[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024004074A1 - Mounting machine - Google Patents

Mounting machine Download PDF

Info

Publication number
WO2024004074A1
WO2024004074A1 PCT/JP2022/025931 JP2022025931W WO2024004074A1 WO 2024004074 A1 WO2024004074 A1 WO 2024004074A1 JP 2022025931 W JP2022025931 W JP 2022025931W WO 2024004074 A1 WO2024004074 A1 WO 2024004074A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
mounting machine
component
attracted
inner diameter
Prior art date
Application number
PCT/JP2022/025931
Other languages
French (fr)
Japanese (ja)
Inventor
博充 岡
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/025931 priority Critical patent/WO2024004074A1/en
Publication of WO2024004074A1 publication Critical patent/WO2024004074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • This specification discloses a mounting machine.
  • Patent Document 1 describes a case in which the amount of positional deviation of the nozzle tip with respect to the rotation center position is measured in advance and the amount of positional deviation is taken into consideration when suctioning an object or mounting the object.
  • a mounting machine that corrects the nozzle position is disclosed.
  • the position of the hole in the cylindrical nozzle may be offset from the center relative to the outer shape. In this case, the mounting machine disclosed in Patent Document 1 may not be able to correctly determine the position of the hole, and the suction accuracy may deteriorate.
  • Patent Document 2 describes a method for solving such problems, in which a spherical detection chip is adsorbed by a nozzle, an image of the detection chip adsorbed to the nozzle is taken from below, and the center of the detection chip is identified in the captured image.
  • a mounting machine that determines the center of the nozzle is disclosed.
  • the main purpose of the present disclosure is to improve suction accuracy.
  • the mounting machine of the present disclosure includes: A mounting machine that can pick up and mount objects, a nozzle formed in a cylindrical shape and sucking the object at its lower end; a head that holds the nozzle; a head moving device that moves the head in a horizontal direction; a camera capable of capturing an image of the lower end of the nozzle or the lower surface side of the object attracted to the nozzle; controlling the camera so that an image of the lower end of the nozzle is captured, recognizing the inner diameter portion of the nozzle at the lower end based on the image, and deriving the center of the inner diameter of the nozzle in advance; controlling the head moving device to attract the object to the nozzle so that the center of the inner diameter of the nozzle coincides with the adsorption position of the object when performing the adsorption operation of the object; a device;
  • the main point is to have the following.
  • the camera is controlled so that an image of the lower end of the nozzle is captured, the inner diameter portion of the nozzle at the lower end is recognized based on the image, and the center of the inner diameter of the nozzle is derived in advance.
  • the head moving device is controlled so that the nozzle attracts the target object so that the center of the inner diameter of the nozzle coincides with the position of the target object. Even if the center of the cylindrical nozzle based on the inner diameter (inner diameter center) is offset from the center based on the outer diameter (outer diameter center), the center of the inner diameter can be aligned with the position of the object to be adsorbed.
  • the suction accuracy can be improved.
  • the center of the inner diameter is determined without using a detection chip, the problem that the detection accuracy of the center of the inner diameter is reduced due to scratches or dents on the detection chip is less likely to occur. Therefore, suction accuracy can be improved.
  • FIG. 1 is a perspective view of a component mounting machine 10.
  • FIG. It is a perspective view of part P. 3 is a schematic configuration diagram of a parts camera 40 and a lighting device 50.
  • FIG. FIG. 2 is a block diagram showing electrical connections of the component mounter 10.
  • FIG. 3 is a flowchart illustrating an example of an inner diameter center position derivation routine.
  • FIG. 3 is an explanatory diagram showing an example of a nozzle lower end image Im1.
  • FIG. 3 is an explanatory diagram showing an example of a nozzle lower end image Im1.
  • 3 is a flowchart showing an example of a component mounting routine.
  • FIG. 3 is an explanatory diagram showing how a part P is attracted.
  • FIG. 3 is an explanatory diagram showing how a part P is attracted.
  • FIG. 3 is an explanatory diagram showing how a part P is attracted.
  • FIG. 7 is an explanatory diagram showing a modified example of how the component P is sucked.
  • FIG. 7 is an explanatory diagram showing a modified example of how the component P is sucked.
  • FIG. 7 is an explanatory diagram showing a modified example of how the component P is sucked.
  • FIG. 7 is an explanatory diagram showing a modified example of how the component P is sucked.
  • FIG. 7 is an explanatory diagram showing a modified example of how the component P is sucked.
  • FIG. 1 is a perspective view of the component mounter 10.
  • FIG. 2 is a perspective view of the component P.
  • FIG. 3 is a schematic configuration diagram of the parts camera 40 and the lighting device 50.
  • FIG. 4 is a block diagram showing the electrical connections of the component mounter 10. In this embodiment, the left-right direction (X-axis), the front-back direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIGS. 1 and 2.
  • the component mounting machine 10 receives components P from a plurality of tape feeders 70 and mounts them onto a board S.
  • the component mounter 10 includes a base 11 and a mounter main body 12 installed on the base 11.
  • the tape feeder 70 includes a reel 72 and a feeder section 74.
  • the tape feeder 70 is detachably attached to the front side of the mounting machine main body 12.
  • a tape T is wound around each reel 72.
  • a plurality of accommodation recesses are provided on the surface of the tape T along the longitudinal direction of the tape T.
  • a component P as shown in FIG. 2 is accommodated in each accommodation recess.
  • This component P may be, for example, an LED component in which a hemispherical dome portion A is formed of a transparent resin having light transmittance. These parts P are protected by a film covering the surface of the tape T.
  • the tape T is unwound backward from the reel 72, and the film is peeled off at the feeder section 74, leaving the component P exposed.
  • This exposed component P is attracted by the nozzle 23.
  • the operation of the reel 72 is controlled by a feeder controller 76 (see FIG. 4) included in each feeder section 74.
  • the mounting machine main body 12 is installed on the base 11 so as to be replaceable. As shown in FIG. 1, this mounting machine main body 12 includes a substrate transport device 13, a head moving device 17, a head 22, a nozzle 23, a parts camera 40, a mark camera 45, and an illumination device 50 (FIG. 3). ) and a control device 60.
  • the substrate transport device 13 is a device that transports and holds the substrate S.
  • This substrate transport device 13 includes support plates 14, 14 and conveyor belts 15, 15 (only one of which is shown in FIG. 1).
  • the pair of front and rear support plates 14, 14 are members extending in the left-right direction, and are provided with an interval equal to the length of the front and rear of the substrate S.
  • the conveyor belts 15, 15 span endless driving wheels and driven wheels provided on the left and right sides of the support plates 14, 14.
  • the substrate S is placed on the upper surface of a pair of conveyor belts 15, 15 and conveyed from left to right. When this board S is carried into the mounting machine main body 12, it is transported to a position where the component P is mounted, and then clamped by a clamp device (not shown).
  • the head moving device 17 is a device that moves the head 22 in the horizontal direction.
  • the head moving device 17 includes an X-axis slider 18 and a Y-axis slider 19.
  • the Y-axis slider 19 is slidably attached to a pair of left and right guide rails 20, 20 extending in the front-rear direction.
  • a pair of upper and lower guide rails 21, 21 extending in the left-right direction are provided on the front surface of the Y-axis slider 19.
  • the X-axis slider 18 is slidably attached to the guide rails 21, 21. Note that each slider 18, 19 is driven by a drive motor 18a, 19a (see FIG. 4), respectively.
  • the X-axis slider 18 has a position sensor 18b (see FIG.
  • the position sensor 18b outputs the position of the X-axis slider 18 to the control device 60 (see FIG. 4).
  • the Y-axis slider 19 has a position sensor 19b (see FIG. 4) that can detect the position of the Y-axis slider 19.
  • the position sensor 19b outputs the position of the Y-axis slider 19 to the control device 60.
  • the head 22 is for holding the nozzle 23.
  • the head 22 is attached to the front surface of the X-axis slider 18.
  • the X-axis slider 18 is attached to the front surface of the Y-axis slider 19.
  • the head 22 moves in the left-right direction as the X-axis slider 18 moves in the left-right direction, and moves in the front-rear direction as the Y-axis slider 19 moves in the front-back direction.
  • the nozzle lifting device 24 (see FIG. 4) is a device that moves the nozzle 23 up and down with respect to the head 22.
  • the nozzle lifting device 24 includes a Z-axis motor 25 and a ball screw 26 extending along the Z-axis.
  • the nozzle 23 is attached to the ball screw 26 via a nozzle holder (not shown), and the height of the nozzle 23 is adjusted by the Z-axis motor 25.
  • the nozzle lifting device 24 includes a Q-axis motor 27 (see FIG. 4) that rotates the nozzle 23 around its axis.
  • the nozzle 23 is a member that attracts and holds the component P at the tip of the nozzle, and releases the component P that is sucked from the tip of the nozzle.
  • the nozzle 23 is a cylindrical member having a flange.
  • the suction port of the nozzle 23 is configured to selectively communicate with either the vacuum pump 29 or the air pipe 30 via the solenoid valve 28.
  • the nozzle 23 can apply negative pressure to the suction port to adsorb the component P, and the suction port communicates with the air pipe 30.
  • positive pressure can be applied to the suction port to release the suction of the component P.
  • the nozzle 23 projects downward from the bottom surface of the main body of the head 22. Furthermore, the height of the component attracted to the nozzle 23 is adjusted by moving the nozzle 23 up and down along the Z-axis direction by the Z-axis motor 25. By rotating the nozzle 23 by the Q-axis motor 27, the orientation of the component attracted to the nozzle 23 is adjusted.
  • the parts camera 40 is a camera that has an imaging range above.
  • the parts camera 40 can generate an image by capturing an image of the lower end of the nozzle 23 from below, and can also generate an image by capturing an image of the component P attracted to the nozzle 23 from below.
  • the parts camera 40 is arranged in front of the support plate 14 on the front side of the substrate transport device 13.
  • the mark camera 45 has an imaging area at the bottom and can read reference marks attached to the board S indicating the reference position of the board S and the reference position where the component P is placed, etc., and is housed in the storage recess of the tape T. This is a camera that can take an image of the part P that is being used.
  • the mark camera 45 is attached to the lower surface of the X-axis slider 18 and can move together with the head 22.
  • the illumination device 50 is a device that irradiates light onto an imaging target (for example, the component P or the lower end of the nozzle 23).
  • the illumination device 50 includes a housing 52, a connecting portion 53, an incident light source 54, a half mirror 56, and a multistage light source 57.
  • the housing 52 is a bowl-shaped member with an octagonal opening at the upper and lower surfaces (bottom surface).
  • the housing 52 has a shape in which the opening on the top surface is larger than the opening on the bottom surface, and the internal space tends to increase from the bottom surface to the top surface.
  • the connecting portion 53 is a cylindrical member that connects the housing 52 and the parts camera 40.
  • the incident light source 54 has a plurality of LEDs 55.
  • the half mirror 56 reflects horizontal light from the LED 55 of the incident light source 54 upward. Further, the half mirror 56 transmits light from above toward the parts camera 40.
  • the multistage light source 57 includes an upper stage light source 57a, a middle stage light source 57b, and a lower stage light source 57c.
  • the upper light source 57a has a plurality of LEDs 58a
  • the middle light source 57b has a plurality of LEDs 58b
  • the lower light source 57c has a plurality of LEDs 58c.
  • the LEDs 58a to 58c all emit light in a direction inclined from the optical axis 59a.
  • the angle of inclination of the irradiation direction of the LEDs 58a to 58c from the optical axis 59a is the largest for the LED 58a, and the LED 58a irradiates light in a substantially horizontal direction. Moreover, this angle of inclination is the smallest for the LED 58c.
  • the control device 60 includes a CPU 61, a RAM 62, a ROM 63, and a storage (for example, HDD or SSD) 64.
  • This control device 60 includes the substrate transfer device 13, a drive motor 18a for the X-axis slider 18, a drive motor 19a for the Y-axis slider 19, a Z-axis motor 25, a Q-axis motor 27, a parts camera 40, a solenoid valve 28, and a lighting device.
  • a control signal is output to 50.
  • the control device 60 inputs captured images from the parts camera 40.
  • the control device 60 is communicatively connected to a feeder controller 76 of a tape feeder 70.
  • the control device 60 controls the drive motors 18a, 19a of each slider 18, 19 while inputting position information from the position sensors 18b, 19b.
  • FIG. 5 is a flowchart showing an example of the inner diameter center position derivation routine.
  • FIG. 6A is an explanatory diagram showing an example of the nozzle lower end image Im1. This position of the inner diameter center C0 is used in a component mounting routine to be described later.
  • the CPU 61 controls the drive motor 18a of the X-axis slider 18 and the drive motor 19a of the Y-axis slider 19 so that the lower end of the nozzle 23 moves above the parts camera 40 (S100).
  • the CPU 61 turns on the lighting device 50 (S110). Specifically, the CPU 61 turns on the upper light source 57a, the middle light source 57b, the lower light source 57c, and the incident light source 54. Subsequently, the CPU 61 sets the exposure time T1 (S120).
  • the exposure time T1 is longer than the exposure time T2 when the lower surface of the component P is imaged by the parts camera 40 in a component mounting routine to be described later.
  • the exposure time T1 is, for example, about 250 [ms].
  • FIG. 6A is a nozzle lower end image Im1 in which the center based on the inner diameter (inner diameter center C0) of the nozzle 23 is not shifted from the center based on the outer diameter (outer diameter center C1).
  • the CPU 61 recognizes the inner diameter of the nozzle 23 based on the nozzle lower end image Im1 (S140). This process is executed as follows. That is, the CPU 61 acquires the brightness value of each pixel that constitutes the nozzle lower end image Im1. Next, the CPU 61 recognizes the outline of the inner diameter of the nozzle 23 based on the change in the brightness value. Then, the CPU 61 recognizes the portion surrounded by the outline as the inner diameter of the nozzle 23.
  • the CPU 61 derives the center position of the nozzle 23 (S150). This process is executed as follows. That is, first, the CPU 61 recognizes the outer diameter of the nozzle 23. This process is executed in the same manner as in recognizing the inner diameter of the nozzle 23 described above. Next, the CPU 61 derives the inner diameter center C0 based on the inner diameter outline of the nozzle 23 recognized in S140, and also derives the outer diameter center C1 of the nozzle 23 based on the outer diameter outline of the nozzle 23.
  • the CPU 61 determines the positional deviation amount of the inner diameter center C0 with respect to the outer diameter center C1 (when the XY coordinates are determined for the nozzle lower end image Im1, the XY coordinate values of the inner diameter center C0 with the outer diameter center C1 as the origin) Derive. Then, the CPU 61 stores the nozzle 23 (identification information) and the amount of positional deviation of the inner diameter center C0 with respect to the outer diameter center C1 in the storage 64 in association with each other. After the CPU 61 executes the processes from S110 to S150 for all nozzles used in the component mounter 10, it ends this routine.
  • FIG. 6B is an explanatory diagram showing an example of the nozzle lower end image Im1.
  • FIG. 7 is a flowchart showing an example of a component mounting cooking routine.
  • 8A to 8C are explanatory diagrams showing how the nozzle 23 sucks the component P.
  • This routine is executed by the CPU 61 after receiving a production job from a management computer (not shown).
  • the production job defines the mounting order (which type of component is to be mounted on the board S in what order in the component mounter 10), the target mounting position, and how many boards S to mount the component on. It is information.
  • the CPU 61 reads from the storage 64 the amount of positional deviation of the inner diameter center C0 with respect to the outer diameter center C1 of the nozzle 23 currently attached to the head 22 (S200). Subsequently, the CPU 61 controls the board transport device 13 so that the board S is transported into the component mounting machine 10 (S210).
  • the CPU 61 recognizes the component P to be mounted next on the board S in light of the mounting order in the production job (S220).
  • the CPU 61 drives the drive motor 18a of the X-axis slider 18 and the Y-axis slider 19 so that the inner diameter center C0 of the nozzle 23 coincides with the suction point of the component P to be mounted.
  • the motor 19a is controlled (S230). This process is executed, for example, as follows. That is, first, the CPU 61 controls the drive motor 18a of the X-axis slider 18 and the drive motor 19a of the Y-axis slider 19 so that the mark camera 45 moves above the component P to be mounted on the board S next. Next, the CPU 61 controls the mark camera 45 so that an image of the component P accommodated in the accommodation recess is captured.
  • the CPU 61 determines the suction point of the component P (for example, the center point of the component P) based on the position information from the position sensors 18b and 19b and the image of the component P. Then, the drive motor 18a of the X-axis slider 18 and the drive motor 19a of the Y-axis slider 19 are controlled so that the center position of the component P and the inner diameter center C0 of the nozzle 23 coincide.
  • the position of the inner diameter center C0 is the position where the position of the outer diameter center C1 is equal to the positional deviation amount of the position of the inner diameter center C0 with respect to the position of the outer diameter center C1.
  • the position of the outer diameter center C1 can be determined based on position information from the position sensors 18b and 19b. This is because the position of the head 22 can be derived based on the position information of the position sensors 18b and 19b, and the relative position of the nozzle 23 with respect to the head 22 is constant.
  • the CPU 61 executes a process of sucking the part P (S240). Specifically, the CPU 61 controls the Z-axis motor 25 so that the lower surface of the nozzle 23 abuts the component P, as shown in FIG. 8B. Next, the CPU 61 controls the solenoid valve 28 so that the suction port of the nozzle 23 communicates with the vacuum pump 29 . As a result, negative pressure acts on the suction port of the nozzle 23, and the component P is suctioned by the nozzle 23. Then, the CPU 61 controls the Z-axis motor 25 so that the nozzle 23 rises.
  • the part P having the dome part A is Since the top part of the part P is sucked into the suction hole of the nozzle 23, there is a risk that the part P will be sucked in an inclined state with respect to the nozzle 23. If the process of S290 of this routine, which will be described later, is executed in this state, there is a possibility that positional deviation or misrecognition of the part size will occur due to the tilt of the part P. Therefore, when mounting the component P on the board S, there is a possibility that a positional shift may occur, which may cause defects.
  • the part P having the dome part A is sucked while entering the suction hole of the nozzle 23, so if the position of the suction hole when picking up the part P deviates even slightly from the top of the dome part A, the part P will not be suctioned. Defects are more likely to occur.
  • the suction operation of the component P is performed in a state where the inner diameter center C0 coincides with the suction point of the component P.
  • the CPU 61 controls the drive motor 18a of the X-axis slider 18 and the drive motor 19a of the Y-axis slider 19 so that the part P attracted to the nozzle 23 moves above the parts camera 40 (S250). Subsequently, the CPU 61 turns on the lighting device 50 (S260). Specifically, the CPU 61 turns on the upper light source 57a and the epi-light source 54.
  • the exposure time T2 is shorter than the exposure time T1 when capturing the nozzle lower end image Im1 in the inner diameter center deriving routine.
  • the exposure time T2 is, for example, about 40 [ms].
  • the CPU 61 controls the parts camera 40 so that the bottom surface of the part P is imaged with the lighting device 50 turned on (S280). Subsequently, the CPU 61 derives the amount of deviation of the suction position of the component P with respect to the nozzle 23 based on the captured image (S290). The deviation amount of the suction position is the difference between the target suction position of the component P with respect to the nozzle 23 and the actual suction position with respect to the nozzle 23 . Then, the CPU 61 determines whether the amount of deviation of the suction position is within an allowable range (S300).
  • the CPU 61 controls various members so that the parts P picked up by the nozzle 23 are discarded to a discarding device (not shown) (S310). After S310, the CPU 61 returns to S220 again. Then, the CPU 61 recognizes a component P of the same type as the component P discarded in S310 as a component to be mounted (S220), and executes the processes from S230 onwards.
  • the CPU 61 corrects the target mounting position based on the amount of deviation of the suction position (S320).
  • This process is executed as follows. That is, the CPU 61 first sets the position correction amount.
  • the position correction amount is an amount that can eliminate the suction position deviation amount. Then, the CPU 61 adds the position correction amount to the target mounting position before correction to derive the target mounting position after correction.
  • the CPU 61 executes a process of mounting the component P on the board S (S330). Specifically, the drive motor 18a of the X-axis slider 18 and the drive motor 19a of the Y-axis slider 19 are controlled so that the mark camera 45 moves above the substrate S.
  • the CPU 61 controls the drive motor 18a of the X-axis slider 18 and the drive motor 19a of the Y-axis slider 19 so that the component P moves above the corrected target mounting position.
  • the CPU 61 controls the Z-axis motor 25 so that the component P descends and is pressed against the substrate S.
  • the CPU 61 controls the solenoid valve 28 so that the suction port of the nozzle 23 communicates with the air pipe 30. As a result, positive pressure acts on the suction port of the nozzle 23, and the suction of the component P is released. In this way, the component P is mounted on the board S.
  • the CPU 61 determines whether all the components to be mounted on the own machine have been mounted (S340). If a negative determination is made in S340, the CPU 61 returns to S220. Then, the next component to be mounted is recognized based on the production job (S220), and the processes from S230 onwards are repeatedly executed. On the other hand, if an affirmative determination is made in S340, the CPU 61 executes a process of transporting the substrate S downstream (S350). Specifically, the CPU 61 controls the substrate transport device 13 so that the substrate S is transported downstream in the transport direction.
  • the CPU 61 determines whether the planned number of substrates S has been produced (S360). If a negative determination is made in S360, the CPU 61 returns to S210 again. On the other hand, if an affirmative determination is made in S360, the CPU 61 ends this routine.
  • this routine may be executed for all components P to be mounted by the component mounter 10, or may be executed only for a specific component P that particularly requires precision during suction.
  • this routine only on a specific part P, set whether or not it is necessary in the production job in advance, and derive the amount of deviation of the center of the inner diameter only for the nozzle 23 that picks up the part P that is the target of this routine. You may also do so.
  • the component mounter 10 of this embodiment corresponds to the mounter of the present disclosure
  • the head 22 corresponds to a head
  • the head moving device 17 corresponds to a head moving device
  • the parts camera 40 corresponds to a camera.
  • the parts camera 40 is controlled so that the nozzle lower end image Im1 at the lower end of the nozzle 23 is captured, and the inner diameter portion of the nozzle 23 at the lower end is detected based on the nozzle lower end image Im1.
  • the head moving device is controlled so that the center of the inner diameter of the nozzle coincides with the point to be attracted on the object when performing the suction operation of the object.
  • the object is attracted to the nozzle.
  • the inner diameter center C0 of a cylindrical nozzle 23 deviates from the outer diameter center C1, the inner diameter center C0 can be aligned with the suction point of the part P to improve suction accuracy. Can be done.
  • the inner diameter center C0 is determined without using a detection chip, the problem of lowering the detection accuracy of the inner diameter center due to scratches or dents on the detection chip is less likely to occur. Therefore, suction accuracy can be improved.
  • the component P has a dome portion A on the upper surface as a suction surface. Since the dome portion A is sucked so as to fit into the suction hole, a suction failure is likely to occur if there is even a slight deviation. However, in the component mounter 10, by aligning the inner diameter center C0 of the nozzle 23 with the suction point of the component P, the occurrence of suction failure can be suppressed.
  • the control device 60 controls the lower end of the nozzle 23 and the lower surface of the component P sucked by the nozzle 23 to be imaged under different imaging conditions. Therefore, the imaging conditions can be determined in consideration of the ease of recognizing the inner diameter portion of the nozzle 23.
  • the illumination device 50 is provided which can irradiate light to the lower end of the nozzle 23 and the lower surface side of the component P attracted to the nozzle 23 under a plurality of different illumination conditions. These are the exposure time and light intensity when imaging the lower surface side of the component P attracted to the nozzle 23, and the control device 60 determines that it is better to image the lower end of the nozzle 23 than to capture the lower surface of the component P attracted to the nozzle 23.
  • the exposure time is controlled to be longer and the amount of light is controlled to be greater. Therefore, it becomes easier to recognize the inner diameter portion of the nozzle 23. This is because the contrast between the inner diameter portion of the nozzle 23 and other portions is increased.
  • the object of the present disclosure is a component P having a spherical dome portion A on the upper surface.
  • the object may be entirely spherical (for example, a solder ball).
  • the part P may have a protrusion shape formed on the upper surface.
  • FIG. 10A after horizontally moving the nozzle 23 so that the inner diameter center C0 of the nozzle 23 coincides with the center of the part P, as shown in FIG.
  • the nozzle 23 sucks the part P. It can also be used as a thing. In this way, as shown in FIG. 10C, it is possible to prevent the component P from being attracted to the nozzle 23 in a tilted state with respect to the nozzle 23.
  • the outer diameter of the nozzle 23 is cylindrical.
  • the nozzle 23 may have an elliptical cylindrical outer diameter.
  • An example of the nozzle lower end image Im1 in this case is shown in FIGS. 11A and 11B.
  • FIG. 11A is a nozzle lower end image Im1 in which the inner diameter center C0 of the nozzle 23 is not shifted from the outer diameter center C1.
  • FIG. 11B is a nozzle lower end image Im1 in which the inner diameter center C0 of the nozzle 23 is shifted from the outer diameter center C1.
  • the outer diameter of the nozzle 23 may be rectangular.
  • the inner shape of the nozzle 23 may be a rectangle or a shape in which a protrusion is provided inside.
  • the information of the nozzle 23 stored in advance in the control device 60 for example, the outer shape, the center of the outer shape, the inner shape, the center of the inner shape, etc.
  • the center of the outer diameter and the center of the inner diameter of the nozzle 23 may be derived by comparing the image of the lower end of the nozzle 23 .
  • the control device 60 controls the exposure time to be longer when capturing an image of the lower end of the nozzle 23 than when capturing an image of the lower surface of the component P attracted to the nozzle 23.
  • the amount of light emitted by the illumination device 50 was controlled to be large.
  • the control device 60 may control so that only one of the exposure time and the light amount is different.
  • the irradiation direction of the light irradiated by the illumination device 50 may be made different depending on when the lower end of the nozzle 23 is imaged and when the lower surface of the component P attracted to the nozzle 23 is imaged. In that case, different light sources may be used when irradiating light.
  • each of the light sources 57a to 57c of the lighting device 50 may include an LED that emits light of a plurality of different colors.
  • the control device 60 changes the LEDs used when emitting light, so that the lower end of the nozzle 23 is imaged and the lower surface of the component P attracted to the nozzle 23 is imaged.
  • the color of the light emitted by the illumination device 50 may be varied.
  • the present invention can be used in a mounting device that places components on a board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Manipulator (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

A mounting machine of the present disclosure is capable of suctioning a target object and mounting same. The mounting machine comprises: a nozzle that is formed in a cylindrical shape and applies suction to the target object at a lower end section; a head that retains the nozzle; a head movement device that moves the head horizontally; a camera that can capture an image of the lower end section of the nozzle or the target object suctioned to the nozzle; and a control device that controls the camera so that an image of the lower end section of the nozzle is captured, recognizes an inner-diameter portion of the nozzle in the lower end section on the basis of the image to derive an inner-diameter center of the nozzle in advance, and, when a suction action is performed on the target object, controls the head movement device to suction the target object to the nozzle so that the inner-diameter center of the nozzle matches the suction position of the target object.

Description

実装機mounting machine
 本明細書は、実装機について開示する。 This specification discloses a mounting machine.
 従来、対象物を吸着して実装する実装機において、対象物の種類やサイズに応じて実装精度の向上が求められている。例えば、特許文献1には、回転中心位置に対するノズル先端部の位置ずれ量を予め測定しておき、位置ずれ量を考慮して対象物の吸着を行なう場合及び対象物の実装を行なう場合の、ノズル位置の補正を行なう実装機が開示されている。しかしながら、製造時のバラツキなどで、筒状のノズルの穴の位置が外形に対して中心からずれている場合がある。この場合、特許文献1に開示されている実装機では、穴の位置を正しく求めることができず、吸着精度が悪化するおそれがある。特許文献2には、そのような課題を解決する手法として、球形状の検出用チップをノズルで吸着し、ノズルに吸着された検出用チップを下方から撮像し、撮像画像において検出用チップの中心をノズルの中心として求める実装機が開示されている。 Conventionally, in mounting machines that mount objects by suction, there has been a demand for improved mounting accuracy depending on the type and size of the object. For example, Patent Document 1 describes a case in which the amount of positional deviation of the nozzle tip with respect to the rotation center position is measured in advance and the amount of positional deviation is taken into consideration when suctioning an object or mounting the object. A mounting machine that corrects the nozzle position is disclosed. However, due to manufacturing variations, the position of the hole in the cylindrical nozzle may be offset from the center relative to the outer shape. In this case, the mounting machine disclosed in Patent Document 1 may not be able to correctly determine the position of the hole, and the suction accuracy may deteriorate. Patent Document 2 describes a method for solving such problems, in which a spherical detection chip is adsorbed by a nozzle, an image of the detection chip adsorbed to the nozzle is taken from below, and the center of the detection chip is identified in the captured image. A mounting machine that determines the center of the nozzle is disclosed.
特開2002-57496号公報Japanese Patent Application Publication No. 2002-57496 特開2003-198199号公報Japanese Patent Application Publication No. 2003-198199
 ところで、特許文献2に開示されている方法では、ノズルの種類毎に検出用チップを用意する必要がある。また、検出用チップの傷や凹みなどによっては、正しく穴の位置を求めることができなくなり、吸着精度が低下する可能性がある。 By the way, in the method disclosed in Patent Document 2, it is necessary to prepare a detection chip for each type of nozzle. Furthermore, if the detection chip is scratched or dented, it may become impossible to accurately determine the position of the hole, which may reduce suction accuracy.
 本開示は、吸着精度を向上させることを主目的とする。 The main purpose of the present disclosure is to improve suction accuracy.
 本開示では、上述の主目的を達成するために以下の手段を採った。 In the present disclosure, the following measures were taken to achieve the above-mentioned main purpose.
 本開示の実装機は、
 対象物を吸着して実装可能な実装機であって、
 筒状に形成され、下端部に前記対象物を吸着するノズルと、
 前記ノズルを保持するヘッドと、
 前記ヘッドを水平方向に移動させるヘッド移動装置と、
 前記ノズルの下端部又は前記ノズルに吸着された対象物の下面側を撮像可能なカメラと、
 前記ノズルの下端部の画像が撮像されるように前記カメラを制御し、前記画像に基づいて前記下端部におけるノズルの内径部分を認識して、事前に前記ノズルの内径中心を導出しておき、前記対象物の吸着動作を行なう際に前記ノズルの内径中心が前記対象物の吸着すべき被吸着位置に一致するように、前記ヘッド移動装置を制御して前記ノズルに前記対象物を吸着させる制御装置と、
 を備えることを要旨とする。
The mounting machine of the present disclosure includes:
A mounting machine that can pick up and mount objects,
a nozzle formed in a cylindrical shape and sucking the object at its lower end;
a head that holds the nozzle;
a head moving device that moves the head in a horizontal direction;
a camera capable of capturing an image of the lower end of the nozzle or the lower surface side of the object attracted to the nozzle;
controlling the camera so that an image of the lower end of the nozzle is captured, recognizing the inner diameter portion of the nozzle at the lower end based on the image, and deriving the center of the inner diameter of the nozzle in advance; controlling the head moving device to attract the object to the nozzle so that the center of the inner diameter of the nozzle coincides with the adsorption position of the object when performing the adsorption operation of the object; a device;
The main point is to have the following.
 この実装機では、ノズルの下端部の画像が撮像されるようにカメラを制御し、画像に基づいて下端部におけるノズルの内径部分を認識して、事前にノズルの内径中心を導出しておき、対象物の吸着動作を行なう際にノズルの内径中心が対象物の被吸着位置に一致するように、ヘッド移動装置を制御してノズルに前記対象物を吸着させる。筒状のノズルの内径を基準とした中心(内径中心)が、外径を基準とした中心(外径中心)とずれていても、内径中心を対象物の吸着すべき被吸着位置に一致させて吸着することができ、吸着精度を向上させることができる。また、検出用チップを使用せずに内径中心を求めるため、検出用チップの傷や凹みに起因して内径中心の検出精度が低下する問題が発生し難くなる。したがって、吸着精度を向上させることができる。 In this mounting machine, the camera is controlled so that an image of the lower end of the nozzle is captured, the inner diameter portion of the nozzle at the lower end is recognized based on the image, and the center of the inner diameter of the nozzle is derived in advance. When performing the suction operation of the target object, the head moving device is controlled so that the nozzle attracts the target object so that the center of the inner diameter of the nozzle coincides with the position of the target object. Even if the center of the cylindrical nozzle based on the inner diameter (inner diameter center) is offset from the center based on the outer diameter (outer diameter center), the center of the inner diameter can be aligned with the position of the object to be adsorbed. The suction accuracy can be improved. Furthermore, since the center of the inner diameter is determined without using a detection chip, the problem that the detection accuracy of the center of the inner diameter is reduced due to scratches or dents on the detection chip is less likely to occur. Therefore, suction accuracy can be improved.
部品実装機10の斜視図である。1 is a perspective view of a component mounting machine 10. FIG. 部品Pの斜視図である。It is a perspective view of part P. パーツカメラ40及び照明装置50の概略構成図である。3 is a schematic configuration diagram of a parts camera 40 and a lighting device 50. FIG. 部品実装機10の電気的な接続関係を示すブロック図である。FIG. 2 is a block diagram showing electrical connections of the component mounter 10. FIG. 内径中心位置導出ルーチンの一例を示すフローチャートである。3 is a flowchart illustrating an example of an inner diameter center position derivation routine. ノズル下端部画像Im1の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a nozzle lower end image Im1. ノズル下端部画像Im1の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a nozzle lower end image Im1. 部品実装ルーチンの一例を示すフローチャートである。3 is a flowchart showing an example of a component mounting routine. 部品Pの吸着の様子を示す説明図である。FIG. 3 is an explanatory diagram showing how a part P is attracted. 部品Pの吸着の様子を示す説明図である。FIG. 3 is an explanatory diagram showing how a part P is attracted. 部品Pの吸着の様子を示す説明図である。FIG. 3 is an explanatory diagram showing how a part P is attracted. 部品Pの吸着の様子の変形例を示す説明図である。FIG. 7 is an explanatory diagram showing a modified example of how the component P is sucked. 部品Pの吸着の様子の変形例を示す説明図である。FIG. 7 is an explanatory diagram showing a modified example of how the component P is sucked. 部品Pの吸着の様子の変形例を示す説明図である。FIG. 7 is an explanatory diagram showing a modified example of how the component P is sucked. 部品Pの吸着の様子の変形例を示す説明図である。FIG. 7 is an explanatory diagram showing a modified example of how the component P is sucked. 部品Pの吸着の様子の変形例を示す説明図である。FIG. 7 is an explanatory diagram showing a modified example of how the component P is sucked. 変形例におけるノズル下端部画像Im1の一例を示す説明図である。It is an explanatory view showing an example of nozzle lower end part image Im1 in a modification. 変形例におけるノズル下端部画像Im1の一例を示す説明図である。It is an explanatory view showing an example of nozzle lower end part image Im1 in a modification.
 本開示の撮像ユニット及び部品実装機の好適な実施形態を、図面を参照しながら以下に説明する。図1は、部品実装機10の斜視図である。図2は、部品Pの斜視図である。図3は、パーツカメラ40及び照明装置50の概略構成図である。図4は、部品実装機10の電気的な接続関係を示すブロック図である。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1及び図2に示した通りとする。 Preferred embodiments of the imaging unit and component mounting machine of the present disclosure will be described below with reference to the drawings. FIG. 1 is a perspective view of the component mounter 10. FIG. 2 is a perspective view of the component P. FIG. 3 is a schematic configuration diagram of the parts camera 40 and the lighting device 50. FIG. 4 is a block diagram showing the electrical connections of the component mounter 10. In this embodiment, the left-right direction (X-axis), the front-back direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIGS. 1 and 2.
 部品実装機10は、複数のテープフィーダ70から部品Pの供給を受けて、基板Sに実装するものである。部品実装機10は、基台11と、基台11の上に設置された実装機本体12とを備えている。 The component mounting machine 10 receives components P from a plurality of tape feeders 70 and mounts them onto a board S. The component mounter 10 includes a base 11 and a mounter main body 12 installed on the base 11.
 テープフィーダ70は、リール72とフィーダ部74とを備える。テープフィーダ70は、実装機本体12の前側に着脱可能に取り付けられている。各リール72には、テープTが巻き付けられている。テープTの表面には、テープTの長手方向に沿って複数の収容凹部が設けられている。各収容凹部には、図2に示すような、部品Pが収容されている。この部品Pは、例えば、光透過性を有する透明な樹脂により半球状のドーム部Aが形成されたLED部品であるものとしてもよい。これらの部品Pは、テープTの表面を覆うフィルムによって保護されている。こうしたテープTは、リール72から後方に向かって巻きほどかれ、フィーダ部74においてフィルムが剥がされて部品Pが露出した状態となる。この露出した状態の部品Pは、ノズル23によって吸着される。リール72の動作は、各フィーダ部74が備えるフィーダコントローラ76(図4参照)によって制御される。 The tape feeder 70 includes a reel 72 and a feeder section 74. The tape feeder 70 is detachably attached to the front side of the mounting machine main body 12. A tape T is wound around each reel 72. A plurality of accommodation recesses are provided on the surface of the tape T along the longitudinal direction of the tape T. A component P as shown in FIG. 2 is accommodated in each accommodation recess. This component P may be, for example, an LED component in which a hemispherical dome portion A is formed of a transparent resin having light transmittance. These parts P are protected by a film covering the surface of the tape T. The tape T is unwound backward from the reel 72, and the film is peeled off at the feeder section 74, leaving the component P exposed. This exposed component P is attracted by the nozzle 23. The operation of the reel 72 is controlled by a feeder controller 76 (see FIG. 4) included in each feeder section 74.
 実装機本体12は、基台11に対して交換可能に設置されている。この実装機本体12は、図1に示すように、基板搬送装置13と、ヘッド移動装置17と、ヘッド22と、ノズル23と、パーツカメラ40と、マークカメラ45と、照明装置50(図3参照)と、制御装置60とを備えている。 The mounting machine main body 12 is installed on the base 11 so as to be replaceable. As shown in FIG. 1, this mounting machine main body 12 includes a substrate transport device 13, a head moving device 17, a head 22, a nozzle 23, a parts camera 40, a mark camera 45, and an illumination device 50 (FIG. 3). ) and a control device 60.
 基板搬送装置13は、基板Sを搬送および保持する装置である。この基板搬送装置13は、支持板14,14と、コンベアベルト15,15(図1では片方のみ図示)とを備えている。前後一対の支持板14,14は、左右方向に延びる部材であり、基板Sの前後の長さの分だけ間隔を開けて設けられている。コンベアベルト15,15は、支持板14,14の左右に設けられた駆動輪及び従動輪に無端状となるように架け渡されている。基板Sは、一対のコンベアベルト15,15の上面に乗せられて左から右へと搬送される。この基板Sは、実装機本体12の機内に搬入されると、部品Pを実装する位置まで搬送された後、図示しないクランプ装置によりクランプされる。 The substrate transport device 13 is a device that transports and holds the substrate S. This substrate transport device 13 includes support plates 14, 14 and conveyor belts 15, 15 (only one of which is shown in FIG. 1). The pair of front and rear support plates 14, 14 are members extending in the left-right direction, and are provided with an interval equal to the length of the front and rear of the substrate S. The conveyor belts 15, 15 span endless driving wheels and driven wheels provided on the left and right sides of the support plates 14, 14. The substrate S is placed on the upper surface of a pair of conveyor belts 15, 15 and conveyed from left to right. When this board S is carried into the mounting machine main body 12, it is transported to a position where the component P is mounted, and then clamped by a clamp device (not shown).
 ヘッド移動装置17は、ヘッド22を水平方向に移動させる装置である。ヘッド移動装置17は、X軸スライダ18と、Y軸スライダ19とを備える。Y軸スライダ19は、前後方向に延びる左右一対のガイドレール20,20にスライド可能に取り付けられている。Y軸スライダ19の前面には、左右方向に延びる上下一対のガイドレール21,21が設けられている。X軸スライダ18は、このガイドレール21,21にスライド可能に取り付けられている。なお、各スライダ18,19は、それぞれ駆動モータ18a,19a(図4参照)により駆動される。X軸スライダ18は、X軸スライダ18の位置を検出可能な位置センサ18b(図4参照)を有する。位置センサ18bは、制御装置60(図4参照)に対して、X軸スライダ18の位置を出力する。Y軸スライダ19は、Y軸スライダ19の位置を検出可能な位置センサ19b(図4参照)を有する。位置センサ19bは、制御装置60に対して、Y軸スライダ19の位置を出力する。 The head moving device 17 is a device that moves the head 22 in the horizontal direction. The head moving device 17 includes an X-axis slider 18 and a Y-axis slider 19. The Y-axis slider 19 is slidably attached to a pair of left and right guide rails 20, 20 extending in the front-rear direction. A pair of upper and lower guide rails 21, 21 extending in the left-right direction are provided on the front surface of the Y-axis slider 19. The X-axis slider 18 is slidably attached to the guide rails 21, 21. Note that each slider 18, 19 is driven by a drive motor 18a, 19a (see FIG. 4), respectively. The X-axis slider 18 has a position sensor 18b (see FIG. 4) that can detect the position of the X-axis slider 18. The position sensor 18b outputs the position of the X-axis slider 18 to the control device 60 (see FIG. 4). The Y-axis slider 19 has a position sensor 19b (see FIG. 4) that can detect the position of the Y-axis slider 19. The position sensor 19b outputs the position of the Y-axis slider 19 to the control device 60.
 ヘッド22は、ノズル23を保持するためのものである。ヘッド22は、X軸スライダ18の前面に取り付けられている。X軸スライダ18は、Y軸スライダ19の前面に取り付けられている。ヘッド22は、X軸スライダ18が左右方向に移動するのに伴って左右方向に移動し、Y軸スライダ19が前後方向に移動するのに伴って前後方向に移動する。 The head 22 is for holding the nozzle 23. The head 22 is attached to the front surface of the X-axis slider 18. The X-axis slider 18 is attached to the front surface of the Y-axis slider 19. The head 22 moves in the left-right direction as the X-axis slider 18 moves in the left-right direction, and moves in the front-rear direction as the Y-axis slider 19 moves in the front-back direction.
 ノズル昇降装置24(図4参照)は、ヘッド22に対してノズル23を上下動させる装置である。ノズル昇降装置24は、Z軸モータ25と、Z軸に沿って延びるボールねじ26とを有する。ボールねじ26には、図示省略のノズルホルダを介してノズル23が取り付けられており、ノズル23の高さをZ軸モータ25によって調整する。さらに、ノズル昇降装置24は、ノズル23を軸回転させるQ軸モータ27(図4参照)を内蔵している。 The nozzle lifting device 24 (see FIG. 4) is a device that moves the nozzle 23 up and down with respect to the head 22. The nozzle lifting device 24 includes a Z-axis motor 25 and a ball screw 26 extending along the Z-axis. The nozzle 23 is attached to the ball screw 26 via a nozzle holder (not shown), and the height of the nozzle 23 is adjusted by the Z-axis motor 25. Further, the nozzle lifting device 24 includes a Q-axis motor 27 (see FIG. 4) that rotates the nozzle 23 around its axis.
 ノズル23は、ノズル先端に部品Pを吸着して保持したり、ノズル先端に吸着している部品を吸着解除したりする部材である。ノズル23は、フランジを有する筒状(円筒状)の部材である。ノズル23の吸引口は、電磁弁28を介して真空ポンプ29およびエア配管30のいずれか一方に選択的に連通するようになっている。ノズル23は、吸引口が真空ポンプ29に連通するよう電磁弁28を駆動することにより、吸引口に負圧を作用させて部品Pを吸着することができ、吸引口がエア配管30に連通するよう電磁弁28を駆動することにより、吸引口に正圧を作用させて部品Pの吸着を解除することができる。ノズル23は、ヘッド22の本体底面から下方に突出している。また、Z軸モータ25によってノズル23がZ軸方向に沿って昇降することで、ノズル23に吸着された部品の高さが調整される。Q軸モータ27によってノズル23が回転することで、ノズル23に吸着された部品の向きが調整される。 The nozzle 23 is a member that attracts and holds the component P at the tip of the nozzle, and releases the component P that is sucked from the tip of the nozzle. The nozzle 23 is a cylindrical member having a flange. The suction port of the nozzle 23 is configured to selectively communicate with either the vacuum pump 29 or the air pipe 30 via the solenoid valve 28. By driving the electromagnetic valve 28 so that the suction port communicates with the vacuum pump 29, the nozzle 23 can apply negative pressure to the suction port to adsorb the component P, and the suction port communicates with the air pipe 30. By driving the electromagnetic valve 28 in this manner, positive pressure can be applied to the suction port to release the suction of the component P. The nozzle 23 projects downward from the bottom surface of the main body of the head 22. Furthermore, the height of the component attracted to the nozzle 23 is adjusted by moving the nozzle 23 up and down along the Z-axis direction by the Z-axis motor 25. By rotating the nozzle 23 by the Q-axis motor 27, the orientation of the component attracted to the nozzle 23 is adjusted.
 パーツカメラ40は、上方に撮像範囲を有するカメラである。パーツカメラ40は、ノズル23の下端部を下方から撮像して画像を生成可能であると共にノズル23に吸着された部品Pを下方から撮像して画像を生成可能である。パーツカメラ40は、基板搬送装置13の前側の支持板14の前方に配置されている。 The parts camera 40 is a camera that has an imaging range above. The parts camera 40 can generate an image by capturing an image of the lower end of the nozzle 23 from below, and can also generate an image by capturing an image of the component P attracted to the nozzle 23 from below. The parts camera 40 is arranged in front of the support plate 14 on the front side of the substrate transport device 13.
 マークカメラ45は、下方が撮像領域であり、基板Sの基準位置や部品Pを載置する基準位置などを示す基板Sに付された基準マークを読取可能であると共にテープTの収容凹部に収容される部品Pを撮像可能なカメラである。マークカメラ45は、X軸スライダ18の下面に取り付けられており、ヘッド22と一体となって移動が可能である。 The mark camera 45 has an imaging area at the bottom and can read reference marks attached to the board S indicating the reference position of the board S and the reference position where the component P is placed, etc., and is housed in the storage recess of the tape T. This is a camera that can take an image of the part P that is being used. The mark camera 45 is attached to the lower surface of the X-axis slider 18 and can move together with the head 22.
 照明装置50は、撮像対象(例えば、部品Pやノズル23の下端部)に対して光を照射する装置である。この照明装置50は、ハウジング52と、連結部53と、落射光源54と、ハーフミラー56と、多段光源57と、を備えている。ハウジング52は、上面及び下面(底面)が八角形状に開口した椀状の部材である。ハウジング52は、下面の開口よりも上面の開口の方が大きく、下面から上面に向かって内部空間が大きくなる傾向の形状をしている。連結部53は、ハウジング52とパーツカメラ40とを連結する筒状の部材である。落射光源54は、LED55を複数有している。ハーフミラー56は、落射光源54のLED55からの水平方向の光を上方に反射する。また、ハーフミラー56は上方からの光についてはパーツカメラ40に向けて透過する。多段光源57は、上段光源57aと、中段光源57bと、下段光源57cとを備えている。上段光源57aは、複数のLED58aを有し、中段光源57bは、複数のLED58bを有し、下段光源57cは、複数のLED58cを有している。LED58a~58cは、いずれも光軸59aから傾斜した方向に光を照射する。LED58a~58cの照射方向の光軸59aからの傾斜角は、LED58aが最も大きく、LED58aはほぼ水平方向に光を照射する。また、この傾斜角は、LED58cが最も小さくなっている。 The illumination device 50 is a device that irradiates light onto an imaging target (for example, the component P or the lower end of the nozzle 23). The illumination device 50 includes a housing 52, a connecting portion 53, an incident light source 54, a half mirror 56, and a multistage light source 57. The housing 52 is a bowl-shaped member with an octagonal opening at the upper and lower surfaces (bottom surface). The housing 52 has a shape in which the opening on the top surface is larger than the opening on the bottom surface, and the internal space tends to increase from the bottom surface to the top surface. The connecting portion 53 is a cylindrical member that connects the housing 52 and the parts camera 40. The incident light source 54 has a plurality of LEDs 55. The half mirror 56 reflects horizontal light from the LED 55 of the incident light source 54 upward. Further, the half mirror 56 transmits light from above toward the parts camera 40. The multistage light source 57 includes an upper stage light source 57a, a middle stage light source 57b, and a lower stage light source 57c. The upper light source 57a has a plurality of LEDs 58a, the middle light source 57b has a plurality of LEDs 58b, and the lower light source 57c has a plurality of LEDs 58c. The LEDs 58a to 58c all emit light in a direction inclined from the optical axis 59a. The angle of inclination of the irradiation direction of the LEDs 58a to 58c from the optical axis 59a is the largest for the LED 58a, and the LED 58a irradiates light in a substantially horizontal direction. Moreover, this angle of inclination is the smallest for the LED 58c.
 制御装置60は、図4に示すように、CPU61、RAM62、ROM63、ストレージ(例えば、HDDやSSD)64を有する。この制御装置60は、基板搬送装置13や、X軸スライダ18の駆動モータ18a、Y軸スライダ19の駆動モータ19a、Z軸モータ25、Q軸モータ27、パーツカメラ40、電磁弁28、照明装置50へ制御信号を出力する。また、制御装置60は、パーツカメラ40からの撮像画像を入力する。制御装置60は、テープフィーダ70のフィーダコントローラ76と通信可能に接続されている。制御装置60は、位置センサ18b,19bからの位置情報を入力しつつ、各スライダ18,19の駆動モータ18a,19aを制御する。 As shown in FIG. 4, the control device 60 includes a CPU 61, a RAM 62, a ROM 63, and a storage (for example, HDD or SSD) 64. This control device 60 includes the substrate transfer device 13, a drive motor 18a for the X-axis slider 18, a drive motor 19a for the Y-axis slider 19, a Z-axis motor 25, a Q-axis motor 27, a parts camera 40, a solenoid valve 28, and a lighting device. A control signal is output to 50. Further, the control device 60 inputs captured images from the parts camera 40. The control device 60 is communicatively connected to a feeder controller 76 of a tape feeder 70. The control device 60 controls the drive motors 18a, 19a of each slider 18, 19 while inputting position information from the position sensors 18b, 19b.
 次に、部品実装機10の動作について説明する。まず、部品実装処理に先立って行なわれる、内径中心位置導出ルーチンについて、図5,6Aを用いて説明する。図5は、内径中心位置導出ルーチンの一例を示すフローチャートである。図6Aは、ノズル下端部画像Im1の一例を示す説明図である。この内径中心C0の位置は、後述する部品実装ルーチンにおいて用いられる。 Next, the operation of the component mounter 10 will be explained. First, the inner diameter center position derivation routine, which is performed prior to the component mounting process, will be explained using FIGS. 5 and 6A. FIG. 5 is a flowchart showing an example of the inner diameter center position derivation routine. FIG. 6A is an explanatory diagram showing an example of the nozzle lower end image Im1. This position of the inner diameter center C0 is used in a component mounting routine to be described later.
 本ルーチンを開始すると、CPU61は、ノズル23の下端部がパーツカメラ40の上方に移動するように、X軸スライダ18の駆動モータ18a及びY軸スライダ19の駆動モータ19aを制御する(S100)。 When this routine starts, the CPU 61 controls the drive motor 18a of the X-axis slider 18 and the drive motor 19a of the Y-axis slider 19 so that the lower end of the nozzle 23 moves above the parts camera 40 (S100).
 次に、CPU61は、照明装置50を点灯させる(S110)。具体的には、CPU61は、上段光源57a、中段光源57b、下段光源57c及び落射光源54を点灯させる。続いて、CPU61は、露光時間T1を設定する(S120)。露光時間T1は、後述する部品実装ルーチンにおいて、パーツカメラ40で部品Pの下面を撮像する際の露光時間T2よりも長い時間である。露光時間T1は、例えば、250[ms]程度である。 Next, the CPU 61 turns on the lighting device 50 (S110). Specifically, the CPU 61 turns on the upper light source 57a, the middle light source 57b, the lower light source 57c, and the incident light source 54. Subsequently, the CPU 61 sets the exposure time T1 (S120). The exposure time T1 is longer than the exposure time T2 when the lower surface of the component P is imaged by the parts camera 40 in a component mounting routine to be described later. The exposure time T1 is, for example, about 250 [ms].
 そして、CPU61は、照明装置50で光が照射された状態でノズル下端部画像Im1が撮像されるように、パーツカメラ40を制御する(S130)。S110で設定した照明条件やS120で設定した露光時間T1の下でノズル下端部画像Im1を撮像するのは、円筒状のノズル23において、円環状の端面と内径部分との境界を際立たせるためである。S110で設定した照明条件やS120で設定した露光時間T1の下でノズル下端部画像Im1を撮像すると、ノズル23下端の円環部分は光を反射して白く撮像されるのに対して、ノズル23の内径部分は黒く撮像される。ノズル下端部画像Im1の一例を図6Aに示す。図6Aは、ノズル23の外径を基準とした中心(外径中心C1)に対して内径を基準とした中心(内径中心C0)がずれていないノズル下端部画像Im1である。 Then, the CPU 61 controls the parts camera 40 so that the nozzle lower end image Im1 is captured with light irradiated by the illumination device 50 (S130). The reason why the nozzle lower end image Im1 is captured under the illumination conditions set in S110 and the exposure time T1 set in S120 is to highlight the boundary between the annular end face and the inner diameter portion of the cylindrical nozzle 23. be. When the nozzle lower end image Im1 is captured under the illumination conditions set in S110 and the exposure time T1 set in S120, the annular part at the lower end of the nozzle 23 reflects light and is imaged white, whereas the nozzle 23 The inner diameter part is imaged in black. An example of the nozzle lower end image Im1 is shown in FIG. 6A. FIG. 6A is a nozzle lower end image Im1 in which the center based on the inner diameter (inner diameter center C0) of the nozzle 23 is not shifted from the center based on the outer diameter (outer diameter center C1).
 次に、CPU61は、ノズル下端部画像Im1に基づきノズル23の内径を認識する(S140)。この処理は、以下のように実行される。すなわち、CPU61は、ノズル下端部画像Im1を構成する各画素の輝度値を取得する。次に、CPU61は、輝度値の変化に基づいてノズル23の内径の輪郭として認識する。そして、CPU61は、その輪郭によって囲まれる部分をノズル23の内径と認識する。 Next, the CPU 61 recognizes the inner diameter of the nozzle 23 based on the nozzle lower end image Im1 (S140). This process is executed as follows. That is, the CPU 61 acquires the brightness value of each pixel that constitutes the nozzle lower end image Im1. Next, the CPU 61 recognizes the outline of the inner diameter of the nozzle 23 based on the change in the brightness value. Then, the CPU 61 recognizes the portion surrounded by the outline as the inner diameter of the nozzle 23.
 そして、CPU61は、ノズル23の中心位置を導出する(S150)。この処理は、以下のように実行される。すなわち、まず、CPU61は、ノズル23の外径を認識する。この処理は、上述したノズル23の内径を認識するのと同様の方法により実行される。次に、CPU61は、S140で認識したノズル23の内径の輪郭に基づき内径中心C0を導出すると共にノズル23の外径の輪郭に基づきノズル23の外径中心C1を導出する。そして、CPU61は、外径中心C1に対する内径中心C0の位置の位置ずれ量(ノズル下端部画像Im1にXY座標を定めたときの、外径中心C1を原点とした内径中心C0のXY座標値)を導出する。そして、CPU61は、ノズル23(識別情報)と外径中心C1に対する内径中心C0の位置ずれ量とを対応付けてストレージ64に記憶する。CPU61は、部品実装機10で使用される全てのノズルに対して、S110~S150までの処理を実行したあと、本ルーチンを終了する。 Then, the CPU 61 derives the center position of the nozzle 23 (S150). This process is executed as follows. That is, first, the CPU 61 recognizes the outer diameter of the nozzle 23. This process is executed in the same manner as in recognizing the inner diameter of the nozzle 23 described above. Next, the CPU 61 derives the inner diameter center C0 based on the inner diameter outline of the nozzle 23 recognized in S140, and also derives the outer diameter center C1 of the nozzle 23 based on the outer diameter outline of the nozzle 23. Then, the CPU 61 determines the positional deviation amount of the inner diameter center C0 with respect to the outer diameter center C1 (when the XY coordinates are determined for the nozzle lower end image Im1, the XY coordinate values of the inner diameter center C0 with the outer diameter center C1 as the origin) Derive. Then, the CPU 61 stores the nozzle 23 (identification information) and the amount of positional deviation of the inner diameter center C0 with respect to the outer diameter center C1 in the storage 64 in association with each other. After the CPU 61 executes the processes from S110 to S150 for all nozzles used in the component mounter 10, it ends this routine.
 次に、部品実装機10によって実行される部品実装処理について、図6B,7,8を用いて説明する。図6Bは、ノズル下端部画像Im1の一例を示す説明図である。図7は、部品実装料理ルーチンの一例を示すフローチャートである。図8A~8Cは、ノズル23で部品Pを吸着する様子を示す説明図である。本ルーチンは、図示しない管理コンピュータから生産ジョブを受信した後、CPU61によって実行される。生産ジョブは、実装順序(部品実装機10においてどの部品種の部品をどういう順番で基板Sに実装するか)や、目標実装位置、何枚の基板Sに部品の実装を行うかなどを定めた情報である。 Next, the component mounting process executed by the component mounter 10 will be described using FIGS. 6B, 7, and 8. FIG. 6B is an explanatory diagram showing an example of the nozzle lower end image Im1. FIG. 7 is a flowchart showing an example of a component mounting cooking routine. 8A to 8C are explanatory diagrams showing how the nozzle 23 sucks the component P. This routine is executed by the CPU 61 after receiving a production job from a management computer (not shown). The production job defines the mounting order (which type of component is to be mounted on the board S in what order in the component mounter 10), the target mounting position, and how many boards S to mount the component on. It is information.
 本ルーチンを開始すると、CPU61は、現時点においてヘッド22に装着されているノズル23の、外径中心C1に対する内径中心C0の位置ずれ量をストレージ64から読み出す(S200)。続いて、CPU61は、基板Sが部品実装機10内に搬送されるように、基板搬送装置13を制御する(S210)。 When this routine is started, the CPU 61 reads from the storage 64 the amount of positional deviation of the inner diameter center C0 with respect to the outer diameter center C1 of the nozzle 23 currently attached to the head 22 (S200). Subsequently, the CPU 61 controls the board transport device 13 so that the board S is transported into the component mounting machine 10 (S210).
 そして、CPU61は、生産ジョブにおける実装順序に照らし、次に基板Sに実装する部品Pを認識する(S220)。 Then, the CPU 61 recognizes the component P to be mounted next on the board S in light of the mounting order in the production job (S220).
 次に、CPU61は、図8Aに示すように、ノズル23の内径中心C0が実装対象の部品Pの被吸着点と一致するように、X軸スライダ18の駆動モータ18a及びY軸スライダ19の駆動モータ19aを制御する(S230)。この処理は、例えば以下のようにして実行される。すなわち、まず、CPU61は、マークカメラ45が、次に基板Sに実装する部品Pの上方に移動するように、X軸スライダ18の駆動モータ18a及びY軸スライダ19の駆動モータ19aを制御する。次に、CPU61は、収容凹部に収容された部品Pの画像が撮像されるように、マークカメラ45を制御する。続いて、CPU61は、位置センサ18b,19bの位置情報及び部品Pの画像に基づき、部品Pの被吸着点(例えば、部品Pの中心点)を求める。そして、部品Pの中心位置とノズル23の内径中心C0とが一致するように、X軸スライダ18の駆動モータ18a及びY軸スライダ19の駆動モータ19aを制御する。なお、内径中心C0の位置は、外径中心C1の位置に、外径中心C1の位置に対する内径中心C0の位置の位置ずれ量を合わせた位置である。外径中心C1の位置は、位置センサ18b,19bの位置情報に基づき求めることができる。位置センサ18b,19bの位置情報に基づきヘッド22の位置を導出可能であると共にヘッド22に対するノズル23の相対位置は一定だからである。 Next, as shown in FIG. 8A, the CPU 61 drives the drive motor 18a of the X-axis slider 18 and the Y-axis slider 19 so that the inner diameter center C0 of the nozzle 23 coincides with the suction point of the component P to be mounted. The motor 19a is controlled (S230). This process is executed, for example, as follows. That is, first, the CPU 61 controls the drive motor 18a of the X-axis slider 18 and the drive motor 19a of the Y-axis slider 19 so that the mark camera 45 moves above the component P to be mounted on the board S next. Next, the CPU 61 controls the mark camera 45 so that an image of the component P accommodated in the accommodation recess is captured. Subsequently, the CPU 61 determines the suction point of the component P (for example, the center point of the component P) based on the position information from the position sensors 18b and 19b and the image of the component P. Then, the drive motor 18a of the X-axis slider 18 and the drive motor 19a of the Y-axis slider 19 are controlled so that the center position of the component P and the inner diameter center C0 of the nozzle 23 coincide. Note that the position of the inner diameter center C0 is the position where the position of the outer diameter center C1 is equal to the positional deviation amount of the position of the inner diameter center C0 with respect to the position of the outer diameter center C1. The position of the outer diameter center C1 can be determined based on position information from the position sensors 18b and 19b. This is because the position of the head 22 can be derived based on the position information of the position sensors 18b and 19b, and the relative position of the nozzle 23 with respect to the head 22 is constant.
 続いて、CPU61は、部品Pを吸着する処理を実行する(S240)。具体的には、CPU61は、図8Bに示すように、ノズル23の下面が部品Pに突き当たるように、Z軸モータ25を制御する。次に、CPU61は、ノズル23の吸着口が真空ポンプ29と連通するように電磁弁28を制御する。これにより、ノズル23の吸着口には負圧が作用して、部品Pは、ノズル23に吸着される。そして、CPU61は、ノズル23が上昇するように、Z軸モータ25を制御する。 Subsequently, the CPU 61 executes a process of sucking the part P (S240). Specifically, the CPU 61 controls the Z-axis motor 25 so that the lower surface of the nozzle 23 abuts the component P, as shown in FIG. 8B. Next, the CPU 61 controls the solenoid valve 28 so that the suction port of the nozzle 23 communicates with the vacuum pump 29 . As a result, negative pressure acts on the suction port of the nozzle 23, and the component P is suctioned by the nozzle 23. Then, the CPU 61 controls the Z-axis motor 25 so that the nozzle 23 rises.
 ここで、部品Pを吸着する際に、外径中心C1が部品Pの被吸着点の上方に位置した状態で、部品Pの吸着動作を実行した場合について検討する。図6Bに示すように内径中心C0の位置が外径中心C1に対してずれているノズル23では、ノズル23の外径中心C1を部品Pの被吸着点に一致させたとしても、部品Pの被吸着点と内径中心C0とは一致しない。このようなノズル23の外径中心C1を部品Pの被吸着点と一致させた状態で、ドーム部Aを有する部品Pを吸着する場合、図8Cに示すように、ドーム部Aを有する部品Pはノズル23の吸着穴に頂部が入り込んだ状態で吸着されるため、ノズル23に対して部品Pが傾いた状態で吸着されるおそれがある。この状態で、後述する本ルーチンのS290の処理を実行すると、部品Pが傾いた分だけ位置ずれや部品サイズの誤認識が発生する可能性がある。したがって、部品Pの基板Sへの実装において位置ずれを発生させる可能性があるなど、不良の原因となる。このようにドーム部Aを有する部品Pは、ノズル23の吸着穴に入り込んだ状態で吸着されるから、部品Pの吸着時の吸着穴の位置がドーム部Aの頂部から少しでもずれると、吸着不良を起こりやすくなる。それに対して、本実施形態の部品実装機10では、内径中心C0が、部品Pの被吸着点と一致した状態で、部品Pの吸着動作を実行する。これにより、ノズル23に対して部品Pが吸着不良を防止することができ、基板Sへの実装不良も防止することができる。 Here, a case will be considered in which the suction operation for the part P is performed with the outer diameter center C1 located above the suction point of the part P. As shown in FIG. 6B, in the nozzle 23 in which the position of the inner diameter center C0 is shifted from the outer diameter center C1, even if the outer diameter center C1 of the nozzle 23 is made to coincide with the suction point of the part P, The point to be attracted does not coincide with the inner diameter center C0. When picking up the part P having the dome part A with the outer diameter center C1 of the nozzle 23 aligned with the suction point of the part P, as shown in FIG. 8C, the part P having the dome part A is Since the top part of the part P is sucked into the suction hole of the nozzle 23, there is a risk that the part P will be sucked in an inclined state with respect to the nozzle 23. If the process of S290 of this routine, which will be described later, is executed in this state, there is a possibility that positional deviation or misrecognition of the part size will occur due to the tilt of the part P. Therefore, when mounting the component P on the board S, there is a possibility that a positional shift may occur, which may cause defects. In this way, the part P having the dome part A is sucked while entering the suction hole of the nozzle 23, so if the position of the suction hole when picking up the part P deviates even slightly from the top of the dome part A, the part P will not be suctioned. Defects are more likely to occur. In contrast, in the component mounter 10 of the present embodiment, the suction operation of the component P is performed in a state where the inner diameter center C0 coincides with the suction point of the component P. Thereby, it is possible to prevent failure of the component P to be sucked into the nozzle 23, and it is also possible to prevent failure of mounting onto the board S.
 次に、CPU61は、ノズル23に吸着された部品Pがパーツカメラ40の上方に移動するように、X軸スライダ18の駆動モータ18a及びY軸スライダ19の駆動モータ19aを制御する(S250)。続いて、CPU61は、照明装置50を点灯させる(S260)。具体的には、CPU61は、上段光源57a及び落射光源54を点灯させる。 Next, the CPU 61 controls the drive motor 18a of the X-axis slider 18 and the drive motor 19a of the Y-axis slider 19 so that the part P attracted to the nozzle 23 moves above the parts camera 40 (S250). Subsequently, the CPU 61 turns on the lighting device 50 (S260). Specifically, the CPU 61 turns on the upper light source 57a and the epi-light source 54.
 そして、CPU61は、露光時間T2を設定する(S270)。露光時間T2は、内径中心導出ルーチンにおいて、ノズル下端部画像Im1を撮像する際の露光時間T1よりも短い時間である。露光時間T2は、例えば、40[ms]程度である。 Then, the CPU 61 sets the exposure time T2 (S270). The exposure time T2 is shorter than the exposure time T1 when capturing the nozzle lower end image Im1 in the inner diameter center deriving routine. The exposure time T2 is, for example, about 40 [ms].
 続いて、CPU61は、照明装置50が点灯した状態で部品Pの下面が撮像されるように、パーツカメラ40を制御する(S280)。続いて、CPU61は、撮像画像に基づいて、ノズル23に対する部品Pの吸着位置のずれ量を導出する(S290)。吸着位置のずれ量は、ノズル23に対する部品Pの目標吸着位置と、ノズル23に対する実際の吸着位置との差である。そして、CPU61は、吸着位置のずれ量が許容範囲内であるか否かを判定する(S300)。S300で否定判定を行なったならば、CPU61は、ノズル23で吸着した部品Pが図示しない廃棄装置に廃棄されるように、各種部材を制御する(S310)。S310のあと、CPU61は、再びS220に戻る。そして、CPU61は、S310で廃棄した部品Pと同種の部品Pを実装対象の部品であると認識して(S220)、S230以降の処理を実行する。 Subsequently, the CPU 61 controls the parts camera 40 so that the bottom surface of the part P is imaged with the lighting device 50 turned on (S280). Subsequently, the CPU 61 derives the amount of deviation of the suction position of the component P with respect to the nozzle 23 based on the captured image (S290). The deviation amount of the suction position is the difference between the target suction position of the component P with respect to the nozzle 23 and the actual suction position with respect to the nozzle 23 . Then, the CPU 61 determines whether the amount of deviation of the suction position is within an allowable range (S300). If a negative determination is made in S300, the CPU 61 controls various members so that the parts P picked up by the nozzle 23 are discarded to a discarding device (not shown) (S310). After S310, the CPU 61 returns to S220 again. Then, the CPU 61 recognizes a component P of the same type as the component P discarded in S310 as a component to be mounted (S220), and executes the processes from S230 onwards.
 一方、S300で肯定判定を行なったならば、CPU61は、吸着位置のずれ量に基づいて目標実装位置を補正する(S320)。この処理は、以下のようにして実行される。すなわち、CPU61は、まず、位置補正量を設定する。位置補正量は、吸着位置ずれ量を解消し得る量である。そして、CPU61は、補正前の目標実装位置に位置補正量を加えて補正後の目標実装位置を導出する。次に、CPU61は、部品Pを基板Sに実装する処理を実行する(S330)。具体的には、マークカメラ45が基板Sの上方に移動するように、X軸スライダ18の駆動モータ18a及びY軸スライダ19の駆動モータ19aを制御する。次に、CPU61は、部品Pが補正後の目標実装位置の上方に移動するように、X軸スライダ18の駆動モータ18a及びY軸スライダ19の駆動モータ19aを制御する。次に、CPU61は、部品Pが降下して基板Sに押し当てられるように、Z軸モータ25を制御する。そして、CPU61は、ノズル23の吸着口がエア配管30と連通するように、電磁弁28を制御する。これにより、ノズル23の吸着口には、正圧が作用して、部品Pの吸着が解除される。このようにして、部品Pが基板Sに実装される。 On the other hand, if an affirmative determination is made in S300, the CPU 61 corrects the target mounting position based on the amount of deviation of the suction position (S320). This process is executed as follows. That is, the CPU 61 first sets the position correction amount. The position correction amount is an amount that can eliminate the suction position deviation amount. Then, the CPU 61 adds the position correction amount to the target mounting position before correction to derive the target mounting position after correction. Next, the CPU 61 executes a process of mounting the component P on the board S (S330). Specifically, the drive motor 18a of the X-axis slider 18 and the drive motor 19a of the Y-axis slider 19 are controlled so that the mark camera 45 moves above the substrate S. Next, the CPU 61 controls the drive motor 18a of the X-axis slider 18 and the drive motor 19a of the Y-axis slider 19 so that the component P moves above the corrected target mounting position. Next, the CPU 61 controls the Z-axis motor 25 so that the component P descends and is pressed against the substrate S. Then, the CPU 61 controls the solenoid valve 28 so that the suction port of the nozzle 23 communicates with the air pipe 30. As a result, positive pressure acts on the suction port of the nozzle 23, and the suction of the component P is released. In this way, the component P is mounted on the board S.
 そして、CPU61は、自機で実装する全ての部品を実装したか否かを判定する(S340)。S340で否定判定を行なったならば、CPU61は、S220に戻る。そして、生産ジョブに基づき次に実装する部品を認識し(S220)、S230以降の処理を繰り返し実行する。一方、S340で肯定判定を行なったならば、CPU61は、基板Sを下流に搬送する処理を実行する(S350)。具体的には、CPU61は、基板Sが搬送方向下流側に搬送されるように、基板搬送装置13を制御する。 Then, the CPU 61 determines whether all the components to be mounted on the own machine have been mounted (S340). If a negative determination is made in S340, the CPU 61 returns to S220. Then, the next component to be mounted is recognized based on the production job (S220), and the processes from S230 onwards are repeatedly executed. On the other hand, if an affirmative determination is made in S340, the CPU 61 executes a process of transporting the substrate S downstream (S350). Specifically, the CPU 61 controls the substrate transport device 13 so that the substrate S is transported downstream in the transport direction.
 次に、CPU61は、予定数の基板Sを生産したか否かを判定する(S360)。S360で否定判定を行なったならば、CPU61は、再びS210に戻る。一方、S360で肯定判定を行なったならば、CPU61は、本ルーチンを終了する。 Next, the CPU 61 determines whether the planned number of substrates S has been produced (S360). If a negative determination is made in S360, the CPU 61 returns to S210 again. On the other hand, if an affirmative determination is made in S360, the CPU 61 ends this routine.
 なお、本ルーチンは、部品実装機10で実装する全ての部品Pに対して実施してもよいし、吸着時に特に精度が要求される特定の部品Pに対してのみ実施してもよい。特定の部品Pのみを対象に実施する場合には、予め生産ジョブにおいて実施要否を設定し、本ルーチンの対象となる部品Pを吸着するノズル23に対してのみ、内径中心のずれ量を導出するようにしてもよい。 Note that this routine may be executed for all components P to be mounted by the component mounter 10, or may be executed only for a specific component P that particularly requires precision during suction. When performing this routine only on a specific part P, set whether or not it is necessary in the production job in advance, and derive the amount of deviation of the center of the inner diameter only for the nozzle 23 that picks up the part P that is the target of this routine. You may also do so.
 ここで、本実施形態の構成要素と本開示の構成要素との対応関係について説明する。本実施形態の部品実装機10が本開示の実装機に相当し、ヘッド22がヘッドに相当し、ヘッド移動装置17がヘッド移動装置に相当し、パーツカメラ40がカメラに相当する。 Here, the correspondence between the components of this embodiment and the components of the present disclosure will be explained. The component mounter 10 of this embodiment corresponds to the mounter of the present disclosure, the head 22 corresponds to a head, the head moving device 17 corresponds to a head moving device, and the parts camera 40 corresponds to a camera.
 以上説明した部品実装機10では、ノズル23の下端部のノズル下端部画像Im1が撮像されるようにパーツカメラ40を制御し、ノズル下端部画像Im1に基づいて下端部におけるノズル23の内径部分を認識して、事前にノズル23の内径中心を導出しておき、対象物の吸着動作を行なう際にノズルの内径中心が対象物の被吸着点に一致するように、ヘッド移動装置を制御してノズルに前記対象物を吸着させる。筒状のノズル23の内径中心C0が、外径中心C1とずれていても、内径中心C0を部品Pの吸着すべき被吸着点に一致させて吸着することができ、吸着精度を向上させることができる。また、検出用チップを使用せずに内径中心C0を求めるため、検出用チップの傷や凹みに起因して内径中心の検出精度が低下する問題が発生し難くなる。したがって、吸着精度を向上させることができる。 In the component mounter 10 described above, the parts camera 40 is controlled so that the nozzle lower end image Im1 at the lower end of the nozzle 23 is captured, and the inner diameter portion of the nozzle 23 at the lower end is detected based on the nozzle lower end image Im1. The head moving device is controlled so that the center of the inner diameter of the nozzle coincides with the point to be attracted on the object when performing the suction operation of the object. The object is attracted to the nozzle. Even if the inner diameter center C0 of a cylindrical nozzle 23 deviates from the outer diameter center C1, the inner diameter center C0 can be aligned with the suction point of the part P to improve suction accuracy. Can be done. Furthermore, since the inner diameter center C0 is determined without using a detection chip, the problem of lowering the detection accuracy of the inner diameter center due to scratches or dents on the detection chip is less likely to occur. Therefore, suction accuracy can be improved.
 また部品実装機10では、部品Pは、吸着面として上面にドーム部Aを有している。吸着穴にドーム部Aが入り込むように吸着されるため、少しでもズレがあると吸着不良が起こりやすい。しかし、部品実装機10では、ノズル23の内径中心C0を部品Pの被吸着点に一致させて吸着することで吸着不良の発生を抑制できる。 Furthermore, in the component mounting machine 10, the component P has a dome portion A on the upper surface as a suction surface. Since the dome portion A is sucked so as to fit into the suction hole, a suction failure is likely to occur if there is even a slight deviation. However, in the component mounter 10, by aligning the inner diameter center C0 of the nozzle 23 with the suction point of the component P, the occurrence of suction failure can be suppressed.
 また、部品実装機10では、制御装置60は、ノズル23の下端部とノズル23に吸着された部品Pの下面とを、それぞれ異なる撮像条件で撮像するように制御する。そのため、ノズル23の内径部分の認識しやすさを考慮して、撮像条件を定めることができる。また、複数の異なる照明条件で、ノズル23の下端部及びノズル23に吸着された部品Pの下面側に光を照射可能な照明装置50を備えており、撮像条件は、ノズル23の下端部及びノズル23に吸着された部品Pの下面側を撮像する際の露光時間及び光量であり、制御装置60は、ノズル23の下端部を撮像する方が、ノズル23に吸着された部品Pの下面を撮像するよりも、露光時間が長くなるよう制御すると共に光量が多くなるように制御する。そのため、ノズル23の内径部分をより認識し易くなる。ノズル23の内径部分と、他の部分とのコントラストが高まるからである。 Furthermore, in the component mounting machine 10, the control device 60 controls the lower end of the nozzle 23 and the lower surface of the component P sucked by the nozzle 23 to be imaged under different imaging conditions. Therefore, the imaging conditions can be determined in consideration of the ease of recognizing the inner diameter portion of the nozzle 23. Further, the illumination device 50 is provided which can irradiate light to the lower end of the nozzle 23 and the lower surface side of the component P attracted to the nozzle 23 under a plurality of different illumination conditions. These are the exposure time and light intensity when imaging the lower surface side of the component P attracted to the nozzle 23, and the control device 60 determines that it is better to image the lower end of the nozzle 23 than to capture the lower surface of the component P attracted to the nozzle 23. Rather than capturing an image, the exposure time is controlled to be longer and the amount of light is controlled to be greater. Therefore, it becomes easier to recognize the inner diameter portion of the nozzle 23. This is because the contrast between the inner diameter portion of the nozzle 23 and other portions is increased.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is not limited to the embodiments described above, and can be implemented in various forms as long as they fall within the technical scope of the present invention.
 上述した実施形態では、本開示の対象物を、上面に球状のドーム部Aを有する部品Pとした。しかし、全体が球形状の対象物(例えば、はんだボール)としてもよい。この場合、図9Aに示すように、内径中心C0が対象物の中心と一致するようにノズル23を水平方向に移動させた後、図9Bに示すように、ノズル23で対象物を吸着するものとしてもよい。こうすれば、あるいは、部品Pは、上面に突起部形状が形成されていてもよい。この場合、図10Aに示すように、ノズル23の内径中心C0が部品Pの中心に一致するようにノズル23を水平移動させた後、図10Bに示すように、ノズル23で部品Pを吸着するものとしてもよい。こうすれば、図10Cに示すように、ノズル23に対して部品Pが傾いた状態でノズル23に吸着されるのを防止することができる。 In the embodiment described above, the object of the present disclosure is a component P having a spherical dome portion A on the upper surface. However, the object may be entirely spherical (for example, a solder ball). In this case, as shown in FIG. 9A, after moving the nozzle 23 in the horizontal direction so that the inner diameter center C0 coincides with the center of the object, as shown in FIG. 9B, the object is attracted by the nozzle 23. You can also use it as Alternatively, the part P may have a protrusion shape formed on the upper surface. In this case, as shown in FIG. 10A, after horizontally moving the nozzle 23 so that the inner diameter center C0 of the nozzle 23 coincides with the center of the part P, as shown in FIG. 10B, the nozzle 23 sucks the part P. It can also be used as a thing. In this way, as shown in FIG. 10C, it is possible to prevent the component P from being attracted to the nozzle 23 in a tilted state with respect to the nozzle 23.
 上述した実施形態では、ノズル23の外径は円筒状のものとした。しかし、ノズル23は、外径が楕円筒状としてもよい。この場合のノズル下端部画像Im1の一例を、図11A,11Bに示す。図11Aは、ノズル23の外径中心C1に対して内径中心C0がずれていないノズル下端部画像Im1である。図11Bは、ノズル23の外径中心C1に対して内径中心C0がずれているノズル下端部画像Im1である。あるいは、ノズル23の外径は長方形であってもよい。また、ノズル23の内形は、長方形や内部に突起を設けた形状であってもよい。その場合、内径中心位置導出ルーチンのS140,S150では、予め制御装置60に記憶されたノズル23の情報(例えば、ノズル23の外形や、外形中心、内形、内形中心など)とS130で撮像したノズル23の下端部の画像とを照らし合わせて、ノズル23の外径の中心と内径の中心とを導出してもよい。 In the embodiment described above, the outer diameter of the nozzle 23 is cylindrical. However, the nozzle 23 may have an elliptical cylindrical outer diameter. An example of the nozzle lower end image Im1 in this case is shown in FIGS. 11A and 11B. FIG. 11A is a nozzle lower end image Im1 in which the inner diameter center C0 of the nozzle 23 is not shifted from the outer diameter center C1. FIG. 11B is a nozzle lower end image Im1 in which the inner diameter center C0 of the nozzle 23 is shifted from the outer diameter center C1. Alternatively, the outer diameter of the nozzle 23 may be rectangular. Further, the inner shape of the nozzle 23 may be a rectangle or a shape in which a protrusion is provided inside. In that case, in S140 and S150 of the inner diameter center position derivation routine, the information of the nozzle 23 stored in advance in the control device 60 (for example, the outer shape, the center of the outer shape, the inner shape, the center of the inner shape, etc.) and the image taken in S130 are used. The center of the outer diameter and the center of the inner diameter of the nozzle 23 may be derived by comparing the image of the lower end of the nozzle 23 .
 上述した実施形態では、制御装置60は、ノズル23の下端部を撮像する場合の方が、ノズル23に吸着された部品Pの下面を撮像する場合よりも、露光時間が長くなるよう制御すると共に照明装置50で照射する光量が多くなるように制御した。しかし、制御装置60は、露光時間及び光量のいずれか一方のみが異なるように、制御してもよい。あるいは、ノズル23の下端部を撮像する場合とノズル23に吸着された部品Pの下面を撮像する場合とで、照明装置50で照射する光の照射方向を異ならせてもよい。その場合、光を照射する際に使用する光源を異ならせればよい。 In the embodiment described above, the control device 60 controls the exposure time to be longer when capturing an image of the lower end of the nozzle 23 than when capturing an image of the lower surface of the component P attracted to the nozzle 23. The amount of light emitted by the illumination device 50 was controlled to be large. However, the control device 60 may control so that only one of the exposure time and the light amount is different. Alternatively, the irradiation direction of the light irradiated by the illumination device 50 may be made different depending on when the lower end of the nozzle 23 is imaged and when the lower surface of the component P attracted to the nozzle 23 is imaged. In that case, different light sources may be used when irradiating light.
 上述した実施形態において、照明装置50の各光源57a~57cは、それぞれ複数の異なる色の光を発光するLEDを備えていてもよい。その場合、制御装置60は、光を照射する際に使用するLEDを異ならせることで、ノズル23の下端部を撮像する場合とノズル23に吸着された部品Pの下面を撮像する場合とで、照明装置50で照射する光の色を異ならせてもよい。 In the embodiment described above, each of the light sources 57a to 57c of the lighting device 50 may include an LED that emits light of a plurality of different colors. In that case, the control device 60 changes the LEDs used when emitting light, so that the lower end of the nozzle 23 is imaged and the lower surface of the component P attracted to the nozzle 23 is imaged. The color of the light emitted by the illumination device 50 may be varied.
 なお、本明細書では、出願当初の請求項6において「請求項4に記載の実装機」を「請求項5に記載の実装機」に変更した技術思想も開示されている。また、本明細書では、出願当初の請求項7において「請求項4に記載の実装機」を「請求項5又は6に記載の実装機」に変更した技術思想も開示されている。 Note that this specification also discloses a technical idea in which "the mounting machine according to claim 4" is changed to "the mounting machine according to claim 5" in claim 6 at the beginning of the application. In addition, this specification also discloses a technical concept in which "the mounting machine according to claim 4" is changed to "the mounting machine according to claim 5 or 6" in claim 7 at the beginning of the application.
 本発明は、部品を基板上に配置する実装装置に利用可能である。 The present invention can be used in a mounting device that places components on a board.
 10 部品実装機、11 基台、12 実装機本体、13 基板搬送装置、14 支持板、15 コンベアベルト、17 ヘッド移動装置、18 X軸スライダ、18a 駆動モータ、18b 位置センサ、19 Y軸スライダ、19a 駆動モータ、19b 位置センサ、20 ガイドレール、21 ガイドレール、22 ヘッド、23 ノズル、24 ノズル昇降装置、25 Z軸モータ、26 ボールねじ、27 Q軸モータ、28 電磁弁、29 真空ポンプ、30 エア配管、40 パーツカメラ、45 マークカメラ、50 照明装置、52 ハウジング、53 連結部、54 落射光源、55 LED、56 ハーフミラー、57 多段光源、57a 上段光源、57b 中段光源、57c 下段光源、58a LED、58b LED、58c LED、59a 光軸、60 制御装置、61 CPU、62 RAM、63 ROM、64 ストレージ、70 テープフィーダ、72 リール、74 フィーダ部、76 フィーダコントローラ、A ドーム部、C0 内径中心、C1 外径中心、Im1 ノズル下端部画像、P 部品、S 基板、T テープ。 10 component mounter, 11 base, 12 mounter main body, 13 board transfer device, 14 support plate, 15 conveyor belt, 17 head moving device, 18 X-axis slider, 18a drive motor, 18b position sensor, 19 Y-axis slider, 19a Drive motor, 19b Position sensor, 20 Guide rail, 21 Guide rail, 22 Head, 23 Nozzle, 24 Nozzle lifting device, 25 Z-axis motor, 26 Ball screw, 27 Q-axis motor, 28 Solenoid valve, 29 Vacuum pump, 30 Air piping, 40 Parts camera, 45 Mark camera, 50 Lighting device, 52 Housing, 53 Connection part, 54 Epi-light source, 55 LED, 56 Half mirror, 57 Multi-stage light source, 57a Upper light source, 57b Middle light source, 57c Lower light source, 58a LED, 58b LED, 58c LED, 59a optical axis, 60 control device, 61 CPU, 62 RAM, 63 ROM, 64 storage, 70 tape feeder, 72 reel, 74 feeder section, 76 feeder controller, A dome section, inside C0 center of diameter , C1 outer diameter center, Im1 nozzle bottom end image, P part, S board, T tape.

Claims (7)

  1.  対象物を吸着して実装可能な実装機であって、
     筒状に形成され、下端部に前記対象物を吸着するノズルと、
     前記ノズルを保持するヘッドと、
     前記ヘッドを水平方向に移動させるヘッド移動装置と、
     前記ノズルの下端部又は前記ノズルに吸着された対象物の下面側を撮像可能なカメラと、
     前記ノズルの下端部の画像が撮像されるように前記カメラを制御し、前記画像に基づいて前記下端部におけるノズルの内径部分を認識して、事前に前記ノズルの内径中心を導出しておき、前記対象物の吸着動作を行なう際に前記ノズルの内径中心が前記対象物の吸着すべき被吸着位置に一致するように、前記ヘッド移動装置を制御して前記ノズルに前記対象物を吸着させる制御装置と、
     を備える実装機。
    A mounting machine that can pick up and mount objects,
    a nozzle formed in a cylindrical shape and sucking the object at its lower end;
    a head that holds the nozzle;
    a head moving device that moves the head in a horizontal direction;
    a camera capable of capturing an image of the lower end of the nozzle or the lower surface side of the object attracted to the nozzle;
    controlling the camera so that an image of the lower end of the nozzle is captured, recognizing the inner diameter portion of the nozzle at the lower end based on the image, and deriving the center of the inner diameter of the nozzle in advance; controlling the head moving device to attract the object to the nozzle so that the center of the inner diameter of the nozzle coincides with the adsorption position of the object when performing the adsorption operation of the object; a device;
    Mounting machine equipped with
  2.  請求項1に記載の実装機であって、
     前記対象物は、吸着面として上面に球形状を有し、
     前記制御装置は、前記球形状の天頂部を前記被吸着位置として、前記ノズルに前記対象物の球形状部分を吸着させるように制御する、
     実装機。
    The mounting machine according to claim 1,
    The target object has a spherical shape on the upper surface as an adsorption surface,
    The control device controls the nozzle to attract the spherical portion of the object, with the zenith of the spherical shape as the attraction position.
    mounting machine.
  3.  請求項1に記載の実装機であって、
     前記対象物は、吸着面として上面に突起形状を有し、
     前記制御装置は、前記対象物の前記突起形状の中心を前記被吸着位置として、前記突起形状の先端部の少なくとも一部が前記ノズルの内側に入り込んだ状態で、前記ノズルに前記対象物を吸着させるよう制御する、
     実装機。
    The mounting machine according to claim 1,
    The target object has a protrusion shape on the upper surface as an adsorption surface,
    The control device adsorbs the object to the nozzle with the center of the protrusion shape of the object as the suction target position, and at least a part of the tip of the protrusion shape enters inside the nozzle. to control
    mounting machine.
  4.  請求項1ないし3のいずれか1項に記載の実装機であって、
     前記制御装置は、前記ノズルの下端部と前記ノズルに吸着された対象物の下面とを、それぞれ異なる撮像条件で撮像するように制御する、
     実装機。
    The mounting machine according to any one of claims 1 to 3,
    The control device controls the lower end of the nozzle and the lower surface of the object attracted to the nozzle to be imaged under different imaging conditions.
    mounting machine.
  5.  請求項4に記載の実装機であって、
     複数の異なる照明条件で、前記ノズルの下端部及び前記ノズルに吸着された対象物の下面側に光を照射可能な照明装置
     を備え、
     前記撮像条件は、前記ノズルの下端部及び前記ノズルに吸着された対象物を撮像する際の露光時間又は前記照明装置で照射する光の光量を含み、
     前記制御装置は、前記ノズルの下端部を撮像する場合の方が、前記ノズルに吸着された対象物の下面を撮像する場合よりも、露光時間が長く又は光量が多くなるよう制御する、
     実装機。
    The mounting machine according to claim 4,
    An illumination device capable of irradiating light to the lower end of the nozzle and the lower surface of the object attracted to the nozzle under a plurality of different illumination conditions;
    The imaging conditions include the exposure time or the amount of light irradiated by the illumination device when imaging the lower end of the nozzle and the object attracted to the nozzle,
    The control device controls the exposure time to be longer or the amount of light to be larger when imaging the lower end of the nozzle than when imaging the lower surface of the object attracted to the nozzle.
    mounting machine.
  6.  請求項4に記載の実装機であって、
     複数の異なる照明条件で、前記ノズルの下端部及び前記ノズルに吸着された対象物の下面側に光を照射可能な照明装置
     を備え、
     前記撮像条件は、前記ノズルの下端部及び前記ノズルに吸着された対象物を撮像する際に前記照明装置で照射する光の照射方向を含み、
     前記制御装置は、前記ノズルの下端部を撮像する場合と前記ノズルに吸着された対象物の下面を撮像する場合とで、前記照射方向を異ならせる、
     実装機。
    The mounting machine according to claim 4,
    An illumination device capable of irradiating light to the lower end of the nozzle and the lower surface of the object attracted to the nozzle under a plurality of different illumination conditions;
    The imaging conditions include the irradiation direction of light irradiated by the illumination device when imaging the lower end of the nozzle and the object attracted to the nozzle,
    The control device changes the irradiation direction depending on whether the lower end of the nozzle is imaged or the lower surface of the object attracted to the nozzle.
    mounting machine.
  7.  請求項4に記載の実装機であって、
     複数の異なる照明条件で、前記ノズルの下端部及び前記ノズルに吸着された対象物の下面側に光を照射可能な照明装置
     を備え、
     前記撮像条件は、前記ノズルの下端部及び前記ノズルに吸着された対象物を撮像する際に前記照明装置で照射する光の色を含み、
     前記制御装置は、前記ノズルの下端部を撮像する場合と前記ノズルに吸着された対象物の下面を撮像する場合とで、前記光の色を異ならせる、
     実装機。
    The mounting machine according to claim 4,
    An illumination device capable of irradiating light to the lower end of the nozzle and the lower surface of the object attracted to the nozzle under a plurality of different illumination conditions;
    The imaging conditions include the color of light emitted by the illumination device when imaging the lower end of the nozzle and the object attracted to the nozzle,
    The control device changes the color of the light depending on when the lower end of the nozzle is imaged and when the lower surface of the object attracted to the nozzle is imaged.
    mounting machine.
PCT/JP2022/025931 2022-06-29 2022-06-29 Mounting machine WO2024004074A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025931 WO2024004074A1 (en) 2022-06-29 2022-06-29 Mounting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025931 WO2024004074A1 (en) 2022-06-29 2022-06-29 Mounting machine

Publications (1)

Publication Number Publication Date
WO2024004074A1 true WO2024004074A1 (en) 2024-01-04

Family

ID=89382371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025931 WO2024004074A1 (en) 2022-06-29 2022-06-29 Mounting machine

Country Status (1)

Country Link
WO (1) WO2024004074A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057496A (en) * 2000-08-07 2002-02-22 Matsushita Electric Ind Co Ltd Mounter and mounting method of electronic component
JP2014135482A (en) * 2012-12-11 2014-07-24 Hitachi High-Tech Instruments Co Ltd Component mounting device
WO2016125285A1 (en) * 2015-02-05 2016-08-11 富士機械製造株式会社 Suction-attachment nozzle, mounting device, and component removing method
JP2017191888A (en) * 2016-04-14 2017-10-19 富士機械製造株式会社 Component mounting machine and component mounting head
WO2020031366A1 (en) * 2018-08-10 2020-02-13 株式会社Fuji Component mounting machine management device
WO2020070858A1 (en) * 2018-10-04 2020-04-09 株式会社Fuji Camera for capturing component images, and component mounting machine
WO2021014636A1 (en) * 2019-07-25 2021-01-28 株式会社Fuji Device and method for inspecting adsorption nozzle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057496A (en) * 2000-08-07 2002-02-22 Matsushita Electric Ind Co Ltd Mounter and mounting method of electronic component
JP2014135482A (en) * 2012-12-11 2014-07-24 Hitachi High-Tech Instruments Co Ltd Component mounting device
WO2016125285A1 (en) * 2015-02-05 2016-08-11 富士機械製造株式会社 Suction-attachment nozzle, mounting device, and component removing method
JP2017191888A (en) * 2016-04-14 2017-10-19 富士機械製造株式会社 Component mounting machine and component mounting head
WO2020031366A1 (en) * 2018-08-10 2020-02-13 株式会社Fuji Component mounting machine management device
WO2020070858A1 (en) * 2018-10-04 2020-04-09 株式会社Fuji Camera for capturing component images, and component mounting machine
WO2021014636A1 (en) * 2019-07-25 2021-01-28 株式会社Fuji Device and method for inspecting adsorption nozzle

Similar Documents

Publication Publication Date Title
JP6279708B2 (en) Component mounting device
JP6131039B2 (en) Electronic component mounting equipment
WO2015166776A1 (en) Electronic component mounting apparatus
TW201315310A (en) Electronic component mounting device
KR20100046149A (en) Component placement apparatus
JP6406871B2 (en) Electronic component mounting equipment
JP6828223B2 (en) Mounting device
JP6475165B2 (en) Mounting device
WO2024004074A1 (en) Mounting machine
JP6351486B2 (en) Electronic component transfer nozzle and electronic component mounting apparatus having the same
JP7301973B2 (en) inspection equipment
JP6088838B2 (en) Electronic component mounting apparatus and electronic component mounting method
US11293626B2 (en) Light emitting component mounting method
JP6435086B2 (en) Electronic component mounting apparatus and electronic component supply method
WO2015181898A1 (en) Component mounting apparatus and tape feeder
JP6721716B2 (en) Imaging device and surface mounter using the same
WO2018055757A1 (en) Illumination condition specifying device and illumination condition specifying method
CN113287191B (en) Electronic component packaging device
JPH09116297A (en) Illuminator for illuminating recognizing mark of packaging device and method for adjusting illumination for recognizing mark
JPH11330799A (en) Component mounting unit
WO2013172054A1 (en) Substrate working device
JPH0430990A (en) Detection device for chip part
JP7562860B2 (en) Component Mounting Machine
JP2016092376A (en) Electronic component mounting apparatus
KR20160137834A (en) Apparatus for mounting camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949349

Country of ref document: EP

Kind code of ref document: A1