[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024004104A1 - 通信システムに含まれる要素の適切なスケールアウトの実行 - Google Patents

通信システムに含まれる要素の適切なスケールアウトの実行 Download PDF

Info

Publication number
WO2024004104A1
WO2024004104A1 PCT/JP2022/026071 JP2022026071W WO2024004104A1 WO 2024004104 A1 WO2024004104 A1 WO 2024004104A1 JP 2022026071 W JP2022026071 W JP 2022026071W WO 2024004104 A1 WO2024004104 A1 WO 2024004104A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
data
time
communication system
scale
Prior art date
Application number
PCT/JP2022/026071
Other languages
English (en)
French (fr)
Inventor
真也 北
Original Assignee
楽天モバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天モバイル株式会社 filed Critical 楽天モバイル株式会社
Priority to PCT/JP2022/026071 priority Critical patent/WO2024004104A1/ja
Publication of WO2024004104A1 publication Critical patent/WO2024004104A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • H04W16/08Load shedding arrangements

Definitions

  • the present invention relates to performing appropriate scale-out of elements included in a communication system.
  • Patent Document 1 describes that the usage bandwidth for each network processing function of a communication device is obtained, and if the bandwidth is larger than a scale-out threshold, the number of network software execution units used for network processing is increased. .
  • the network load is predicted to increase due to predictions with low accuracy, consider that the network load may increase earlier than predicted, and scale out as early as possible. It is possible to implement it.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to enable appropriate scale-out of elements included in a communication system.
  • a scale-out execution system provides predictions from a given reference point in time to a predetermined time after the reference point, based on performance index values before a given reference point in the communication system.
  • the scale-out execution method is based on performance index values before a given reference point in time related to the communication system, and calculates the predicting a network load at a prediction time; and, depending on the prediction, for each of the plurality of prediction time points, the prediction time increases as the length of time from the reference time to the prediction time increases; determining whether the predicted value of the network load at the prediction time exceeds a threshold associated with the prediction time; and if the predicted value exceeds the threshold at some or all of the plurality of prediction time If determined, scaling out elements included in the communication system.
  • FIG. 1 is a diagram showing an example of a communication system according to an embodiment of the present invention.
  • 1 is a diagram showing an example of a communication system according to an embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing an example of a network service according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of association between elements constructed in a communication system according to an embodiment of the present invention.
  • FIG. 2 is a functional block diagram illustrating an example of functions implemented in a platform system according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a data structure of physical inventory data.
  • 1 is a diagram schematically showing an example of a data bus section according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing an example of acquisition of performance index value data through an estimation process.
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3 is a diagram schematically showing an example of a graphical representation of estimation result data.
  • FIG. 3 is a diagram schematically showing an example of acquisition of performance index value data through an estimation process. It is a flow diagram showing an example of the flow of processing performed in the platform system according to one embodiment of the present invention. It is a flow diagram showing an example of the flow of processing performed in the platform system according to one embodiment of the present invention.
  • FIG. 1 and 2 are diagrams showing an example of a communication system 1 according to an embodiment of the present invention.
  • FIG. 1 is a diagram focusing on the locations of a data center group included in a communication system 1.
  • FIG. 2 is a diagram focusing on various computer systems implemented in a data center group included in the communication system 1.
  • the data center group included in the communication system 1 is classified into a central data center 10, a regional data center 12, and an edge data center 14.
  • central data centers 10 are distributed within the area covered by the communication system 1 (for example, within Japan).
  • regional data centers 12 are distributed within the area covered by the communication system 1. For example, if the area covered by the communication system 1 is the entire country of Japan, one to two regional data centers 12 may be placed in each prefecture.
  • each of the edge data centers 14 is capable of communicating with a communication facility 18 equipped with an antenna 16.
  • Communication equipment 18 may include a computer such as a server computer.
  • the communication equipment 18 according to the present embodiment performs wireless communication with a UE (User Equipment) 20 via the antenna 16.
  • the communication equipment 18 equipped with the antenna 16 is provided with, for example, an RU (Radio Unit), which will be described later.
  • a plurality of servers are arranged in each of the central data center 10, regional data center 12, and edge data center 14 according to this embodiment.
  • the central data center 10, the regional data center 12, and the edge data center 14 can communicate with each other.
  • the central data centers 10, the regional data centers 12, and the edge data centers 14 can also communicate with each other.
  • the communication system 1 includes a platform system 30, multiple radio access networks (RAN) 32, multiple core network systems 34, and multiple UEs 20.
  • the core network system 34, RAN 32, and UE 20 cooperate with each other to realize a mobile communication network.
  • the RAN 32 is an antenna that corresponds to an eNB (eNodeB) in a fourth generation mobile communication system (hereinafter referred to as 4G) or a gNB (NR base station) in a fifth generation mobile communication system (hereinafter referred to as 5G). It is a computer system equipped with 16.
  • the RAN 32 according to this embodiment is mainly implemented by a server group and communication equipment 18 located in the edge data center 14. Note that a part of the RAN 32 (for example, DU (Distributed Unit), CU (Central Unit), vDU (virtual Distributed Unit), vCU (virtual Central Unit)) is located not in the edge data center 14 but in the central data center 10 or regional It may also be implemented at data center 12.
  • DU Distributed Unit
  • CU Central Unit
  • vDU virtual Distributed Unit
  • vCU virtual Central Unit
  • the core network system 34 is a system equivalent to EPC (Evolved Packet Core) in 4G and 5G core (5GC) in 5G.
  • the core network system 34 according to this embodiment is mainly implemented by a group of servers located in the central data center 10 and the regional data center 12.
  • the platform system 30 is configured on a cloud infrastructure, for example, and includes a processor 30a, a storage section 30b, and a communication section 30c, as shown in FIG.
  • the processor 30a is a program-controlled device such as a microprocessor that operates according to a program installed in the platform system 30.
  • the storage unit 30b is, for example, a storage element such as ROM or RAM, a solid state drive (SSD), a hard disk drive (HDD), or the like.
  • the storage unit 30b stores programs and the like executed by the processor 30a.
  • the communication unit 30c is, for example, a communication interface such as a NIC (Network Interface Controller) or a wireless LAN (Local Area Network) module. Note that SDN (Software-Defined Networking) may be implemented in the communication unit 30c.
  • the communication unit 30c exchanges data with the RAN 32 and the core network system 34.
  • the platform system 30 is implemented by a group of servers located in the central data center 10. Note that the platform system 30 may be implemented by a group of servers located in the regional data center 12.
  • the requested network service is constructed in the RAN 32 or the core network system 34.
  • the constructed network service is then provided to the purchaser.
  • network services such as voice communication services and data communication services are provided to purchasers who are MVNOs (Mobile Virtual Network Operators).
  • the voice communication service and data communication service provided by this embodiment are ultimately provided to the customer (end user) of the purchaser (MVNO in the above example) using the UE20 shown in FIGS. 1 and 2.
  • the end user can perform voice communication and data communication with other users via the RAN 32 and the core network system 34. Further, the end user's UE 20 can access a data network such as the Internet via the RAN 32 and the core network system 34.
  • IoT Internet of Things
  • end users who use robot arms, connected cars, and the like.
  • an end user who uses a robot arm, a connected car, etc. may become a purchaser of the network service according to this embodiment.
  • a container-type virtualization application execution environment such as Docker (registered trademark) is installed on the servers located in the central data center 10, regional data center 12, and edge data center 14. It is now possible to deploy and run containers on these servers.
  • a cluster composed of one or more containers generated by such virtualization technology may be constructed.
  • a Kubernetes cluster managed by a container management tool such as Kubernetes (registered trademark) may be constructed.
  • processors on the constructed cluster may execute container-type applications.
  • the network service provided to the purchaser is composed of one or more functional units (for example, a network function (NF)).
  • the functional unit is implemented as an NF realized by virtualization technology.
  • NF realized by virtualization technology is called VNF (Virtualized Network Function).
  • VNF Virtualized Network Function
  • CNF Containerized Network Function
  • container-type virtualization technology is also included in the VNF in this description.
  • the network service is implemented by one or more CNFs.
  • the functional unit according to this embodiment may correspond to a network node.
  • FIG. 3 is a diagram schematically showing an example of a network service in operation.
  • the network service shown in FIG. NFs such as an AMF (Access and Mobility Management Function) 46, a plurality of SMFs (Session Management Functions) 48, and a plurality of UPFs (User Plane Functions) 50 are included as software elements.
  • AMF Access and Mobility Management Function
  • SMFs Session Management Functions
  • UPFs User Plane Functions
  • the RU40, DU42, CU-CP44a, AMF46, and SMF48 correspond to elements of the control plane (C-Plane)
  • the RU40, DU42, CU-UP44b, and UPF50 correspond to the elements of the user plane (C-Plane). This corresponds to the element of U-Plane).
  • network service may include other types of NFs as software elements.
  • network services are implemented on computer resources (hardware elements) such as a plurality of servers.
  • a communication service in a certain area is provided by the network service shown in FIG.
  • FIG. 4 is a diagram schematically showing an example of the association between elements constructed in the communication system 1 in this embodiment.
  • the symbols M and N shown in FIG. 4 represent any integer greater than or equal to 1, and indicate the relationship between the numbers of elements connected by links. If both ends of a link are a combination of M and N, the elements connected by the link are in a many-to-many relationship, and if both ends of the link are a combination of 1 and N or a combination of 1 and M, the relevant Elements connected by links have a one-to-many relationship.
  • the network service (NS), network function (NF), CNFC (Containerized Network Function Component), pod, and container have a hierarchical structure.
  • An NS corresponds to, for example, a network service composed of multiple NFs.
  • the NS may correspond to a granular element such as 5GC, EPC, 5G RAN (gNB), 4G RAN (eNB), etc., for example.
  • NF corresponds to granular elements such as RU, DU, CU-CP, CU-UP, AMF, SMF, and UPF. Furthermore, in 4G, NF corresponds to granular elements such as MME (Mobility Management Entity), HSS (Home Subscriber Server), S-GW (Serving Gateway), vDU, and vCU.
  • MME Mobility Management Entity
  • HSS Home Subscriber Server
  • S-GW Serving Gateway
  • vDU Visitor Gateway
  • vCU vCU
  • one NS includes one or more NFs. In other words, one or more NFs are under one NS.
  • CNFC corresponds to a granularity element such as DU mgmt or DU Processing, for example.
  • a CNFC may be a microservice that is deployed as one or more containers on a server.
  • a certain CNFC may be a microservice that provides some of the functions of DU, CU-CP, CU-UP, etc.
  • a certain CNFC may be a microservice that provides some of the functions of UPF, AMF, SMF, etc.
  • one NF includes one or more CNFCs.
  • one or more CNFCs are under one NF.
  • a pod refers to the minimum unit for managing docker containers in Kubernetes.
  • one CNFC includes one or more pods.
  • one or more pods are under one CNFC.
  • one pod includes one or more containers.
  • one or more containers are under one pod.
  • the network slice (NSI) and network slice subnet instance (NSSI) have a hierarchical structure.
  • NSI can also be said to be an end-to-end virtual circuit that spans multiple domains (for example, from the RAN 32 to the core network system 34).
  • NSI is a slice for high-speed, large-capacity communication (for example, eMBB: enhanced Mobile Broadband), a slice for highly reliable and low-latency communication (for example, URLLC: for Ultra-Reliable and Low Latency Communications), or a high-volume terminal. (for example, for massive Machine Type Communication (mMTC)).
  • mMTC massive Machine Type Communication
  • NSSI can also be said to be a single domain virtual circuit that is divided from NSI.
  • the NSSI may be a slice of a RAN domain, a slice of a transport domain such as a Mobile Back Haul (MBH) domain, or a slice of a core network domain.
  • MMH Mobile Back Haul
  • one NSI includes one or more NSSIs.
  • one or more NSSIs are under one NSI.
  • multiple NSIs may share the same NSSI.
  • NSSI and NS generally have a many-to-many relationship.
  • one NF can belong to one or more network slices.
  • one NF can be configured with NSSAI (Network Slice Selection Assistance Information) including one or more S-NSSAI (Sub Network Slice Selection Assist Information).
  • NSSAI Network Slice Selection Assistance Information
  • S-NSSAI Subscribe Network Slice Selection Assist Information
  • S-NSSAI is information associated with a network slice. Note that the NF does not need to belong to a network slice.
  • FIG. 5 is a functional block diagram showing an example of functions implemented in the platform system 30 according to the present embodiment. Note that the platform system 30 according to this embodiment does not need to implement all of the functions shown in FIG. 5, and functions other than those shown in FIG. 5 may be implemented.
  • the platform system 30 functionally includes, for example, an operation support system (OSS) section 60, an orchestration (E2EO: End-to-End-Orchestration) section 62, and a service Includes a catalog storage unit 64, a big data platform unit 66, a data bus unit 68, an AI (Artificial Intelligence) unit 70, a monitoring function unit 72, an SDN controller 74, a configuration management unit 76, a container management unit 78, and a repository unit 80.
  • the OSS section 60 includes an inventory database 82, a ticket management section 84, a failure management section 86, and a performance management section 88.
  • the E2EO section 62 includes a policy manager section 90, a slice manager section 92, and a life cycle management section 94. These elements are mainly implemented as a processor 30a, a storage section 30b, and a communication section 30c.
  • the functions shown in FIG. 5 may be installed in the platform system 30, which is one or more computers, and implemented by the processor 30a executing a program containing instructions corresponding to the functions.
  • This program may be supplied to the platform system 30 via a computer-readable information storage medium such as an optical disk, a magnetic disk, a magnetic tape, a magneto-optical disk, or a flash memory, or via the Internet.
  • the functions shown in FIG. 5 may be implemented using circuit blocks, memories, and other LSIs. Further, those skilled in the art will understand that the functionality shown in FIG. 5 can be implemented in various forms, such as only hardware, only software, or a combination thereof.
  • the container management unit 78 executes container life cycle management.
  • the lifecycle management includes processes related to container construction, such as container deployment and configuration.
  • the platform system 30 may include a plurality of container management units 78.
  • a container management tool such as Kubernetes, and a package manager such as Helm may be installed in each of the plurality of container management units 78.
  • Each of the plurality of container management units 78 may perform container construction such as container deployment on a server group (for example, a Kubernetes cluster) associated with the container management unit 78.
  • the container management unit 78 does not need to be included in the platform system 30.
  • the container management unit 78 may be provided, for example, in a server managed by the container management unit 78 (that is, the RAN 32 or the core network system 34), or may be installed in a server managed by the container management unit 78. It may be provided in another server installed in parallel.
  • the repository unit 80 stores, for example, a container image of a container included in a functional unit group (for example, NF group) that realizes a network service.
  • a functional unit group for example, NF group
  • the inventory database 82 is a database that stores inventory information.
  • the inventory information includes, for example, information about servers placed in the RAN 32 or the core network system 34 and managed by the platform system 30.
  • the inventory database 82 stores inventory data.
  • the inventory data shows the configuration of the element groups included in the communication system 1 and the current status of the relationships between the elements.
  • the inventory data also indicates the status of resources managed by the platform system 30 (for example, resource usage status).
  • the inventory data may be physical inventory data or logical inventory data. The physical inventory data and logical inventory data will be described later.
  • FIG. 6 is a diagram showing an example of the data structure of physical inventory data.
  • the physical inventory data shown in FIG. 6 is associated with one server.
  • the physical inventory data shown in FIG. 6 includes, for example, server ID, location data, building data, floor number data, rack data, specification data, network data, operating container ID list, cluster ID, and the like.
  • the server ID included in the physical inventory data is, for example, the identifier of the server associated with the physical inventory data.
  • the location data included in the physical inventory data is, for example, data indicating the location (for example, the address of the location) of the server associated with the physical inventory data.
  • the building data included in the physical inventory data is, for example, data indicating a building (eg, building name) in which a server associated with the physical inventory data is located.
  • the floor number data included in the physical inventory data is, for example, data indicating the floor number where the server associated with the physical inventory data is located.
  • the rack data included in the physical inventory data is, for example, the identifier of the rack in which the server associated with the physical inventory data is located.
  • the spec data included in the physical inventory data is, for example, data indicating the specs of the server associated with the physical inventory data, and the spec data includes, for example, the number of cores, memory capacity, hard disk capacity, etc. .
  • the network data included in the physical inventory data is, for example, data indicating information regarding the network of the server associated with the physical inventory data. number, the port ID of the port, etc.
  • the operating container ID list included in the physical inventory data is, for example, data indicating information regarding one or more containers operating on the server associated with the physical inventory data, and the operating container ID list includes, for example, the container A list of instance identifiers (container IDs) is shown.
  • the cluster ID included in the physical inventory data is, for example, the identifier of the cluster (for example, the Kubernetes cluster) to which the server associated with the physical inventory data belongs.
  • the logical inventory data includes topology data indicating the current state of the association between elements as shown in FIG. 4 for a plurality of elements included in the communication system 1.
  • the logical inventory data includes topology data that includes an identifier of a certain NS and identifiers of one or more NFs under the NS.
  • the logical inventory data includes topology data including an identifier of a certain network slice and identifiers of one or more NFs belonging to the network slice.
  • the inventory data may include data indicating the current situation, such as geographical relationships and topological relationships between elements included in the communication system 1.
  • the inventory data includes location data indicating the locations where elements included in the communication system 1 are operating, that is, the current locations of the elements included in the communication system 1. From this, it can be said that the inventory data shows the current state of geographical relationships between elements (for example, geographical proximity between elements).
  • the logical inventory data may include NSI data indicating information regarding network slices.
  • the NSI data indicates, for example, attributes such as an identifier of a network slice instance and a type of network slice.
  • the logical inventory data may include NSSI data indicating information regarding network slice subnets.
  • the NSSI data indicates attributes such as, for example, the identifier of the network slice subnet instance and the type of the network slice subnet.
  • the logical inventory data may include NS data indicating information regarding the NS.
  • the NS data indicates, for example, attributes such as an identifier of an NS instance and a type of NS.
  • the logical inventory data may include NF data indicating information regarding NF.
  • the NF data indicates, for example, attributes such as an identifier of an NF instance and a type of NF.
  • the logical inventory data may include CNFC data indicating information regarding CNFC.
  • the CNFC data indicates, for example, attributes such as an instance identifier and a CNFC type.
  • the logical inventory data may include pod data indicating information regarding pods included in the CNFC.
  • the pod data indicates, for example, attributes such as a pod instance identifier and a pod type.
  • the logical inventory data may include container data indicating information regarding containers included in the pod.
  • the container data indicates, for example, attributes such as a container ID of a container instance and a container type.
  • the container instance and the server on which the container instance is running are associated by the container ID of the container data included in the logical inventory data and the container ID included in the active container ID list included in the physical inventory data. It will be.
  • data indicating various attributes such as a host name and an IP address may be included in the above-mentioned data included in the logical inventory data.
  • the container data may include data indicating the IP address of the container corresponding to the container data.
  • the NF data may include data indicating the IP address and host name of the NF indicated by the NF data.
  • the logical inventory data may include data indicating NSSAIs set in each NF, including one or more S-NSSAIs.
  • the inventory database 82 cooperates with the container management unit 78 so that the status of resources can be grasped as appropriate. Then, the inventory database 82 appropriately updates the inventory data stored in the inventory database 82 based on the latest status of the resource.
  • inventory database 82 updates inventory data stored therein.
  • the inventory database 82 may include, for each NF, data indicating the importance of the location where the NF is located. For example, an important area flag may be associated with inventory data of a gNB that covers an area including government offices, fire stations, hospitals, etc.
  • the inventory database 82 may include data indicating the importance of services regarding elements such as NS, NF, and network slices.
  • the purchaser may specify an SLA that the NS to be purchased should meet, and an important service flag may be associated with inventory data of elements that need to guarantee performance corresponding to the SLA.
  • the service catalog storage unit 64 stores service catalog data.
  • the service catalog data may include, for example, service template data indicating logic used by the life cycle management unit 94.
  • This service template data includes information necessary to construct a network service.
  • the service template data includes information defining NS, NF, and CNFC, and information indicating a correspondence relationship between NS-NF-CNFC.
  • the service template data includes a workflow script for constructing a network service.
  • NSD Network Descriptor
  • the NSD is associated with a network service, and indicates the types of a plurality of functional units (for example, a plurality of CNFs) included in the network service.
  • the NSD may indicate the number included in the network service for each type of functional unit such as CNF.
  • the NSD may indicate a file name of a CNFD, which will be described later, related to a CNF included in the network service.
  • CNFD CNF Descriptor
  • the CNFD may indicate computer resources (eg, CPU, memory, hard disk, etc.) required by the CNF.
  • the CNFD may indicate computer resources (CPU, memory, hard disk, etc.) required by each of a plurality of containers included in the CNF.
  • the service catalog data may include information regarding a threshold value (for example, an abnormality detection threshold value) used by the policy manager unit 90 to be compared with the calculated performance index value.
  • a threshold value for example, an abnormality detection threshold value
  • the performance index values will be described later.
  • the service catalog data may include slice template data, for example.
  • the slice template data includes information necessary to perform network slice instantiation, including, for example, logic utilized by the slice manager unit 92.
  • the slice template data includes information on "Generic Network Slice Template” defined by GSMA (GSM Association) ("GSM” is a registered trademark). Specifically, the slice template data includes network slice template data (NST), network slice subnet template data (NSST), and network service template data. Further, the slice template data includes information indicating the hierarchical structure of these elements as shown in FIG.
  • the life cycle management unit 94 constructs a new network service for which a purchase request has been made in response to a purchase request for an NS by a purchaser.
  • the life cycle management unit 94 may execute a workflow script associated with the network service to be purchased in response to a purchase request. By executing this workflow script, the lifecycle management unit 94 may instruct the container management unit 78 to deploy a container included in a new network service to be purchased. Then, the container management unit 78 may acquire a container image of the container from the repository unit 80 and deploy a container corresponding to the container image on the server.
  • the life cycle management unit 94 executes scaling and replacement of elements included in the communication system 1, for example.
  • the life cycle management unit 94 may output a container deployment instruction or deletion instruction to the container management unit 78.
  • the container management unit 78 may execute processing such as deploying a container or deleting a container in accordance with the instruction.
  • the life cycle management unit 94 can perform scaling and replacement that cannot be handled by a tool such as Kubernetes of the container management unit 78.
  • the life cycle management unit 94 may output an instruction to create a communication path to the SDN controller 74.
  • the life cycle management unit 94 presents two IP addresses at both ends of the communication path to be created to the SDN controller 74, and the SDN controller 74 creates a communication path connecting these two IP addresses.
  • the created communication path may be managed in association with these two IP addresses.
  • life cycle management unit 94 may output to the SDN controller 74 an instruction to create a communication path between the two IP addresses, which is associated with the two IP addresses.
  • the slice manager unit 92 executes, for example, instantiation of a network slice.
  • the slice manager unit 92 instantiates a network slice by executing logic indicated by a slice template stored in the service catalog storage unit 64, for example.
  • the slice manager unit 92 includes, for example, NSMF (Network Slice Management Function) and NSSMF (Network Slice Sub-network Management Function) described in the 3GPP (registered trademark) (Third Generation Partnership Project) specification “TS28 533”. It consists of the following functions.
  • NSMF is a function that generates and manages network slices, and provides NSI management services.
  • NSSMF is a function that generates and manages a network slice subnet that forms part of a network slice, and provides NSSI management services.
  • the slice manager unit 92 may output configuration management instructions related to instantiation of the network slice to the configuration management unit 76. Then, the configuration management unit 76 may perform configuration management such as setting according to the configuration management instruction.
  • the slice manager unit 92 may present two IP addresses to the SDN controller 74 and output an instruction to create a communication path between these two IP addresses.
  • the configuration management unit 76 executes configuration management such as setting of element groups such as NF in accordance with configuration management instructions received from the life cycle management unit 94 and the slice manager unit 92, for example.
  • the SDN controller 74 creates a communication path between two IP addresses associated with the creation instruction, for example, in accordance with a communication path creation instruction received from the life cycle management section 94 or the slice manager section 92.
  • the SDN controller 74 may create a communication path between two IP addresses using, for example, a known path calculation method such as Flex Algo.
  • the SDN controller 74 may use segment routing technology (for example, SRv6 (segment routing IPv6)) to construct NSI or NSSI for aggregation routers, servers, etc. that exist between communication paths. .
  • segment routing technology for example, SRv6 (segment routing IPv6)
  • the SDN controller 74 issues a command to configure a common VLAN (Virtual Local Area Network) to multiple NFs to be configured, and a command to allocate the bandwidth and priority indicated by the configuration information to the VLAN. By doing so, it is possible to generate NSI and NSSI across the plurality of NFs to be configured.
  • VLAN Virtual Local Area Network
  • the SDN controller 74 may change the maximum value of the bandwidth that can be used for communication between two IP addresses without constructing a network slice.
  • the platform system 30 may include a plurality of SDN controllers 74. Then, each of the plurality of SDN controllers 74 may execute processing such as creating a communication path for a group of network devices such as an AG associated with the SDN controller 74.
  • the monitoring function unit 72 monitors, for example, a group of elements included in the communication system 1 according to a given management policy.
  • the monitoring function unit 72 may monitor the element group, for example, according to a monitoring policy specified by the purchaser when purchasing the network service.
  • the monitoring function unit 72 executes monitoring at various levels, such as the slice level, NS level, NF level, CNFC level, and hardware level such as a server.
  • the monitoring function unit 72 may set a module that outputs metric data in hardware such as a server or a software element included in the communication system 1 so as to perform monitoring at the various levels described above.
  • the NF may output metric data indicating a measurable (identifiable) metric in the NF to the monitoring function unit 72.
  • the server may output metric data indicating metrics related to hardware that can be measured (specified) in the server to the monitoring function unit 72.
  • the monitoring function unit 72 may deploy a sidecar container on the server that aggregates metric data indicating metrics output from a plurality of containers in units of CNFC (microservices).
  • This sidecar container may contain agents called exporters.
  • the monitoring function unit 72 uses the mechanism of a monitoring tool such as Prometheus, which can monitor container management tools such as Kubanetes, to acquire metric data aggregated for each microservice from the sidecar container. It may be performed repeatedly at a given monitoring interval.
  • the monitoring function unit 72 monitors the performance indicators regarding the performance indicators described in “TS 28.552, Management and orchestration; 5G performance measurements” or “TS 28.554, Management and orchestration; 5G end to end Key Performance Indicators (KPI)”. Values may be monitored. Then, the monitoring function unit 72 may acquire metric data indicating the performance index value to be monitored.
  • KPI Key Performance Indicators
  • the monitoring function unit 72 executes processing (enrichment) for aggregating metric data in a predetermined aggregation unit, thereby increasing the number of elements included in the communication system 1 in the aggregation unit. Generate performance index value data indicating performance index values.
  • performance index value data for the gNB is generated by aggregating metric data indicating metrics of elements under the gNB (for example, network nodes such as DU 42 and CU 44). In this way, performance index value data indicating communication performance in the area covered by the gNB is generated.
  • performance index value data indicating multiple types of communication performance such as traffic volume (throughput) and latency may be generated in each gNB. Note that the communication performance indicated by the performance index value data is not limited to traffic volume or latency.
  • the monitoring function unit 72 outputs the performance index value data generated by the enrichment described above to the data bus unit 68.
  • the data bus unit 68 receives performance index value data output from the monitoring function unit 72, for example. Based on the received one or more pieces of performance index value data, the data bus unit 68 generates a performance index value file including the one or more pieces of performance index value data. The data bus unit 68 then outputs the generated performance index value file to the big data platform unit 66.
  • elements such as a network slice, NS, NF, and CNFC included in the communication system 1 and hardware such as a server send notifications of various alerts to the monitoring function unit 72 (for example, an alert triggered by the occurrence of a failure). notification).
  • the monitoring function unit 72 when the monitoring function unit 72 receives the above-mentioned alert notification, it outputs alert message data indicating the notification to the data bus unit 68. Then, the data bus unit 68 generates an alert file in which alert message data indicating one or more notifications is compiled into one file, and outputs the alert file to the big data platform unit 66.
  • the big data platform section 66 accumulates, for example, performance index value files and alert files output from the data bus section 68.
  • a plurality of trained machine learning models are stored in advance in the AI section 70.
  • the AI unit 70 uses various machine learning models stored in the AI unit 70 to perform estimation processing such as future prediction processing of the usage status and service quality of the communication system 1.
  • the AI unit 70 may generate estimation result data indicating the result of the estimation process.
  • the AI unit 70 may perform estimation processing based on the files accumulated in the big data platform unit 66 and the above-mentioned machine learning model. This estimation process is suitable for predicting long-term trends infrequently.
  • the AI section 70 is capable of acquiring performance index value data stored in the data bus section 68.
  • the AI section 70 may perform estimation processing based on the performance index value data stored in the data bus section 68 and the above-mentioned machine learning model. This estimation process is suitable for performing short-term predictions frequently.
  • the performance management unit 88 calculates, for example, a performance index value (for example, KPI) based on a metric indicated by a plurality of metric data.
  • the performance management unit 88 calculates a performance index value (for example, a performance index value related to an end-to-end network slice) that is a comprehensive evaluation of multiple types of metrics that cannot be calculated from a single metric data. Good too.
  • the performance management unit 88 may generate comprehensive performance index value data indicating a performance index value that is a comprehensive evaluation.
  • the performance management unit 88 may obtain the above-mentioned performance index value file from the big data platform unit 66. Additionally, the performance management unit 88 may acquire estimation result data from the AI unit 70. Then, performance index values such as KPI may be calculated based on at least one of the performance index value file or the estimation result data. Note that the performance management unit 88 may directly acquire the metric data from the monitoring function unit 72. Then, a performance index value such as a KPI may be calculated based on the metric data.
  • the failure management unit 86 is configured to determine whether the communication system 1 is operating based on at least one of the above-mentioned metric data, the above-mentioned alert notification, the above-mentioned estimation result data, and the above-mentioned comprehensive performance index value data. Detect occurrence of failure. For example, the failure management unit 86 may detect the occurrence of a failure that cannot be detected from a single metric data or a single alert notification based on a predetermined logic. The fault management unit 86 may generate detected fault data indicating the detected fault.
  • failure management unit 86 may directly acquire metric data and alert notifications from the monitoring function unit 72. Further, the failure management unit 86 may obtain a performance index value file and an alert file from the big data platform unit 66. Further, the fault management section 86 may obtain alert message data from the data bus section 68.
  • the policy manager unit 90 includes, for example, the above-mentioned metric data, the above-mentioned performance index value data, the above-mentioned alert message data, the above-mentioned performance index value file, the above-mentioned alert file, the above-mentioned estimation result data, and the above-mentioned A predetermined determination process is executed based on at least one of the comprehensive performance index value data and the above-mentioned detected failure data.
  • the policy manager section 90 may execute an action according to the result of the determination process. For example, the policy manager section 90 may output a network slice construction instruction to the slice manager section 92. Further, the policy manager section 90 may output an instruction for scaling or replacing the element to the life cycle management section 94 according to the result of the determination process.
  • the policy manager unit 90 is capable of acquiring performance index value data stored in the data bus unit 68. Then, the policy manager section 90 may execute a predetermined determination process based on the performance index value data obtained from the data bus section 68. Further, the policy manager section 90 may execute a predetermined determination process based on the alert message data stored in the data bus section 68.
  • the ticket management unit 84 generates a ticket indicating the content to be notified to the administrator of the communication system 1, for example.
  • the ticket management unit 84 may generate a ticket indicating the content of the occurred failure data. Further, the ticket management unit 84 may generate a ticket indicating the value of performance index value data or metric data. Further, the ticket management unit 84 may generate a ticket indicating the determination result by the policy manager unit 90.
  • the ticket management unit 84 notifies the administrator of the communication system 1 of the generated ticket.
  • the ticket management unit 84 may, for example, send an e-mail with the generated ticket attached to the e-mail address of the administrator of the communication system 1.
  • FIG. 7 is a diagram schematically showing an example of the data bus section 68 according to the present embodiment.
  • the data bus section 68 according to this embodiment includes, for example, a plurality of queues 100 that hold performance index value data in a first-in, first-out list structure.
  • Each queue 100 belongs to either the first queue group 102a or the second queue group 102b.
  • a plurality of aggregation processes 104 are operating in the monitoring function unit 72.
  • Each of the aggregation processes 104 has preset elements to be aggregated by the aggregation process 104 .
  • gNBs to be aggregated by the aggregation process 104 are set in advance.
  • each aggregation process 104 acquires metric data from the NFs (eg, RU 40, DU 42, and CU-UP 44b) under the gNB that is the aggregation target of the aggregation process 104.
  • the aggregation process 104 executes enrichment processing to generate performance index value data indicating the communication performance of the gNB based on the acquired metric data.
  • the aggregation process 104 and the queue 100 are associated in advance.
  • FIG. 7 shows that the aggregation process 104 and the queue 100 are associated in a one-to-one relationship; however, the aggregation process 104 and the queue 100 are shown in a many-to-many relationship. You can leave it there.
  • the aggregation process 104 associated with the queues 100 included in the first queue group 102a will be referred to as a first group aggregation process 104a. Further, the aggregation process 104 associated with the queue 100 included in the second queue group 102b will be referred to as a second group aggregation process 104b.
  • each first group aggregation process 104a aggregates the metric data from the previous aggregation to the current time, which is associated with the first group aggregation process 104a, at predetermined time intervals (for example, every minute). By doing so, performance index value data is generated.
  • the first group aggregation process 104a acquires metric data from one or more NFs associated with the first group aggregation process 104a, for example, at one-minute intervals. Then, the first group aggregation process 104a generates performance index value data for the aggregation period by aggregating the metric data for the same aggregation period.
  • each second group aggregation process 104b aggregates the metric data from the previous aggregation to the current time, which is associated with the second group aggregation process 104b, at predetermined time intervals (for example, every 15 minutes). By doing so, performance index value data is generated.
  • the second group aggregation process 104b acquires metric data from one or more NFs associated with the second group aggregation process 104b, for example, at 15 minute intervals. Then, the second group aggregation process 104b generates performance index value data for the aggregation period by aggregating the metric data for the same aggregation period.
  • the maximum number of performance index value data that can be stored in the queues 100 included in the first queue group 102a is determined in advance.
  • a maximum of 60 pieces of performance index value data can be stored in the queue 100.
  • the maximum number is "60".
  • the maximum number of performance index value data that can be stored in the queues 100 included in the second queue group 102b is determined in advance.
  • the maximum number is "4".
  • one NF may be associated with both the first group aggregation process 104a and the second group aggregation process 104b. Then, the NF may output the type of metric data to be aggregated in the first group aggregation process 104a to the first group aggregation process 104a at one-minute intervals. Then, the NF may output the type of metric data to be aggregated in the second group aggregation process 104b to the second group aggregation process 104b at 15 minute intervals.
  • the type of metric data output to the first group aggregation process 104a and the type of metric data output to the second group aggregation process 104b may be the same or different.
  • metric data regarding some metrics that are desirable to be monitored in real time may be output to the first group aggregation process 104a.
  • a plurality of estimation processes 106 are operating in the AI section 70. Some of these estimation processes 106 execute estimation processing based on performance index value data stored in the data bus unit 68, and the rest execute estimation processing based on files stored in the big data platform unit 66. Execute processing.
  • the estimation process 106 and the queue 100 are associated in advance.
  • FIG. 8 shows that the estimation process 106 and the queue 100 are associated in a one-to-one relationship; however, the estimation process 106 and the queue 100 are shown in a many-to-many relationship. You can leave it there.
  • each estimation process 106 acquires performance index value data stored in the queue 100 included in the first queue group 102a, which corresponds to the estimation process 106. Then, the estimation process executes predetermined estimation processing in the estimation process 106 based on the performance index value data.
  • the estimation process 106 calculates, for example, in response to the performance index value data being enqueued in the queue 100 included in the first queue group 102a, the estimation process
  • the performance index value data of the nearest neighbor constant or the nearest neighbor period including at least the latest performance index value data among the performance index value data stored in the queue 100, which is a small number, is acquired.
  • the configuration is such that any performance index value data included in the queue 100 can be accessed (obtained) without dequeueing. It has become.
  • the data bus unit 68 transmits the data to one or more estimation processes 106 associated with the queue 100. , a notification indicating that the performance index value data has been enqueued may be output.
  • the estimation process 106 determines that the number of performance index values stored in the queue 100 is smaller than the maximum number of performance index value data that can be stored in the queue 100.
  • the performance index value data of the nearest neighbor constant or the nearest neighbor period including at least the latest performance index value data of the data may be acquired.
  • the estimation process 106 shown in FIG. 8 acquires 15 pieces of estimated index value data, including the latest performance index value data. These performance index value data correspond to the last 15 minutes of performance index value data including the latest performance index value data. Then, the estimation process 106 executes estimation processing based on the performance index value data.
  • estimation process 106 does not need to acquire only part of the performance index value data stored in the queue 100 as described above, but can acquire all the performance index value data stored in the queue 100. You may.
  • the policy manager unit 90 determines the state of the communication system 1 based on the performance index value data acquired by the estimation process 106.
  • the policy manager section 90 may determine the state of the communication system 1 based on the estimation result by the estimation process 106. For example, the state of an element included in the communication system 1 and associated with the estimation process 106 may be determined.
  • the data bus unit 68 transmits at least part of the performance index value data stored in the queue 100 at a frequency less than the frequency at which the AI unit 70 acquires the performance index value data.
  • the data bus unit 68 may generate a performance index value file containing performance index value data stored in the queue 100 after the timing at which the performance index value file was previously generated at a predetermined time interval.
  • the time interval may match the time corresponding to the maximum number of performance index value data that can be stored in the queues 100 included in the first queue group 102a (60 minutes in the above example), They don't have to match.
  • the data bus section 68 may include all the performance index value data stored in the queue 100. You can also generate files. That is, in response to all the performance index value data stored in the queue 100 being replaced, a file containing all the performance index value data stored in the queue 100 may be generated.
  • new performance index value data when new performance index value data is enqueued when 60 pieces of performance index value data are stored in the queue 100 included in the first queue group 102a, it is stored in the queue 100.
  • the oldest performance index value data that has been stored is dequeued. That is, the oldest performance index value data stored in the queue 100 is deleted from the queue 100.
  • the maximum number of performance index value data that can be stored in the queues 100 included in the first queue group 102a is not limited to 60 pieces.
  • the maximum number of performance index value data that can be stored in the queues 100 included in the first queue group 102a may be 180 pieces.
  • performance index value files may be generated at three hour intervals.
  • the data bus unit 68 when four pieces of performance index value data are stored in the queue 100 included in the second queue group 102b, the data bus unit 68 stores these four pieces of performance index value data in one file. Generate a summarized performance index value file. The data bus unit 68 then outputs the generated performance index value file to the big data platform unit 66.
  • the data bus unit 68 dequeues all the performance index value data stored in the queue 100. That is, all performance index value data stored in the queue 100 is deleted from the queue 100.
  • the processing executed in response to the generation of the performance index value file is different between the queues 100 included in the first queue group 102a and the queues 100 included in the second queue group 102b.
  • the queue 100 included in the second queue group 102b all performance index value data stored in the queue 100 is deleted from the queue 100 in response to generation of the performance index value file.
  • dequeuing in accordance with the generation of the performance index value file is not performed.
  • the policy manager unit 90 in response to the performance index value data being enqueued in the queue 100 included in the first queue group 102a, stores the performance index value data that can be stored in the queue 100.
  • the performance index value data of the nearest neighbor constant or the nearest neighbor period may be acquired, which is smaller than the maximum number and includes at least the latest performance index value data among the performance index value data stored in the queue 100. Then, the policy manager section 90 may determine the state of the communication system 1 based on the acquired performance index value data.
  • the policy manager section 90 instructs the life cycle management section 94 to increase the allocation of resource blocks. Good too. Then, the allocation of resource blocks for the gNB may be increased. Furthermore, if the predicted value of the traffic volume in a certain gNB indicated by the estimation result data is smaller than a predetermined value, the policy manager unit 90 may instruct the life cycle management unit 94 to scale out the gNB. . Then, elements under the gNB may be scaled out.
  • the data bus unit 68 may appropriately generate a queue 100 in which performance index value data is stored. Further, the monitoring function unit 72 may appropriately generate a queue 100 in which performance index value data is stored. Further, the AI unit 70 may appropriately generate a queue 100 in which performance index value data is stored.
  • the queue 100 in response to performance index value data being enqueued in the queue 100, the queue 100 can store more performance index value data than the maximum number of performance index value data that can be stored in the queue 100. Acquire a small number of performance index value data of the nearest neighbor constant or nearest neighbor period that includes the latest performance index value data among the performance index value data stored in at least the queue 100, and apply the performance index value data to the performance index value data.
  • a determination unit that determines the state of the communication system 1 based on the determination unit is included.
  • the above-mentioned estimation process 106 and policy manager section 90 may collectively correspond to the determination section. Further, the policy manager section 90 may correspond to the determination section.
  • At least a portion of the performance index value data stored in the queue 100 is transmitted at a frequency lower than the frequency at which the above-described determination unit acquires the performance index value data.
  • the data bus section 68 corresponds to the file generating section.
  • the latest file does not necessarily include the latest performance index value data. Therefore, if the state of the communication system 1 is determined based on the file, an appropriate determination result may not be obtained.
  • the state of the communication system 1 is determined. In this way, according to this embodiment, the state of the communication system 1 can be appropriately determined.
  • the first group aggregation process 104a associated with a certain gNB aggregates metric data related to elements included in the gNB (for example, elements under the gNB). Generate performance index value data related to.
  • performance index value data indicating the user plane traffic volume of the gNB is generated by aggregating metric data indicating the traffic volume of the RU 40, DU 42, and CU-UP 44b included in the gNB.
  • the performance index value data may indicate other communication performance.
  • the performance index value data may indicate multiple types of communication performance.
  • the first group aggregation process 104a enqueues the generated performance index value data into the queue 100 associated with the first group aggregation process 104a.
  • the first group aggregation process 104a performs aggregation and enqueue at one-minute intervals. Further, it is assumed that the queue 100 can store at least 60 pieces of performance index value data.
  • the estimation process 106 associated with the queue 100 selects the latest performance index value data among the performance index value data stored in the queue 100. Obtain the performance index value data of the nearest neighbor constants.
  • the estimation process 106 predicts the network load in the period from "the reference time” to "a predetermined time after the reference time” based on the performance index value before the given reference time regarding the communication system 1. (Hereinafter, the period in which the network load is predicted will also be referred to as the prediction period).
  • the estimation process 106 uses a learned machine learning model stored in advance in the AI unit 70 to calculate the prediction from the current time to 20 minutes ahead of the current time based on these 60 performance index value data. Predict the traffic volume of the gNB.
  • This machine learning model may be, for example, an existing prediction model. Further, for example, this machine learning model may be a trained machine learning model in which supervised learning using a plurality of training data has been executed in advance. Each of the plurality of training data includes, for example, learning input data indicating the traffic volume in the gNB for 60 minutes up to the given time point, which is different from each other, and learning input data indicating the traffic amount in the gNB from the given time point to the time point in the gNB. and teacher data indicating the amount of traffic up to 20 minutes ahead.
  • the estimation process 106 outputs estimation result data indicating the above estimation result (prediction result) to the policy manager section 90.
  • the aggregation interval of the performance index value data and the time interval of the traffic amount shown in the estimation result data may be the same or different.
  • the estimation result data may indicate the amount of traffic at one-minute intervals, may indicate the amount of traffic at longer time intervals (for example, every two minutes), or may indicate the amount of traffic at longer time intervals (for example, two-minute intervals). It may also indicate the amount of traffic in short time intervals (for example, 30 second intervals).
  • the policy manager unit 90 determines whether the predicted value of the network load during the period satisfies a given condition, based on the prediction by the estimation process 106.
  • the policy manager unit 90 determines whether or not to scale out the gNB.
  • the policy manager section 90, life cycle management section 94, container management section 78, and configuration management section 76 cooperate with each other to 1 may be scaled out. For example, scaling out of the DU 42 and CU-UP 44b included in the gNB may be performed.
  • the policy manager unit 90, lifecycle management unit 94, container management unit 78, and configuration management unit 76, which cooperate with each other to execute scale-out, will be collectively referred to as a scale-out execution unit.
  • FIGS. 9 to 15 are diagrams each schematically showing an example of a graphical representation of estimation result data.
  • the horizontal axis represents time t from a given reference point in time (for example, the current time), and the vertical axis represents the traffic volume y(t) in the gNB.
  • the traffic amount is expressed as a smooth graph for the sake of explanation, but the actual estimation result data shows the traffic amount discretely.
  • the traffic volume at each of a plurality of prediction time points having different lengths of time from a given reference time point is predicted.
  • the traffic volume is predicted from the reference time until 20 minutes after the reference time.
  • the period from the "reference time” to "the first time after the reference time” (for example, from the reference time to 10 minutes after the reference time) will be referred to as the first period.
  • the period from "the first time after the reference time” to "the second time after the reference time” (for example, from 10 minutes after the reference time to 20 minutes after the reference time) is defined as the second time. We will call it a period.
  • the policy manager unit 90 may determine whether the predicted value of the traffic volume exceeds a predetermined threshold th1 in the first period.
  • the above-described scale-out may be executed.
  • the policy manager unit 90 may determine, for each of the plurality of prediction time points included in the first period, whether the predicted value of the network load at the prediction time point exceeds a threshold value.
  • the above-described scale-out may be executed.
  • the predicted value of the traffic volume at the predicted time point 6 minutes after the reference time point exceeds the threshold value t1. Therefore, when the policy manager section 90 receives estimation result data corresponding to the graph of FIG. 9, scale-out will be executed.
  • the policy manager unit 90 also determines whether the predicted value of the traffic volume exceeds the predetermined threshold th1 in the second period, that is, the prediction that the predicted value of the traffic volume exceeds the predetermined threshold th1 in the second period. It may also be determined whether a time point exists.
  • the scale-out execution unit scales out the elements included in the communication system 1. May be executed. That is, it may be determined whether a given condition is satisfied for each of two or more prediction periods that have different reference times but at least a portion of the periods overlap. Then, when a determination that the condition is satisfied is obtained for a predetermined number or more prediction periods, the scale-out execution unit may execute scale-out.
  • the predetermined number may be determined as appropriate depending on the required quality, the specifications of the communication system 1, and the like.
  • the reference time is 3:00 p.m.
  • the period from 3:10 p.m. to 3:20 p.m. corresponds to the second period.
  • the reference time is 3:01 p.m.
  • the period from 3:11 p.m. to 3:21 p.m. corresponds to the second period.
  • the reference time is 3:02 p.m.
  • the period from 3:12 p.m. to 3:22 p.m. corresponds to the second period.
  • the scale-out execution unit executes the scale-out. May be executed. In other words, in the determination for each of these three prediction periods in which the reference points are different but at least a portion of the period overlaps, it is determined that the predicted value of the traffic volume exceeds the predetermined threshold th1 in the second period.
  • the scale-out execution unit may execute the scale-out when the number of scale-out units is equal to or greater than three (for example, all three are determined as such).
  • the scale-out execution unit may execute the scale-out.
  • FIG. 10A is a diagram showing an example of a graph corresponding to estimation result data where the reference time is 3:00 pm.
  • FIG. 10B is a diagram illustrating an example of a graph corresponding to estimation result data whose reference time is 3:01 p.m.
  • FIG. 10C is a diagram illustrating an example of a graph corresponding to estimation result data whose reference time is 3:02 p.m. In this way, predicted values of the network load are shown for a plurality of periods in which the reference time points differ by one minute but overlap at least in part.
  • the predicted value of the traffic volume at the predicted time point of 3:16, which is 16 minutes after the reference time point exceeds the threshold value t1.
  • the predicted value of the traffic volume at the predicted time point of 3:16, which is 15 minutes after the reference time point exceeds the threshold value t1.
  • the predicted value of the traffic volume at the predicted time point of 3:16, which is 14 minutes after the reference time point exceeds the threshold value t1.
  • a predetermined number of times (in this example, 3 times) that the condition is satisfied is determined for each of two or more (here, three) forecast periods with different reference points but overlapping at least a portion of the periods. It has been more than that. Therefore, if the policy manager unit 90 continuously receives estimation result data corresponding to the graphs in FIGS. 10A to 10C, scale-out will be executed.
  • the scale-out execution unit performs scale-out. may be executed.
  • the conditions under which scale-out is executed may be different between the first period and the second period.
  • the scale-out execution unit is included in the communication system 1. You may also perform scaling out of elements that are In other words, the prediction value for the period from the first time after the reference time to the second time after the reference time, in the judgment for each of two or more forecast periods having different reference points but overlapping at least a portion of the periods.
  • the scale-out execution unit may scale out the elements included in the communication system 1 when it is determined that the size of the communication system 1 satisfies a given condition a predetermined number or more.
  • the scale-out execution unit scales out the elements included in the communication system 1 in response to the one-time determination that the magnitude of the predicted value satisfies the given condition. It's okay.
  • the elements included in the communication system 1 may be controlled depending on the length of time from the reference time to the timing closest to the reference time when the network load exceeds the threshold value.
  • the scale-out is performed in response to the prediction period being judged once that the magnitude of the predicted value in the period from the reference point in time to the first time after the reference point in time satisfies the given condition.
  • the execution unit may scale out elements included in the communication system 1.
  • scale-out is not executed immediately, and the network load is predicted to be high in multiple predictions. Scale-out is performed when expected.
  • the elements included in the communication system 1 can be appropriately scaled out.
  • the policy manager unit 90 makes a decision in response to a determination that a given condition is satisfied in each of two or more prediction periods having different reference points but overlapping at least a portion of the periods. , it may be determined whether the change in the maximum value of the predicted value of the network load satisfies the above-mentioned given condition and another condition (condition regarding the change in the maximum value). Then, based on the determination, it may be determined whether to perform scale-out. Then, in response to the decision to execute scale-out, the scale-out execution unit may execute scale-out of the elements included in the communication system 1. For example, scaling out of the elements included in the communication system 1 may be performed in response to a determination that the change in the maximum predicted value of the network load satisfies the above-mentioned other condition.
  • the policy manager unit 90 determines that the conditions regarding the change in the maximum value are not satisfied and decides not to perform scale-out. good.
  • FIG. 11A is a diagram showing another example of a graph corresponding to estimation result data where the reference time is 3:00 pm.
  • FIG. 11B is a diagram showing another example of a graph corresponding to estimation result data whose reference time is 3:01 p.m.
  • FIG. 11C is a diagram showing another example of a graph corresponding to estimation result data whose reference time is 3:02 p.m.
  • the maximum predicted value of the traffic amount is larger in the prediction at 3:01 PM than in the prediction at 3 PM.
  • scaling out may be performed as described above.
  • the maximum value of the predicted value of traffic volume is smaller in the prediction at 3:01 pm than in the prediction at 3:00 pm. Further, the maximum predicted value of the traffic amount is smaller in the prediction at 3:02 pm than in the prediction at 3:01 pm. In this way, scale-out may not be performed in a situation where the maximum predicted value of traffic volume is decreasing.
  • the elements included in the communication system 1 can be scaled out more appropriately.
  • the scale-out execution unit determines once that the predicted value of the network load satisfies a predetermined condition over a predetermined time period or longer within the prediction period. You may perform scaling out of the elements contained in the .
  • scale-out may be performed in response to one determination that the predicted value of the traffic volume exceeds the threshold th1 for a predetermined period of time (for example, 3 minutes) or more during the second period.
  • scale-out may also be performed.
  • the scale-out execution unit may execute scale-out of elements included in the communication system 1.
  • the predicted value of the traffic volume exceeds the threshold th1 for 5 minutes up to 20 minutes after the reference time.
  • the predicted value of the traffic amount exceeds the threshold th1 in the last 5 minutes of the 20-minute prediction period.
  • the predicted value of the traffic volume 20 minutes after the reference time will exceed the threshold th1 in subsequent predictions as well.
  • the above-mentioned threshold value may be associated with a predicted time point, and may increase as the length of time from the reference time point to the predicted time point becomes longer.
  • the threshold t2 in the second period may be larger than the threshold t1 in the first period.
  • the policy manager unit 90 may determine whether the magnitude of the predicted value of the network load at the prediction time exceeds the threshold th1. The policy manager unit 90 may then determine, for at least one prediction time point included in the second period, whether the magnitude of the predicted value of the network load at the prediction time point exceeds the threshold th2.
  • the scale-out execution unit may execute scale-out of the elements included in the communication system 1.
  • the predicted value of the traffic volume in the first period does not exceed the threshold value t1
  • the predicted value of the traffic volume in the second period does not exceed the threshold value t2. Therefore, scale out is not executed in this case.
  • the predicted value of the traffic volume in the first period does not exceed the threshold value t1, but the predicted value of the traffic volume in the second period exceeds the threshold value t2. Therefore, in this case, scale out will be executed.
  • the scale-out execution unit may scale out the elements included in the communication system 1.
  • the scale-out execution unit may cause the communication system 1 to You may also perform scaling out of the included elements.
  • the threshold value may be a function of the length of time from the reference time point to the predicted time point.
  • the threshold th(t) shown by the broken line, so scale-out will be performed.
  • the above-mentioned threshold is associated with a prediction point in time, and the length of time from the reference point to the relevant prediction point is made longer, the predicted value of the network load will be much better for the prediction point in time with low prediction accuracy. If it is not large, the condition of exceeding the threshold value will not be satisfied. Therefore, by doing so, the elements included in the communication system 1 can be scaled out more appropriately.
  • the above-mentioned determination is made based on the traffic volume prediction result, but the above-mentioned determination may be made based on other communication performance (for example, latency). Further, the above-described determination may be made based on a comprehensive evaluation value calculated based on a plurality of performance index values. For example, it may be determined whether a comprehensive evaluation value determined based on traffic volume and latency exceeds a threshold value.
  • the gNB control plane scale-out may be executed in the same manner. For example, whether to scale out the DU 42 or the CU-CP 44a based on a prediction result based on performance index value data indicating at least one performance index value among the number of registers, the number of active users, the number of completed handovers, etc. It may be determined whether
  • scaling out of elements of the core network system 34 may be performed instead of elements of the RAN 32 such as gNB. For example, scaling out of the AMF 46, SMF 48, and UPF 50 may be performed. Further, in this case, performance index value data related to the elements of the core network system 34 may be used to determine whether to perform scale-out. Alternatively, performance index value data regarding the elements of the RAN 32 and the elements of the core network system 34 may be used for the determination.
  • transport scale-out may be performed in a similar manner.
  • the monitoring function unit 72 includes an aggregation process 110a that aggregates the communication performance of elements related to the control plane of a particular gNB, and a user plane of the gNB, as shown in FIG.
  • a totalizing process 110b that totals the communication performance of the elements related to the above may be operating.
  • the data bus unit 68 includes a queue 112a in which performance index value data output from the aggregation process 110a is stored, and a queue 112b in which performance index value data output from the aggregation process 110b is stored. It's okay.
  • an estimation process 114a that obtains the performance index value data stored in the queue 112a and an estimation process 114b that obtains the performance index value data stored in the queue 112b are operating. Good too.
  • the policy manager unit 90 may determine the state of the communication system 1 based on the estimation result by the estimation process 114a and the estimation result by the estimation process 114b.
  • the policy manager unit 90 may determine the threshold value based on the prediction result of the network load of the control plane included in the communication system 1. For example, the higher the network load of the control plane, the smaller the threshold value may be determined.
  • the policy manager section 90 may determine the threshold value based on the estimation result data output to the policy manager section 90 from the estimation process 114a.
  • the policy manager unit 90 may determine whether the predicted value of the network load of the user plane included in the communication system 1 exceeds the threshold determined as described above.
  • the policy manager unit 90 determines whether the magnitude of the predicted value indicated by the estimation result data output from the estimation process 114b to the policy manager unit 90 exceeds the threshold determined as described above, good.
  • the scale-out execution unit You may also scale out the elements that make up the .
  • the scale-out execution unit may execute scale-out of elements constituting part or all of the user plane included in the communication system 1.
  • the policy manager unit 90 may determine the coefficient based on the prediction result of the network load of the control plane included in the communication system 1. For example, the higher the network load of the control plane, the larger the value of the coefficient may be determined.
  • the policy manager unit 90 may determine the coefficients based on estimation result data output from the estimation process 114a to the policy manager unit 90.
  • the policy manager unit 90 determines that if the magnitude of the corrected predicted value obtained by multiplying the predicted value of the network load of the user plane included in the communication system 1 at the prediction time point by a coefficient exceeds the threshold value. It may be determined whether the following conditions are satisfied.
  • the policy manager unit 90 determines whether the condition that the magnitude of the corrected predicted value, which is obtained by multiplying the predicted value indicated by the estimation result data outputted from the estimation process 114b to the policy manager unit 90 by a coefficient, exceeds a threshold value is satisfied. may be determined.
  • the scale-out execution unit configures some or all of the user plane included in the communication system 1. You may also perform element scaling.
  • the policy manager unit 90 determines whether the magnitude of the corrected predicted value obtained by multiplying the predicted value of the network load of the user plane included in the communication system 1 by the determined coefficient satisfies a given condition. Good too.
  • the policy manager unit 90 determines whether the magnitude of the corrected predicted value obtained by multiplying the predicted value indicated by the estimation result data outputted from the estimation process 114b to the policy manager unit 90 by a coefficient satisfies a given condition. You may.
  • the scale-out execution unit performs the following: Scaling out of elements constituting part or all of the user plane included in the communication system 1 may be performed.
  • control plane network load There seems to be some correlation between the control plane network load and the user plane network load. For example, if the network load on the control plane increases, there is a high possibility that the network load on the user plane will increase shortly thereafter.
  • the higher the network load on the control plane the larger the threshold value may be determined. Furthermore, the higher the network load of the control plane, the smaller the value of the coefficient may be determined.
  • the data bus unit 68 monitors whether performance index value data is enqueued for each of the queues 100 included in the first queue group 102a (S101).
  • the data bus unit 68 When enqueuing of performance index value data for the queue 100 is detected, the data bus unit 68 outputs a notification indicating that the performance index value data has been enqueued to the estimation process 106 associated with the queue 100 ( S102).
  • the estimation process 106 that has received the notification acquires the performance index value data of the nearest constant or nearest period that includes the latest performance index value data stored in the queue 100 (S103).
  • the estimation process 106 executes a predetermined estimation process based on the performance index value data acquired in the process shown in S103, and generates estimation result data (S104).
  • the estimation process 106 outputs the estimation result data generated in the process shown in S104 to the policy manager unit 90 (S105).
  • the policy manager unit 90 that has received the estimation result data executes a determination process based on the estimation result (S106).
  • the processes shown in S102 to S105 are executed in response to performance index value data being enqueued to the queue 100 included in the first queue group 102a.
  • the data bus unit 68 waits until one of the queues 100 included in the first queue group 102a satisfies a predetermined condition (S201).
  • the data bus unit 68 When a certain queue 100 satisfies a predetermined condition, the data bus unit 68 generates a performance index value file containing at least part of the performance index value data stored in the queue 100 (S202), and performs S201.
  • the data bus unit 68 waits until one of the queues 100 included in the second queue group 102b satisfies a predetermined condition (S301).
  • the data bus unit 68 When a certain queue 100 satisfies a predetermined condition, the data bus unit 68 generates a performance index value file that includes at least part of the performance index value data stored in the queue 100 (S302).
  • the data bus unit 68 deletes all performance index value data stored in the queue 100 from the queue 100 (S303), and returns to the process shown in S301.
  • the data bus unit 68 dequeues all the performance index value data stored in the queue 100, thereby dequeuing all the performance index value data stored in the queue 100. It may also be deleted from the queue 100.
  • the data bus unit 68 erases all performance index value data stored in the queue 100 by dequeuing, and then creates a performance index value file based on the dequeued performance index value data. may be generated.
  • the policy manager unit 90 determines whether a given condition is satisfied at predetermined time intervals (for example, every minute) (S401).
  • the scale-out execution unit executes scale-out (S402).
  • FIG. 21 Another example of the flow of the determination processing shown in S106 above and the execution of scale-out subsequent to the determination processing will be described with reference to the flowchart illustrated in FIG. 21.
  • the process shown in FIG. 21 is executed, for example, at predetermined time intervals (for example, every minute). Further, in this processing example, it is assumed that a counter value is held in the policy manager unit 90, and the initial value of the counter value is 0.
  • the policy manager unit 90 determines whether a given first condition is satisfied (S501).
  • a given first condition there is a condition such as "the predicted value of the traffic volume exceeds a predetermined threshold th1 in the first period".
  • the policy manager unit 90 determines whether a given second condition is satisfied (S502).
  • a given second condition there is a condition such as "the predicted value of the traffic amount exceeds the predetermined threshold th1 in the second period".
  • the policy manager unit 90 updates the value of the held counter to 0 (S503), and returns to the process shown in S501.
  • the policy manager unit 90 increases the value of the held counter by 1 (S504).
  • the policy manager unit 90 checks whether the value of the counter it holds has reached a predetermined value (for example, 3) (S505).
  • the scale-out execution unit executes scale-out (S506). Then, the policy manager unit 90 updates the value of the held counter to 0 (S507), and returns to the process shown in S501.
  • the functional unit according to this embodiment does not need to be an NF in 5G.
  • the functional units according to this embodiment include eNodeB, vDU, vCU, P-GW (Packet Data Network Gateway), S-GW (Serving Gateway), MME (Mobility Management Entity), HSS (Home Subscriber Server), etc. , it may be a network node in 4G.
  • the functional unit according to this embodiment may be realized using hypervisor-type or host-type virtualization technology instead of container-type virtualization technology. Further, the functional unit according to this embodiment does not need to be implemented by software, and may be implemented by hardware such as an electronic circuit. Further, the functional unit according to this embodiment may be implemented by a combination of an electronic circuit and software.
  • a threshold value associated with the prediction time point which increases as the length of time from the reference time point to the prediction time point becomes longer, is set at the prediction time point.
  • the determining means is For at least one predicted time included in a period from the reference time to a first time after the reference time, whether the magnitude of the predicted value of the network load at the prediction time exceeds a first threshold. Determine, For at least one prediction time included in the period from the first time after the reference time to the second time after the reference time, the magnitude of the predicted value of the network load at the prediction time is equal to the second time after the reference time.
  • the scale-out execution system determines whether or not a second threshold greater than the first threshold is exceeded;
  • the scale-out execution system according to [1], characterized in that: [3]
  • the scale-out execution means determines the predicted value at some or all of the plurality of prediction time points in the determination for each of the two or more prediction periods in which the reference time points are different but at least a portion of the periods overlap.
  • the scale-out execution system according to [1] or [2], characterized in that: [4] further comprising a threshold determining means for determining the threshold based on a prediction result of a network load of a control plane included in the communication system, The determining means determines whether a predicted value of a network load of a user plane included in the communication system exceeds the determined threshold; The scale-out execution means scales out part or all of the user plane included in the communication system when it is determined that the predicted value exceeds the threshold at some or all of the plurality of prediction time points.
  • the scale-out execution system according to [1], characterized in that: [5] further comprising coefficient determining means for determining a coefficient based on a prediction result of a network load of a control plane included in the communication system, The determining means determines, for each of the plurality of prediction time points, a condition that a corrected predicted value obtained by multiplying the predicted value of the network load of the user plane included in the communication system at the prediction time point by the coefficient exceeds the threshold value. Determine whether it satisfies or not, The scale-out execution means scales out part or all of the user plane included in the communication system when it is determined that the corrected predicted value exceeds the threshold at some or all of the plurality of prediction time points.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

通信システムに含まれる要素を適切にスケールアウトできるようにする。AI部(70)は、通信システムに係る所与の基準時点以前の性能指標値に基づいて、当該基準時点から当該基準時点の所定時間後までの予測期間に含まれる複数の予測時点におけるネットワーク負荷を予測する。ポリシーマネージャ部(90)は、当該予測に応じて、複数の予測時点のそれぞれについて、基準時点から当該予測時点までの時間の長さが長くになるにつれて大きくなる、当該予測時点に対応付けられる閾値を、当該予測時点におけるネットワーク負荷の予測値が超えるか否かを判定する。ポリシーマネージャ部(90)、ライフサイクル管理部(94)、コンテナ管理部(78)、及び、構成管理部(76)は、複数の予測時点のうちの一部又は全部において予測値が閾値を超えると判定される場合に、通信システムに含まれる要素のスケールアウトを実行する。

Description

通信システムに含まれる要素の適切なスケールアウトの実行
 本発明は、通信システムに含まれる要素の適切なスケールアウトの実行に関する。
 特許文献1には、通信装置のネットワーク処理機能ごとの利用帯域を取得し、帯域がスケールアウト閾値よりも大きければ、ネットワーク処理に用いられるネットワークソフトウェア実行部の数を増大させることが記載されている。
特開2016-220126号公報
 特許文献1に記載されているような、通信システムに含まれる要素のスケールアウトを適時に実行するために、ネットワーク負荷の予測結果に基づいてスケールアウトを実行することが考えられる。このような予測では、一般的に、ネットワーク負荷が予測される時点(予測時点)までの時間が長いほど予測精度が低くなる傾向がある。
 ここで、精度が低い予測によってネットワーク負荷が高くなることが予測される場合には、予測よりも早いタイミングでネットワーク負荷が高くなるおそれがあることを考慮し、余裕を持って早めにスケールアウトを実行することが考えられる。
 しかし一方で、予測精度が低いことからネットワーク負荷が実際には予測ほど高くならない可能性が高く、そうであるのならばスケールアウトは実行しない方がよい。
 本発明は上記実情に鑑みてなされたものであって、その目的の一つは、通信システムに含まれる要素を適切にスケールアウトできるようにすることにある。
 上記課題を解決するために、本開示に係るスケールアウト実行システムは、通信システムに係る所与の基準時点以前の性能指標値に基づいて、当該基準時点から当該基準時点の所定時間後までの予測期間に含まれる複数の予測時点におけるネットワーク負荷を予測する予測手段と、前記予測に応じて、前記複数の予測時点のそれぞれについて、前記基準時点から当該予測時点までの時間の長さが長くになるにつれて大きくなる、当該予測時点に対応付けられる閾値を、当該予測時点における前記ネットワーク負荷の予測値が超えるか否かを判定する判定手段と、前記複数の予測時点のうちの一部又は全部において前記予測値が前記閾値を超えると判定される場合に、前記通信システムに含まれる要素のスケールアウトを実行するスケールアウト実行手段と、を含む。
 また、本開示に係るスケールアウト実行方法は、通信システムに係る所与の基準時点以前の性能指標値に基づいて、当該基準時点から当該基準時点の所定時間後までの予測期間に含まれる複数の予測時点におけるネットワーク負荷を予測することと、前記予測に応じて、前記複数の予測時点のそれぞれについて、前記基準時点から当該予測時点までの時間の長さが長くになるにつれて大きくなる、当該予測時点に対応付けられる閾値を、当該予測時点における前記ネットワーク負荷の予測値が超えるか否かを判定することと、前記複数の予測時点のうちの一部又は全部において前記予測値が前記閾値を超えると判定される場合に、前記通信システムに含まれる要素のスケールアウトを実行することと、を含む。
本発明の一実施形態に係る通信システムの一例を示す図である。 本発明の一実施形態に係る通信システムの一例を示す図である。 本発明の一実施形態に係るネットワークサービスの一例を模式的に示す図である。 本発明の一実施形態に係る通信システムに構築される要素間の関連付けの一例を示す図である。 本発明の一実施形態に係るプラットフォームシステムで実装される機能の一例を示す機能ブロック図である。 物理インベントリデータのデータ構造の一例を示す図である。 本発明の一実施形態に係るデータバス部の一例を模式的に示す図である。 推定プロセスによる性能指標値データの取得の一例を模式的に示す図である。 推定結果データのグラフ表現の一例を模式的に示す図である。 推定結果データのグラフ表現の一例を模式的に示す図である。 推定結果データのグラフ表現の一例を模式的に示す図である。 推定結果データのグラフ表現の一例を模式的に示す図である。 推定結果データのグラフ表現の一例を模式的に示す図である。 推定結果データのグラフ表現の一例を模式的に示す図である。 推定結果データのグラフ表現の一例を模式的に示す図である。 推定結果データのグラフ表現の一例を模式的に示す図である。 推定結果データのグラフ表現の一例を模式的に示す図である。 推定結果データのグラフ表現の一例を模式的に示す図である。 推定結果データのグラフ表現の一例を模式的に示す図である。 推定プロセスによる性能指標値データの取得の一例を模式的に示す図である。 本発明の一実施形態に係るプラットフォームシステムで行われる処理の流れの一例を示すフロー図である。 本発明の一実施形態に係るプラットフォームシステムで行われる処理の流れの一例を示すフロー図である。 本発明の一実施形態に係るプラットフォームシステムで行われる処理の流れの一例を示すフロー図である。 本発明の一実施形態に係るプラットフォームシステムで行われる処理の流れの一例を示すフロー図である。 本発明の一実施形態に係るプラットフォームシステムで行われる処理の流れの一例を示すフロー図である。
 以下、本発明の一実施形態について図面に基づき詳細に説明する。
 図1及び図2は、本発明の一実施形態に係る通信システム1の一例を示す図である。図1は、通信システム1に含まれるデータセンタ群のロケーションに着目した図となっている。図2は、通信システム1に含まれるデータセンタ群で実装されている各種のコンピュータシステムに着目した図となっている。
 図1に示すように、通信システム1に含まれるデータセンタ群は、セントラルデータセンタ10、リージョナルデータセンタ12、エッジデータセンタ14に分類される。
 セントラルデータセンタ10は、例えば、通信システム1がカバーするエリア内(例えば、日本国内)に分散して数個配置されている。
 リージョナルデータセンタ12は、例えば、通信システム1がカバーするエリア内に分散して数十個配置されている。例えば、通信システム1がカバーするエリアが日本国内全域である場合に、リージョナルデータセンタ12が、各都道府県に1から2個ずつ配置されてもよい。
 エッジデータセンタ14は、例えば、通信システム1がカバーするエリア内に分散して数千個配置される。また、エッジデータセンタ14のそれぞれは、アンテナ16を備えた通信設備18と通信可能となっている。ここで図1に示すように、1つのエッジデータセンタ14が数個の通信設備18と通信可能になっていてもよい。通信設備18は、サーバコンピュータなどのコンピュータを含んでいてもよい。本実施形態に係る通信設備18は、アンテナ16を介してUE(User Equipment)20との間で無線通信を行う。アンテナ16を備えた通信設備18には、例えば、後述のRU(Radio Unit)が設けられている。
 本実施形態に係るセントラルデータセンタ10、リージョナルデータセンタ12、エッジデータセンタ14には、それぞれ、複数のサーバが配置されている。
 本実施形態では例えば、セントラルデータセンタ10、リージョナルデータセンタ12、エッジデータセンタ14は、互いに通信可能となっている。また、セントラルデータセンタ10同士、リージョナルデータセンタ12同士、エッジデータセンタ14同士も互いに通信可能になっている。
 図2に示すように、本実施形態に係る通信システム1には、プラットフォームシステム30、複数の無線アクセスネットワーク(RAN)32、複数のコアネットワークシステム34、複数のUE20が含まれている。コアネットワークシステム34、RAN32、UE20は、互いに連携して、移動通信ネットワークを実現する。
 RAN32は、第4世代移動通信システム(以下、4Gと呼ぶ。)におけるeNB(eNodeB)や、第5世代移動通信システム(以下、5Gと呼ぶ。)におけるgNB(NR基地局)に相当する、アンテナ16を備えたコンピュータシステムである。本実施形態に係るRAN32は、主に、エッジデータセンタ14に配置されているサーバ群及び通信設備18によって実装される。なお、RAN32の一部(例えば、DU(Distributed Unit)、CU(Central Unit)、vDU(virtual Distributed Unit)、vCU(virtual Central Unit))は、エッジデータセンタ14ではなく、セントラルデータセンタ10やリージョナルデータセンタ12で実装されてもよい。
 コアネットワークシステム34は、4GにおけるEPC(Evolved Packet Core)や、5Gにおける5Gコア(5GC)に相当するシステムである。本実施形態に係るコアネットワークシステム34は、主に、セントラルデータセンタ10やリージョナルデータセンタ12に配置されているサーバ群によって実装される。
 本実施形態に係るプラットフォームシステム30は、例えば、クラウド基盤上に構成されており、図2に示すように、プロセッサ30a、記憶部30b、通信部30c、が含まれる。プロセッサ30aは、プラットフォームシステム30にインストールされるプログラムに従って動作するマイクロプロセッサ等のプログラム制御デバイスである。記憶部30bは、例えばROMやRAM等の記憶素子や、ソリッドステートドライブ(SSD)、ハードディスクドライブ(HDD)などである。記憶部30bには、プロセッサ30aによって実行されるプログラムなどが記憶される。通信部30cは、例えば、NIC(Network Interface Controller)や無線LAN(Local Area Network)モジュールなどといった通信インタフェースである。なお、通信部30cにおいて、SDN(Software-Defined Networking)が実装されていてもよい。通信部30cは、RAN32、コアネットワークシステム34、との間でデータを授受する。
 本実施形態では、プラットフォームシステム30は、セントラルデータセンタ10に配置されているサーバ群によって実装されている。なお、プラットフォームシステム30が、リージョナルデータセンタ12に配置されているサーバ群によって実装されていてもよい。
 本実施形態では例えば、購入者によるネットワークサービス(NS)の購入要求に応じて、購入要求がされたネットワークサービスがRAN32やコアネットワークシステム34に構築される。そして、構築されたネットワークサービスが購入者に提供される。
 例えば、MVNO(Mobile Virtual Network Operator)である購入者に、音声通信サービスやデータ通信サービス等のネットワークサービスが提供される。本実施形態によって提供される音声通信サービスやデータ通信サービスは、図1及び図2に示すUE20を利用する、購入者(上述の例ではMVNO)にとっての顧客(エンドユーザ)に対して最終的に提供されることとなる。当該エンドユーザは、RAN32やコアネットワークシステム34を介して他のユーザとの間で音声通信やデータ通信を行うことが可能である。また、当該エンドユーザのUE20は、RAN32やコアネットワークシステム34を介してインターネット等のデータネットワークにアクセスできるようになっている。
 また、本実施形態において、ロボットアームやコネクテッドカーなどを利用するエンドユーザに対して、IoT(Internet of Things)サービスが提供されても構わない。そして、この場合において、例えば、ロボットアームやコネクテッドカーなどを利用するエンドユーザが本実施形態に係るネットワークサービスの購入者となっても構わない。
 本実施形態では、セントラルデータセンタ10、リージョナルデータセンタ12、及び、エッジデータセンタ14に配置されているサーバには、ドッカー(Docker(登録商標))などのコンテナ型の仮想化アプリケーション実行環境がインストールされており、これらのサーバにコンテナをデプロイして稼働させることができるようになっている。これらのサーバにおいて、このような仮想化技術によって生成される1以上のコンテナから構成されるクラスタが構築されてもよい。例えば、クバネテス(Kubernetes(登録商標))等のコンテナ管理ツールによって管理されるクバネテスクラスタが構築されていてもよい。そして、構築されたクラスタ上のプロセッサがコンテナ型のアプリケーションを実行してもよい。
 そして本実施形態において購入者に提供されるネットワークサービスは、1又は複数の機能ユニット(例えば、ネットワークファンクション(NF))から構成される。本実施形態では、当該機能ユニットは、仮想化技術によって実現されたNFで実装される。仮想化技術によって実現されたNFは、VNF(Virtualized Network Function)と称される。なお、どのような仮想化技術によって仮想化されたかは問わない。例えば、コンテナ型の仮想化技術によって実現されたCNF(Containerized Network Function)も、本説明においてVNFに含まれる。本実施形態では、ネットワークサービスが1又は複数のCNFによって実装されるものとして説明する。また、本実施形態に係る機能ユニットは、ネットワークノードに相当するものであってもよい。
 図3は、稼働中のネットワークサービスの一例を模式的に示す図である。図3に示すネットワークサービスには、複数のRU40、複数のDU42、複数のCU44(CU-CP(Central Unit - Control Plane)44a、及び、CU-UP(Central Unit - User Plane)44b)、複数のAMF(Access and Mobility Management Function)46、複数のSMF(Session Management Function)48、及び、複数のUPF(User Plane Function)50などのNFがソフトウェア要素として含まれている。
 図3の例では、RU40、DU42、CU-CP44a、AMF46、及び、SMF48が、コントロールプレーン(C-Plane)の要素に相当し、RU40、DU42、CU-UP44b、及び、UPF50が、ユーザプレーン(U-Plane)の要素に相当する。
 なお、当該ネットワークサービスに、他の種類のNFがソフトウェア要素として含まれていても構わない。また、ネットワークサービスは、複数のサーバ等のコンピュータリソース(ハードウェア要素)上に実装されている。
 そして、本実施形態では例えば、図3に示すネットワークサービスによって、あるエリアにおける通信サービスが提供される。
 そして、本実施形態では、図3に示す複数のRU40、複数のDU42、複数のCU-UP44b、及び、複数のUPF50が、1つのエンド・ツー・エンドのネットワークスライスに所属していることとする。
 図4は、本実施形態において通信システム1に構築される要素間の関連付けの一例を模式的に示す図である。なお、図4に示された記号M及びNは1以上の任意の整数を表し、リンクで接続された要素同士の個数の関係を示す。リンクの両端がMとNの組み合わせの場合は、当該リンクで接続された要素同士は多対多の関係であり、リンクの両端が1とNの組み合わせ又は1とMの組み合わせの場合は、当該リンクで接続された要素同士は1対多の関係である。
 図4に示すように、ネットワークサービス(NS)、ネットワークファンクション(NF)、CNFC(Containerized Network Function Component)、pod、及び、コンテナは、階層構成となっている。
 NSは、例えば、複数のNFから構成されるネットワークサービスに相当する。ここで、NSが、例えば、5GC、EPC、5GのRAN(gNB)、4GのRAN(eNB)、などの粒度の要素に相当するものであってもよい。
 NFは、5Gでは、例えば、RU、DU、CU-CP、CU-UP、AMF、SMF、UPFなどの粒度の要素に相当する。また、NFは、4Gでは、例えば、MME(Mobility Management Entity)、HSS(Home Subscriber Server)、S-GW(Serving Gateway)、vDU、vCUなどの粒度の要素に相当する。本実施形態では例えば、1つのNSには、1又は複数のNFが含まれる。すなわち、1又は複数のNFが、1つのNSの配下にあることとなる。
 CNFCは、例えば、DU mgmtやDU Processingなどの粒度の要素に相当する。CNFCは、1つ以上のコンテナとしてサーバにデプロイされるマイクロサービスであってもよい。例えば、あるCNFCは、DU、CU-CP、CU-UP等の機能のうち一部の機能を提供するマイクロサービスであってもよい。また、あるCNFCは、UPF、AMF、SMF等の機能のうちの一部の機能を提供するマイクロサービスであってもよい。本実施形態では例えば、1つのNFには、1又は複数のCNFCが含まれる。すなわち、1又は複数のCNFCが、1つのNFの配下にあることとなる。
 podは、例えば、クバネテスでドッカーコンテナを管理するための最小単位を指す。本実施形態では例えば、1つのCNFCには、1又は複数のpodが含まれる。すなわち、1又は複数のpodが、1つのCNFCの配下にあることとなる。
 そして、本実施形態では例えば、1つのpodには、1又は複数のコンテナが含まれる。すなわち、1又は複数のコンテナが、1つのpodの配下にあることとなる。
 また、図4に示すように、ネットワークスライス(NSI)とネットワークスライスサブネットインスタンス(NSSI)とは階層構成となっている。
 NSIは、複数ドメイン(例えばRAN32からコアネットワークシステム34)に跨るエンド・ツー・エンドの仮想回線とも言える。NSIは、高速大容量通信用のスライス(例えば、eMBB:enhanced Mobile Broadband用)、高信頼度かつ低遅延通信用のスライス(例えば、URLLC:Ultra-Reliable and Low Latency Communications用)、又は、大量端末の接続用のスライス(例えば、mMTC:massive Machine Type Communication用)であってもよい。NSSIは、NSIを分割した単一ドメインの仮想回線とも言える。NSSIは、RANドメインのスライス、MBH(Mobile Back Haul)ドメイン等のトランスポートドメインのスライス、又は、コアネットワークドメインのスライスであってもよい。
 本実施形態では例えば、1つのNSIには、1又は複数のNSSIが含まれる。すなわち、1又は複数のNSSIが、1つのNSIの配下にあることとなる。なお、本実施形態において、複数のNSIが同じNSSIを共有してもよい。
 また、図4に示すように、NSSIとNSとは、一般的には、多対多の関係となる。
 また、本実施形態では例えば、1つのNFは、1又は複数のネットワークスライスに所属できるようになっている。具体的には例えば、1つのNFには、1又は複数のS-NSSAI(Sub Network Slice Selection Assist Information)を含むNSSAI(Network Slice Selection Assistance Information)を設定できるようになっている。ここで、S-NSSAIは、ネットワークスライスに対応付けられる情報である。なお、NFが、ネットワークスライスに所属していなくてもよい。
 図5は、本実施形態に係るプラットフォームシステム30で実装される機能の一例を示す機能ブロック図である。なお、本実施形態に係るプラットフォームシステム30で、図5に示す機能のすべてが実装される必要はなく、また、図5に示す機能以外の機能が実装されていても構わない。
 図5に示すように、本実施形態に係るプラットフォームシステム30には、機能的には例えば、オペレーションサポートシステム(OSS)部60、オーケストレーション(E2EO:End-to-End-Orchestration)部62、サービスカタログ記憶部64、ビッグデータプラットフォーム部66、データバス部68、AI(Artificial Intelligence)部70、監視機能部72、SDNコントローラ74、構成管理部76、コンテナ管理部78、リポジトリ部80、が含まれている。そして、OSS部60には、インベントリデータベース82、チケット管理部84、障害管理部86、性能管理部88、が含まれている。そして、E2EO部62には、ポリシーマネージャ部90、スライスマネージャ部92、ライフサイクル管理部94、が含まれている。これらの要素は、プロセッサ30a、記憶部30b、及び、通信部30cを主として実装される。
 図5に示す機能は、1又は複数のコンピュータであるプラットフォームシステム30にインストールされ、当該機能に対応する指令を含むプログラムをプロセッサ30aが実行することにより、実装されてもよい。このプログラムは、例えば、光ディスク、磁気ディスク、磁気テープ、光磁気ディスク、フラッシュメモリ等のコンピュータ読み取り可能な情報記憶媒体を介して、あるいは、インターネットなどを介してプラットフォームシステム30に供給されてもよい。また、図5に示す機能が、回路ブロック、メモリ、その他のLSIで実装されてもよい。また、図5に示す機能が、ハードウェアのみ、ソフトウェアのみ、又はそれらの組合せといった様々な形態で実現できることは、当業者には理解されるところである。
 コンテナ管理部78は、コンテナのライフサイクル管理を実行する。例えば、コンテナのデプロイや設定などといったコンテナの構築に関する処理が当該ライフサイクル管理に含まれる。
 ここで、本実施形態に係るプラットフォームシステム30に、複数のコンテナ管理部78が含まれていてもよい。そして、複数のコンテナ管理部78のそれぞれには、クバネテス等のコンテナ管理ツール、及び、ヘルム(Helm)等のパッケージマネージャがインストールされていてもよい。そして、複数のコンテナ管理部78は、それぞれ、当該コンテナ管理部78に対応付けられるサーバ群(例えばクバネテスクラスタ)に対して、コンテナのデプロイ等のコンテナの構築を実行してもよい。
 なお、コンテナ管理部78は、プラットフォームシステム30に含まれている必要はない。コンテナ管理部78は、例えば、当該コンテナ管理部78によって管理されるサーバ(すなわち、RAN32やコアネットワークシステム34)に設けられていてもよいし、あるいは、当該コンテナ管理部78によって管理されるサーバに併設されている他のサーバに設けられていてもよい。
 リポジトリ部80は、本実施形態では例えば、ネットワークサービスを実現する機能ユニット群(例えば、NF群)に含まれるコンテナのコンテナイメージを記憶する。
 インベントリデータベース82は、インベントリ情報が格納されたデータベースである。当該インベントリ情報には、例えば、RAN32やコアネットワークシステム34に配置され、プラットフォームシステム30で管理されているサーバについての情報が含まれる。
 また本実施形態では、インベントリデータベース82には、インベントリデータが記憶されている。インベントリデータには、通信システム1に含まれる要素群の構成や要素間の関連付けの現況が示されている。また、インベントリデータには、プラットフォームシステム30で管理されているリソースの状況(例えば、リソースの使用状況)が示されている。当該インベントリデータは、物理インベントリデータでもよいし、論理インベントリデータでもよい。物理インベントリデータ及び論理インベントリデータについては後述する。
 図6は、物理インベントリデータのデータ構造の一例を示す図である。図6に示す物理インベントリデータは、1つのサーバに対応付けられる。図6に示す物理インベントリデータには、例えば、サーバID、ロケーションデータ、建物データ、階数データ、ラックデータ、スペックデータ、ネットワークデータ、稼働コンテナIDリスト、クラスタID、などが含まれる。
 物理インベントリデータに含まれるサーバIDは、例えば、当該物理インベントリデータに対応付けられるサーバの識別子である。
 物理インベントリデータに含まれるロケーションデータは、例えば、当該物理インベントリデータに対応付けられるサーバのロケーション(例えばロケーションの住所)を示すデータである。
 物理インベントリデータに含まれる建物データは、例えば、当該物理インベントリデータに対応付けられるサーバが配置されている建物(例えば建物名)を示すデータである。
 物理インベントリデータに含まれる階数データは、例えば、当該物理インベントリデータに対応付けられるサーバが配置されている階数を示すデータである。
 物理インベントリデータに含まれるラックデータは、例えば、当該物理インベントリデータに対応付けられるサーバが配置されているラックの識別子である。
 物理インベントリデータに含まれるスペックデータは、例えば、当該物理インベントリデータに対応付けられるサーバのスペックを示すデータであり、スペックデータには、例えば、コア数、メモリ容量、ハードディスク容量などといったものが示される。
 物理インベントリデータに含まれるネットワークデータは、例えば、当該物理インベントリデータに対応付けられるサーバのネットワークに関する情報を示すデータであり、ネットワークデータには、例えば、当該サーバが備えるNIC、当該NICが備えるポートの数、当該ポートのポートIDなどが示される。
 物理インベントリデータに含まれる稼働コンテナIDリストは、例えば、当該物理インベントリデータに対応付けられるサーバで稼働する1又は複数のコンテナに関する情報を示すデータであり、稼働コンテナIDリストには、例えば、当該コンテナのインスタンスの識別子(コンテナID)のリストが示される。
 物理インベントリデータに含まれるクラスタIDは、例えば、当該物理インベントリデータに対応付けられるサーバが所属するクラスタ(例えば、クバネテスクラスタ)の識別子である。
 論理インベントリデータには、通信システム1に含まれる複数の要素についての、図4に示されているような要素間の関連付けの現況を示すトポロジーデータが含まれている。例えば、論理インベントリデータには、あるNSの識別子と当該NSの配下にある1又は複数のNFの識別子とを含むトポロジーデータが含まれる。また、例えば、論理インベントリデータには、あるネットワークスライスの識別子と当該ネットワークスライスに所属する1又は複数のNFの識別子とを含むトポロジーデータが含まれる。
 また、インベントリデータに、通信システム1に含まれる要素間の地理的な関係やトポロジー的な関係などの現況が示すデータが含まれていてもよい。上述の通り、インベントリデータには、通信システム1に含まれる要素が稼働しているロケーション、すなわち、通信システム1に含まれる要素の現在のロケーションを示すロケーションデータが含まれている。このことから、インベントリデータには、要素間の地理的な関係(例えば、要素間の地理的な近さ)の現況が示されていると言える。
 また、論理インベントリデータに、ネットワークスライスに関する情報を示すNSIデータが含まれていてもよい。NSIデータは、例えば、ネットワークスライスのインスタンスの識別子や、ネットワークスライスの種類等の属性を示す。また、論理インベントリデータに、ネットワークスライスサブネットに関する情報を示すNSSIデータが含まれていてもよい。NSSIデータは、例えば、ネットワークスライスサブネットのインスタンスの識別子や、ネットワークスライスサブネットの種類等の属性を示す。
 また、論理インベントリデータに、NSに関する情報を示すNSデータが含まれていてもよい。NSデータは、例えば、NSのインスタンスの識別子や、NSの種類等の属性を示す。また、論理インベントリデータに、NFに関する情報を示すNFデータが含まれていてもよい。NFデータは、例えば、NFのインスタンスの識別子や、NFの種類等の属性を示す。また、論理インベントリデータに、CNFCに関する情報を示すCNFCデータが含まれていてもよい。CNFCデータは、例えば、インスタンスの識別子や、CNFCの種類等の属性を示す。また、論理インベントリデータに、CNFCに含まれるpodに関する情報を示すpodデータが含まれていてもよい。podデータは、例えば、podのインスタンスの識別子や、podの種類等の属性を示す。また、論理インベントリデータに、podに含まれるコンテナに関する情報を示すコンテナデータが含まれていてもよい。コンテナデータは、例えば、コンテナのインスタンスのコンテナIDや、コンテナの種類等の属性を示す。
 論理インベントリデータに含まれるコンテナデータのコンテナIDと、物理インベントリデータに含まれる稼働コンテナIDリストに含まれるコンテナIDと、によって、コンテナのインスタンスと、当該コンテナのインスタンスが稼働しているサーバとが関連付けられることとなる。
 また、ホスト名やIPアドレスなどの各種の属性を示すデータが論理インベントリデータに含まれる上述のデータに含まれていても構わない。例えば、コンテナデータに、当該コンテナデータに対応するコンテナのIPアドレスを示すデータが含まれていてもよい。また、例えば、NFデータに、当該NFデータが示すNFのIPアドレス及びホスト名を示すデータが含まれていてもよい。
 また、論理インベントリデータに、各NFに設定されている、1又は複数のS-NSSAIを含むNSSAIを示すデータが含まれていてもよい。
 また、インベントリデータベース82は、コンテナ管理部78と連携して、リソースの状況を適宜把握できるようになっている。そして、インベントリデータベース82は、リソースの最新の状況に基づいて、インベントリデータベース82に記憶されているインベントリデータを適宜更新する。
 また、例えば、通信システム1に含まれる新規要素の構築、通信システム1に含まれる要素の構成変更、通信システム1に含まれる要素のスケーリング、通信システム1に含まれる要素のリプレース、などのアクションが実行されることに応じて、インベントリデータベース82は、インベントリデータベース82に記憶されているインベントリデータを更新する。
 また、インベントリデータベース82に、それぞれのNFについて、当該NFが設けられているロケーションの重要度を示すデータが含まれていてもよい。例えば、官公庁、消防署、病院などが含まれるエリアをカバーするgNBのインベントリデータに重要エリアフラグが関連付けられていてもよい。
 また、インベントリデータベース82に、NS、NF、ネットワークスライスなどの要素についての、サービスの重要度を示すデータが含まれていてもよい。例えば、購入者によって、購入対象のNSが満たすべきSLAが指定されており、当該SLAに対応する性能を保証する必要がある要素のインベントリデータには、重要サービスフラグが関連付けられていてもよい。
 サービスカタログ記憶部64は、サービスカタログデータを記憶する。サービスカタログデータには、例えば、ライフサイクル管理部94によって利用されるロジックなどを示すサービステンプレートデータが含まれていてもよい。このサービステンプレートデータには、ネットワークサービスを構築するために必要な情報が含まれる。例えば、サービステンプレートデータは、NS、NF及びCNFCを定義する情報と、NS-NF-CNFCの対応関係を示す情報を含む。また、例えば、サービステンプレートデータは、ネットワークサービスを構築するためのワークフローのスクリプトを含む。
 サービステンプレートデータの一例として、NSD(NS Descriptor)が挙げられる。NSDは、ネットワークサービスに対応付けられるものであり、当該ネットワークサービスに含まれる複数の機能ユニット(例えば複数のCNF)の種類などが示されている。なお、NSDに、CNF等の機能ユニットの種類ごとについての、当該ネットワークサービスに含まれる数が示されていてもよい。また、NSDに、当該ネットワークサービスに含まれるCNFに係る、後述するCNFDのファイル名が示されていてもよい。
 また、サービステンプレートデータの一例として、CNFD(CNF Descriptor)が挙げられる。CNFDに、当該CNFが必要とするコンピュータリソース(例えば、CPU、メモリ、ハードディスクなど)が示されていてもよい。例えば、CNFDに、当該CNFに含まれる複数のコンテナのそれぞれについての、当該コンテナが必要とするコンピュータリソース(CPU、メモリ、ハードディスクなど)が示されていてもよい。
 また、サービスカタログデータに、ポリシーマネージャ部90によって利用される、算出された性能指標値と比較する閾値(例えば異常検出用閾値)に関する情報が含まれていてもよい。性能指標値については後述する。
 また、サービスカタログデータに、例えば、スライステンプレートデータが含まれていてもよい。スライステンプレートデータには、ネットワークスライスのインスタンス化を実行するために必要な情報が含まれ、例えば、スライスマネージャ部92によって利用されるロジックが含まれる。
 スライステンプレートデータは、GSMA(GSM Association)(「GSM」は登録商標)が定める「Generic Network Slice Template」の情報を含む。具体的には、スライステンプレートデータは、ネットワークスライスのテンプレートデータ(NST)、ネットワークスライスサブネットのテンプレートデータ(NSST)、ネットワークサービスのテンプレートデータを含む。また、スライステンプレートデータは、図4に示したような、これらの要素の階層構成を示す情報を含む。
 ライフサイクル管理部94は、本実施形態では例えば、購入者によるNSの購入要求に応じて、購入要求がされた新たなネットワークサービスを構築する。
 ライフサイクル管理部94は、例えば、購入要求に応じて、購入されるネットワークサービスに対応付けられるワークフローのスクリプトを実行してもよい。そして、このワークフローのスクリプトを実行することで、ライフサイクル管理部94は、コンテナ管理部78に、購入される新たなネットワークサービスに含まれるコンテナのデプロイを指示してもよい。そして、コンテナ管理部78は、当該コンテナのコンテナイメージをリポジトリ部80から取得して、当該コンテナイメージに対応するコンテナを、サーバにデプロイしてもよい。
 また、ライフサイクル管理部94は、本実施形態では例えば、通信システム1に含まれる要素のスケーリングやリプレースを実行する。ここで、ライフサイクル管理部94は、コンテナのデプロイ指示や削除指示をコンテナ管理部78に出力してもよい。そして、コンテナ管理部78が、当該指示に従い、コンテナのデプロイやコンテナの削除等の処理を実行してもよい。本実施形態ではライフサイクル管理部94によって、コンテナ管理部78のクバネテスのようなツールでは対応できないようなスケーリングやリプレースを実行できるようになっている。
 また、ライフサイクル管理部94は、SDNコントローラ74に、通信経路の作成指示を出力してもよい。例えば、ライフサイクル管理部94は、作成させる通信経路の両端の2つのIPアドレスをSDNコントローラ74に提示し、SDNコントローラ74は、これら2つのIPアドレスを結ぶ通信経路を作成する。作成された通信経路は、これら2つのIPアドレスに関連付けられて管理されてもよい。
 また、ライフサイクル管理部94は、SDNコントローラ74に、2つのIPアドレスに関連付けられた、これら2つのIPアドレス間の通信経路の作成指示を出力してもよい。
 スライスマネージャ部92は、本実施形態では例えば、ネットワークスライスのインスタンス化を実行する。スライスマネージャ部92は、本実施形態では例えば、サービスカタログ記憶部64に記憶されているスライステンプレートが示すロジックを実行することで、ネットワークスライスのインスタンス化を実行する。
 スライスマネージャ部92は、例えば、3GPP(登録商標)(Third Generation Partnership Project)の仕様書「TS28 533」に記載される、NSMF(Network Slice Management Function)と、NSSMF(Network Slice Sub-network Management Function)の機能を含んで構成される。NSMFは、ネットワークスライスを生成して管理する機能であり、NSIのマネジメントサービスを提供する。NSSMFは、ネットワークスライスの一部を構成するネットワークスライスサブネットを生成し管理する機能であり、NSSIのマネジメントサービスを提供する。
 ここで、スライスマネージャ部92が、ネットワークスライスのインスタンス化に関係する構成管理指示を構成管理部76に出力してもよい。そして、構成管理部76が、当該構成管理指示に従った設定等の構成管理を実行してもよい。
 また、スライスマネージャ部92は、SDNコントローラ74に、2つのIPアドレスを提示し、これら2つのIPアドレス間の通信経路の作成指示を出力してもよい。
 構成管理部76は、本実施形態では例えば、ライフサイクル管理部94やスライスマネージャ部92から受け付ける構成管理指示に従って、NF等の要素群の設定等の構成管理を実行する。
 SDNコントローラ74は、本実施形態では例えば、ライフサイクル管理部94又はスライスマネージャ部92から受け付ける通信経路の作成指示に従って、当該作成指示に関連付けられている2つのIPアドレス間の通信経路を作成する。SDNコントローラ74は、例えば、フレックスアルゴ(Flex Algo)などの公知のパス計算手法を用いて、2つのIPアドレス間の通信経路を作成してもよい。
 ここで例えば、SDNコントローラ74は、セグメントルーティング技術(例えばSRv6(セグメントルーティングIPv6))を用いて、通信経路間に存在するアグリゲーションルータや、サーバなどに対して、NSIやNSSIを構築してもよい。また、SDNコントローラ74は、複数の設定対象のNFに対して、共通のVLAN(Virtual Local Area Network)を設定するコマンド、及び、当該VLANに設定情報が示す帯域幅や優先度を割り当てるコマンドを発行することにより、それら複数の設定対象のNFにわたるNSI及びNSSIを生成してもよい。
 なお、SDNコントローラ74は、ネットワークスライスを構築することなく、2つのIPアドレス間の通信で利用可能な帯域幅の最大値の変更などを実行してもよい。
 本実施形態に係るプラットフォームシステム30に、複数のSDNコントローラ74が含まれていてもよい。そして、複数のSDNコントローラ74は、それぞれ、当該SDNコントローラ74に対応付けられるAG等のネットワーク機器群に対して通信経路の作成等の処理を実行してもよい。
 監視機能部72は、本実施形態では例えば、通信システム1に含まれる要素群を、所与の管理ポリシーに従って監視する。ここで、監視機能部72は、例えば、ネットワークサービスの購入の際に購入者によって指定される監視ポリシーに従って、要素群を監視してもよい。
 監視機能部72は、本実施形態では例えば、スライスのレベル、NSのレベル、NFのレベル、CNFCのレベル、サーバ等のハードウェアのレベル、などといった、様々なレベルでの監視を実行する。
 監視機能部72は、例えば、上述の様々なレベルでの監視が行えるよう、メトリックデータを出力するモジュールをサーバ等のハードウェアや通信システム1に含まれるソフトウェア要素に設定してもよい。ここで例えば、NFが、当該NFにおいて測定可能(特定可能)なメトリックを示すメトリックデータを監視機能部72に出力するようにしてもよい。また、サーバが、当該サーバにおいて測定可能(特定可能)なハードウェアに関するメトリックを示すメトリックデータを監視機能部72に出力するようにしてもよい。
 また、例えば、監視機能部72は、サーバに、複数のコンテナから出力されたメトリックを示すメトリックデータをCNFC(マイクロサービス)単位に集計するサイドカーコンテナをデプロイしてもよい。このサイドカーコンテナは、エクスポーターと呼ばれるエージェントを含んでもよい。監視機能部72は、クバネテス等のコンテナ管理ツールを監視可能なプロメテウス(Prometheus)などのモニタリングツールの仕組みを利用して、マイクロサービス単位に集計されたメトリックデータをサイドカーコンテナから取得する処理を、所与の監視間隔で繰り返し実行してもよい。
 監視機能部72は、例えば、「TS 28.552, Management and orchestration; 5G performance measurements」又は「TS 28.554, Management and orchestration; 5G end to end Key Performance Indicators (KPI)」に記載された性能指標についての性能指標値を監視してもよい。そして、監視機能部72は、監視される性能指標値を示すメトリックデータを取得してもよい。
 そして、監視機能部72は、本実施形態では、例えば、所定の集計単位で、メトリックデータを集計する処理(エンリッチメント)を実行することで、当該集計単位における、通信システム1に含まれる要素の性能指標値を示す性能指標値データを生成する。
 例えば、1つのgNBについて、当該gNBの配下にある要素(例えば、DU42やCU44などのネットワークノード)のメトリックを示すメトリックデータを集計することで、当該gNBの性能指標値データを生成する。このようにして、当該gNBがカバーするエリアにおける通信性能を示す性能指標値データが生成される。ここで、例えば、各gNBにおいて、トラフィック量(スループット)やレイテンシなどといった複数種類の通信性能を示す性能指標値データが生成されてもよい。なお、性能指標値データが示す通信性能は、トラフィック量やレイテンシには限定されない。
 そして、監視機能部72は、上述のエンリッチメントによって生成される性能指標値データを、データバス部68に出力する。
 データバス部68は、本実施形態では例えば、監視機能部72から出力される性能指標値データを受け付ける。そして、データバス部68は、受け付ける1又は複数の性能指標値データに基づいて、当該1又は複数の性能指標値データを含む性能指標値ファイルを生成する。そして、データバス部68は、生成される性能指標値ファイルをビッグデータプラットフォーム部66に出力する。
 また、通信システム1に含まれるネットワークスライス、NS、NF、CNFC等の要素や、サーバ等のハードウェアは、監視機能部72に、各種のアラートの通知(例えば、障害の発生をトリガとしたアラートの通知)を行う。
 そして、監視機能部72は、例えば、上述のアラートの通知を受け付けると、当該通知を示すアラートメッセージデータをデータバス部68に出力する。そして、データバス部68は、1又は複数の通知を示すアラートメッセージデータを1つのファイルにまとめたアラートファイルを生成して、当該アラートファイルをビッグデータプラットフォーム部66に出力する。
 ビッグデータプラットフォーム部66は、本実施形態では例えば、データバス部68から出力される性能指標値ファイルやアラートファイルを蓄積する。
 AI部70には、本実施形態では例えば、学習済の機械学習モデルが予め複数記憶されている。AI部70は、AI部70に記憶されている各種の機械学習モデルを用いて、通信システム1の利用状況やサービス品質の将来予測処理などの推定処理を実行する。AI部70は、推定処理の結果を示す推定結果データを生成してもよい。
 AI部70は、ビッグデータプラットフォーム部66に蓄積されるファイルと、上述の機械学習モデルと、に基づいて、推定処理を実行してもよい。この推定処理は、長期的なトレンドの予測を低頻度で行う場合に好適である。
 また、AI部70は、データバス部68に格納されている性能指標値データを取得可能になっている。AI部70は、データバス部68に格納されている性能指標値データと、上述の機械学習モデルと、に基づいて、推定処理を実行してもよい。この推定処理は、短期的な予測を高頻度で行う場合に好適である。
 性能管理部88は、本実施形態では例えば、複数のメトリックデータに基づいて、これらのメトリックデータが示すメトリックに基づく性能指標値(例えば、KPI)を算出する。性能管理部88は、単一のメトリックデータからは算出できない、複数の種類のメトリックの総合評価である性能指標値(例えば、エンド・ツー・エンドのネットワークスライスに係る性能指標値)を算出してもよい。性能管理部88は、総合評価である性能指標値を示す総合性能指標値データを生成してもよい。
 なお、性能管理部88は、ビッグデータプラットフォーム部66から上述の性能指標値ファイルを取得してもよい。また、性能管理部88は、AI部70から推定結果データを取得してもよい。そして、性能指標値ファイル又は推定結果データのうちの少なくとも一方に基づいて、KPI等の性能指標値を算出してもよい。なお、性能管理部88が、監視機能部72からメトリックデータを直接取得してもよい。そして、当該メトリックデータに基づいて、KPI等の性能指標値を算出してもよい。
 障害管理部86は、本実施形態では例えば、上述のメトリックデータ、上述のアラートの通知、上述の推定結果データ、上述の総合性能指標値データのうちの少なくともいずれかに基づいて、通信システム1における障害の発生を検出する。障害管理部86は、例えば、所定のロジックに基づいて、単一のメトリックデータや単一のアラートの通知からでは検出できないような障害の発生を検出してもよい。障害管理部86は、検出された障害を示す検出障害データを生成してもよい。
 なお、障害管理部86は、メトリックデータやアラートの通知を、監視機能部72から直接取得してもよい。また、障害管理部86は、ビッグデータプラットフォーム部66から性能指標値ファイルやアラートファイルを取得してもよい。また、障害管理部86は、データバス部68から、アラートメッセージデータを取得してもよい。
 ポリシーマネージャ部90は、本実施形態では例えば、上述のメトリックデータ、上述の性能指標値データ、上述のアラートメッセージデータ、上述の性能指標値ファイル、上述のアラートファイル、上述の推定結果データ、上述の総合性能指標値データ、上述の検出障害データ、のうちの少なくともいずれかに基づいて、所定の判定処理を実行する。
 そして、ポリシーマネージャ部90は、判定処理の結果に応じたアクションを実行してもよい。例えば、ポリシーマネージャ部90は、スライスマネージャ部92にネットワークスライスの構築指示を出力してもよい。また、ポリシーマネージャ部90は、判定処理の結果に応じて、要素のスケーリングやリプレースの指示をライフサイクル管理部94に出力してもよい。
 本実施形態に係るポリシーマネージャ部90は、データバス部68に格納されている性能指標値データを取得可能になっている。そして、ポリシーマネージャ部90は、データバス部68から取得される性能指標値データに基づいて、所定の判定処理を実行してもよい。また、ポリシーマネージャ部90は、データバス部68に格納されているアラートメッセージデータに基づいて、所定の判定処理を実行してもよい。
 チケット管理部84は、本実施形態では例えば、通信システム1の管理者に通知すべき内容が示されたチケットを生成する。チケット管理部84は、発生障害データの内容を示すチケットを生成してもよい。また、チケット管理部84は、性能指標値データやメトリックデータの値を示すチケットを生成してもよい。また、チケット管理部84は、ポリシーマネージャ部90による判定結果を示すチケットを生成してもよい。
 そして、チケット管理部84は、生成されたチケットを、通信システム1の管理者に通知する。チケット管理部84は、例えば、生成されたチケットが添付された電子メールを、通信システム1の管理者の電子メールアドレスに宛てて送信してもよい。
 以下、データバス部68における性能指標値ファイルの生成、及び、AI部70によるデータバス部68に格納されている性能指標値データに基づく推定処理について、さらに説明する。
 図7は、本実施形態に係るデータバス部68の一例を模式的に示す図である。図7に示すように、本実施形態に係るデータバス部68には、例えば、性能指標値データを先入れ先出しのリスト構造で保持するキュー100が複数含まれている。
 そして、それぞれのキュー100は、第1キュー群102a、又は、第2キュー群102bのいずれかに属している。
 また、本実施形態では例えば、監視機能部72において、複数の集計プロセス104が動作している。それぞれの集計プロセス104には、当該集計プロセス104での集計対象である要素が予め設定されている。例えば、それぞれの集計プロセス104には、当該集計プロセス104での集計対象であるgNBが予め設定されている。そして、それぞれの集計プロセス104は、当該集計プロセス104での集計対象でのgNBの配下にあるNF(例えば、RU40、DU42、及び、CU-UP44b)からメトリックデータを取得する。そして、当該集計プロセス104は、取得するメトリックデータに基づいて、当該gNBの通信性能を示す性能指標値データを生成するエンリッチメント処理を実行する。
 また、本実施形態では例えば、集計プロセス104とキュー100とが予め関連付けられている。なお、便宜上、図7では、集計プロセス104とキュー100とが1対1の関係で関連付けられていることが示されているが、集計プロセス104とキュー100とが多対多の関係で関連付けられていてもよい。
 以下、第1キュー群102aに含まれるキュー100に関連付けられている集計プロセス104を、第1群集計プロセス104aと呼ぶこととする。また、第2キュー群102bに含まれるキュー100に関連付けられている集計プロセス104を、第2群集計プロセス104bと呼ぶこととする。
 そして、それぞれの第1群集計プロセス104aが、所定の時間間隔で(例えば、1分おきに)、当該第1群集計プロセス104aに対応付けられる、前回の集計から現時点までのメトリックデータを集計することで、性能指標値データを生成する。
 第1群集計プロセス104aは、例えば、1分間隔で、当該第1群集計プロセス104aに対応付けられる1又は複数のNFからメトリックデータを取得する。そして、当該第1群集計プロセス104aは、同じ集計期間のメトリックデータを集計することで、当該集計期間における性能指標値データを生成する。
 そして、当該第1群集計プロセス104aは、性能指標値データを生成する度に、当該第1群集計プロセス104aに関連付けられている1又は複数のキュー100に、当該性能指標値データをエンキューする。
 そして、それぞれの第2群集計プロセス104bが、所定の時間間隔で(例えば、15分おきに)、当該第2群集計プロセス104bに対応付けられる、前回の集計から現時点までのメトリックデータを集計することで、性能指標値データを生成する。
 第2群集計プロセス104bは、例えば、15分間隔で、当該第2群集計プロセス104bに対応付けられる1又は複数のNFからメトリックデータを取得する。そして、当該第2群集計プロセス104bは、同じ集計期間のメトリックデータを集計することで、当該集計期間における性能指標値データを生成する。
 そして、当該第2群集計プロセス104bは、性能指標値データを生成する度に、当該第2群集計プロセス104bに関連付けられている1又は複数のキュー100に、当該性能指標値データをエンキューする。
 本実施形態では、第1キュー群102aに含まれるキュー100に格納可能な性能指標値データの数最大数は予め定められている。ここでは例えば、最大で60個の性能指標値データがキュー100に格納可能であることとする。つまり、最大数は「60」とする。
 また、本実施形態では、第2キュー群102bに含まれるキュー100に格納可能な性能指標値データの最大数は予め定められている。ここでは例えば、最大で4個の性能指標値データがキュー100に格納可能であることとする。つまり、最大数は「4」とする。
 本実施形態において、例えば、ある1つのNFが、第1群集計プロセス104aにも第2群集計プロセス104bにも関連付けられていてもよい。そして、当該NFが、当該第1群集計プロセス104aには、当該第1群集計プロセス104aにおいて集計される種類のメトリックデータを1分間隔で出力してもよい。そして、当該NFが、当該第2群集計プロセス104bには、当該第2群集計プロセス104bにおいて集計される種類のメトリックデータを15分間隔で出力してもよい。
 当該第1群集計プロセス104aに出力されるメトリックデータの種類と、当該第2群集計プロセス104bに出力されるメトリックデータの種類とは、同じであってもよいし異なっていてもよい。
 ここで例えば、当該NFにおいて監視されるべきメトリックのうち、リアルタイムでの監視がされることが望ましい一部のメトリックについてのメトリックデータが、第1群集計プロセス104aに出力されるようにしてもよい。
 そして、本実施形態では例えば、AI部70において、複数の推定プロセス106(図8参照)が動作している。これらの推定プロセス106のうちの一部は、データバス部68に格納されている性能指標値データに基づく推定処理を実行し、残りは、ビッグデータプラットフォーム部66に格納されているファイルに基づく推定処理を実行する。
 また、本実施形態では例えば、推定プロセス106とキュー100とが予め関連付けられている。なお、便宜上、図8では、推定プロセス106とキュー100とが1対1の関係で関連付けられていることが示されているが、推定プロセス106とキュー100とが多対多の関係で関連付けられていてもよい。
 そして本実施形態では例えば、それぞれの推定プロセス106が、当該推定プロセス106に対応する、第1キュー群102aに含まれるキュー100に格納されている性能指標値データを取得する。そして、当該推定プロセスは、当該性能指標値データに基づいて、当該推定プロセス106において予め定められている推定処理を実行する。
 ここで、推定プロセス106は、例えば、性能指標値データが、第1キュー群102aに含まれるキュー100にエンキューされたことに応じて、当該キュー100が格納可能な性能指標値データの最大数よりも少ない数の、キュー100に格納されている性能指標値データのうちの最新の性能指標値データを少なくとも含む直近所定数又は直近所定期間の性能指標値データを取得する。
 なお、本実施形態では、第1キュー群102aに含まれるキュー100については、当該キュー100に含まれるいずれの性能指標値データにも、デキューすることなくアクセスできるように(取得できるように)になっている。
 ここで例えば、データバス部68は、第1キュー群102aに含まれるキュー100に性能指標値データがエンキューされたことに応じて、当該キュー100に関連付けられている1又は複数の推定プロセス106に、性能指標値データがエンキューされたことを示す通知を出力してもよい。
 そして、当該通知を受け付けた推定プロセス106が、当該通知の受付に応じて、当該キュー100が格納可能な性能指標値データの最大数よりも少ない数の、キュー100に格納されている性能指標値データのうちの当該最新の性能指標値データを少なくとも含む直近所定数又は直近所定期間の性能指標値データを取得してもよい。
 ここでは例えば、図8に示されている推定プロセス106は、最新の性能指標値データを含む、15個の推定指標値データを取得する。これらの性能指標値データは、最新の性能指標値データを含む直近15分の性能指標値データに相当する。そして、当該推定プロセス106は、当該性能指標値データに基づいて、推定処理を実行する。
 なお、推定プロセス106は、上述のようにキュー100に格納されている性能指標値データのうちの一部だけを取得する必要はなく、キュー100に格納されているすべての性能指標値データを取得してもよい。
 そして、ポリシーマネージャ部90が、推定プロセス106が取得する性能指標値データに基づいて、通信システム1の状態を判定する。ここで、ポリシーマネージャ部90が、推定プロセス106による推定結果に基づいて、通信システム1の状態を判定してもよい。例えば、通信システム1に含まれる、推定プロセス106に対応付けられる要素の状態が判定されてもよい。
 また、データバス部68は、本実施形態では例えば、AI部70が性能指標値データを取得する頻度よりも少ない頻度で、キュー100に格納されている性能指標値データのうちの少なくとも一部を含む性能指標値ファイルを生成する。
 例えば、データバス部68が、所定の時間間隔で、性能指標値ファイルが前回生成されたタイミングより後に当該キュー100に格納された性能指標値データを含む性能指標値ファイルを生成してもよい。
 ここで、当該時間間隔は、第1キュー群102aに含まれるキュー100に格納可能な性能指標値データの最大数に相当する時間(上述の例では60分)と一致していてもよいし、一致していなくてもよい。
 また、例えば、データバス部68が、生成された性能指標値ファイルに含まれる性能指標値データがすべてデキューされたことに応じて、当該キュー100に格納されているすべての性能指標値データを含むファイルを生成してもよい。すなわち、キュー100に格納されている性能指標値データがすべて入れ替わったことに応じて、当該キュー100に格納されているすべての性能指標値データを含むファイルが生成されてもよい。
 また、本実施形態では、第1キュー群102aに含まれるキュー100に60個の性能指標値データが格納されている際に、新たな性能指標値データがエンキューされると、当該キュー100に格納されている最も古い性能指標値データがデキューされる。すなわち、当該キュー100に格納されている最も古い性能指標値データは、当該キュー100から消去される。
 なお、第1キュー群102aに含まれるキュー100に格納可能な性能指標値データの最大数は、60個には限定されない。例えば、第1キュー群102aに含まれるキュー100に格納可能な性能指標値データの最大数が180個であっても構わない。そしてこの場合に、3時間間隔で、性能指標値ファイルが生成されるようにしてもよい。
 そして、本実施形態では、第2キュー群102bに含まれるキュー100に4個の性能指標値データが格納されると、データバス部68は、これら4個の性能指標値データを1つのファイルにまとめた性能指標値ファイルを生成する。そして、データバス部68は、生成される性能指標値ファイルをビッグデータプラットフォーム部66に出力する。
 そして、データバス部68は、当該キュー100に格納されているすべての性能指標値データをデキューする。すなわち、当該キュー100に格納されているすべての性能指標値データは、当該キュー100から消去される。
 このように、第1キュー群102aに含まれるキュー100と、第2キュー群102bに含まれるキュー100とでは、性能指標値ファイルが生成されたことに応じて実行される処理が異なる。第2キュー群102bに含まれるキュー100では、性能指標値ファイルの生成に応じて、当該キュー100に格納されているすべての性能指標値データが当該キュー100から消去される。一方で、第1キュー群102aに含まれるキュー100では、性能指標値ファイルの生成に応じたデキューは実行されない。
 また、本実施形態において、ポリシーマネージャ部90が、性能指標値データが、第1キュー群102aに含まれるキュー100にエンキューされたことに応じて、当該キュー100が格納可能な性能指標値データの最大数よりも少ない数の、キュー100に格納されている性能指標値データのうちの最新の性能指標値データを少なくとも含む直近所定数又は直近所定期間の性能指標値データを取得してもよい。そして、ポリシーマネージャ部90が、取得される性能指標値データに基づいて、通信システム1の状態を判定してもよい。
 例えば、推定結果データが示す、あるgNBにおけるトラフィック量の予測値が、所定値よりも小さい場合に、ポリシーマネージャ部90は、ライフサイクル管理部94に、リソースブロックの割当てを増やすように指示してもよい。そして、当該gNBについてのリソースブロックの割当てが増えるようにしてもよい。また、推定結果データが示す、あるgNBにおけるトラフィック量の予測値が、所定値よりも小さい場合に、ポリシーマネージャ部90は、ライフサイクル管理部94に、当該gNBのスケールアウトを指示してもよい。そして、当該gNBの配下にある要素がスケールアウトされるようにしてもよい。
 本実施形態において、データバス部68が、適宜、性能指標値データが格納されるキュー100を生成してもよい。また、監視機能部72が、適宜、性能指標値データが格納されるキュー100を生成してもよい。また、AI部70が、適宜、性能指標値データが格納されるキュー100を生成してもよい。
 以上で説明したように、本実施形態に係るプラットフォームシステム30には、性能指標値データがキュー100にエンキューされたことに応じて、当該キュー100が格納可能な性能指標値データの最大数よりも少ない数の、少なくともキュー100に格納されている性能指標値データのうちの最新の性能指標値データを含む直近所定数又は直近所定期間の性能指標値データを取得して、当該性能指標値データに基づいて通信システム1の状態を判定する判定部が含まれる。ここで例えば、上述の推定プロセス106とポリシーマネージャ部90とが全体として当該判定部に相当してもよい。また、ポリシーマネージャ部90が当該判定部に相当してもよい。
 また、本実施形態に係るプラットフォームシステム30には、上述の判定部が性能指標値データを取得する頻度よりも少ない頻度で、キュー100に格納されている性能指標値データのうちの少なくとも一部を含むファイルを生成するファイル生成部が含まれる。上述の例では、データバス部68が当該ファイル生成部に相当する。
 ビッグデータプラットフォーム部66に格納されるファイルに基づいて、通信システム1の状態を判定した場合、最新のファイルには最新の性能指標値データが含まれているとは限らない。そのため、当該ファイルに基づいて、通信システム1の状態を判定すると、妥当な判定結果が得られないことがある。
 本実施形態では以上で説明したように、キューに格納されている性能指標値データのうちの最新の性能指標値データを少なくとも含む、直近所定数又は直近所定期間の性能指標値データに基づいて、通信システム1の状態が判定される。このようにして本実施形態によれば、通信システム1の状態を妥当に判定できることとなる。
 以下、AI部70による推定、及び、ポリシーマネージャ部90による通信システム1の状態の判定の一例について、さらに説明する。
 以下の説明では、ある特定のgNBに対応付けられる第1群集計プロセス104aが、当該gNBに含まれる要素(例えば、当該gNBの配下にある要素)に係るメトリックデータを集計することによって、当該gNBに係る性能指標値データを生成する。
 ここでは例えば、当該gNBに含まれるRU40やDU42やCU-UP44bのトラフィック量を示すメトリックデータを集計することで、当該gNBのユーザプレーンのトラフィック量を示す性能指標値データが生成されることとする。なお、当該性能指標値データが他の通信性能を示していてもよい。また、当該性能指標値データが複数種類の通信性能を示していてもよい。
 そして、当該第1群集計プロセス104aが、生成される性能指標値データを、当該第1群集計プロセス104aに関連付けられているキュー100にエンキューする。
 なお、以下の説明では、当該第1群集計プロセス104aによる集計とエンキューが1分間隔で行われることとする。また、当該キュー100は、少なくとも60個の性能指標値データが格納可能であることとする。
 本実施形態では、性能指標値データのエンキューに応じて、当該キュー100に関連付けられている推定プロセス106が、当該キュー100に格納されている性能指標値データのうち、最新の性能指標値データを含む直近所定数の性能指標値データを取得する。ここでは例えば、60個の性能指標値データを取得することとする。これら60個の性能指標値データには、現時点までの直近60分における当該gNBのトラフィック量が示されている。
 そして、当該推定プロセス106は、通信システム1に係る所与の基準時点以前の性能指標値に基づいて、「当該基準時点」から「当該基準時点の所定時間後」までの期間におけるネットワーク負荷を予測する(以下、ネットワーク負荷が予測される当該期間を予測期間とも記載する)。
 ここでは例えば、当該推定プロセス106が、AI部70に予め記憶されている学習済の機械学習モデルを用いて、これら60個の性能指標値データに基づいて、現時点から現時点の20分先までの当該gNBのトラフィック量を予測する。
 この機械学習モデルは、例えば、既存の予測モデルであっても構わない。また、例えば、この機械学習モデルは、複数の訓練データを用いた教師あり学習が予め実行された学習済の機械学習モデルであってもよい。そして、これら複数の訓練データのそれぞれには、例えば、互いに異なる所与の時点についての、当該gNBにおける当該時点までの60分のトラフィック量を示す学習入力データと、当該gNBにおける当該時点から当該時点の20分先までのトラフィック量を示す教師データとが含まれていてもよい。
 そして、当該推定プロセス106は、上述の推定結果(予測結果)を示す推定結果データを、ポリシーマネージャ部90に出力する。
 ここで、性能指標値データの集計間隔と、推定結果データに示されているトラフィック量の時間間隔とは、同じであってもよいし、異なっていてもよい。例えば、推定結果データが、1分間隔でのトラフィック量を示していてもよいし、それよりも長い時間間隔(例えば、2分間隔)でのトラフィック量を示していてもよいし、それよりも短い時間間隔(例えば、30秒間隔)でのトラフィック量を示していてもよい。
 そして、ポリシーマネージャ部90は、当該推定プロセス106による予測に応じて、当該期間におけるネットワーク負荷の予測値の大きさが所与の条件を満たすか否かを判定する。ここでは例えば、当該推定プロセス106から受け付ける推定結果データに基づいて、当該gNBをスケールアウトするか否かが判定される。
 そして、上述の判定によって所与の条件を満たすと判定される場合に、ポリシーマネージャ部90、ライフサイクル管理部94、コンテナ管理部78、及び、構成管理部76が、互いに連携して当該通信システム1に含まれる要素のスケールアウトを実行してもよい。例えば、当該gNBに含まれる、DU42やCU-UP44bのスケールアウトが実行されてもよい。
 以下、互いに連携してスケールアウトを実行する、ポリシーマネージャ部90、ライフサイクル管理部94、コンテナ管理部78、及び、構成管理部76をまとめて、スケールアウト実行部と呼ぶこととする。
 図9から図15は、それぞれ、推定結果データのグラフ表現の一例を模式的に示す図である。図9から図15において、横軸は、所与の基準時点(例えば現時点)からの時間tを表しており、縦軸は、当該gNBにおけるトラフィック量y(t)を示している。なお、図9から図15では、説明のため、トラフィック量が滑らかなグラフで表現されているが、実際の推定結果データには、トラフィック量が離散的に示されている。
 本実施形態では例えば、所与の基準時点からの時間の長さが互いに異なる複数の予測時点のそれぞれにおけるトラフィック量が予測される。ここでは例えば、基準時点から、基準時点から20分後までのトラフィック量が予測される。
 以下、「基準時点」から「当該基準時点の第1の時間後」まで(例えば、基準時点から当該基準時点の10分後まで)の期間を第1期間と呼ぶこととする。また、「当該基準時点の第1の時間後」から「当該基準時点の第2の時間後」まで(例えば、基準時点の10分後から当該基準時点の20分後まで)の期間を第2期間と呼ぶこととする。
 ポリシーマネージャ部90は、第1期間においてトラフィック量の予測値が所定の閾値th1を超えているか否かを判定してもよい。
 そして、第1期間においてトラフィック量の予測値が所定の閾値th1を超えている予測時点が存在する場合に、上述のスケールアウトが実行されるようにしてもよい。
 ここで、ポリシーマネージャ部90は、第1期間に含まれる複数の予測時点のそれぞれについて、当該予測時点における前記ネットワーク負荷の予測値が閾値を超えるか否かを判定してもよい。ここで、当該複数の予測時点のうちの一部又は全部において予測値が閾値t1を超えると判定される場合に、上述のスケールアウトが実行されるようにしてもよい。
 図9の例では、基準時点の6分後の予測時点におけるトラフィック量の予測値が閾値t1を超えている。そのため、図9のグラフに相当する推定結果データをポリシーマネージャ部90が受け付けた場合は、スケールアウトが実行されることとなる。
 また、ポリシーマネージャ部90は、第2期間においてトラフィック量の予測値が所定の閾値th1を超えているか否か、すなわち、第2期間においてトラフィック量の予測値が所定の閾値th1を超えている予測時点が存在するか否かを判定してもよい。
 そして、期間の少なくとも一部が重複する2回以上の所定回の判定で、所与の条件を満たすと判定される場合に、スケールアウト実行部が、通信システム1に含まれる要素のスケールアウトを実行してもよい。すなわち、基準時点が異なるが期間の少なくとも一部が重複する2以上の予測期間のそれぞれに対して所与の条件を満たすか否かが判定されてもよい。そして、当該条件を満たすとの判定が所定数以上の予測期間に対して得られる場合に、スケールアウト実行部が、スケールアウトを実行してもよい。所定数は、要求される品質、通信システム1の仕様などに応じて、適宜に定めてよい。
 例えば、基準時点が午後3時である場合は、午後3時10分から午後3時20分までの期間が第2期間に相当する。そして、基準時点が午後3時1分である場合は、午後3時11分から午後3時21分までの期間が第2期間に相当する。そして、基準時点が午後3時2分である場合は、午後3時12分から午後3時22分までの期間が第2期間に相当する。
 これら3つの第2期間は少なくとも一部が重複している。具体的には午後3時2分から午後3時20分までの期間が重複している。
 そしてこの場合において、所定回(例えばこれら3回)の判定で、第2期間においてトラフィック量の予測値が所定の閾値th1を超えていると判定される場合に、スケールアウト実行部がスケールアウトを実行してもよい。言い換えれば、基準時点が異なるが期間の少なくとも一部が重複するこれら3つの予測期間のそれぞれに対する判定で、第2期間においてトラフィック量の予測値が所定の閾値th1を超えているとの判定が所定数以上されている(例えば3つともそのように判定されている)場合に、スケールアウト実行部がスケールアウトを実行してもよい。
 例えば、所定回の判定で、複数の予測時点のうちの一部又は全部において予測値が閾値t1を超えると判定される場合に、スケールアウト実行部がスケールアウトを実行してもよい。
 図10Aは、基準時点が午後3時である推定結果データに相当するグラフの一例を示す図である。図10Bは、基準時点が午後3時1分である推定結果データに相当するグラフの一例を示す図である。図10Cは、基準時点が午後3時2分である推定結果データに相当するグラフの一例を示す図である。このように、基準時点が1分ずつ異なるが少なくとも一部が重複する複数の期間におけるネットワーク負荷の予測値が示されている。
 ここで図10Aの例では、基準時点の16分後である3時16分の予測時点におけるトラフィック量の予測値が閾値t1を超えている。そして、図10Bの例では、基準時点の15分後である3時16分の予測時点におけるトラフィック量の予測値が閾値t1を超えている。そして、図10Cの例では、基準時点の14分後である3時16分の予測時点におけるトラフィック量の予測値が閾値t1を超えている。この場合、基準時点が異なるが期間の少なくとも一部が重複する2以上の(ここでは3つの)予測期間のそれぞれに対する判定で、条件を満たすとの判定が所定数(ここでは3回とする)以上されている。そのため、図10Aから図10Cのグラフに相当する推定結果データをポリシーマネージャ部90が連続して受け付けた場合は、スケールアウトが実行されることとなる。
 このように、連続した所定回(例えばこれら3回)の判定で、第2期間においてトラフィック量の予測値が所定の閾値th1を超えていると判定される場合に、スケールアウト実行部がスケールアウトを実行してもよい。
 また、以上で説明したように、第1期間と第2期間とでスケールアウトが実行される条件が異なっていてもよい。例えば、第2期間については、期間の少なくとも一部が重複する2回以上の所定回の判定で、所与の条件を満たすと判定される場合に、スケールアウト実行部が、通信システム1に含まれる要素のスケールアウトを実行してもよい。言い換えれば、基準時点が異なるが期間の少なくとも一部が重複する2以上の予測期間のそれぞれに対する判定で、基準時点の第1の時間後から基準時点の第2の時間後までの期間における予測値の大きさが所与の条件を満たすとの判定が所定数以上される場合に、スケールアウト実行部が、通信システム1に含まれる要素のスケールアウトを実行してもよい。
 他方、第1期間については、予測値の大きさが所与の条件を満たすと1回判定されることに応じて、スケールアウト実行部が、通信システム1に含まれる要素のスケールアウトを実行してもよい。このように、基準時点から、基準時点に最も近い、ネットワーク負荷が閾値を超えたタイミングまでの時間の長さに応じて、通信システム1に含まれる要素が制御されるようにしてもよい。言い換えれば、予測期間に対する判定で、基準時点から当該基準時点の第1の時間後までの期間における予測値の大きさが所与の条件を満たすと1回判定されることに応じて、スケールアウト実行部が、通信システム1に含まれる要素のスケールアウトを実行してもよい。
 スケールアウトの実行にはある程度の時間がかかるため、例えば、上述の第1期間においてネットワーク負荷が高くなることが予測される場合には、即座にスケールアウトが実行されることが望ましい。
 一方で、上述の第2期間においてネットワーク負荷が高くなることが予測される場合については、スケールアウトの実行のための時間的な余裕がある。
 しかしながら、一般的に、ネットワーク負荷が予測される時点(予測時点)までの時間が長いほど予測精度が低くなる傾向がある。そして、精度が低い予測によってネットワーク負荷が高くなることが予測される場合には、予測よりも早いタイミングでネットワーク負荷が高くなるおそれがある。このことを考慮し、余裕を持って早めにスケールアウトを実行することが考えられる。
 しかし一方で、予測精度が低いことからネットワーク負荷が実際には予測ほど高くならない可能性が高く、そうであるのならばスケールアウトは実行されない方がよい。
 本実施形態では以上で説明したように、第2期間においてネットワーク負荷が高くなることが予測される場合には、即座にスケールアウトが実行されないようにし、複数回の予測においてネットワーク負荷が高くなることが予測される場合に、スケールアウトが実行される。
 このようにして本実施形態によれば、通信システム1に含まれる要素を適切にスケールアウトできることとなる。
 また、本実施形態において、ポリシーマネージャ部90が、基準時点が異なるが期間の少なくとも一部が重複する2以上の予測期間それぞれに対する判定で、所与の条件を満たすと判定されることに応じて、ネットワーク負荷の予測値の最大値の推移が上述の所与の条件と別の条件(最大値の推移に関する条件)を満たすか否かを判定してもよい。そして、当該判定に基づいて、スケールアウトを実行するか否かが決定されてもよい。そして、スケールアウトを実行すると決定されることに応じて、スケールアウト実行部が、通信システム1に含まれる要素のスケールアウトを実行してもよい。例えば、ネットワーク負荷の予測値の最大値の推移が上述の別の条件を満たすと判定されることに応じて、通信システム1に含まれる要素のスケールアウトが実行されてもよい。
 ここで、ポリシーマネージャ部90は、ネットワーク負荷の予測値の最大値が減少傾向にある場合には、最大値の推移に関する条件を満たさないと判定して、スケールアウトを実行しないと決定してもよい。
 図11Aは、基準時点が午後3時である推定結果データに相当するグラフの別の一例を示す図である。図11Bは、基準時点が午後3時1分である推定結果データに相当するグラフの別の一例を示す図である。図11Cは、基準時点が午後3時2分である推定結果データに相当するグラフの別の一例を示す図である。
 図10Aから図10Cの例では、午後3時における予測よりも午後3時1分における予測の方が、トラフィック量の予測値の最大値は大きい。この場合には、上述のように、スケールアウトが実行されるようにしてもよい。
 一方で、図11Aから図11Cの例では、午後3時における予測よりも午後3時1分における予測の方が、トラフィック量の予測値の最大値は小さい。また、午後3時1分における予測よりも午後3時2分における予測の方が、トラフィック量の予測値の最大値は小さい。このように、トラフィック量の予測値の最大値が減少傾向にある状況では、スケールアウトが実行されないようにしてもよい。
 その後、午後3時3分における予測が行われて、午後3時2分における予測よりも午後3時3分における予測の方が、トラフィック量の予測値の最大値は大きかったとする。この場合は、スケールアウトが実行されるようにしてもよい。
 ネットワーク負荷の予測値の最大値が減少傾向にある場合は、ネットワーク負荷が実際には予測ほど高くならない可能性が高い。そのため、このような場合にスケールアウトの実行が抑制されるようにすることで、通信システム1に含まれる要素をより適切にスケールアウトできることとなる。
 また、スケールアウト実行部が、予測期間内の所定時間以上の長さの時間にわたってネットワーク負荷の予測値の大きさが所与の条件を満たすと1回判定されることに応じて、通信システム1に含まれる要素のスケールアウトを実行してもよい。
 例えば、第2期間のうち所定時間(例えば3分)以上にわたってトラフィック量の予測値が閾値th1を超えると1回判定されることに応じて、スケールアウトが実行されるようにしてもよい。
 例えば、図12に示すように、「基準時点の15分後」から「基準時点の20分後」までの5分にわたってトラフィック量の予測値が閾値th1を超えると1回判定されることに応じて、スケールアウトが実行されるようにしてもよい。
 ネットワーク負荷の予測値の大きさが所定の条件を満たす時間が長い場合には、予測結果に示されているネットワーク負荷のピークが突発的なものである可能性や、ノイズである可能性が低い一方で、スケールアウトを実行する必要性が高い。そのため、このような状況では即座にスケールアウトを実行することが妥当であるものと思われる。よって、このようにすることで、通信システム1に含まれる要素をより適切にスケールアウトできることとなる。
 また、図12に示すように、予測期間の終期までの所定時間以上の長さの時間にわたってネットワーク負荷の予測値の大きさが所与の条件を満たすと1回判定されることに応じて、スケールアウト実行部が通信システム1に含まれる要素のスケールアウトを実行してもよい。
 図12の例では、基準時点の20分後までの予測が行われる状況で、基準時点の20分後までの5分にわたってトラフィック量の予測値が閾値th1を超えている。言い換えれば、時間長が20分の予測期間の最後の5分間において、トラフィック量の予測値が閾値th1を超えている。このような状況では、その後の予測においても、基準時点の20分後のトラフィック量の予測値が閾値th1を超える可能性が高い。
 そのため、このような状況では即座にスケールアウトを実行することがより妥当であるものと思われる。よって、このようにすることで、通信システム1に含まれる要素をより適切にスケールアウトできることとなる。
 また、本実施形態において、上述の閾値が、予測時点に対応付けられており、基準時点から当該予測時点までの時間の長さが長くなるにつれて大きくなるようにしてもよい。
 例えば、図13、及び、図14に示すように、第1期間における閾値t1よりも第2期間における閾値t2の方が大きくてもよい。
 そして、ポリシーマネージャ部90は、第1期間に含まれる少なくとも1つの予測時点については、当該予測時点におけるネットワーク負荷の予測値の大きさが閾値th1を超えるか否かを判定してもよい。そして、ポリシーマネージャ部90は、第2期間に含まれる少なくとも1つの予測時点については、当該予測時点におけるネットワーク負荷の予測値の大きさが閾値th2を超えるか否かを判定してもよい。
 そして、複数の予測時点のうちの一部又は全部において予測値が閾値を超えると判定される場合に、スケールアウト実行部が、通信システム1に含まれる要素のスケールアウトを実行してもよい。
 図13の例では、第1期間におけるトラフィック量の予測値が閾値t1を超えておらず、かつ、第2期間におけるトラフィック量の予測値が閾値t2を超えていない。そのため、この場合はスケールアウトが実行されない。
 一方で、図14の例では、第1期間におけるトラフィック量の予測値が閾値t1を超えていないが、第2期間におけるトラフィック量の予測値が閾値t2を超えている。そのため、この場合はスケールアウトが実行されることとなる。
 閾値が、予測時点に対応付けられており、基準時点から当該予測時点までの時間の長さが長くなるにつれて大きくなる場合であっても、上述のように、第2期間については、2回以上の所定回の判定で、予測値が閾値th2を超えると判定される場合に、スケールアウト実行部が通信システム1に含まれる要素のスケールアウトを実行してもよい。
 あるいは、このような場合については、第2期間であっても第1期間と同様に、予測値が閾値th2を超えると1回判定されることに応じて、スケールアウト実行部が通信システム1に含まれる要素のスケールアウトを実行してもよい。
 また、図15に示すように、閾値が基準時点から当該予測時点までの時間の長さの関数であっても構わない。図15の例では、破線で示されている閾値th(t)を超える予測値が存在するため、スケールアウトが実行されることとなる。
 上述のように、一般的に、基準時点から予測時点までの時間が長いほど予測精度が低くなる傾向がある。そして、予測精度が低い状況であってもネットワーク負荷の予測値が大きな閾値を超えるような状況であれば、ネットワーク負荷のピークが突発的なものである可能性や、ノイズである可能性が低い一方で、スケールアウトを実行する必要性が高い。
 上述の閾値が、予測時点に対応付けられており、基準時点から当該予測時点までの時間の長さが長くなるようにすれば、予測精度が低い予測時点については、ネットワーク負荷の予測値がよほど大きい場合でないと閾値を超えるとの条件を満たさないこととなる。そのため、このようにすることで、通信システム1に含まれる要素をより適切にスケールアウトできることとなる。
 以上の説明では、トラフィック量の予測結果に基づいて上述の判定が行われているが、他の通信性能(例えば、レイテンシ)に基づいて上述の判定が行われてもよい。また、複数の性能指標値に基づいて算出される総合評価値に基づいて上述の判定が行われてもよい。例えば、トラフィック量とレイテンシとに基づいて決定される総合評価値が閾値を超えているか否かが判定されてもよい。
 また、以上、gNBのユーザプレーンのスケールアウトについて説明したが、同様にして、gNBのコントロールプレーンのスケールアウトが実行されるようにしてもよい。例えば、レジスタ数、アクティブユーザ数、ハンドオーバ完了数などのうちの少なくとも1つの性能指標値を示す性能指標値データに基づく予測結果に基づいて、DU42や、CU-CP44aのスケールアウトを実行するか否かが判定されてもよい。
 また、本実施形態において、gNBのようなRAN32の要素ではなく、コアネットワークシステム34の要素のスケールアウトが実行されてもよい。例えば、AMF46やSMF48やUPF50のスケールアウトが実行されてもよい。またこの場合、スケールアウトを実行するか否かの判定に、コアネットワークシステム34の要素に係る性能指標値データが用いられてもよい。あるいは、当該判定に、RAN32の要素、及び、コアネットワークシステム34の要素に係る性能指標値データが用いられてもよい。
 また、同様にして、トランスポートのスケールアウトが実行されるようにしてもよい。
 また、本実施形態において、監視機能部72において、図16に示すように、ある特定のgNBについて、当該gNBのコントロールプレーンに係る要素の通信性能を集計する集計プロセス110aと、当該gNBのユーザプレーンに係る要素の通信性能を集計する集計プロセス110bと、が動作していてもよい。
 そして、データバス部68に、集計プロセス110aから出力される性能指標値データが格納されるキュー112aと、集計プロセス110bから出力される性能指標値データが格納されるキュー112bと、が含まれていてもよい。
 そして、AI部70において、キュー112aに格納されている性能指標値データを取得する推定プロセス114aと、キュー112bに格納されている性能指標値データを取得する推定プロセス114bと、が動作していてもよい。
 そして、ポリシーマネージャ部90が、推定プロセス114aによる推定結果、及び、推定プロセス114bによる推定結果に基づいて、通信システム1の状態を判定してもよい。
 例えば、ポリシーマネージャ部90が、通信システム1に含まれるコントロールプレーンのネットワーク負荷の予測結果に基づいて、閾値を決定してもよい。例えば、コントロールプレーンのネットワーク負荷が高いほど閾値として小さな値が決定されるようにしてもよい。
 例えば、推定プロセス114aからポリシーマネージャ部90に出力される推定結果データに基づいて、ポリシーマネージャ部90が、閾値を決定してもよい。
 そして、ポリシーマネージャ部90は、通信システム1に含まれるユーザプレーンのネットワーク負荷の予測値の大きさが上述のようにして決定される閾値を超えるか否かを判定してもよい。
 例えば、ポリシーマネージャ部90が、推定プロセス114bからポリシーマネージャ部90に出力される推定結果データが示す予測値の大きさが上述のようにして決定される閾値を超えるか否かを判定してもよい。
 そして、複数の予測時点のうちの一部又は全部において上述の予測値が上述の閾値を超えると判定される場合に、スケールアウト実行部が、通信システム1に含まれるユーザプレーンの一部又は全部を構成する要素のスケールアウトを実行してもよい。
 あるいは、基準時点が異なるが期間の少なくとも一部が重複する2以上の予測期間のそれぞれに対する判定で、予測値の大きさが、決定される閾値を超えるとの判定が所定数以上される場合に、スケールアウト実行部が、通信システム1に含まれるユーザプレーンの一部又は全部を構成する要素のスケールアウトを実行してもよい。
 また、本実施形態において、ポリシーマネージャ部90が、通信システム1に含まれるコントロールプレーンのネットワーク負荷の予測結果に基づいて、係数を決定してもよい。例えば、コントロールプレーンのネットワーク負荷が高いほど係数の値として大きな値が決定されるようにしてもよい。
 例えば、推定プロセス114aからポリシーマネージャ部90に出力される推定結果データに基づいて、ポリシーマネージャ部90が、係数を決定してもよい。
 そして、ポリシーマネージャ部90が、複数の予測時点のそれぞれについて、当該予測時点における通信システム1に含まれるユーザプレーンのネットワーク負荷の予測値に係数を乗じた補正予測値の大きさが閾値を超えるとの条件を満たすか否かを判定してもよい。
 例えば、ポリシーマネージャ部90が、推定プロセス114bからポリシーマネージャ部90に出力される推定結果データが示す予測値に係数を乗じた補正予測値の大きさが閾値を超えるとの条件を満たすか否かを判定してもよい。
 そして、複数の予測時点のうちの一部又は全部において補正予測値が閾値を超えると判定される場合に、スケールアウト実行部が、通信システム1に含まれるユーザプレーンの一部又は全部を構成する要素のスケールアウトを実行してもよい。
 あるいは、ポリシーマネージャ部90は、通信システム1に含まれるユーザプレーンのネットワーク負荷の予測値に決定される係数を乗じた補正予測値の大きさが所与の条件を満たすか否かを判定してもよい。
 例えば、ポリシーマネージャ部90が、推定プロセス114bからポリシーマネージャ部90に出力される推定結果データが示す予測値に係数を乗じた補正予測値の大きさが所与の条件を満たすか否かを判定してもよい。
 そして、基準時点が異なるが期間の少なくとも一部が重複する2以上の予測期間のそれぞれに対する判定で、所与の条件を満たすとの判定が所定数以上される場合に、スケールアウト実行部が、通信システム1に含まれるユーザプレーンの一部又は全部を構成する要素のスケールアウトを実行してもよい。
 コントロールプレーンのネットワーク負荷とユーザプレーンのネットワーク負荷にはある程度の相関があるものと思われる。例えば、コントロールプレーンのネットワーク負荷が高くなるとその後しばらくしてユーザプレーンのネットワーク負荷が高くなる可能性が高い。
 以上で説明した閾値や係数を、コントロールプレーンのネットワーク負荷の予測値の大きさに応じた値にすることで、ユーザプレーンの一部又は全部を構成する要素について、このような相関を踏まえたスケールアウトを実行することが可能となる。
 例えば、通常よりもコンサバティブに(すなわち、ユーザプレーンのネットワーク負荷の予測値がそれほど高くなくても)スケールアウトが実行されるようにすることが可能となる。
 なお、コントロールプレーンのネットワーク負荷が高いほど閾値として大きな値が決定されるようにしてもよい。また、コントロールプレーンのネットワーク負荷が高いほど係数の値として小さな値が決定されるようにしてもよい。
 ここで、本実施形態に係るプラットフォームシステム30で行われる、通信システム1の状態判定に関する処理の流れの一例を、図17に例示するフロー図を参照しながら説明する。
 本処理例では、データバス部68が、第1キュー群102aに含まれるキュー100のそれぞれについて、性能指標値データがエンキューされることを監視する(S101)。
 キュー100に対する性能指標値データのエンキューが検出されると、データバス部68は、当該キュー100に関連付けられている推定プロセス106に、性能指標値データがエンキューされたことを示す通知を出力する(S102)。
 当該通知を受け付けた推定プロセス106は、当該キュー100に格納されている、最新の性能指標値データを含む直近所定数又は直近所定期間の性能指標値データを取得する(S103)。
 そして、当該推定プロセス106は、S103に示す処理で取得された性能指標値データに基づいて、所定の推定処理を実行して、推定結果データを生成する(S104)。
 そして、当該推定プロセス106は、S104に示す処理で生成された推定結果データをポリシーマネージャ部90に出力する(S105)。
 当該推定結果データを受け付けたポリシーマネージャ部90は、当該推定結果に基づく判定処理を実行する(S106)。
 本処理例では例えば、第1キュー群102aに含まれるキュー100に性能指標値データがエンキューされたことに応じて、S102~S105に示す処理が実行されることとなる。
 次に、本実施形態に係るプラットフォームシステム30で行われる、第1キュー群102aに係る性能指標値ファイルの生成に関する処理の流れの一例を、図18に例示するフロー図を参照しながら説明する。
 データバス部68は、第1キュー群102aに含まれるキュー100のいずれかが所定の条件を満たすまで待機する(S201)。
 あるキュー100が所定の条件を満たしたら、データバス部68は、当該キュー100に格納されている性能指標値データのうちの少なくとも一部を含む性能指標値ファイルを生成して(S202)、S201に戻る。
 次に、本実施形態に係るプラットフォームシステム30で行われる、第2キュー群102bに係る性能指標値ファイルの生成に関する処理の流れの一例を、図19に例示するフロー図を参照しながら説明する。
 データバス部68は、第2キュー群102bに含まれるキュー100のいずれかが所定の条件を満たすまで待機する(S301)。
 あるキュー100が所定の条件を満たしたら、データバス部68は、当該キュー100に格納されている性能指標値データのうちの少なくとも一部を含む性能指標値ファイルを生成する(S302)。
 そして、データバス部68は、当該キュー100に格納されているすべての性能指標値データを当該キュー100から消去して(S303)、S301に示す処理に戻る。
 なお、S303に示す処理において、データバス部68は、当該キュー100に格納されているすべての性能指標値データをデキューすることで、当該キュー100に格納されているすべての性能指標値データを当該キュー100から消去してもよい。
 また、本処理例において、データバス部68が、当該キュー100に格納されているすべての性能指標値データをデキューによって消去してから、デキューされた性能指標値データに基づいて、性能指標値ファイルを生成してもよい。
 次に、上述のS106に示す判定処理、及び、当該判定処理に後続するスケールアウトの実行に関する処理の流れの一例を、図20に例示するフロー図を参照しながら説明する。
 まず、ポリシーマネージャ部90は、所定の時間間隔で(例えば1分ごとに)、所与の条件を満たすか否かを判定する(S401)。
 そして、所与の条件を満たす場合は、スケールアウト実行部が、スケールアウトを実行する(S402)。
 次に、上述のS106に示す判定処理、及び、当該判定処理に後続するスケールアウトの実行に関する処理の流れの別の一例を、図21に例示するフロー図を参照しながら説明する。図21に示す処理は、例えば、所定の時間間隔で(例えば1分ごとに)実行される。また、本処理例では、ポリシーマネージャ部90でカウンタの値が保持されていることとし、カウンタの値の初期値は0であることとする。
 まず、ポリシーマネージャ部90は、所与の第1条件を満たすか否かを判定する(S501)。ここで第1条件の一例としては、「第1期間においてトラフィック量の予測値が所定の閾値th1を超えている」との条件などが挙げられる。
 そして、第1条件を満たさないと判定された場合は(S501:N)、ポリシーマネージャ部90は、所与の第2条件を満たすか否かを判定する(S502)。ここで第2条件の一例としては、「第2期間においてトラフィック量の予測値が所定の閾値th1を超えている」との条件などが挙げられる。
 そして、第2条件を満たさないと判定された場合は(S502:N)、ポリシーマネージャ部90は、保持しているカウンタの値を0に更新して(S503)、S501に示す処理に戻る。
 そして、第2条件を満たすと判定された場合は(S502:Y)、ポリシーマネージャ部90は、保持しているカウンタの値を1増加させる(S504)。
 そして、ポリシーマネージャ部90は、保持しているカウンタの値が所定値(例えば、3)に達したか否かを確認する(S505)。
 達していない場合は(S505:N)、S501に示す処理に戻る。
 達している場合(S505:Y)、又は、S501に示す処理で、第1条件を満たすと判定された場合は(S501:Y)、スケールアウト実行部が、スケールアウトを実行する(S506)。そして、ポリシーマネージャ部90は、保持しているカウンタの値を0に更新して(S507)、S501に示す処理に戻る。
 なお、本発明は上述の実施形態に限定されるものではない。
 また、本実施形態に係る機能ユニットは図3に示したものには限定されない。
 また、本実施形態に係る機能ユニットは、5GにおけるNFである必要はない。例えば、本実施形態に係る機能ユニットが、eNodeB、vDU、vCU、P-GW(Packet Data Network Gateway)、S-GW(Serving Gateway)、MME(Mobility Management Entity)、HSS(Home Subscriber Server)などといった、4Gにおけるネットワークノードであっても構わない。
 また、本実施形態に係る機能ユニットが、コンテナ型の仮想化技術でなく、ハイパーバイザ型やホスト型の仮想化技術を用いて実現されてもよい。また、本実施形態に係る機能ユニットがソフトウェアによって実装されている必要はなく、電子回路等のハードウェアによって実装されていてもよい。また、本実施形態に係る機能ユニットが、電子回路とソフトウェアとの組合せによって実装されていてもよい。
 また、本実施形態において、以上で説明した各種の判定手法(判定処理)を様々に組み合わせることが可能である。
 本開示に記載の技術は以下のように表現することもできる。
[1]
 通信システムに係る所与の基準時点以前の性能指標値に基づいて、当該基準時点から当該基準時点の所定時間後までの予測期間に含まれる複数の予測時点におけるネットワーク負荷を予測する予測手段と、
 前記予測に応じて、前記複数の予測時点のそれぞれについて、前記基準時点から当該予測時点までの時間の長さが長くになるにつれて大きくなる、当該予測時点に対応付けられる閾値を、当該予測時点における前記ネットワーク負荷の予測値が超えるか否かを判定する判定手段と、
 前記複数の予測時点のうちの一部又は全部において前記予測値が前記閾値を超えると判定される場合に、前記通信システムに含まれる要素のスケールアウトを実行するスケールアウト実行手段と、
 を含むことを特徴とするスケールアウト実行システム。
[2]
 前記判定手段は、
  前記基準時点から当該基準時点の第1の時間後までの期間に含まれる少なくとも1つの予測時点については、当該予測時点における前記ネットワーク負荷の予測値の大きさが第1の閾値を超えるか否かを判定し、
  前記基準時点の前記第1の時間後から前記基準時点の第2の時間後までの期間に含まれる少なくとも1つの予測時点については、当該予測時点における前記ネットワーク負荷の予測値の大きさが前記第1の閾値よりも大きな第2の閾値を超えるか否かを判定する、
 ことを特徴とする[1]に記載のスケールアウト実行システム。
[3]
 前記スケールアウト実行手段は、前記基準時点が異なるが期間の少なくとも一部が重複する2以上の前記予測期間のそれぞれに対する前記判定で、前記複数の予測時点のうちの一部又は全部において前記予測値が前記閾値を超えるとの判定が所定数以上される場合に、前記通信システムに含まれる要素のスケールアウトを実行する、
 ことを特徴とする[1]又は[2]に記載のスケールアウト実行システム。
[4]
 前記通信システムに含まれるコントロールプレーンのネットワーク負荷の予測結果に基づいて前記閾値を決定する閾値決定手段、をさらに含み、
 前記判定手段は、前記通信システムに含まれるユーザプレーンのネットワーク負荷の予測値が決定される前記閾値を超えるか否かを判定し、
 前記スケールアウト実行手段は、前記複数の予測時点のうちの一部又は全部において前記予測値が前記閾値を超えると判定される場合に、前記通信システムに含まれる前記ユーザプレーンの一部又は全部を構成する要素のスケールアウトを実行する、
 ことを特徴とする[1]に記載のスケールアウト実行システム。
[5]
 前記通信システムに含まれるコントロールプレーンのネットワーク負荷の予測結果に基づいて係数を決定する係数決定手段、をさらに含み、
 前記判定手段は、前記複数の予測時点のそれぞれについて、当該予測時点における前記通信システムに含まれるユーザプレーンのネットワーク負荷の予測値に前記係数を乗じた補正予測値が前記閾値を超えるとの条件を満たすか否かを判定し、
 前記スケールアウト実行手段は、前記複数の予測時点のうちの一部又は全部において前記補正予測値が前記閾値を超えると判定される場合に、前記通信システムに含まれる前記ユーザプレーンの一部又は全部を構成する要素のスケールアウトを実行する、
 ことを特徴とする[1]に記載のスケールアウト実行システム。
[6]
 通信システムに係る所与の基準時点以前の性能指標値に基づいて、当該基準時点から当該基準時点の所定時間後までの期間に含まれる複数の予測時点におけるネットワーク負荷を予測することと、
 前記予測に応じて、前記複数の予測時点のそれぞれについて、前記基準時点から当該予測時点までの時間の長さが長くになるにつれて大きくなる、当該予測時点に対応付けられる閾値を、当該予測時点における前記ネットワーク負荷の予測値が超えるか否かを判定することと、
 前記複数の予測時点のうちの一部又は全部において前記予測値が前記閾値を超えると判定される場合に、前記通信システムに含まれる要素のスケールアウトを実行することと、
 を含むことを特徴とするスケールアウト実行方法。

 

Claims (6)

  1.  1以上のプロセッサを備え、
     前記1以上のプロセッサのうちの少なくとも1つによって、
     通信システムに係る所与の基準時点以前の性能指標値に基づいて、当該基準時点から当該基準時点の所定時間後までの予測期間に含まれる複数の予測時点におけるネットワーク負荷を予測する予測処理と、
     前記予測に応じて、前記複数の予測時点のそれぞれについて、前記基準時点から当該予測時点までの時間の長さが長くになるにつれて大きくなる、当該予測時点に対応付けられる閾値を、当該予測時点における前記ネットワーク負荷の予測値が超えるか否かを判定する判定処理と、
     前記複数の予測時点のうちの一部又は全部において前記予測値が前記閾値を超えると判定される場合に、前記通信システムに含まれる要素のスケールアウトを実行するスケールアウト実行処理と、
     が実行されるスケールアウト実行システム。
  2.  前記判定処理では、
      前記基準時点から当該基準時点の第1の時間後までの期間に含まれる少なくとも1つの予測時点については、当該予測時点における前記ネットワーク負荷の予測値の大きさが第1の閾値を超えるか否かが判定され、
      前記基準時点の前記第1の時間後から前記基準時点の第2の時間後までの期間に含まれる少なくとも1つの予測時点については、当該予測時点における前記ネットワーク負荷の予測値の大きさが前記第1の閾値よりも大きな第2の閾値を超えるか否かが判定される、
     請求項1に記載のスケールアウト実行システム。
  3.  前記スケールアウト実行処理では、前記基準時点が異なるが期間の少なくとも一部が重複する2以上の前記予測期間のそれぞれに対する前記判定で、前記複数の予測時点のうちの一部又は全部において前記予測値が前記閾値を超えるとの判定が所定数以上される場合に、前記通信システムに含まれる要素のスケールアウトが実行される、
     請求項1に記載のスケールアウト実行システム。
  4.  前記1以上のプロセッサのうちの少なくとも1つによって、前記通信システムに含まれるコントロールプレーンのネットワーク負荷の予測結果に基づいて前記閾値を決定する閾値決定処理、が実行され、
     前記判定処理では、前記通信システムに含まれるユーザプレーンのネットワーク負荷の予測値が、決定される前記閾値を超えるか否かが判定され、
     前記スケールアウト実行処理では、前記複数の予測時点のうちの一部又は全部において前記予測値が前記閾値を超えると判定される場合に、前記通信システムに含まれる前記ユーザプレーンの一部又は全部を構成する要素のスケールアウトが実行される、
     請求項1に記載のスケールアウト実行システム。
  5.  前記1以上のプロセッサのうちの少なくとも1つによって、前記通信システムに含まれるコントロールプレーンのネットワーク負荷の予測結果に基づいて係数を決定する係数決定処理、が実行され、
     前記判定処理では、前記複数の予測時点のそれぞれについて、当該予測時点における前記通信システムに含まれるユーザプレーンのネットワーク負荷の予測値に前記係数を乗じた補正予測値が前記閾値を超えるとの条件を満たすか否かが判定され、
     前記スケールアウト実行処理では、前記複数の予測時点のうちの一部又は全部において前記補正予測値が前記閾値を超えると判定される場合に、前記通信システムに含まれる前記ユーザプレーンの一部又は全部を構成する要素のスケールアウトが実行される、
     請求項1に記載のスケールアウト実行システム。
  6.  通信システムに係る所与の基準時点以前の性能指標値に基づいて、当該基準時点から当該基準時点の所定時間後までの期間に含まれる複数の予測時点におけるネットワーク負荷を予測することと、
     前記予測に応じて、前記複数の予測時点のそれぞれについて、前記基準時点から当該予測時点までの時間の長さが長くになるにつれて大きくなる、当該予測時点に対応付けられる閾値を、当該予測時点における前記ネットワーク負荷の予測値が超えるか否かを判定することと、
     前記複数の予測時点のうちの一部又は全部において前記予測値が前記閾値を超えると判定される場合に、前記通信システムに含まれる要素のスケールアウトを実行することと、
     を含むスケールアウト実行方法。

     
PCT/JP2022/026071 2022-06-29 2022-06-29 通信システムに含まれる要素の適切なスケールアウトの実行 WO2024004104A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026071 WO2024004104A1 (ja) 2022-06-29 2022-06-29 通信システムに含まれる要素の適切なスケールアウトの実行

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026071 WO2024004104A1 (ja) 2022-06-29 2022-06-29 通信システムに含まれる要素の適切なスケールアウトの実行

Publications (1)

Publication Number Publication Date
WO2024004104A1 true WO2024004104A1 (ja) 2024-01-04

Family

ID=89382297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026071 WO2024004104A1 (ja) 2022-06-29 2022-06-29 通信システムに含まれる要素の適切なスケールアウトの実行

Country Status (1)

Country Link
WO (1) WO2024004104A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258119A (ja) * 2010-06-11 2011-12-22 Hitachi Ltd クラスタ構成管理方法、管理装置及びプログラム
JP2017211928A (ja) * 2016-05-27 2017-11-30 本田技研工業株式会社 分散処理制御システム及び分散処理制御方法
WO2018016043A1 (ja) * 2016-07-21 2018-01-25 日本電気株式会社 リソース管理装置、リソース管理方法及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258119A (ja) * 2010-06-11 2011-12-22 Hitachi Ltd クラスタ構成管理方法、管理装置及びプログラム
JP2017211928A (ja) * 2016-05-27 2017-11-30 本田技研工業株式会社 分散処理制御システム及び分散処理制御方法
WO2018016043A1 (ja) * 2016-07-21 2018-01-25 日本電気株式会社 リソース管理装置、リソース管理方法及びプログラム

Similar Documents

Publication Publication Date Title
EP3053041B1 (en) Method, system, computer program and computer program product for monitoring data packet flows between virtual machines, vms, within a data centre
CN109391505B (zh) 网络实例管理方法及相关设备
US10735279B2 (en) Networking service level agreements for computer datacenters
US9219691B2 (en) Source-driven switch probing with feedback request
CN112753250B (zh) 管理用户设备到网络切片的分配的方法和电信网络
WO2024004104A1 (ja) 通信システムに含まれる要素の適切なスケールアウトの実行
WO2024004103A1 (ja) 通信システムに含まれる要素の適切なスケールアウトの実行
WO2024004102A1 (ja) キューに格納されている性能指標値データに基づく通信システムの状態判定
Lin et al. Towards a client-centric QoS auto-scaling system
WO2024024106A1 (ja) ネットワーク負荷の予測開始タイミングの制御
WO2024024107A1 (ja) ネットワーク負荷の予測開始タイミングの制御
WO2024047774A1 (ja) 通信システムに係る所与の予測目的で用いられる機械学習モデルの決定
WO2024047775A1 (ja) 通信システムに係る所与の予測目的で用いられる機械学習モデルの決定
WO2023218664A1 (ja) リプレースシステム及びリプレース方法
WO2024111027A1 (ja) 通信システムに含まれる要素の性能指標値が示された監視画面の表示制御
WO2023218663A1 (ja) 実行基盤決定システム及び実行基盤決定方法
WO2024202004A1 (ja) サイレント障害の原因であるルータの推定
WO2024069948A1 (ja) 通信システムに含まれるハードウェアリソースの管理
WO2023188185A1 (ja) 配置システム及び配置方法
WO2024142180A1 (ja) 不安定なアプリケーションのリプレース
WO2024142179A1 (ja) アプリケーションが不安定である原因の推定
WO2024111025A1 (ja) 通信システムに含まれる要素に対するアクションの実行条件の制御
WO2024111026A1 (ja) 通信システムに含まれる要素に対するアクションを実行するか否かを判定する判定処理の実行開始制御
WO2024189910A1 (ja) サイレント障害の原因であるルータの推定
Abderrahim et al. Dependability integration in cloud-hosted telecommunication services

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949378

Country of ref document: EP

Kind code of ref document: A1