WO2024001354A1 - 支吊架变形量智能监测系统及方法 - Google Patents
支吊架变形量智能监测系统及方法 Download PDFInfo
- Publication number
- WO2024001354A1 WO2024001354A1 PCT/CN2023/084648 CN2023084648W WO2024001354A1 WO 2024001354 A1 WO2024001354 A1 WO 2024001354A1 CN 2023084648 W CN2023084648 W CN 2023084648W WO 2024001354 A1 WO2024001354 A1 WO 2024001354A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hanger
- support
- temperature
- laser
- deformation
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000009434 installation Methods 0.000 claims description 5
- 230000007613 environmental effect Effects 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
Definitions
- the invention relates to the technical field of electromechanical installation engineering, and in particular to an intelligent monitoring system and method for the deformation of a support and hanger.
- pipelines and equipment are generally installed on the ceiling through supports and hangers.
- the supports and hangers at least include columns and cross arms. Due to factors such as heavy load-bearing capacity and small specifications, the supports and hangers may cause damage to the columns and cross arms. Deformation. Once the deformation of the support and hanger exceeds the standard or causes small cracks or breaks due to deformation, the support and hanger and the pipelines or equipment on it will be subject to safety risks of falling from high places. Therefore, how to intelligently monitor the deformation of the support and hanger has become a Technical problems that urgently need to be solved in this field.
- the purpose of the present invention is to provide an intelligent monitoring system and method for the deformation of a support and hanger to solve the problem of how to intelligently monitor the deformation of a support and hanger.
- an intelligent monitoring system for the deformation of supports and hangers including:
- a laser transmitter is provided at one end of the cross arm of the support and hanger or on one of the two columns of the support and hanger.
- the laser transmitter can generate a linear laser signal with a certain temperature
- the temperature target device is coaxially arranged with the laser emitter at the other end of the cross arm of the support and hanger or on the other of the two upright columns of the support and hanger; the temperature target device includes More than three ring targets with different temperature sensing properties are evenly arranged from the inside to the outside. Each ring target corresponds to a predetermined temperature value. Each ring target is divided into several zone targets. Each of the zone targets has a A built-in temperature sensor is provided, each built-in temperature sensor is used to detect the laser temperature value of the laser signal struck by the laser transmitter;
- a microprocessor is connected to each built-in temperature sensor of the temperature target, and the microprocessor is According to the laser temperature value detected by the temperature target device, it is judged which ring target of the temperature target device the laser emitter is aimed at to monitor whether the support and hanger is deformed and to monitor the deformation amount when the support and hanger is deformed.
- An alarm is connected to the microprocessor.
- the alarm is controlled to send out different alarm signals according to the deformation amount of the support and hanger.
- the intelligent monitoring system for support and hanger deformation provided by the present invention also includes:
- An environmental temperature sensor is arranged on the support and hanger or around the installation environment of the support and hanger.
- the environmental temperature sensor is connected to the microprocessor.
- the microprocessor determines the laser temperature value detected by the temperature target and The difference between the ambient temperature sensors replaces the laser temperature value to determine which ring target of the temperature target device the laser emitter is aimed at to monitor whether the support and hanger is deformed and the amount of deformation when the support and hanger is deformed.
- the intelligent monitoring system for support and hanger deformation provided by the present invention also includes:
- a server connected to the microprocessor, is used to monitor whether the support and hanger is deformed and monitor the amount of deformation when the support and hanger is deformed.
- the intelligent monitoring system for support and hanger deformation provided by the present invention also includes:
- a receiving box is provided at the other end of the cross arm of the support and hanger or on the other of the two upright columns of the support and hanger.
- the microprocessor is provided in the receiving box, and the temperature target device A ring target is placed inside the receiving box and exposed thereon.
- the temperature sensing attributes of the ring targets on the temperature target device from the inside to the outside are arranged in order from low to high or from high to low.
- the ring target is in the shape of a ring.
- the ring target is in the shape of a regular polygonal ring.
- the built-in temperature sensor is a thermistor sensor, a thermocouple sensor or a resistance temperature detector.
- an intelligent monitoring method based on the above-mentioned intelligent monitoring system for the deformation of the support and hanger, including: setting the ring targets of the temperature target device sequentially from the inside to the outside. Defined as the first ring target to the Nth ring target, the first ring target to the Nth ring target correspond to the first predetermined temperature value to the Nth predetermined temperature value in sequence, where N is an integer greater than 3;
- the temperature target detects the laser temperature value of the laser signal of the laser transmitter, it is the first predetermined temperature value. and its allowable deviation range, make sure that the laser transmitter is aligned on the first ring target of the temperature target device, and judge that the support and hanger has not deformed;
- the temperature target detects that the laser temperature value of the laser signal of the laser emitter is the Nth predetermined temperature value and its allowable deviation range, in which the Nth predetermined temperature value is not the first predetermined temperature value, it is determined that the laser emitter is aligned at On the Nth ring target of the temperature target device, it is determined that the support and hanger is deformed, and the deformation amount of the support and hanger is determined to be the N-1 level deformation.
- an intelligent monitoring method based on the above-mentioned intelligent monitoring system for the deformation of the support and hanger, setting the ring target of the temperature target device sequentially from the inside to the outside. From the first ring target to the Nth ring target, the difference between the laser temperature value of the laser signal detected by the temperature target device and the ambient temperature sensor is divided into the first level temperature range to the Nth level temperature range, where N is an integer greater than 3;
- the temperature target device detects the difference between the laser temperature value of the laser signal of the laser emitter and the ambient temperature sensor in the first temperature range, it is determined that the laser emitter is aligned on the first ring target of the temperature target device , judge that the support and hanger has not deformed;
- the temperature target detects the difference between the laser temperature value of the laser signal of the laser transmitter and the ambient temperature sensor in the Nth level temperature range, where the Nth level temperature range is not the first level temperature range, the laser emission is determined
- the device is aligned on the Nth ring target of the temperature target device, and the deformation of the support and hanger is determined, and the deformation amount of the support and hanger is determined to be the N-1 level deformation.
- the microprocessor detects the laser temperature value of the laser signal through the temperature target device to determine whether the support and hanger is deformed and the amount of deformation when the support and hanger deforms, and through the alarm It emits different alarm signals to prompt the deformation of the supports and hangers, thereby realizing on-site intelligent monitoring of the supports and hangers without the need for naked eye observation and judgment. It has the intelligence, automation and speed to judge the deformation and degree of the supports and hangers. . It improves monitoring efficiency, reduces the cost increase caused by measurement during daily inspections, and improves monitoring accuracy compared with manual measurement.
- the laser emitter and the temperature target are coaxially arranged on the cross arm or column of the support and hanger, thereby realizing on-site intelligent monitoring of the support and hanger, and can Avoid situations where the supports and hangers are hidden or cannot be predicted due to lighting problems or require disassembly and assembly for monitoring.
- the intelligent monitoring method for the deformation of supports and hangers provided by the present invention can determine the deformation level based on the level of the deformation. Whether the support and hanger needs maintenance and the urgency of the need for maintenance.
- Figure 1 is a schematic structural diagram of the intelligent monitoring system for the deformation of the support and hanger installed on the cross arm of the support and hanger;
- Figure 2 is a schematic structural diagram of the intelligent monitoring system for the deformation of the support and hanger installed on the column of the support and hanger;
- Figure 3 is a partial structural diagram of a temperature target device according to an embodiment
- Figure 4 is a partial structural schematic diagram of a temperature target device according to another embodiment
- Figure 5 is a schematic structural diagram of the alignment relationship between the laser emitter and the temperature target device when the cross arm of the support and hanger is deformed;
- Figure 6 is a schematic structural diagram of the composition relationship of the intelligent monitoring system for support and hanger deformation
- Temperature target device 121. Bullseye, 122. Second ring target, 123. Third ring target, 124. Fourth ring target, 125. Zone target, 126.
- Built-in temperature sensor 121. Bullseye, 122. Second ring target, 123. Third ring target, 124. Fourth ring target, 125. Zone target, 126.
- Built-in temperature sensor 121. Bullseye, 122. Second ring target, 123. Third ring target, 124. Fourth ring target, 125. Zone target, 126.
- Built-in temperature sensor 129.
- Support and hanger 201.
- Cross arm 202.
- Column 203.
- Fixed plate 204.
- Embodiment 1 of the present invention provides an intelligent monitoring system 100 for the deformation of a support and hanger, including a laser transmitter 110, a temperature target 120, a microprocessor 130 and an alarm 140, wherein:
- the laser emitter 110 is arranged at one end of the cross arm 201 of the support and hanger 200 or on one of the two upright columns 202 of the support and hanger 200.
- the laser emitter 110 can generate a linear beam with a certain temperature.
- laser signal may be an infrared laser signal.
- the laser emitter 110 may be composed of an infrared laser diode, a battery and a casing, or may be a laser emitter 110 of other known technologies.
- the temperature target 120 is coaxially arranged with the laser emitter 110 at the other end of the cross arm 201 of the support and hanger 200 or on the other upright 202 of the two uprights 202 of the support and hanger 200, that is, The temperature target 120 is coaxially arranged opposite to the laser emitter 110; the temperature target 120 includes more than three ring targets with different temperature sensing properties evenly arranged from the inside to the outside, each of which is The ring target corresponds to a predetermined temperature value. Each ring target is divided into several area targets. Each area target is provided with a built-in temperature sensor 126. Each built-in temperature sensor 126 is used to detect the laser emission. The laser temperature value of the laser signal on which the detector 110 strikes.
- the built-in temperature sensor 126 may be a thermistor sensor, a thermocouple sensor or a resistance temperature detector.
- the ring target may be in the shape of a circular ring or a regular polygonal ring.
- Figure 3 illustrates a ring-shaped ring target
- Figure 4 illustrates a regular quadrilateral ring-shaped ring target, where the regular polygon can be a regular triangle, a regular quadrilateral, a regular pentagon, a regular hexagon, etc.
- the microprocessor 130 is connected to each built-in temperature sensor 126 of the temperature target 120.
- the microprocessor 130 determines whether the laser emitter 110 is aligned with the temperature target according to the laser temperature value detected by the temperature target 120. Which ring target of 120 is used to monitor whether the support and hanger 200 deforms and monitor the deformation amount when the support and hanger 200 deforms.
- the microprocessor 130 may be a microcontroller, PLC or other controller.
- the alarm 140 is connected to the microprocessor 130.
- the alarm 140 is controlled to send out different alarm signals according to the deformation amount of the support and hanger 200.
- the alarm 140 may be an audible and visual alarm.
- the support and hanger 200 includes a cross arm 201, a column 202, a fixing plate 203 and bolts 204.
- Embodiment 1 of the present invention also provides an intelligent monitoring method for the above-mentioned intelligent monitoring system 100 for the deformation of supports and hangers, including:
- Step 301 Set the ring targets of the temperature target device 120 to the first ring target 121 to the Nth ring target in sequence from the inside to the outside.
- the first ring target 121 to the Nth ring target correspond to the first predetermined temperature value to the Nth ring target in sequence.
- Predetermined temperature value Predetermined temperature value;
- Figures 3 to 4 illustrate a ring target with a four-ring structure, including a first ring target 121, a second ring target 122, a third ring target 123 and a fourth ring target 124, but the ring target is not limited to four rings. ring structure.
- FIG. 3 to 4 only illustrate the fourth ring
- the area target 125 of the target 124 and the built-in temperature sensor 126 thereon other ring targets are not illustrated, which shall not be used as a limitation of the present invention.
- the first ring target 121 is a bullseye, and the bullseye is a circle or a regular polygon. Although it is not annular, in order to simplify the process, the present invention calls the bullseye of a circle or a regular polygon a ring target, and the area target 125 of the bullseye can be a circle or a regular polygon. The polygon is obtained by dividing it into equal parts.
- a ring target with a four-ring structure will be described below.
- Step 302 When the temperature target 120 detects that the laser temperature value of the laser signal of the laser emitter 110 is the first predetermined temperature value and its allowable deviation range, it is determined that the laser emitter 110 is aligned with the first temperature of the temperature target 120. On the ring target 121, it is determined that the support and hanger 200 is not deformed. At this time, the microprocessor 130 can control the alarm 140 not to alarm.
- the dotted lines in Figures 1 to 2 are laser signals.
- the support and hanger 200 is not deformed, including complete deformation and slight deformation.
- the detected laser temperature value is equal to the first predetermined temperature value
- the support and hanger 200 is completely undeformed
- the detected laser temperature value is equal to the first predetermined temperature value. and the allowable deviation range
- the support and hanger 200 is determined to be slightly deformed. This kind of micro deformation can be ignored because it does not need to be processed in engineering.
- Step 303 When the temperature target 120 detects that the laser temperature value of the laser signal of the laser emitter 110 is the second predetermined temperature value and its allowable deviation range, it is determined that the laser emitter 110 is aligned with the second predetermined temperature value of the temperature target 120. On the ring target 122, it is determined that the support and hanger 200 is deformed, and the deformation amount of the support and hanger 200 is determined to be the first-level deformation. At this time, the microprocessor 130 can control the alarm 140 to issue an alarm signal of the first level of deformation.
- the dotted line in Figure 5 is the laser signal.
- Step 304 When the temperature target 120 detects that the laser temperature value of the laser signal of the laser emitter 110 is the third predetermined temperature value and its allowable deviation range, it is determined that the laser emitter 110 is aligned with the third predetermined temperature value of the temperature target 120. On the ring target 123, it is determined that the support and hanger 200 is deformed, and the deformation amount of the support and hanger 200 is determined to be the second-level deformation. At this time, the microprocessor 130 can control the alarm 140 to issue a second-level deformation alarm signal.
- Step 305 When the temperature target 120 detects that the laser temperature value of the laser signal of the laser emitter 110 is the fourth predetermined temperature value and its allowable deviation range, it is determined that the laser emitter 110 is aligned with the fourth predetermined temperature value of the temperature target 120. On the ring target 124, it is determined that the support and hanger 200 is deformed, and the deformation amount of the support and hanger 200 is determined to be the third level deformation. At this time, the microprocessor 130 can control the alarm 140 to issue a third-level deformation alarm signal.
- the above steps 303 to 305 can be summarized as follows: when the temperature target 120 detects the laser temperature value of the laser signal of the laser transmitter 110 as the Nth predetermined temperature value and its allowable deviation range, where the Nth If the predetermined temperature value is not the first predetermined temperature value, it is determined that the laser transmitter 110 is aligned on the Nth ring target of the temperature target device 120, it is determined that the support and hanger 200 is deformed, and it is determined that the deformation amount of the support and hanger 200 is the Nth ring target. N-1 level deformation.
- the deformation of the support and hanger 200 includes the deformation of the cross arm 201 and the deformation of the column 202.
- Step 306 When the temperature target 120 does not detect the laser temperature value of the laser signal of the laser transmitter 110, the microprocessor 130 may determine that the support and hanger 200 is severely deformed or the connection line is faulty. At this time, the microprocessor 130 can control the alarm 140 to send out a severely deformed alarm signal or a fault alarm signal.
- the laser emitter 110 and the temperature target 120 are coaxially arranged on the cross arm of the support and hanger 200.
- the laser transmitter 110 generates a linear laser signal of a certain temperature and strikes the temperature target 120.
- the temperature target 120 strikes a certain area of a certain ring target according to the laser signal and passes through the corresponding area.
- the built-in temperature sensor 126 on the target detects the laser temperature value of the laser signal.
- the microprocessor 130 determines which ring target of the temperature target device 120 the laser emitter 110 is aimed at according to the laser temperature value detected by the temperature target device 120, so as to Determine whether the support and hanger 200 is deformed and the deformation amount of the support and hanger 200 when deformed, and then control the alarm 140 to send out different alarm signals according to the deformation amount, thereby realizing whether the support and hanger 200 is deformed and the deformation amount. intelligent monitoring.
- the microprocessor 130 detects the laser temperature value of the laser signal through the temperature target 120 to determine whether the support and hanger 200 is deformed and whether the support and hanger 200 is deformed.
- the alarm 140 sends out different alarm signals to prompt the deformation of the support and hanger 200, thereby realizing on-site intelligent monitoring of the support and hanger 200, without the need for visual observation and judgment, and having the ability to determine the deformation of the support and hanger 200.
- the degree of intelligence, automation and speed of deformation It improves monitoring efficiency, reduces the cost increase caused by measurement during daily inspections, and improves monitoring accuracy compared with manual measurement.
- the laser transmitter 110 and the temperature target 120 are coaxially arranged on the cross arm 201 or the column 202 of the support and hanger 200 to achieve monitoring.
- the on-site intelligent monitoring of the support and hanger 200 can avoid the situation where the support and hanger 200 is hidden or cannot be predicted due to light problems or needs to be disassembled and assembled for monitoring.
- the intelligent monitoring method for the deformation of the support and hanger provided in the first embodiment of the present invention can determine whether maintenance of the support and hanger 200 is required and the urgency of the maintenance according to the level of deformation.
- the intelligent monitoring system 100 for deformation of supports and hangers provided in Embodiment 1 of the present invention may also include:
- the server 160 is connected to the microprocessor 130 and is configured to use the microprocessor 130 to monitor whether the support and hanger 200 is deformed and to monitor the amount of deformation when the support and hanger 200 is deformed.
- the server 160 can be used to remotely monitor and query the deformation of the support and hanger 200 without the need for on-site monitoring, making monitoring fast and convenient, and reducing the time and labor costs for inspectors to go to the site for monitoring.
- the server 160 can be connected to a computer or mobile phone network, and the computer or mobile phone can query the deformation monitoring effect of the server 160 on the support and hanger 200 at any time.
- the intelligent monitoring system 100 for support and hanger deformation provided in Embodiment 1 of the present invention may also include:
- the receiving box 170 is provided at the other end of the cross arm 201 of the support and hanger 200 or on the other upright 202 of the two uprights 202 of the support and hanger 200.
- the microprocessor 130 is provided at the receiving box 170. Inside, the temperature target 120 is disposed in the receiving box 170 and exposes the ring target thereon.
- Embodiment 1 of the present invention provides an intelligent monitoring system 100 for the deformation of a support and hanger.
- the temperature target device 120 senses the ring target from the inside to the outside.
- Temperature attributes can be arranged from low to high or from high to low.
- the intelligent monitoring system 100 for support and hanger deformation provided in the second embodiment of the present invention is an improvement based on the above-mentioned first embodiment.
- the difference is that it can also include:
- the ambient temperature sensor 150 is arranged on the support and hanger 200 or around the installation environment of the support and hanger 200.
- the ambient temperature sensor 150 is connected to the microprocessor 130.
- the microprocessor 130 determines the temperature according to the temperature target.
- the difference between the laser temperature value detected by 120 and the ambient temperature sensor 150 replaces the laser temperature value to determine which ring target of the temperature target device 120 the laser emitter 110 is aimed at to monitor whether the support and hanger 200 is deformed and to monitor the support.
- the ambient temperature sensor 150 can be disposed on the receiving box 170 or at other locations.
- Embodiment 2 of the present invention also provides an intelligent monitoring method based on the above-mentioned intelligent monitoring system 100 for deformation of supports and hangers, including:
- Step 401 Set the ring targets of the temperature target device 120 to the first ring target to the Nth ring target in sequence from the inside to the outside. Ring target, the difference between the laser temperature value of the laser signal detected by the temperature target device 120 and the ambient temperature sensor 150 is divided into a first-level temperature range to an N-th level temperature range, where N is greater than 3 integer.
- Step 402 When the temperature target 120 detects that the difference between the laser temperature value of the laser signal of the laser emitter 110 and the ambient temperature sensor 150 is within the first-level temperature range, it is determined that the laser emitter 110 is aligned with the temperature target. On the first ring target 121 of the device 120, it is determined that the support and hanger 200 is not deformed. At this time, the microprocessor 130 can control the alarm 140 not to alarm. The situation in which the support and hanger 200 is not deformed is the same as the above-described first embodiment.
- Step 403 when the temperature target 120 detects the difference between the laser temperature value of the laser signal of the laser transmitter 110 and the ambient temperature sensor 150 in the Nth level temperature range, where the Nth level temperature range is not the first level. temperature range, determine that the laser emitter 110 is aligned on the Nth ring target of the temperature target device 120, determine that the support and hanger 200 is deformed, and determine that the deformation amount of the support and hanger 200 is the N-1th level deformation.
- the microprocessor 130 can control the alarm 140 to issue different alarm signals according to the deformation level of the support and hanger 200, or can also issue the same alarm information.
- the intelligent monitoring system 100 and method for the deformation of a support and hanger provided in the second embodiment of the present invention compares the difference between the laser temperature value of the laser signal of the laser transmitter 110 and the ambient temperature sensor 150 with the N-level temperature range to determine whether The deformation of the support and hanger 200 can avoid the influence of the changing ambient temperature of the four seasons on the laser temperature value detected by the temperature target 120, improve the monitoring accuracy, and avoid detection errors.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Lasers (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Laser Beam Processing (AREA)
- Radiation Pyrometers (AREA)
- Emergency Alarm Devices (AREA)
Abstract
本发明公开了一种支吊架变形量智能监测系统及方法,该系统包括:激光发射器,设置在支吊架的横担的一端或者两根立柱的其中一根立柱上;温度标靶器,与激光发射器同轴线设置在支吊架的横担的另一端或者两根立柱的另一根立柱上;微处理器,与所述温度标靶器的各内置温度传感器连接,所述微处理器根据温度标靶器检测的激光温度值判断激光发射器对准在温度标靶器的哪个环靶上以监测支吊架是否发生变形以及监测支吊架发生变形时的变形量。报警器,与所述微处理器连接,当所述微处理器判断支吊架发生变形时根据支吊架的变形量控制所述报警器发出不同的报警信号。本发明能够判断支吊架的变形情况及变形程度,具有监测的智能性、自动性和快捷性。
Description
本发明涉及机电安装工程技术领域,特别涉及一种支吊架变形量智能监测系统及方法。
在机电安装工程中,管线及设备一般通过支吊架设置在吊顶上,支吊架至少包括立柱和横担,支吊架由于承重大、规格偏小等因素可能会导致其立柱和横担发生变形。一旦支吊架的变形超标或由于变形导致细小的裂纹或断裂,则支吊架及其上的管线或设备会发生高处坠落的安全风险,因此如何对支吊架的变形情况进行智能监测成为本领域亟需解决的技术问题。
发明内容
本发明的目的是,提供一种支吊架变形量智能监测系统及方法,以解决如何对支吊架的变形情况进行智能监测的问题。
为了解决上述技术问题,本发明提供的技术方案是:一种支吊架变形量智能监测系统,包括:
激光发射器,设置在支吊架的横担的一端或者设置在支吊架的两根立柱的其中一根立柱上,所述激光发射器能够产生一定温度的直线型激光信号;
温度标靶器,与所述激光发射器同轴线设置在支吊架的横担的另一端或者设置在支吊架的两根立柱的另一根立柱上;所述温度标靶器包括由内向外均匀设置的具有不同感温属性的三个以上的环靶,每个所述环靶对应一个预定温度值,每个所述环靶划分为若干个区靶,每个所述区靶上设置有一个内置温度传感器,每个内置温度传感器用于检测所述激光发射器打击在其上的激光信号的激光温度值;
微处理器,与所述温度标靶器的各内置温度传感器连接,所述微处理器根
据温度标靶器检测的激光温度值判断激光发射器对准在温度标靶器的哪个环靶上以监测支吊架是否发生变形以及监测支吊架发生变形时的变形量。
报警器,与所述微处理器连接,当所述微处理器判断支吊架发生变形时根据支吊架的变形量控制所述报警器发出不同的报警信号。
进一步地,本发明提供的支吊架变形量智能监测系统,还包括:
环境温度传感器,设置在支吊架上或者设置在支吊架的安装环境周边,所述环境温度传感器与所述微处理器连接,所述微处理器根据温度标靶器检测的激光温度值与环境温度传感器之间的差值替代激光温度值判断激光发射器对准在温度标靶器的哪个环靶上以监测支吊架是否发生变形以及监测支吊架发生变形时的变形量。
进一步地,本发明提供的支吊架变形量智能监测系统,还包括:
服务器,与所述微处理器连接,用于通过所述微处理器监测支吊架是否发生变形以及监测支吊架发生变形时的变形量。
进一步地,本发明提供的支吊架变形量智能监测系统,还包括:
接收盒,设置在支吊架的横担的另一端或者设置在支吊架的两根立柱的另一根立柱上,所述微处理器设置在所述接收盒内,所述温度标靶器设置在所述接收盒内并且露出其上的环靶。
进一步地,本发明提供的支吊架变形量智能监测系统,所述温度标靶器上由内向外的环靶的感温属性从低到高或者从高到低依次排列。
进一步地,本发明提供的支吊架变形量智能监测系统,所述环靶为圆环状。
进一步地,本发明提供的支吊架变形量智能监测系统,所述环靶为正多边形环状。
进一步地,本发明提供的支吊架变形量智能监测系统,所述内置温度传感器为热敏电阻传感器、热电偶传感器或者电阻温度检测器。
为了解决上述技术问题,本发明提供的另一种技术方案是:一种根据上述的支吊架变形量智能监测系统的智能监测方法,包括:将温度标靶器的环靶由内向外依次设定为第一环靶至第N环靶,第一环靶至第N环靶依次对应第一预定温度值至第N预定温度值,其中N为大于3的整数;
当温度标靶器检测激光发射器的激光信号的激光温度值为第一预定温度值
及其允许偏差范围时,确定激光发射器对准在温度标靶器的第一环靶上,判断支吊架未发生变形;
当温度标靶器检测激光发射器的激光信号的激光温度值为第N预定温度值及其允许偏差范围时,其中第N预定温度值不为第一预定温度值,确定激光发射器对准在温度标靶器的第N环靶上,判断支吊架发生变形,并确定支吊架的变形量为第N-1级变形。
为了解决上述技术问题,本发明提供的又一种技术方案是:一种根据上述的支吊架变形量智能监测系统的智能监测方法,将温度标靶器的环靶由内向外依次设定为第一环靶至第N环靶,将温度标靶器检测激光发射器的激光信号的激光温度值与环境温度传感器之间的差值划分为第一级温度范围至第N级温度范围,其中N为大于3的整数;
当温度标靶器检测激光发射器的激光信号的激光温度值与环境温度传感器之间的差值在第一级温度范围时,确定激光发射器对准在温度标靶器的第一环靶上,判断支吊架未发生变形;
当温度标靶器检测激光发射器的激光信号的激光温度值与环境温度传感器之间的差值在第N级温度范围时,其中第N级温度范围不为第一级温度范围,确定激光发射器对准在温度标靶器的第N环靶上,判断支吊架发生变形,并确定支吊架的变形量为第N-1级变形。
与现有技术相比,本发明的有益效果如下:
本发明提供的支吊架变形量智能监测系统及方法,微处理器通过温度标靶器检测激光信号的激光温度值判断支吊架是否变形以及支吊架发生变形时的变形量,通过报警器发出不同的报警信号提示支吊架的变形量,从而实现对支吊架的现场智能监测,无需通过肉眼观察判断,具有判断支吊架的变形情况及变形程度的智能性、自动性和快捷性。提高了监测效率,缩减了平时巡检时因为测量导致的成本上升,同时相比人工测量可提高监测精度。
本发明提供的支吊架变形量智能监测系统及方法,将激光发射器和温度标靶器同轴线设置在支吊架的横担或者立柱上,实现对支吊架的现场智能监测,能够避免支吊架被隐蔽后或因为光线问题无法预测或者需要拆装监测的情形。
本发明提供的支吊架变形量智能监测方法,能够根据变形量的等级确定是
否需要对支吊架进行维护以及需要维护的紧迫程度。
图1是支吊架变形量智能监测系统设置在支吊架的横担上的结构示意图;
图2是支吊架变形量智能监测系统设置在支吊架的立柱上的结构示意图;
图3是一实施例的温度标靶器的部分结构示意图;
图4是另一实施例的温度标靶器的部分结构示意图;
图5是激光发射器与温度标靶器在支吊架的横担变形时的对准关系的结构示意图;
图6是支吊架变形量智能监测系统的组成关系的结构示意图;
图中所示:
100、支吊架变形量智能监测系统;
110、激光发射器;
120、温度标靶器,121、靶心,122、第二环靶,123、第三环靶,124、第四环靶,125、区靶,126、内置温度传感器;
130、微处理器;
140、报警器;
150、环境温度传感器;
160、服务器;
170、接收盒;
200、支吊架,201、横担,202、立柱,203、固定板,204、螺栓。
下面结合附图对本发明作详细描述:根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
实施例一
请参考图1至图6,本发明实施例一提供一种支吊架变形量智能监测系统100,包括激光发射器110、温度标靶器120、微处理器130和报警器140,其中:
激光发射器110,设置在支吊架200的横担201的一端或者设置在支吊架200的两根立柱202的其中一根立柱202上,所述激光发射器110能够产生一定温度的直线型激光信号。其中激光信号可以是红外线激光信号。激光发射器110可以是由红外激光二极管、电池和壳体组成,也可以是其他公知技术的激光发射器110。
温度标靶器120,与所述激光发射器110同轴线设置在支吊架200的横担201的另一端或者设置在支吊架200的两根立柱202的另一根立柱202上,即所述温度标靶器120与所述激光发射器110同轴线相对设置;所述温度标靶器120包括由内向外均匀设置的具有不同感温属性的三个以上的环靶,每个所述环靶对应一个预定温度值,每个所述环靶划分为若干个区靶,每个所述区靶上设置有一个内置温度传感器126,每个内置温度传感器126用于检测所述激光发射器110打击在其上的激光信号的激光温度值。其中内置温度传感器126可以为热敏电阻传感器、热电偶传感器或者电阻温度检测器。其中环靶可以为圆环状或者正多边形环状。图3中示例了圆环状的环靶,图4中示例了正四边形环状的环靶,其中正多边形可以是正三角形、正四边形、正五边形、正六边形等等。
微处理器130,与所述温度标靶器120的各内置温度传感器126连接,所述微处理器130根据温度标靶器120检测的激光温度值判断激光发射器110对准在温度标靶器120的哪个环靶上以监测支吊架200是否发生变形以及监测支吊架200发生变形时的变形量。其中微处理器130可以是单片机、PLC等控制器。
报警器140,与所述微处理器130连接,当所述微处理器130判断支吊架200发生变形时根据支吊架200的变形量控制所述报警器140发出不同的报警信号。其中为了实现报警提醒快速识别的目的,报警器140可以为声光报警器。
其中支吊架200包括横担201、立柱202、固定板203和螺栓204。
请参考图1至图6,本发明实施例一还提供一种上述的支吊架变形量智能监测系统100的智能监测方法,包括:
步骤301,将温度标靶器120的环靶由内向外依次设定为第一环靶121至第N环靶,第一环靶121至第N环靶依次对应第一预定温度值至第N预定温度值;图3至图4是示例了四环结构的环靶,包括第一环靶121、第二环靶122、第三环靶123和第四环靶124,但环靶不限于四环结构。图3至图4仅示例了第四环
靶124的区靶125及其上的内置温度传感器126,其他环靶未示例,其不得作为本发明的限制。其中第一环靶121为靶心,靶心为圆或者正多边形,虽然不是环状,本发明为简化处理,将圆或者正多边形的靶心称为环靶,该靶心的区靶125可以将圆或者正多边形等分获得。下面以四环结构的环靶进行描述说明。
步骤302,当温度标靶器120检测激光发射器110的激光信号的激光温度值为第一预定温度值及其允许偏差范围时,确定激光发射器110对准在温度标靶器120的第一环靶121上,判断支吊架200未发生变形。此时,微处理器130可以控制报警器140不报警。其中图1至图2中的虚线为激光信号。其中支吊架200未发生变形包括完全不变形和微变形,检测的激光温度值等于第一预定温度值时,判定支吊架200为完全不变形,检测的激光温度值等于第一预定温度值和允许偏差范围的总和时,判定支吊架200为微变形。此种微变形,由于在工程上不需要处理,故可以忽略。
步骤303,当温度标靶器120检测激光发射器110的激光信号的激光温度值为第二预定温度值及其允许偏差范围时,确定激光发射器110对准在温度标靶器120的第二环靶122上,判断支吊架200发生变形,并确定支吊架200的变形量为第一级变形。此时,微处理器130可以控制报警器140发出第一级变形的报警信号。其中图5中的虚线为激光信号。
步骤304,当温度标靶器120检测激光发射器110的激光信号的激光温度值为第三预定温度值及其允许偏差范围时,确定激光发射器110对准在温度标靶器120的第三环靶123上,判断支吊架200发生变形,并确定支吊架200的变形量为第二级变形。此时,微处理器130可以控制报警器140发出第二级变形的报警信号。
步骤305,当温度标靶器120检测激光发射器110的激光信号的激光温度值为第四预定温度值及其允许偏差范围时,确定激光发射器110对准在温度标靶器120的第四环靶124上,判断支吊架200发生变形,并确定支吊架200的变形量为第三级变形。此时,微处理器130可以控制报警器140发出第三级变形的报警信号。
上述步骤303至步骤305可以概括为:当温度标靶器120检测激光发射器110的激光信号的激光温度值为第N预定温度值及其允许偏差范围时,其中第N
预定温度值不为第一预定温度值,确定激光发射器110对准在温度标靶器120的第N环靶上,判断支吊架200发生变形,并确定支吊架200的变形量为第N-1级变形。其中支吊架200变形包括横担201变形、立柱202变形。
步骤306,当温度标靶器120未检测到激光发射器110的激光信号的激光温度值时,微处理器130可以判断支吊架200发生严重变形或者连接线路故障。此时,微处理器130可以控制报警器140发出严重变形的报警信号或者故障报警信号。
请参考图1至图6,本发明实施例一提供的支吊架变形量智能监测系统100及方法,将激光发射器110和温度标靶器120同轴线设置在支吊架200的横担201或者立柱202上,激光发射器110产生一定温度的直线型激光信号打击在温度标靶器120上,温度标靶器120根据激光信号打击在某一环靶的某一区靶位置通过相应区靶上的内置温度传感器126检测激光信号的激光温度值,微处理器130根据温度标靶器120检测的激光温度值判断激光发射器110对准在温度标靶器120的哪个环靶上,以确定支吊架200是否发生变形以及支吊架200在发生变形时的变形量,然后根据变形量控制所述报警器140发出不同的报警信号,从而实现对支吊架200是否变形及其变形量的智能监测。
本发明实施例一提供的支吊架变形量智能监测系统100及方法,微处理器130通过温度标靶器120检测激光信号的激光温度值判断支吊架200是否变形以及支吊架200发生变形时的变形量,通过报警器140发出不同的报警信号提示支吊架200的变形量,从而实现对支吊架200的现场智能监测,无需通过肉眼观察判断,具有判断支吊架200的变形情况及变形程度的智能性、自动性和快捷性。提高了监测效率,缩减了平时巡检时因为测量导致的成本上升,同时相比人工测量可提高监测精度。
本发明实施例一提供的支吊架变形量智能监测系统100及方法,将激光发射器110和温度标靶器120同轴线设置在支吊架200的横担201或者立柱202上,实现对支吊架200的现场智能监测,能够避免支吊架200被隐蔽后或因为光线问题无法预测或者需要拆装监测的情形。
本发明实施例一提供的支吊架变形量智能监测方法,能够根据变形量的等级确定是否需要对支吊架200进行维护以及需要维护的紧迫程度。
请参考图6,本发明实施例一提供的支吊架变形量智能监测系统100,还可以包括:
服务器160,与所述微处理器130连接,用于通过所述微处理器130监测支吊架200是否发生变形以及监测支吊架200发生变形时的变形量。
通过服务器160可以实现对支吊架200的变形情况进行远程监测及查询,无需现场监测,具有监测的快捷性、便利性,降低了巡检员去现场监测的在途时间成本、人工成本等。服务器160可以与计算机、手机网络连接,则计算机或者手机可以随时查询服务器160对支吊架200的变形情况监测效果。
请参考图1、图2和图5,为了对微处理器130进行保护,本发明实施例一提供的支吊架变形量智能监测系统100,还可以包括:
接收盒170,设置在支吊架200的横担201的另一端或者设置在支吊架200的两根立柱202的另一根立柱202上,所述微处理器130设置在所述接收盒170内,所述温度标靶器120设置在所述接收盒170内并且露出其上的环靶。
请参考图3至图4,为了方便逐级确定变形量的等级,本发明实施例一提供的支吊架变形量智能监测系统100,所述温度标靶器120由内向外的环靶的感温属性可以从低到高或者从高到低依次排列。
实施例二
请参考图1至图6,本发明实施例二提供的支吊架变形量智能监测系统100,其是在上述实施例一的基础上的改进,区别在于,还可以包括:
环境温度传感器150,设置在支吊架200上或者设置在支吊架200的安装环境周边,所述环境温度传感器150与所述微处理器130连接,所述微处理器130根据温度标靶器120检测的激光温度值与环境温度传感器150之间的差值替代激光温度值判断激光发射器110对准在温度标靶器120的哪个环靶上以监测支吊架200是否发生变形以及监测支吊架200发生变形时的变形量。其中环境温度传感器150可以设置在接收盒170上,也可以设置在其他位置上。
请参考图1至图6,本发明实施例二还提供一种根据上述的支吊架变形量智能监测系统100的智能监测方法,包括:
步骤401,将温度标靶器120的环靶由内向外依次设定为第一环靶至第N
环靶,将温度标靶器120检测激光发射器110的激光信号的激光温度值与环境温度传感器150之间的差值划分为第一级温度范围至第N级温度范围,其中N为大于3的整数。
步骤402,当温度标靶器120检测激光发射器110的激光信号的激光温度值与环境温度传感器150之间的差值在第一级温度范围时,确定激光发射器110对准在温度标靶器120的第一环靶121上,判断支吊架200未发生变形。此时,微处理器130可以控制报警器140不报警。其中支吊架200未发生变形的情形与上述实施例一相同。
步骤403,当温度标靶器120检测激光发射器110的激光信号的激光温度值与环境温度传感器150之间的差值在第N级温度范围时,其中第N级温度范围不为第一级温度范围,确定激光发射器110对准在温度标靶器120的第N环靶上,判断支吊架200发生变形,并确定支吊架200的变形量为第N-1级变形。此时,微处理器130可以根据支吊架200的变形量的变形等级控制报警器140发出不同的报警信号,也可以发出相同的报警信息。
本发明实施例二提供的支吊架变形量智能监测系统100及方法,通过激光发射器110的激光信号的激光温度值与环境温度传感器150之间的差值与N级温度范围进行比较,判断支吊架200的变形情况,能够避免四季交替变换的环境温度对温度标靶器120检测激光温度值的影响,能够提高监测精度,避免检测误差。
本发明不限于上述具体实施方式,显然,上述所描述的实施例是本发明实施例的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。本领域的技术人员可以对本发明进行其他层次的修改和变动。如此,若本发明的这些修改和变动属于本发明权利要求书的范围之内,则本发明也意图包括这些改动和变动在内。
Claims (10)
- 一种支吊架变形量智能监测系统,其特征在于,包括:激光发射器,设置在支吊架的横担的一端或者设置在支吊架的两根立柱的其中一根立柱上,所述激光发射器能够产生一定温度的直线型激光信号;温度标靶器,与所述激光发射器同轴线设置在支吊架的横担的另一端或者设置在支吊架的两根立柱的另一根立柱上;所述温度标靶器包括由内向外均匀设置的具有不同感温属性的三个以上的环靶,每个所述环靶对应一个预定温度值,每个所述环靶划分为若干个区靶,每个所述区靶上设置有一个内置温度传感器,每个内置温度传感器用于检测所述激光发射器打击在其上的激光信号的激光温度值;微处理器,与所述温度标靶器的各内置温度传感器连接,所述微处理器根据温度标靶器检测的激光温度值判断激光发射器对准在温度标靶器的哪个环靶上以监测支吊架是否发生变形以及监测支吊架发生变形时的变形量。报警器,与所述微处理器连接,当所述微处理器判断支吊架发生变形时根据支吊架的变形量控制所述报警器发出不同的报警信号。
- 根据权利要求1所述的支吊架变形量智能监测系统,其特征在于,还包括:环境温度传感器,设置在支吊架上或者设置在支吊架的安装环境周边,所述环境温度传感器与所述微处理器连接,所述微处理器根据温度标靶器检测的激光温度值与环境温度传感器之间的差值替代激光温度值判断激光发射器对准在温度标靶器的哪个环靶上以监测支吊架是否发生变形以及监测支吊架发生变形时的变形量。
- 根据权利要求1或2所述的支吊架变形量智能监测系统,其特征在于,还包括:服务器,与所述微处理器连接,用于通过所述微处理器监测支吊架是否发生变形以及监测支吊架发生变形时的变形量。
- 根据权利要求1所述的支吊架变形量智能监测系统,其特征在于,还包括:接收盒,设置在支吊架的横担的另一端或者设置在支吊架的两根立柱的另一根立柱上,所述微处理器设置在所述接收盒内,所述温度标靶器设置在所述 接收盒内并且露出其上的环靶。
- 根据权利要求1所述的支吊架变形量智能监测系统,其特征在于,所述温度标靶器上由内向外的环靶的感温属性从低到高或者从高到低依次排列。
- 根据权利要求1所述的支吊架变形量智能监测系统,其特征在于,所述环靶为圆环状。
- 根据权利要求1所述的支吊架变形量智能监测系统,其特征在于,所述环靶为正多边形环状。
- 根据权利要求1所述的支吊架变形量智能监测系统,其特征在于,所述内置温度传感器为热敏电阻传感器、热电偶传感器或者电阻温度检测器。
- 一种根据权利要求1所述的支吊架变形量智能监测系统的智能监测方法,其特征在于,包括:将温度标靶器的环靶由内向外依次设定为第一环靶至第N环靶,第一环靶至第N环靶依次对应第一预定温度值至第N预定温度值,其中N为大于3的整数;当温度标靶器检测激光发射器的激光信号的激光温度值为第一预定温度值及其允许偏差范围时,确定激光发射器对准在温度标靶器的第一环靶上,判断支吊架未发生变形;当温度标靶器检测激光发射器的激光信号的激光温度值为第N预定温度值及其允许偏差范围时,其中第N预定温度值不为第一预定温度值,确定激光发射器对准在温度标靶器的第N环靶上,判断支吊架发生变形,并确定支吊架的变形量为第N-1级变形。
- 一种根据权利要求2所述的支吊架变形量智能监测系统的智能监测方法,其特征在于,包括:将温度标靶器的环靶由内向外依次设定为第一环靶至第N环靶,将温度标靶器检测激光发射器的激光信号的激光温度值与环境温度传感器之间的差值划分为第一级温度范围至第N级温度范围,其中N为大于3的整数;当温度标靶器检测激光发射器的激光信号的激光温度值与环境温度传感器之间的差值在第一级温度范围时,确定激光发射器对准在温度标靶器的第一环靶上,判断支吊架未发生变形;当温度标靶器检测激光发射器的激光信号的激光温度值与环境温度传感器之间的差值在第N级温度范围时,其中第N级温度范围不为第一级温度范围,确定激光发射器对准在温度标靶器的第N环靶上,判断支吊架发生变形,并确定支吊架的变形量为第N-1级变形。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210756357.7 | 2022-06-29 | ||
CN202210756357.7A CN115164756B (zh) | 2022-06-29 | 2022-06-29 | 支吊架变形量智能监测系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024001354A1 true WO2024001354A1 (zh) | 2024-01-04 |
Family
ID=83489624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/084648 WO2024001354A1 (zh) | 2022-06-29 | 2023-03-29 | 支吊架变形量智能监测系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115164756B (zh) |
WO (1) | WO2024001354A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115164756B (zh) * | 2022-06-29 | 2023-11-03 | 上海市安装工程集团有限公司 | 支吊架变形量智能监测系统及方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07218225A (ja) * | 1994-02-03 | 1995-08-18 | Kansei Kogyo Kk | 管路の変形状態調査装置 |
JP2002350115A (ja) * | 2001-05-28 | 2002-12-04 | Toyota Motor Corp | 変形計測システム及び方法 |
CN103105140A (zh) * | 2013-01-28 | 2013-05-15 | 唐山学院 | 大型建筑物变形监测装置以及用其监测的方法 |
CN205317159U (zh) * | 2016-01-27 | 2016-06-15 | 北京城建北方设备安装有限责任公司 | 悬挑脚手架型钢变形的监测报警装置 |
CN106197287A (zh) * | 2016-08-03 | 2016-12-07 | 西安敏文测控科技有限公司 | 用于大型结构物变形或位移参数的自校准式测量装置及方法 |
CN106385757A (zh) * | 2016-09-18 | 2017-02-08 | 中国科学院上海应用物理研究所 | 一种中子产生靶 |
CN109297429A (zh) * | 2018-12-05 | 2019-02-01 | 河南送变电建设有限公司 | 一种用于检测gis设备抽真空过程中壳体变形的装置 |
CN110907631A (zh) * | 2019-12-13 | 2020-03-24 | 哈尔滨工业大学 | 监测水泥基材料碳化程度和体积变形的装置及其测量方法 |
CN211034992U (zh) * | 2019-11-22 | 2020-07-17 | 郑州大学 | 塔吊稳定性监测及预警装置 |
KR20210043275A (ko) * | 2019-10-11 | 2021-04-21 | 권경환 | 레이저를 이용한 구조물 변형 감지 방법 |
CN115164756A (zh) * | 2022-06-29 | 2022-10-11 | 上海市安装工程集团有限公司 | 支吊架变形量智能监测系统及方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100859341B1 (ko) * | 2004-09-13 | 2008-09-19 | 최용기 | 사면부의 거동량 측정방법 |
US7810992B2 (en) * | 2007-04-09 | 2010-10-12 | Avita Corporation | Non-contact temperature-measuring device and the method thereof |
JP5628779B2 (ja) * | 2011-12-01 | 2014-11-19 | 株式会社日立製作所 | Fbgセンサの多点計測方法および多点計測装置 |
KR20140071182A (ko) * | 2012-12-03 | 2014-06-11 | 삼성전기주식회사 | 기판의 고온 변형 관찰장치 및 이를 이용한 기판의 고온 변형 관찰 방법 |
CN104634488B (zh) * | 2015-02-06 | 2017-04-19 | 西北工业大学 | 一种飞机复合材料长桁变形测量方法及装置 |
CN205593490U (zh) * | 2016-03-04 | 2016-09-21 | 金鹏涛 | 一种隧道工程变形监测组合测点装置 |
CN106363605B (zh) * | 2016-09-21 | 2018-06-05 | 河南理工大学 | 带连杆变形误差检测的三自由度并联机构 |
CN107539215B (zh) * | 2017-08-24 | 2021-07-13 | 易绍福 | 一种车轮温度监测系统 |
CN111803209A (zh) * | 2020-07-24 | 2020-10-23 | 珠海富伊特科技有限公司 | 一种一次性激光金属热疗靶头 |
-
2022
- 2022-06-29 CN CN202210756357.7A patent/CN115164756B/zh active Active
-
2023
- 2023-03-29 WO PCT/CN2023/084648 patent/WO2024001354A1/zh unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07218225A (ja) * | 1994-02-03 | 1995-08-18 | Kansei Kogyo Kk | 管路の変形状態調査装置 |
JP2002350115A (ja) * | 2001-05-28 | 2002-12-04 | Toyota Motor Corp | 変形計測システム及び方法 |
CN103105140A (zh) * | 2013-01-28 | 2013-05-15 | 唐山学院 | 大型建筑物变形监测装置以及用其监测的方法 |
CN205317159U (zh) * | 2016-01-27 | 2016-06-15 | 北京城建北方设备安装有限责任公司 | 悬挑脚手架型钢变形的监测报警装置 |
CN106197287A (zh) * | 2016-08-03 | 2016-12-07 | 西安敏文测控科技有限公司 | 用于大型结构物变形或位移参数的自校准式测量装置及方法 |
CN106385757A (zh) * | 2016-09-18 | 2017-02-08 | 中国科学院上海应用物理研究所 | 一种中子产生靶 |
CN109297429A (zh) * | 2018-12-05 | 2019-02-01 | 河南送变电建设有限公司 | 一种用于检测gis设备抽真空过程中壳体变形的装置 |
KR20210043275A (ko) * | 2019-10-11 | 2021-04-21 | 권경환 | 레이저를 이용한 구조물 변형 감지 방법 |
CN211034992U (zh) * | 2019-11-22 | 2020-07-17 | 郑州大学 | 塔吊稳定性监测及预警装置 |
CN110907631A (zh) * | 2019-12-13 | 2020-03-24 | 哈尔滨工业大学 | 监测水泥基材料碳化程度和体积变形的装置及其测量方法 |
CN115164756A (zh) * | 2022-06-29 | 2022-10-11 | 上海市安装工程集团有限公司 | 支吊架变形量智能监测系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115164756A (zh) | 2022-10-11 |
CN115164756B (zh) | 2023-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024001354A1 (zh) | 支吊架变形量智能监测系统及方法 | |
CN110513604B (zh) | 一种基于多源图像的lng站泄漏智能检测系统及其检测方法 | |
JP6082597B2 (ja) | 損傷状況報知システム及び地震防災システム | |
CN109731268B (zh) | 一种基于火源定位的室内消防系统及方法 | |
CN110415478A (zh) | 基于物联网的火警分级预警系统 | |
CN111179545A (zh) | 一种车内人员防窒息装置 | |
CN103613017A (zh) | 塔式起重机顶升系统位置状态在线监控系统及监控方法 | |
CN106152980B (zh) | 一种变压器绕组变形检测方法及系统 | |
JPH08249563A (ja) | 光ファイバ式火災感知システム | |
CN105600353A (zh) | 一种圆管带式输送机胶带运行状态检测装置及方法 | |
CN203053604U (zh) | 一种储煤仓温度全方位监测系统 | |
CN205471349U (zh) | 一种圆管带式输送机胶带运行状态检测装置 | |
CN102261890A (zh) | 回转角度测量装置 | |
KR20210028464A (ko) | IoT 기반 장비 부착형 누액 모니터링 시스템 및 이의 동작 방법 | |
CN206421011U (zh) | 一种锂离子电池仓库管理系统 | |
CN201532191U (zh) | 丝扣松脱检测监控系统 | |
JP2020034300A (ja) | 過熱監視装置 | |
CN211346736U (zh) | Gis设备用防爆膜监测系统 | |
CN108230627B (zh) | 一种用于油库的可燃气体监测系统 | |
CN103247136A (zh) | 用于森林防火的多终端监控系统 | |
KR102084376B1 (ko) | 소방시설의 화재감지기 자동 원격 점검 방법 및 그 방법을 수행하는 화재수신기 | |
CN211040444U (zh) | 一种改进型煤气柜的安全检测系统 | |
KR20210042068A (ko) | IoT 기반 장비 부착형 누액 모니터링 시스템 및 이의 동작 방법 | |
JPH0579693U (ja) | 赤外温度センサーを利用した漏洩火災検知装置 | |
CN213275771U (zh) | 一种防爆接地电阻在线监测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23829545 Country of ref document: EP Kind code of ref document: A1 |