tonka bean, tung.
- Vegetable oils include olive oil, palm, rice bran oils.
- the natural oil may comprise a triglyceride or mixtures of triglycerides with varying degrees of alkyl chain length and unsaturation.
- the or each triglyceride comprises one or two or more, preferably three fatty acids, bonded by a glycerol bridge.
- the natural oil may be modified to alter level of unsaturation or branching.
- the oil preferably comprises ester oils.
- the ester oils are preferably hydrophobic.
- the ester oil may be a sugar ester oil or an oil with substantially no surface activity.
- the ester oil is a liquid or soft solid.
- the oil is polyol ester (i.e. more than one alcohol group is reacted to form the polyol ester).
- the polyol ester is formed by esterification of a polyol (i.e. reacting a molecule comprising more than one alcohol group with acids).
- the polyol ester comprises at least two ester linkages.
- the polyol ester comprises no hydroxyl groups.
- the ester oil is a pentaerythritol ester oil, i.e. an ester oil formed from pentaerythritol e.g. a pentaerythritol tetraisostearate.
- Exemplary structures of the compound are (I) and (II) below:
- the oil is saturated.
- ester oils are esters containing straight or branched, saturated or unsaturated carboxylic acids.
- Suitable ester oils are the fatty ester of a mono or polyhydric alcohol having from 1 to about 24 carbon atoms in the hydrocarbon chain and mono or polycarboxylic acids having from 1 to about 24 carbon atoms in the hydrocarbon chain with the proviso that the total number of carbon atoms in the ester oil is equal to or greater than 16 and that at least one of the hydrocarbon radicals in the ester oil has 12 or more carbon atoms.
- the viscosity of the ester oil or mineral oil is from 2 mPa. s to 2000 mPa. s at a temperature of 25 C, more preferably a viscosity from 100 to 1500 mPa. s, most preferably a viscosity from 100 to 1000 mPa. s.
- the refractive index of the oil is from 1.445 to 1.490, more preferred from 1.460 to 1.485.
- the ester oil of the current invention may be in the form of a free oil or an emulsion.
- the compositions described herein comprise 15 - 40wt.% ester oil. Preferably 0.5 to 10 wt. % ester oil, more preferably 0.5 to 6 wt.% ester oil.
- Non-volatile oils provide technical benefits which differ those coming from volatile actives such as fragrances.
- Non-volatile agents do not rely on olfactory perception but instead provide tactile or visual effects e.g. softness or colour benefits such as a reduction in colour fade.
- non-volatile oil means an oil that when applied to a surface and left at 25 °C a non-volatile material will lose less than 50% of its mass over a time of 7 days.
- a non-volatile functional material typically has a boiling point greater than 250 °C.
- non-volatile benefit agents include silicone oils or natural e.g. ester oils.
- Such oils can provide care benefits arising from non-volatile actives (so not olfactory but tactile or visual effects) e.g. softness or colour benefits such as a reduction in colour fade.
- the stabilisation system comprises a functionalized alkylpolyglucoside which may include sorbitan ester alkylpolyglucoside crosspolymers.
- Suitable sorbitan esters include, without limitation, oleate, laurate, stearate, and palmitate.
- the general structure of a sorbitan oleate polyglucoside crosspolymer is shown below: In the formula above, n may be between about 2 to about 20, each R group is an alkyl group having 8 to 24 carbons, wherein the R groups can be the same or different, and the range of m is between 1 to about 10 (for the sorbitan oleate units). For example, each R group can be a C10 alkyl group.
- the alkylpolyglucoside derivatives can include, without limitation, sorbitan oleate decylpolyglucoside crosspolymers, such as those commercially available from Colonial Chemicals, Inc. (US) as PolySugaOMulse D-3I, PolySugaOMulse D-6, and PolySugaOMulse D-9, sorbitan laurate decylpolyglucoside crosspolymers, sorbitan stearate decylpolyglucoside crosspolymers, and sorbitan palmitate decylpolyglucoside crosspolymers.
- sorbitan oleate decylpolyglucoside crosspolymers such as those commercially available from Colonial Chemicals, Inc. (US) as PolySugaOMulse D-3I, PolySugaOMulse D-6, and PolySugaOMulse D-9
- sorbitan laurate decylpolyglucoside crosspolymers sorbitan stearate de
- the stabilisation may further comprise further polysaccharides.
- the stabilisation system is preferably a colloidal stabilisation system - that is to say, a stabilization system that works to provide a stable colloid.
- the additional polysaccharide is a non-ionic polysaccharide, comprising a modified cellulose or cellulose derivative e.g. HPC.
- a preferred stabilizing polymer is hydroxypropyl cellulose.
- the molecular weight is in excess of 40 kDa.
- HPC Hydroxypropyl Cellulose
- the HPC is one with a viscosity in 2 wt% aqueous solution of 1000 to 4000 mPa.s. Viscosity measurements are done using a Brookfield viscometer, Spindle #3, @30 rpm. Lower viscosity materials are measured using Spindle #2, @60 rpm.
- HPC is an ether of cellulose in which some of the hydroxyl groups in the repeating glucose units have been hydroxy-propylated forming -OCH2CH(OH)CH3 groups using propylene oxide.
- the average number of substituted hydroxyl groups per glucose unit is referred to as the degree of substitution (DS).
- DS degree of substitution
- Complete substitution would provide a DS of 3.
- the hydroxy-propyl group itself contains a hydroxyl group this can also be etherified during preparation of HPC. When this occurs, the number of moles of hydroxy-propyl groups per glucose ring, moles of substitution (MS), can be higher than 3.
- the stabilizer may further comprise a nonionic surfactant.
- the stabilizer may comprise a sorbitan ester.
- the stabilizer may comprise an ethoxylated sorbitan ester having an average exthoxylation from 15 - 25.
- the at least one ethoxylated sorbitan ester may have general formula (II):
- Sorb represents a residue obtained by removing four hydroxyl H atoms from sorbitan;
- EO represents an ethyleneoxy group;
- R1.R2.R3 and R4 are each independently selected from H or a -C(O)Rs group in which R 5 is selected from straight or branched chain monovalent hydrocarbyl radicals having from 8 to 22 carbon atoms and mixtures thereof (provided that at least one of R1 to R 4 is -C(O)Rs);
- ni, n 2 , n 3 and n 4 each independently represent average values from 0 to 10; and the total [m + n 2 + n 3 + n 4 ] has an average value from 5 - 25
- Sorbitan is a generic name for anhydrides derived from sorbitol, a naturally occurring crystalline hexahydric alcohol found in fruits, seaweed, and algae.
- the residue ‘Sorb’ is obtained by removing four hydroxyl H atoms from sorbitan, and will typically be a mixture of residues of 1 ,4-anhydrosorbitol, 1 ,5-anhydrosorbitol, and 3,6- anhydrosorbitol.
- the ethoxylated fatty acid ester is formed by each of the removed H atoms being substituted with the groups (EOniRi), (EO n 2R2), (EOnsRs), and (EO n 4R4).
- one of Ri to R4 is -C(O)Rs and the remaining 3 are hydrogen.
- esters with more than one -C(O)Rs group e.g.
- diesters and triesters will also usually be present in the products as synthesised.
- the products will often have non-integral ratios of Sorb and R5 residues as defined in formula (II).
- an average of 1.4 to 1.5 of the Ri,to R4 groups may be -C(O)Rs and the remaining 2.5 to 2.6 hydrogen.
- the individual oligoethoxylate chain lengths corresponding to the individual indices m , n2, ns and n4 in formula (II) are preferably each within the range from 0.5 to 6 and more preferably from 1 to 5.
- the indices represent average values for the oligoethoxylate chain lengths, they may individually and in total be non-integral.
- the total [m + 02 + 03 + 04] in formula (II) preferably has an average value (an “average ethoxylation value” as used herein, from 15 to 25, more preferably from 18 to 22 and most preferably 20. Higher ethoxylation values can reduce cleaning efficiency due to increased hydrophilicity and lower ethoxylation values reduce cleaning efficiency as the molecule becomes less soluble.
- Rs in formula (II) is preferably selected from linear or branched, alkyl or alkenyl groups having from 10 to 20 carbon atoms and 0 or 1 double bond. More preferably, Rs in formula (II) is selected from linear alkyl or linear alkenyl groups containing from 12 to 18 carbon atoms and 0 or 1 double bond, such as lauryl, myristyl, palmityl, cetyl, oleyl and stearyl and mixtures thereof.
- Rs in formula (II) is selected from oleyl, stearyl and lauryl and mixtures thereof (as may for example be derived from natural fats and/or optionally hydrogenated natural oils such as palm oil, soybean oil, rapeseed oil, sunflower oil and tallow).
- Suitable ethoxylated fatty acid sorbitan esters (ii) for use in the invention include polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monopalmitate, polyoxyethylene (20) sorbitan monostearate, polyoxyethylene (20) sorbitan monooleate and mixtures thereof.
- Deposition Aid ethoxylated fatty acid sorbitan esters (ii) for use in the invention.
- the stabilization system comprises a functionalised alkylpolyglucoside (which may also be termed a alkylpolyglucoside derivative).
- a functionalised alkylpolyglucoside which may also be termed a alkylpolyglucoside derivative.
- these can include, without limitation, quaternized alkylpolyglucoside crosspolymers, and inorganic salts thereof.
- a representative structure of quaternized functionalized alkylpolyglucoside crosspolymers is shown below.
- n is between about 2 to about 11
- R is a C2 -C24 alkyl group
- the quaternary compound is a stearyldimonium, hydroxypropyltrimonium, or lauryldimonium moiety.
- the alkylpolyglucoside derivatives of the present disclosure can include poly(cocoglucosides hydroxypropyltrimonium chloride), poly(stearyldimonium hydroxypropylpropyldecylglucosides chloride), poly(lauryldimonium hydroxypropyl decylglucosides chloride), poly(lauryldimonium hydroxypropyl laurylglucosides chloride), and poly(laurylglucosides hydroxypropyltrimonium chloride), which are commercially available from Colonial Chemicals, Inc.
- the deposition may comprise a cationic derivate of fructan.
- a cationic derivate of fructan is understood to be a derivate of fructan comprising a cationic group.
- the cationic group may comprise an ammonium group, a quaternary ammonium group, a sulfonium group, a phosphonium group, a transitional metal or any other positively charged functional group.
- a preferred cationic group is a quaternary ammonium group.
- the cationic derivative of fructan is hydroxypropyltrimonium inulin.
- fructans are understood to comprise all polysaccharides which have a multiplicity of anhydrofructose units.
- the fructans can have a polydisperse chain length distribution and can be straight-chain or branched.
- the fructans comprise both products obtained directly from a vegetable or other source and products in which the average chain length has been modified (increased or reduced) by fractionation, enzymatic synthesis or hydrolysis.
- the cationic derivate of fructan has preferably an average molecular weight lower than 30000 g/mol and more preferably an average molecular weight ranging between 500 g/mol and 30000 g/mol.
- the average molecular weight of the cationic derivative of fructan ranges between 1000 g/mol and 15000 g/mol and more preferably between 2000 g/mol and 5000 g/mol.
- Cationic compounds known in the art for use in cosmetic compositions generally have a molecular weight higher than 100 000 g/mol or even higher than 1 000 000 g/mol.
- average molecular weight is understood to mean “weight average molecular weight” and is defined by the following formula:
- Ni the number of chains of that molecular weight.
- the average molecular weight may be calculated based on the average molecular weight of the cationic derivative of frutan, preferably inulin, as determined by a chromatographic method such as HPAEC-PAD (high-performance anion exchange chromatography coupled to pulsed amperometric detection) before quaternization, and the weight increase based on the degree of substitution determined after quaternization.
- HPAEC-PAD high-performance anion exchange chromatography coupled to pulsed amperometric detection
- the degree of substitution of the cationic derivate of fructan ranges preferably between 0.01 and 3. More preferably, the degree of substitution of the cationic derivate of fructan ranges between 0.05 and 2.5, for example between 0.1 and 2, between 0.15 and 2, between 0.15 and 1.5, or between 0.3 and 1.3.
- the “degree of substitution” is defined as the cationic group content per monosaccharide unit, i.e. the cationic group content per cationic derivate of fructan.
- the solubility of the cationic derivate of fructan in water at a temperature of 25° C. is preferably higher than 20 wt %, for example higher than 30 wt %, higher than 40 wt %, higher than 45 wt %, higher than 50 wt %, higher than 60 wt % or higher than 70 wt %.
- Solubility is defined as the maximum percentage (by weight) of a substance that will dissolve in a unit of volume of water at a certain temperature.
- Preferred cationic derivates of fructan have an average molecular weight ranging between 1000 g/mol and 15000 g/mol and a degree of substitution ranging between 0.15 and 2. Even more preferred cationic derivates of fructan have an average molecular weight ranging between 2000 g/mol and 5000 g/mol and a degree of substitution ranging between 0.30 and 1.3.
- a preferred group of fructans comprises inulins.
- inulins are understood to comprise polysaccharides comprising (3(2,1) linked fructofuranose units and a glucopyranose unit.
- the degree of polymerization ranges preferably between 2 and 60.
- Inulin can for example be obtained from chicory, dahlias and Jerusalem artichokes.
- a preferred group of cationic derivates of fructans comprises cationic inulin.
- a cationic derivate of inulin is understood to be a derivate of inulin comprising a cationic group.
- the cationic group may comprise an ammonium group, a quaternary ammonium group, a sulfonium group, a phosphonium group, a transitional metal or any other positively charged functional group.
- a preferred cationic group is a quaternary ammonium group.
- the degree of substitution may be determined based on the nitrogen content calculated using Kjeldahl method.
- Cationic inulin is known and sold under the trademark Quatin® (ex Cosun Biobased Products).
- compositions of the present invention are not a traditional laundry detergent or fabric conditioning compositions.
- the compositions of the present invention preferably comprise low levels or most preferably no anionic surfactant.
- compositions preferably comprise 0 to 4 wt.% anionic and/or cationic surfactant, preferably 0 to 2 wt.% anionic and/or cationic surfactant, more preferably, 0 to 1 wt.% anionic and/or cationic surfactant, even more preferably 0 to 0.85 wt. % and most preferably 0 to 0.5 wt. % anionic and/or cationic surfactant.
- the composition can be completely free of anionic and cationic surfactant.
- compositions of the present invention comprise perfume i.e. free oil perfume or nonconfined perfumes.
- compositions my preferably also comprise perfume microcapsules.
- compositions of the present invention may comprise one or more perfume compositions.
- the perfume compositions may be in the form of a mixture of free perfume compositions or a mixture of encapsulated and free oil perfume compositions.
- compositions of the present invention comprise 0.5 to 20 wt.% perfume ingredients, more preferably 1 to 15 wt.% perfume ingredients, most preferably 2 to 10 wt. % perfume ingredients.
- perfume ingredients it is meant the combined free perfume and any encapsulated perfume.
- Useful perfume components may include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA). These substances are well known to the person skilled in the art of perfuming, flavouring, and/or aromatizing consumer products.
- Particularly preferred perfume components are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP greater than 2.5. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Preferably a perfume composition will comprise a mixture of blooming and substantive perfume components. The perfume composition may comprise other perfume components.
- perfume components it is commonplace for a plurality of perfume components to be present in a free oil perfume composition.
- compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components.
- An upper limit of 300 perfume ingredients may be applied.
- Free perfume may preferably be present in an amount from 0.01 to 20 wt. %, more preferably 0.1 to 15 wt.%, more preferably from 0.1 to 10 wt.%, even more preferably from 0.1 to 6.0 wt.%, most preferably from 0.5 to 6.0 wt. %, based on the total weight of the composition.
- Suitable encapsulating materials may comprise, but are not limited to; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof.
- Perfume components contained in a microcapsule may comprise odiferous materials and/or pro-fragrance materials. Particularly preferred perfume components contained in a microcapsule are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP greater than 2.5. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Preferably a perfume composition will comprise a mixture of blooming and substantive perfume components. The perfume composition may comprise other perfume components.
- perfume components it is commonplace for a plurality of perfume components to be present in a microcapsule.
- compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components in a microcapsule.
- An upper limit of 300 perfume ingredients may be applied.
- Encapsulated perfume may preferably be present in an amount from 0.01 to 20 wt.%, more preferably 0.1 to wt.15 %, more preferably from 0.1 to 10 wt.%, even more preferably from 0.1 to 6.0 wt.%, most preferably from 0.5 to 6.0 wt.%, based on the total weight of the composition.
- compositions of the present invention may contain further optional laundry ingredients.
- Such ingredients include pH buffering agents, perfume carriers, hydrotropes, polyelectrolytes, anti-shrinking agents, anti-oxidants, anti-corrosion agents, drape imparting agents, anti-static agents, ironing aids, antifoams, colorants, pearlisers and/or opacifiers, natural oils/extracts, processing aids, e.g. electrolytes, hygiene agents, e.g. anti-bacterials and antifungals, thickeners, low levels of cationic surfactants such as quaternary ammonium compounds and skin benefit agents.
- the viscosity of the laundry composition is preferably 30 to 15000 mPa.s, more preferably 50 to 1000 mPa.s, most preferably 80 to 800 mPa.s.
- the viscosity measurement can be carried out at 25°C, using a 4cm diameter 2°cone and plate geometry on a DHR-2 rheometer ex. TA instruments. In detail, the measurement can be conducted using a TA-lnstruments DHR-2 rheometer with a 4cm diameter 2 degree angle cone and plate measuring system. The lower Peltier plate is used to control the temperature of the measurement to 25°C.
- the measurement protocol is a ‘flow curve’ where the applied shear stress is varied logarithmically from 0.01 Pa to 400 Pa with 10 measurement points per decade of stress. At each stress the shear strain rate is measured over the last 5 seconds of the 10 second period over which the stress is applied with the viscosity at that stress being calculated as the quotient of the shear stress and shear rate.
- the liquid composition as described herein may be manufactured simply by adding the ingredients to the liquid carrier (i.e. water) with stirring.
- the liquid carrier i.e. water
- Ancillary laundry compositions of the invention may be added to the laundry process in either the wash or the rinse phase of the laundry process.
- the ancillary laundry composition is added during the rinse phase of the laundry process.
- compositions comprise less than 4 wt. % cationic and/or anionic surfactant (i.e. 0 to 2 wt.%). Therefore, the ancillary composition alone does not deliver any detersive action, nor does it deliver fabric softening cationic surfactants.
- the compositions are intended for use in combination with traditional laundry liquids (detergent or fabric conditioner) or powder.
- compositions of the invention comprising castor oil and ester oil Priolube 3987 versus and a control of ester quat, both at 8%wt based on total weight (wt) of composition.
- the “suppression” of malodour signal into the headspace is compared the percentage suppression determined when compared to no treatment.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Molecular Biology (AREA)
- Detergent Compositions (AREA)
Abstract
A laundry composition comprising: a. oil b. stabilisation system comprising a functionalized alkylpolyglucoside c. cationic deposition aid. Method of laundering clothes, wherein the composition is added in the wash or rinse stage. Method of laundering clothes, wherein the composition is an ancillary and used in combination with a second laundry composition in the wash or rinse stage. Use of the composition to reduce malodour.
Description
LAUNDRY COMPOSITION
Field of Invention
The present invention relates to novel laundry compositions suitable for providing benefits to fabric during the laundry process.
Background of the Invention
There remains a need for ancillary laundry compositions which deliver new and improved benefits to fabrics during the laundry process, in particular anti-malodour, that is, the reduction of malodour.
Summary of the Invention
In a first aspect of the present invention is provided a laundry composition comprising: a) oil b) stabilisation system comprising a functionalized alkylpolyglucoside c) cationic deposition aid
In a further aspect of the present invention is provided a method of laundering clothes, wherein the composition as described herein is added in the wash or rinse stage.
In addition, the consumer preference for ancillary laundry products is growing.
Consumers increasingly are looking for laundry products to use in addition to their laundry detergent and fabric conditioner to provide additional or alternate benefits to their fabrics. Such products allow the consumer to tailor their laundry process to suit their needs and preferences.
In a further aspect of the present invention is provided a method of laundering clothes, wherein a composition as described herein is an ancillary and used in combination with a second laundry composition in the wash or rinse stage.
In a further aspect of the present invention is provided a use of a composition as described herein to reduce malodour.
These and other aspects, features and advantages will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the
appended claims. For the avoidance of doubt, any feature of one aspect of the present invention may be utilised in any other aspect of the invention. In other words, the listed steps or options need not be exhaustive. It is noted that the examples given in the description below are intended to clarify the invention and are not intended to limit the invention to those examples per se. Similarly, all percentages are weight/weight percentages unless otherwise indicated. Except in the operating and comparative examples, or where otherwise explicitly indicated, all numbers in this description indicating amounts of material or conditions of reaction, physical properties of materials and/or use are to be understood as modified by the word “about”. Numerical ranges expressed in the format "from x to y" are understood to include x and y. When for a specific feature multiple preferred ranges are described in the format "from x to y", it is understood that all ranges combining the different endpoints are also contemplated.
Ancillary Laundry Compositions
When used as an ancillary, a laundry composition in the context of the present invention is a laundry composition intended for use in addition to a traditional detergent or fabric conditioner formulation. As an ancillary laundry composition, it provides an additional benefit over and above those delivered by a detergent or fabric conditioner and they provide the consumer with the ability to customise the levels of benefit agents delivered in the wash.
The ancillary laundry composition may be in a liquid form.
Oil
Natural oils
Natural oils preferably comprise plant oils, and exclude mineral oils derived from petroleum.
Plant oils
Plant oils include vegetable, nut and seed oils. Plant oils include microbial oils, which are oils that produced by microbes or other organisms, including algal oils and including genetically modified or engineered microbes that produce oils.
Plant oils preferably include triglycerides, free fatty acids, or a combination of both.
Seed oils
Seed oils include almond, argan, babassu, borage, camelina , canola ®, castor, chia, cherry, coconut, corn, cotton, coffee, Cuphea Viscosissima , flax (linseed), grape, hemp, hepar, jatropha, jojoba, Lesquerella Fendleri oil, Moringa Oleifera oil, macadamia, mango, mustard, neem, oil palm, perilla, rapeseed, safflower, sesame, shea, stillingia, soybean, sunflower, tonka bean, tung.
Vegetable Oils
Vegetable oils include olive oil, palm, rice bran oils.
The natural oil may comprise a triglyceride or mixtures of triglycerides with varying degrees of alkyl chain length and unsaturation. The or each triglyceride comprises one or two or more, preferably three fatty acids, bonded by a glycerol bridge. The natural oil may be modified to alter level of unsaturation or branching.
Ester Oil
The oil preferably comprises ester oils. The ester oils are preferably hydrophobic.
The ester oil may be a sugar ester oil or an oil with substantially no surface activity. Preferably the ester oil is a liquid or soft solid.
Preferably, the oil is polyol ester (i.e. more than one alcohol group is reacted to form the polyol ester). Preferably the polyol ester is formed by esterification of a polyol (i.e. reacting a molecule comprising more than one alcohol group with acids). Preferably the polyol ester comprises at least two ester linkages. Preferably the polyol ester comprises no hydroxyl groups.
Preferably the ester oil is a pentaerythritol ester oil, i.e. an ester oil formed from pentaerythritol e.g. a pentaerythritol tetraisostearate. Exemplary structures of the compound are (I) and (II) below:
Preferably the oil is saturated.
Preferably, the ester oils are esters containing straight or branched, saturated or unsaturated carboxylic acids.
Suitable ester oils are the fatty ester of a mono or polyhydric alcohol having from 1 to about 24 carbon atoms in the hydrocarbon chain and mono or polycarboxylic acids having from 1 to about 24 carbon atoms in the hydrocarbon chain with the proviso that the total number of carbon atoms in the ester oil is equal to or greater than 16 and that at least one of the hydrocarbon radicals in the ester oil has 12 or more carbon atoms.
Preferably the viscosity of the ester oil or mineral oil is from 2 mPa. s to 2000 mPa. s at a temperature of 25 C, more preferably a viscosity from 100 to 1500 mPa. s, most preferably a viscosity from 100 to 1000 mPa. s.
Preferably the refractive index of the oil is from 1.445 to 1.490, more preferred from 1.460 to 1.485.
The ester oil of the current invention may be in the form of a free oil or an emulsion.
The compositions described herein comprise 15 - 40wt.% ester oil. Preferably 0.5 to 10 wt. % ester oil, more preferably 0.5 to 6 wt.% ester oil.
Non-volatile
Preferred oils are non-volatile oils. Non-volatile oils provide technical benefits which differ those coming from volatile actives such as fragrances. Non-volatile agents do not rely on olfactory perception but instead provide tactile or visual effects e.g. softness or colour benefits such as a reduction in colour fade.
In this specification a “non-volatile oil” means an oil that when applied to a surface and left at 25 °C a non-volatile material will lose less than 50% of its mass over a time of 7 days. A non-volatile functional material typically has a boiling point greater than 250 °C.
Examples of non-volatile benefit agents include silicone oils or natural e.g. ester oils.
Such oils can provide care benefits arising from non-volatile actives (so not olfactory but tactile or visual effects) e.g. softness or colour benefits such as a reduction in colour fade.
Stabilisation System
The stabilisation system comprises a functionalized alkylpolyglucoside which may include sorbitan ester alkylpolyglucoside crosspolymers. Suitable sorbitan esters include, without limitation, oleate, laurate, stearate, and palmitate. The general structure of a sorbitan oleate polyglucoside crosspolymer is shown below:
In the formula above, n may be between about 2 to about 20, each R group is an alkyl group having 8 to 24 carbons, wherein the R groups can be the same or different, and the range of m is between 1 to about 10 (for the sorbitan oleate units). For example, each R group can be a C10 alkyl group.
The alkylpolyglucoside derivatives can include, without limitation, sorbitan oleate decylpolyglucoside crosspolymers, such as those commercially available from Colonial Chemicals, Inc. (US) as PolySugaOMulse D-3I, PolySugaOMulse D-6, and PolySugaOMulse D-9, sorbitan laurate decylpolyglucoside crosspolymers, sorbitan stearate decylpolyglucoside crosspolymers, and sorbitan palmitate decylpolyglucoside crosspolymers. These and related compounds can be synthesized according to methods known in the art.
The stabilisation may further comprise further polysaccharides.
The stabilisation system is preferably a colloidal stabilisation system - that is to say, a stabilization system that works to provide a stable colloid.
Preferably the additional polysaccharide is a non-ionic polysaccharide, comprising a modified cellulose or cellulose derivative e.g. HPC.
HPC Hydroxypropyl Cellulose
A preferred stabilizing polymer is hydroxypropyl cellulose. Preferably the molecular weight is in excess of 40 kDa.
Hydroxypropyl Cellulose (HPC) has the repeat structure shown in generalised terms below:
Especially good results may be obtained when the HPC is one with a viscosity in 2 wt% aqueous solution of 1000 to 4000 mPa.s. Viscosity measurements are done using a Brookfield viscometer, Spindle #3, @30 rpm. Lower viscosity materials are measured using Spindle #2, @60 rpm.
HPC is an ether of cellulose in which some of the hydroxyl groups in the repeating glucose units have been hydroxy-propylated forming -OCH2CH(OH)CH3 groups using propylene oxide. The average number of substituted hydroxyl groups per glucose unit is referred to as the degree of substitution (DS). Complete substitution would provide a DS of 3. However, as the hydroxy-propyl group itself contains a hydroxyl group, this can also be etherified during preparation of HPC. When this occurs, the number of moles of hydroxy-propyl groups per glucose ring, moles of substitution (MS), can be higher than 3.
The majority (typically around 75% for a DS of 3) of the mass of HPC is found in the substituent groups rather than the backbone.
Non-ionic Surfactant Stabilizers
The stabilizer may further comprise a nonionic surfactant.
Sorbitan esters
The stabilizer may comprise a sorbitan ester.
Examples include
The stabilizer may comprise an ethoxylated sorbitan ester having an average exthoxylation from 15 - 25.
The at least one ethoxylated sorbitan ester may have general formula (II):
S0rb-(E0n1 Rl)(EOn2R2)(EOn3R3)(EOn4R4) (II) in which:
Sorb represents a residue obtained by removing four hydroxyl H atoms from sorbitan; EO represents an ethyleneoxy group; R1.R2.R3 and R4 are each independently selected from H or a -C(O)Rs group in which R5 is selected from straight or branched chain monovalent hydrocarbyl radicals having from 8 to 22 carbon atoms and mixtures thereof (provided that at least one of R1 to R4 is -C(O)Rs); ni, n2, n3 and n4 each independently represent average values from 0 to 10; and the total [m + n2 + n3 + n4] has an average value from 5 - 25
Sorbitan is a generic name for anhydrides derived from sorbitol, a naturally occurring crystalline hexahydric alcohol found in fruits, seaweed, and algae. In formula (II) above, the residue ‘Sorb’ is obtained by removing four hydroxyl H atoms from sorbitan, and will typically be a mixture of residues of 1 ,4-anhydrosorbitol, 1 ,5-anhydrosorbitol, and 3,6- anhydrosorbitol. The ethoxylated fatty acid ester is formed by each of the removed H atoms being substituted with the groups (EOniRi), (EOn2R2), (EOnsRs), and (EOn4R4). Preferably, one of Ri to R4 is -C(O)Rs and the remaining 3 are hydrogen. However, esters with more than one -C(O)Rs group (e.g. diesters and triesters) will also usually be present in the products as synthesised. Thus the products will often have non-integral ratios of Sorb and R5 residues as defined in formula (II). For example, an average of 1.4 to 1.5 of the Ri,to R4 groups may be -C(O)Rs and the remaining 2.5 to 2.6 hydrogen.
The individual oligoethoxylate chain lengths corresponding to the individual indices m , n2, ns and n4 in formula (II) are preferably each within the range from 0.5 to 6 and more preferably from 1 to 5. As the indices represent average values for the oligoethoxylate chain lengths, they may individually and in total be non-integral. The total [m + 02 + 03 + 04] in formula (II) preferably has an average value (an “average ethoxylation value” as used herein, from 15 to 25, more preferably from 18 to 22 and most preferably 20. Higher ethoxylation values can reduce cleaning efficiency due to increased hydrophilicity and lower ethoxylation values reduce cleaning efficiency as the molecule becomes less soluble.
Rs in formula (II) is preferably selected from linear or branched, alkyl or alkenyl groups having from 10 to 20 carbon atoms and 0 or 1 double bond. More preferably, Rs in formula (II) is selected from linear alkyl or linear alkenyl groups containing from 12 to 18 carbon atoms and 0 or 1 double bond, such as lauryl, myristyl, palmityl, cetyl, oleyl and stearyl and mixtures thereof. Most preferably, Rs in formula (II) is selected from oleyl, stearyl and lauryl and mixtures thereof (as may for example be derived from natural fats and/or optionally hydrogenated natural oils such as palm oil, soybean oil, rapeseed oil, sunflower oil and tallow).
Examples of suitable ethoxylated fatty acid sorbitan esters (ii) for use in the invention include polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monopalmitate, polyoxyethylene (20) sorbitan monostearate, polyoxyethylene (20) sorbitan monooleate and mixtures thereof.
Deposition Aid
Functionalised alkylpolyglucoside.
Preferably the stabilization system comprises a functionalised alkylpolyglucoside (which may also be termed a alkylpolyglucoside derivative). These can include, without limitation, quaternized alkylpolyglucoside crosspolymers, and inorganic salts thereof. A representative structure of quaternized functionalized alkylpolyglucoside crosspolymers is shown below.
In certain embodiments of the present disclosure, in the formula above, n is between about 2 to about 11 , R is a C2 -C24 alkyl group, and the quaternary compound is a stearyldimonium, hydroxypropyltrimonium, or lauryldimonium moiety. Accordingly, in certain embodiments, the alkylpolyglucoside derivatives of the present disclosure can include poly(cocoglucosides hydroxypropyltrimonium chloride), poly(stearyldimonium hydroxypropylpropyldecylglucosides chloride), poly(lauryldimonium hydroxypropyl decylglucosides chloride), poly(lauryldimonium hydroxypropyl laurylglucosides chloride), and poly(laurylglucosides hydroxypropyltrimonium chloride), which are commercially available from Colonial Chemicals, Inc. (US) as Poly Suga® Quat TM8610P, Poly Suga® Quat S1010P, Poly Suga® Quat L1010P, Poly Suga® Quat L1210P, and Poly Suga® Quat TM 1218P, respectively. These and related compounds can be synthesized according to methods known in the art e.g. as described in US7507399.
Cationic Inulin
The deposition may comprise a cationic derivate of fructan.
For the purpose of the present application “a cationic derivate of fructan” is understood to be a derivate of fructan comprising a cationic group. The cationic group may comprise an ammonium group, a quaternary ammonium group, a sulfonium group, a phosphonium group, a transitional metal or any other positively charged functional group. A preferred cationic group is a quaternary ammonium group. In highly preferred embodiments the cationic derivative of fructan is hydroxypropyltrimonium inulin.
For the purpose of this application “fructans” are understood to comprise all polysaccharides which have a multiplicity of anhydrofructose units. The fructans can have a polydisperse chain length distribution and can be straight-chain or branched. The fructans comprise both products obtained directly from a vegetable or other source and products in which the average chain length has been modified (increased or reduced) by fractionation, enzymatic synthesis or hydrolysis. The fructans have an average chain length (=degree of polymerization, DP) of at least 2 to about 1000, in particular between 3 and 60, for example 3, 4, 5, 6, 7, 8, 15 or 25.
Surprisingly it has been found, that the cationic derivate of fructan has preferably an average molecular weight lower than 30000 g/mol and more preferably an average molecular weight ranging between 500 g/mol and 30000 g/mol. In preferred embodiments the average molecular weight of the cationic derivative of fructan ranges between 1000 g/mol and 15000 g/mol and more preferably between 2000 g/mol and 5000 g/mol.
Cationic compounds known in the art for use in cosmetic compositions generally have a molecular weight higher than 100 000 g/mol or even higher than 1 000 000 g/mol.
For the purpose of this application “average molecular weight” is understood to mean “weight average molecular weight” and is defined by the following formula:
Mw=£NiMi2£NiMi
With Mi : the molecular weight of a chain
Ni: the number of chains of that molecular weight.
The average molecular weight may be calculated based on the average molecular weight of the cationic derivative of frutan, preferably inulin, as determined by a chromatographic method such as HPAEC-PAD (high-performance anion exchange chromatography coupled to pulsed amperometric detection) before quaternization, and the weight increase based on the degree of substitution determined after quaternization.
The degree of substitution of the cationic derivate of fructan ranges preferably between 0.01 and 3. More preferably, the degree of substitution of the cationic derivate of fructan ranges between 0.05 and 2.5, for example between 0.1 and 2, between 0.15 and 2, between 0.15 and 1.5, or between 0.3 and 1.3.
The “degree of substitution” is defined as the cationic group content per monosaccharide unit, i.e. the cationic group content per cationic derivate of fructan.
The solubility of the cationic derivate of fructan in water at a temperature of 25° C. is preferably higher than 20 wt %, for example higher than 30 wt %, higher than 40 wt %, higher than 45 wt %, higher than 50 wt %, higher than 60 wt % or higher than 70 wt %.
“Solubility” is defined as the maximum percentage (by weight) of a substance that will dissolve in a unit of volume of water at a certain temperature.
Preferred cationic derivates of fructan have an average molecular weight ranging between 1000 g/mol and 15000 g/mol and a degree of substitution ranging between 0.15 and 2. Even more preferred cationic derivates of fructan have an average molecular weight ranging between 2000 g/mol and 5000 g/mol and a degree of substitution ranging between 0.30 and 1.3.
A preferred group of fructans comprises inulins. For the purpose of this application “inulins” are understood to comprise polysaccharides comprising (3(2,1) linked fructofuranose units and a glucopyranose unit. The degree of polymerization ranges preferably between 2 and 60. Inulin can for example be obtained from chicory, dahlias and Jerusalem artichokes.
A preferred group of cationic derivates of fructans comprises cationic inulin. For the purpose of the present application “a cationic derivate of inulin” is understood to be a
derivate of inulin comprising a cationic group. The cationic group may comprise an ammonium group, a quaternary ammonium group, a sulfonium group, a phosphonium group, a transitional metal or any other positively charged functional group. A preferred cationic group is a quaternary ammonium group. In case the cationic group is a quaternary ammonium group, the degree of substitution may be determined based on the nitrogen content calculated using Kjeldahl method. Cationic inulin is known and sold under the trademark Quatin® (ex Cosun Biobased Products).
Anionic and Cationic Surfactants
The compositions of the present invention are not a traditional laundry detergent or fabric conditioning compositions. The compositions of the present invention preferably comprise low levels or most preferably no anionic surfactant.
Except for the surfactant stabilizers mentioned above, the compositions preferably comprise 0 to 4 wt.% anionic and/or cationic surfactant, preferably 0 to 2 wt.% anionic and/or cationic surfactant, more preferably, 0 to 1 wt.% anionic and/or cationic surfactant, even more preferably 0 to 0.85 wt. % and most preferably 0 to 0.5 wt. % anionic and/or cationic surfactant. The composition can be completely free of anionic and cationic surfactant.
Perfume
The compositions of the present invention comprise perfume i.e. free oil perfume or nonconfined perfumes. The compositions my preferably also comprise perfume microcapsules.
The compositions of the present invention may comprise one or more perfume compositions. The perfume compositions may be in the form of a mixture of free perfume compositions or a mixture of encapsulated and free oil perfume compositions.
Preferably the compositions of the present invention comprise 0.5 to 20 wt.% perfume ingredients, more preferably 1 to 15 wt.% perfume ingredients, most preferably 2 to 10 wt. % perfume ingredients. By perfume ingredients it is meant the combined free perfume and any encapsulated perfume.
Useful perfume components may include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA). These substances are well known to the person skilled in the art of perfuming, flavouring, and/or aromatizing consumer products.
Particularly preferred perfume components are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP greater than 2.5. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Preferably a perfume composition will comprise a mixture of blooming and substantive perfume components. The perfume composition may comprise other perfume components.
It is commonplace for a plurality of perfume components to be present in a free oil perfume composition. In the compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components. An upper limit of 300 perfume ingredients may be applied.
Free perfume may preferably be present in an amount from 0.01 to 20 wt. %, more preferably 0.1 to 15 wt.%, more preferably from 0.1 to 10 wt.%, even more preferably from 0.1 to 6.0 wt.%, most preferably from 0.5 to 6.0 wt. %, based on the total weight of the composition.
Preferably some of the perfume components are contained in a microcapsule. Suitable encapsulating materials may comprise, but are not limited to; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof.
Perfume components contained in a microcapsule may comprise odiferous materials and/or pro-fragrance materials.
Particularly preferred perfume components contained in a microcapsule are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP greater than 2.5. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Preferably a perfume composition will comprise a mixture of blooming and substantive perfume components. The perfume composition may comprise other perfume components.
It is commonplace for a plurality of perfume components to be present in a microcapsule. In the compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components in a microcapsule. An upper limit of 300 perfume ingredients may be applied.
Encapsulated perfume may preferably be present in an amount from 0.01 to 20 wt.%, more preferably 0.1 to wt.15 %, more preferably from 0.1 to 10 wt.%, even more preferably from 0.1 to 6.0 wt.%, most preferably from 0.5 to 6.0 wt.%, based on the total weight of the composition.
Optional Ingredients
The compositions of the present invention may contain further optional laundry ingredients. Such ingredients include pH buffering agents, perfume carriers, hydrotropes, polyelectrolytes, anti-shrinking agents, anti-oxidants, anti-corrosion agents, drape imparting agents, anti-static agents, ironing aids, antifoams, colorants, pearlisers and/or opacifiers, natural oils/extracts, processing aids, e.g. electrolytes, hygiene agents, e.g. anti-bacterials and antifungals, thickeners, low levels of cationic surfactants such as quaternary ammonium compounds and skin benefit agents.
Form of Composition
When the composition is a liquid, the viscosity of the laundry composition is preferably 30 to 15000 mPa.s, more preferably 50 to 1000 mPa.s, most preferably 80 to 800 mPa.s.
This viscosity provides the benefit that a laundry liquid can carry the ancillary composition into the laundry process. The viscosity measurement can be carried out at 25°C, using a 4cm diameter 2°cone and plate geometry on a DHR-2 rheometer ex. TA instruments. In
detail, the measurement can be conducted using a TA-lnstruments DHR-2 rheometer with a 4cm diameter 2 degree angle cone and plate measuring system. The lower Peltier plate is used to control the temperature of the measurement to 25°C. The measurement protocol is a ‘flow curve’ where the applied shear stress is varied logarithmically from 0.01 Pa to 400 Pa with 10 measurement points per decade of stress. At each stress the shear strain rate is measured over the last 5 seconds of the 10 second period over which the stress is applied with the viscosity at that stress being calculated as the quotient of the shear stress and shear rate.
The liquid composition as described herein may be manufactured simply by adding the ingredients to the liquid carrier (i.e. water) with stirring.
In Use
Ancillary laundry compositions of the invention may be added to the laundry process in either the wash or the rinse phase of the laundry process. Preferably the ancillary laundry composition is added during the rinse phase of the laundry process.
The compositions comprise less than 4 wt. % cationic and/or anionic surfactant (i.e. 0 to 2 wt.%). Therefore, the ancillary composition alone does not deliver any detersive action, nor does it deliver fabric softening cationic surfactants. The compositions are intended for use in combination with traditional laundry liquids (detergent or fabric conditioner) or powder.
Anti-Maldour Tests
Anti-malodour was tested by dosing malodourous components: butyric acid and 4-methyl valeric acid onto knitted cotton with a background of laundry liquid. Compositions of the invention comprising castor oil and ester oil Priolube 3987 versus and a control of ester quat, both at 8%wt based on total weight (wt) of composition.
The “suppression” of malodour signal into the headspace is compared the percentage suppression determined when compared to no treatment.
The fabrics were washed to determine removal differences with different treatments.
Results - Knitted Cotton
The results are shown in Figure 1.
Claims
1. A laundry composition comprising: a. oil b. stabilisation system comprising a functionalized alkylpolyglucoside c. cationic deposition aid
2. A laundry composition according to claim 1 wherein wherein the functionalized alkylpolyglucoside comprises sorbitan ester alkylpolyglucoside crosspolymers.
3. A laundry composition according to claim 1 or claim 2 the oil is an ester oil.
4. A laundry composition according to claim 3 wherein the ester oil is a polyol ester.
5. A laundry composition according to any preceding claim, wherein the oil comprises castor oil.
6. A laundry composition according to any preceding claim, wherein the stabilization system further comprises non-ionic polysaccharide.
7. A laundry composition according to any preceding claim, wherein the stabilization system further comprises a modified cellulose or cellulose derivative.
8. A laundry composition according to any preceding claim, wherein the stabilization system further comprises a non-ionic surfactant.
9. A laundry composition according to any preceding claim, wherein the non-ionic surfactant comprises a sorbitan ester or an ethoxylated sorbitan ester.
10. A laundry composition according to any preceding claim, wherein the cationic deposition aid comprises a functionalised alkylpolyglucoside, preferably quaternized alkylpolyglucoside crosspolymers and inorganic salts thereof.
11. A laundry composition according to any preceding claim, wherein the cationic deposition aid comprises a cationic derivative of fructan.
A method of laundering clothes, wherein a composition according to any preceding claim is added in the wash or rinse stage. A method of laundering clothes, wherein a composition according to any of claims 1- 11 is an ancillary and used in combination with a second laundry composition in the wash or rinse stage. Use of a composition according to any of claims 1-11 to reduce malodour.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22184553 | 2022-07-12 | ||
EP22184553.0 | 2022-07-12 | ||
EP23163247 | 2023-03-21 | ||
EP23163247.2 | 2023-03-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024013175A1 true WO2024013175A1 (en) | 2024-01-18 |
Family
ID=87280911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/069197 WO2024013175A1 (en) | 2022-07-12 | 2023-07-11 | Laundry composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024013175A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7507399B1 (en) | 2004-08-05 | 2009-03-24 | Surfatech Corporation | Functionalized polymeric surfactants based upon alkyl polyglycosides |
US20180085291A1 (en) * | 2016-09-28 | 2018-03-29 | International Flavors & Fragrances Inc. | Microcapsule compositions containing amino silicone |
WO2020065541A1 (en) * | 2018-09-25 | 2020-04-02 | Moroccanoil Israel, Ltd. | Microemulsions and methods of use |
WO2020229661A1 (en) * | 2019-05-16 | 2020-11-19 | Unilever Plc | Laundry composition |
WO2023067041A1 (en) * | 2021-10-21 | 2023-04-27 | Givaudan Sa | Composition |
-
2023
- 2023-07-11 WO PCT/EP2023/069197 patent/WO2024013175A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7507399B1 (en) | 2004-08-05 | 2009-03-24 | Surfatech Corporation | Functionalized polymeric surfactants based upon alkyl polyglycosides |
US20180085291A1 (en) * | 2016-09-28 | 2018-03-29 | International Flavors & Fragrances Inc. | Microcapsule compositions containing amino silicone |
WO2020065541A1 (en) * | 2018-09-25 | 2020-04-02 | Moroccanoil Israel, Ltd. | Microemulsions and methods of use |
WO2020229661A1 (en) * | 2019-05-16 | 2020-11-19 | Unilever Plc | Laundry composition |
WO2023067041A1 (en) * | 2021-10-21 | 2023-04-27 | Givaudan Sa | Composition |
Non-Patent Citations (1)
Title |
---|
COLONIAL CHEMICAL INC: "Clean & Simple Shampoo", 1 August 2020 (2020-08-01), XP093044077, Retrieved from the Internet <URL:https://colonialchem.com/wp-content/uploads/2020/11/1055-Clean-Simple-Shampoo.pdf> * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1240292B1 (en) | Fabric softening compositions | |
EP1948773B1 (en) | Fragrant consumer products comprising oxidizing agents | |
US7754671B2 (en) | Liquid laundry detergent containing an ethoxylated anionic/nonionic surfactant mixture and fabric conditioner | |
CA3169694A1 (en) | Compositions comprising cationic poly alpha-1,3-glucan ethers | |
KR20190089073A (en) | Composition for treating fabrics | |
EP4211215B1 (en) | Laundry composition | |
CN113874483A (en) | Fabric conditioning composition | |
EP1660621A1 (en) | Agents that are absorbed by the surface of substrates | |
JP2020509058A (en) | Consumer product composition containing microcapsules | |
EP1240286A1 (en) | Fabric softening compositions and compounds | |
US20010006937A1 (en) | Method for preparing fabric softening compositions | |
US20010006938A1 (en) | Use of fabric conditioning compositions for ironing benefits | |
WO2024013175A1 (en) | Laundry composition | |
WO2024013172A1 (en) | Laundry composition | |
WO2024013174A1 (en) | Laundry composition | |
WO2024013173A1 (en) | Laundry composition | |
WO2024013171A1 (en) | Laundry composition | |
WO2023099593A1 (en) | Fabric conditioner | |
WO2007033731A1 (en) | Detergents and cleaners with skincare ingredients | |
EP1511830B1 (en) | Process for the manufacture of liquid fabric detergent compositions | |
EP1831341A1 (en) | Fabric enhancing composition | |
WO2023099499A1 (en) | Fabric conditioning method | |
WO2002004587A1 (en) | Process for imparting conditioning and good fragrance perception to both damp and dry fabric | |
EP3418354B1 (en) | Fabric softener active compositions | |
WO2023099595A1 (en) | Fabric softening composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23741385 Country of ref document: EP Kind code of ref document: A1 |