[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024000907A1 - 雷电防护装置、雷电防护系统、风力发电机组及方法 - Google Patents

雷电防护装置、雷电防护系统、风力发电机组及方法 Download PDF

Info

Publication number
WO2024000907A1
WO2024000907A1 PCT/CN2022/123640 CN2022123640W WO2024000907A1 WO 2024000907 A1 WO2024000907 A1 WO 2024000907A1 CN 2022123640 W CN2022123640 W CN 2022123640W WO 2024000907 A1 WO2024000907 A1 WO 2024000907A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
conductor
edge
lightning protection
protection device
Prior art date
Application number
PCT/CN2022/123640
Other languages
English (en)
French (fr)
Inventor
付磊
闻笔荣
李权舟
Original Assignee
江苏金风科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏金风科技有限公司 filed Critical 江苏金风科技有限公司
Priority to KR1020247019096A priority Critical patent/KR20240103012A/ko
Priority to AU2022466590A priority patent/AU2022466590A1/en
Publication of WO2024000907A1 publication Critical patent/WO2024000907A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/30Lightning protection
    • F03D80/301Lightning receptor and down conductor systems in or on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/30Lightning protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • H02G13/80Discharge by conduction or dissipation, e.g. rods, arresters, spark gaps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This application relates to the field of wind power technology, and in particular to a lightning protection device, a lightning protection system, a wind turbine generator set and a method.
  • the metal mesh is a relatively thin layered planar structure.
  • the current When the current is conducted on the plane, it will produce a skin effect, that is, the current is used to conduct along the edges of the plane, and the current intensity at the middle plane is relatively small.
  • Embodiments of the present application provide a lightning protection device, a lightning protection system, a wind turbine and a method.
  • the current carrying capacity at the edge can be improved and the current carrying capacity at the edge can be avoided. Excessive concentration will cause damage to lightning protection devices.
  • a lightning protection device including a transition conductor.
  • the transition conductor has a predetermined length, width, and thickness.
  • the transition conductor has opposite first connection ends in its length direction and The second connection end, the first connection end is used to receive lightning current, and the second connection end is used to connect with the downconductor system; wherein, the transition conductor includes a thinned area and an edge area, and the edge area is arranged to surround at least part of the thinned area. , the edge area and the thinned area are connected on one side in the length direction and jointly form a first connection end, and the thickness of the thinned area is smaller than the thickness of the edge area.
  • the thinned area and the edge area are aligned along the width direction on a side forming the first connection end in the length direction.
  • the transition conductor has opposite first edges and second edges in its width direction, the first edge and the second edge are located in the edge area, and the first edge and the second edge are in the length direction.
  • One end of the first edge and the second edge are dispersedly arranged in a direction away from each other and connected to the first connecting end respectively.
  • the other ends of the first edge and the second edge are arranged in a convergent direction close to each other and connected to the second connecting end respectively.
  • the thickness of the edge region tends to increase.
  • the edge area includes a plurality of conductive sections arranged one after another along the length direction, and the thickness of the plurality of conductive sections increases step by step along the extending direction from the first connection end to the second connection end.
  • the edge area includes edge portions arranged in pairs.
  • the edge portions arranged in pairs are relatively arranged on both sides of the thinned area in the width direction of the transition conductor.
  • the thickness of each edge portion is greater than The thickness of the thinned area.
  • the edge portions on both sides of the thinned area are symmetrically arranged along the width direction.
  • the orthographic projection of the thinned area and the edge portion is triangular
  • the orthographic projection of the thinned area and the edge portion are both rectangular.
  • the lightning protection device further includes a basic conductor, and the basic conductor is connected to the first connection end.
  • the basic conductor has a plurality of meshes, and the sizes of the plurality of meshes are the same as each other.
  • the lightning protection device further includes an adapter body disposed at the second connection end.
  • the adapter body has a solid plate-like structure as a whole.
  • a through hole is provided on the adapter body and connected to the lead through the through hole. Offline system connection.
  • the lightning protection device further includes a current collector, the current collector is disposed in the through hole, and the adapter body is connected to the downconductor system through the current collector.
  • a lightning protection system including any one of the lightning protection devices mentioned above and a downconductor system.
  • the downconductor system is directly or indirectly connected to the transitional conductor.
  • a wind turbine generator set which includes blades.
  • the blades have a shell.
  • the wind turbine generator set further includes a lightning protection system as described above, wherein the lightning protection device covers at least part of the shell and is provided. Connected to the shell.
  • an embodiment of the present application provides a method for forming a lightning protection device, including:
  • an electrical conductor with a predetermined length, width and thickness
  • the transition conductor includes a thinned area and an edge area, the edge area is arranged to surround at least part of the thinned area, the edge area and the thinned area are connected on one side of the length direction of the transition conductor and together form the first connection end,
  • the transition conductor forms a second connection end on a side opposite to the first connection end in the length direction, and the thickness of the thinned region is smaller than the thickness of the edge region.
  • the step of thickening the edge of the conductor to form the transition conductor includes:
  • connection layer is stacked on one side of the conductor in the thickness direction
  • a thickened conductive layer is stacked on the side of the connection layer away from the conductor along the thickness direction of the conductor, and the orthographic projection of the thickened conductor layer on the conductor covers both edges of the conductor in the width direction;
  • connection layer is heated to a molten state and then cooled and solidified, so that the thickened conductor layer is connected to the conductor and a transition conductor is formed.
  • the area of the thickened conductive layer and the conductor covered by it forms an edge area, and the conductor is not thickened and conducts electricity.
  • the area covered by the layer forms a thinned area.
  • the step of thickening the edge of the conductor to form the transition conductor includes:
  • the conductor is divided into a base area, a first folding area and a second folding area, the base area has a dividing line in the width direction, and the first folding area and the second folding area are relatively arranged on both sides of the dividing line;
  • the first folding area and the second folding area are bent relative to the base area and stacked in the thickness direction of the conductor to cover part of the base area to form a transitional conductor; wherein the first folding area and the second folding area are each in contact with the base area
  • the laminated portion forms an edge region, and the portion of the base region that is not laminated with the first folding region and the second folding region forms a thinned region.
  • the step of bending the first folding area and the second folding area relative to the base area and stacking them in the thickness direction to cover part of the base area to form the transition conductor includes:
  • the portion beyond the dividing line in the width direction is cut and removed.
  • An adapter body is provided, and the adapter body has a solid plate-like structure as a whole and has a through hole;
  • a transition conductor is provided in the lightning protection device.
  • the first connection end of the transition conductor is used to receive lightning current
  • the second connection end is used to receive lightning current. It is used to connect to the down conductor system. Since the transition conductor is divided into a thinned area and an edge area, the edge area and the thinned area are connected on one side in the length direction and jointly form the first connection end. When the lightning current flows from When the first connection end enters, the lightning current will flow to the second connection end through the thinned area and the edge area.
  • the current carrying capacity at the edge of the lightning protection device is improved. , which adapts to the distribution law of current when it is transmitted along the plane, avoids excessive concentration of current at the edges and causes damage to the lightning protection device, and improves the overall safety performance.
  • FIG. 1 is a schematic structural diagram of a lightning protection device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another lightning protection device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another lightning protection device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another lightning protection device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another lightning protection device according to the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another lightning protection device according to an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a current collector according to an embodiment of the present application.
  • Figure 8 is a cross-sectional view of the lightning protection system according to the embodiment of the present application when it is matched with the blade;
  • Figure 9 is a schematic flow chart of a forming method of a lightning protection device according to an embodiment of the present application.
  • Figure 10 is a schematic flow chart of another forming method of a lightning protection device according to an embodiment of the present application.
  • Figure 11 is a schematic flow chart of another forming method of a lightning protection device according to an embodiment of the present application.
  • Figure 12 is a schematic flow chart of another forming method of a lightning protection device according to an embodiment of the present application.
  • Figure 13 is a schematic diagram of the molding method flow and structure of a lightning protection device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another lightning protection device according to the embodiment of the present application.
  • Figure 15 is a schematic flow chart of another forming method of a lightning protection device according to an embodiment of the present application.
  • Figure 16 is a schematic flow chart of another forming method of a lightning protection device according to an embodiment of the present application.
  • 100-Lightning protection device 100-Lightning protection device; X-Length direction; Y-Width direction; 200-Down conductor system; 300-Lightning protection system;
  • an embodiment of the present application provides a lightning protection device 100, which includes a transition conductor 10.
  • the transition conductor 10 has a predetermined length, width, and thickness.
  • the transition conductor 10 has a relative thickness in its length direction X.
  • the first connection end 1 and the second connection end 2 the first connection end 1 is used to receive lightning current, and the second connection end 2 is used to connect with the downconductor system 200; wherein, the transition conductor 10 includes a thinned area 11 and edge area 12, which is arranged to surround at least part of the thinned area 11.
  • the edge area 12 and the thinned area 11 are connected on one side in the length direction X and jointly form the first connection end 1.
  • the thickness of the thinned area 11 is less than the thickness of edge region 12.
  • the transition conductor 10 Since the skin effect will occur during the current transfer process, the current will be transferred along the edges on both sides of the plane, causing the current intensity on both sides of the plane to be relatively large and the current to be relatively concentrated. Therefore, the transition conductor 10 has an edge area 12 and The thinned region 11 makes the thickness of the edge region 12 greater than the thickness of the thinned region 11 to improve the current carrying capacity of the edge region 12 .
  • the thicker edge area 12 needs to surround at least part of the thinned area 11 so that the thinned area 11 is placed as close to the middle as possible.
  • the thickening method of the edge area 12 can be through a stacking and pressure welding process, or it can be folded. This application does not specifically limit the specific thickening method of the edge area 12.
  • the first connection end 1 of the transition conductor 10 is used to receive lightning and can be attached with a metal mesh to increase the coverage area of the blade 40, and its second connection end 2 is used to connect to the downconductor system 200, which can be Direct connection, or indirect transition connection through metal body.
  • the transition conductor 10 can be a mesh structure or a solid plate structure, and is usually made of metal.
  • the density of the mesh holes in the mesh structure determines its current conduction capability.
  • a lightning protection device 100 is provided with a transition conductor 10.
  • the first connection end 1 of the transition conductor 10 is used to receive lightning current, and the second connection end 2 is used to connect to the downconductor system 200.
  • the thickness of the edge area 12 close to the side is relatively thick, and its thickness is greater than the thickness of the thinned area 11 close to the middle area.
  • the edge area 12 and the thinned area 11 are connected on one side in the length direction X and together form a first Connecting end 1, when the lightning current enters from the first connecting end 1, the lightning current will flow to the second connecting end 2 through the thinned area 11 and the edge area 12, by making the thickness of the thinned area 11 smaller than the thickness of the edge area 12 , improves the current carrying capacity at the edge of the transition conductor 10, adapts to the skin effect of current transmission, the overall structural layout is conducive to the transmission of current, avoids the risk of damage caused by excessive local current intensity on the side, and improves the lightning protection device 100 overall safety performance.
  • the thinned area 11 and the edge area 12 are aligned along the width direction Y on the side forming the first connection end 1 in the length direction X.
  • the lightning protection device 100 in the embodiment of the present application satisfies the uniformity when receiving and transmitting lightning by keeping one side of the thinned area 11 and the edge area 12 flush and forming the first connection end 1, so that the lightning can be
  • the first connection end 1 is regularly and intensively transmitted to the edge area 12 , and the structural layout of this embodiment can well adapt to the current distribution pattern.
  • the transition conductor 10 has opposite first edges 3 and second edges 4 in its width direction Y.
  • the first edges 3 and the second edges 4 are located in the edge area 12 , the first edge 3 and the second edge 4 are dispersedly arranged in the direction away from each other at one end of the length direction They are set together and connected to the second connection end 2 respectively.
  • the length of the first connection end 1 is greater than the length of the second connection end 2, so the first edge 3 and the second edge 4 are provided by the first edge 3 and the second edge 4.
  • One connection end 1 extends toward the second connection end 2 and approaches each other, in line with the transmission direction of current convergence.
  • the projection of the first connection end 1 and the second connection end 2 in the thickness direction is linear, and the transition conductor 10 is entirely connected by the first edge 3 and the second edge 4 as well as the first connection end 1 and the second connection end. End 2 is enclosed and formed, forming a trapezoidal structure as a whole.
  • the first edge 3 and the second edge 4 serve as two waists of a trapezoid.
  • an isosceles trapezoidal structure is formed as a whole.
  • the lightning protection device 100 in the embodiment of the present application extends the first edge 3 and the second edge 4 in a direction close to each other, thereby complying with the convergence direction of current transmission, improving the convergence ability of the current, and being more conducive to the flow of the current. Centralized collection.
  • the thickness of the edge region 12 shows an increasing trend.
  • the thickness of the edge area 12 can be adjusted. gradient.
  • the thickness of the edge region 12 is not only greater than the thickness of the thinned region 11 , but also has an increasing trend in thickness.
  • the thickness increase may be a continuous increase or a step-by-step increase.
  • a lightning protection device 100 by making the thickness of the edge region 12 itself gradually change, on the basis of adapting to the current skin effect, the thickness is also adapted to the sudden change in the thickness of the carrier during current transmission. The gradual change avoids damage to the connection caused by the concentration of sudden changes in current, further improving the safety performance of the lightning protection device 100.
  • the edge area 12 includes a plurality of conductive sections 5 arranged one after another along the length direction X. Along the extending direction from the first connecting end 1 to the second connecting end 2, a plurality of The thickness of the conductive section 5 increases step by step.
  • the increasing thickness of the edge area 12 is achieved by arranging conductive sections 5 that increase step by step. From the first connection end 1 to the second connection end 2, the number of layers of each conductive section 5 increases. Optional Ground, the thickness can be superimposed through processes such as stacking and pressure welding.
  • a lightning protection device 100 in the embodiment of the present application provides a way to increase the thickness of the edge area 12. By increasing the thickness of the edge area 12, a sudden change in the thickness of the carrier cross-section during current transmission is avoided, and the current intensity is buffered. Avoid current concentration and improve safety.
  • the edge area 12 includes edge portions 13 arranged in pairs.
  • the edge portions 13 arranged in pairs are relatively arranged in the width direction Y of the transition conductor 10 and are thinned. On both sides of the area 11 , the thickness of each edge portion 13 is greater than the thickness of the thinned area 11 .
  • the thinned area 11 When the orthographic projection of the thinned area 11 in the thickness direction is tangent to the second connecting end 2 at a point, the thinned area 11 separates the edge area 12 into two parts, which are paired edge parts 13 and located at Both sides of the thinned area 11.
  • the outline of the edge portions 13 arranged in pairs on both sides of the thinned area 11 is determined by setting the outer contour of the thinned area 11.
  • the edge portions 13 arranged in pairs can be of equal size and symmetrically distributed, and the size range can also be Not equal, the outline of the edge portion 13 may be a regular shape or an irregular shape.
  • the thicknesses of the paired edge portions 13 may be equal or unequal, as long as the thickness of each edge portion 13 is greater than the thickness of the thinned region 11 .
  • a lightning protection device 100 in the embodiment of the present application provides a distribution layout of the thinned area 11 and the edge area 12.
  • the edge area 12 is divided into oppositely arranged edge portions 13 by the thinned area 11, so that the thinned area 11 obtains the maximum extension length in the length direction X, and forms the thinning area 11 in the maximum range in the length direction
  • the edge portions 13 on both sides of the thinned area 11 are symmetrically arranged along the width direction Y.
  • the lightning protection device 100 in the embodiment of the present application realizes that the sizes of the paired edge portions 13 are correspondingly equal by arranging the edge portions 13 on both sides of the thinned area 11 symmetrically along the width direction Y, so that the current can be transmitted during the transmission process.
  • the distribution is more even, which avoids the excessive concentration of current on one side and causes the risk of damage to one side, and improves safety.
  • the orthographic projections of the thinned area 11 and the edge portion 13 are triangular; or, along the thickness direction of the transition conductor 10 , The thin area 11 and the edge portion 13 are both rectangular in orthographic projection.
  • This embodiment takes the orthographic projection of the thinned area 11 and the edge part 13 as a triangle as an example.
  • the thinned area 11 When the thinned area 11 is set into a triangular area, its vertex angle is tangent to the second connection end 2 at one point. Due to the transitional conductivity The overall contour of the body 10 is trapezoidal, so the triangular thinned area 11 divides the edge area 12 into two other triangular edge portions 13 .
  • the edges 13 of the other two triangles are symmetrically distributed with the thinned area 11 as the center.
  • the triangle of the thinned area 11 can be a triangle with any side length, as long as it is The vertex angle is tangent to the second connecting end 2 so that the paired edge portions 13 both form a triangle.
  • the thinning area 11 and the edge area 12 can be divided into various forms.
  • the outline shape of the thinning area 11 can be a triangle, a rectangle, a half.
  • the corresponding edge area 12 will also form a corresponding shape. This application does not specifically limit the outline shapes of the thinning area 11 and the edge area 12 .
  • the lightning protection device 100 in the embodiment of the present application provides a variety of possible shape profiles of the thinned area 11 and the edge area 12, which can be selected in a variety of ways according to actual needs and processing techniques, thereby improving the performance of the lightning protection device 100. Diversity and flexibility of selection make it more adaptable to applications under a variety of working conditions.
  • the lightning protection device 100 also includes a basic conductor 20, and the basic conductor 20 is connected to the first connection end 1.
  • the basic conductor 20 has multiple meshes.
  • the sizes of the multiple meshes are the same as each other to have uniform conductivity.
  • the sizes of the multiple meshes can also be different.
  • a gradient mesh can also be used.
  • Metal mesh structure metal mesh structure.
  • This application does not impose special restrictions on the extension length and coverage area of the basic conductor 20, and can be selected according to the actual size of the blade 40.
  • the thickness of the base conductor 20 is equal to that of the first connection end 1 so that the base conductor 20 can be connected to the first connection end 1 .
  • the lightning protection device 100 in the embodiment of the present application can improve the ability of the lightning protection device 100 to receive lightning by arranging the basic conductor 20, and can cover and protect the blade 40 in the largest area, preventing the entire blade 40 from being damaged by lightning. , improving the overall safety performance.
  • the lightning protection device 100 also includes an adapter body 30 disposed at the second connection end 2.
  • the adapter body 30 is in the form of a solid plate-like structure.
  • a through hole 31 is provided and connected to the down conductor system 200 through the through hole 31 .
  • the adapter body 30 optionally, its thickness dimension can be unchanged, and the overall current conduction capacity is the same and greater than the current conduction capacity of the second connection end 2 , or the thickness dimension of the adapter body 30 can be increased. trend, forming a thickness gradient while gradually increasing the current conductivity.
  • the width direction of the adapter body 30 shows a decreasing trend to buffer the lightning transmission process.
  • the thickness of the adapter body 30 is equal to the thickness of the second connection end 2 to connect the adapter body 30 to the second connection end 2.
  • the entire adapter body 30 has a solid plate-like structure, which can be Metal plate structure, of course the adapter body 30 can also be a metal mesh structure with mesh.
  • a through-hole 31 is provided on the adapter body 30 , and the wires in the down-conductor system 200 are directly connected to the through-hole 31 to transfer the current in the transition conductor 10 to the down-conductor system 200 , the cross-sectional size of the wires and the aperture size of the through hole 31 match and are equal.
  • the lightning protection device 100 in the embodiment of the present application realizes the connection between the lightning protection device 100 and the down-conductor system 200 by connecting the adapter 30 at the second connection end 2 and providing the through hole 31, thereby facilitating the current flow. Boot into downline system 200 and export it.
  • the lightning protection device 100 also includes a current collector 6.
  • the current collector 6 is disposed in the through hole 31, and the adapter body 30 is connected to the downconductor system 200 through the current collector 6.
  • a current collector 6 can be provided at the through hole 31 of the adapter body 30.
  • the current collector 6 can be inserted into the through hole 31, or can be integrally formed with the adapter body 30. Or it can be connected to the through hole 31 and the adapter body 30 by means of bolts and nuts.
  • the current collector 6 is usually arranged in a cylindrical structure and is usually made of metal.
  • the current collector 6 has a certain thickness and the thickness is greater than the thickness of the adapter body 30. Therefore, the current collector 6 protrudes from the adapter body 30.
  • the current collector 6 is a metal base.
  • the current collector 6 is arranged on the adapter body 30. By connecting the wires to the current collector 6, a connection is formed between the down conductor system 200 and the adapter body 30. The current gathered on the current collector 6 is transmitted to the lead wire by the wires. System 200 is offline.
  • a current collector 6 is provided between the adapter 30 and the down conductor system 200, so that the down conductor system 200 and the lightning protection device 100 are indirectly connected.
  • the arrangement of the current collector 6 The current gathering ability is further improved, allowing the current to converge to the end more efficiently.
  • the current collector 6 also provides transitional protection, further improving the protective function of the lightning protection device 100 .
  • the lightning protection system 300 provided by the embodiment of the present application includes the lightning protection device 100 and the downconductor system 200 of the above embodiments, so it has better lightning protection performance and service life.
  • the wind turbine set provided by the embodiments of the present application includes the lightning protection device 100 or lightning protection system 300 of the above embodiments, it can effectively prevent the blades 40 from being damaged by lightning strikes, and has a higher safety level and Power generation efficiency.
  • the lightning protection device 100 can be pasted on On the outer surface of the shell of the blade 40, the metal connection structure 7 is pressed to the adapter body 30, and the two are in surface contact.
  • a connection including a threaded structure is included.
  • the metal connection structure 7 includes an accessory connector 8, The accessory connector 8 penetrates the casing of the blade 40 and is connected to the downconductor system 200 through the downconductor 9 .
  • One lightning protection device 100 can be provided on each blade 40 . Of course, in some other examples, more than two lightning protection devices 100 can also be provided.
  • the specific number can be set according to parameters such as the size of the blade 40 . The specific number is not specified here. limit.
  • the lightning protection device 100 provided in the embodiment of the present application can also be disposed at the tip of the blade 40. Since the adapter 30 is provided in the lightning protection device 100, it can be better and reliably connected to the downconductor system 200, and thus To improve the reliability of lightning protection and grounding, the lightning protection device 100 can reliably conduct a lightning current of 200KA. It only needs to arrange a 15cm wide metal strip at the tip of the blade 40 to meet the lightning protection effect.
  • a method for forming a lightning protection device 100 includes:
  • S901 provide an electrical conductor with a predetermined length, width and thickness.
  • the provided conductor is usually a conductive plate structure, and its material is a metal plate, such as a copper plate.
  • the length, width and thickness of the conductor can be selected as required.
  • the conductor provided may also be a metal mesh structure.
  • the edges of the conductor are thickened so that the thickness of the edge is greater than the thickness of the middle region to achieve a gradient in thickness in the width direction Y, and the edges on both sides are relatively thick to form the transition conductor 10 .
  • the transition conductor 10 includes a thinned region 11 and an edge region 12 .
  • the edge region 12 surrounds at least part of the thinned region 11 .
  • the edge region 12 and the thinned region 11 are opposite each other on one side of the transition conductor 10 in the length direction X.
  • Connected and jointly forming the first connection end 1, the transition conductor 10 forms a second connection end 2 on the side opposite to the first connection end 1 in the length direction
  • the forming method of the lightning protection device 100 in the embodiment of the present application forms the thinned area 11 and the edge area 12 of the transitional conductor 10 by thickening the edge of the conductor, adapting to the distribution of current intensity and satisfying the following requirements: Current carrying capacity of each part.
  • the steps of thickening the edge of the conductor to form the transition conductor 10 include:
  • connection layer is stacked on one side of the conductor in the thickness direction.
  • connection layer can be laid on top of the conductor, and optionally, the connection layer can be tin foil.
  • a thickened conductive layer is stacked on the side of the connection layer away from the conductor along the thickness direction of the conductor, and the orthographic projection of the thickened conductor layer on the conductor covers both edges of the conductor in the width direction Y.
  • connection layer lay a thickened conductor layer on the connection layer, and set the connection layer between the two conductor layers.
  • the thickened conductor layer needs to cover both sides of the lower conductor layer.
  • the thickened conductor layer and the conductor layer Made of the same material.
  • connection layer heats the connection layer to a molten state and then cool and solidify, so that the thickened conductor layer is connected to the conductor and the transition conductor 10 is formed.
  • the area of the thickened conductive layer and the conductor covered by it forms an edge area 12, and the conductor is not
  • the area covered by the thickened conductive layer forms the thinned area 11 .
  • the middle connection layer is melted by high temperature, thereby filling the gap between the two conductors.
  • the connection layer is cooled and solidified, the two conductors are connected together, and the thickened portion at the edge forms the edge region 12 , the non-thickened part forms a thinned area 11.
  • the molding method of the lightning protection device 100 in the embodiment of the present application realizes a tight connection between conductors by using pressure welding, improves the stability of the connection, and achieves a more reliable connection effect.
  • the steps of thickening the edge of the conductor to form the transition conductor 10 include:
  • the conductor divides the conductor into a base area 1c, a first folding area 1a and a second folding area 1b.
  • the base area 1c has a dividing line mm in the width direction Y, and the first folding area 1a and the second folding area 1b are arranged opposite to each other. Both sides of the line mm.
  • the conductor needs to be divided into a base area 1c, a first folding area 1a and a second folding area 1b in advance.
  • the base area 1c itself has a dividing line mm.
  • the dividing line mm can be a center line.
  • the first The folding area 1a and the second folding area 1b are arranged symmetrically with respect to the dividing line mm.
  • first folding area 1a and the second folding area 1b are folded 180° and laminated on the base area 1c.
  • the laminated part forms the edge area 12, and the unlaminated part forms the thinned area 11, forming a transitional conductive layer as a whole.
  • Body 10 is
  • the folding method shown in the figure is only an optional embodiment, and is not limited to this in practice. It can also be stacked along different folding directions to achieve thickening of the edges. This application There is no particular limitation on the specific folding method. Various ways of achieving thickening through folding belong to the same inventive concept as the above-mentioned methods, and are all within the protection scope of the present application.
  • the forming method of the lightning protection device 100 in the embodiment of the present application uses a folding method to complete the thickening of the edges on both sides, so that the number of layers on both sides of the edge is greater than the number of layers in the middle area, and the operation is convenient and easy. Able to design diverse structures more flexibly.
  • the first folding area 1a and the second folding area 1b are folded relative to the base area 1c and stacked in the thickness direction to cover part of the base area 1c to form a transition.
  • the steps for conductor 10 include:
  • the number of folding times can be adjusted according to actual thickness requirements, and the number of layers in the edge area 12 can be increased by increasing the number of folding times. For example, first fold the first folding area 1a to the stacked base area 1c to form two layers. The first folded area 1a is then folded in half to form three layers to increase the number of layers.
  • a cutting tool to cut off the part that exceeds the dividing line mm, so as to avoid the overlap of the two folding areas at the dividing line mm and achieve thickness connection.
  • the second folding area 1b is then folded back in half to form three layers to increase the number of layers.
  • a cutting tool to cut off the part that exceeds the dividing line mm, so as to avoid the overlap of the two folding areas at the dividing line mm and achieve thickness connection.
  • the part beyond the dividing line mm may not be cut and removed, so as to further overlap at the dividing line mm.
  • the part beyond the dividing line mm may not be cut and removed.
  • the molding method of the lightning protection device 100 in the embodiment of the present application increases the number of layers in the edge area 12 by adjusting the number of folds, and can flexibly adjust the thickness of the edge area 12, and can complete the superposition of thicknesses according to actual needs, and the process flow is more Convenient and saves material costs.
  • the molding method provided by the embodiment of the present application also includes:
  • the basic conductor 20 has multiple meshes.
  • the required basic conductor 20 is selected.
  • the basic conductor 20 has a mesh, and may be a metal mesh structure.
  • first connection end 1 of the basic conductor 20 and the transition conductor 10 may be connected by welding.
  • the molding method provided by the embodiment of the present application also includes:
  • the adapter body 30 has a solid plate-like structure and has a through hole 31.
  • the adapter body 30 has a metal plate-like structure, and a through hole 31 is opened at its end.
  • the down conductors in the down conductor system 200 can be directly connected to the through hole 31 opened.
  • the adapter body 30 and the second connection end 2 of the transition conductor 10 may be connected by welding.
  • the forming method of the lightning protection device 100 in the embodiment of the present application improves the overall structure of the lightning protection device 100 by connecting the transition conductor 10 to the adapter body 30 and the basic conductor 20 respectively, which is more conducive to receiving lightning and Converging current improves the overall current export capability.
  • the lightning protection device 100 by arranging the transition conductor 10 in the lightning protection device 100, divide the transition conductor 10 into a thinned area 11 and an edge area. 12. Make the thickness of the thinned area 11 smaller than the thickness of the edge area 12, thereby improving the current carrying capacity at the edge of the lightning protection device 100, adapting to the distribution pattern of current when it is transmitted along the plane, and avoiding excessive concentration of current at the edge. And cause damage to the lightning protection device 100, thereby improving the overall safety performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Wind Motors (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

本申请涉及一种雷电防护装置、雷电防护系统、风力发电机组及方法,雷电防护装置包括过渡导电体,过渡导电体具有预定的长度、宽度以及厚度,过渡导电体在自身的长度方向上具有相对的第一连接端和第二连接端,第一连接端用于接收雷电流,第二连接端用于与引下线系统连接;其中,过渡导电体包括减薄区和边缘区,边缘区包围至少部分减薄区设置,边缘区以及减薄区在长度方向上的一侧相连接并共同形成第一连接端,减薄区的厚度小于边缘区的厚度。本申请的雷电防护装置、雷电防护系统、风力发电机组及方法,能够适应电流的集肤效应,提高整体的安全性能。

Description

雷电防护装置、雷电防护系统、风力发电机组及方法
相关申请的交叉引用
本申请要求享有于2022年6月29日提交的名称为“雷电防护装置、雷电防护系统、风力发电机组及方法”的中国专利申请202210753573.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及风电技术领域,特别是涉及一种雷电防护装置、雷电防护系统、风力发电机组及方法。
背景技术
风力发电机组中的叶片通过金属网拦截雷电后,需要将雷电流传导至引下线系统,并最终通过引下线系统将电流传导至大地。
金属网是一种比较薄的层状平面结构,电流在平面传导时会产生集肤效应,也就是电流习惯于沿平面的边缘传导,中间平面处的电流强度相对较小。
考虑到电流的集肤效应,电流在实际传导时会更容易在宽度方向的两侧集中,形成的局部电流过大,从而易造成边缘处的金属网破坏。
发明内容
本申请实施例提供一种雷电防护装置、雷电防护系统、风力发电机组及方法,通过在雷电防护装置的宽度方向上进行厚度调整,能够提高边缘处的电流承载能力,避免了电流在边缘处的集中过大对雷电防护装置造成破坏。
一方面,根据本申请实施例提出了一种雷电防护装置,包括过渡导电体,过渡导电体具有预定的长度、宽度以及厚度,过渡导电体在自身的长 度方向上具有相对的第一连接端和第二连接端,第一连接端用于接收雷电流,第二连接端用于与引下线系统连接;其中,过渡导电体包括减薄区和边缘区,边缘区包围至少部分减薄区设置,边缘区以及减薄区在长度方向上的一侧相连接并共同形成第一连接端,减薄区的厚度小于边缘区的厚度。
根据本申请实施例的一个方面,减薄区以及边缘区在长度方向上形成第一连接端的一侧沿宽度方向对齐设置。
根据本申请实施例的一个方面,过渡导电体在自身的宽度方向上具有相对的第一边缘和第二边缘,第一边缘以及第二边缘位于边缘区,第一边缘和第二边缘在长度方向的一端向远离彼此的方向分散设置并分别连接于第一连接端,第一边缘和第二边缘的另一端向靠近彼此的方向汇聚设置并分别连接于第二连接端。
根据本申请实施例的一个方面,沿长度方向并由第一连接端至第二连接端,边缘区的厚度呈增大趋势。
根据本申请实施例的一个方面,边缘区包括多段沿长度方向上相继设置的导电区段,沿第一连接端向第二连接端的延伸方向上,多个导电区段的厚度逐段增大。
根据本申请实施例的一个方面,边缘区包括成对设置的边缘部,成对设置的边缘部在过渡导电体的宽度方向上相对设置于减薄区的两侧,各边缘部的厚度均大于减薄区的厚度。
根据本申请实施例的一个方面,在减薄区的两侧的边缘部沿宽度方向对称设置。
根据本申请实施例的一个方面,沿过渡导电体的厚度方向,减薄区以及边缘部的正投影均呈三角形;
或者,沿过渡导电体的厚度方向,减薄区以及边缘部的正投影均呈矩形。
根据本申请实施例的一个方面,雷电防护装置还包括基础导电体,基础导电体连接于第一连接端。
根据本申请实施例的一个方面,基础导电体具有多个网孔,多个网孔的尺寸彼此相同。
根据本申请实施例的一个方面,雷电防护装置还包括设置于第二连接端处的转接体,转接体的整体呈实体板状结构,转接体上设置通孔且通过通孔与引下线系统连接。
根据本申请实施例的一个方面,雷电防护装置还包括集流体,集流体设置于通孔中,转接体通过集流体与引下线系统连接。
另一个方面,根据本申请实施例提供一种雷电防护系统,包括如上所述的任意一种雷电防护装置和引下线系统,引下线系统直接或者间接连接于过渡导电体。
另一个方面,根据本申请实施例提供一种风力发电机组,包括叶片,叶片具有壳体,风力发电机组还包括如上所述的雷电防护系统,其中,雷电防护装置包覆至少部分壳体设置并与壳体连接。
另一个方面,根据本申请实施例提供一种雷电防护装置的成型方法,包括:
提供导电体,导电体具有预定的长度、宽度以及厚度;
对导电体的边缘处进行加厚处理,使得导电体在自身宽度方向的部分区域厚度尺寸增加,以成型过渡导电体;
其中,过渡导电体包括减薄区和边缘区,边缘区包围至少部分减薄区设置,边缘区以及减薄区在过渡导电体的长度方向上的一侧相连接并共同形成第一连接端,过渡导电体在长度方向与第一连接端相对的一侧形成第二连接端,减薄区的厚度小于边缘区的厚度。
根据本申请实施例的一个方面,对导电体的边缘处进行加厚处理,以成型过渡导电体的步骤包括:
在导电体的厚度方向的一侧层叠设置连接层;
在连接层沿导电体的厚度方向背离导电体的一侧层叠设置增厚导电层,增厚导体层在导电体上的正投影覆盖导电体在宽度方向上的两侧边缘;
加热连接层至熔融状态后再冷却固化,以使得增厚导体层与导电体连接并成型过渡导电体,增厚导电层及其覆盖的导电体的区域形成边缘区,导电体未被增厚导电层覆盖的区域形成减薄区。
根据本申请实施例的一个方面,对导电体的边缘处进行加厚处理,以 成型过渡导电体的步骤包括:
将导电体划分为基础区、第一折叠区以及第二折叠区,基础区在宽度方向具有分隔线,第一折叠区以及第二折叠区相对设置于分隔线的两侧;
将第一折叠区以及第二折叠区相对基础区折弯并在导电体的厚度方向层叠并覆盖部分基础区,以成型过渡导电体;其中,第一折叠区以及第二折叠区各自与基础区相层叠的部分形成边缘区,基础区未与第一折叠区以及第二折叠区层叠部分形成减薄区。
根据本申请实施例的一个方面,将第一折叠区以及第二折叠区相对基础区折弯并在厚度方向层叠并覆盖部分基础区,以成型过渡导电体的步骤包括:
将第一折叠区相对基础区折弯至少一次;
将第一折叠区相对基础区折弯结束后在宽度方向超出分隔线的部分裁切去除;
将第二折叠区相对基础区折弯至少一次;
将第二折叠区相对基础区折弯结束后在宽度方向超出分隔线的部分裁切去除。
根据本申请实施例的一个方面,还包括:
提供基础导电体,基础导电体具有多个网孔;
将基础导电体与过渡导电体的第一连接端连接;
和/或,
还包括:
提供转接体,转接体整体呈实体板状结构且具有通孔;
将转接体与过渡导电体的第二连接端连接。
根据本申请实施例提供的雷电防护装置、雷电防护系统、风力发电机组及方法,通过在雷电防护装置中设置过渡导电体,过渡导电体的第一连接端用于接收雷电流,第二连接端用于与引下线系统连接,由于将过渡导电体划分出减薄区和边缘区,边缘区以及减薄区在长度方向上的一侧相连接并共同形成第一连接端,当雷电流由第一连接端进入时,雷电流将通过减薄区与边缘区向第二连接端流动,通过使减薄区的厚度小于边缘区的厚度,以此提高了雷电防护装置边缘处的电流承载能力,适应了电流沿平面 传递时的分布规律,避免了电流过度集中在边缘处并对雷电防护装置造成损坏,提高了整体的安全性能。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请实施例的一种雷电防护装置的结构示意图;
图2是本申请实施例的另一种雷电防护装置的结构示意图;
图3是本申请实施例的另一种雷电防护装置的结构示意图;
图4是本申请实施例的另一种雷电防护装置的结构示意图;
图5是本申请实施例的另一种雷电防护装置的结构示意图;
图6是本申请实施例的另一种雷电防护装置的结构示意图;
图7是本申请实施例的集流体的结构示意图;
图8是本申请实施例的雷电防护系统与叶片配合时的截面图;
图9是本申请实施例的一种雷电防护装置的成型方法流程示意图;
图10是本申请实施例的另一种雷电防护装置的成型方法流程示意图;
图11是本申请实施例的另一种雷电防护装置的成型方法流程示意图;
图12是本申请实施例的另一种雷电防护装置的成型方法流程示意图;
图13是本申请实施例的一种雷电防护装置的成型方法流程及结构示意图;
图14是本申请实施例的另一种雷电防护装置的成型结构示意图;
图15是本申请实施例的另一种雷电防护装置的成型方法流程示意图;
图16是本申请实施例的另一种雷电防护装置的成型方法流程示意图。
附图标记:
100-雷电防护装置;X-长度方向;Y-宽度方向;200-引下线系统;300-雷电防护系统;
10-过渡导电体;11-减薄区;12-边缘区;13-边缘部;
20-基础导电体;30-转接体;31-通孔;40-叶片;
1-第一连接端;2-第二连接端;3-第一边缘;4-第二边缘;
5-导电区段;6-集流体;7-金属连接结构;8-附属连接件;9-引下线
1a-第一折叠区;1b-第二折叠区;1c-基础区;mm-分隔线。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的雷电防护装置、雷电防护系统、风力发电机组及方法进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至16对本申请实施例的雷电防护装置、雷电防护系统、风力发电机组及方法进行详细描述。
请参阅图1,本申请实施例提供的一种雷电防护装置100,包括过渡导电体10,过渡导电体10具有预定的长度、宽度以及厚度,过渡导电体10在自身的长度方向X上具有相对的第一连接端1和第二连接端2,第一连接端1用于接收雷电流,第二连接端2用于与引下线系统200连接;其中,过渡导电体10包括减薄区11和边缘区12,边缘区12包围至少部分减薄区11设置,边缘区12以及减薄区11在长度方向X上的一侧相连接并共同形成第一连接端1,减薄区11的厚度小于边缘区12的厚度。
由于电流传递过程中会出现集肤效应,电流会沿平面的两侧边缘传递,造成平面两侧的电流强度相对较大,电流相对集中,所以所设的过渡导电体10中具有边缘区12和减薄区11,使边缘区12的厚度大于减薄区11的厚度,以提高边缘区12的电流承载能力。
考虑到整体两侧边缘处需要加厚,因此厚度较大的边缘区12需包围至少部分的减薄区11设置,以使减薄区11尽可能的靠近中间设置。
对于边缘区12的加厚方式,可以通过层叠压焊的工艺,也可以通过折叠的方式,本申请对边缘区12的具体加厚方式不作特殊限定。
可选地,过渡导电体10的第一连接端1用于接收雷电并可附接金属网以提高对叶片40的覆盖面积,其第二连接端2用于和引下线系统200连接,可直接连接,也可通过金属体间接过渡连接。
可选地,过渡导电体10可以是网状结构,也可以是实心板状结构,并且通常为金属材质,其中网状结构中网孔的密集程度决定了其电流传导能力。
本申请实施例的一种雷电防护装置100,通过设置过渡导电体10,过渡导电体10的第一连接端1用于接收雷电流,第二连接端2用于与引下线系统200连接,使其靠近侧边的边缘区12的厚度相对较厚,其厚度大于靠近中间区域的减薄区11,边缘区12以及减薄区11在长度方向X上的一侧相连接并共同形成第一连接端1,当雷电流由第一连接端1进入时,雷电流将通过减薄区11与边缘区12向第二连接端2流动,通过使减薄区11的厚度小于边缘区12的厚度,提高了过渡导电体10边缘处的电流承载能力,适应了电流传递的集肤效应,整体结构布局利于电流的传递,避免了 侧边局部电流强度过大造成损坏的风险,提高了雷电防护装置100整体的安全性能。
作为一些可选的实施例,请参阅图1和图2,减薄区11以及边缘区12在长度方向X上形成第一连接端1的一侧沿宽度方向Y对齐设置。
本申请实施例的一种雷电防护装置100,通过使减薄区11以及边缘区12的一侧保持平齐并形成第一连接端1,满足了接收并传递雷电时的均匀性,使得雷电在第一连接端1处规律性的向边缘区12集中传递,本实施例的结构布局能够很好的适应电流的分布规律。
作为一些可选的实施例,请参阅图2,过渡导电体10在自身的宽度方向Y上具有相对的第一边缘3和第二边缘4,第一边缘3以及第二边缘4位于边缘区12,第一边缘3和第二边缘4在长度方向X的一端向远离彼此的方向分散设置并分别连接于第一连接端1,第一边缘3和第二边缘4的另一端向靠近彼此的方向汇聚设置并分别连接于第二连接端2。
考虑到电流传递时,是由较宽的截面传递至较窄的截面,第一连接端1的长度大于第二连接端2的长度,因此所设的第一边缘3和第二边缘4由第一连接端1向第二连接端2延伸并相互靠拢,符合电流汇聚的传递方向。
可选地,第一连接端1和第二连接端2在厚度方向上的投影呈直线型,过渡导电体10整体由第一边缘3和第二边缘4以及第一连接端1和第二连接端2围合形成,整体形成梯形结构。
其中,第一边缘3和第二边缘4作为梯形的两腰,当第一边缘3和第二边缘4延伸长度相等时,整体形成等腰梯形结构。
本申请实施例的一种雷电防护装置100,通过使第一边缘3和第二边缘4向靠近彼此的方向延伸,顺应了电流传递的汇聚方向,提高了电流的汇聚能力,更加有利于电流的集中收集。
作为一些可选的实施例,请参阅图2,沿长度方向X并由第一连接端1至第二连接端2,边缘区12的厚度呈增大趋势。
由于电流传递时主要集中在边缘区12,且由第一连接端1至第二连接端2传递时载体是由较薄的端面至较厚的端面,为了形成过渡,可在边缘 区12进行厚度渐变。
如此一来,边缘区12的厚度不仅大于减薄区11的厚度,且自身厚度也呈增大趋势,可选地,厚度递增可以是连续递增,也可以是逐段递增。
本申请实施例的一种雷电防护装置100,通过使边缘区12自身的厚度进行递增渐变,在适应了电流集肤效应的基础上,对于电流传递时载体厚度的突变也进行了适应性的厚度渐变,避免了电流突变集中对连接处的破坏,进一步提高了雷电防护装置100的安全性能。
作为一些可选的实施例,请参阅图3,边缘区12包括多段沿长度方向X上相继设置的导电区段5,沿第一连接端1向第二连接端2的延伸方向上,多个导电区段5的厚度逐段增大。
具体的,对于边缘区12的厚度递增,是通过设置逐段递增的导电区段5实现的,由第一连接端1至第二连接端2,各导电区段5的层数递增,可选地,可通过层叠压焊等工艺方式对厚度进行叠加。
本申请实施例的一种雷电防护装置100,提供了一种实现边缘区12厚度递增的方式,通过使边缘区12厚度递增,避免了电流传递时载体截面厚度的突变,对电流强度进行缓冲,避免电流集中,提高了安全性。
作为一些可选的实施例,请参阅图3和图4,边缘区12包括成对设置的边缘部13,成对设置的边缘部13在过渡导电体10的宽度方向Y上相对设置于减薄区11的两侧,各边缘部13的厚度均大于减薄区11的厚度。
当减薄区11在厚度方向上的正投影与第二连接端2相切于一点时,则减薄区11将边缘区12分隔成了两部分,为成对设置的边缘部13,并且位于减薄区11的两侧。
由设定减薄区11的外轮廓,决定了其两侧成对设置的边缘部13的轮廓,可选地,成对设置的边缘部13可以是尺寸相等并对称分布的,尺寸范围也可以不相等,边缘部13的轮廓可以是规则图形,也可以是不规则图形。
可选地,成对设置的边缘部13的厚度可以相等,也可以不相等,只要满足各边缘部13的厚度均大于减薄区11的厚度均可。
本申请实施例的一种雷电防护装置100,提供了一种减薄区11和边缘 区12的分布布局,通过减薄区11将边缘区12分隔成相对设置的边缘部13,使得减薄区11在长度方向X上获得了最大的延伸长度,在长度方向X上最大范围的形成了减薄区11,增加了边缘部13在长度方向X上的延伸范围,提高了对边缘的保护能力。
作为一些可选的实施例,请参阅图4,在减薄区11的两侧的边缘部13沿宽度方向Y对称设置。
本申请实施例的一种雷电防护装置100,通过使减薄区11的两侧的边缘部13沿宽度方向Y对称设置,实现了成对的边缘部13尺寸对应相等,使电流在传递过程中分配更加均匀,避免了电流在单侧过渡集中,造成单侧损坏的风险,提高了安全性。
作为一些可选的实施例,请继续参阅图4,沿过渡导电体10的厚度方向,减薄区11以及边缘部13的正投影均呈三角形;或者,沿过渡导电体10的厚度方向,减薄区11以及边缘部13的正投影均呈矩形。
本实施例以减薄区11和边缘部13的正投影呈三角形为例进行说明,当减薄区11设置成三角形区域时,其顶角与第二连接端2相切于一点,由于过渡导电体10整体轮廓为梯形,所以三角形减薄区11将边缘区12划分成另外两个三角形的边缘部13。
当三角形减薄区11为等腰三角形时,则另外两个三角形的边缘部13以减薄区11为中心形成对称分布,当然,减薄区11的三角形可以是任意边长的三角形,只要其顶角与第二连接端2相切即可使成对的边缘部13均形成三角形。
在满足边缘区12包围至少部分减薄区11的前提下,可对减薄区11和边缘区12进行多样形式的划分,可选地,减薄区11的轮廓形状可以是三角形、矩形、半圆形等形状,与之对应的边缘区12也会形成对应的形状,本申请对减薄区11和边缘区12的轮廓形状不作特殊限定。
本申请实施例的一种雷电防护装置100,提供了减薄区11和边缘区12可能形成的多种形状轮廓,可根据实际需求及加工工艺进行多样性的选择,提高了雷电防护装置100的多样性以及选择的灵活性,更能适应多种工况下的应用。
作为一些可选的实施例,请参阅图5,雷电防护装置100还包括基础 导电体20,基础导电体20连接于第一连接端1。
可选地,基础导电体20具有多个网孔,多个网孔的尺寸彼此相同,以具有均匀的导电能力,多个网孔的尺寸也可以不同,例如也可以采用一种渐变网孔的金属网结构。
本申请对基础导电体20的延伸长度及覆盖面积不作特殊限定,可根据实际叶片40尺寸进行选择。
可选地,基础导电体20的厚度与第一连接端1的相等,以使基础导电体20能够与第一连接端1连接。
本申请实施例的一种雷电防护装置100,通过设置基础导电体20,能够提高雷电防护装置100对雷电的接收能力,可以最大面积的覆盖并保护叶片40,防止叶片40整体遭到雷电的损坏,提高了整体的安全性能。
作为一些可选的实施例,请参阅图6,雷电防护装置100还包括设置于第二连接端2处的转接体30,转接体30的整体呈实体板状结构,转接体30上设置通孔31且通过通孔31与引下线系统200连接。
对于转接体30来说,可选地,其厚度尺寸可以不变,整体的电流传导能力相同且大于第二连接端2的电流传导能力,也可以使转接体30的厚度尺寸呈增大趋势,形成厚度渐变的同时逐渐增大电流传导能力。
可选地,沿过渡导电体的长度方向X并由第一连接端1指向第二连接端2的方向,转接体30的宽度方向呈减小趋势,以对雷电传递过程进行缓冲。
可选地,使转接体30的厚度与第二连接端2的厚度相等,以将转接体30连接至第二连接端2处,转接体30的整体呈实体板状结构,可以是金属板结构,当然转接体30也可以是带网孔的金属网结构。
可选地,在转接体30上设置贯穿的通孔31,将引下线系统200中的导线直接连接至通孔31中,以将过渡导电体10中的电流传递至引下线系统200中,其中的导线截面尺寸与通孔31的孔径尺寸匹配相等。
本申请实施例的一种雷电防护装置100,通过在第二连接端2处连接转接体30并设置通孔31,实现了雷电防护装置100与引下线系统200的连接,从而便于将电流引导至引下线系统200中并将其导出。
作为一些可选的实施例,请参阅图7,雷电防护装置100还包括集流 体6,集流体6设置于通孔31中,转接体30通过集流体6与引下线系统200连接。
为了实现对电流的进一步汇聚,可在转接体30的通孔31处设置集流体6,可选地,集流体6可插接于通孔31中,也可与转接体30一体成型,或者可以通过螺栓与螺母配合的方式接合至通孔31和转接体30。
集流体6通常设置成圆柱状结构,且通常采用金属材质,集流体6具有一定的厚度且厚度大于转接体30的厚度,因此集流体6凸出于转接体30设置,可选地,集流体6为一种金属座。
集流体6设置于转接体30上,通过将导线连接至集流体6上,使得引下线系统200与转接体30之间形成连接,汇聚至集流体6上的电流由导线传递至引下线系统200中。
本申请实施例的一种雷电防护装置100,通过在转接体30与引下线系统200之间设置集流体6,使得引下线系统200与雷电防护装置100间接连接,集流体6的设置进一步提高了电流的汇聚能力,使电流更高效的汇聚至末端,同时集流体6也提供了过渡保护,使雷电防护装置100的防护功能得到进一步的改善。
本申请实施例提供的雷电防护系统300,因包括上述各实施例的雷电防护装置100和引下线系统200,因此具有更好的雷电保护性能以及使用寿命。
进一步的,本申请实施例提供的风力发电机组,因包括上述各实施例的雷电防护装置100或者雷电防护系统300,能够有效的避免其叶片40被雷电击中损坏,具有更高的安全等级以及发电效益。
请继续参阅图6并结合图8,作为一种可选的实施方式,本申请实施例提供的雷电防护系统300,在应用至风力发电机组并与叶片40配合时,雷电防护装置100可以粘贴于叶片40的壳体的外表面,金属连接结构7压接到转接体30,二者之间呈面接触状态,可选地,包括螺纹结构的连接,金属连接结构7包括附属连接件8,附属连接件8穿透叶片40的壳体,通过引下线9连接到引下线系统200。每个叶片40上可以设置一个雷电防护装置100,当然,在一些其他示例中,也可以设置两个以上雷电防护装置100,具体可以根据叶片40的尺寸等参数设定,在此不做具体数量限制。
本申请实施例提供的雷电防护装置100也可以设置于叶片40的叶尖处,由于雷电防护装置100中设置了转接体30,能够更好的与引下线系统200做可靠的连接,进而提高防雷接地的可靠性,该雷电防护装置100能够可靠传导200KA的雷电流,只需要在叶片40的叶尖处布置一条15cm宽的金属带就可以满足防雷效果。
请参照图9,本申请实施例提供的一种雷电防护装置100的成型方法,包括:
S901,提供导电体,导电体具有预定的长度、宽度以及厚度。
可选地,所提供的导电体通常为导电板结构,其材质为金属板,例如可以是铜板,根据需要选择导电体的长度、宽度以及厚度。一些其他的示例中,所提供的导电体还可以为金属网结构。
S902,对导电体的边缘处进行加厚处理,使得导电体在自身宽度方向Y的部分区域厚度尺寸增加,以成型过渡导电体10。
可选地,对导电体的边缘进行加厚,使得其边缘的厚度大于中间区域的厚度,实现在自身宽度方向Y上的厚度的渐变,两侧边缘处相对较厚以形成过渡导电体10。
其中,过渡导电体10包括减薄区11和边缘区12,边缘区12包围至少部分减薄区11设置,边缘区12以及减薄区11在过渡导电体10的长度方向X上的一侧相连接并共同形成第一连接端1,过渡导电体10在长度方向X与第一连接端1相对的一侧形成第二连接端2,减薄区11的厚度小于边缘区12的厚度。
本申请实施例的一种雷电防护装置100的成型方法,通过对导电体边缘处的加厚,形成了过渡导电体10的减薄区11和边缘区12,适应了电流强度的分布,满足了各部分的电流承载能力。
作为一些可选的实施例,请参阅图10,对导电体的边缘处进行加厚处理,以成型过渡导电体10的步骤包括:
S1001,在导电体的厚度方向的一侧层叠设置连接层。
可选地,可以在导电体的上方铺设一层连接层,可选地,连接层可以是锡箔。
S1002,在连接层沿导电体的厚度方向背离导电体的一侧层叠设置增厚导电层,增厚导体层在导电体上的正投影覆盖导电体在宽度方向Y上的 两侧边缘。
可选地,在连接层上铺设一层增厚导体层,将连接层设置于两个导体层之间,增厚导体层需覆盖住下方导体层的两侧边缘,增厚导体层与导体层采用相同的材质。
S1003,加热连接层至熔融状态后再冷却固化,以使得增厚导体层与导电体连接并成型过渡导电体10,增厚导电层及其覆盖的导电体的区域形成边缘区12,导电体未被增厚导电层覆盖的区域形成减薄区11。
可选地,通过高温使中间的连接层熔化,以此填充了两个导电体之间的空隙,连接层冷却固化后使得两个导电体连接在一起,边缘处加厚的部分形成边缘区12,未加厚部分形成减薄区11。
本申请实施例的一种雷电防护装置100的成型方法,通过采用压焊的方式实现了导电体之间的紧密连接,提高了连接的稳定性,达到了更加可靠的连接效果。
作为一些可选的实施例,请参阅图11并结合图13,对导电体的边缘处进行加厚处理,以成型过渡导电体10的步骤包括:
S1101,将导电体划分为基础区1c、第一折叠区1a以及第二折叠区1b,基础区1c在宽度方向Y具有分隔线mm,第一折叠区1a以及第二折叠区1b相对设置于分隔线mm的两侧。
可选地,需要预先将导电体划分成基础区1c、第一折叠区1a以及第二折叠区1b,基础区1c本身具有分隔线mm,可选地,分隔线mm可以是中心线,第一折叠区1a以及第二折叠区1b相对分隔线mm对称设置。
S1102,将第一折叠区1a以及第二折叠区1b相对基础区1c折弯并在导电体的厚度方向层叠并覆盖部分基础区1c,以成型过渡导电体10;其中,第一折叠区1a以及第二折叠区1b各自与基础区1c相层叠的部分形成边缘区12,基础区1c未与第一折叠区1a以及第二折叠区1b层叠部分形成减薄区11。
可选地,将第一折叠区1a以及第二折叠区1b进行180°翻折并层叠于基础区1c之上,层叠部分形成边缘区12,未层叠部分形成减薄区11,整体形成过渡导电体10。
需要说明的是,图中示出的折叠方式仅为一种可选的实施例,实际并不局限于此,还可以沿不同的折叠方向进行层叠设置,实现对边缘的加厚 处理,本申请对具体的折叠方式不作特殊限定,通过折叠实现加厚的各种方式与上述方式属于相同的发明构思,均在本申请的保护范围之内。
本申请实施例的一种雷电防护装置100的成型方法,通过采用折叠的方式完成了对两侧边缘的加厚处理,使得两侧边缘的层数大于中间区域的层数,操作便捷易行,能够更加灵活的设计出多样的结构。
作为一些可选的实施例,请参阅图12并结合图13,将第一折叠区1a以及第二折叠区1b相对基础区1c折弯并在厚度方向层叠并覆盖部分基础区1c,以成型过渡导电体10的步骤包括:
S1201,将第一折叠区1a相对基础区1c折弯至少一次。
可选地,可根据实际的厚度需求,调整折叠的次数,通过提高折叠的次数来增加边缘区12的层数,例如先将第一折叠区1a折叠至层叠基础区1c后,形成两层,再将第一折叠区1a对半反向回折,形成三层,以增加层数。
S1202,将第一折叠区1a相对基础区1c折弯结束后在宽度方向Y超出分隔线mm的部分裁切去除。
可选地,将超出分隔线mm的部分利用裁剪工具剪裁掉,避免了两个折叠区在分隔线mm处重叠,能够实现厚度的衔接。
S1203,将第二折叠区1b相对基础区1c折弯至少一次;
可选地,将第二折叠区1b朝向第一折叠区1a折叠至层叠基础区1c后,形成两层,再将第二折叠区1b对半反向回折,形成三层,以增加层数。
S1204,将第二折叠区1b相对基础区1c折弯结束后在宽度方向Y超出分隔线mm的部分裁切去除。
可选地,将超出分隔线mm的部分利用裁剪工具剪裁掉,避免了两个折叠区在分隔线mm处重叠,能够实现厚度的衔接。
当然,在第一折叠区1a和第二折叠区1b折叠后,也可以不将超出分隔线mm的部分裁切去除,从而在分隔线mm处进行进一步的重叠,例如当第一折叠区1a和第二折叠区1b各自折叠一次后,未超出分隔线mm的部分形成两层,在分隔线mm处则会叠加成三层。
本申请实施例的一种雷电防护装置100的成型方法,通过调节折叠次数来增加边缘区12的层数,能够灵活调节边缘区12的厚度,可根据实际 需求完成对厚度的叠加,工艺流程更加便捷,更加节省了用料成本。
作为一些可选的实施例,请参阅图15,本申请实施例提供的成型方法还包括:
S1401,提供基础导电体20,基础导电体20具有多个网孔。
可选地,选择所需的基础导电体20,可选地,基础导电体20具有网孔,可选为金属网结构。
S1402,将基础导电体20与过渡导电体10的第一连接端1连接。
可选地,基础导电体20与过渡导电体10的第一连接端1可通过焊接的方式进行连接。
作为一些可选的实施例,请参阅图14并结合图16,本申请实施例提供的成型方法还包括:
S1501,提供转接体30,转接体30整体呈实体板状结构且具有通孔31。
可选地,转接体30为金属板状结构,并在其末端开设通孔31,引下线系统200中的引下线可直接连接于所开设的通孔31中。
S1502,将转接体30与过渡导电体10的第二连接端2连接。
可选地,转接体30与过渡导电体10的第二连接端2可通过焊接的方式进行连接。
本申请实施例的一种雷电防护装置100的成型方法,通过使过渡导电体10上分别连接转接体30和基础导电体20,完善了雷电防护装置100的整体结构,更有利于接收雷电并汇聚电流,提高了整体的电流导出能力。
综上,本申请提供的雷电防护装置100、雷电防护系统300、风力发电机组及方法,通过在雷电防护装置100中设置过渡导电体10,将过渡导电体10划分出减薄区11和边缘区12,使减薄区11的厚度小于边缘区12的厚度,以此提高了雷电防护装置100边缘处的电流承载能力,适应了电流沿平面传递时的分布规律,避免了电流过度集中在边缘处并对雷电防护装置100造成损坏,提高了整体的安全性能。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征 均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (19)

  1. 一种雷电防护装置,其中,包括:
    过渡导电体,具有预定的长度、宽度以及厚度,所述过渡导电体在自身的长度方向上具有相对的第一连接端和第二连接端,所述第一连接端用于接收雷电流,所述第二连接端用于与引下线系统连接;
    其中,所述过渡导电体包括减薄区和边缘区,所述边缘区包围至少部分所述减薄区设置,所述边缘区以及所述减薄区在所述长度方向上的一侧相连接并共同形成所述第一连接端,所述减薄区的厚度小于所述边缘区的厚度。
  2. 根据权利要求1所述的雷电防护装置,其中,所述减薄区以及所述边缘区在所述长度方向上形成所述第一连接端的一侧沿所述宽度方向对齐设置。
  3. 根据权利要求2所述的雷电防护装置,其中,所述过渡导电体在自身的宽度方向上具有相对的第一边缘和第二边缘,所述第一边缘以及所述第二边缘位于所述边缘区,所述第一边缘和所述第二边缘在所述长度方向的一端向远离彼此的方向分散设置并分别连接于所述第一连接端,所述第一边缘和所述第二边缘的另一端向靠近彼此的方向汇聚设置并分别连接于所述第二连接端。
  4. 根据权利要求1所述的雷电防护装置,其中,沿所述长度方向并由所述第一连接端至所述第二连接端,所述边缘区的厚度呈增大趋势。
  5. 根据权利要求4所述的雷电防护装置,其中,所述边缘区包括多段沿所述长度方向上相继设置的导电区段,沿所述第一连接端向所述第二连接端的延伸方向上,多个所述导电区段的厚度逐段增大。
  6. 根据权利要求1所述的雷电防护装置,其中,所述边缘区包括成对设置的边缘部,成对设置的所述边缘部在所述过渡导电体的宽度方向上相对设置于所述减薄区的两侧,各所述边缘部的厚度均大于所述减薄区的厚度。
  7. 根据权利要求6所述的雷电防护装置,其中,在所述减薄区的两侧的所述边缘部沿所述宽度方向对称设置。
  8. 根据权利要求6所述的雷电防护装置,其中,沿所述过渡导电体的厚度方向,所述减薄区以及所述边缘部的正投影均呈三角形;
    或者,沿所述过渡导电体的厚度方向,所述减薄区以及所述边缘部的正投影均呈矩形。
  9. 根据权利要求1至8任意一项所述的雷电防护装置,其中,所述雷电防护装置还包括基础导电体,所述基础导电体连接于所述第一连接端。
  10. 根据权利要求9所述的雷电防护装置,其中,所述基础导电体具有多个网孔,多个所述网孔的尺寸彼此相同。
  11. 根据权利要求1所述的雷电防护装置,其中,所述雷电防护装置还包括设置于所述第二连接端处的转接体,所述转接体的整体呈实体板状结构,所述转接体上设置通孔且通过所述通孔与所述引下线系统连接。
  12. 根据权利要求11所述的雷电防护装置,其中,所述雷电防护装置还包括集流体,所述集流体设置于所述通孔中,所述转接体通过所述集流体与所述引下线系统连接。
  13. 一种雷电防护系统,其中,包括:
    如权利要求1至12任意一项所述的雷电防护装置;
    引下线系统,直接或者间接连接于所述过渡导电体。
  14. 一种风力发电机组,包括叶片,所述叶片具有壳体,其中,所述风力发电机组还包括:
    如权利要求13所述的雷电防护系统;
    其中,所述雷电防护装置包覆至少部分所述壳体设置并与所述壳体连接。
  15. 一种雷电防护装置的成型方法,其中,包括:
    提供导电体,所述导电体具有预定的长度、宽度以及厚度;
    对所述导电体的边缘处进行加厚处理,使得所述导电体在自身宽度方向的部分区域厚度尺寸增加,以成型过渡导电体;
    其中,所述过渡导电体包括减薄区和边缘区,所述边缘区包围至少部分所述减薄区设置,所述边缘区以及所述减薄区在所述过渡导电体的长度方向上的一侧相连接并共同形成第一连接端,所述过渡导电体在所述长度方向与所述第一连接端相对的一侧形成第二连接端,所述减薄区的厚度小于所述边缘区的厚度。
  16. 根据权利要求15所述的雷电防护装置的成型方法,其中,所述对所述导电体的边缘处进行加厚处理,以成型过渡导电体的步骤包括:
    在所述导电体的厚度方向的一侧层叠设置连接层;
    在所述连接层沿所述导电体的厚度方向背离所述导电体的一侧层叠设置增厚导电层,所述增厚导体层在所述导电体上的正投影覆盖所述导电体在所述宽度方向上的两侧边缘;
    加热所述连接层至熔融状态后再冷却固化,以使得所述增厚导体层与所述导电体连接并成型所述过渡导电体,所述增厚导电层及其覆盖的所述导电体的区域形成所述边缘区,所述导电体未被所述增厚导电层覆盖的区域形成所述减薄区。
  17. 根据权利要求15所述的雷电防护装置的成型方法,其中,所述对所述导电体的边缘处进行加厚处理,以成型过渡导电体的步骤包括:
    将所述导电体划分为基础区、第一折叠区以及第二折叠区,所述基础区在所述宽度方向具有分隔线,所述第一折叠区以及所述第二折叠区相对设置于所述分隔线的两侧;
    将所述第一折叠区以及所述第二折叠区相对所述基础区折弯并在所述导电体的厚度方向层叠并覆盖部分所述基础区,以成型所述过渡导电体;其中,所述第一折叠区以及所述第二折叠区各自与所述基础区相层叠的部分形成所述边缘区,所述基础区未与所述第一折叠区以及所述第二折叠区层叠部分形成所述减薄区。
  18. 根据权利要求17所述的雷电防护装置的成型方法,其中,所述 将所述第一折叠区以及所述第二折叠区相对所述基础区折弯并在所述厚度方向层叠并覆盖部分所述基础区,以成型所述过渡导电体的步骤包括:
    将所述第一折叠区相对所述基础区折弯至少一次;
    将所述第一折叠区相对所述基础区折弯结束后在所述宽度方向超出所述分隔线的部分裁切去除;
    将所述第二折叠区相对所述基础区折弯至少一次;
    将所述第二折叠区相对所述基础区折弯结束后在所述宽度方向超出所述分隔线的部分裁切去除。
  19. 根据权利要求15所述的雷电防护装置的成型方法,其中,还包括:
    提供基础导电体,所述基础导电体具有多个网孔;
    将所述基础导电体与所述过渡导电体的第一连接端连接;
    和/或,
    还包括:
    提供转接体,所述转接体整体呈实体板状结构且具有通孔;
    将所述转接体与所述过渡导电体的所述第二连接端连接。
PCT/CN2022/123640 2022-06-29 2022-09-30 雷电防护装置、雷电防护系统、风力发电机组及方法 WO2024000907A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247019096A KR20240103012A (ko) 2022-06-29 2022-09-30 낙뢰 보호 장치, 낙뢰 보호 시스템, 풍력 발전기 세트 및 방법
AU2022466590A AU2022466590A1 (en) 2022-06-29 2022-09-30 Lightning protection device, lightning protection system, wind turbine and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210753573.6 2022-06-29
CN202210753573.6A CN116877360B (zh) 2022-06-29 2022-06-29 雷电防护装置、雷电防护系统、风力发电机组及方法

Publications (1)

Publication Number Publication Date
WO2024000907A1 true WO2024000907A1 (zh) 2024-01-04

Family

ID=88257409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123640 WO2024000907A1 (zh) 2022-06-29 2022-09-30 雷电防护装置、雷电防护系统、风力发电机组及方法

Country Status (4)

Country Link
KR (1) KR20240103012A (zh)
CN (1) CN116877360B (zh)
AU (1) AU2022466590A1 (zh)
WO (1) WO2024000907A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013007267A1 (en) * 2011-07-14 2013-01-17 Vestas Wind Systems A/S A wind turbine blade
WO2015185065A1 (en) * 2014-06-05 2015-12-10 Vestas Wind Systems A/S Improvements relating to lightning protection systems for wind turbine blades
CN110307127A (zh) * 2019-08-21 2019-10-08 吉林重通成飞新材料股份公司 一种海上碳纤维风电叶片防雷系统
CN210371034U (zh) * 2019-07-19 2020-04-21 吉林重通成飞新材料股份公司 一种玻纤/碳纤维风电叶片防雷用装置
CN111622906A (zh) * 2020-06-09 2020-09-04 东方电气风电有限公司 一种碳纤维叶片双回路雷电防护系统
CN113048026A (zh) * 2019-12-26 2021-06-29 江苏金风科技有限公司 雷电防护装置、雷电防护系统、风力发电机组及成型方法
WO2022043487A1 (en) * 2020-08-31 2022-03-03 Lm Wind Power A/S Method for repairing a lightning protection system of a wind turbine rotor blade and wind turbine rotor blade
CN216044201U (zh) * 2021-10-25 2022-03-15 大连泽晟新材料有限公司 一种带连接装置的雷击防护金属网

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK176298B1 (da) * 2003-09-15 2007-06-18 Lm Glasfiber As Metode til lynsikring af en vinge til et vindenergianlæg, en lynsikret vinge samt et vindenergianlæg med en sådan vinge
ES2826554T3 (es) * 2016-12-05 2021-05-18 Nordex Energy Se & Co Kg Módulo de correa para una pala de rotor de una instalación de energía eólica
CN112360703B (zh) * 2020-11-23 2024-05-17 华能昭觉风力发电有限公司 风力发电机组的防雷系统
CN114607573A (zh) * 2022-03-10 2022-06-10 深圳市风行太保科技有限公司 风电叶片防雷系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013007267A1 (en) * 2011-07-14 2013-01-17 Vestas Wind Systems A/S A wind turbine blade
WO2015185065A1 (en) * 2014-06-05 2015-12-10 Vestas Wind Systems A/S Improvements relating to lightning protection systems for wind turbine blades
CN210371034U (zh) * 2019-07-19 2020-04-21 吉林重通成飞新材料股份公司 一种玻纤/碳纤维风电叶片防雷用装置
CN110307127A (zh) * 2019-08-21 2019-10-08 吉林重通成飞新材料股份公司 一种海上碳纤维风电叶片防雷系统
CN113048026A (zh) * 2019-12-26 2021-06-29 江苏金风科技有限公司 雷电防护装置、雷电防护系统、风力发电机组及成型方法
CN111622906A (zh) * 2020-06-09 2020-09-04 东方电气风电有限公司 一种碳纤维叶片双回路雷电防护系统
WO2022043487A1 (en) * 2020-08-31 2022-03-03 Lm Wind Power A/S Method for repairing a lightning protection system of a wind turbine rotor blade and wind turbine rotor blade
CN216044201U (zh) * 2021-10-25 2022-03-15 大连泽晟新材料有限公司 一种带连接装置的雷击防护金属网

Also Published As

Publication number Publication date
KR20240103012A (ko) 2024-07-03
AU2022466590A1 (en) 2024-07-11
CN116877360A (zh) 2023-10-13
CN116877360B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
EP3671867B1 (en) Ribbon structure for stack assembly
ES2937738T3 (es) Barras colectoras de módulos fotovoltaicos formadas
US11715806B2 (en) Method for fabricating a solar module of rear contact solar cells using linear ribbon-type connector strips and respective solar module
CN103208551B (zh) 一种太阳能电池组件
CN104321907A (zh) 非水电解液电池的正极电极以及非水电解液二次电池
US20160172511A1 (en) Solar cell
WO2021037076A1 (zh) 二次电池
CN110444705A (zh) 一种电池模组热传导结构及涂胶方法
WO2024000907A1 (zh) 雷电防护装置、雷电防护系统、风力发电机组及方法
WO2024114351A1 (zh) 汇流单元、电池模组及用电设备
CN210805936U (zh) 单体电池及动力电池组
EP3637515B1 (en) Secondary battery and electrode member thereof
WO2024140364A1 (zh) 太阳电池小片、太阳电池片、太阳电池串以及叠瓦组件
EP3816569A1 (en) Heat dissipating cladding
CN210136952U (zh) 二次电池及其电极构件
CN102354734A (zh) 一种拆卸式组合连接片
CN109545538A (zh) 一种平面线圈及其制备方法、无线充电系统
CN210489719U (zh) 一种电池模组引出结构、电池模组和电池包
CN211045186U (zh) 高频组合电性器件及辅助供电系统
CN217462439U (zh) 雷电防护装置、雷电防护系统以及风力发电机组
CN114753979A (zh) 一种风力发电机组叶片雷击防护系统
JP5885641B2 (ja) 電流補助部材およびプリント基板
CN218333162U (zh) 一种薄漆膜漆包换位导线
CN108039384B (zh) 一种太阳能发电器件
CN101800329A (zh) 电池组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020247019096

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022466590

Country of ref document: AU

Ref document number: AU2022466590

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2401004549

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024014168

Country of ref document: BR