[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024005422A1 - B7-h6 variants with improved binding affinity for nkp30 - Google Patents

B7-h6 variants with improved binding affinity for nkp30 Download PDF

Info

Publication number
WO2024005422A1
WO2024005422A1 PCT/KR2023/008393 KR2023008393W WO2024005422A1 WO 2024005422 A1 WO2024005422 A1 WO 2024005422A1 KR 2023008393 W KR2023008393 W KR 2023008393W WO 2024005422 A1 WO2024005422 A1 WO 2024005422A1
Authority
WO
WIPO (PCT)
Prior art keywords
variant
amino acid
nkp30
binding affinity
acid substitutions
Prior art date
Application number
PCT/KR2023/008393
Other languages
French (fr)
Korean (ko)
Inventor
정상택
김보미
하지연
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2024005422A1 publication Critical patent/WO2024005422A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70532B7 molecules, e.g. CD80, CD86
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation

Definitions

  • the present invention relates to B7-H6 variants with improved binding to NKp30.
  • Cancer cells express immune checkpoint proteins on the cell surface, which are used by normal cells to suppress immune cell activation in order to avoid the killing mechanism of immune cells.
  • immunotherapy has been used as a method to treat cancer.
  • Research on checkpoint inhibitor proteins is actively underway. Patients who respond to immune checkpoint inhibitors have fewer side effects during the treatment process, and their use is increasing explosively as superior treatment effects are reported compared to existing anticancer drugs for various cancer types. However, more than half of patients still receive clinically approved immunizations.
  • Immune cells express immune checkpoint proteins on the cell surface that are used to suppress and activate themselves. Among various immune checkpoint receptors, it was confirmed that B7-H6 binds to NKp30, an activation receptor expressed on the surface of NK cells (Natural killer cells), thereby activating NK cells.
  • cell therapy is a medicine that induces regeneration using living cells to restore damaged or diseased cells/tissues, using physical, chemical, and biological methods such as culturing, proliferating, or selecting autologous, allogeneic, or xenogeneic cells in vitro. It refers to medicines manufactured by manipulating.
  • immunomodulatory cell therapy refers to medicines used to treat diseases by activating the body's immune response using immune cells such as dendritic cells, natural killer cells, and T cells. .
  • immunomodulatory cell therapies are mainly being developed for cancer treatment indications. Since they achieve therapeutic effects by activating immune function by administering immune cells directly to the patient, they are used in existing cancer treatments such as surgery, anticancer drugs, or radiation therapy.
  • Immunomodulatory cell therapy activates various immune cells, such as PBMC (pheripheral blood mononuclear cells), T cells, and natural killer cells (NK cells), isolated from patients through apheresis, with various antibodies and cytokines, and then administers them in vitro.
  • PBMC peripheral blood mononuclear cells
  • NK cells natural killer cells
  • TCR T-Cell Receptor
  • CAR Chimeric Antigen Receptor
  • PBMC peripheral blood mononuclear cells
  • CD3 - cells CD3-CD56 + cells
  • CD56 + cells are used as raw material cells
  • natural killer cell growth factors include IL-2, IL-12, IL-15, and IL.
  • Cytokines such as -21, LPS (Goodier et al., J. Immunol. 165(1):139-147, 2000), and OKT-3 antibody that stimulates CD3 (Condiotti et al., Experimental Hematol. 29( 1):104-113, 2001), but the proliferation rate is such that it is difficult to commercialize natural killer cells as a treatment.
  • the purpose of the present invention is to provide a B7-H6 variant with increased binding ability to natural killer cells.
  • an object of the present invention is to provide a natural killer cell activator.
  • an object of the present invention is to provide bispecific or multispecific antibodies.
  • an object of the present invention is to provide a pharmaceutical composition for treating or preventing cancer.
  • an object of the present invention is to provide a method for in vitro proliferation of activated natural killer cells.
  • an object of the present invention is to provide a use of the B7-H6 variant or a bispecific or multispecific antibody containing it for the prevention or treatment of cancer.
  • an object of the present invention is to provide a method for treating cancer.
  • the present invention provides a B7-H6 variant with increased binding affinity to NKp30 (Natural cytotoxicity triggering receptor 3).
  • the present invention provides a natural killer cell activator comprising the B7-H6 variant.
  • the present invention provides a bispecific or multispecific antibody comprising a portion that binds to the B7-H6 variant and a target antigen.
  • the present invention provides a pharmaceutical composition for the treatment or prevention of cancer comprising the B7-H6 variant or a bispecific or multispecific antibody.
  • the present invention provides a method for in vitro proliferation of activated natural killer cells.
  • the present invention provides a use of the B7-H6 variant, or bispecific or multispecific antibody, for preventing or treating cancer.
  • the present invention provides a method of treating cancer comprising administering the B7-H6 variant, or bispecific or multispecific antibody, in a pharmaceutically effective amount to an individual suffering from cancer.
  • the B7-H6 variant of the present invention has a significantly increased binding force to NKp30, an activation receptor for natural killer cells (NK cells), compared to the wild type, which can increase natural killer cell activation, and its size is significantly smaller than that of the antibody, so it can be used in the tumor microenvironment. Since it is easy to penetrate and produce, it can be usefully used alone or in combination with various immunotherapeutics to treat cancer or infectious diseases.
  • NK cells an activation receptor for natural killer cells
  • Figure 1 is a diagram showing an SDS-PAGE gel photograph of an expression vector for NKp30-streptavidin protein and purified protein.
  • Figure 2 is a diagram showing the results of flow cytometry for selecting the B7-H6 display method.
  • Figure 3 is a diagram showing the results of amino acid sequence analysis of the constructed initial library.
  • Figure 4 is a diagram showing the results of enrichment verification of clones with improved NKp30 binding ability according to the screening process using flow cytometry.
  • Figure 5 is a diagram showing the results of analysis of the binding affinity of B7-H6 variants with NKp30 obtained through flow cytometry.
  • Figure 6 is a diagram showing an SDS-PAGE gel photograph of purified B7-H6 variant-Fc fusion proteins.
  • Figure 7 is a diagram showing the results of ELISA analysis of the NKp30 binding capacity of B7-H6 variant-Fc fusion proteins.
  • Figure 8 is a diagram showing the results of amino acid sequence analysis of the constructed B7-H6 focused library.
  • Figure 9 is a diagram showing the results of verifying the amplification of B7-H6 variant clones with high NKp30 affinity according to the screening process using flow cytometry.
  • Figure 10 is a diagram showing the results of analysis of the binding affinity of B7-H6 variants to NKp30 using flow cytometry.
  • Figure 11 is a diagram showing an SDS-PAGE gel photograph of purified B7-H6 variant-Fc fusion proteins.
  • Figure 12 is a diagram showing the results of ELISA analysis of the NKp30 binding ability of the B7-H6 variant-Fc fusion proteins of the present invention.
  • amino acids referred to by abbreviations in the present invention are described according to the IUPAC-IUB nomenclature as follows:
  • the present invention relates to the 31st, 32nd, 37th, 40th, 51st, 53rd, 57th, 60th, One or more amino acids selected from the group consisting of the 67th, 86th, 101st, 102nd, 108th, 114th, 129th, 136th, 142nd and 143rd amino acids are substituted with a sequence different from the wild type amino acid. , relates to a B7-H6 variant or fragment thereof with increased binding to NKp30 (Natural cytotoxicity triggering receptor 3).
  • the amino acid of wild-type B7-H6 may include the amino acid sequence of SEQ ID NO: 1, and the amino acid position may be based on the amino acid sequence of SEQ ID NO: 1.
  • the B7-H6 variant of the invention is M31I, A32T, I37T, I37F, L40Q, F51I, F51S, F51L, F51Y, F51T, F51H, F51Q, F51K, F51R, S53G, N57D, S60I, S60Y, S60T , S60H, S60L, W67R, Q86L, K101E, S102C, S102R, R108M, L114M, L129M, Q136R, S142N and P143S. It may include any one or more amino acid substitutions selected from the group consisting of.
  • the B7-H6 variant of the present invention may be a variant comprising an amino acid mutation in the ectodomain region (SEQ ID NO: 2), which is a region exposed to the outside of the cell of all amino acids of wild-type B7-H6. .
  • the B7-H6 variant of the present invention may be B5 containing the amino acid substitutions F51S and S60I, and may include an extracellular domain region (SEQ ID NO: 3) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing the nucleotide sequence of 4.
  • the B7-H6 variant of the present invention may be B6 containing the amino acid substitution N57D, and may include an extracellular domain region (SEQ ID NO: 5) containing the amino acid substitution, which is of SEQ ID NO: 6. It can be encoded as a nucleic acid molecule containing a base sequence.
  • the B7-H6 variant of the present invention may be B7 containing the amino acid substitutions K101E and S102R, and may include an extracellular domain region (SEQ ID NO: 7) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing the nucleotide sequence of 8.
  • the B7-H6 variant of the present invention may be B8 containing the amino acid substitutions A32T and S60I, and may include an extracellular domain region (SEQ ID NO: 9) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 10 base sequences.
  • the B7-H6 variant of the present invention may be B9 containing amino acid substitutions A32T, L40Q and S60I, and may include an extracellular domain region (SEQ ID NO: 11) containing the amino acid substitutions, which It can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 12.
  • the B7-H6 variant of the present invention may be B14 containing the amino acid substitutions F51L and S60I, and may include an extracellular domain region (SEQ ID NO: 13) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 14 base sequences.
  • the B7-H6 variant of the present invention may be B16 containing the amino acid substitution K101E, and may include an extracellular domain region (SEQ ID NO: 15) containing the amino acid substitution, which is of SEQ ID NO: 16 It can be encoded as a nucleic acid molecule containing a base sequence.
  • the B7-H6 variant of the present invention may be B19 comprising amino acid substitutions A32T, W67R, Q86L, K101E and L129M, and may include an extracellular domain region (SEQ ID NO: 17) comprising the amino acid substitutions. It can be encoded with a nucleic acid molecule containing the nucleotide sequence of SEQ ID NO: 18.
  • the B7-H6 variant of the present invention may be B23 containing amino acid substitutions S60I, L114M and S142N, and may include an extracellular domain region (SEQ ID NO: 19) containing the amino acid substitutions, which It can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 20.
  • the B7-H6 variant of the present invention may be B29 containing amino acid substitutions M31I, A32T, F51I, S60I, S102C and R108M, and the extracellular domain region (SEQ ID NO: 21) containing the amino acid substitutions. It may be encoded by a nucleic acid molecule containing the nucleotide sequence of SEQ ID NO: 22.
  • the B7-H6 variant of the present invention may be B35 containing amino acid substitutions A32T, S60I, K101E and P143S, and may include an extracellular domain region (SEQ ID NO: 23) containing the amino acid substitutions, , which can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 24.
  • the B7-H6 variant of the present invention may be B40 containing the amino acid substitutions I37T, Q86L and K101E, and may include an extracellular domain region (SEQ ID NO: 25) containing the amino acid substitutions, which It can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 26.
  • the B7-H6 variant of the present invention may be B41 containing amino acid substitutions A32T, S53G, S60I and Q136R, and may include an extracellular domain region (SEQ ID NO: 27) containing the amino acid substitutions, , which can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 28.
  • SEQ ID NO: 27 extracellular domain region
  • the B7-H6 variant of the present invention may be B47 containing the amino acid substitutions F51Y and S60I, and may include an extracellular domain region (SEQ ID NO: 29) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 30 base sequences.
  • the B7-H6 variant of the present invention may be B52 containing the amino acid substitutions S60I and K101E, and may include an extracellular domain region (SEQ ID NO: 31) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 32 base sequences.
  • the B7-H6 variant of the present invention may be B53 containing the amino acid substitutions A32T and K101E, and may include an extracellular domain region (SEQ ID NO: 33) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 34 base sequences.
  • the B7-H6 variant of the present invention may be B54 containing amino acid substitutions A32T, S60I and K101E, and may include an extracellular domain region (SEQ ID NO: 35) containing the amino acid substitutions, which It can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 36.
  • the B7-H6 variant of the present invention may be BF2 containing the amino acid substitutions F51H and S60I, and may include an extracellular domain region (SEQ ID NO: 37) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 38 base sequences.
  • the B7-H6 variant of the present invention may be BF3 containing amino acid substitutions F51I and S60Y, and may include an extracellular domain region (SEQ ID NO: 39) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 40 base sequences.
  • the B7-H6 variant of the present invention may be BF5 containing amino acid substitutions I37F, F51L and S60T, and may include an extracellular domain region (SEQ ID NO: 41) containing the amino acid substitutions, which It can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 42.
  • the B7-H6 variant of the present invention may be BF8 containing amino acid substitutions F51T and S60T, and may include an extracellular domain region (SEQ ID NO: 43) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 44 base sequences.
  • the B7-H6 variant of the present invention may be BF11 containing amino acid substitutions F51L and S60H, and may include an extracellular domain region (SEQ ID NO: 45) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 46 base sequences.
  • the B7-H6 variant of the present invention may be BF19 containing the amino acid substitutions F51T and S60Y, and may include an extracellular domain region (SEQ ID NO: 47) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 48 base sequences.
  • the B7-H6 variant of the present invention may be BF25 containing the amino acid substitutions F51Q and S60H, and may include an extracellular domain region (SEQ ID NO: 49) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 50 base sequences.
  • the B7-H6 variant of the present invention may be BF39 containing amino acid substitutions F51K and S60L, and may include an extracellular domain region (SEQ ID NO: 51) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 52 base sequences.
  • the B7-H6 variant of the present invention may be BF46 containing amino acid substitutions F51R and S60T, and may include an extracellular domain region (SEQ ID NO: 53) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 54 base sequences.
  • the amino acid substitution position is described based on the total amino acids of wild-type B7-H6 (SEQ ID NO: 1), but the actual mutation position is located in the extracellular domain region (SEQ ID NO: 2), so it is based on the total amino acids of wild-type B7-H6.
  • the position described may be different from the position in the extracellular domain region containing the amino acid substitution.
  • the F51S amino acid substitution of the B5 variant is F27I based on the amino acid of SEQ ID NO: 3.
  • the B7-H6 variant of the present invention refers to a substitution of some amino acid sequences in the wild-type B7-H6 protein (or peptide), and as used in the present invention, the term “variant” refers to at least one amino acid difference ( refers to the corresponding amino acid sequence including substitutions, insertions or deletions). In certain embodiments, a “variant” has high amino acid sequence homology and/or conservative amino acid substitutions, deletions and/or insertions when compared to a reference sequence. Additionally, as used in the present invention, the term “B7-H6 variant” refers to a B7-H6 variant protein mutated in one or more amino acids to regulate its binding activity with NKp30.
  • the B7-H6 variant of the invention can be prepared by standard synthetic methods, recombinant expression systems, or any other art method. Accordingly, peptides according to the invention can be synthesized by a number of methods, including, for example, methods including:
  • a gene encoding the B7-H6 variant of the present invention can be prepared through genetic manipulation, transformed into a host cell, and then expressed to produce the B7-H6 variant of the present invention.
  • the present invention relates to a nucleic acid molecule encoding the B7-H6 variant of the present invention, a vector containing the same, and a host cell containing the vector.
  • nucleic acid molecule used in the present invention refers to deoxyribonucleotides or ribonucleotides that exist in single-stranded or double-stranded form, and includes natural nucleic acid analogues unless specifically stated otherwise (Scheit, Nucleotide Analogs, John Wiley , New York (1980); Uhlman and Peyman, Chemical Reviews, 90:543-584 (1990)).
  • vector refers to any nucleic acid containing a competent nucleotide sequence that is inserted into a host cell and recombines with and integrates into the host cell genome, or replicates spontaneously as an episome.
  • vectors include linear nucleic acids, plasmids, phagemids, cosmids, RNA vectors, viral vectors, etc.
  • host cell refers to a eukaryotic or prokaryotic cell into which one or more DNA or vectors are introduced, and should be understood to refer not only to a specific target cell but also to its descendants or potential descendants.
  • progeny are not identical to the parent cell since certain modifications may occur in subsequent generations due to mutations or environmental influences, but are still included within the scope of the term as used herein.
  • the present invention relates to a natural killer cell (NK cell) activator comprising the B7-H6 variant of the present invention or a fragment thereof.
  • NK cell natural killer cell
  • the fragment may be the ectodomain region of the B7-H6 variant of the present invention.
  • the present invention relates to a composition for detecting natural killer cells, comprising the B7-H6 variant of the present invention.
  • the composition can detect and quantify NKp30 protein expressed on the surface of natural killer cells.
  • the B7-H6 variant may be labeled with one selected from the group consisting of a chromogenic enzyme, a radioactive isotope, a chromophore, a luminescent substance, and a fluorescent substance
  • the fluorescent substance is a Cy (cyanine) series
  • It may be a Rhodamine series, Alexa series, BODIPY series or ROX series fluorescent substance, such as Nile Red, BODIPY, 4,4-difluoro-4-bora-3a,4a -diaza-s-indacene), cyanine, fluorescein, rhodamine, coumarine, or Alexa.
  • the present invention relates to a bispecific or multispecific antibody comprising the B7-H6 variant of the present invention and a portion that binds to a target antigen.
  • the bispecific antibody may be a bispecific NK cell engager.
  • the portion that binds to the target antigen may include an antibody or an immunologically active fragment thereof, and the immunologically active fragment may include Fab, Fd, Fab', dAb, F(ab'), F (ab') 2 , may be any one selected from the group consisting of scFv, Fv, single chain antibody, Fv dimer, complementarity determining region fragment, humanized antibody, chimeric antibody and diabody, and is scFv or Fab It is more desirable.
  • the target antigen is 17-1A antigen, GD3 ganglioside R24, EGFRvIII, PSMA, PSCA, HLA-DR, EpCAM, MUC1 core protein, aberrant glycosylation MUC1, a fibronectin isoform containing an ED-B domain, HER2/neu, carcinoembryonic antigen (CEA), gastrin-releasing peptide (GRP) receptor antigen, mucine antigen, epidermal growth factor receptor (EGF-R), HER3, HER4, MAGE antigen, SART antigen, MUC1 antigen.
  • c-erb-2 antigen TAG 72, carbonic anhydrase IX, alpha-fetoprotein, A3, antigen specific for A33 antibody, Ba 733, BrE3-antigen, CA125, CDl, CD1a, CD3, CD5, CDl5, CD16, CD19, CD20, CD21, CD22, CD23, CD25, CD30, CD33, CD38, CD40, CD45, CD52, CD74, CD79a, CD80, CD138, Colon-specific antigen- p(CSAp), CSAp, EGP-1, EGP-2, Ep-CAM, FIt-1, Flt-3, folate receptor, HLA-DR, human chorionic gonadotropin (HCG) and its Subunits, hypoxia-inducible factor (HIF-I), Ia, IL-2, IL-6, IL-8, insulin growth factor-1 (IGF-1), KC4-antigen, KS-1-antigen, KSl- 4, Le-Y, macrophage inhibitory factor
  • the apoptosis-related genes include ABL1, AKT1, AKT2, BARD1, BAX, BCL11B, BCL2, BCL2A1, BCL2L1, BCL2L12, BCL3, BCL6, BIRC2, BIRC3, BIRC5, BRAF, CARD11, CAV1, CBL, CDC25A, CDKN1A, CFLAR, CNR2, CTNNB1, CUL4A, DAXX, DDIT3, E2F1, E2F3, E2F5, ESPL1, FOXO1, HDAC1, HSPA5, IGF1R, IGF2, JUN, JUNB, JUND, MALT1, MAP3K7, MCL1, MDM2, MDM4, MYB, may be MYC, NFKB2, NPM1, NTRK1, PAK1, PAX3, PML, PRKCA, PRKCE, PTK2B, RAF1, RHOA, TGFB1, TNFRSF1B, TP73, TRAF6, YWHAG
  • the oncogene is SEPTIN9, ACOD1, ACTN4, ADAM28, ADAM9, ADGRF1, ADRBK2, AFF1, AFF3, AGAP2, AGFG1, AGRN, AHCYL1, AHI1, AIMP2, AKAP13, AKAP9, AKIRIN2, AKTIP, ALDH1A1, ALL1, ANIB1, ANP32C, ANP32D, AQP1, ARAF, ARHGEF1, ARHGEF2, ARHGEF5, ASPSCR1, AURKA, BAALC, BAIAP2L1, BANP, BCAR4, BCKDHB, BCL9, BCL9L, BCR, BMI1, BMP7, BOC, BRD4, BRF2, CABIN1, CAMK1D, CAPG, CBFB, CBLB, CBLL1, CBX7, CBX8, CCDC28A, CCDC6, CCNB1, CCNB2, CCND1, CCNE1, CCNL1, CD24, CDC25C, CDC6, CDH
  • the target antigen may be a cell surface antigen or an autoantigen
  • the cell surface antigen may be CEA, ED-B fibronectin, CD20, CD22, CDl9, EGFR, IGFlR, VEFGRl/Flt-1, VEGFR2/KDR, VEGRF3 /Flt-4, HER2/neu, CD30, CD33, CD3, CD16, CD64, CD89, CD2, adenovirus fiber knob, PfMSP-1, HN/NDV, EpCAM/17-lA, hTR, IL-2R/Tac, It may be any one or more selected from the group consisting of CAl9-9, MUCl, HLA class II, GD2, G250, TAG-72, PSMA, CEACAM6, HMWMAA, CD40, Ml3 coat protein, and GPIIb/IIIa.
  • the immunologically active fragment of the present invention is Fab, Fd, Fab', dAb, F(ab'), F(ab') 2 , scFv (single chain fragment variable), Fv, single chain antibody. , Fv dimer, complementarity determining region fragment, humanized antibody, chimeric antibody, and diabody.
  • the antibodies are in whole antibody form as well as functional fragments of the antibody molecule.
  • a full antibody has a structure of two full-length light chains and two full-length heavy chains, and each light chain is connected to the heavy chain by a disulfide bond.
  • a functional fragment of an antibody molecule refers to a fragment that possesses an antigen-binding function.
  • antibody fragments include (i) the variable region (VL) of the light chain, the variable region (VH) of the heavy chain, the constant region (CL) of the light chain, and Fab fragment consisting of the first constant region (CH1) of the heavy chain; (ii) Fd fragment consisting of VH and CH1 domains; (iii) an Fv fragment consisting of the VL and VH domains of a single antibody; (iv) a dAb fragment consisting of a VH domain (Ward ES et al., Nature 341:544-546 (1989)); (v) an isolated CDR region; (vi) a bivalent fragment comprising two linked Fab fragments.
  • F(ab')2 fragment (vii) single chain Fv molecule (scFv) joined by a peptide linker that joins the VH domain and VL domain to form an antigen binding site; (viii) bispecific single chain Fv dimer (PCT/US92/09965) and (ix) diabody WO94/13804, which is a multivalent or multispecific fragment produced by gene fusion.
  • scFv single chain Fv molecule
  • a peptide linker that joins the VH domain and VL domain to form an antigen binding site
  • bispecific single chain Fv dimer PCT/US92/09965
  • diabody WO94/13804 which is a multivalent or multispecific fragment produced by gene fusion.
  • the antibody or immunologically active fragment thereof of the present invention may be selected from the group consisting of animal-derived antibodies, chimeric antibodies, humanized antibodies, human antibodies, and immunologically active fragments thereof.
  • the antibody may be recombinantly or synthetically produced.
  • Animal-derived antibodies produced by immunizing an immunized animal with a desired antigen can generally cause immune rejection when administered to humans for therapeutic purposes, and chimeric antibodies have been developed to suppress such immune rejection.
  • a chimeric antibody is one in which the constant region of an animal-derived antibody, which causes an anti-isotype reaction, is replaced with the constant region of a human antibody using genetic engineering methods. Chimeric antibodies have significantly improved anti-isotype responses compared to animal-derived antibodies, but animal-derived amino acids still exist in the variable region, resulting in potential side effects on anti-idiotypic responses. I'm doing it. Humanized antibodies were developed to improve these side effects. It is produced by transplanting the CDR (complementary determining regions) region, which plays an important role in antigen binding, among the variable regions of a chimeric antibody, into the human antibody framework.
  • CDR complementary determining regions
  • CDR grafting technology to produce humanized antibodies.
  • use of an antibody database and crystal structure (crystal structure) Structure analysis, molecular modeling technology, etc. are used.
  • crystal structure crystal structure
  • the application of additional antibody engineering technology to restore antigen binding ability can be said to be essential.
  • the antibody or fragment thereof with immunological activity may be isolated from a living body (not present in the living body) or non-naturally occurring, for example, synthetically or recombinantly produced. You can.
  • antibody refers to a substance produced by stimulation of an antigen within the immune system, the type of which is not particularly limited, and can be obtained naturally or unnaturally (e.g., synthetically or recombinantly). You can. Antibodies are very stable not only in vitro but also in vivo and have a long half-life, making them advantageous for mass expression and production. In addition, antibodies inherently have a dimer structure, so their adhesion ability (avidity) is very high. A complete antibody has a structure of two full-length light chains and two full-length heavy chains, and each light chain is connected to the heavy chain by a disulfide bond.
  • the constant region of an antibody is divided into a heavy chain constant region and a light chain constant region, and the heavy chain constant region has gamma ( ⁇ ), mu ( ⁇ ), alpha ( ⁇ ), delta ( ⁇ ), and epsilon ( ⁇ ) types, and subclasses. It has gamma 1 ( ⁇ 1), gamma 2 ( ⁇ 2), gamma 3 ( ⁇ 3), gamma 4 ( ⁇ 4), alpha 1 ( ⁇ 1), and alpha 2 ( ⁇ 2).
  • the constant region of the light chain has kappa ( ⁇ ) and lambda ( ⁇ ) types.
  • the term “heavy chain” refers to a variable region domain V H and three constant region domains C H1 , C H2 and C H3 comprising an amino acid sequence with sufficient variable region sequence to confer specificity to an antigen. It is interpreted to include both the full-length heavy chain including the hinge and fragments thereof. Additionally, the term “light chain” refers to both a full-length light chain and fragments thereof comprising a variable region domain V L and a constant region domain C L comprising an amino acid sequence with sufficient variable region sequence to confer specificity to an antigen. It is interpreted to mean inclusive.
  • variable region or variable domain refers to a portion of an antibody molecule that performs the function of specifically binding to an antigen and exhibits many variations in sequence, and the variable region has complementary There are crystalline regions CDR1, CDR2 and CDR3. A framework region (FR) exists between the CDRs and serves to support the CDR ring.
  • FR framework region
  • the “complementarity determining region” is a ring-shaped region involved in antigen recognition, and as the sequence of this region changes, the specificity of the antibody to the antigen is determined.
  • scFv single chain fragment variable
  • scFv single chain fragment variable
  • CDR complementarity determining region
  • the term “specifically binds” or “specifically recognizes” has the same meaning commonly known to those skilled in the art, and means that an antigen and an antibody specifically interact to produce an immunological reaction. .
  • the term “antigen-binding fragment” refers to a fragment of the entire structure of an immunoglobulin and a portion of a polypeptide containing a portion to which an antigen can bind.
  • it may be scFv, (scFv) 2, scFv-Fc, Fab, Fab' or F(ab') 2, but is not limited thereto.
  • Fab has one antigen-binding site with a structure that includes the variable regions of the light and heavy chains, the constant region of the light chain, and the first constant region (C H1 ) of the heavy chain.
  • Fab' differs from Fab in that it has a hinge region containing one or more cysteine residues at the C-terminus of the heavy chain C H1 domain.
  • the F(ab') 2 antibody is produced when the cysteine residue in the hinge region of Fab' forms a disulfide bond.
  • Fv is a minimal antibody fragment containing only the heavy chain variable region and the light chain variable region, and recombinant techniques for producing Fv fragments are widely known in the art.
  • a two-chain Fv (two-chain Fv) is a non-covalent bond in which the heavy chain variable region and a light chain variable region are connected, while a single-chain Fv (single-chain Fv) is generally shared between the heavy chain variable region and the short chain variable region through a peptide linker. They can be connected by a bond or directly connected at the C-terminus to form a dimer-like structure, such as double-chain Fv.
  • the linker may be a peptide linker consisting of 1 to 100 or 2 to 50 amino acids, and suitable sequences are known in the art.
  • the antigen-binding fragment can be obtained using a proteolytic enzyme (for example, Fab can be obtained by restriction digestion of the entire antibody with papain, and F(ab') 2 fragment can be obtained by digestion with pepsin), It can be produced through genetic recombination technology.
  • a proteolytic enzyme for example, Fab can be obtained by restriction digestion of the entire antibody with papain, and F(ab') 2 fragment can be obtained by digestion with pepsin
  • the term "hinge region” refers to a region contained in the heavy chain of an antibody, which exists between the C H1 and C H2 regions and functions to provide flexibility of the antigen binding site in the antibody. It means area.
  • the hinge may be derived from a human antibody, specifically, IgA, IgE, or IgG, such as IgG1, IgG2, IgG 3, or IgG4.
  • the invention relates to an isolated nucleic acid molecule encoding the B7-H6 variant or fragment thereof, or bispecific or multispecific antibody of the invention, a vector containing the same, and a host cell transformed therewith. .
  • Nucleic acid molecules of the invention may be isolated or recombinant and include single- and double-stranded forms of DNA and RNA as well as corresponding complementary sequences.
  • An isolated nucleic acid in the case of a nucleic acid isolated from a naturally occurring source, is a nucleic acid that has been separated from the surrounding genetic sequence present in the genome of the individual from which the nucleic acid was isolated.
  • nucleic acids synthesized enzymatically or chemically from a template such as PCR products, cDNA molecules, or oligonucleotides
  • the nucleic acids resulting from these procedures may be understood as isolated nucleic acid molecules.
  • Isolated nucleic acid molecules refer to nucleic acid molecules either in the form of separate fragments or as components of larger nucleic acid constructs.
  • a nucleic acid is operably linked when placed in a functional relationship with another nucleic acid sequence.
  • the DNA of the presequence or secretion leader is operably linked to the DNA of the polypeptide when the polypeptide is expressed as a preprotein in a form before secretion
  • the promoter or enhancer is a polypeptide sequence. is operably linked to the coding sequence when it affects transcription
  • the ribosome binding site is operably linked to the coding sequence when configured to facilitate translation.
  • operably linked means that the DNA sequences to be linked are located adjacent to each other, and in the case of a secretory leader, it means that they are adjacent and exist within the same reading frame. However, enhancers do not need to be located adjacently. Linking is accomplished by ligation at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers are used according to conventional methods.
  • Isolated nucleic acid molecules encoding the antibodies of the present invention or immunologically active fragments thereof, or the bispecific or multispecific antibodies of the present invention may be used due to codon degeneracy or for the purpose of expressing the antibodies.
  • codons preferred in organisms various modifications can be made to the coding region within the range that does not change the amino acid sequence of the antibody expressed from the coding region, and does not affect gene expression in parts other than the coding region.
  • a person skilled in the art will understand that various modifications or modifications can be made within the gene, and that such modified genes are also included within the scope of the present invention.
  • nucleic acid molecule of the present invention encodes a protein with equivalent activity
  • one or more nucleic acid bases may be mutated by substitution, deletion, insertion, or a combination thereof, and these are also included within the scope of the present invention.
  • the sequence of these nucleic acid molecules may be single or double stranded, and may be DNA molecules or RNA (mRNA) molecules.
  • An isolated nucleic acid molecule encoding an antibody of the present invention or a fragment having immunological activity thereof, or a bispecific or multispecific antibody of the present invention may be inserted into an expression vector for protein expression.
  • Expression vectors typically contain proteins operably linked, i.e., placed in a functional relationship, with regulatory or control sequences, selectable markers, optional fusion partners, and/or additional elements.
  • a host cell transformed with a nucleic acid preferably containing an antibody of the invention or an immunologically active fragment thereof, or an isolated nucleic acid molecule encoding a bispecific or multispecific antibody of the invention, is expressed.
  • An antibody of the present invention, a fragment having immunological activity thereof, or a bispecific or multispecific antibody of the present invention can be produced by culturing a vector to induce protein expression.
  • a vector to induce protein expression A variety of suitable host cells can be used, including, but not limited to, mammalian cells, bacteria, insect cells, and yeast. Methods for introducing exogenous nucleic acids into host cells are known in the art and will vary depending on the host cell used. Preferably, E. coli, which has low production cost and thus has high industrial value, can be produced as a host cell.
  • Vectors of the present invention include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, etc.
  • Suitable vectors include expression control elements such as promoters, operators, start codons, stop codons, polyadenylation signals, and enhancers, as well as signal sequences or leader sequences for membrane targeting or secretion, and can be prepared in various ways depending on the purpose.
  • the promoter of the vector may be constitutive or inducible.
  • the signal sequence includes the PhoA signal sequence and OmpA signal sequence when the host is Escherichia sp., and the ⁇ -amylase signal sequence and subtilisin signal when the host is Bacillus sp.
  • the host is yeast, the MF ⁇ signal sequence, SUC2 signal sequence, etc. can be used, and if the host is an animal cell, the insulin signal sequence, ⁇ -interferon signal sequence, antibody molecule signal sequence, etc. can be used. It is not limited to this.
  • the vector may include a selection marker for selecting host cells containing the vector, and if it is a replicable expression vector, it will include an origin of replication.
  • vector refers to a carrier capable of inserting a nucleic acid sequence for introduction into a cell capable of replicating the nucleic acid sequence.
  • Nucleic acid sequences may be exogenous or heterologous.
  • Vectors include, but are not limited to, plasmids, cosmids, and viruses (eg, bacteriophages). Those skilled in the art can construct vectors by standard recombination techniques (Maniatis, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988; and Ausubel et al., In: Current Protocols in Molecular Biology, John, Wiley & Sons, Inc, NY, 1994, etc.).
  • expression control sequences such as promoters, terminators, enhancers, etc., depending on the type of host cell for producing the antibody, membrane targeting or secretion Sequences, etc. can be appropriately selected and combined in various ways depending on the purpose.
  • expression vector refers to a vector containing a nucleic acid sequence encoding at least a portion of the gene product to be transcribed. In some cases, the RNA molecule is then translated into a protein, polypeptide, or peptide. Expression vectors may contain various control sequences. In addition to regulatory sequences that regulate transcription and translation, vectors and expression vectors may also contain nucleic acid sequences that also serve other functions.
  • the term “host cell” includes eukaryotes and prokaryotes and refers to any transformable organism capable of replicating the vector or expressing the gene encoded by the vector.
  • the host cell may be transfected or transformed by the vector, which refers to a process in which an exogenous nucleic acid molecule is transferred or introduced into the host cell.
  • the host cells may be bacteria or animal cells
  • the animal cell line may be CHO cells, HEK cells, or NSO cells
  • the bacteria may be Escherichia coli.
  • the present invention relates to a pharmaceutical composition for the treatment or prevention of cancer, comprising the B7-H6 variant or fragment thereof, or a bispecific or multispecific antibody of the present invention.
  • the cancer is brain tumor, melanoma, myeloma, non-small cell lung cancer, oral cancer, liver cancer, stomach cancer, colon cancer, breast cancer, lung cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, cervical cancer, ovarian cancer, and colon cancer.
  • soft tissue sarcoma urethral cancer
  • penile cancer prostate cancer
  • chronic or acute leukemia lymphocytic lymphoma
  • renal or ureteral cancer renal cell carcinoma, renal pelvic carcinoma
  • central nervous system tumor primary central nervous system lymphoma
  • spinal cord tumor brainstem glioma.
  • pituitary adenoma pituitary adenoma
  • prevention refers to all actions that inhibit or delay the occurrence, spread, and recurrence of a disease or condition by administering the composition according to the present invention.
  • treatment refers to any action that improves or beneficially changes the symptoms of a disease or condition and complications resulting therefrom by administering the composition according to the present invention.
  • anyone with ordinary knowledge in the technical field to which the present invention pertains can refer to the data presented by the Korean Medical Association, etc. to know the exact criteria for diseases for which our composition is effective and to determine the degree of improvement, improvement, and treatment. will be.
  • terapéuticaally effective amount used in combination with an active ingredient in the present invention refers to an amount effective in preventing or treating a disease or disorder, and the therapeutically effective amount of the composition of the present invention is determined by several factors, such as administration. It may vary depending on the method, target area, patient condition, etc. Therefore, when used in the human body, the dosage must be determined as appropriate by considering both safety and efficiency. It is also possible to estimate the amount used in humans from the effective amount determined through animal testing. These considerations in determining an effective amount include, for example, Hardman and Limbird, eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed. (2001), Pergamon Press; and E.W. Martin ed., Remington's Pharmaceutical Sciences, 18th ed. (1990), Mack Publishing Co.
  • the pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount refers to an amount that is sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment and does not cause side effects, and the effective dose level is determined by the patient's Factors including health status, type of disease or condition, severity of disease or condition, activity of drug, sensitivity to drug, method of administration, time of administration, route of administration and excretion rate, treatment period, drugs combined or used simultaneously, and other factors. It can be determined based on factors well known in the medical field.
  • composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered singly or multiple times. Considering all of the above factors, it is important to administer an amount that can achieve maximum effect with the minimum amount without side effects, and this can be easily determined by a person skilled in the art.
  • the pharmaceutical composition of the present invention may contain a carrier, diluent, excipient, or a combination of two or more commonly used in biological products.
  • a carrier diluent, excipient, or a combination of two or more commonly used in biological products.
  • pharmaceutically acceptable means that the composition exhibits non-toxic properties to cells or humans exposed to the composition.
  • the carrier is not particularly limited as long as it is suitable for in vivo delivery of the composition, for example, Merck Index, 13th ed., Merck & Co. Inc.
  • saline solution sterilized water, Ringer's solution, buffered saline solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these ingredients can be mixed and used, and if necessary, other ingredients such as antioxidants, buffers, and bacteriostatic agents. Normal additives can be added.
  • diluents, dispersants, surfactants, binders, and lubricants can be additionally added to formulate dosage forms such as aqueous solutions, suspensions, emulsions, etc., into pills, capsules, granules, or tablets.
  • it can be preferably formulated according to each disease or ingredient using an appropriate method in the art or a method disclosed in Remington's Pharmaceutical Science (Mack Publishing Company, Easton PA, 18th, 1990).
  • the pharmaceutical composition may be one or more formulations selected from the group including oral formulations, topical formulations, suppositories, sterile injectable solutions, and sprays, with oral or injectable formulations being more preferable.
  • the term "administration” means providing a predetermined substance to an individual or patient by any appropriate method, and is administered parenterally (e.g., intravenously, subcutaneously, intraperitoneally) according to the desired method. Alternatively, it can be applied topically as an injection formulation) or orally administered, and the dosage range varies depending on the patient's weight, age, gender, health status, diet, administration time, administration method, excretion rate, and severity of the disease.
  • Liquid preparations for oral administration of the composition of the present invention include suspensions, oral solutions, emulsions, syrups, etc., and in addition to the commonly used simple diluents such as water and liquid paraffin, various excipients such as wetting agents, sweeteners, fragrances, and preservatives are used. etc. may be included together.
  • Preparations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, suppositories, etc.
  • the pharmaceutical composition of the present invention may be administered by any device capable of transporting the active agent to target cells.
  • Preferred administration methods and formulations include intravenous injection, subcutaneous injection, intradermal injection, intramuscular injection, and drip injection.
  • Injections include aqueous solvents such as physiological saline solution and Ringer's solution, non-aqueous solvents such as vegetable oil, higher fatty acid esters (e.g., ethyl oleate, etc.), and alcohols (e.g., ethanol, benzyl alcohol, propylene glycol, glycerin, etc.).
  • stabilizers to prevent deterioration
  • emulsifiers e.g., ascorbic acid, sodium bisulfite, sodium pyrosulphite, BHA, tocopherol, EDTA, etc.
  • buffers for pH adjustment e.g., buffers for pH adjustment
  • agents to prevent microbial growth e.g., ascorbic acid, sodium bisulfite, sodium pyrosulphite, BHA, tocopherol, EDTA, etc.
  • emulsifiers e.g., ascorbic acid, sodium bisulfite, sodium pyrosulphite, BHA, tocopherol, EDTA, etc.
  • emulsifiers e.g., buffers for pH adjustment
  • agents to prevent microbial growth e.g., buffers for pH adjustment, and
  • the term "individual” refers to monkeys, cows, horses, sheep, pigs, chickens, turkeys, quails, cats, dogs, mice, bats, including humans that have or may develop the disease or condition. It means any animal, including camel, rat, rabbit or guinea pig, and “specimen” may be droplets, sputum, whole blood, plasma, serum, urine or saliva isolated therefrom.
  • the pharmaceutical composition of the present invention may further include pharmaceutically acceptable additives, wherein the pharmaceutically acceptable additives include starch, gelatinized starch, microcrystalline cellulose, lactose, povidone, colloidal silicon dioxide, and calcium hydrogen phosphate. , lactose, mannitol, taffy, gum arabic, pregelatinized starch, corn starch, powdered cellulose, hydroxypropyl cellulose, Opadry, sodium starch glycolate, lead carnauba, synthetic aluminum silicate, stearic acid, magnesium stearate, aluminum stearate, Calcium stearate, white sugar, dextrose, sorbitol, and talc can be used.
  • the pharmaceutically acceptable additive according to the present invention is preferably contained in an amount of 0.1 to 90 parts by weight based on the composition, but is not limited thereto.
  • the present invention includes the steps of isolating natural killer cells; and culturing the isolated natural killer cells in the presence of the B7-H6 variant or fragment thereof of the present invention.
  • the present invention relates to the use of the B7-H6 variant of the present invention or a bispecific or multispecific antibody comprising the same for the prevention or treatment of cancer.
  • the present invention relates to a method of treating cancer comprising administering the B7-H6 variant of the present invention or a bispecific or multispecific antibody containing the same in a pharmaceutically effective amount to an individual suffering from cancer. will be.
  • the avidity effect was induced through tetramerization of the NKp30 protein.
  • streptavidin was expressed in the C-terminal part of NKp30 to induce tetramerization, and glycine and serine linkers were inserted between NKp30 and streptavidin to ensure the fluidity of each protein.
  • the NKp30 and streptavidin genes were each amplified using primers and Vent polymerase (New England Biolab), and then assembly PCR was performed using Vent polymerase. The created gene was subjected to restriction enzyme treatment using Bss HII and Xba I (New England Biolab).
  • NKp30-Streptavdin gene was ligated into pMAZ vector, a vector for animal cells, treated with the same restriction enzyme. After transforming the ligated plasmid into E. coli Jude1, a single clone was obtained and sequenced to confirm that NKp30-streptavidin was successfully inserted into the pMAZ vector ( Figure 1).
  • PEI Polyehylenimine, Polyscience, 23966
  • NKp30 prepared in Example 1 were added to 30 ml of Freestyle 293 expression culture medium (Gibco. 12338-018).
  • -Streptavidin-His tag expression vector was mixed at a ratio of 1:4, left at room temperature for 20 minutes, and then transfected into the Expi293F animal cells.
  • the cells were cultured in a CO 2 shaking incubator at 37°C, 125 rpm, and 8% CO 2 for 7 days, then centrifuged, and only the supernatant was collected.
  • the mixture was equilibrated using 25x PBS and filtered through a 0.2 ⁇ m filter (Merck Millipore) using a bottle top filter.
  • 1 ml of Ni-NTA resin was added to the filtered culture medium, stirred at 4°C for 16 hours, and then passed through a column to recover the resin and washed with 10 ml of PBS.
  • the washed resin was sequentially washed with 10 ml each of 10mM imidazole buffer and 20mM imidazole buffer, and then eluted with 4ml of 250mM imidazole buffer.
  • the purified NKp30-streptavidin tetramer protein was fluorescently labeled using an Alexa-488 labeling kit.
  • the amplified wild-type B7-H6 gene was subjected to restriction enzyme treatment using Sfi I (New England Biolab), and the restriction enzyme-treated gene was ligated into the pCTCON vector treated with the same restriction enzyme. After transforming the ligated plasmid into Jude1 E. coli, a single clone was obtained and sequenced, and two plasmids, pCTCON-Aga2-B7-H6_WT-FLAG and pCTCON-B7-H6_WT-Aga2-FLAG, were successfully cloned. was confirmed.
  • the display method was selected by verifying the binding affinity between B7-H6 expressed on the yeast surface and the probe NKp30-streptavidin using a flow cytometer. Specifically, the two plasmids prepared in Example 3-1 were transformed into the AWY101 (Trp-) strain, and 50 ⁇ g/ml of Kanamycin and 40 ⁇ g/ml of Chloramphenicol were added. 30 in 5 ml of medium containing SDCAA (20 g/L Glucose, 6.7 g/L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na 2 HPO 4 and 8.56 g/L NaH 2 PO 4 ).
  • 2x10 7 cells were centrifuged (14,000g, 30 seconds, 4°C) and recovered in an e-tube. Add 1 ml of PBSB (0.1% BSA in PBS) to each e-tube from which the cells were recovered, resuspend them, collect the cells again through centrifugation (14,000 g, 30 seconds, 4°C), and then add 0.5 ml of PBSB and resuspend. It was cloudy, making 4x10 7 cells/ml.
  • PBSB 0.1% BSA in PBS
  • pCTCON-B7-H6_WT-Aga2-FLAG contains Sfi I sites on both sides to allow random mutations to all regions of B7-H6.
  • a primer was designed. DNA was first amplified using the Error-Prone PCR technique using the designed primers, Taq Polymerase (TAKARA), dNTPs (Invitrogen), MgCl 2 and MnCl 2 (SIGMA). The amplified gene was prepared by secondary amplification using Vent polymerase (24 ⁇ g), and the vector was prepared by treatment with Sfi I restriction enzyme (8 ⁇ g). The two prepared genes were transformed into the AWY101 strain to construct a library through homologous recombination. The constructed library had a size of 5.1 This was confirmed ( Figure 3).
  • the cultured cells were recovered the next day, cultured in 100 ml of SGCAA at 20°C and 225 rpm for 2-3 days, and then inducted, before proceeding with the next round.
  • the above screening process was performed a total of four times while decreasing the concentration of the probe.
  • SDCAA (20 g/L Glucose, 6.7 g/L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na 2 HPO 4 ) with 50 ⁇ g/ml kanamycin and 40 ⁇ g/ml chloramphenicol , 8.56 g/L NaH 2 PO 4 )
  • the initials, 1st round, 2nd round, 3rd round, and 4th round libraries of Example 5 were separately inoculated in 100 ml of medium and cultured at 30°C and 225 rpm for 16 hours. .
  • Example 7 Amino acid sequence analysis of B7-H6 variants and securing of B7-H6 variants with increased binding affinity to NKp30
  • mutants were incubated with SDCAA (20 g/L Glucose, 6.7 g) with 50 ⁇ g/ml kanamycin and 40 ⁇ g/ml chloramphenicol, respectively.
  • SDCAA 20 g/L Glucose, 6.7 g
  • 5x10 7 cells were obtained by centrifugation (2,500g, 5 minutes, 4°C), and then incubated with SGCAA (20 g/L Galactose, 6.7 g/mL) to which 50 ⁇ g/ml kanamycin and 40 ⁇ g/ml chloramphenicol were added.
  • SGCAA 20 g/L Galactose, 6.7 g/mL
  • the wild-type B7-H6 the genes of three variants (B5, B7, and B14) selected from among the 17 B7-H6 variants selected in Example 7, the Fc domain, a designed primer, and Vent Polymerase ( After amplification using (New England Biolab), the amplified gene was subjected to Assembly PCR and then treated with Bss HII and Xba I restriction enzymes (New England Biolab). The genes of the restriction enzyme-treated B7-H6 mutants were ligated into the pMAZ vector, a vector for animal cells, treated with the same restriction enzyme. After transforming the ligated plasmid into E.
  • the constructed B7-H6 mutant-Fc fusion protein expression vector was transfected into Expi293F animal cells, cultured in a CO 2 shaking incubator at 37°C, 125 rpm, and 8% CO 2 for 7 days, and then centrifuged to collect only the supernatant. separated. Afterwards, it was equilibrated using 25x PBS and filtered using a 0.2 ⁇ m syringe filter (Sartorius, S6634).
  • ELISA was performed to analyze the NKp30 binding ability of the B7-H6 variant-Fc fusion proteins purified in Example 8. Specifically, the B7-H6 variant-Fc fusion proteins diluted to 4 ⁇ g/ml in 0.05 M Na 2 CO 3 pH 9.6 were dispensed in 50 ⁇ l portions into Flat Bottom Polystyrene High Bind 96-well microplates (costar) and incubated for 16 minutes at 4°C. After immobilization for an hour, the cells were blocked with 100 ⁇ l of 4% skim milk (Biopure) (in PBS, pH 7.4) at room temperature for 1 hour.
  • Biopure in PBS, pH 7.4
  • a library to further discover new B7-H6 variants with improved NKp30 binding by introducing mutations at two amino acid positions in the three variants (B5, B7, B14), excluding mutations matching wild-type B7-H6. was produced.
  • a yeast surface display library was constructed in the same manner as in Example 4 above. The constructed library was 1.5 ⁇ 10 7 in size, and through sequence analysis, it was confirmed that mutations were included at two locations (FIG. 8).
  • Yeasts with high binding affinity to NKp30 were recovered by measuring the fluorescence signal value of the library sample in the same manner as in Example 5, and the screening process was performed once.
  • the expression level of the variants and their binding ability to NKp30 were indirectly analyzed by measuring the fluorescence signal value in the same manner as in Example 7. Through this, a total of 9 variants (BF2, BF3, BF5, BF8, BF11, BF19, BF25, BF39, and BF46) with improved binding to NKp30 were selected (Table 2 and Figure 10).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to B7-H6 variants with improved binding affinity for NKp30. The B7-H6 variants of the present invention can increase the activation of natural killer (NK) cells due to significantly increased binding affinity for NKp30, which is an activating receptor of NK cells, compared to wild type, are easy to penetrate the tumor microenvironment due to having a much smaller size than antibodies, and are easily produced, and thus can be effectively used alone or in combination with various immunotherapeutic agents to treat cancer or infectious diseases.

Description

NKP30 결합력이 향상된 B7-H6 변이체B7-H6 variant with improved NKP30 binding affinity
본 발명은 NKp30에 대한 결합력이 향상된 B7-H6 변이체들에 관한 것이다.The present invention relates to B7-H6 variants with improved binding to NKp30.
암 치료를 위한 의약품은 크게 저분자 의약품과 고분자 의약품으로 나뉘며 특이성이 없어 부작용이 상대적으로 큰 저분자 의약품에 비해 특이성이 있는 고분자 의약품이 치료제로서 각광을 받고 있다. 암세포들은 면역세포들에 의한 살상 작용기작을 회피하기 위해 정상세포들이 면역세포 활성화를 억제할 때 이용되는 면역관문(immune checkpoint) 단백질을 세포 표면에 발현하고 있어, 최근 암을 치료하기 위한 방법으로써 면역관문 억제 단백질에 대한 연구가 활발히 진행되고 있다. 면역관문억제제에 대한 반응을 보이는 환자는 치료과정에서의 부작용도 적고, 다양한 암종들에 대해 기존 항암제에 비해 우수한 치료 효과들이 보고되면서 이용이 폭발적으로 증가하고 있지만, 여전히 절반 이상의 환자들은 임상 허가된 면역관문억제제들에 반응을 보이지 않으며, 일부 초기 반응자들도 치료 후 다시 암이 진행되는 내성이 관측되고 있다. 면역관문억제제에 대한 내성 원인은 환자별 종양면역학적 특성에 따라 다르기 때문에 효과적인 치료와 의료비용 절감을 위해 치료적합 환자 선별이 가능한 새로운 바이오마커가 필요하며, 많은 전임상 및 임상 연구사례들에서 면역자극 약물을 이용한 병용 치료법이 환자의 반응률을 향상시킨다는 것이 보고되고 있어 효과적인 면역자극 치료제 또한 절실히 필요하다. 그러나, 항체는 분자량 150,000의 거대 분자 단백질이기 때문에 암 조직 내부로 침투가 어려운 단점이 존재한다. 이에, 보다 효과적인 치료를 위해서 항체보다 크기가 훨씬 작으면서 암 조직 내부로 침투가 용이하고 낮은 반응률을 극복하기 위해 새로운 면역관문 (immune checkpoint) 단백질을 표적으로 하는 단백질 치료제의 필요성이 대두되고 있다. Medicines for cancer treatment are largely divided into small molecule medicines and high molecule medicines. Compared to low molecule medicines, which have relatively greater side effects due to lack of specificity, high molecule medicines with specificity are receiving more attention as therapeutic agents. Cancer cells express immune checkpoint proteins on the cell surface, which are used by normal cells to suppress immune cell activation in order to avoid the killing mechanism of immune cells. Recently, immunotherapy has been used as a method to treat cancer. Research on checkpoint inhibitor proteins is actively underway. Patients who respond to immune checkpoint inhibitors have fewer side effects during the treatment process, and their use is increasing explosively as superior treatment effects are reported compared to existing anticancer drugs for various cancer types. However, more than half of patients still receive clinically approved immunizations. It does not respond to checkpoint inhibitors, and some early responders have also been observed to show resistance, with the cancer progressing again after treatment. Since the cause of resistance to immune checkpoint inhibitors varies depending on the tumor immunological characteristics of each patient, new biomarkers that can select patients suitable for treatment are needed to provide effective treatment and reduce medical costs, and immunostimulatory drugs are used in many preclinical and clinical research cases. It has been reported that combination therapy using , improves the patient's response rate, so effective immunostimulating treatments are also urgently needed. However, since antibodies are macromolecular proteins with a molecular weight of 150,000, they have the disadvantage of being difficult to penetrate into cancer tissue. Accordingly, for more effective treatment, there is a need for protein therapeutics that are much smaller than antibodies, can easily penetrate into cancer tissue, and target new immune checkpoint proteins to overcome low response rates.
면역세포에는 자신을 억제와 활성화하는데 이용되는 면역관문 (immune checkpoint) 단백질을 세포 표면에 발현하고 있다. 다양한 면역관문(immune checkpoint) 수용체들 중에서 B7-H6가 NK 세포 (Natural killer cell) 표면에 발현된 활성화 수용체인 NKp30에 결합을 하여 NK 세포가 활성화되는 것이 확인되었다. NK 세포는 선천면역세포로 특정한 항원 없이도 암세포 및 바이러스 감염 세포를 감지하고 제거하고, 다른 면역세포의 활성을 유도하여 면역반응과 염증반응을 조절하며, 암 세포의 증식과 재발, 전이를 억제하나, 이를 활성화 시키는 야생형 B7-H6은 NKp30에 매우 낮은 친화도 (평형해리상수 = ~1.0 μM)로 결합하기 때문에 이의 활용이 어려운 문제점이 있어 왔다. 따라서, 기존의 면역관문 억제 치료제가 가지고 있는 낮은 반응률을 극복하고 특정한 항원이 없이도 암세포 및 바이러스 감염 세포를 인지하고 제거하는 NK 세포의 효과적인 면역관문 활성화를 유도하기 위해 활성화 수용체인 NKp30와의 결합력을 증가시킨 B7-H6 변이체의 발굴이 매우 필요한 실정이다.Immune cells express immune checkpoint proteins on the cell surface that are used to suppress and activate themselves. Among various immune checkpoint receptors, it was confirmed that B7-H6 binds to NKp30, an activation receptor expressed on the surface of NK cells (Natural killer cells), thereby activating NK cells. NK cells are innate immune cells that detect and eliminate cancer cells and virus-infected cells without specific antigens, regulate immune and inflammatory responses by inducing the activity of other immune cells, and suppress proliferation, recurrence, and metastasis of cancer cells. Wild-type B7-H6, which activates it, binds to NKp30 with very low affinity (equilibrium dissociation constant = ~1.0 μM), making its use difficult. Therefore, in order to overcome the low response rate of existing immune checkpoint inhibitor treatments and induce effective immune checkpoint activation of NK cells that recognize and eliminate cancer cells and virus-infected cells without specific antigens, the binding force with the activation receptor, NKp30, is increased. There is a great need to discover the B7-H6 variant.
한편, 세포치료제는 손상되었거나 질병이 있는 세포/조직을 회복시키기 위해 살아있는 세포를 사용해 재생을 유도하는 의약품으로서, 자가, 동종, 이종 세포를 체외에서 배양·증식하거나 선별하는 등 물리적, 화학적, 생물학적 방법으로 조작하여 제조하는 의약품을 말한다. 그 중에서, 면역조절 세포치료제란 수지상세포(dendritic cell), 자연 살해 세포(natural killer cell), T 세포 등 면역세포를 이용하여 체내의 면역반응을 활성화시켜 질병을 치료할 목적으로 사용되는 의약품을 의미한다. 현재, 면역조절 세포치료제는 주로 암 치료를 적응증으로 개발되고 있으며, 환자에게 직접 면역세포를 투여하여 면역 기능을 활성화하여, 치료 효과를 얻기 때문에 기존의 암 치료에 이용되는 수술 요법, 항암제나 방사선 치료와는 차별화되는 치료 기전 및 효능으로, 향후 바이오 신약의 주요한 부분을 차지할 것으로 예상되는 분야이다. 면역조절 세포치료제의 종류에 따라서 세포에 도입하는 항원의 물리·화학적 특징이 서로 다르고, 면역 세포에 외래 유전자가 바이러스 벡터 등으로 도입되는 경우 세포치료제이자 유전자치료제라는 두 가지 모두의 특징을 가지게 된다. 면역조절 세포치료제는 채집(apheresis)를 통해 환자로부터 분리한 PBMC(pheripheral blood mononuclear cell), T 세포, 자연살해세포(NK 세포) 등 다양한 면역세포를 다양한 항체 및 사이토카인으로 활성화 시킨 뒤, 이를 체외에서 증식시켜 다시 환자에게 주입하거나, TCR (T-Cell Receptor)이나 CAR (Chimeric Antigen Receptor) 등의 유전자를 도입한 면역세포를 환자에게 다시 주입하는 방식으로 이루어지며, 특히, 대량 생산 및 동결이 가능한 자연살해세포를 이용한 면역치료법이 연구되고 있다. 자연살해세포는 말초혈 림프구(peripheral blood lymphocyte)의 약 15% 정도를 차지하는 림프구계 세포로서, 선천성 면역반응에 중요한 역할을 한다. 자연살해세포는 수지상세포를 활성화시키고 세포독성 T 임파구(cytotoxic T lymphocyte, CTL)를 종양에 특이적으로 반응하도록 유도하여 종양세포를 제거한다. 자연살해세포는 육종(sarcoma), 골수종(myeloma), 암종(carcinoma), 림프종(lymphomas) 및 백혈병(leukemia)과 같은 악성 종양을 직접적으로 사멸시킨다. 하지만, 정상인의 체내에 존재하는 대부분의 자연살해세포는 비활성화 상태로 존재하며, 종양을 제거하기 위해서는 활성화된 자연살해세포가 필요하다. 또한, 암환자의 체내에 존재하는 자연살해세포의 경우 암세포의 면역회피 기전에 의해 자연살해세포의 기능적 결함이 존재한다. 따라서, 자연살해세포를 치료제로서 이용하기 위해서는 자연살해세포를 활성화 시키는 것이 매우 중요하다. 또한, 체내에 존재하는 자연살해세포의 세포수는 한정되어 있으므로, 정상인의 혈액 또는 환자의 혈액의 자연살해 세포를 대량으로 증식시키고 동결하는 기술의 개발이 필수적이다. 자연살해세포를 대량으로 증식시키기 위한 방법으로는 체외 확장 방법을 이용하고 있으며, 말초혈 림프구(peripheral blood lymphocyte, PBMC), 제대혈(cord blood, CB) 또는 사람유도 만능줄기세포(human-induced pluripotent stem cell)를 원료로 이용한 자연살해세포의 대량 배양방법에 대해 연구되고 있다. 자연살해세포의 체외 확장 배양에는 PBMC, CD3- 세포, CD3-CD56+ 세포, CD56+ 세포 등이 원료세포로 사용되며, 자연살해세포 증식 인자로 IL-2, IL-12, IL-15, IL-21 등의 사이토카인들과 LPS (Goodier et al., J. Immunol. 165(1):139-147, 2000), CD3을 자극하는 OKT-3 항체 (Condiotti et al., Experimental Hematol. 29(1):104-113, 2001)를 이용하고 있으나, 자연살해세포를 치료제로 상업화시키기 어려운 정도의 증식율을 가진다.Meanwhile, cell therapy is a medicine that induces regeneration using living cells to restore damaged or diseased cells/tissues, using physical, chemical, and biological methods such as culturing, proliferating, or selecting autologous, allogeneic, or xenogeneic cells in vitro. It refers to medicines manufactured by manipulating. Among them, immunomodulatory cell therapy refers to medicines used to treat diseases by activating the body's immune response using immune cells such as dendritic cells, natural killer cells, and T cells. . Currently, immunomodulatory cell therapies are mainly being developed for cancer treatment indications. Since they achieve therapeutic effects by activating immune function by administering immune cells directly to the patient, they are used in existing cancer treatments such as surgery, anticancer drugs, or radiation therapy. It is a field that is expected to occupy a major part of new bio drugs in the future due to its differentiated treatment mechanism and efficacy. Depending on the type of immunomodulatory cell therapy, the physical and chemical characteristics of the antigen introduced into cells are different, and when a foreign gene is introduced into immune cells using a viral vector, it has the characteristics of both a cell therapy and a gene therapy. Immunomodulatory cell therapy activates various immune cells, such as PBMC (pheripheral blood mononuclear cells), T cells, and natural killer cells (NK cells), isolated from patients through apheresis, with various antibodies and cytokines, and then administers them in vitro. This is done by proliferating them in a cell and injecting them back into the patient, or by injecting immune cells into which genes such as TCR (T-Cell Receptor) or CAR (Chimeric Antigen Receptor) are introduced. In particular, they can be mass-produced and frozen. Immunotherapy using natural killer cells is being researched. Natural killer cells are lymphoid cells that make up about 15% of peripheral blood lymphocytes and play an important role in the innate immune response. Natural killer cells activate dendritic cells and induce cytotoxic T lymphocytes (CTL) to respond specifically to tumors to eliminate tumor cells. Natural killer cells directly kill malignant tumors such as sarcoma, myeloma, carcinoma, lymphomas, and leukemia. However, most natural killer cells present in the body of normal people exist in an inactive state, and activated natural killer cells are needed to remove tumors. In addition, in the case of natural killer cells present in the body of cancer patients, functional defects in natural killer cells exist due to the immune evasion mechanism of cancer cells. Therefore, in order to use natural killer cells as a therapeutic agent, it is very important to activate natural killer cells. Additionally, since the number of natural killer cells present in the body is limited, it is essential to develop technology to multiply and freeze natural killer cells in the blood of normal people or patients. The in vitro expansion method is used to proliferate natural killer cells in large quantities, using peripheral blood lymphocytes (PBMC), cord blood (CB), or human-induced pluripotent stem cells. Research is being conducted on mass culturing methods of natural killer cells using cells as raw materials. For the in vitro expansion culture of natural killer cells, PBMC, CD3 - cells, CD3-CD56 + cells, and CD56 + cells are used as raw material cells, and natural killer cell growth factors include IL-2, IL-12, IL-15, and IL. Cytokines such as -21, LPS (Goodier et al., J. Immunol. 165(1):139-147, 2000), and OKT-3 antibody that stimulates CD3 (Condiotti et al., Experimental Hematol. 29( 1):104-113, 2001), but the proliferation rate is such that it is difficult to commercialize natural killer cells as a treatment.
본 발명의 목적은 자연살해세포와의 결합력이 증대된 B7-H6 변이체를 제공하는 것이다.The purpose of the present invention is to provide a B7-H6 variant with increased binding ability to natural killer cells.
또한, 본 발명의 목적은 자연 살해 세포 활성화제를 제공하는 것이다.Additionally, an object of the present invention is to provide a natural killer cell activator.
또한, 본 발명의 목적은 이중특이적 또는 다중특이적 항체를 제공하는 것이다.Additionally, an object of the present invention is to provide bispecific or multispecific antibodies.
또한, 본 발명의 목적은 암의 치료 또는 예방용 약학적 조성물을 제공하는 것이다.Additionally, an object of the present invention is to provide a pharmaceutical composition for treating or preventing cancer.
또한, 본 발명의 목적은 활성화된 자연살해세포의 생체외 증식 방법을 제공하는 것이다.Additionally, an object of the present invention is to provide a method for in vitro proliferation of activated natural killer cells.
또한, 본 발명의 목적은 B7-H6 변이체 또는 이를 포함하는 이중특이적 또는 다중특이적 항체의 암의 예방 또는 치료 용도를 제공하는 것이다.Additionally, an object of the present invention is to provide a use of the B7-H6 variant or a bispecific or multispecific antibody containing it for the prevention or treatment of cancer.
아울러, 본 발명의 목적은 암의 치료 방법을 제공하는 것이다.Additionally, an object of the present invention is to provide a method for treating cancer.
상기 목적의 달성을 위해, 본 발명은 NKp30(Natural cytotoxicity triggering receptor 3)와의 결합력이 증대된 B7-H6 변이체를 제공한다.To achieve the above object, the present invention provides a B7-H6 variant with increased binding affinity to NKp30 (Natural cytotoxicity triggering receptor 3).
또한, 본 발명은 상기 B7-H6 변이체를 포함하는 자연 살해 세포 활성화제를 제공한다.Additionally, the present invention provides a natural killer cell activator comprising the B7-H6 variant.
또한, 본 발명은 상기 B7-H6 변이체 및 표적 항원에 결합하는 부분을 포함하는 이중특이적 또는 다중특이적 항체를 제공한다.Additionally, the present invention provides a bispecific or multispecific antibody comprising a portion that binds to the B7-H6 variant and a target antigen.
또한, 본 발명은 상기 B7-H6 변이체, 또는 이중특이적 또는 다중특이적 항체를 포함하는 암의 치료 또는 예방용 약학적 조성물을 제공한다.Additionally, the present invention provides a pharmaceutical composition for the treatment or prevention of cancer comprising the B7-H6 variant or a bispecific or multispecific antibody.
또한, 본 발명은 활성화된 자연살해세포의 생체외 증식 방법을 제공한다.Additionally, the present invention provides a method for in vitro proliferation of activated natural killer cells.
또한, 본 발명은 상기 B7-H6 변이체, 또는 이중특이적 또는 다중특이적 항체의 암의 예방 또는 치료 용도를 제공한다.Additionally, the present invention provides a use of the B7-H6 variant, or bispecific or multispecific antibody, for preventing or treating cancer.
아울러, 본 발명은 상기 B7-H6 변이체, 또는 이중특이적 또는 다중특이적 항체를 약학적으로 유효한 양으로 암에 걸린 개체에 투여하는 단계를 포함하는 암의 치료 방법을 제공한다.In addition, the present invention provides a method of treating cancer comprising administering the B7-H6 variant, or bispecific or multispecific antibody, in a pharmaceutically effective amount to an individual suffering from cancer.
본 발명의 B7-H6 변이체는 자연살해세포(NK cell)의 활성화 수용체인 NKp30에 대한 결합력이 야생형에 비해 현저히 증가하여 자연살해세포 활성화를 증가시킬 수 있고, 크기가 항체에 비해 현저히 작아 종양 미세환경으로의 침투가 용이하고, 생산이 쉬우므로, 단독 또는 다양한 면역 치료제와 융합하여 암 치료 또는 감염성 질환의 치료에 유용하게 사용할 수 있다.The B7-H6 variant of the present invention has a significantly increased binding force to NKp30, an activation receptor for natural killer cells (NK cells), compared to the wild type, which can increase natural killer cell activation, and its size is significantly smaller than that of the antibody, so it can be used in the tumor microenvironment. Since it is easy to penetrate and produce, it can be usefully used alone or in combination with various immunotherapeutics to treat cancer or infectious diseases.
도 1은 NKp30-스트렙타비딘 단백질의 발현벡터 및 정제된 단백질의 SDS-PAGE 젤 사진을 나타낸 도이다.Figure 1 is a diagram showing an SDS-PAGE gel photograph of an expression vector for NKp30-streptavidin protein and purified protein.
도 2는 B7-H6 디스플레이 방법 선택을 위한 유세포 분석 결과를 나타낸 도이다.Figure 2 is a diagram showing the results of flow cytometry for selecting the B7-H6 display method.
도 3은 구축된 이니셜 라이브러리의 아미노산 서열 분석한 결과를 나타낸 도이다.Figure 3 is a diagram showing the results of amino acid sequence analysis of the constructed initial library.
도 4는 유세포 분석기를 통한 스크리닝 진행 과정에 따른 NKp30 결합력이 향상된 클론들의 농축 검증 결과를 나타낸 도이다.Figure 4 is a diagram showing the results of enrichment verification of clones with improved NKp30 binding ability according to the screening process using flow cytometry.
도 5는 유세포 분석기를 통한 확보한 B7-H6 변이체들의 NKp30와의 결합력 분석 결과를 나타낸 도이다.Figure 5 is a diagram showing the results of analysis of the binding affinity of B7-H6 variants with NKp30 obtained through flow cytometry.
도 6은 정제된 B7-H6 변이체-Fc 융합 단백질들의 SDS-PAGE 젤 사진을 나타낸 도이다.Figure 6 is a diagram showing an SDS-PAGE gel photograph of purified B7-H6 variant-Fc fusion proteins.
도 7은 B7-H6 변이체-Fc 융합 단백질들의 NKp30 결합력을 ELISA로 분석한 결과를 나타낸 도이다. Figure 7 is a diagram showing the results of ELISA analysis of the NKp30 binding capacity of B7-H6 variant-Fc fusion proteins.
도 8은 구축된 B7-H6 focused 라이브러리의 아미노산 서열 분석 결과를 나타낸 도이다.Figure 8 is a diagram showing the results of amino acid sequence analysis of the constructed B7-H6 focused library.
도 9는 스크리닝 진행에 따른 NKp30 친화도가 높은 B7-H6 변이체 클론들의 증폭을 유세포 분석기로 검증한 결과를 나타낸 도이다.Figure 9 is a diagram showing the results of verifying the amplification of B7-H6 variant clones with high NKp30 affinity according to the screening process using flow cytometry.
도 10은 유세포 분석기를 이용한 B7-H6 변이체들의 NKp30와의 결합력 분석 결과를 나타낸 도이다.Figure 10 is a diagram showing the results of analysis of the binding affinity of B7-H6 variants to NKp30 using flow cytometry.
도 11은 정제된 B7-H6 변이체-Fc 융합 단백질들의 SDS-PAGE 젤 사진을 나타낸 도이다.Figure 11 is a diagram showing an SDS-PAGE gel photograph of purified B7-H6 variant-Fc fusion proteins.
도 12는 본 발명의 B7-H6 변이체-Fc 융합 단백질들의 NKp30 결합력을 ELISA로 분석한 결과를 나타낸 도이다. Figure 12 is a diagram showing the results of ELISA analysis of the NKp30 binding ability of the B7-H6 variant-Fc fusion proteins of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 구현예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현예는 본 발명에 대한 예시로 제시되는 것으로, 당업자에게 주지 저명한 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있고, 이에 의해 본 발명이 제한되지는 않는다. 본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다. Hereinafter, the present invention will be described in detail through embodiments of the present invention with reference to the attached drawings. However, the following embodiments are provided as examples of the present invention, and if it is judged that a detailed description of a technology or configuration well known to those skilled in the art may unnecessarily obscure the gist of the present invention, the detailed description may be omitted. , the present invention is not limited thereby. The present invention is capable of various modifications and applications within the description of the claims described below and the scope of equivalents interpreted therefrom.
또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In addition, the terminology used in this specification is a term used to appropriately express preferred embodiments of the present invention, and may vary depending on the intention of the user or operator or the customs of the field to which the present invention belongs. Therefore, definitions of these terms should be made based on the content throughout this specification. Throughout the specification, when a part is said to “include” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 통합된다.All technical terms used in the present invention, unless otherwise defined, are used with the same meaning as commonly understood by a person skilled in the art in the field related to the present invention. In addition, preferred methods and samples are described in this specification, but similar or equivalent methods are also included in the scope of the present invention. The contents of all publications incorporated herein by reference are hereby incorporated by reference.
본 명세서 전반을 통하여, 천연적으로 존재하는 아미노산에 대한 통상의 1문자 및 3문자 코드가 사용될 뿐만 아니라 Aib(α-아미노이소부티르산), Sar(N-methylglycine) 등과 같은 다른 아미노산에 대해 일반적으로 허용되는 3문자 코드가 사용된다. 또한 본 발명에서 약어로 언급된 아미노산은 하기와 같이 IUPAC-IUB 명명법에 따라 기재되었다:Throughout this specification, the usual one- and three-letter codes for naturally occurring amino acids are used, as well as generally acceptable codes for other amino acids such as Aib (α-aminoisobutyric acid), Sar (N-methylglycine), etc. A three-character code is used. Additionally, amino acids referred to by abbreviations in the present invention are described according to the IUPAC-IUB nomenclature as follows:
알라닌: A, 아르기닌: R, 아스파라긴: N, 아스파르트산: D, 시스테인: C, 글루탐산: E, 글루타민: Q, 글리신: G, 히스티딘: H, 이소류신: I, 류신: L, 리신: K, 메티오닌: M, 페닐알라닌: F, 프롤린: P, 세린: S, 트레오닌: T, 트립토판: W, 티로신: Y 및 발린: V. Alanine: A, Arginine: R, Asparagine: N, Aspartic Acid: D, Cysteine: C, Glutamic Acid: E, Glutamine: Q, Glycine: G, Histidine: H, Isoleucine: I, Leucine: L, Lysine: K, Methionine : M, phenylalanine: F, proline: P, serine: S, threonine: T, tryptophan: W, tyrosine: Y and valine: V.
일 측면에서, 본 발명은 야생형(Wild type) B7-H6(B7 homolog 6, NCR3LG1)의 아미노산 서열 중 31번째, 32번째, 37번째, 40번째, 51번째, 53번째, 57번째, 60번째, 67번째, 86번째, 101번째, 102번째, 108번째, 114번째, 129번째, 136번째, 142번째 및 143번째 아미노산으로 이루어진 군으로부터 선택되는 어느 하나 이상의 아미노산이 야생형의 아미노산과 다른 서열로 치환된, NKp30(Natural cytotoxicity triggering receptor 3)와의 결합력이 증대된 B7-H6 변이체 또는 이의 단편에 관한 것이다.In one aspect, the present invention relates to the 31st, 32nd, 37th, 40th, 51st, 53rd, 57th, 60th, One or more amino acids selected from the group consisting of the 67th, 86th, 101st, 102nd, 108th, 114th, 129th, 136th, 142nd and 143rd amino acids are substituted with a sequence different from the wild type amino acid. , relates to a B7-H6 variant or fragment thereof with increased binding to NKp30 (Natural cytotoxicity triggering receptor 3).
일 구현예에서, 야생형 B7-H6의 아미노산은 서열번호 1의 아미노산 서열을 포함할 수 있으며, 상기 아미노산 위치는 서열번호 1의 아미노산 서열을 기준으로 할 수 있다.In one embodiment, the amino acid of wild-type B7-H6 may include the amino acid sequence of SEQ ID NO: 1, and the amino acid position may be based on the amino acid sequence of SEQ ID NO: 1.
일 구현예에서, 본 발명의 B7-H6 변이체는 M31I, A32T, I37T, I37F, L40Q, F51I, F51S, F51L, F51Y, F51T, F51H, F51Q, F51K, F51R, S53G, N57D, S60I, S60Y, S60T, S60H, S60L, W67R, Q86L, K101E, S102C, S102R, R108M, L114M, L129M, Q136R, S142N 및 P143S로 이루어진 군으로부터 선택된 어느 하나 이상의 아미노산 치환을 포함할 수 있다.In one embodiment, the B7-H6 variant of the invention is M31I, A32T, I37T, I37F, L40Q, F51I, F51S, F51L, F51Y, F51T, F51H, F51Q, F51K, F51R, S53G, N57D, S60I, S60Y, S60T , S60H, S60L, W67R, Q86L, K101E, S102C, S102R, R108M, L114M, L129M, Q136R, S142N and P143S. It may include any one or more amino acid substitutions selected from the group consisting of.
일 구현예에서, 본 발명의 B7-H6 변이체는 야생형 B7-H6의 전체 아미노산의 세포 외부에 노출된 영역인 세포외재성 도메인(ectodomain) 부위 (서열번호 2)의 아미노산 변이를 포함하는 변이체일 수 있다.In one embodiment, the B7-H6 variant of the present invention may be a variant comprising an amino acid mutation in the ectodomain region (SEQ ID NO: 2), which is a region exposed to the outside of the cell of all amino acids of wild-type B7-H6. .
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 F51S 및 S60I를 포함하는 B5일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 3)를 포함할 수 있고, 이는 서열번호 4의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B5 containing the amino acid substitutions F51S and S60I, and may include an extracellular domain region (SEQ ID NO: 3) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing the nucleotide sequence of 4.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 N57D를 포함하는 B6일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 5)를 포함할 수 있고, 이는 서열번호 6의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B6 containing the amino acid substitution N57D, and may include an extracellular domain region (SEQ ID NO: 5) containing the amino acid substitution, which is of SEQ ID NO: 6. It can be encoded as a nucleic acid molecule containing a base sequence.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 K101E 및 S102R를 포함하는 B7일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 7)를 포함할 수 있고, 이는 서열번호 8의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B7 containing the amino acid substitutions K101E and S102R, and may include an extracellular domain region (SEQ ID NO: 7) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing the nucleotide sequence of 8.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 A32T 및 S60I를 포함하는 B8일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 9)를 포함할 수 있고, 이는 서열번호 10의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B8 containing the amino acid substitutions A32T and S60I, and may include an extracellular domain region (SEQ ID NO: 9) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 10 base sequences.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 A32T, L40Q 및 S60I를 포함하는 B9일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 11)를 포함할 수 있고, 이는 서열번호 12의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B9 containing amino acid substitutions A32T, L40Q and S60I, and may include an extracellular domain region (SEQ ID NO: 11) containing the amino acid substitutions, which It can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 12.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 F51L 및 S60I를 포함하는 B14일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 13)를 포함할 수 있고, 이는 서열번호 14의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B14 containing the amino acid substitutions F51L and S60I, and may include an extracellular domain region (SEQ ID NO: 13) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 14 base sequences.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 K101E를 포함하는 B16일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 15)를 포함할 수 있고, 이는 서열번호 16의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B16 containing the amino acid substitution K101E, and may include an extracellular domain region (SEQ ID NO: 15) containing the amino acid substitution, which is of SEQ ID NO: 16 It can be encoded as a nucleic acid molecule containing a base sequence.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 A32T, W67R, Q86L, K101E 및 L129M를 포함하는 B19일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 17)를 포함할 수 있고, 이는 서열번호 18의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B19 comprising amino acid substitutions A32T, W67R, Q86L, K101E and L129M, and may include an extracellular domain region (SEQ ID NO: 17) comprising the amino acid substitutions. It can be encoded with a nucleic acid molecule containing the nucleotide sequence of SEQ ID NO: 18.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 S60I, L114M 및 S142N를 포함하는 B23일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 19)를 포함할 수 있고, 이는 서열번호 20의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B23 containing amino acid substitutions S60I, L114M and S142N, and may include an extracellular domain region (SEQ ID NO: 19) containing the amino acid substitutions, which It can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 20.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 M31I, A32T, F51I, S60I, S102C 및 R108M를 포함하는 B29일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 21)를 포함할 수 있고, 이는 서열번호 22의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B29 containing amino acid substitutions M31I, A32T, F51I, S60I, S102C and R108M, and the extracellular domain region (SEQ ID NO: 21) containing the amino acid substitutions. It may be encoded by a nucleic acid molecule containing the nucleotide sequence of SEQ ID NO: 22.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 A32T, S60I, K101E 및 P143S를 포함하는 B35일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 23)를 포함할 수 있고, 이는 서열번호 24의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B35 containing amino acid substitutions A32T, S60I, K101E and P143S, and may include an extracellular domain region (SEQ ID NO: 23) containing the amino acid substitutions, , which can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 24.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 I37T, Q86L 및 K101E를 포함하는 B40일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 25)를 포함할 수 있고, 이는 서열번호 26의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B40 containing the amino acid substitutions I37T, Q86L and K101E, and may include an extracellular domain region (SEQ ID NO: 25) containing the amino acid substitutions, which It can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 26.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 A32T, S53G, S60I 및 Q136R를 포함하는 B41일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 27)를 포함할 수 있고, 이는 서열번호 28의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B41 containing amino acid substitutions A32T, S53G, S60I and Q136R, and may include an extracellular domain region (SEQ ID NO: 27) containing the amino acid substitutions, , which can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 28.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 F51Y 및 S60I를 포함하는 B47일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 29)를 포함할 수 있고, 이는 서열번호 30의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B47 containing the amino acid substitutions F51Y and S60I, and may include an extracellular domain region (SEQ ID NO: 29) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 30 base sequences.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 S60I 및 K101E를 포함하는 B52일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 31)를 포함할 수 있고, 이는 서열번호 32의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B52 containing the amino acid substitutions S60I and K101E, and may include an extracellular domain region (SEQ ID NO: 31) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 32 base sequences.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 A32T 및 K101E를 포함하는 B53일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 33)를 포함할 수 있고, 이는 서열번호 34의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B53 containing the amino acid substitutions A32T and K101E, and may include an extracellular domain region (SEQ ID NO: 33) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 34 base sequences.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 A32T, S60I 및 K101E를 포함하는 B54일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 35)를 포함할 수 있고, 이는 서열번호 36의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be B54 containing amino acid substitutions A32T, S60I and K101E, and may include an extracellular domain region (SEQ ID NO: 35) containing the amino acid substitutions, which It can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 36.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 F51H 및 S60I를 포함하는 BF2일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 37)를 포함할 수 있고, 이는 서열번호 38의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be BF2 containing the amino acid substitutions F51H and S60I, and may include an extracellular domain region (SEQ ID NO: 37) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 38 base sequences.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 F51I 및 S60Y를 포함하는 BF3일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 39)를 포함할 수 있고, 이는 서열번호 40의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be BF3 containing amino acid substitutions F51I and S60Y, and may include an extracellular domain region (SEQ ID NO: 39) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 40 base sequences.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 I37F, F51L 및 S60T를 포함하는 BF5일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 41)를 포함할 수 있고, 이는 서열번호 42의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be BF5 containing amino acid substitutions I37F, F51L and S60T, and may include an extracellular domain region (SEQ ID NO: 41) containing the amino acid substitutions, which It can be encoded as a nucleic acid molecule containing the base sequence of SEQ ID NO: 42.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 F51T 및 S60T를 포함하는 BF8일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 43)를 포함할 수 있고, 이는 서열번호 44의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be BF8 containing amino acid substitutions F51T and S60T, and may include an extracellular domain region (SEQ ID NO: 43) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 44 base sequences.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 F51L 및 S60H를 포함하는 BF11일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 45)를 포함할 수 있고, 이는 서열번호 46의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be BF11 containing amino acid substitutions F51L and S60H, and may include an extracellular domain region (SEQ ID NO: 45) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 46 base sequences.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 F51T 및 S60Y를 포함하는 BF19일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 47)를 포함할 수 있고, 이는 서열번호 48의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be BF19 containing the amino acid substitutions F51T and S60Y, and may include an extracellular domain region (SEQ ID NO: 47) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 48 base sequences.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 F51Q 및 S60H를 포함하는 BF25일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 49)를 포함할 수 있고, 이는 서열번호 50의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be BF25 containing the amino acid substitutions F51Q and S60H, and may include an extracellular domain region (SEQ ID NO: 49) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 50 base sequences.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 F51K 및 S60L를 포함하는 BF39일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 51)를 포함할 수 있고, 이는 서열번호 52의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be BF39 containing amino acid substitutions F51K and S60L, and may include an extracellular domain region (SEQ ID NO: 51) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 52 base sequences.
일 구현예에서, 본 발명의 B7-H6 변이체는 아미노산 치환 F51R 및 S60T를 포함하는 BF46일 수 있으며, 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위 (서열번호 53)를 포함할 수 있고, 이는 서열번호 54의 염기 서열을 포함하는 핵산분자로 암호화될 수 있다.In one embodiment, the B7-H6 variant of the present invention may be BF46 containing amino acid substitutions F51R and S60T, and may include an extracellular domain region (SEQ ID NO: 53) containing the amino acid substitutions, which is SEQ ID NO: It can be encoded as a nucleic acid molecule containing 54 base sequences.
본 발명에서 아미노산 치환 위치는 야생형 B7-H6의 전체 아미노산 (서열번호 1)을 기준으로 기재되었으나, 실제 변이 위치는 세포외재성 도메인 부위 (서열번호 2)에 존재하므로, 야생형 B7-H6의 전체 아미노산 기준으로 기재된 상기 위치가 상기 아미노산 치환을 포함하는 세포외재성 도메인 부위에서의 위치와 상이할 수 있다. 예를 들어, B5 변이체의 F51S 아미노산 치환은 서열번호 3의 아미노산을 기준으로는 F27I이다.In the present invention, the amino acid substitution position is described based on the total amino acids of wild-type B7-H6 (SEQ ID NO: 1), but the actual mutation position is located in the extracellular domain region (SEQ ID NO: 2), so it is based on the total amino acids of wild-type B7-H6. The position described may be different from the position in the extracellular domain region containing the amino acid substitution. For example, the F51S amino acid substitution of the B5 variant is F27I based on the amino acid of SEQ ID NO: 3.
본 발명의 B7-H6 변이체는 야생형 B7-H6 단백질 (또는 펩타이드)에서 일부 아미노산 서열이 치환된 것을 말하며, 본 발명에서 사용된, 용어 "변이체"는 기준 물질과 비교하였을 때 최소한 한개의 아미노산 차이(치환, 삽입 또는 결손)를 포함하는 대응하는 아미노산 서열을 말한다. 특정 구체예들에 있어서 "변이체"는 기준 서열과 비교하였을 때 높은 아미노산 서열 상동성(homology) 및/또는 보존적 아미노산 치환, 결손 및/또는 삽입을 가진다. 또한, 본 발명에서 사용된, 용어 "B7-H6 변이체"는 이의 NKp30와의 결합 활성을 조절하기 위하여 하나 또는 그 이상의 아미노산에서 돌연변이된 B7-H6 변이체 단백질을 말한다. The B7-H6 variant of the present invention refers to a substitution of some amino acid sequences in the wild-type B7-H6 protein (or peptide), and as used in the present invention, the term "variant" refers to at least one amino acid difference ( refers to the corresponding amino acid sequence including substitutions, insertions or deletions). In certain embodiments, a “variant” has high amino acid sequence homology and/or conservative amino acid substitutions, deletions and/or insertions when compared to a reference sequence. Additionally, as used in the present invention, the term “B7-H6 variant” refers to a B7-H6 variant protein mutated in one or more amino acids to regulate its binding activity with NKp30.
구체적으로, 본 발명의 B7-H6 변이체는 표준 합성 방법, 재조합 발현 시스템, 또는 임의의 다른 당해 분야의 방법에 의해 제조될 수 있다. 따라서, 본 발명에 따른 펩타이드들은, 예를 들어 하기를 포함하는 방법을 포함하는 다수의 방법으로 합성될 수 있다:Specifically, the B7-H6 variant of the invention can be prepared by standard synthetic methods, recombinant expression systems, or any other art method. Accordingly, peptides according to the invention can be synthesized by a number of methods, including, for example, methods including:
(a) 펩타이드를 고체상 또는 액체상 방법의 수단으로 단계적으로 또는 단편 조립에 의해 합성하고, 최종 펩타이드 생성물을 분리 및 정제하는 방법; 또는(a) synthesizing peptides stepwise or by fragment assembly by means of solid phase or liquid phase methods, and isolating and purifying the final peptide product; or
(b) 펩타이드를 인코딩하는 핵산 작제물을 숙주세포 내에서 발현시키고, 발현 생성물을 숙주 세포 배양물로부터 회수하는 방법; 또는(b) a method of expressing a nucleic acid construct encoding a peptide in a host cell and recovering the expression product from the host cell culture; or
(c) 펩타이드를 인코딩하는 핵산 작제물의 무세포 시험관 내 발현을 수행하고, 발현 생성물을 회수하는 방법; 또는(c) a method of performing cell-free in vitro expression of a nucleic acid construct encoding a peptide and recovering the expression product; or
(a), (b) 및 (c)의 임의의 조합으로 펩타이드의 단편을 수득하고, 이어서 단편을 연결시켜 펩타이드를 수득하고, 당해 펩타이드를 회수하는 방법.A method of obtaining fragments of a peptide using any combination of (a), (b), and (c), then linking the fragments to obtain a peptide, and recovering the peptide.
보다 구체적인 예로, 유전자 조작을 통하여, 본 발명의 B7-H6 변이체를 코딩하는 유전자를 제조하고 이를 숙주 세포에 형질전환시킨 후, 발현하여 본 발명의 B7-H6 변이체를 생산할 수 있다. As a more specific example, a gene encoding the B7-H6 variant of the present invention can be prepared through genetic manipulation, transformed into a host cell, and then expressed to produce the B7-H6 variant of the present invention.
일 측면에서, 본 발명은 본 발명의 B7-H6 변이체를 코딩하는 핵산분자, 이를 포함하는 벡터 및 상기 벡터를 포함하는 숙주세포에 관한 것이다.In one aspect, the present invention relates to a nucleic acid molecule encoding the B7-H6 variant of the present invention, a vector containing the same, and a host cell containing the vector.
본 발명에서 사용되는 용어 "핵산분자"는 단일가닥 또는 이중가닥 형태로 존재하는 디옥시리보뉴클레오타이드 또는 리보뉴클레오타이드이며, 다르게 특별하게 언급되어 있지 않은 한 자연의 핵산 유사체를 포함한다(Scheit, Nucleotide Analogs , John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews , 90:543-584(1990)).The term “nucleic acid molecule” used in the present invention refers to deoxyribonucleotides or ribonucleotides that exist in single-stranded or double-stranded form, and includes natural nucleic acid analogues unless specifically stated otherwise (Scheit, Nucleotide Analogs, John Wiley , New York (1980); Uhlman and Peyman, Chemical Reviews, 90:543-584 (1990)).
본 발명에서 사용되는 용어 "벡터"는 숙주 세포에 삽입되어 숙주 세포 게놈과 재조합되고 이에 삽입되거나, 또는 에피좀으로서 자발적으로 복제하는 컴피턴트 뉴클레오티드 서열을 포함하는 임의의 핵산을 의미한다. 이러한 벡터로는 선형 핵산, 플라스미드, 파지미드, 코스미드, RNA 벡터, 바이러스 벡터 등이 있다. As used herein, the term “vector” refers to any nucleic acid containing a competent nucleotide sequence that is inserted into a host cell and recombines with and integrates into the host cell genome, or replicates spontaneously as an episome. These vectors include linear nucleic acids, plasmids, phagemids, cosmids, RNA vectors, viral vectors, etc.
본 발명에서 사용되는 용어 "숙주 세포"는 하나 이상의 DNA 또는 벡터가 도입되는 진핵 또는 원핵 세포를 가리키며, 특정 대상 세포만이 아니라 그 자손 혹은 잠재적 자손까지도 가리키는 것으로 이해되어야 한다. 어떤 변형이 돌연변이 혹은 환경적 영향 때문에 후속 세대에 일어날 수 있기 때문에 사실 상기 자손은 부모 세포와 동일하지는 않지만, 본 발명에서 사용된 바와 같이 상기 용어의 범주 내에서 여전히 포함된다.The term “host cell” used in the present invention refers to a eukaryotic or prokaryotic cell into which one or more DNA or vectors are introduced, and should be understood to refer not only to a specific target cell but also to its descendants or potential descendants. In fact, the progeny are not identical to the parent cell since certain modifications may occur in subsequent generations due to mutations or environmental influences, but are still included within the scope of the term as used herein.
일 측면에서, 본 발명은 본 발명의 B7-H6 변이체 또는 이의 단편을 포함하는 자연 살해 세포(natural killer cell, NK cell) 활성화제에 관한 것이다.In one aspect, the present invention relates to a natural killer cell (NK cell) activator comprising the B7-H6 variant of the present invention or a fragment thereof.
일 구현예에서, 단편은 본 발명의 B7-H6 변이체의 세포외재성 도메인(ectodomain) 부위일 수 있다.In one embodiment, the fragment may be the ectodomain region of the B7-H6 variant of the present invention.
일 측면에서, 본 발명은 본 발명의 B7-H6 변이체를 포함하는, 자연 살해 세포 세포 검출용 조성물에 관한 것이다.In one aspect, the present invention relates to a composition for detecting natural killer cells, comprising the B7-H6 variant of the present invention.
일 구현예에서, 상기 조성물은 자연 살해 세포의 표면에 발현되는 NKp30 단백질을 검출 및 정량할 수 있다.In one embodiment, the composition can detect and quantify NKp30 protein expressed on the surface of natural killer cells.
일 구현예에서, B7-H6 변이체는 발색효소, 방사성 동위원소, 크로모포어(chromopore), 발광물질 및 형광물질로 이루어진 군으로부터 선택되는 하나로 표지될 수 있으며, 형광물질은 Cy(cyanine) 계열, 로다민(Rhodamine) 계열, 알렉사(Alexa) 계열, BODIPY 계열 또는 ROX 계열의 형광물질일 수 있으며, 나일 레드 (Nile Red), 보디피 (BODIPY, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene), 시아닌 (cyanine), 플루오레세인 (fluorescein), 로다민 (rhodamine), 쿠마린 (coumarine) 또는 알렉사 (Alexa)일 수 있다.In one embodiment, the B7-H6 variant may be labeled with one selected from the group consisting of a chromogenic enzyme, a radioactive isotope, a chromophore, a luminescent substance, and a fluorescent substance, and the fluorescent substance is a Cy (cyanine) series, It may be a Rhodamine series, Alexa series, BODIPY series or ROX series fluorescent substance, such as Nile Red, BODIPY, 4,4-difluoro-4-bora-3a,4a -diaza-s-indacene), cyanine, fluorescein, rhodamine, coumarine, or Alexa.
일 측면에서, 본 발명은 본 발명의 B7-H6 변이체 및 표적 항원에 결합하는 부분을 포함하는 이중특이적 또는 다중특이적 항체에 관한 것이다.In one aspect, the present invention relates to a bispecific or multispecific antibody comprising the B7-H6 variant of the present invention and a portion that binds to a target antigen.
일 구현예에서, 이중특이적 항체는 이중특이적 NK 세포 개입유발자(engager)일 수 있다.In one embodiment, the bispecific antibody may be a bispecific NK cell engager.
일 구현예에서, 표적 항원에 결합하는 부분이 항체 또는 이의 면역학적 활성을 가진 단편을 포함할 수 있으며, 면역학적 활성을 가진 단편은 Fab, Fd, Fab', dAb, F(ab'), F(ab')2, scFv, Fv, 단일쇄 항체, Fv 이량체, 상보성 결정 영역 단편, 인간화 항체, 키메라 항체 및 디아바디(diabody)로 이루어진 군으로부터 선택되는 어느 하나일 수 있고, scFv 또는 Fab인 것이 더욱 바람직하다.In one embodiment, the portion that binds to the target antigen may include an antibody or an immunologically active fragment thereof, and the immunologically active fragment may include Fab, Fd, Fab', dAb, F(ab'), F (ab') 2 , may be any one selected from the group consisting of scFv, Fv, single chain antibody, Fv dimer, complementarity determining region fragment, humanized antibody, chimeric antibody and diabody, and is scFv or Fab It is more desirable.
일 구현예에서, 표적 항원은 17-1A 항원, GD3 갱글리오시드 R24, EGFRvⅢ, PSMA, PSCA, HLA-DR, EpCAM, MUC1 코어 단백질, 이상 글리코실화 MUC1, ED-B 도메인을 함유하는 피브로넥틴 이형, HER2/neu, 암종배아성 항원(CEA), 가스트린-방출 펩티드(GRP) 수용체 항원, 뮤신(mucine) 항원, 표피 성장 인자 수용체(EGF-R), HER3, HER4, MAGE 항원, SART 항원, MUC1 항원, c-erb-2 항원, TAG 72, 탄산 무수화효소 IX(carbonic anhydrase IX), 알파-태아단백질(alpha-fetoprotein), A3, A33 항체에 특이적인 항원, Ba 733, BrE3-항원, CA125, CDl, CD1a, CD3, CD5, CDl5, CD16, CD19, CD20, CD21, CD22, CD23, CD25, CD30, CD33, CD38, CD40, CD45, CD52, CD74, CD79a, CD80, CD138, 결장-특이적 항원-p(CSAp), CSAp, EGP-1, EGP-2, Ep-CAM, FIt-1, Flt-3, 폴산염 수용체(folate receptor), HLA-DR, 인간 융모성 성선자극호르몬(HCG) 및 그 소단위체들, 저산소증 유도 인자(HIF-I), Ia, IL-2, IL-6, IL-8, 인슐린 성장 인자-1(IGF-1), KC4-항원, KS-1-항원, KSl-4, Le-Y, 대식세포 억제 인자(MIF), MAGE, MUCl, MUC2, MUC3, MUC4, NCA66, NCA95, NCA90, PAM-4 항체에 특이적인 항원, 태반 성장 인자, p53, 전립선 산성 포스파타제(prostatic acid phosphatase), PSA, RS5, SlOO, TAC, 테나신(tenascin), TRAIL 수용체들, Tn 항원, 톰슨-프리덴라이히(Thomson-Friedenreich) 항원들, 종양 괴사 항원들, VEGF, ED-B 피브로넥틴(fibronectin), 혈관형성 표지(angiogenesis marker), 종양유전자 표지(oncogene marker) 또는 종양유전자 생성물로 이루어지는 군으로부터 선택되는 어느 하나 이상일 수 있으며, 종양유전자는 아폽토시스(Apoptosis) 관련 유전자, 전사인자(Trnscription Factor) 유전자, 전이(Metastasis) 관련 유전자, 혈관신생(Angiogenesis) 관련 유전자 또는 티로신-카이네이즈(Tyrosine-Kinase) 유전자일 수 있다.In one embodiment, the target antigen is 17-1A antigen, GD3 ganglioside R24, EGFRvIII, PSMA, PSCA, HLA-DR, EpCAM, MUC1 core protein, aberrant glycosylation MUC1, a fibronectin isoform containing an ED-B domain, HER2/neu, carcinoembryonic antigen (CEA), gastrin-releasing peptide (GRP) receptor antigen, mucine antigen, epidermal growth factor receptor (EGF-R), HER3, HER4, MAGE antigen, SART antigen, MUC1 antigen. , c-erb-2 antigen, TAG 72, carbonic anhydrase IX, alpha-fetoprotein, A3, antigen specific for A33 antibody, Ba 733, BrE3-antigen, CA125, CDl, CD1a, CD3, CD5, CDl5, CD16, CD19, CD20, CD21, CD22, CD23, CD25, CD30, CD33, CD38, CD40, CD45, CD52, CD74, CD79a, CD80, CD138, Colon-specific antigen- p(CSAp), CSAp, EGP-1, EGP-2, Ep-CAM, FIt-1, Flt-3, folate receptor, HLA-DR, human chorionic gonadotropin (HCG) and its Subunits, hypoxia-inducible factor (HIF-I), Ia, IL-2, IL-6, IL-8, insulin growth factor-1 (IGF-1), KC4-antigen, KS-1-antigen, KSl- 4, Le-Y, macrophage inhibitory factor (MIF), MAGE, MUCl, MUC2, MUC3, MUC4, NCA66, NCA95, NCA90, antigen specific for PAM-4 antibodies, placental growth factor, p53, prostatic acid phosphatase acid phosphatase, PSA, RS5, SlOO, TAC, tenascin, TRAIL receptors, Tn antigen, Thomson-Friedenreich antigens, tumor necrosis antigens, VEGF, ED-B fibronectin ), angiogenesis marker, oncogene marker, or oncogene product may be any one or more selected from the group consisting of, and the oncogene is an apoptosis-related gene, a transcription factor gene. , it may be a metastasis-related gene, an angiogenesis-related gene, or a tyrosine-kinase gene.
일 구현예에서, 상기 아폽토시스 관련 유전자는 ABL1, AKT1, AKT2, BARD1, BAX, BCL11B, BCL2, BCL2A1, BCL2L1, BCL2L12, BCL3, BCL6, BIRC2, BIRC3, BIRC5, BRAF, CARD11, CAV1, CBL, CDC25A, CDKN1A, CFLAR, CNR2, CTNNB1, CUL4A, DAXX, DDIT3, E2F1, E2F3, E2F5, ESPL1, FOXO1, HDAC1, HSPA5, IGF1R, IGF2, JUN, JUNB, JUND, MALT1, MAP3K7, MCL1, MDM2, MDM4, MYB, MYC, NFKB2, NPM1, NTRK1, PAK1, PAX3, PML, PRKCA, PRKCE, PTK2B, RAF1, RHOA, TGFB1, TNFRSF1B, TP73, TRAF6, YWHAG, YWHAQ 또는 YWHAZ일 수 있으며; 상기 전사인자 유전자는 AR, ARID3A, ASCL1, ATF1, ATF3, BCL11A, BCL11B, BCL3, BCL6, CDC5L, CDX2, CREB1, CUX1, DDIT3, DLX5, E2F1, E2F3, E2F5, ELF4, ELK1, ELK3, EN2, ERG, ETS1, ETS2, ETV1, ETV3, ETV4, ETV6, FEV, FEZF1, FLI1, FOS, FOSL1, FOXA1, FOXG1, FOXM1, FOXO1, FOXP1, FOXQ1, GATA1, GATA6, GFI1, GFI1B, GLI1, GLI2, GLI3, HES6, HHEX, HLF, HMGA1, HMGA2, HOXA1, HOXA9, HOXD13, HOXD9, ID1, ID2, IKZF1, IRF2, IRF4, JUN, JUNB, JUND, KAT6A, KDM2A, KDM5B, KLF2, KLF4, KLF5, KLF6, KLF8, KMT2A, LEF1, LHX1, LMX1B, MAF, MAFA, MAFB, MBD1, MECOM, MEF2C, MEIS1, MITF, MYB, MYC, MYCL, MYCN, NANOG, NCOA3, NFIB, NFKB2, NKX2-1, OTX2, PATZ1, PAX2, PAX3, PAX4, PAX8, PBX1, PBX2, PITX2, PLAG1, PLAGL2, PPARG, PPP1R13L, PRDM10, PRDM13, PRDM14, PRDM15, PRDM16, PRDM6, PRDM8, PRDM9, RARA, REL, RERE, RUNX1, RUNX3, SALL4, SATB1, SFPQ, SIX1, SNAI1, SOX2, SOX4, SPI1, SREBF1, STAT3, TAF1, TAL1, TAL2, TBX2, TBX3, TCF3, TFCP2, TFE3, THRA, TLX1, TP63, TP73, TWIST1, WT1, YBX1, YY1, ZBTB16, ZBTB7A, ZIC2, ZNF217 또는 ZNF268일 수 있고; 상기 전이 관련 유전자는 AKT1, AKT2, AR, CBL, CDH1, CRK, CSF1, CTNNB1, CTTN, CXCR4, EGFR, FGFR1, FLT3, FYN, GLI1, ILK, ITGA3, JAK2, MET, PDGFRB, PLXNB1, PRKCI, PTCH1, PTPN11, RAC1, RHOA, RHOC, ROCK1, SMO, SNAI1, SRC, TCF3 또는 WT1일 수 있으며; 상기 혈관신생 관련 유전자는 BRAF, CAV1, CTGF, EGFR, ERBB2, ETS1, FGF4, FGF6, FGFR1, FGFR3, FGFR4, ID1, NRAS, PDGFB, PDGFRA, PDGFRB 또는 SPARC일 수 있고; 상기 티로신-카이네이즈 유전자는 ABL1, ABL2, ALK, AXL, BLK, EGFR, EPHA2, ERBB2, ERBB3, ERBB4, FES, FGFR1, FGFR2, FGFR3, FGFR4, FGR, FLT3, FYN, ITK, JAK1, JAK2, KIT, LCK, MERTK, MET, MST1R, NTRK1, NTRK3, PDGFRA, PDGFRB, PTK2B, PTK7, RET, ROS1, SRC, SYK, TEC 또는 YES1일 수 있다.In one embodiment, the apoptosis-related genes include ABL1, AKT1, AKT2, BARD1, BAX, BCL11B, BCL2, BCL2A1, BCL2L1, BCL2L12, BCL3, BCL6, BIRC2, BIRC3, BIRC5, BRAF, CARD11, CAV1, CBL, CDC25A, CDKN1A, CFLAR, CNR2, CTNNB1, CUL4A, DAXX, DDIT3, E2F1, E2F3, E2F5, ESPL1, FOXO1, HDAC1, HSPA5, IGF1R, IGF2, JUN, JUNB, JUND, MALT1, MAP3K7, MCL1, MDM2, MDM4, MYB, may be MYC, NFKB2, NPM1, NTRK1, PAK1, PAX3, PML, PRKCA, PRKCE, PTK2B, RAF1, RHOA, TGFB1, TNFRSF1B, TP73, TRAF6, YWHAG, YWHAQ or YWHAZ; The transcription factor genes are AR, ARID3A, ASCL1, ATF1, ATF3, BCL11A, BCL11B, BCL3, BCL6, CDC5L, CDX2, CREB1, CUX1, DDIT3, DLX5, E2F1, E2F3, E2F5, ELF4, ELK1, ELK3, EN2, ERG. , ETS1, ETS2, ETV1, ETV3, ETV4, ETV6, FEV, FEZF1, FLI1, FOS, FOSL1, FOXA1, FOXG1, FOXM1, FOXO1, FOXP1, FOXQ1, GATA1, GATA6, GFI1, GFI1B, GLI1, GLI2, GLI3, HES6 , HHEX, HLF, HMGA1, HMGA2, HOXA1, HOXA9, HOXD13, HOXD9, ID1, ID2, IKZF1, IRF2, IRF4, JUN, JUNB, JUND, KAT6A, KDM2A, KDM5B, KLF2, KLF4, KLF5, KLF6, KLF8, KMT2A , LEF1, LHX1, LMX1B, MAF, MAFA, MAFB, MBD1, MECOM, MEF2C, MEIS1, MITF, MYB, MYC, MYCL, MYCN, NANOG, NCOA3, NFIB, NFKB2, NKX2-1, OTX2, PATZ1, PAX2, PAX3 , PAX4, PAX8, PBX1, PBX2, PITX2, PLAG1, PLAGL2, PPARG, PPP1R13L, PRDM10, PRDM13, PRDM14, PRDM15, PRDM16, PRDM6, PRDM8, PRDM9, RARA, REL, RERE, RUNX1, RUNX3, SALL4, SATB1, SFPQ , SIX1, SNAI1, SOX2, SOX4, SPI1, SREBF1, STAT3, TAF1, TAL1, TAL2, TBX2, TBX3, TCF3, TFCP2, TFE3, THRA, TLX1, TP63, TP73, TWIST1, WT1, YBX1, YY1, ZBTB16, ZBTB7A , ZIC2, ZNF217 or ZNF268; The metastasis-related genes are AKT1, AKT2, AR, CBL, CDH1, CRK, CSF1, CTNNB1, CTTN, CXCR4, EGFR, FGFR1, FLT3, FYN, GLI1, ILK, ITGA3, JAK2, MET, PDGFRB, PLXNB1, PRKCI, PTCH1 , PTPN11, RAC1, RHOA, RHOC, ROCK1, SMO, SNAI1, SRC, TCF3 or WT1; The angiogenesis-related gene may be BRAF, CAV1, CTGF, EGFR, ERBB2, ETS1, FGF4, FGF6, FGFR1, FGFR3, FGFR4, ID1, NRAS, PDGFB, PDGFRA, PDGFRB or SPARC; The tyrosine-kinase genes are ABL1, ABL2, ALK, AXL, BLK, EGFR, EPHA2, ERBB2, ERBB3, ERBB4, FES, FGFR1, FGFR2, FGFR3, FGFR4, FGR, FLT3, FYN, ITK, JAK1, JAK2, KIT, It may be LCK, MERTK, MET, MST1R, NTRK1, NTRK3, PDGFRA, PDGFRB, PTK2B, PTK7, RET, ROS1, SRC, SYK, TEC or YES1.
일 구현예에서, 종양유전자는 SEPTIN9, ACOD1, ACTN4, ADAM28, ADAM9, ADGRF1, ADRBK2, AFF1, AFF3, AGAP2, AGFG1, AGRN, AHCYL1, AHI1, AIMP2, AKAP13, AKAP9, AKIRIN2, AKTIP, ALDH1A1, ALL1, ANIB1, ANP32C, ANP32D, AQP1, ARAF, ARHGEF1, ARHGEF2, ARHGEF5, ASPSCR1, AURKA, BAALC, BAIAP2L1, BANP, BCAR4, BCKDHB, BCL9, BCL9L, BCR, BMI1, BMP7, BOC, BRD4, BRF2, CABIN1, CAMK1D, CAPG, CBFB, CBLB, CBLL1, CBX7, CBX8, CCDC28A, CCDC6, CCNB1, CCNB2, CCND1, CCNE1, CCNL1, CD24, CDC25C, CDC6, CDH17, CDK1, CDK14, CDK4, CDK5R2, CDK6, CDK8, CDKN1B, CDKN3, CDON, CEACAM6, CENPW, CHD1L, CHIC1, CHL1, CKS1B, CMC4, CNTN2, COPS3, COPS5, CRKL, CRLF2, CROT, CRTC1, CRYAB, CSF1R, CSF3, CSF3R, CSNK2A1, CSNK2A2, CT45A1, CTBP2, CTNND2, CTSZ, CUL7, CXCL1, CXCL2, CXCL3, CYGB, CYP24A1, DCD, DCUN1D1DDB2, DDHD2, DDX6, DEK, DIS3, DNPH1, DPPA2, DPPA4, DSG3, DUSP12, DUSP26, ECHS1, ECT2, EEF1A1, EEF1A2, EEF1D, EIF3E, EIF3I, EIF4E, EIF5A2, ELAVL1, ELL, EML4, EMSY, ENTPD5, EPCAM, EPS8, ERAS, ERGIC1, ERVW-1, EVI2A, EVI5, EWSR1, EZH2, FAM189B, FAM72A, FAM83D, FASN, FDPS, FGF10, FGF3, FGF5, FGF8, FR1OP, FHL2, FIP1L1, FNDC3B, FRAT1, FUBP1, FUS, FZD2, GAB2, GAEC1, GALNT10, GALR2, GLO1, GMNN, GNA12, GNA13, GNAI2, GNAQ, GNAS, GOLPH3, GOPC, GPAT4, GPM6A, GPM6B, GPR132, GREM1, GRM1, GSK3A, GSM1, H19, HAS1, HAX1, HDGFRP2, HMGN5, HNRNPA1, HOTAIR, HOTTIP, HOXA-AS2, HRAS, HSPA1A, HSPA4, HSPB1, HULC, IDH1, IFNG, IGF2BP1, IKBKE, IL7R, INPPL1, INTS1, INTS2, INTS3, INTS4, INTS5, INTS7, INTS8, IRS2, IST1, JUP, KDM4C, KIAA0101, KIAA1524, KIF14, KRAS, KSR2, LAMTOR5, LAPTM4B, LCN2, LDHB, LETMD1, LIN28A, LIN28B, LMO1, LMO2, LMO3, LMO4, LSM1, LUADT1, MACC1, MACROD1, MAGEA11, MALAT1, MAML2, MAP3K8, MAPRE1, MAS1, MCC, MCF2, MCF2L, MCTS1, MEFV, MFHAS1, MFNG, MIEN1, MINA, MKL2, MLANA, MLLT1, MLLT11, MLLT3, MLLT4, MMP12, MMS22L, MN1, MNAT1, MOS, MPL, MPST, MRAS, MRE11A, MSI1, MTCP1, MTDH, MTOR, MUC1, MUC4, MUM1, MYD88, NAAA, NANOGP8, NBPF12, NCOA4, NEAT1, NECTIN4, NEDD4, NEDD9, NET1, NINL, NME1, NOTCH1, NOTCH4, NOV, NSD1, NUAK2, NUP214, NUP98, NUTM1, OLR1, PA2G4, PADI2, PAK7, PARK7, PARM1, PBK, PCAT1, PCAT5, PDGFA, PDZK1IP1, PELP1, PFN1P3, PIGU, PIK3CA, PIK3R1, PIM1, PIM2, PIM3, PIR, PIWIL1, PLAC8, PLK1, PPM1D, PPP1R10, PPP1R14A, PPP2R1A, PRAME, PRDM12, PRMT5, PSIP1, PSMD10, PTCH2, PTMA, PTP4A1, PTP4A2, PTP4A3, PTTG1, PTTG1IP, PTTG2, PVT1, RAB11A, RAB18, RAB22A, RAB23, RAB8A, RALGDS, RAP1A, RASSF1, RBM14, RBM15, RBM3, RBMY1A1, RFC3, RGL4, RGR, RHO, RING1, RINT1, RIT1, RNF43, RPL23, RRAS, RRAS2, RSF1, RUNX1T1, S100A4, S100A7, S100A8, SAG, SART3, SBSN, SEA, SEC62, SERTAD1, SERTAD2, SERTAD3, SET, SETBP1, SETDB1, SGK1, SIRT1, SIRT6, SKI, SKIL, SKP2, SLC12A5, SLC3A2, SMR3B, SMURF1, SNCG, SNORA59A, SNORA80E, SPAG9, SPATA4, SPRY2, SQSTM1, SRSF1, SRSF2, SRSF3, SRSF6, SS18, SSX1, SSX2, SSX2B, STIL, STMN1, STRA6, STYK1, SUZ12, SWAP70, SYT1, TAC1, TACSTD2, TAF15, TALDO1, TAZ, TBC1D1, TBC1D15, TBC1D3, TBC1D3C, TBC1D7, TCL1A, TCL1B, TCL6, TCP1, TFG, TGM3, TINCR, TKTL1, TLE1, TMEM140, TMPOP2, TMPRSS2, TNS4, TPD52, TPR, TRE17, TREH, TRIB1, TRIB2, TRIM28, TRIM32, TRIM8, TRIO, TRIP6, TSPAN1, TSPY1, TXN, TYMS, TYRP1, UBE2C, UBE3C, UCA1, UCHL1, UHRF1, URI1, USP22, USP4, USP6, VAV1, VAV2, VAV3, VIM, WAPL, WHSC1, WHSC1L1, WISP1, WNT1, WNT10A, WNT10B, WNT2, WNT3, WNT5A, WWTR1, XCL1, XIAP, YAP1, YEATS4, YY1AP1, ZEB1-AS1, ZFAND4, ZFAS1, ZMYM2, ZNF703 또는 ZNHIT6일 수 있다.In one embodiment, the oncogene is SEPTIN9, ACOD1, ACTN4, ADAM28, ADAM9, ADGRF1, ADRBK2, AFF1, AFF3, AGAP2, AGFG1, AGRN, AHCYL1, AHI1, AIMP2, AKAP13, AKAP9, AKIRIN2, AKTIP, ALDH1A1, ALL1, ANIB1, ANP32C, ANP32D, AQP1, ARAF, ARHGEF1, ARHGEF2, ARHGEF5, ASPSCR1, AURKA, BAALC, BAIAP2L1, BANP, BCAR4, BCKDHB, BCL9, BCL9L, BCR, BMI1, BMP7, BOC, BRD4, BRF2, CABIN1, CAMK1D, CAPG, CBFB, CBLB, CBLL1, CBX7, CBX8, CCDC28A, CCDC6, CCNB1, CCNB2, CCND1, CCNE1, CCNL1, CD24, CDC25C, CDC6, CDH17, CDK1, CDK14, CDK4, CDK5R2, CDK6, CDK8, CDKN1B, CDKN3, CDON, CEACAM6, CENPW, CHD1L, CHIC1, CHL1, CKS1B, CMC4, CNTN2, COPS3, COPS5, CRKL, CRLF2, CROT, CRTC1, CRYAB, CSF1R, CSF3, CSF3R, CSNK2A1, CSNK2A2, CT45A1, CTBP2, CTNND2, CTSZ, CUL7, CXCL1, CXCL2, CXCL3, CYGB, CYP24A1, DCD, DCUN1D1DDB2, DDHD2, DDX6, DEK, DIS3, DNPH1, DPPA2, DPPA4, DSG3, DUSP12, DUSP26, ECHS1, ECT2, EEF1A1, EEF1A2, EEF1D, EIF3E, EIF3I, EIF4E, EIF5A2, ELAVL1, ELL, EML4, EMSY, ENTPD5, EPCAM, EPS8, ERAS, ERGIC1, ERVW-1, EVI2A, EVI5, EWSR1, EZH2, FAM189B, FAM72A, FAM83D, FASN, FDPS, FGF10, FGF3, FGF5, FGF8, FR1OP, FHL2, FIP1L1, FNDC3B, FRAT1, FUBP1, FUS, FZD2, GAB2, GAEC1, GALNT10, GALR2, GLO1, GMNN, GNA12, GNA13, GNAI2, GNAQ, GNAS, GOLPH3, GOPC, GPAT4, GPM6A, GPM6B, GPR132, GREM1, GRM1, GSK3A, GSM1, H19, HAS1, HAX1, HDGFRP2, HMGN5, HNRNPA1, HOTAIR, HOTTIP, HOXA-AS2, HRAS, HSPA1A, HSPA4, HSPB1, HULC, IDH1, IFNG, IGF2BP1, IKBKE, IL7R, INPPL1, INTS1, INTS2, INTS3, INTS4, INTS5, INTS7, INTS8, IRS2, IST1, JUP, KDM4C, KIAA0101, KIAA1524, KIF14, KRAS, KSR2, LAMTOR5, LAPTM4B, LCN2, LDHB, LETMD1, LIN28A, LIN28B, LMO1, LMO2, LMO3, LMO4, LSM1, LUADT1, MACC1, MACROD1, MAGEA11, MALAT1, MAML2, MAP3K8, MAPRE1, MAS1, MCC, MCF2, MCF2L, MCTS1, MEFV, MFHAS1, MFNG, MIEN1, MINA, MKL2, MLANA, MLLT1, MLLT11, MLLT3, MLLT4, MMP12, MMS22L, MN1, MNAT1, MOS, MPL, MPST, MRAS, MRE11A, MSI1, MTCP1, MTDH, MTOR, MUC1, MUC4, MUM1, MYD88, NAAA, NANOGP8, NBPF12, NCOA4, NEAT1, NECTIN4, NEDD4, NEDD9, NET1, NINL, NME1, NOTCH1, NOTCH4, NOV, NSD1, NUAK2, NUP214, NUP98, NUTM1, OLR1, PA2G4, PADI2, PAK7, PARK7, PARM1, PBK, PCAT1, PCAT5, PDGFA, PDZK1IP1, PELP1, PFN1P3, PIGU, PIK3CA, PIK3R1, PIM1, PIM2, PIM3, PIR, PIWIL1, PLAC8, PLK1, PPM1D, PPP1R10, PPP1R14A, PPP2R1A, PRAME, PRDM12, PRMT5, PSIP1, PSMD10, PTCH2, PTMA, PTP4A1, PTP4A2, PTP4A3, PTTG1, PTTG1IP, PTTG2, PVT1, RAB11A, RAB18, RAB22A, RAB23, RAB8A, RALGDS, RAP1A, RASSF1, RBM14, RBM15, RBM3, RBMY1A1, RFC3, RGL4, RGR, RHO, RING1, RINT1, RIT1, RNF43, RPL23, RRAS, RRAS2, RSF1, RUNX1T1, S100A4, S100A7, S100A8, SAG, SART3, SBSN, SEA, SEC62, SERTAD1, SERTAD2, SERTAD3, SET, SETBP1, SETDB1, SGK1, SIRT1, SIRT6, SKI, SKIL, SKP2, SLC12A5, SLC3A2, SMR3B, SMURF1, SNCG, SNORA59A, SNORA80E, SPAG9, SPATA4, SPRY2, SQSTM1, SRSF1, SRSF2, SRSF3, SRSF6, SS18, SSX1, SSX2, SSX2B, STIL, STMN1, STRA6, STYK1, SUZ12, SWAP70, SYT1, TAC1, TACSTD2, TAF15, TALDO1, TAZ, TBC1D1, TBC1D15, TBC1D3, TBC1D3C, TBC1D7, TCL1A, TCL1B, TCL6, TCP1, TFG, TGM3, TINCR, TKTL1, TLE1, TMEM140, TMPOP2, TMPRSS2, TNS4, TPD52, TPR, TRE17, TREH, TRIB1, TRIB2, TRIM28, TRIM32, TRIM8, TRIO, TRIP6, TSPAN1, TSPY1, TXN, TYMS, TYRP1, UBE2C, UBE3C, UCA1, UCHL1, UHRF1, URI1, USP22, USP4, USP6, VAV1, VAV2, VAV3, VIM, WAPL, WHSC1, WHSC1L1, WISP1, WNT1, WNT10A, WNT10B, WNT2, WNT3, WNT5A, WWTR1, XCL1, It could be ZNHIT6.
일 구현예에서, 표적 항원은 세포 표면 항원 또는 자가항원일 수 있으며, 세포 표면 항원은 CEA, ED-B 피브로넥틴, CD20, CD22, CDl9, EGFR, IGFlR, VEFGRl/Flt-1, VEGFR2/KDR, VEGRF3/Flt-4, HER2/neu, CD30, CD33, CD3, CD16, CD64, CD89, CD2, 아데노바이러스 섬유 놉, PfMSP-1, HN/NDV, EpCAM/17-lA, hTR, IL-2R/Tac, CAl9-9, MUCl, HLA 클래스 II, GD2, G250, TAG-72, PSMA, CEACAM6, HMWMAA, CD40, Ml3 외피 단백질 및 GPIIb/IIIa로 이루어지는 군으로부터 선택되는 어느 하나 이상일 수 있다.In one embodiment, the target antigen may be a cell surface antigen or an autoantigen, and the cell surface antigen may be CEA, ED-B fibronectin, CD20, CD22, CDl9, EGFR, IGFlR, VEFGRl/Flt-1, VEGFR2/KDR, VEGRF3 /Flt-4, HER2/neu, CD30, CD33, CD3, CD16, CD64, CD89, CD2, adenovirus fiber knob, PfMSP-1, HN/NDV, EpCAM/17-lA, hTR, IL-2R/Tac, It may be any one or more selected from the group consisting of CAl9-9, MUCl, HLA class II, GD2, G250, TAG-72, PSMA, CEACAM6, HMWMAA, CD40, Ml3 coat protein, and GPIIb/IIIa.
일 구현예에서, 본 발명의 면역학적 활성을 가진 단편은 Fab, Fd, Fab', dAb, F(ab'), F(ab')2, scFv(single chain fragment variable), Fv, 단일쇄 항체, Fv 이량체, 상보성 결정 영역 단편, 인간화 항체, 키메라 항체 및 디아바디(diabody)로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.In one embodiment, the immunologically active fragment of the present invention is Fab, Fd, Fab', dAb, F(ab'), F(ab') 2 , scFv (single chain fragment variable), Fv, single chain antibody. , Fv dimer, complementarity determining region fragment, humanized antibody, chimeric antibody, and diabody.
상기 항체는 전체(whole) 항체 형태일 뿐 아니라 항체 분자의 기능적인 단편을 포함한다. 전체 항체는 2개의 전체 길이의 경쇄(light chain) 및 2개의 전체 길이의 중쇄(heavy chain)를 가지는 구조이며 각각의 경쇄는 중쇄와 다이설파이드 결합(disulfide bond)으로 연결되어 있다. 항체 분자의 기능적인 단편이란 항원 결합 기능을 보유하고 있는 단편을 뜻하며, 항체 단편의 예는 (i) 경쇄의 가변영역(VL) 및 중쇄의 가변영역(VH)과 경쇄의 불변영역(CL) 및 중쇄의 첫번째 불변 영역(CH1)으로 이루어진 Fab 단편; (ii) VH 및 CH1 도메인으로 이루어진 Fd 단편; (iii) 단일 항체의 VL 및 VH 도메인으로 이루어진 Fv 단편; (iv) VH 도메인으로 이루어진 dAb 단편(Ward ES et al., Nature 341:544-546 (1989)]; (v) 분리된 CDR 영역; (vi) 2개의 연결된 Fab 단편을 포함하는 2가 단편인 F(ab')2 단편; (vii) VH 도메인 및 VL 도메인이 항원 결합 부위를 형성하도록 결합시키는 펩타이드 링커에 의해 결합된 단일쇄 Fv 분자(scFv); (viii) 이특이적인 단일쇄 Fv 이량체(PCT/US92/09965) 및 (ix) 유전자 융합에 의해 제작된 다가 또는 다특이적인 단편인 디아바디(diabody) WO94/13804) 등을 포함한다. The antibodies are in whole antibody form as well as functional fragments of the antibody molecule. A full antibody has a structure of two full-length light chains and two full-length heavy chains, and each light chain is connected to the heavy chain by a disulfide bond. A functional fragment of an antibody molecule refers to a fragment that possesses an antigen-binding function. Examples of antibody fragments include (i) the variable region (VL) of the light chain, the variable region (VH) of the heavy chain, the constant region (CL) of the light chain, and Fab fragment consisting of the first constant region (CH1) of the heavy chain; (ii) Fd fragment consisting of VH and CH1 domains; (iii) an Fv fragment consisting of the VL and VH domains of a single antibody; (iv) a dAb fragment consisting of a VH domain (Ward ES et al., Nature 341:544-546 (1989)); (v) an isolated CDR region; (vi) a bivalent fragment comprising two linked Fab fragments. F(ab')2 fragment; (vii) single chain Fv molecule (scFv) joined by a peptide linker that joins the VH domain and VL domain to form an antigen binding site; (viii) bispecific single chain Fv dimer (PCT/US92/09965) and (ix) diabody WO94/13804, which is a multivalent or multispecific fragment produced by gene fusion.
본 발명의 항체 또는 이의 면역학적 활성을 가진 단편은 동물 유래 항체, 키메릭 항체, 인간화 항체, 인간 항체, 및 이들의 면역학적 활성을 가진 단편으로 이루어진 군에서 선택된 것일 수 있다. 상기 항체는 재조합적 또는 합성적으로 생산된 것일 수 있다.The antibody or immunologically active fragment thereof of the present invention may be selected from the group consisting of animal-derived antibodies, chimeric antibodies, humanized antibodies, human antibodies, and immunologically active fragments thereof. The antibody may be recombinantly or synthetically produced.
원하는 항원을 피면역 동물에게 면역시켜 생산하는 동물 유래 항체는 일반적으로 치료 목적으로 인간에 투여시 면역거부반응이 일어날 수 있으며, 이러한 면역거부반응을 억제하고자 키메릭 항체(chimeric antibody)가 개발되었다. 키메릭 항체는 유전공학적 방법을 이용하여 항-아이소타입(anti-isotype) 반응의 원인이 되는 동물 유래 항체의 불변 영역을 인간 항체의 불변 영역으로 치환한 것이다. 키메릭 항체는 동물 유래 항체에 비하여 항-아이소타입 반응에 있어서 상당 부분 개선되었으나, 여전히 동물 유래 아미노산들이 가변 영역에 존재하고 있어 잠재적인 항-이디오타입(anti-idiotypic) 반응에 대한 부작용을 내포하고 있다. 이러한 부작용을 개선하고자 개발된 것이 인간화 항체(humanized antibody)이다. 이는 키메릭 항체의 가변 영역 중 항원의 결합에 중요한 역할을 하는 CDR(complementaritiy determining regions) 부위를 인간 항체 골격(framework)에 이식하여 제작된다.Animal-derived antibodies produced by immunizing an immunized animal with a desired antigen can generally cause immune rejection when administered to humans for therapeutic purposes, and chimeric antibodies have been developed to suppress such immune rejection. A chimeric antibody is one in which the constant region of an animal-derived antibody, which causes an anti-isotype reaction, is replaced with the constant region of a human antibody using genetic engineering methods. Chimeric antibodies have significantly improved anti-isotype responses compared to animal-derived antibodies, but animal-derived amino acids still exist in the variable region, resulting in potential side effects on anti-idiotypic responses. I'm doing it. Humanized antibodies were developed to improve these side effects. It is produced by transplanting the CDR (complementary determining regions) region, which plays an important role in antigen binding, among the variable regions of a chimeric antibody, into the human antibody framework.
인간화 항체를 제작하기 위한 CDR 이식(grafting) 기술에 있어서 가장 중요한 것은 동물 유래 항체의 CDR 부위를 가장 잘 받아들일 수 있는 최적화된 인간 항체를 선정하는 것이며, 이를 위하여 항체 데이터베이스의 활용, 결정구조(crystal structure)의 분석, 분자모델링 기술 등이 활용된다. 그러나, 최적화된 인간 항체 골격에 동물 유래 항체의 CDR 부위를 이식할지라도 동물 유래 항체의 골격에 위치하면서 항원 결합에 영향을 미치는 아미노산이 존재하는 경우가 있기 때문에, 항원 결합력이 보존되지 못하는 경우가 상당수 존재하므로, 항원 결합력을 복원하기 위한 추가적인 항체 공학 기술의 적용은 필수적이라고 할 수 있다.The most important thing in CDR grafting technology to produce humanized antibodies is to select an optimized human antibody that can best accept the CDR region of an animal-derived antibody. To this end, use of an antibody database and crystal structure (crystal structure) Structure analysis, molecular modeling technology, etc. are used. However, even when the CDR region of an animal-derived antibody is transplanted onto an optimized human antibody framework, there are cases where amino acids that affect antigen binding are present in the framework of the animal-derived antibody, so antigen-binding ability is not preserved in many cases. Therefore, the application of additional antibody engineering technology to restore antigen binding ability can be said to be essential.
상기 항체 또는 이의 면역학적 활성을 가진 단편은 생체에서 분리된 (생체에 존재하지 않는) 것 또는 비자연적으로 생산(non-naturally occurring)된 것일 수 있으며, 예컨대, 합성적 또는 재조합적으로 생산된 것일 수 있다.The antibody or fragment thereof with immunological activity may be isolated from a living body (not present in the living body) or non-naturally occurring, for example, synthetically or recombinantly produced. You can.
본 발명에서 "항체"라 함은, 면역계 내에서 항원의 자극에 의하여 만들어지는 물질을 의미하는 것으로서, 그 종류는 특별히 제한되지 않으며, 자연적 또는 비자연적(예컨대, 합성적 또는 재조합적)으로 얻어질 수 있다. 항체는 생체 외뿐 아니라 생체 내에서도 매우 안정하고 반감기가 길기 때문에 대량 발현 및 생산에 유리하다. 또한, 항체는 본질적으로 다이머(dimer) 구조를 가지므로 접착능(avidity)이 매우 높다. 완전한 항체는 2개의 전장(full length) 경쇄 및 2개의 전장 중쇄를 가지는 구조이며 각각의 경쇄는 중쇄와 이황화 결합으로 연결되어 있다. 항체의 불변 영역은 중쇄 불변 영역과 경쇄 불변 영역으로 나뉘어지며, 중쇄 불변 영역은 감마(γ), 뮤(μ), 알파(α), 델타(δ) 및 엡실론(ε) 타입을 가지고, 서브클래스로 감마1(γ1), 감마2(γ2), 감마3(γ3), 감마4(γ4), 알파1(α1) 및 알파2(α2)를 가진다. 경쇄의 불변 영역은 카파(κ) 및 람다(λ) 타입을 가진다.In the present invention, “antibody” refers to a substance produced by stimulation of an antigen within the immune system, the type of which is not particularly limited, and can be obtained naturally or unnaturally (e.g., synthetically or recombinantly). You can. Antibodies are very stable not only in vitro but also in vivo and have a long half-life, making them advantageous for mass expression and production. In addition, antibodies inherently have a dimer structure, so their adhesion ability (avidity) is very high. A complete antibody has a structure of two full-length light chains and two full-length heavy chains, and each light chain is connected to the heavy chain by a disulfide bond. The constant region of an antibody is divided into a heavy chain constant region and a light chain constant region, and the heavy chain constant region has gamma (γ), mu (μ), alpha (α), delta (δ), and epsilon (ε) types, and subclasses. It has gamma 1 (γ1), gamma 2 (γ2), gamma 3 (γ3), gamma 4 (γ4), alpha 1 (α1), and alpha 2 (α2). The constant region of the light chain has kappa (κ) and lambda (λ) types.
본 발명에서 용어, "중쇄(heavy chain)"는 항원에 특이성을 부여하기 위해 충분한 가변 영역 서열을 갖는 아미노산 서열을 포함하는 가변 영역 도메인 VH 및 3개의 불변 영역 도메인 CH1 , CH2 및 CH3 과 힌지(hinge)를 포함하는 전장 중쇄 및 이의 단편을 모두 포함하는 의미로 해석된다. 또한, 용어 "경쇄(light chain)"는 항원에 특이성을 부여하기 위한 충분한 가변 영역 서열을 갖는 아미노산 서열을 포함하는 가변 영역 도메인 VL 및 불변 영역 도메인 CL을 포함하는 전장 경쇄 및 이의 단편을 모두 포함하는 의미로 해석된다.As used herein, the term "heavy chain" refers to a variable region domain V H and three constant region domains C H1 , C H2 and C H3 comprising an amino acid sequence with sufficient variable region sequence to confer specificity to an antigen. It is interpreted to include both the full-length heavy chain including the hinge and fragments thereof. Additionally, the term "light chain" refers to both a full-length light chain and fragments thereof comprising a variable region domain V L and a constant region domain C L comprising an amino acid sequence with sufficient variable region sequence to confer specificity to an antigen. It is interpreted to mean inclusive.
본 발명에서 용어, "가변 영역(variable region) 또는 가변 부위 (variable domain)"는 항원과 특이적으로 결합하는 기능을 수행하면서 서열상의 많은 변이를 보이는 항체 분자의 부분을 의미하고, 가변 영역에는 상보성 결정 영역인 CDR1, CDR2 및 CDR3가 존재한다. 상기 CDR 사이에는 프레임 워크 영역(framework region, FR) 부분이 존재하여 CDR 고리를 지지해주는 역할을 한다. 상기 "상보성 결정 영역"은 항원의 인식에 관여하는 고리모양의 부위로서 이 부위의 서열이 변함에 따라 항체의 항원에 대한 특이성이 결정된다.In the present invention, the term "variable region or variable domain" refers to a portion of an antibody molecule that performs the function of specifically binding to an antigen and exhibits many variations in sequence, and the variable region has complementary There are crystalline regions CDR1, CDR2 and CDR3. A framework region (FR) exists between the CDRs and serves to support the CDR ring. The “complementarity determining region” is a ring-shaped region involved in antigen recognition, and as the sequence of this region changes, the specificity of the antibody to the antigen is determined.
본 발명에서 사용되는 용어 "scFv(single chain fragment variable)"는 유전자 재조합을 통해 항체의 가변영역만을 발현시켜 만든 단쇄항체를 말하며, 항체의 VH 영역과 VL 영역을 짧은 펩티드 사슬로 연결한 단일쇄 형태의 항체를 말한다. 상기 용어 "scFv"는 달리 명시되지 않거나, 문맥상 달리 이해되는 것이 아니라면, 항원 결합 단편을 비롯한 scFv 단편을 포함하고자 한다. 이는 통상의 기술자에게 자명한 것이다.The term "scFv (single chain fragment variable)" used in the present invention refers to a single chain antibody made by expressing only the variable region of an antibody through genetic recombination, and is a single chain form in which the VH region and VL region of the antibody are connected by a short peptide chain. refers to the antibodies of The term “scFv” is intended to include scFv fragments, including antigen-binding fragments, unless otherwise specified or understood from context. This is self-evident to those skilled in the art.
본 발명에서 용어, "상보성결정영역(complementarity determining region, CDR)"은 면역글로불린의 중쇄 및 경쇄의 고가변 영역 (hypervariable region)의 아미노산 서열을 의미한다. 중쇄 및 경쇄는 각각 3개의 CDR을 포함할 수 있다 (CDRH1, CDRH2,CDRH3 및 CDRL1, CDRL2, CDRL3). 상기 CDR은 항체가 항원 또는 항원결정부위에 결합하는 데 있어서 주요한 접촉 잔기를 제공할 수 있다. In the present invention, the term “complementarity determining region (CDR)” refers to the amino acid sequence of the hypervariable region of the heavy and light chains of immunoglobulin. The heavy and light chains may each contain three CDRs (CDRH1, CDRH2, CDRH3 and CDRL1, CDRL2, CDRL3). The CDR may provide key contact residues for the antibody to bind to the antigen or epitope.
본 발명에서, 용어, "특이적으로 결합" 또는 "특이적으로 인식"은 당업자에게 통상적으로 공지되어 있는 의미와 동일한 것으로서, 항원 및 항체가 특이적으로 상호작용하여 면역학적 반응을 하는 것을 의미한다.In the present invention, the term "specifically binds" or "specifically recognizes" has the same meaning commonly known to those skilled in the art, and means that an antigen and an antibody specifically interact to produce an immunological reaction. .
본 발명에서 용어, "항원결합단편"은 면역글로불린 전체 구조에 대한 그의 단편으로, 항원이 결합할 수 있는 부분을 포함하는 폴리펩타이드의 일부를 의미한다. 예를 들어, scFv, (scFv) 2 , scFv-Fc, Fab, Fab' 또는 F(ab') 2 일 수 있으나, 이에 한정되지 않는다. 상기 항원결합단편 중 Fab는 경쇄 및 중쇄의 가변 영역과 경쇄의 불변 영역 및 중쇄의 첫 번째 불변 영역(CH1)을 가지는 구조로 1개의 항원 결합 부위를 가진다. Fab'는 중쇄 CH1 도메인의 C-말단에 하나 이상의 시스테인 잔기를 포함하는 힌지 영역(hinge region)을 가진다는 점에서 Fab와 차이가 있다. F(ab') 2 항체는 Fab'의 힌지 영역의 시스테인 잔기가 디설파이드 결합을 이루면서 생성된다. Fv는 중쇄 가변 영역 및 경쇄 가변 부위만을 가지고 있는 최소의 항체조각으로 Fv 단편을 생성하는 재조합 기술은 당업계에 널리 공지되어 있다. 이중쇄 Fv(two-chain Fv)는 비공유 결합으로 중쇄 가변 부위와 경쇄 가변 부위가 연결되어 있고 단쇄 Fv(single-chain Fv)는 일반적으로 펩타이드 링커를 통하여 중쇄의 가변 영역과 단쇄의 가변 영역이 공유 결합으로 연결되거나 또는 C-말단에서 바로 연결되어 있어서 이중쇄 Fv와 같이 다이머와 같은 구조를 이룰 수 있다. 상기 링커는 1 내지 100개 또는 2 내지 50개의 임의의 아미노산으로 이루어진 펩타이드 링커일 수 있으며, 당업계에 적절한 서열이 알려져 있다. 상기 항원결합단편은 단백질 가수분해 효소를 이용해서 얻을 수 있고(예를 들어, 전체 항체를 파파인으로 제한 절단하면 Fab를 얻을 수 있고 펩신으로 절단하면 F(ab') 2 단편을 얻을 수 있다), 유전자 재조합 기술을 통하여 제작할 수 있다.In the present invention, the term “antigen-binding fragment” refers to a fragment of the entire structure of an immunoglobulin and a portion of a polypeptide containing a portion to which an antigen can bind. For example, it may be scFv, (scFv) 2, scFv-Fc, Fab, Fab' or F(ab') 2, but is not limited thereto. Among the antigen-binding fragments, Fab has one antigen-binding site with a structure that includes the variable regions of the light and heavy chains, the constant region of the light chain, and the first constant region (C H1 ) of the heavy chain. Fab' differs from Fab in that it has a hinge region containing one or more cysteine residues at the C-terminus of the heavy chain C H1 domain. The F(ab') 2 antibody is produced when the cysteine residue in the hinge region of Fab' forms a disulfide bond. Fv is a minimal antibody fragment containing only the heavy chain variable region and the light chain variable region, and recombinant techniques for producing Fv fragments are widely known in the art. A two-chain Fv (two-chain Fv) is a non-covalent bond in which the heavy chain variable region and a light chain variable region are connected, while a single-chain Fv (single-chain Fv) is generally shared between the heavy chain variable region and the short chain variable region through a peptide linker. They can be connected by a bond or directly connected at the C-terminus to form a dimer-like structure, such as double-chain Fv. The linker may be a peptide linker consisting of 1 to 100 or 2 to 50 amino acids, and suitable sequences are known in the art. The antigen-binding fragment can be obtained using a proteolytic enzyme (for example, Fab can be obtained by restriction digestion of the entire antibody with papain, and F(ab') 2 fragment can be obtained by digestion with pepsin), It can be produced through genetic recombination technology.
본 발명에서 용어 "힌지 영역(hunge region)"은 항체의 중쇄에 포함되어 있는 영역으로서, CH1 및 CH2 영역 사이에 존재하며, 항체 내 항원 결합 부위의 유연성(flexibility)를 제공하는 기능을 하는 영역을 의미한다. 예컨대, 상기 힌지는 인간 항체로부터 유래한 것일 수 있으며, 구체적으로, IgA, IgE, 또는 IgG, 예컨대, IgG1, IgG2, IgG 3, 또는 IgG4로부터 유래한 것일 수 있다.In the present invention, the term "hinge region" refers to a region contained in the heavy chain of an antibody, which exists between the C H1 and C H2 regions and functions to provide flexibility of the antigen binding site in the antibody. It means area. For example, the hinge may be derived from a human antibody, specifically, IgA, IgE, or IgG, such as IgG1, IgG2, IgG 3, or IgG4.
일 측면에서, 본 발명은 본 발명의 B7-H6 변이체 또는 이의 단편, 또는 이중특이적 또는 다중특이적 항체를 코딩하는 단리된 핵산 분자, 이를 포함하는 벡터, 및 이로 형질전환된 숙주 세포에 관한 것이다.In one aspect, the invention relates to an isolated nucleic acid molecule encoding the B7-H6 variant or fragment thereof, or bispecific or multispecific antibody of the invention, a vector containing the same, and a host cell transformed therewith. .
본 발명의 핵산 분자는 단리된 것이거나 재조합된 것일 수 있으며, 단일쇄 및 이중쇄 형태의 DNA 및 RNA뿐만 아니라 대응하는 상보성 서열이 포함된다. 단리된 핵산은 천연 생성 원천에서 단리된 핵산의 경우, 핵산이 단리된 개체의 게놈에 존재하는 주변 유전 서열로부터 분리된 핵산이다. 주형으로부터 효소적으로 또는 화학적으로 합성된 핵산, 예컨대 PCR 산물, cDNA 분자, 또는 올리고뉴클레오타이드의 경우, 이러한 절차로부터 생성된 핵산이 단리된 핵산분자로 이해될 수 있다. 단리된 핵산분자는 별도 단편의 형태 또는 더 큰 핵산 구축물의 성분으로서의 핵산 분자를 나타낸다. 핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 작동가능하게 연결된다. 예를 들면, 전서열 또는 분비 리더(leader)의 DNA는 폴리펩타이드가 분비되기 전의 형태인 전단백질(preprotein)로서 발현되는 경우 폴리펩타이드의 DNA에 작동가능하게 연결되고, 프로모터 또는 인핸서는 폴리펩타이드 서열의 전사에 영향을 주는 경우 코딩 서열에 작동가능하게 연결되며, 또는 리보솜 결합 부위는 번역을 촉진하도록 배치될 때 코딩 서열에 작동가능하게 연결된다. 일반적으로 작동가능하게 연결된은 연결될 DNA 서열들이 인접하여 위치함을 의미하며, 분비 리더의 경우 인접하여 동일한 리딩 프레임 내에 존재하는 것을 의미한다. 그러나 인핸서는 인접하여 위치할 필요는 없다. 연결은 편리한 제한 효소 부위에서 라이게이션에 의해 달성된다. 이러한 부위가 존재하지 않는 경우, 합성 올리고뉴클레오타이드 어댑터 또는 링커를 통상적인 방법에 따라 사용한다.Nucleic acid molecules of the invention may be isolated or recombinant and include single- and double-stranded forms of DNA and RNA as well as corresponding complementary sequences. An isolated nucleic acid, in the case of a nucleic acid isolated from a naturally occurring source, is a nucleic acid that has been separated from the surrounding genetic sequence present in the genome of the individual from which the nucleic acid was isolated. In the case of nucleic acids synthesized enzymatically or chemically from a template, such as PCR products, cDNA molecules, or oligonucleotides, the nucleic acids resulting from these procedures may be understood as isolated nucleic acid molecules. Isolated nucleic acid molecules refer to nucleic acid molecules either in the form of separate fragments or as components of larger nucleic acid constructs. A nucleic acid is operably linked when placed in a functional relationship with another nucleic acid sequence. For example, the DNA of the presequence or secretion leader is operably linked to the DNA of the polypeptide when the polypeptide is expressed as a preprotein in a form before secretion, and the promoter or enhancer is a polypeptide sequence. is operably linked to the coding sequence when it affects transcription, or the ribosome binding site is operably linked to the coding sequence when configured to facilitate translation. In general, operably linked means that the DNA sequences to be linked are located adjacent to each other, and in the case of a secretory leader, it means that they are adjacent and exist within the same reading frame. However, enhancers do not need to be located adjacently. Linking is accomplished by ligation at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers are used according to conventional methods.
본 발명의 항체 또는 이의 면역학적 활성을 가진 단편, 또는 본 발명의 이중특이적 또는 다중특이적 항체를 코딩하는 단리된 핵산 분자는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 항체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 항체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있고, 코딩영역을 제외한 부분에서도 유전자의 발현에 영향을 미치지 않는 범위 내에서 다양한 변형 또는 수식이 이루어질 수 있으며, 그러한 변형 유전자 역시 본 발명의 범위에 포함됨을 당업자는 잘 이해할 수 있을 것이다. 즉, 본 발명의 핵산 분자는 이와 동등한 활성을 갖는 단백질을 코딩하는 한, 하나 이상의 핵산 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있으며, 이들 또한 본 발명의 범위에 포함된다. 이러한 핵산 분자의 서열은 단쇄 또는 이중쇄일 수 있으며, DNA 분자 또는 RNA(mRNA)분자일 수 있다.Isolated nucleic acid molecules encoding the antibodies of the present invention or immunologically active fragments thereof, or the bispecific or multispecific antibodies of the present invention, may be used due to codon degeneracy or for the purpose of expressing the antibodies. Considering the codons preferred in organisms, various modifications can be made to the coding region within the range that does not change the amino acid sequence of the antibody expressed from the coding region, and does not affect gene expression in parts other than the coding region. A person skilled in the art will understand that various modifications or modifications can be made within the gene, and that such modified genes are also included within the scope of the present invention. That is, as long as the nucleic acid molecule of the present invention encodes a protein with equivalent activity, one or more nucleic acid bases may be mutated by substitution, deletion, insertion, or a combination thereof, and these are also included within the scope of the present invention. The sequence of these nucleic acid molecules may be single or double stranded, and may be DNA molecules or RNA (mRNA) molecules.
본 발명에 따른 본 발명의 항체 또는 이의 면역학적 활성을 가진 단편, 또는 본 발명의 이중특이적 또는 다중특이적 항체를 코딩하는 단리된 핵산 분자는 단백질 발현을 위해 발현벡터에 삽입될 수 있다. 발현벡터는, 통상 조절 또는 제어 (regulatory) 서열, 선별마커, 임의의 융합 파트너, 및/또는 추가적 요소와 작동가능하게 연결된, 즉, 기능적 관계에 놓인 단백질을 포함한다. 적절한 상태에서, 핵산으로 형질전환된 숙주세포, 바람직하게는, 본 발명의 항체 또는 이의 면역학적 활성을 가진 단편, 또는 본 발명의 이중특이적 또는 다중특이적 항체를 코딩하는 단리된 핵산 분자 함유 발현벡터를 배양하여 단백질 발현을 유도하는 방법에 의해 본 발명의 항체 또는 이의 면역학적 활성을 가진 단편, 또는 본 발명의 이중특이적 또는 다중특이적 항체가 생산될 수 있다. 포유류 세포, 박테리아, 곤충 세포, 및 효모를 포함하는 다양한 적절한 숙주세포가 사용될 수 있으나, 이에 제한하는 것은 아니다. 외인성 핵산을 숙주세포에 도입하는 방법은 당해 기술분야에 공지되어 있으며, 사용되는 숙주세포에 따라 달라질 것이다. 바람직하게는, 생산비가 저렴하여 산업적 이용가치가 높은 대장균을 숙주세포로 생산할 수 있다.An isolated nucleic acid molecule encoding an antibody of the present invention or a fragment having immunological activity thereof, or a bispecific or multispecific antibody of the present invention may be inserted into an expression vector for protein expression. Expression vectors typically contain proteins operably linked, i.e., placed in a functional relationship, with regulatory or control sequences, selectable markers, optional fusion partners, and/or additional elements. Under appropriate conditions, a host cell transformed with a nucleic acid, preferably containing an antibody of the invention or an immunologically active fragment thereof, or an isolated nucleic acid molecule encoding a bispecific or multispecific antibody of the invention, is expressed. An antibody of the present invention, a fragment having immunological activity thereof, or a bispecific or multispecific antibody of the present invention can be produced by culturing a vector to induce protein expression. A variety of suitable host cells can be used, including, but not limited to, mammalian cells, bacteria, insect cells, and yeast. Methods for introducing exogenous nucleic acids into host cells are known in the art and will vary depending on the host cell used. Preferably, E. coli, which has low production cost and thus has high industrial value, can be produced as a host cell.
본 발명의 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오 파아지 벡터 및 바이러스 벡터 등을 포함하나 이에 제한되지 않는다. 적합한 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 상기 시그널 서열에는 숙주가 에쉐리키아속(Escherichia sp.)균인 경우에는 PhoA 시그널 서열, OmpA 시그널 서열 등이, 숙주가 바실러스속(Bacillus sp.)균인 경우에는 α-아밀라아제 시그널 서열, 서브틸리신 시그널 서열 등이, 숙주가 효모(yeast)인 경우에는 MFα 시그널 서열, SUC2 시그널 서열 등이, 숙주가 동물세포인 경우에는 인슐린 시그널 서열, α-인터페론 시그널 서열, 항체 분자 시그널 서열 등을 이용할 수 있으나, 이에 제한되지 않는다. 또한 벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택 마커를 포함할 수 있고, 복제 가능한 발현벡터인 경우 복제 기원을 포함한다.Vectors of the present invention include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, etc. Suitable vectors include expression control elements such as promoters, operators, start codons, stop codons, polyadenylation signals, and enhancers, as well as signal sequences or leader sequences for membrane targeting or secretion, and can be prepared in various ways depending on the purpose. The promoter of the vector may be constitutive or inducible. The signal sequence includes the PhoA signal sequence and OmpA signal sequence when the host is Escherichia sp., and the α-amylase signal sequence and subtilisin signal when the host is Bacillus sp. For sequences, etc., if the host is yeast, the MFα signal sequence, SUC2 signal sequence, etc. can be used, and if the host is an animal cell, the insulin signal sequence, α-interferon signal sequence, antibody molecule signal sequence, etc. can be used. It is not limited to this. Additionally, the vector may include a selection marker for selecting host cells containing the vector, and if it is a replicable expression vector, it will include an origin of replication.
본 발명에서 용어, "벡터"는 핵산 서열을 복제할 수 있는 세포로의 도입을 위해서 핵산 서열을 삽입할 수 있는 전달체를 의미한다. 핵산 서열은 외생 (exogenous) 또는 이종 (heterologous)일 수 있다. 벡터로서는 플라스미드, 코스미드 및 바이러스(예를 들면 박테리오파지)를 들 수 있으나, 이에 제한되지 않는다. 당업자는 표준적인 재조합 기술에 의해 벡터를 구축할 수 있다(Maniatis, et al., Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988; 및 Ausubel et al., In: Current Protocols in Molecular Biology , John, Wiley & Sons, Inc, NY, 1994 등).In the present invention, the term “vector” refers to a carrier capable of inserting a nucleic acid sequence for introduction into a cell capable of replicating the nucleic acid sequence. Nucleic acid sequences may be exogenous or heterologous. Vectors include, but are not limited to, plasmids, cosmids, and viruses (eg, bacteriophages). Those skilled in the art can construct vectors by standard recombination techniques (Maniatis, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988; and Ausubel et al., In: Current Protocols in Molecular Biology, John, Wiley & Sons, Inc, NY, 1994, etc.).
일 구현예에서, 상기 벡터의 제작 시, 상기 항체를 생산하고자 하는 숙주세포의 종류에 따라 프로모터(promoter), 종결자(terminator), 인핸서(enhancer) 등과 같은 발현조절 서열, 막 표적화 또는 분비를 위한 서열 등을 적절히 선택하고 목적에 따라 다양하게 조합할 수 있다.In one embodiment, when constructing the vector, expression control sequences such as promoters, terminators, enhancers, etc., depending on the type of host cell for producing the antibody, membrane targeting or secretion Sequences, etc. can be appropriately selected and combined in various ways depending on the purpose.
본 발명에서, 용어 "발현 벡터"는 전사되는 유전자 산물 중 적어도 일부분을 코딩하는 핵산 서열을 포함한 벡터를 의미한다. 일부의 경우에는 그 후 RNA 분자가 단백질, 폴리펩타이드, 또는 펩타이드로 번역된다. 발현 벡터에는 다양한 조절서열을 포함할 수 있다. 전사 및 번역을 조절하는 조절서열과 함께 벡터 및 발현 벡터에는 또 다른 기능도 제공하는 핵산 서열도 포함될 수 있다.In the present invention, the term “expression vector” refers to a vector containing a nucleic acid sequence encoding at least a portion of the gene product to be transcribed. In some cases, the RNA molecule is then translated into a protein, polypeptide, or peptide. Expression vectors may contain various control sequences. In addition to regulatory sequences that regulate transcription and translation, vectors and expression vectors may also contain nucleic acid sequences that also serve other functions.
본 발명에서, 용어 "숙주세포"는 진핵생물 및 원핵생물을 포함하며, 상기 벡터를 복제할 수 있거나 벡터에 의해 코딩되는 유전자를 발현할 수 있는 임의의 형질 전환 가능한 생물을 의미한다. 숙주세포는 상기 벡터에 의해 형질감염(transfected) 또는 형질전환(transformed) 될 수 있으며, 이는 외생의 핵산분자가 숙주세포 내에 전달되거나 도입되는 과정을 의미한다.In the present invention, the term “host cell” includes eukaryotes and prokaryotes and refers to any transformable organism capable of replicating the vector or expressing the gene encoded by the vector. The host cell may be transfected or transformed by the vector, which refers to a process in which an exogenous nucleic acid molecule is transferred or introduced into the host cell.
일 구현예에서, 상기 숙주 세포는 박테리아 또는 동물세포일 수 있으며, 동물 세포주는 CHO 세포, HEK 세포 또는 NSO 세포일 수 있고, 박테리아는 대장균일 수 있다.In one embodiment, the host cells may be bacteria or animal cells, the animal cell line may be CHO cells, HEK cells, or NSO cells, and the bacteria may be Escherichia coli.
일 측면에서, 본 발명은 본 발명의 B7-H6 변이체 또는 이의 단편, 또는 이중특이적 또는 다중특이적 항체를 포함하는, 암의 치료 또는 예방용 약학적 조성물에 관한 것이다.In one aspect, the present invention relates to a pharmaceutical composition for the treatment or prevention of cancer, comprising the B7-H6 variant or fragment thereof, or a bispecific or multispecific antibody of the present invention.
일 구현예에서, 상기 암은 뇌종양, 흑색종, 골수종, 비소세포성폐암, 구강암, 간암, 위암, 결장암, 유방암, 폐암, 골암, 췌장암, 피부암, 두부 또는 경부암, 자궁경부암, 난소암, 대장암, 소장암, 직장암, 나팔관암종, 항문부근암, 자궁내막암종, 질암종, 음문암종, 호지킨병(Hodgkin's disease), 식도암, 임파선암, 방광암, 담낭암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 신장 또는 수뇨관암, 신장세포 암종, 신장골반암종, 중추신경계 종양, 1차 중추신경계 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.In one embodiment, the cancer is brain tumor, melanoma, myeloma, non-small cell lung cancer, oral cancer, liver cancer, stomach cancer, colon cancer, breast cancer, lung cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, cervical cancer, ovarian cancer, and colon cancer. , small intestine cancer, rectal cancer, fallopian tube carcinoma, anal cancer, endometrial carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, lymph node cancer, bladder cancer, gallbladder cancer, endocrine cancer, thyroid cancer, parathyroid cancer, adrenal cancer. , soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic or acute leukemia, lymphocytic lymphoma, renal or ureteral cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system tumor, primary central nervous system lymphoma, spinal cord tumor, brainstem glioma. and pituitary adenoma.
본 발명에서, 용어 "예방"이란 본 발명에 따른 조성물의 투여에 의해 질병 또는 질환의 발생, 확산 및 재발을 억제 또는 지연시키는 모든 행위를 의미한다.In the present invention, the term “prevention” refers to all actions that inhibit or delay the occurrence, spread, and recurrence of a disease or condition by administering the composition according to the present invention.
본 발명에서 사용된 용어 "치료"란 본 발명에 따른 조성물의 투여로 질병 또는 질환 및 이로 인한 합병증의 증세를 호전시키거나 이롭게 변경하는 모든 행위를 의미한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 대한의학협회 등에서 제시된 자료를 참조하여 본원의 조성물이 효과가 있는 질환의 정확한 기준을 알고, 개선, 향상 및 치료된 정도를 판단할 수 있을 것이다.The term "treatment" used in the present invention refers to any action that improves or beneficially changes the symptoms of a disease or condition and complications resulting therefrom by administering the composition according to the present invention. Anyone with ordinary knowledge in the technical field to which the present invention pertains can refer to the data presented by the Korean Medical Association, etc. to know the exact criteria for diseases for which our composition is effective and to determine the degree of improvement, improvement, and treatment. will be.
본 발명에서 유효성분과 결합하여 사용된 "치료학적으로 유효한 양"이란 용어는 질병 또는 질환을 예방 또는 치료하는데 유효한 양을 의미하며, 본 발명의 조성물의 치료적으로 유효한 양은 여러 요소, 예를 들면 투여방법, 목적부위, 환자의 상태 등에 따라 달라질 수 있다. 따라서, 인체에 사용 시 투여량은 안전성 및 효율성을 함께 고려하여 적정량으로 결정되어야 한다. 동물실험을 통해 결정한 유효량으로부터 인간에 사용되는 양을 추정하는 것도 가능하다. 유효한 양의 결정시 고려할 이러한 사항은, 예를 들면 Hardman and Limbird, eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed.(2001), Pergamon Press; 및 E.W. Martin ed., Remington's Pharmaceutical Sciences, 18th ed.(1990), Mack PublishingCo.에 기술되어있다.The term "therapeutically effective amount" used in combination with an active ingredient in the present invention refers to an amount effective in preventing or treating a disease or disorder, and the therapeutically effective amount of the composition of the present invention is determined by several factors, such as administration. It may vary depending on the method, target area, patient condition, etc. Therefore, when used in the human body, the dosage must be determined as appropriate by considering both safety and efficiency. It is also possible to estimate the amount used in humans from the effective amount determined through animal testing. These considerations in determining an effective amount include, for example, Hardman and Limbird, eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed. (2001), Pergamon Press; and E.W. Martin ed., Remington's Pharmaceutical Sciences, 18th ed. (1990), Mack Publishing Co.
본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에서 사용되는 용어, "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분하며 부작용을 일으키지 않을 정도의 양을 의미하며, 유효용량 수준은 환자의 건강상태, 질병 또는 질환의 종류, 질병 또는 질환의 중증도, 약물의 활성, 약물에 대한 민감도, 투여 방법, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적으로 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여, 부작용없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount. As used in the present invention, the term "pharmaceutically effective amount" refers to an amount that is sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment and does not cause side effects, and the effective dose level is determined by the patient's Factors including health status, type of disease or condition, severity of disease or condition, activity of drug, sensitivity to drug, method of administration, time of administration, route of administration and excretion rate, treatment period, drugs combined or used simultaneously, and other factors. It can be determined based on factors well known in the medical field. The composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered singly or multiple times. Considering all of the above factors, it is important to administer an amount that can achieve maximum effect with the minimum amount without side effects, and this can be easily determined by a person skilled in the art.
본 발명의 약학적 조성물은 생물학적 제제에 통상적으로 사용되는 담체, 희석제, 부형제 또는 둘 이상의 이들의 조합을 포함할 수 있다. 본 발명에서 사용되는 용어, "약학적으로 허용가능한"이란 상기 조성물에 노출되는 세포나 인간에게 독성이 없는 특성을 나타내는 것을 의미한다. 상기 담체는 조성물을 생체 내 전달에 적합한 것이면 특별히 제한되지 않으며, 예를 들면, Merck Index, 13th ed., Merck & Co. Inc. 에 기재된 화합물, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 이용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주이용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 더 나아가 당 분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(Mack PublishingCompany, Easton PA, 18th, 1990)에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.The pharmaceutical composition of the present invention may contain a carrier, diluent, excipient, or a combination of two or more commonly used in biological products. As used in the present invention, the term “pharmaceutically acceptable” means that the composition exhibits non-toxic properties to cells or humans exposed to the composition. The carrier is not particularly limited as long as it is suitable for in vivo delivery of the composition, for example, Merck Index, 13th ed., Merck & Co. Inc. The compounds described in, saline solution, sterilized water, Ringer's solution, buffered saline solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these ingredients can be mixed and used, and if necessary, other ingredients such as antioxidants, buffers, and bacteriostatic agents. Normal additives can be added. In addition, diluents, dispersants, surfactants, binders, and lubricants can be additionally added to formulate dosage forms such as aqueous solutions, suspensions, emulsions, etc., into pills, capsules, granules, or tablets. Furthermore, it can be preferably formulated according to each disease or ingredient using an appropriate method in the art or a method disclosed in Remington's Pharmaceutical Science (Mack Publishing Company, Easton PA, 18th, 1990).
일 구현예에서, 상기 약학적 조성물은 경구형 제형, 외용제, 좌제, 멸균 주사용액 및 분무제를 포함하는 군으로부터 선택되는 하나 이상의 제형일 수 있으며, 경구형 또는 주사 제형이 더욱 바람직하다. In one embodiment, the pharmaceutical composition may be one or more formulations selected from the group including oral formulations, topical formulations, suppositories, sterile injectable solutions, and sprays, with oral or injectable formulations being more preferable.
본 발명에서 사용되는 용어, "투여"란, 임의의 적절한 방법으로 개체 또는 환자에게 소정의 물질을 제공하는 것을 의미하며, 목적하는 방법에 따라 비 경구 투여(예를 들어 정맥 내, 피하, 복강 내 또는 국소에 주사 제형으로 적용)하거나 경구 투여할 수 있으며, 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도 등에 따라 그 범위가 다양하다. 본 발명의 조성물의 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 통상적으로 사용되는 단순 희석제인 물, 액체 파라핀 이외에 다양한 부형제, 예컨대 습윤제, 감미제, 방향제, 보존제 등이 함께 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성 용제, 현탁제, 유제, 동결건조 제제, 좌제 등이 포함된다. 본 발명의 약학적 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수도 있다. 바람직한 투여방식 및 제제는 정맥 주사제, 피하 주사제, 피내주사제, 근육 주사제, 점적 주사제 등이다. 주사제는 생리식염액, 링겔액 등의 수성 용제, 식물유, 고급 지방산 에스테르(예, 올레인산에칠 등), 알코올 류(예, 에탄올, 벤질알코올, 프로필렌글리콜, 글리세린 등) 등의 비수성 용제 등을 이용하여 제조할 수 있고, 변질 방지를 위한 안정화제(예, 아스코르빈산, 아황산수소나트륨, 피로아황산나트륨, BHA, 토코페롤, EDTA 등), 유화제, pH 조절을 위한 완충제, 미생물 발육을 저지하기 위한 보존제 (예, 질산페닐수은, 치메로살, 염화벤잘코늄, 페놀, 크레솔, 벤질알코올 등) 등의 약학적 담체를 포함할 수 있다.As used in the present invention, the term "administration" means providing a predetermined substance to an individual or patient by any appropriate method, and is administered parenterally (e.g., intravenously, subcutaneously, intraperitoneally) according to the desired method. Alternatively, it can be applied topically as an injection formulation) or orally administered, and the dosage range varies depending on the patient's weight, age, gender, health status, diet, administration time, administration method, excretion rate, and severity of the disease. Liquid preparations for oral administration of the composition of the present invention include suspensions, oral solutions, emulsions, syrups, etc., and in addition to the commonly used simple diluents such as water and liquid paraffin, various excipients such as wetting agents, sweeteners, fragrances, and preservatives are used. etc. may be included together. Preparations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, suppositories, etc. The pharmaceutical composition of the present invention may be administered by any device capable of transporting the active agent to target cells. Preferred administration methods and formulations include intravenous injection, subcutaneous injection, intradermal injection, intramuscular injection, and drip injection. Injections include aqueous solvents such as physiological saline solution and Ringer's solution, non-aqueous solvents such as vegetable oil, higher fatty acid esters (e.g., ethyl oleate, etc.), and alcohols (e.g., ethanol, benzyl alcohol, propylene glycol, glycerin, etc.). It can be manufactured using stabilizers to prevent deterioration (e.g., ascorbic acid, sodium bisulfite, sodium pyrosulphite, BHA, tocopherol, EDTA, etc.), emulsifiers, buffers for pH adjustment, and agents to prevent microbial growth. It may contain pharmaceutical carriers such as preservatives (e.g., phenylmercuric nitrate, thimerosal, benzalkonium chloride, phenol, cresol, benzyl alcohol, etc.).
본 발명에서 사용되는 용어, "개체"란, 상기 질병 또는 질환이 발병하였거나 발병할 수 있는 인간을 포함한 원숭이, 소, 말, 양, 돼지, 닭, 칠면조, 메추라기, 고양이, 개, 마우스, 박쥐, 낙타, 쥐, 토끼 또는 기니아 피그를 포함한 모든 동물을 의미하고, "검체"란 이로부터 분리한 비말, 가래, 전혈, 혈장, 혈청, 뇨 또는 타액일 수 있다. As used in the present invention, the term "individual" refers to monkeys, cows, horses, sheep, pigs, chickens, turkeys, quails, cats, dogs, mice, bats, including humans that have or may develop the disease or condition. It means any animal, including camel, rat, rabbit or guinea pig, and “specimen” may be droplets, sputum, whole blood, plasma, serum, urine or saliva isolated therefrom.
본 발명의 약학적 조성물은 약제학적으로 허용 가능한 첨가제를 더 포함할 수 있으며, 이때 약제학적으로 허용 가능한 첨가제로는 전분, 젤라틴화 전분, 미결정셀룰로오스, 유당, 포비돈, 콜로이달실리콘디옥사이드, 인산수소칼슘, 락토스, 만니톨, 엿, 아라비아고무, 전호화전분, 옥수수전분, 분말셀룰로오스, 히드록시프로필셀룰로오스, 오파드라이, 전분글리콜산나트륨, 카르나우바 납, 합성규산알루미늄, 스테아린산, 스테아린산마그네슘, 스테아린산알루미늄, 스테아린산칼슘, 백당, 덱스트로스, 소르비톨 및 탈크 등이 사용될 수 있다. 본 발명에 따른 약제학적으로 허용 가능한 첨가제는 상기 조성물에 대해 0.1 중량부 내지 90 중량부 포함되는 것이 바람직하나, 이에 한정되는 것은 아니다.The pharmaceutical composition of the present invention may further include pharmaceutically acceptable additives, wherein the pharmaceutically acceptable additives include starch, gelatinized starch, microcrystalline cellulose, lactose, povidone, colloidal silicon dioxide, and calcium hydrogen phosphate. , lactose, mannitol, taffy, gum arabic, pregelatinized starch, corn starch, powdered cellulose, hydroxypropyl cellulose, Opadry, sodium starch glycolate, lead carnauba, synthetic aluminum silicate, stearic acid, magnesium stearate, aluminum stearate, Calcium stearate, white sugar, dextrose, sorbitol, and talc can be used. The pharmaceutically acceptable additive according to the present invention is preferably contained in an amount of 0.1 to 90 parts by weight based on the composition, but is not limited thereto.
일 측면에서, 본 발명은 자연 살해 세포를 분리하는 단계; 및 본 발명의 B7-H6 변이체 또는 이의 단편의 존재 하에 상기 분리된 자연 살해 세포를 배양하는 단계를 포함하는, 활성화된 자연살해세포의 생체외 증식 방법에 관한 것이다.In one aspect, the present invention includes the steps of isolating natural killer cells; and culturing the isolated natural killer cells in the presence of the B7-H6 variant or fragment thereof of the present invention.
일 측면에서, 본 발명은 본 발명의 B7-H6 변이체 또는 이를 포함하는 이중특이적 또는 다중특이적 항체의 암의 예방 또는 치료 용도에 관한 것이다.In one aspect, the present invention relates to the use of the B7-H6 variant of the present invention or a bispecific or multispecific antibody comprising the same for the prevention or treatment of cancer.
일 측면에서, 본 발명은 본 발명의 B7-H6 변이체 또는 이를 포함하는 이중특이적 또는 다중특이적 항체를 약학적으로 유효한 양으로 암에 걸린 개체에 투여하는 단계를 포함하는 암의 치료 방법에 관한 것이다.In one aspect, the present invention relates to a method of treating cancer comprising administering the B7-H6 variant of the present invention or a bispecific or multispecific antibody containing the same in a pharmaceutically effective amount to an individual suffering from cancer. will be.
하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다.The present invention will be described in more detail through the following examples. However, the following examples are only for illustrating the content of the present invention and are not intended to limit the present invention.
실시예 1. B7-H6 변이체 탐색을 위한 사합체 인간 NKp30 클로닝Example 1. Cloning of tetrameric human NKp30 for detection of B7-H6 variants
NKp30에 결합력이 향상된 B7-H6 변이체 탐색에 사용하기 위해 NKp30 단백질의 사합체화(tetramerization)를 통한 결합 활성(Avidity) 효과를 유도하였다. 구체적으로, 사합체화를 유도하기 위해 NKp30의 C-말단 부분에 스트렙타비딘을 발현시켰으며, NKp30과 스트렙타비딘 사이에는 글라이신 및 세린 링커를 삽입하여 각각의 단백질 유동성을 확보하였다. NKp30 및 스트렙타비딘 유전자를 프라이머들과 Vent polymerase (New England Biolab)를 사용하여 각각 증폭한 후, Vent polymerase를 사용한 assembly PCR을 진행하였다. 만들어진 유전자에 BssHII 및 XbaI (New England Biolab)을 사용해 제한효소 처리하였다. 제한효소 처리된 NKp30-Streptavdin 유전자는 동일한 제한효소 처리된 동물세포용 벡터인 pMAZ 벡터에 라이게이션하였다. 라이게이션된 플라스미드를 대장균 Jude1에 트랜스포메이션(transformation)한 후, 단일 클론을 확보하고 염기서열 분석하여 NKp30-스트렙타비딘이 pMAZ 벡터에 성공적으로 삽입된 것을 확인하였다 (도 1).In order to be used in the search for B7-H6 variants with improved binding to NKp30, the avidity effect was induced through tetramerization of the NKp30 protein. Specifically, streptavidin was expressed in the C-terminal part of NKp30 to induce tetramerization, and glycine and serine linkers were inserted between NKp30 and streptavidin to ensure the fluidity of each protein. The NKp30 and streptavidin genes were each amplified using primers and Vent polymerase (New England Biolab), and then assembly PCR was performed using Vent polymerase. The created gene was subjected to restriction enzyme treatment using Bss HII and Xba I (New England Biolab). The restriction enzyme-treated NKp30-Streptavdin gene was ligated into pMAZ vector, a vector for animal cells, treated with the same restriction enzyme. After transforming the ligated plasmid into E. coli Jude1, a single clone was obtained and sequenced to confirm that NKp30-streptavidin was successfully inserted into the pMAZ vector (Figure 1).
실시예 2. 사합체 인간 NKp30의 발현, 정제 및 표지화Example 2. Expression, purification and labeling of tetrameric human NKp30
Expi293F 세포를 2x106 cells/ml의 밀도로 300 ml 계대배양하고 하루 뒤, Freestyle 293 expression 배양액 (Gibco. 12338-018) 30 ml에 PEI(Polyehylenimine, Polyscience, 23966)와 상기 실시예 1에서 제작한 NKp30-스트렙타비딘-His tag 발현벡터를 1:4의 비율로 섞어 상온에서 20분간 두었다가 상기 Expi293F 동물세포에 트랜스펙션하였다. 세포를 CO2 진탕배양기에서 37 ℃, 125 rpm, 8% CO2의 조건으로 7일간 배양한 후 원심 분리하여 상등액만 취하였다. 그 후 25x PBS를 이용해 평형을 맞추고 바틀 탑 필터를 이용해 0.2 μm 필터 (Merck Millipore)로 여과하였다. 여과된 배양액에 Ni-NTA 레진 1 ml을 넣어 주고 4 ℃에서 16 시간 교반한 후 컬럼에 통과시켜 레진을 회수하여 10 ml PBS로 세척하였다. 세척한 레진을 10 mM 이미다졸 버퍼 및 20 mM 이미다졸 버퍼 각각 10 ml로 순차적으로 세척한 뒤, 250 mM 이미다졸 버퍼 4 ml로 용출하였다. centrifugal filter units 3K (Merck Millipore)을 사용하여 PBS 버퍼로 교환한 뒤 정제된 NKp30-스트렙타비딘 사합체(tetramer) 단백질을 Alexa-488 labeling kit를 사용해 형광표지하였다.One day after subculturing Expi293F cells in 300 ml at a density of 2x10 6 cells/ml, PEI (Polyehylenimine, Polyscience, 23966) and NKp30 prepared in Example 1 were added to 30 ml of Freestyle 293 expression culture medium (Gibco. 12338-018). -Streptavidin-His tag expression vector was mixed at a ratio of 1:4, left at room temperature for 20 minutes, and then transfected into the Expi293F animal cells. The cells were cultured in a CO 2 shaking incubator at 37°C, 125 rpm, and 8% CO 2 for 7 days, then centrifuged, and only the supernatant was collected. Afterwards, the mixture was equilibrated using 25x PBS and filtered through a 0.2 μm filter (Merck Millipore) using a bottle top filter. 1 ml of Ni-NTA resin was added to the filtered culture medium, stirred at 4°C for 16 hours, and then passed through a column to recover the resin and washed with 10 ml of PBS. The washed resin was sequentially washed with 10 ml each of 10mM imidazole buffer and 20mM imidazole buffer, and then eluted with 4ml of 250mM imidazole buffer. After exchange with PBS buffer using centrifugal filter units 3K (Merck Millipore), the purified NKp30-streptavidin tetramer protein was fluorescently labeled using an Alexa-488 labeling kit.
실시예 3. 스크리닝 방법 선택Example 3. Screening Method Selection
3-1. Yeast surface display 방법 선택을 위한 B7-H6 클로닝3-1. B7-H6 cloning for selection of yeast surface display method
효율적인 스크리닝을 위해 yeast surface anchoring motif를 결정하기로 하였고, B7-H6의 N-말단을 Aga2에 anchoring 시키는 시스템 (pCTCON-Aga2-B7-H6-FLAG) 및 C-말단을 Aga2에 anchoring 시키는 시스템 (pCTCON-B7-H6-Aga2-FLAG)을 비교하고자 B7-H6을 클로닝하였다. 구체적으로, 야생형 B7-H6 유전자를 합성하여 디자인한 프라이머 및 Vent Polymerase (New England Biolab)를 사용해 유전자를 증폭하였다. 증폭된 야생형 B7-H6 유전자는 SfiI (New England Biolab)을 사용해 제한효소 처리하였으며, 제한효소 처리된 유전자를 동일한 제한효소 처리된 pCTCON 벡터에 라이게이션하였다. 라이게이션된 플라스미드를 Jude1 대장균에 트랜스포메이션시킨 후, 단일 클론을 확보하여 염기서열 분석함으로써 pCTCON-Aga2-B7-H6_WT-FLAG 및 pCTCON-B7-H6_WT-Aga2-FLAG 2종의 플라스미드가 성공적으로 클로닝됐음을 확인하였다.For efficient screening, we decided to determine the yeast surface anchoring motif and used a system that anchors the N-terminus of B7-H6 to Aga2 (pCTCON-Aga2-B7-H6-FLAG) and a system that anchors the C-terminus to Aga2 (pCTCON). -B7-H6-Aga2-FLAG) was cloned to compare B7-H6. Specifically, the gene was amplified using primers designed by synthesizing the wild-type B7-H6 gene and Vent Polymerase (New England Biolab). The amplified wild-type B7-H6 gene was subjected to restriction enzyme treatment using Sfi I (New England Biolab), and the restriction enzyme-treated gene was ligated into the pCTCON vector treated with the same restriction enzyme. After transforming the ligated plasmid into Jude1 E. coli, a single clone was obtained and sequenced, and two plasmids, pCTCON-Aga2-B7-H6_WT-FLAG and pCTCON-B7-H6_WT-Aga2-FLAG, were successfully cloned. was confirmed.
3-2. 결합력 검증을 통한 디스플레이 방법 선택3-2. Selection of display method through verification of cohesion
효모 표면에 발현된 B7-H6과 프로브인 NKp30-스트렙타비딘의 결합력을 유세포 분석기를 이용하여 검증하여 디스플레이 방법을 선택하였다. 구체적으로, 상기 실시예 3-1에서 제작한 2종의 플라스미드를 각각 AWY101 (Trp-) 균주에 트랜스포메이션하고, 50 μg/ml의 카나마이신(Kanamycin) 및 40 μg/ml의 클로람페니콜(Chloramphenicol)이 첨가된 SDCAA (20 g/L Glucose, 6.7 g/L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na2HPO4 및 8.56 g/L NaH2PO4) 배지 5 ml에서 30℃ 및 225 rpm의 조건으로 16시간 동안 배양하였다. 배양된 세포 5x107 개를 원심분리 (2,500g, 5분, 4℃)하여 수득한 뒤, 50 μg/ml의 카나마이신 및 40 μg/ml의 클로람페니콜이 첨가된 SGCAA (20 g/L Galactose, 6.7 g/L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na2HPO4 및 8.56 g/L NaH2PO4) 배지 5 ml에서 20℃ 및 225 rpm의 조건으로 24시간 동안 인덕션하였다. 인덕션이 끝난 후, 2x107 개의 세포를 원심분리 (14,000g, 30초, 4℃) 하여 e-튜브에 회수하였다. 세포를 회수한 각 e-튜브에 PBSB (0.1% BSA in PBS) 1 ml을 넣어 재현탁하고 원심분리 (14,000g, 30초, 4℃)를 통해 세포를 다시 모은 후, PBSB 0.5 ml을 넣고 재현탁하여 4x107 cell/ml을 만들었다. 25 μl의 세포를 새로운 e-튜브에 옮긴 후, 25 μl의 PBSB, NKp30-스트렙타비딘-Alexa488 (200 nM) 및 Anti-FLAG-iFluor647 (1000:1) 프로브를 각각 넣고 상온에서 30분 동안 인큐베이션하여 세포에 형광 프로브를 표지하였다. 그 후, 원심분리 (14,000g, 30초, 4℃)하여 상등액을 버리고 200 μl의 PBSB로 재현탁하여 세척하고, 다시 원심분리 (14,000g, 1분, 4℃)하여 200 μl의 PBSB로 재현탁한 시료를 준비하였다. FACSLyric (BD Biosciences) 장비로 준비된 시료들의 형광 신호값을 측정함으로써 야생형 B7-H6 및 NKp30의 결합력을 간접적으로 분석하였다. The display method was selected by verifying the binding affinity between B7-H6 expressed on the yeast surface and the probe NKp30-streptavidin using a flow cytometer. Specifically, the two plasmids prepared in Example 3-1 were transformed into the AWY101 (Trp-) strain, and 50 μg/ml of Kanamycin and 40 μg/ml of Chloramphenicol were added. 30 in 5 ml of medium containing SDCAA (20 g/L Glucose, 6.7 g/L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na 2 HPO 4 and 8.56 g/L NaH 2 PO 4 ). Cultured for 16 hours at ℃ and 225 rpm. 5x10 7 cultured cells were obtained by centrifugation (2,500g, 5 minutes, 4°C), and then incubated with SGCAA (20 g/L Galactose, 6.7 g) to which 50 μg/ml kanamycin and 40 μg/ml chloramphenicol were added. /L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na 2 HPO 4 and 8.56 g/L NaH 2 PO 4 ) Induction in 5 ml of medium at 20℃ and 225 rpm for 24 hours did. After induction, 2x10 7 cells were centrifuged (14,000g, 30 seconds, 4°C) and recovered in an e-tube. Add 1 ml of PBSB (0.1% BSA in PBS) to each e-tube from which the cells were recovered, resuspend them, collect the cells again through centrifugation (14,000 g, 30 seconds, 4°C), and then add 0.5 ml of PBSB and resuspend. It was cloudy, making 4x10 7 cells/ml. After transferring 25 μl of cells to a new e-tube, 25 μl of PBSB, NKp30-Streptavidin-Alexa488 (200 nM), and Anti-FLAG-iFluor647 (1000:1) probes were respectively added and incubated for 30 minutes at room temperature. Then, the cells were labeled with a fluorescent probe. Afterwards, centrifugation (14,000g, 30 seconds, 4°C) discarded the supernatant, resuspended in 200 μl of PBSB, washed, and centrifuged again (14,000g, 1 minute, 4°C) and resuspended in 200 μl of PBSB. A cloudy sample was prepared. The binding affinity of wild-type B7-H6 and NKp30 was indirectly analyzed by measuring the fluorescence signal values of samples prepared using FACSLyric (BD Biosciences) equipment.
분석 결과, 야생형 B7-H6의 시그널을 통해 사합체 NKp30을 사용했을 때 형광 표지된 사합체 NKp30이 활성이 있다는 것을 확인하였다. 또한, 모두 발현은 잘 되었으나, N-말단 부분이 Aga2에 anchoring되어 효모에 디스플레이된 야생형 B7-H6에 비해 C-말단 부분이 Aga2에 anchoring되어 효모에 디스플레이된 B7-H6가 NKp30에 대한 결합력이 현저히 증가한 것을 확인하여, C-말단을 anchoring한 형태로 스크리닝을 진행하기로 결정하였다 (도 2).As a result of the analysis, it was confirmed that the fluorescently labeled tetrameric NKp30 was active when tetrameric NKp30 was used through the signal of wild-type B7-H6. In addition, all expressions were good, but compared to the wild-type B7-H6 displayed in yeast with its N-terminal part anchored to Aga2, B7-H6 displayed in yeast with its C-terminal part anchored to Aga2 had significantly lower binding affinity to NKp30. After confirming the increase, it was decided to proceed with screening in the form of anchoring the C-terminus (Figure 2).
실시예 4. 초고속 스크리닝 기법을 사용하기 위한 거대 B7-H6 error-prone 라이브러리 제작Example 4. Construction of a large B7-H6 error-prone library for using ultra-fast screening techniques
NKp30과 결합력이 증가된 B7-H6 변이체들을 고속으로 탐색하기 위해, pCTCON-B7-H6_WT-Aga2-FLAG을 기반으로 B7-H6의 모든 부위에 무작위 돌연변이가 들어갈 수 있도록 양쪽의 SfiI site를 포함하는 프라이머를 디자인하였다. 디자인한 프라이머와 Taq Polymerase (TAKARA), dNTPs (Invitrogen), MgCl2 및 MnCl2 (SIGMA)를 사용하여 Error-Prone PCR 기법으로 DNA를 1차 증폭시켰다. Vent polymerase를 이용하여 증폭된 유전자를 2차 증폭시켜 준비하였으며 (24 μg), 해당 벡터는 SfiI 제한 효소 처리하여 준비하였다 (8 μg). 준비된 두 유전자를 AWY101 균주에 트랜스포메이션하여 상동 재조합(homologous recombination)을 통한 라이브러리를 구축하였다. 구축된 라이브러리는 5.1 x 107 크기였으며, 서열 분석을 통해 DNA 기준 0.92% (평균 2.3개 돌연변이/총 360 bp) 및 아미노산 기준 1.92% (평균 3.3개 돌연변이/총 120 아미노산)의 error-rate을 가지는 것을 확인하였다 (도 3).In order to quickly search for B7-H6 variants with increased binding affinity to NKp30, pCTCON-B7-H6_WT-Aga2-FLAG contains Sfi I sites on both sides to allow random mutations to all regions of B7-H6. A primer was designed. DNA was first amplified using the Error-Prone PCR technique using the designed primers, Taq Polymerase (TAKARA), dNTPs (Invitrogen), MgCl 2 and MnCl 2 (SIGMA). The amplified gene was prepared by secondary amplification using Vent polymerase (24 μg), and the vector was prepared by treatment with Sfi I restriction enzyme (8 μg). The two prepared genes were transformed into the AWY101 strain to construct a library through homologous recombination. The constructed library had a size of 5.1 This was confirmed (Figure 3).
실시예 5. B7-H6 변이체 스크리닝Example 5. B7-H6 variant screening
상기 실시예 4에서 AWY101에 트랜스포메이션하여 제작한 초기 라이브러리를 50 μg/ml의 카나마이신 및 40 μg/ml의 클로람페니콜이 첨가된 SDCAA (20 g/L Glucose, 6.7 g/L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na2HPO4 및 8.56 g/L NaH2PO4) 배지 500 ml에서 30℃, 225 rpm으로 16시간 동안 배양하고, 죽은 세포를 제거하기 위해 SDCAA 배지 100 ml에 OD450=0.7로 접종한 후 30℃, 225 rpm으로 16시간 동안 추가로 배양하였다. 그 후, 배양된 세포를 SGCAA 배지 100 ml에 OD450=0.7로 접종하여 20℃, 225 rpm으로 2일 동안 배양하여 인덕션한 후, 1x108 개의 세포를 원심분리 (14,000g, 30초, 4℃)하여 e-튜브에 회수하였다. 세포를 회수한 e-튜브에 PBSB (0.1% BSA in PBS)를 1 ml 넣어 재현탁하고 원심분리 (14,000g, 30초, 4℃)를 통해 세포를 다시 모은 후, Anti-FLAG-iFluor647 (1000:1) 및 NKp30-스트렙타비딘-Alexa488 (200 nM) 프로브를 넣은 1 ml의 PBSB로 재현탁하여 상온에서 1시간 동안 인큐베이션함으로써 표지하였다. 그 후, 원심분리 (14,000g, 30초, 4℃)를 하여 상등액을 버리고 1 ml의 PBSB로 재현탁하여 세척하고, 또 다시 원심분리 (14,000g, 1분, 4℃)하여 1 ml의 PBSB로 재현탁하여 시료를 준비하였다. S3 sorter (Bio-Rad) 장비를 이용하여 준비된 라이브러리 시료의 형광 신호값을 측정하여 NKp30에 높은 결합력을 가지는 효모들을 회수하였으며, 회수한 효모들을 SDCAA 20 ml에서 30℃ 및 225 rpm으로 배양하였다. 배양된 세포들을 다음날 회수하고 SGCAA 100 ml에서 20℃ 및 225 rpm으로 2-3일 동안 배양하여 인덕션한 후, 다음 라운드를 진행하였다. 상기와 같은 스크리닝 과정을 프로브의 농도를 줄여가며 총 4회 진행하였다.The initial library prepared by transformation into AWY101 in Example 4 was grown in SDCAA (20 g/L Glucose, 6.7 g/L Yeast nitrogen base without amino acids, 50 μg/ml kanamycin and 40 μg/ml chloramphenicol). Cultured in 500 ml of medium (5 g/L casamino acids, 5.4 g/L Na 2 HPO 4 and 8.56 g/L NaH 2 PO 4 ) at 30°C, 225 rpm for 16 hours, washed with SDCAA medium 100 to remove dead cells. After inoculating ml with OD 450 = 0.7, the cells were further cultured at 30°C and 225 rpm for 16 hours. Afterwards, the cultured cells were inoculated into 100 ml of SGCAA medium at an OD of 450 = 0.7 and cultured at 20°C and 225 rpm for 2 days for induction, followed by centrifugation of 1x10 8 cells (14,000g, 30 seconds, 4°C). ) and recovered in an e-tube. Resuspend 1 ml of PBSB (0.1% BSA in PBS) in the e-tube from which the cells were recovered, collect the cells again through centrifugation (14,000 g, 30 seconds, 4°C), and then add Anti-FLAG-iFluor647 (1000 :1) and NKp30-Streptavidin-Alexa488 (200 nM) probes were resuspended in 1 ml of PBSB and incubated at room temperature for 1 hour for labeling. Afterwards, centrifugation (14,000g, 30 seconds, 4℃) was performed, the supernatant was discarded, resuspended in 1 ml of PBSB, washed, and centrifuged again (14,000g, 1 minute, 4℃) with 1 ml of PBSB. The sample was prepared by resuspending it. Yeasts with high binding affinity to NKp30 were recovered by measuring the fluorescence signal value of the prepared library sample using S3 sorter (Bio-Rad) equipment, and the recovered yeasts were cultured in 20 ml of SDCAA at 30°C and 225 rpm. The cultured cells were recovered the next day, cultured in 100 ml of SGCAA at 20°C and 225 rpm for 2-3 days, and then inducted, before proceeding with the next round. The above screening process was performed a total of four times while decreasing the concentration of the probe.
실시예 6. NKp30 와의 결합력이 증가된 B7-H6 변이체들의 증폭 확인Example 6. Confirmation of amplification of B7-H6 variants with increased binding affinity to NKp30
50 μg/ml의 카나마이신 및 40 μg/ml의 클로람페니콜이 첨가된 SDCAA (20 g/L Glucose, 6.7 g/L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na2HPO4, 8.56 g/L NaH2PO4) 배지 100 ml에 상기 실시예 5의 이니셜, 1라운드, 2라운드, 3라운드 및 4라운드의 라이브러리를 각각 따로 접종하여 30℃ 및 225 rpm으로 16시간 동안 배양하였다. 죽은 세포를 제거하기 위해 상기 배양한 세포를 SDCAA 배지 100 ml에 각각 OD450=0.7로 접종한 후 30℃ 및 225 rpm으로 16시 동안 배양하였으며, 다시 SGCAA 배지 100 ml에 OD450=0.7로 접종하여 20℃ 및 225 rpm으로 2일 동안 배양하였다. 인덕션이 끝난 후, 라이브러리들을 2x107 개의 세포에 해당하는 양으로 각각 원심분리 (14,000g, 30초, 4℃) 하여 e-튜브에 회수하고 각 e-튜브에 PBSB (0.1% BSA in PBS) 1 ml을 넣어 재현탁하고 원심분리 (14,000g, 30초, 4℃)를 통해 세포를 다시 모은 후, PBSB 0.5 ml을 넣고 재현탁하여 4x107 cell/ml을 만들었다. 25 μl의 세포를 새로운 e-튜브에 옮긴 후, 25 μl의 PBSB, NKp30-스트렙타비딘-Alexa488 (100 nM) 및 Anti-FLAG-iFluor647 (1000:1) 프로브를 각각 넣고 상온에서 30분 동안 인큐베이션하여 세포에 형광 프로브를 표지하였다. 그 후, 원심분리 (14,000g, 30초, 4℃)하여 상등액을 버리고 200 μl의 PBSB로 재현탁하여 세척하고, 또 다시 원심분리 (14,000g, 1분, 4℃)하고 200 μl의 PBSB로 재현탁하여 시료를 준비하였다. FACSLyric (BD Biosciences) 장비로 준비된 시료들의 형광 신호값을 측정하여 각 라이브러리들의 NKp30와의 결합력을 간접적으로 분석하였다. 그 결과, 스크리닝 라운드가 증가됨에 따라 NKp30와의 결합력이 향상된 변이체들이 증폭되고 있음을 확인하였다 (도 4). SDCAA (20 g/L Glucose, 6.7 g/L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na 2 HPO 4 ) with 50 μg/ml kanamycin and 40 μg/ml chloramphenicol , 8.56 g/L NaH 2 PO 4 ) The initials, 1st round, 2nd round, 3rd round, and 4th round libraries of Example 5 were separately inoculated in 100 ml of medium and cultured at 30°C and 225 rpm for 16 hours. . To remove dead cells, the cultured cells were inoculated into 100 ml of SDCAA medium at an OD of 450 = 0.7, cultured at 30°C and 225 rpm for 16 hours, and then inoculated into 100 ml of SGCAA medium at an OD of 450 = 0.7. Cultured for 2 days at 20°C and 225 rpm. After induction, the libraries were collected in e-tubes by centrifugation (14,000g, 30 seconds, 4°C) in an amount equivalent to 2x10 7 cells, and each e-tube was injected with PBSB (0.1% BSA in PBS) 1. ml was added and the cells were re-collected through centrifugation (14,000 g, 30 seconds, 4°C), then 0.5 ml of PBSB was added and resuspended to make 4x10 7 cells/ml. After transferring 25 μl of cells to a new e-tube, add 25 μl of PBSB, NKp30-Streptavidin-Alexa488 (100 nM), and Anti-FLAG-iFluor647 (1000:1) probes, respectively, and incubate for 30 minutes at room temperature. Then, the cells were labeled with a fluorescent probe. Afterwards, centrifugation (14,000 g, 30 seconds, 4°C) was performed, the supernatant was discarded, resuspended with 200 μl of PBSB, washed, and centrifuged again (14,000 g, 1 minute, 4°C) and resuspended with 200 μl of PBSB. Samples were prepared by resuspension. The binding ability of each library to NKp30 was indirectly analyzed by measuring the fluorescence signal value of the samples prepared using FACSLyric (BD Biosciences) equipment. As a result, it was confirmed that variants with improved binding ability to NKp30 were amplified as the number of screening rounds increased (Figure 4).
실시예 7. B7-H6 변이체들의 아미노산 서열 분석 및 NKp30와 결합력이 증가된 B7-H6 변이체들 확보Example 7. Amino acid sequence analysis of B7-H6 variants and securing of B7-H6 variants with increased binding affinity to NKp30
Zymoprep Yeast Plasmid Miniprep kits (Zymo Research)를 이용하여 4라운드 라이브러리의 DNA를 확보한 후, Jude1 대장균에 트랜스포메이션하여 얻은 콜로니 50개의 염기서열 분석을 진행하였다. 그 결과, 26종의 변이체들을 선별할 수 있었으며, 이들의 NKp30와의 결합력을 분석하기 위해 26종 변이체의 플라스미드를 각각 AWY101(Trp-) 균주에 트랜스포메이션하였다. 유세포 분석기를 이용해 변이체들의 NKp30와의 결합력을 확인하기 위해 야생형 B7-H6 및 26종의 변이체들을 각각 50 μg/ml의 카나마이신 및 40 μg/ml의 클로람페니콜이 첨가된 SDCAA (20 g/L Glucose, 6.7 g/L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na2HPO4, 8.56 g/L NaH2PO4) 배지 5 ml에서 30℃ 및 225 rpm으로 16시간 동안 배양하고 배양된 세포 5x107 개를 원심분리 (2,500g, 5분, 4℃)하여 수득한 뒤, 50 μg/ml의 카나마이신 및 40 μg/ml의 클로람페니콜이 첨가된 SGCAA (20 g/L Galactose, 6.7 g/L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na2HPO4, 8.56 g/L NaH2PO4) 배지 5 ml에서 20℃ 및 225 rpm으로 24시간 동안 인덕션하였다. 인덕션이 끝난 후, 2x107 개의 세포를 원심분리 (14,000g, 30초, 4℃)하여 e-튜브에 회수하였다. 세포를 회수한 각 e-튜브에 PBSB (0.1% BSA in PBS) 1 ml을 넣어 재현탁하고 원심분리 (14,000g, 30초, 4℃)를 통해 세포를 다시 모은 후, PBSB 0.5 ml을 넣고 재현탁하여 4x107 cell/ml을 만들어주었다. 25 μl의 세포를 새로운 e-튜브에 옮긴 후, 25 μl의 PBSB, NKp30-스트렙타비딘-Alexa488 (100 nM) 및 Anti-FLAG-iFluor647 (1000:1) 프로브를 각각 넣고 상온에서 30분 동안 인큐베이션하여 세포에 형광 프로브를 표지하였다. 그 후, 원심분리 (14,000g, 30초, 4℃)하여 상등액을 버리고 200 μl의 PBSB로 재현탁하여 세척하고, 또 다시 원심분리 (14,000g, 1분, 4℃)하고 200 μl의 PBSB로 재현탁한 시료를 준비하였다. FACSLyric (BD Biosciences) 장비로 준비된 시료들의 형광 신호값을 측정하여 각 변이체들의 발현양 및 NKp30와의 결합력을 간접적으로 분석하고, NKp30 와의 결합력이 향상된 총 17종의 변이체 (B5, B6, B7, B8, B9, B14, B16, B19, B23, B29, B35, B40, B41, B47, B52, B53 및 B54)를 선발하였다 (도 5 및 표 1).After securing the DNA of the 4th round library using Zymoprep Yeast Plasmid Miniprep kits (Zymo Research), nucleotide sequence analysis of 50 colonies obtained by transformation into Jude1 E. coli was performed. As a result, 26 variants were selected, and the plasmids of each of the 26 variants were transformed into the AWY101 (Trp-) strain to analyze their binding ability to NKp30. To confirm the binding ability of the mutants to NKp30 using flow cytometry, wild type B7-H6 and 26 mutants were incubated with SDCAA (20 g/L Glucose, 6.7 g) with 50 μg/ml kanamycin and 40 μg/ml chloramphenicol, respectively. /L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na 2 HPO 4 , 8.56 g/L NaH 2 PO 4 ) and cultured in 5 ml of medium at 30℃ and 225 rpm for 16 hours. 5x10 7 cells were obtained by centrifugation (2,500g, 5 minutes, 4℃), and then incubated with SGCAA (20 g/L Galactose, 6.7 g/mL) to which 50 μg/ml kanamycin and 40 μg/ml chloramphenicol were added. L Yeast nitrogen base without amino acids, 5 g/L casamino acids, 5.4 g/L Na 2 HPO 4 , 8.56 g/L NaH 2 PO 4 ) was inducted in 5 ml of medium at 20°C and 225 rpm for 24 hours. After induction, 2x10 7 cells were centrifuged (14,000g, 30 seconds, 4°C) and recovered in an e-tube. Add 1 ml of PBSB (0.1% BSA in PBS) to each e-tube from which the cells were recovered, resuspend them, collect the cells again through centrifugation (14,000 g, 30 seconds, 4°C), and then add 0.5 ml of PBSB and resuspend. It was cloudy, making 4x10 7 cells/ml. After transferring 25 μl of cells to a new e-tube, add 25 μl of PBSB, NKp30-Streptavidin-Alexa488 (100 nM), and Anti-FLAG-iFluor647 (1000:1) probes, respectively, and incubate for 30 minutes at room temperature. Then, the cells were labeled with a fluorescent probe. Afterwards, centrifugation (14,000 g, 30 seconds, 4°C) was performed, the supernatant was discarded, resuspended with 200 μl of PBSB, washed, and centrifuged again (14,000 g, 1 minute, 4°C) and resuspended with 200 μl of PBSB. A resuspended sample was prepared. By measuring the fluorescence signal value of samples prepared with FACSLyric (BD Biosciences) equipment, the expression level and binding ability of each variant with NKp30 were indirectly analyzed, and a total of 17 variants with improved binding ability with NKp30 were identified (B5, B6, B7, B8, B9, B14, B16, B19, B23, B29, B35, B40, B41, B47, B52, B53, and B54) were selected (Figure 5 and Table 1).
B7-H6 변이체B7-H6 variant B7-H6 변이 위치 및 치환된 아미노산B7-H6 mutation location and substituted amino acid
B5B5 F51S/S60IF51S/S60I
B6B6 N57DN57D
B7B7 K101E/S102RK101E/S102R
B8B8 A32T/S60IA32T/S60I
B9B9 A32T/L40Q/S60IA32T/L40Q/S60I
B14B14 F51L/S60I F51L/S60I
B16B16 K101EK101E
B19B19 A32T/W67R/Q86L/K101E/L129MA32T/W67R/Q86L/K101E/L129M
B23B23 S60I/L114M/S142N S60I/L114M/S142N
B29B29 M31I/A32T/F51I/S60I/S102C/R108MM31I/A32T/F51I/S60I/S102C/R108M
B35B35 A32T/S60I/K101E/P143SA32T/S60I/K101E/P143S
B40B40 I37T/Q86L/K101EI37T/Q86L/K101E
B41B41 A32T/S53G/S60I/Q136RA32T/S53G/S60I/Q136R
B47B47 F51Y/S60I F51Y/S60I
B52B52 S60I/K101ES60I/K101E
B53B53 A32T/K101EA32T/K101E
B54B54 A32T/S60I/K101EA32T/S60I/K101E
실시예 8. NKp30와 결합력이 증가된 B7-H6 변이체들의 발현 및 정제Example 8. Expression and purification of B7-H6 variants with increased binding affinity to NKp30
NKp30와 결합력이 증가된 B7-H6 변이체들의 동물세포 발현벡터를 제작하기 위해, 대조군으로 야생형 B7-H6 및 B7-H6 변이체를 IgG 항체의 Fc 도메인을 발현시켜 이합체(dimer) 형성을 유도하였으며, 이 때, Fc와 B7-H6 변이체 사이에는 글리신(glycine) 및 세린(serine)으로 구성된 GS 링커를 넣어 각각의 단백질의 유동성을 확보하였다. 구체적으로, 야생형 B7-H6, 상기 실시예 7에서 선발한 17종의 B7-H6 변이체들 중에서 선별한 3종의 변이체 (B5, B7 및 B14)의 유전자, Fc 도메인을 디자인된 프라이머 및 Vent Polymerase (New England Biolab)를 사용하여 증폭한 뒤, 증폭된 유전자를 Assembly PCR 진행한 후, BssHII 및 XbaI 제한효소 (New England Biolab) 처리하였다. 제한효소 처리된 B7-H6 변이체들의 유전자를 동일한 제한효소 처리된 동물세포용 벡터인 pMAZ 벡터에 라이게이션하였다. 라이게이션 된 플라스미드를 E. coli Jude1에 트랜스포메이션(transformation)한 후, 단일 클론을 확보해 염기서열 분석을 진행한 결과, 변이체들의 유전자가 벡터에 성공적으로 삽입되었음을 확인하였다. 제작한 B7-H6 변이체-Fc 융합 단백질 발현용 벡터를 Expi293F 동물세포에 트랜스펙션하고, CO2 진탕배양기에서 37 ℃, 125 rpm 및 8% CO2 조건으로 7일간 배양한 후 원심분리하여 상등액만 분리하였다. 그 후 25x PBS를 이용해 평형을 맞추었으며, 0.2 μm 시린지 필터 (Sartorius, S6634)를 이용해 여과하였다. 여과된 배양액에 Protein A 레진 0.15 ml을 넣고 상온에서 1 시간 동안 교반하여 레진을 회수한 뒤 PBS로 세척하였다. 이 후, 100 mM 글라이신 버퍼 (pH 2.7)로 용출하고 1 M Tris-HCl (pH 8.0)을 이용하여 중화한 뒤, centrifugal filter units 10K (Merck Millipore)을 사용하여 1× PBS (pH 7.4)로 버퍼를 교환하였다. 이렇게 발현 및 정제한 야생형 B7-H6-Fc 융합 단백질과 본 발명에서 발굴한 변이체 3종 (B5, B7 및 B14)을 각각 포함하는 B7-H6 변이체-Fc 융합 단백질의 발현을 SDS-PAGE로 확인하였다 (도 6).To construct animal cell expression vectors for B7-H6 variants with increased binding affinity to NKp30, the wild-type B7-H6 and B7-H6 variants were used as controls to express the Fc domain of an IgG antibody to induce dimer formation. At this time, a GS linker composed of glycine and serine was added between the Fc and the B7-H6 variant to ensure the fluidity of each protein. Specifically, the wild-type B7-H6, the genes of three variants (B5, B7, and B14) selected from among the 17 B7-H6 variants selected in Example 7, the Fc domain, a designed primer, and Vent Polymerase ( After amplification using (New England Biolab), the amplified gene was subjected to Assembly PCR and then treated with Bss HII and Xba I restriction enzymes (New England Biolab). The genes of the restriction enzyme-treated B7-H6 mutants were ligated into the pMAZ vector, a vector for animal cells, treated with the same restriction enzyme. After transforming the ligated plasmid into E. coli Jude1, a single clone was obtained and sequence analysis was performed, confirming that the genes of the mutants were successfully inserted into the vector. The constructed B7-H6 mutant-Fc fusion protein expression vector was transfected into Expi293F animal cells, cultured in a CO 2 shaking incubator at 37°C, 125 rpm, and 8% CO 2 for 7 days, and then centrifuged to collect only the supernatant. separated. Afterwards, it was equilibrated using 25x PBS and filtered using a 0.2 μm syringe filter (Sartorius, S6634). 0.15 ml of Protein A resin was added to the filtered culture medium, stirred at room temperature for 1 hour to recover the resin, and then washed with PBS. Afterwards, it was eluted with 100 mM glycine buffer (pH 2.7), neutralized using 1 M Tris-HCl (pH 8.0), and buffered with 1×PBS (pH 7.4) using centrifugal filter units 10K (Merck Millipore). was exchanged. The expression of the wild-type B7-H6-Fc fusion protein expressed and purified in this way and the B7-H6 variant-Fc fusion protein, which includes each of the three variants (B5, B7, and B14) discovered in the present invention, was confirmed by SDS-PAGE. (Figure 6).
실시예 9. B7-H6 변이체들의 NKp30 결합력 검증Example 9. Verification of NKp30 binding ability of B7-H6 variants
상기 실시예 8에서 정제한 B7-H6 변이체-Fc 융합 단백질들의 NKp30 결합력을 분석하기 위해 ELISA를 진행하였다. 구체적으로, 0.05 M Na2CO3 pH 9.6에 4 μg/ml로 희석한 B7-H6 변이체-Fc 융합 단백질들을 Flat Bottom Polystyrene High Bind 96웰 마이크로플레이트 (costar)에 50 μl씩 분주하여 4 ℃에서 16 시간 동안 고정화한 후 100 μl의 4% 스킴 밀크 (Biopure) (in PBS, pH 7.4)로 상온에서 1 시간 동안 블로킹하였다. 0.05% PBST (pH 7.4) 180 μl로 4 회씩 세척한 뒤 1% 스킴 밀크 (Biopure) (in PBS, pH 7.4)로 연속 희석된 NKp30-GST를 50 μl 각 웰에 분주하여 상온에서 1 시간 동안 반응시켰다. 4 회 세척 후 anti-GST-HRP 컨쥬게이트 50 μl을 넣어 상온에서 1 시간 동안 반응시키고 4 회 세척하였다. 그 후, 1-Step Ultra TMB-ELISA Substrate Solution (Thermo Fisher Scientific)을 50 μl씩 첨가해 발색한 뒤 2 M H2SO4을 50 μl씩 첨가하여 반응을 종료시킨 다음 Epoch Microplate Spectrophotometer (BioTek)을 이용해 분석하였다. ELISA was performed to analyze the NKp30 binding ability of the B7-H6 variant-Fc fusion proteins purified in Example 8. Specifically, the B7-H6 variant-Fc fusion proteins diluted to 4 μg/ml in 0.05 M Na 2 CO 3 pH 9.6 were dispensed in 50 μl portions into Flat Bottom Polystyrene High Bind 96-well microplates (costar) and incubated for 16 minutes at 4°C. After immobilization for an hour, the cells were blocked with 100 μl of 4% skim milk (Biopure) (in PBS, pH 7.4) at room temperature for 1 hour. After washing 4 times with 180 μl of 0.05% PBST (pH 7.4), 50 μl of NKp30-GST serially diluted with 1% skim milk (Biopure) (in PBS, pH 7.4) was dispensed into each well and reacted at room temperature for 1 hour. I ordered it. After washing 4 times, 50 μl of anti-GST-HRP conjugate was added, reacted at room temperature for 1 hour, and washed 4 times. After that, 50 μl of 1-Step Ultra TMB-ELISA Substrate Solution (Thermo Fisher Scientific) was added to develop color, and then 2 MH 2 SO 4 was added at a time of 50 μl to terminate the reaction, and then analyzed using an Epoch Microplate Spectrophotometer (BioTek). analyzed.
그 결과, 선별한 3종의 변이체들 (B5, B7 및 B14)이 야생형 B7-H6 보다 현저히 높은 결합력을 나타냈다 (도 7).As a result, the three selected mutants (B5, B7, and B14) showed significantly higher binding affinity than the wild type B7-H6 (Figure 7).
실시예 10. B7-H6 변이체 추가 스크리닝Example 10. Additional screening of B7-H6 variants
10-1. 초고속 스크리닝 기법을 사용하기 위한 거대 B7-H6 focused 라이브러리 제작10-1. Production of a large B7-H6 focused library to use ultra-fast screening techniques
야생형 B7-H6와 일치하는 돌연변이를 제외하고 3종의 변이체 (B5, B7, B14)의 2곳의 아미노산 위치에 돌연변이를 도입하여 NKp30의 결합이 향상된 신규 B7-H6 변이체를 추가로 발굴하기 위한 라이브러리를 제작하였다. 라이브러리 유전자는 상기 실시예 4와 동일한 방법으로 효모 표면 디스플레이(yeast surface display) 라이브러리를 구축하였다. 구축된 라이브러리는 1.5 × 107 크기였으며, 시퀀스 분석을 통해 2곳에 돌연변이가 들어간 것을 확인하였다 (도 8).A library to further discover new B7-H6 variants with improved NKp30 binding by introducing mutations at two amino acid positions in the three variants (B5, B7, B14), excluding mutations matching wild-type B7-H6. was produced. For the library genes, a yeast surface display library was constructed in the same manner as in Example 4 above. The constructed library was 1.5 × 10 7 in size, and through sequence analysis, it was confirmed that mutations were included at two locations (FIG. 8).
10-2. B7-H6 변이체 스크리닝10-2. B7-H6 variant screening
상기 실시예 5와 동일한 방법으로 라이브러리 샘플의 형광 신호 값 측정을 통해 NKp30에 높은 결합력을 가지는 효모들을 회수하였으며, 스크리닝 과정은 1회 진행하였다.Yeasts with high binding affinity to NKp30 were recovered by measuring the fluorescence signal value of the library sample in the same manner as in Example 5, and the screening process was performed once.
10-3. NKp30 와의 결합력이 증가된 B7-H6 변이체들의 enrichment 확인10-3. Confirmation of enrichment of B7-H6 variants with increased binding affinity to NKp30
상기 실시예 6과 동일한 방법으로 라이브러리의 NKp30와의 결합력을 간접적으로 분석하였다. 그 결과, 한 번의 스크리닝 후 NKp30와의 결합력이 향상된 변이체들이 증폭된 것을 확인하였다 (도 9).The binding ability of the library to NKp30 was indirectly analyzed in the same manner as in Example 6 above. As a result, it was confirmed that variants with improved binding ability to NKp30 were amplified after one screening (Figure 9).
실시예 11. 추가 B7-H6 변이체들의 아미노산 서열 분석 및 선별Example 11 Amino acid sequence analysis and selection of additional B7-H6 variants
상기 실시예 7과 동일한 방법으로 형광 신호값 측정을 통해 변이체들의 발현양 및 NKp30 와의 결합력을 간접적으로 분석하였다. 이를 통해 NKp30와의 결합력이 향상된 총 9종의 변이체 (BF2, BF3, BF5, BF8, BF11, BF19, BF25, BF39 및 BF46)를 선별하였다 (표 2 및 도 10).The expression level of the variants and their binding ability to NKp30 were indirectly analyzed by measuring the fluorescence signal value in the same manner as in Example 7. Through this, a total of 9 variants (BF2, BF3, BF5, BF8, BF11, BF19, BF25, BF39, and BF46) with improved binding to NKp30 were selected (Table 2 and Figure 10).
B7-H6 변이체B7-H6 variant B7-H6 변이 위치 및 치환된 아미노산B7-H6 mutation location and substituted amino acid
B5B5 F51S/S60IF51S/S60I
B6B6 N57DN57D
B7B7 K101E/S102RK101E/S102R
B8B8 A32T/S60IA32T/S60I
B9B9 A32T/L40Q/S60IA32T/L40Q/S60I
B14B14 F51L/S60I F51L/S60I
B16B16 K101EK101E
B19B19 A32T/W67R/Q86L/K101E/L129MA32T/W67R/Q86L/K101E/L129M
B23B23 S60I/L114M/S142N S60I/L114M/S142N
B29B29 M31I/A32T/F51I/S60I/S102C/R108MM31I/A32T/F51I/S60I/S102C/R108M
B35B35 A32T/S60I/K101E/P143SA32T/S60I/K101E/P143S
B40B40 I37T/Q86L/K101EI37T/Q86L/K101E
B41B41 A32T/S53G/S60I/Q136RA32T/S53G/S60I/Q136R
B47B47 F51Y/S60I F51Y/S60I
B52B52 S60I/K101ES60I/K101E
B53B53 A32T/K101EA32T/K101E
B54B54 A32T/S60I/K101EA32T/S60I/K101E
BF2BF2 F51H/S60IF51H/S60I
BF3BF3 F51I/S60YF51I/S60Y
BF5BF5 I37F/F51L/S60TI37F/F51L/S60T
BF8BF8 F51T/S60TF51T/S60T
BF11BF11 F51L/S60HF51L/S60H
BF19BF19 F51T/S60YF51T/S60Y
BF25BF25 F51Q/S60HF51Q/S60H
BF39BF39 F51K/S60LF51K/S60L
BF46BF46 F51R/S60TF51R/S60T
실시예 12. 추가 확보한 B7-H6 변이체들의 동물세포 발현벡터 제조 및 발현, 정제Example 12. Preparation, expression, and purification of animal cell expression vectors for additionally secured B7-H6 variants
상기 실시예 11에서 선별한 9종의 변이체(BF2, BF3, BF5, BF8, BF11, BF19, BF25, BF39 및 BF46)를 이용하여 상기 실시예 8과 동일한 방법으로 동물세포 발현벡터럴 제조, 발현 및 정제하고, SDS-PAGE로 야생형 B7-H6, 추가 발굴한 변이체 9종 모두 잘 발현되었음을 확인하였다 (도 11).Animal cell expression vectorial production, expression, and After purification, it was confirmed by SDS-PAGE that the wild type B7-H6 and all 9 additionally discovered mutants were well expressed (FIG. 11).
실시예 13. 본 발명의 B7-H6 변이체들의 NKp30 결합력 검증Example 13. Verification of NKp30 binding ability of B7-H6 variants of the present invention
초기 발굴한 3종의 변이체들 (B5, B7 및 B14), 및 추가 발굴한 변이체들 중 NKp30 결합력이 가장 높은 3종 (BF2, BF8 및 BF19)에 대해서 ELISA를 상기 실시예 9와 동일한 방법으로 진행한 결과, 본 발명에서 발굴한 모든 변이체들이 야생형 B7-H6 보다 현저히 높은 결합력을 나타냈다 (도 12).ELISA was performed in the same manner as Example 9 above for the three initially discovered variants (B5, B7, and B14) and the three variants with the highest NKp30 binding affinity (BF2, BF8, and BF19) among the additionally discovered variants. As a result, all variants discovered in the present invention showed significantly higher binding affinity than wild-type B7-H6 (FIG. 12).

Claims (34)

  1. 야생형(Wild type) B7-H6(B7 homolog 6, NCR3LG1)의 아미노산 서열 중 31번째, 32번째, 37번째, 40번째, 51번째, 53번째, 57번째, 60번째, 67번째, 86번째, 101번째, 102번째, 108번째, 114번째, 129번째, 136번째, 142번째 및 143번째 아미노산으로 이루어진 군으로부터 선택되는 어느 하나 이상의 아미노산이 야생형의 아미노산과 다른 서열로 치환된, NKp30(Natural cytotoxicity triggering receptor 3)와의 결합력이 증대된 B7-H6 변이체.31st, 32nd, 37th, 40th, 51st, 53rd, 57th, 60th, 67th, 86th, 101 of the amino acid sequence of wild type B7-H6 (B7 homolog 6, NCR3LG1) NKp30 (Natural cytotoxicity triggering receptor) in which one or more amino acids selected from the group consisting of the 102nd, 102nd, 108th, 114th, 129th, 136th, 142nd and 143rd amino acids are substituted with a sequence different from the wild type amino acid. 3) B7-H6 variant with increased binding affinity.
  2. 제 1항에 있어서, 야생형 B7-H6의 아미노산은 서열번호 1의 아미노산 서열을 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, wherein the amino acid of wild-type B7-H6 includes the amino acid sequence of SEQ ID NO: 1.
  3. 제 1항에 있어서, M31I, A32T, I37T, I37F, L40Q, F51I, F51S, F51L, F51Y, F51T, F51H, F51Q, F51K, F51R, S53G, N57D, S60I, S60Y, S60T, S60H, S60L, W67R, Q86L, K101E, S102C, S102R, R108M, L114M, L129M, Q136R, S142N 및 P143S로 이루어진 군으로부터 선택된 어느 하나 이상의 아미노산 치환을 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The method of claim 1, M31I, A32T, I37T, I37F, L40Q, F51I, F51S, F51L, F51Y, F51T, F51H, F51Q, F51K, F51R, S53G, N57D, S60I, S60Y, S60T, S60H, S60L, W67R, A B7-H6 variant with increased binding affinity to NKp30, comprising one or more amino acid substitutions selected from the group consisting of Q86L, K101E, S102C, S102R, R108M, L114M, L129M, Q136R, S142N and P143S.
  4. 제 1항에 있어서, 아미노산 치환 F51S 및 S60I를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions F51S and S60I.
  5. 제 1항에 있어서, 아미노산 치환 K101E 및 S102R를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant according to claim 1, which has increased binding affinity to NKp30, comprising amino acid substitutions K101E and S102R.
  6. 제 1항에 있어서, 아미노산 치환 A32T 및 S60I를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions A32T and S60I.
  7. 제 1항에 있어서, 아미노산 치환 A32T, L40Q 및 S60I를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant according to claim 1, comprising amino acid substitutions A32T, L40Q, and S60I, with increased binding affinity to NKp30.
  8. 제 1항에 있어서, 아미노산 치환 F51L 및 S60I를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체. The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions F51L and S60I.
  9. 제 1항에 있어서, 아미노산 치환 A32T, W67R, Q86L, K101E 및 L129M를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant according to claim 1, which has increased binding affinity to NKp30, comprising amino acid substitutions A32T, W67R, Q86L, K101E, and L129M.
  10. 제 1항에 있어서, 아미노산 치환 S60I, L114M 및 S142N를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant according to claim 1, which has increased binding affinity to NKp30, comprising amino acid substitutions S60I, L114M, and S142N.
  11. 제 1항에 있어서, 아미노산 치환 M31I, A32T, F51I, S60I, S102C 및 R108M를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant according to claim 1, which has increased binding affinity to NKp30, comprising amino acid substitutions M31I, A32T, F51I, S60I, S102C, and R108M.
  12. 제 1항에 있어서, 아미노산 치환 A32T, S60I, K101E 및 P143S를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant according to claim 1, which has increased binding affinity to NKp30, comprising amino acid substitutions A32T, S60I, K101E, and P143S.
  13. 제 1항에 있어서, 아미노산 치환 I37T, Q86L 및 K101E를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant according to claim 1, which has increased binding affinity to NKp30, comprising amino acid substitutions I37T, Q86L, and K101E.
  14. 제 1항에 있어서, 아미노산 치환 A32T, S53G, S60I 및 Q136R를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant according to claim 1, which has increased binding affinity to NKp30, comprising amino acid substitutions A32T, S53G, S60I, and Q136R.
  15. 제 1항에 있어서, 아미노산 치환 F51Y 및 S60I를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions F51Y and S60I.
  16. 제 1항에 있어서, 아미노산 치환 S60I 및 K101E를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions S60I and K101E.
  17. 제 1항에 있어서, 아미노산 치환 A32T 및 K101E를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions A32T and K101E.
  18. 제 1항에 있어서, 아미노산 치환 A32T, S60I 및 K101E를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant according to claim 1, comprising amino acid substitutions A32T, S60I and K101E, with increased binding affinity to NKp30.
  19. 제 1항에 있어서, 아미노산 치환 F51H 및 S60I를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions F51H and S60I.
  20. 제 1항에 있어서, 아미노산 치환 F51I 및 S60Y를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions F51I and S60Y.
  21. 제 1항에 있어서, 아미노산 치환 I37F, F51L 및 S60T를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions I37F, F51L, and S60T.
  22. 제 1항에 있어서, 아미노산 치환 F51T 및 S60T를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions F51T and S60T.
  23. 제 1항에 있어서, 아미노산 치환 F51L 및 S60H를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions F51L and S60H.
  24. 제 1항에 있어서, 아미노산 치환 F51T 및 S60Y를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions F51T and S60Y.
  25. 제 1항에 있어서, 아미노산 치환 F51Q 및 S60H를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions F51Q and S60H.
  26. 제 1항에 있어서, 아미노산 치환 F51K 및 S60L를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions F51K and S60L.
  27. 제 1항에 있어서, 아미노산 치환 F51R 및 S60T를 포함하는, NKp30와의 결합력이 증대된 B7-H6 변이체.The B7-H6 variant with increased binding affinity to NKp30 according to claim 1, comprising amino acid substitutions F51R and S60T.
  28. 제 1항의 B7-H6 변이체를 포함하는 자연 살해 세포(natural killer cell, NK cell) 활성화제.A natural killer cell (NK cell) activator comprising the B7-H6 variant of claim 1.
  29. 제 1항의 B7-H6 변이체 및 표적 항원에 결합하는 부분을 포함하는 이중특이적 또는 다중특이적 항체. A bispecific or multispecific antibody comprising the B7-H6 variant of claim 1 and a portion that binds to a target antigen.
  30. 제 29항에 있어서, 표적 항원은 17-1A 항원, GD3 갱글리오시드 R24, EGFRvⅢ, PSMA, PSCA, HLA-DR, EpCAM, MUC1 코어 단백질, 이상 글리코실화 MUC1, ED-B 도메인을 함유하는 피브로넥틴 이형, HER2/neu, 암종배아성 항원(CEA), 가스트린-방출 펩티드(GRP) 수용체 항원, 뮤신(mucine) 항원, 표피 성장 인자 수용체(EGF-R), HER3, HER4, MAGE 항원, SART 항원, MUC1 항원, c-erb-2 항원, TAG 72, 탄산 무수화효소 IX(carbonic anhydrase IX), 알파-태아단백질(alpha-fetoprotein), A3, A33 항체에 특이적인 항원, Ba 733, BrE3-항원, CA125, CDl, CD1a, CD3, CD5, CDl5, CD16, CD19, CD20, CD21, CD22, CD23, CD25, CD30, CD33, CD38, CD40, CD45, CD52, CD74, CD79a, CD80, CD138, 결장-특이적 항원-p(CSAp), CSAp, EGP-1, EGP-2, Ep-CAM, FIt-1, Flt-3, 폴산염 수용체(folate receptor), HLA-DR, 인간 융모성 성선자극호르몬(HCG) 및 그 소단위체들, 저산소증 유도 인자(HIF-I), Ia, IL-2, IL-6, IL-8, 인슐린 성장 인자-1(IGF-1), KC4-항원, KS-1-항원, KSl-4, Le-Y, 대식세포 억제 인자(MIF), MAGE, MUCl, MUC2, MUC3, MUC4, NCA66, NCA95, NCA90, PAM-4 항체에 특이적인 항원, 태반 성장 인자, p53, 전립선 산성 포스파타제(prostatic acid phosphatase), PSA, RS5, SlOO, TAC, 테나신(tenascin), TRAIL 수용체들, Tn 항원, 톰슨-프리덴라이히(Thomson-Friedenreich) 항원들, 종양 괴사 항원들, VEGF, ED-B 피브로넥틴(fibronectin), 혈관형성 표지(angiogenesis marker), 종양유전자 표지(oncogene marker) 또는 종양유전자 생성물로 이루어지는 군으로부터 선택되는 어느 하나 이상인, 이중특이적 또는 다중특이적 항체.30. The method of claim 29, wherein the target antigen is 17-1A antigen, GD3 ganglioside R24, EGFRvIII, PSMA, PSCA, HLA-DR, EpCAM, MUC1 core protein, aberrant glycosylated MUC1, fibronectin variant containing an ED-B domain. , HER2/neu, carcinoembryonic antigen (CEA), gastrin-releasing peptide (GRP) receptor antigen, mucine antigen, epidermal growth factor receptor (EGF-R), HER3, HER4, MAGE antigen, SART antigen, MUC1 Antigen, c-erb-2 antigen, TAG 72, carbonic anhydrase IX, alpha-fetoprotein, A3, antigen specific for A33 antibody, Ba 733, BrE3-antigen, CA125 , CDl, CD1a, CD3, CD5, CDl5, CD16, CD19, CD20, CD21, CD22, CD23, CD25, CD30, CD33, CD38, CD40, CD45, CD52, CD74, CD79a, CD80, CD138, colon-specific antigen -p(CSAp), CSAp, EGP-1, EGP-2, Ep-CAM, FIt-1, Flt-3, folate receptor, HLA-DR, human chorionic gonadotropin (HCG) and Its subunits, hypoxia-inducible factor (HIF-I), Ia, IL-2, IL-6, IL-8, insulin growth factor-1 (IGF-1), KC4-antigen, KS-1-antigen, KSl -4, Le-Y, macrophage inhibitory factor (MIF), MAGE, MUCl, MUC2, MUC3, MUC4, NCA66, NCA95, NCA90, antigen specific for PAM-4 antibodies, placental growth factor, p53, prostatic acid phosphatase ( prostatic acid phosphatase), PSA, RS5, SlOO, TAC, tenascin, TRAIL receptors, Tn antigen, Thomson-Friedenreich antigens, tumor necrosis antigens, VEGF, ED-B fibronectin ( A bispecific or multispecific antibody that is at least one selected from the group consisting of fibronectin, angiogenesis marker, oncogene marker, or oncogene product.
  31. 제 1항의 B7-H6 변이체 또는 제 29항의 이중특이적 또는 다중특이적 항체를 포함하는, 암의 치료 또는 예방용 약학적 조성물.A pharmaceutical composition for the treatment or prevention of cancer, comprising the B7-H6 variant of claim 1 or the bispecific or multispecific antibody of claim 29.
  32. i) 자연 살해 세포를 분리하는 단계; 및i) isolating natural killer cells; and
    ⅱ) 제 1항의 B7-H6 변이체 또는 이의 단편의 존재 하에 상기 분리된 자연 살해 세포를 배양하는 단계를 포함하는, 활성화된 자연살해세포의 생체외 증식 방법.ii) A method of in vitro proliferation of activated natural killer cells, comprising culturing the isolated natural killer cells in the presence of the B7-H6 variant or fragment thereof of claim 1.
  33. 제 1항의 B7-H6 변이체 또는 제 29항의 이중특이적 또는 다중특이적 항체의 암의 예방 또는 치료 용도.Use of the B7-H6 variant of claim 1 or the bispecific or multispecific antibody of claim 29 for the prevention or treatment of cancer.
  34. 제 1항의 B7-H6 변이체 또는 제 29항의 이중특이적 또는 다중특이적 항체를 약학적으로 유효한 양으로 암에 걸린 개체에 투여하는 단계를 포함하는 암의 치료 방법.A method of treating cancer comprising administering the B7-H6 variant of claim 1 or the bispecific or multispecific antibody of claim 29 in a pharmaceutically effective amount to a subject suffering from cancer.
PCT/KR2023/008393 2022-06-29 2023-06-16 B7-h6 variants with improved binding affinity for nkp30 WO2024005422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220079826 2022-06-29
KR10-2022-0079826 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024005422A1 true WO2024005422A1 (en) 2024-01-04

Family

ID=89380778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008393 WO2024005422A1 (en) 2022-06-29 2023-06-16 B7-h6 variants with improved binding affinity for nkp30

Country Status (2)

Country Link
KR (1) KR20240003756A (en)
WO (1) WO2024005422A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100091950A (en) * 2007-10-04 2010-08-19 지모제넥틱스, 인코포레이티드 B7 family member zb7h6 and related compositions and methods
WO2011070443A1 (en) * 2009-12-09 2011-06-16 Institut National De La Sante Et De La Recherche Medicale Monoclonal antibodies that bind b7h6 and uses thereof
US11291721B2 (en) * 2016-03-21 2022-04-05 Marengo Therapeutics, Inc. Multispecific and multifunctional molecules and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100091950A (en) * 2007-10-04 2010-08-19 지모제넥틱스, 인코포레이티드 B7 family member zb7h6 and related compositions and methods
WO2011070443A1 (en) * 2009-12-09 2011-06-16 Institut National De La Sante Et De La Recherche Medicale Monoclonal antibodies that bind b7h6 and uses thereof
US11291721B2 (en) * 2016-03-21 2022-04-05 Marengo Therapeutics, Inc. Multispecific and multifunctional molecules and uses thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE Protein 19 March 2015 (2015-03-19), ANONYMOUS : "B7H6, partial [synthetic construct]", XP093121937, retrieved from NCBI Database accession no. AIC53717.1 *
M. G. JOYCE, TRAN P., ZHURAVLEVA M. A., JAW J., COLONNA M., SUN P. D.: "Crystal structure of human natural cytotoxicity receptor NKp30 and identification of its ligand binding site", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 108, no. 15, 12 April 2011 (2011-04-12), pages 6223 - 6228, XP055043601, ISSN: 00278424, DOI: 10.1073/pnas.1100622108 *
SKOŘEPA ONDŘEJ, PAZICKY SAMUEL, KALOUSKOVÁ BARBORA, BLÁHA JAN, ABREU CELESTE, JEČMEN TOMÁŠ, ROSŮLEK MICHAL, FISH ALEXANDER, SEDIVY: "Natural Killer Cell Activation Receptor NKp30 Oligomerization Depends on Its N-Glycosylation", CANCERS, CH, vol. 12, no. 7, 21 July 2020 (2020-07-21), CH , pages 1998, XP093121934, ISSN: 2072-6694, DOI: 10.3390/cancers12071998 *

Also Published As

Publication number Publication date
KR20240003756A (en) 2024-01-09

Similar Documents

Publication Publication Date Title
Srivastava et al. Individually distinct transplantation antigens of chemically induced mouse tumors
Palladino Jr et al. Expression of a shared tumor-specific antigen by two chemically induced BALB/c sarcomas
EP1124568B1 (en) Polyspecific binding molecules and uses thereof
JP2023542417A (en) Screening for KRAS mutation-specific T cell receptors and antitumor applications
JP2020023506A (en) Superantagonists, partial agonists and antagonists of interleukin-2
WO2000058480A1 (en) Novel cytidine deaminase
JPH08500837A (en) Isolated nonapeptides derived from the MAGE-3 gene and presented by HLA-A1 and uses thereof
JP5934897B2 (en) T cell receptor β chain gene and α chain gene
JPH03501330A (en) Monoclonal antibody that reacts with cachectin
CN112703206B (en) Tumor-targeted recombinant bifunctional fusion protein and application thereof
JP4900884B2 (en) Tumor antigen
EA006310B1 (en) Ganglioside-associated recombinant antibodies and the use thereof in the diagnosis and treatment of tumours
JPH06507384A (en) Vaccine administration and methods for diseases caused by pathological responses by specific T cell populations
TW201930360A (en) PD-L1 antibody, antigen-binding fragment and pharmaceutical use thereof
WO1998022510A9 (en) Methods for the production of chicken monoclonal antibodies
GB2603166A (en) Therapeutic and Diagnostic Agents and Uses Thereof
CA2130173A1 (en) Genetically engineered antibodies
WO2022098084A1 (en) Fc alpha receptor binding antibody
CN115697356A (en) Methods of treating cancer by inhibiting CARM1
WO2022220603A1 (en) Human antibody targeting covid-19 virus
WO2024005422A1 (en) B7-h6 variants with improved binding affinity for nkp30
KR102663963B1 (en) HUMAN ANTIBODIES TARGETING SARS-CoV-2
JP2016523264A (en) Antibodies against Toso
WO2024205094A1 (en) Humanized antibodies targeting epha10
KR20220061639A (en) ANTIBODIES FOR BINDING TO Fc ALPHA RECEPTOR

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831782

Country of ref document: EP

Kind code of ref document: A1