WO2024000394A1 - 一种调整限速值的方法、装置和车辆 - Google Patents
一种调整限速值的方法、装置和车辆 Download PDFInfo
- Publication number
- WO2024000394A1 WO2024000394A1 PCT/CN2022/102795 CN2022102795W WO2024000394A1 WO 2024000394 A1 WO2024000394 A1 WO 2024000394A1 CN 2022102795 W CN2022102795 W CN 2022102795W WO 2024000394 A1 WO2024000394 A1 WO 2024000394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- speed limit
- limit value
- vehicle
- road
- accelerator pedal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 109
- 230000008859 change Effects 0.000 claims abstract description 86
- 238000005265 energy consumption Methods 0.000 claims description 48
- 238000004590 computer program Methods 0.000 claims description 17
- 230000006870 function Effects 0.000 description 22
- 230000008569 process Effects 0.000 description 19
- 238000012545 processing Methods 0.000 description 18
- 230000001133 acceleration Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 6
- 239000002699 waste material Substances 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 241001124569 Lycaenidae Species 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/182—Selecting between different operative modes, e.g. comfort and performance modes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
Definitions
- Embodiments of the present application relate to the field of intelligent driving, and more specifically, to a method, device and vehicle for adjusting a speed limit value.
- the embodiments of the present application provide a method, device and vehicle for adjusting the speed limit value, which helps to improve the safety of the vehicle and also helps to improve the user experience.
- the vehicle (sometimes referred to as a vehicle) in this application is a vehicle in a broad sense, which can be a means of transportation (such as a car, a truck, a motorcycle, an airplane, a train, a ship, etc.), an industrial vehicle (such as a forklift, a trailer, a tractor) etc.), engineering vehicles (such as excavators, bulldozers, cranes, etc.), agricultural equipment (such as lawn mowers, harvesters, etc.), amusement equipment, toy vehicles, etc.
- the embodiments of this application do not specifically limit the types of vehicles.
- a method for adjusting a speed limit value includes: obtaining the accelerator pedal opening and/or the accelerator pedal opening change rate of a vehicle operating in a first mode. In the first mode, the accelerator pedal opening is changed.
- the speed limit value of the vehicle is the first speed limit value; when it is detected that the accelerator pedal opening and/or the accelerator pedal opening change rate meets the preset conditions, the speed limit value of the vehicle is adjusted to the second speed limit value. ; Wherein, the second speed limit value is greater than the first speed limit value.
- the vehicle when the accelerator pedal opening and/or the accelerator pedal opening change rate meet the preset conditions, the vehicle can increase the speed limit value from the first speed limit value to the second speed limit value. In this way, whether the user has the intention of emergency acceleration can be determined based on the accelerator pedal opening and/or the accelerator pedal opening change rate.
- the speed limit value when it is recognized that the user has the intention of emergency acceleration, by increasing the speed limit value, it helps to ensure that the vehicle has room to speed up in emergency situations (for example, when overtaking is required), which helps to improve the safety of the vehicle and also helps To improve users’ driving experience.
- by dynamically adjusting the speed limit value the needs of the vehicle in different scenarios can be met, which helps to improve the intelligence of the vehicle.
- the accelerator pedal above can also be understood as the throttle.
- the method further includes: determining to enter the first mode before obtaining the accelerator pedal opening and/or the accelerator pedal opening change rate.
- the first mode belongs to the economic mode or the power saving mode.
- entering the first mode is determined when the user's operation of selecting the first mode from multiple modes is detected; or, when it is detected that the user turns off multiple accessories (for example, air conditioners, central control screens, (audio, lighting, seats and other accessories)), make sure to enter the first mode.
- accessories for example, air conditioners, central control screens, (audio, lighting, seats and other accessories)
- the method further includes prompting the user to adjust the speed limit value of the vehicle from the first speed limit value to the second speed limit value.
- the speed limit value of the vehicle when it is detected that the accelerator pedal opening and/or the accelerator pedal opening change rate meets a preset condition, the speed limit value of the vehicle is adjusted to The second speed limit value includes: when detecting that the accelerator pedal opening is greater than or equal to the first threshold, adjusting the speed limit value of the vehicle to the second speed limit value; and/or, when detecting that the accelerator pedal opening is detected When the opening change rate is greater than or equal to the second threshold, the speed limit value of the vehicle is adjusted to the second speed limit value.
- the vehicle when it is detected that the accelerator pedal opening is greater than or equal to the first threshold and/or it is detected that the accelerator pedal opening change rate is greater than or equal to the second threshold, the vehicle may change the speed limit value from the first limit value.
- the speed value is increased to the second speed limit value. In this way, it helps ensure that the vehicle has room to speed up in emergency situations (for example, when overtaking), helps improve the safety of the vehicle, and also helps improve the user's driving experience.
- by dynamically adjusting the speed limit value the needs of the vehicle in different scenarios can be met, which helps to improve the intelligence of the vehicle.
- adjusting the speed limit value of the vehicle to the second speed limit value includes: adjusting the speed limit value of the vehicle to the value based on the difference between the accelerator pedal opening and the first threshold. Second speed limit value.
- adjusting the speed limit value of the vehicle to the second speed limit value includes: adjusting the speed limit value of the vehicle to the second speed limit value according to the accelerator pedal opening change rate. .
- the speed limit value of the vehicle when it is detected that the accelerator pedal opening change rate is greater than or equal to the second threshold, the speed limit value of the vehicle is adjusted to the second speed limit value. , including: when detecting that the accelerator pedal opening change rate is greater than or equal to the second threshold, adjusting the speed limit value of the vehicle to the second speed limit value within the first preset time period.
- the speed limit value of the vehicle when it is detected that the change rate of the accelerator pedal opening is greater than or equal to the second threshold, the speed limit value of the vehicle can be adjusted to the second speed limit value within the first preset time period, thus ensuring that the vehicle reaches the second speed limit value within the first preset time period.
- speed increase within a preset time period helps to improve the intelligence and safety of the vehicle, and also helps to improve the user's driving experience.
- adjusting the speed limit value of the vehicle to the second speed limit value includes: when the accelerator pedal opening is detected When it is greater than or equal to the first threshold, the speed limit value of the vehicle is adjusted to the second speed limit value within a fourth preset time period.
- the speed limit value of the vehicle when it is detected that the accelerator pedal opening is less than or equal to the first threshold, the speed limit value of the vehicle is adjusted to the first speed limit value; and /Or, when it is detected that the accelerator pedal opening change rate is less than or equal to the second threshold for a duration greater than or equal to the second preset time, the speed limit value of the vehicle is adjusted to the first speed limit value.
- the duration is greater than or equal to the second preset time length.
- the speed limit value of the vehicle can be adjusted to the first speed limit value. In this way, the speed limit value is automatically lowered when the vehicle is currently in a non-emergency situation, which helps to improve the vehicle's cruising range.
- the speed limit value is automatically lowered when the vehicle is currently in a non-emergency situation, which helps to improve the vehicle's cruising range.
- the speed limit value is automatically lowered when the vehicle is currently in a non-emergency situation, which helps to improve the vehicle's cruising range.
- the needs of the vehicle in different scenarios can be met, which helps to improve the intelligence of the vehicle.
- the method further includes prompting the user to adjust the speed limit value of the vehicle from the second speed limit value to the first speed limit value.
- adjusting the speed limit value of the vehicle to the first speed limit value includes: changing the speed of the vehicle from the current speed within a third preset time period. The vehicle speed is adjusted to the first speed limit value.
- the speed limit value of the vehicle can be adjusted from the second speed limit value to the first speed limit value, thereby avoiding the impact of sudden deceleration on the user and helping to improve the speed limit value.
- the user's driving comfort is improved during the speed value adjustment process, thus helping to improve the user's driving experience.
- the method further includes: detecting that the remaining power of the vehicle is less than or equal to a third threshold, and/or the cruising range corresponding to the remaining power is less than or equal to When the fourth threshold is reached, the speed limit value of the vehicle is adjusted to the third speed limit value; wherein the first speed limit value is greater than the third speed limit value.
- the speed limit of the vehicle in the absence of navigation information, if it is detected that the remaining power of the vehicle is less than or equal to the third threshold and/or the cruising range corresponding to the remaining power is less than or equal to the fourth threshold, then the speed limit of the vehicle can be set. The value is adjusted to the third speed limit value. In this way, by reducing the vehicle's speed limit, the vehicle's cruising range can be increased, avoiding risks to users due to insufficient cruising range, thereby helping to improve the user's driving experience.
- the method further includes prompting the user to adjust the speed limit value of the vehicle from the first speed limit value to the third speed limit value.
- detecting that the cruising range corresponding to the vehicle's remaining power is less than or equal to the fourth threshold includes: determining the cruising range based on the vehicle's historical energy consumption information and remaining power; determining that the cruising range is less than or equal to the fourth threshold.
- the vehicle is currently traveling through the first route, and the historical energy consumption information of the vehicle includes historical energy consumption information when the vehicle was traveling through the first route; or, the historical energy consumption information includes the vehicle's recent travel. Energy consumption information for a preset distance (for example, 100 kilometers).
- the method further includes: obtaining a first target driving range of the vehicle; determining a first target mileage of the vehicle according to the first remaining power of the vehicle and the first speed limit value. cruising range; when the first cruising range is less than or equal to the first distance, the speed limit value of the vehicle is adjusted to the third speed limit value; wherein the first distance is determined by the first target driving mileage, and the first The speed limit value is greater than the third speed limit value.
- the vehicle can obtain the first target driving range and the first cruising range under the first remaining power and the first speed limit value. If the first cruising range is less than or equal to the first distance, the vehicle's The speed limit value is adjusted to the third speed limit value. In this way, when the cruising range cannot support the vehicle to complete the driving task, the vehicle's cruising range can be improved by reducing the speed limit value, which helps to avoid risks to the user due to insufficient cruising range, thus helping to improve the user's driving experience. . At the same time, by dynamically adjusting the speed limit value, it helps to improve the intelligence of the vehicle.
- the method further includes: prompting the user that the destination cannot be reached through the first speed limit value and that the user has been switched to the third speed limit value.
- the cruising range of the vehicle is greater than the first distance.
- the method further includes: obtaining a second target driving range of the vehicle; determining a second target mileage according to the second remaining power of the vehicle and the third speed limit value. cruising range; when the second cruising range is less than or equal to the second distance, the speed limit value of the vehicle is adjusted to the fourth speed limit value; wherein the second distance is determined by the second target driving mileage, and the third The speed limit value is greater than the fourth speed limit value.
- the vehicle can also calculate the second target mileage and the second cruising range under the second remaining power and the third speed limit value.
- the speed limit value of the vehicle is adjusted to the fourth speed limit value.
- the speed limit value can be further reduced, thereby further improving
- the vehicle's cruising range helps avoid risks to users due to insufficient cruising range, thereby helping to improve the user's driving experience.
- obtaining the second target driving range of the vehicle includes: obtaining the second target driving range after detecting a user's operation of switching destinations; or, When the destination cannot be reached according to the third speed limit value, the second target driving mileage is obtained.
- the vehicle may obtain the second target driving mileage when detecting the user's operation of changing the destination, or when the vehicle cannot reach the destination according to the third speed limit value.
- the vehicle's speed limit value can be lowered in time, which helps reduce the risk to the user due to insufficient cruising range, thereby helping To improve users’ driving experience.
- the cruising range of the vehicle is greater than the second distance.
- the vehicle when the vehicle determines that it cannot reach the destination according to the fourth speed limit value while driving through the fourth speed limit value and the speed limit value can no longer be lowered, the vehicle can prompt the user to charge the vehicle, or , prompting the user to switch destinations. At this time, the vehicle can maintain the minimum speed limit value.
- obtaining the first target driving mileage includes: receiving information about the first target driving mileage; and obtaining the third target driving mileage when an operation of the user inputting a destination is detected. A target driving mileage; or, obtain the first target driving mileage based on historical driving records.
- the vehicle can receive the first target driving mileage information sent by other devices (for example, a map server), or can obtain the first target driving distance based on the destination when detecting the user's operation of inputting the destination. Mileage information, or based on the vehicle's historical driving records, the first target mileage information can be obtained. In this way, the vehicle can determine whether the vehicle can drive to the destination by comparing the cruising range at a certain speed limit with the first distance determined by the first target driving range, which helps to reduce the risk to the user due to insufficient cruising range. risks, thus helping to improve the user’s driving experience.
- other devices for example, a map server
- receiving the first target mileage information includes: sending the vehicle's energy consumption information and destination information to a map server; receiving the map server's determination based on the vehicle's energy consumption information and destination The first target mileage.
- the first target driving range determined by the map server is more accurate, which helps to further improve the vehicle's accuracy in judging whether the driving range supports the vehicle's completion of the driving task. It reduces the risks to users due to insufficient cruising range, thus helping to improve users’ driving experience.
- determining the first cruising range based on the first remaining power of the vehicle and the first speed limit value includes: based on the first remaining power of the vehicle, The first speed limit value and the vehicle's historical energy consumption information determine the first cruising range.
- the vehicle's historical energy consumption information can also be combined when determining the vehicle's cruising range. This can make the vehicle's calculated cruising range more accurate and help reduce the risk to the user due to insufficient cruising range. This helps improve the user’s driving experience.
- the vehicle is currently traveling through the first route, and the historical energy consumption information of the vehicle includes historical energy consumption information when the vehicle was traveling through the first route; or, the historical energy consumption information includes the vehicle's recent travel Energy consumption information for a preset distance (for example, 100 kilometers).
- the method further includes: when detecting that the vehicle is located on the first type of road, based on the congestion level of the road and/or the speed limit value of the road, The speed limit value of the vehicle is adjusted to the fifth speed limit value; where the first type of road includes an expressway, an urban road or a suburban road.
- the vehicle can adjust the speed limit value based on the road type and road congestion, so that the adjustment process of the speed limit value is more consistent with the real scene and helps to improve the user's driving experience.
- the speed limit value of the vehicle is adjusted to the fifth speed limit value according to the congestion degree of the road and/or the speed limit value of the road, including: When the road is clear and the speed limit value of the road is greater than the first speed limit value, the speed limit value of the vehicle is adjusted to the fifth speed limit value, and the fifth speed limit value is greater than the first speed limit value.
- the speed limit value of the vehicle when the road is clear and the speed limit value of the road is higher than the current speed limit value of the vehicle, the speed limit value of the vehicle can be increased, thereby making the driving experience of the vehicle better when driving on the smooth road.
- the speed limit value of the vehicle is adjusted to the fifth speed limit value according to the congestion degree of the road and/or the speed limit value of the road, including: When the road is congested, the speed limit value of the vehicle is adjusted to the fifth speed limit value, and the fifth speed limit value is smaller than the first speed limit value.
- the speed limit of the vehicle can be lowered when the road is congested. This can avoid the waste of power consumption caused by the user's rapid acceleration or deceleration in the congestion situation, and help improve the vehicle's cruising range.
- the method further includes: determining the degree of congestion on the road based on navigation information and/or historical driving records.
- the historical driving record includes speed information when the vehicle is driving on the road.
- adjusting the speed limit value of the vehicle to the fifth speed limit value includes: adjusting the speed limit value of the vehicle to the fifth speed limit value according to the degree of road congestion.
- the vehicle can dynamically adjust the speed limit value based on the degree of congestion on the road. For example, when the road is particularly congested, the speed limit value is lower than the speed limit value when the road is generally congested. This can avoid the waste of power consumption caused by rapid acceleration or deceleration of users in congested situations, and help improve the vehicle's cruising range. , and is more in line with actual scenarios.
- a device for adjusting a speed limit value includes: an acquisition unit configured to acquire the accelerator pedal opening and/or the accelerator pedal opening change rate of the vehicle operating in the first mode.
- the speed limit value of the vehicle in the first mode is the first speed limit value;
- the adjustment unit is used to adjust the speed limit value of the vehicle when the accelerator pedal opening and/or the accelerator pedal opening change rate meet the preset conditions. Adjusted to a second speed limit value; wherein the second speed limit value is greater than the first speed limit value.
- the adjustment unit is specifically configured to: when detecting that the accelerator pedal opening is greater than or equal to the first threshold, adjust the speed limit value of the vehicle to the third threshold. Two speed limit values; and/or, when it is detected that the accelerator pedal opening change rate is greater than or equal to the second threshold value, adjust the speed limit value of the vehicle to the second speed limit value.
- the adjustment unit is specifically configured to: when detecting that the accelerator pedal opening change rate is greater than or equal to the second threshold, adjust the accelerator pedal opening change rate within a first preset time period. The speed limit value of the vehicle is adjusted to the second speed limit value.
- the adjustment unit is also configured to adjust the speed limit value of the vehicle to the first threshold when the accelerator pedal opening is less than or equal to the first threshold.
- Speed limit value and/or, when the accelerator pedal opening change rate is less than or equal to the second threshold for a duration greater than or equal to the second preset time length, adjust the speed limit value of the vehicle to the first speed limit value.
- the adjustment unit is specifically configured to adjust the vehicle speed from the current vehicle speed to the first speed limit value within a third preset time period.
- the adjustment unit is also used to operate when the remaining power of the vehicle is less than or equal to the third threshold, and/or the cruising range corresponding to the remaining power is less than or equal to
- the speed limit value of the vehicle is adjusted to the third speed limit value; wherein the first speed limit value is greater than the third speed limit value.
- the device further includes a determining unit, wherein the obtaining unit is also used to obtain the first target driving mileage of the vehicle; the determining unit is used to obtain the first target driving mileage of the vehicle according to the The first remaining power of the vehicle and the first speed limit value determine the first cruising range; the adjustment unit is also used to adjust the speed limit value of the vehicle to when the first cruising range is less than or equal to the first distance.
- a third speed limit value wherein the first distance is determined by the first target mileage, and the first speed limit value is greater than the third speed limit value.
- the obtaining unit is also used to obtain the second target driving range of the vehicle; the determining unit is also used to obtain the second remaining power of the vehicle and the The third speed limit value determines the second cruising range; the adjustment unit is also used to adjust the speed limit value of the vehicle to the fourth speed limit value when the second cruising range is less than or equal to the second distance; wherein, The second distance is determined by the second target driving mileage, and the third speed limit value is greater than the fourth speed limit value.
- the acquisition unit is specifically used to: obtain the second target driving mileage when the user switches destinations; or, when the user cannot reach the third speed limit value When reaching the destination, the second target driving mileage is obtained.
- the acquisition unit is specifically configured to: receive information about the first target driving mileage; when the user inputs a destination, obtain the first target driving distance according to the destination. Mileage; or, obtain the first target mileage based on historical driving records.
- the determination unit is specifically configured to: determine the third remaining power of the vehicle, the first speed limit value, and historical energy consumption information of the vehicle. One cruising range.
- the adjustment unit is also configured to, when the vehicle is on the first type of road, based on the degree of congestion on the road and/or the speed limit value of the road, The speed limit value of the vehicle is adjusted to the fifth speed limit value; where the first type of road includes an expressway, an urban road or a suburban road.
- the adjustment unit is specifically configured to: when the road is clear and the speed limit value of the road is greater than the first speed limit value, adjust the speed limit value of the vehicle to Adjusted to the fifth speed limit value, the fifth speed limit value is greater than the first speed limit value.
- the adjustment unit is specifically configured to: when the road is congested, adjust the speed limit value of the vehicle to the fifth speed limit value, and the fifth speed limit value The value is less than the first speed limit value.
- the first mode belongs to the economic mode or the power saving mode.
- a device in a third aspect, includes a processing unit and a storage unit, where the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the device performs any of the possibilities in the first aspect.
- a controller in a fourth aspect, includes a processing unit and a storage unit, where the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the device executes the instructions in the first aspect. Any way possible.
- the controller is a vehicle controller.
- the controller includes a vehicle controller and a cockpit domain controller.
- the above-mentioned processing unit may include at least one processor, and the above-mentioned storage unit may be a memory, wherein the memory may be a storage unit (for example, register, cache, etc.) within the chip, or may be a storage unit outside the chip in the vehicle. unit (e.g., read-only memory, random access memory, etc.).
- the above-mentioned storage unit may be a memory, wherein the memory may be a storage unit (for example, register, cache, etc.) within the chip, or may be a storage unit outside the chip in the vehicle. unit (e.g., read-only memory, random access memory, etc.).
- a fifth aspect provides a terminal, which includes the device described in any one of the above second or third aspects.
- the terminal is a vehicle.
- the vehicle may include the device described in any one of the above second aspect or the third aspect, or include the controller described in the above fourth aspect.
- a sixth aspect provides a server, which includes the device described in any one of the above second or third aspects.
- the server may be a virtual server, or the server may be a physical server.
- a computer program product includes: computer program code.
- the computer program code When the computer program code is run on a computer, it causes the computer to perform any of the possible methods in the first aspect.
- the above computer program code can be stored in whole or in part on the first storage medium, where the first storage medium can be packaged together with the processor, or can be packaged separately from the processor. This is not the case in the embodiments of this application. Specific limitations.
- a computer-readable medium stores program code.
- the computer program code When the computer program code is run on a computer, it causes the computer to perform any of the possible methods in the first aspect. .
- inventions of the present application provide a chip system.
- the chip system includes a processor for calling a computer program or computer instructions stored in a memory, so that the processor executes any of the possible methods of the first aspect. method.
- the processor is coupled with the memory through an interface.
- the chip system further includes a memory, and a computer program or computer instructions are stored in the memory.
- Figure 1 is a schematic functional block diagram of a vehicle provided by an embodiment of the application.
- Figure 2 is a set of graphical user interface GUI provided by an embodiment of the present application.
- Figure 3 is another set of GUI provided by the embodiment of the present application.
- Figure 4 is another GUI provided by an embodiment of the present application.
- Figure 5 is another set of GUI provided by the embodiment of the present application.
- Figure 6 is another set of GUI provided by the embodiment of the present application.
- Figure 7 is a schematic diagram of the system architecture provided by the embodiment of the present application.
- Figure 8 is a schematic flow chart of a method for adjusting a speed limit value provided by an embodiment of the present application.
- Figure 9 is another schematic flow chart of a method for adjusting a speed limit value provided by an embodiment of the present application.
- Figure 10 is another schematic flowchart of a method for adjusting a speed limit value provided by an embodiment of the present application.
- Figure 11 is another schematic flowchart of a method for adjusting a speed limit value provided by an embodiment of the present application.
- Figure 12 is a schematic block diagram of a device for adjusting a speed limit value provided by an embodiment of the present application.
- Prefixes such as “first” and “second” are used in the embodiments of this application only to distinguish different description objects, and have no limiting effect on the position, order, priority, quantity or content of the described objects.
- the use of ordinal words and other prefixes used to distinguish the described objects does not limit the described objects.
- Words constitute redundant restrictions.
- plural means two or more.
- FIG. 1 is a functional block diagram of a vehicle 100 provided by an embodiment of the present application.
- the vehicle 100 may include a perception system 120 , a display device 130 , and a computing platform 150 , where the perception system 120 may include several types of sensors that sense information about the environment surrounding the vehicle 100 .
- the sensing system 120 may include a positioning system.
- the positioning system may be a global positioning system (GPS), a Beidou system or other positioning systems, an inertial measurement unit (IMU), a lidar, a millimeter One or more of wave radar, ultrasonic radar and camera device.
- GPS global positioning system
- IMU inertial measurement unit
- lidar a millimeter One or more of wave radar, ultrasonic radar and camera device.
- the computing platform 150 may include processors 151 to 15n (n is a positive integer).
- the processor is a circuit with signal processing capabilities.
- the processor may be a circuit with instruction reading and execution capabilities.
- CPU central processing unit
- microprocessor graphics processing unit
- GPU graphics processing unit
- DSP digital signal processor
- the processor can realize certain functions through the logical relationship of the hardware circuit. The logical relationship of the hardware circuit is fixed or can be reconstructed.
- the processor is an application-specific integrated circuit (application-specific integrated circuit). ASIC) or programmable logic device (PLD) implemented hardware circuit, such as FPGA.
- ASIC application-specific integrated circuit
- PLD programmable logic device
- the process of the processor loading the configuration file and realizing the hardware circuit configuration can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
- it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as a neural network processing unit (NPU), tensor processing unit (TPU), deep learning processing Unit (deep learning processing unit, DPU), etc.
- the computing platform 150 may also include a memory, which is used to store instructions. Some or all of the processors 151 to 15n may call instructions in the memory and execute the instructions to implement corresponding functions.
- the display device 130 in the cockpit is mainly divided into two categories.
- the first category is a vehicle-mounted display screen;
- the second category is a projection display screen, such as a head-up display (HUD).
- the vehicle display screen is a physical display screen and an important part of the vehicle infotainment system.
- There can be multiple displays in the cockpit such as digital instrument display, central control screen, passenger in the co-pilot seat (also known as The display in front of the front passenger), the display in front of the left rear passenger, the display in front of the right rear passenger, and even the car window can be used as a display.
- Head-up display also known as head-up display system. It is mainly used to display driving information such as speed and navigation on the display device in front of the driver (such as the windshield).
- HUD includes, for example, combined head-up display (combiner-HUD, C-HUD) system, windshield-type head-up display (windshield-HUD, W-HUD) system, and augmented reality head-up display system (augmented reality HUD, AR-HUD).
- Figure 2 shows a set of graphical user interfaces (graphical user interface, GUI) provided by the embodiment of the present application.
- the vehicle central control screen displays wallpaper, avatar information of the user account logged in on the vehicle, Bluetooth function icon, Wi-Fi function icon, cellular network signal icon, and a card that switches to display settings. 201. Switch to the card 202 that displays the car music application, the card 203 that displays the vehicle's remaining power and the remaining driving range, and switch to the card 204 that displays the navigation application.
- the vehicle may display a prompt box 205 through the central control screen.
- the prompt box 205 includes the prompt message "The vehicle enters the super power saving mode. Super power saving mode.” The speed limit for vehicles exiting is 90km/h.”
- the "speed limit value of the vehicle in super power saving mode is 90km/h" displayed in the above prompt box can be understood as the default speed limit value in super power saving mode is 90km/h.
- the vehicle when it is detected that the opening of the accelerator pedal is greater than or equal to the first threshold, the vehicle may increase the speed limit value. In this way, by detecting that the opening of the accelerator pedal is greater than or equal to the first threshold, the vehicle can recognize that the user has the intention of emergency acceleration, and can increase the speed limit value, thereby realizing acceleration of the vehicle in an emergency.
- the vehicle when it is detected that the opening of the accelerator pedal is greater than or equal to the first threshold (for example, 80%), the vehicle can consider that the user has the intention to accelerate and overtake, and thus can display the information through the central control screen Prompt box 206, wherein the prompt box 206 includes prompt information "It has been detected that you are accelerating to overtake, and the speed limit has been increased to 120km/h for you.” By raising the speed limit from 90km/h to 120km/h, users can drive their vehicles to overtake.
- the first threshold for example, 80%
- the vehicle when it is detected that the opening of the accelerator pedal is greater than or equal to the first threshold, the vehicle may increase the speed limit value within a fourth preset time period (for example, 30 seconds).
- the vehicle when detecting that the opening of the accelerator pedal is greater than or equal to a first threshold (eg, 80%), the vehicle may start a timer, and the duration of the timer may be 30 seconds. While the timer is running, the vehicle's speed limit is adjusted to 120km/h. After the timer times out, the vehicle's speed limit is adjusted to 90km/h.
- a first threshold eg, 80%
- the vehicle when the timer is running (for example, the timer runs to 15 seconds), the vehicle detects that the opening of the accelerator pedal is greater than or equal to the first threshold again, then the vehicle can restart the timer.
- the vehicle when detecting that the opening of the accelerator pedal is greater than or equal to the first threshold, the vehicle may consider that the user has the intention to accelerate and overtake, including: detecting that the opening of the accelerator pedal is greater than or equal to the first threshold and detecting that the user When turning on the left turn signal, it is determined that the user has the intention to accelerate and overtake.
- the vehicle when detecting that the opening of the accelerator pedal is greater than or equal to the first threshold, the vehicle may consider that the user has the intention to accelerate and overtake, including: detecting that the opening of the accelerator pedal is greater than or equal to the first threshold, detecting that the user When the left turn signal is turned on and another vehicle in the same lane as the vehicle is detected to be in front of the vehicle, it is determined that the user has the intention to accelerate and overtake.
- the vehicle may determine that the other vehicle has changed the vehicle to the left, turned left, or At this time, the vehicle can maintain the default speed limit value in super power saving mode. This can avoid safety accidents caused by accelerating overtaking.
- the vehicle when it is detected that the opening change rate of the accelerator pedal is greater than or equal to the second threshold, the vehicle may increase the speed limit value. In this way, by detecting that the opening change rate of the accelerator pedal is greater than or equal to the second threshold, the vehicle can recognize that the user has the intention of emergency acceleration, and can increase the speed limit value, thereby realizing acceleration of the vehicle in an emergency.
- the vehicle when it is detected that the opening change rate of the accelerator pedal is greater than or equal to the second threshold, the vehicle may increase the speed limit value within a first preset time period (for example, 30 seconds).
- the vehicle can increase the speed limit value according to the speed limit on the road when detecting the user's intention to accelerate urgently. For example, when it is detected that the speed limit on the road is 100 km/h and the opening of the accelerator pedal is greater than or equal to the first threshold, the vehicle may increase the speed limit from 90 km/h to 100 km/h.
- the vehicle when the accelerator pedal opening and/or the accelerator pedal opening change rate meet the preset conditions, the vehicle can increase the speed limit value. In this way, whether the user has the intention of emergency acceleration can be determined based on the accelerator pedal opening and/or the accelerator pedal opening change rate.
- the speed limit value when it is recognized that the user has the intention of emergency acceleration, by increasing the speed limit value, it helps to ensure that the vehicle has room to speed up in emergency situations (for example, when overtaking is required), which helps to improve the safety of the vehicle and also helps To improve users’ driving experience.
- the speed limit value by dynamically adjusting the speed limit value, the needs of the vehicle in different scenarios can be met, which helps to improve the intelligence of the vehicle.
- the vehicle when it is detected that the opening of the accelerator pedal is less than the first threshold, the vehicle can recognize that the user has completed acceleration and overtaking, so that the prompt box 207 can be displayed through the central control screen, where the prompt box 207 includes the prompt message "It has been detected that you have completed overtaking and the speed limit has been reduced to 90km/h for you.”
- the vehicle when detecting that the opening of the accelerator pedal is less than the first threshold, the vehicle may recognize that the user has completed accelerating to overtake, including: detecting that the opening of the accelerator pedal is less than the first threshold and detecting that the user turns right When the lights are turned on and the vehicle is controlled to return to the original lane, the vehicle can recognize that the user has completed acceleration and overtaking.
- the vehicle may adjust the speed limit value back to the default speed limit value in the super power saving mode.
- the vehicle can recognize that the user does not currently have the intention of emergency acceleration, and can adjust the speed limit value to the default speed limit value in the super power saving mode, thereby improving the speed limit value.
- the vehicle's cruising range At the same time, there is no need for users to manually adjust to the default speed limit value, which helps improve the intelligence of the vehicle.
- the vehicle may adjust the speed limit value to the default speed limit value in the super power saving mode, including: when the accelerator pedal opening rate is detected.
- the vehicle may adjust the speed limit value to the default speed limit value in the super power saving mode.
- the vehicle may adjust the speed limit value to the default speed limit value in the super power saving mode, including, within a third preset time period, adjusting the speed limit value to the default speed limit value in the super power saving mode.
- Figure 3 shows another set of GUIs provided by an embodiment of the present application.
- the vehicle is in super power-saving mode, and the vehicle central control screen displays wallpaper, avatar information of the user account logged in to the vehicle, Bluetooth function icon, Wi-Fi function icon and cellular network signal. icons, and cards 201-204.
- the speed limit value of the vehicle can be the default speed limit value under the above-mentioned super power saving mode (for example, 90km/h), wherein the display card 203 of the remaining power of the vehicle and the remaining mileage shows that the remaining power of the vehicle is 10%. And with 10% remaining power and the default speed limit, the vehicle's cruising range is 40km.
- the vehicle when it is detected that the remaining power is less than a third threshold (for example, 10%), the vehicle can display a prompt box 301 through the central control screen, where the prompt box 301 includes the prompt message "Detection When the remaining power is less than 10%, the speed limit has been reduced to 70km/h for you, please charge in time.” At this time, the vehicle can adjust the speed limit value from 90km/h to 70km/h.
- the display card 203 of the vehicle's remaining power and remaining mileage shows that the vehicle's remaining power is 9% and the remaining power is 9% and 70km. At the speed limit of /h, the vehicle’s cruising range is 60km.
- the speed limit of the vehicle in the absence of navigation information, if it is detected that the remaining power of the vehicle is less than or equal to the third threshold, the speed limit of the vehicle can be reduced. In this way, by reducing the vehicle's speed limit, the vehicle's cruising range can be increased, avoiding risks to users due to insufficient cruising range, thereby helping to improve the user's driving experience.
- Figure 4 shows another set of GUIs provided by an embodiment of the present application.
- the vehicle is in super power-saving mode, and the vehicle central control screen displays wallpaper, avatar information of the user account logged in to the vehicle, Bluetooth function icon, Wi-Fi function icon and cellular network signal. icons, and cards 201-204.
- the speed limit value of the vehicle can be the default speed limit value under the above-mentioned super power saving mode (for example, 90km/h), wherein the display card 203 of the remaining power of the vehicle and the remaining mileage shows that the remaining power of the vehicle is 10%. And with 10% remaining power and the default speed limit, the vehicle's cruising range is 41km.
- the vehicle when it is detected that the cruising range is less than the fourth threshold (for example, 40km), the vehicle can display a prompt box 401 through the central control screen, where the prompt box 401 includes the prompt message "Detected If the cruising range is less than 40km, the speed limit has been reduced to 70km/h for you, please charge in time.” At this time, the vehicle can adjust the speed limit value from 90km/h to 70km/h.
- the display card 203 of the vehicle's remaining power and remaining mileage shows that the vehicle's remaining power is 10% and the remaining power is 10% and 70km. At the speed limit of /h, the vehicle’s cruising range is 60km.
- the vehicle's speed limit in the absence of navigation information, if it is detected that the vehicle's cruising range is less than or equal to the fourth threshold, the vehicle's speed limit can be reduced. In this way, by reducing the vehicle's speed limit, the vehicle's cruising range can be increased, avoiding risks to users due to insufficient cruising range, thereby helping to improve the user's driving experience.
- Figure 5 shows another set of GUIs provided by an embodiment of the present application.
- the vehicle is in the super power saving mode, and the vehicle central control screen displays the navigation route from the current location to the company and navigation information 501.
- the speed limit value of the vehicle can be the default speed limit value under the above-mentioned super power saving mode (for example, 90km/h), in which the remaining power of the vehicle and the display card 203 of the remaining driving range show that the remaining power of the vehicle is 20%. And with 20% remaining power and the default speed limit, the vehicle's cruising range is 80km.
- the vehicle while the vehicle is driving, if the cruising range (for example, the cruising range with 10% remaining power is 36km) is greater than the first distance, the vehicle can continue to remain in the default super power-saving mode. Drive below the speed limit.
- the cruising range for example, the cruising range with 10% remaining power is 36km
- the first distance may be the target driving mileage indicated in the navigation information 502 (for example, 31 km), or it may be the sum of the target driving mileage and a fixed value, or it may be the target driving mileage and a preset value.
- the product of the magnification (for example, 1.1 times).
- the vehicle when it is detected that the cruising range is less than or equal to the target mileage indicated in the navigation information, the vehicle can display a prompt box 503 through the central control screen, where the prompt box 503 includes the prompt information " It has been detected that the cruising range may not guarantee that the vehicle can drive to the company, and the speed limit has been reduced to 70km/h for you.”
- the display card 203 of the remaining power of the vehicle and the remaining driving range shows that the remaining power of the vehicle is 10%, and under the remaining power of 10% and the speed limit of 70km/h, the cruising range of the vehicle is 60km.
- the vehicle when it is detected that the vehicle still cannot reach the company through the deceleration value of 70km/h, the vehicle can further reduce the speed limit value (for example, adjust the speed limit value to 60km/h).
- the vehicle can prompt the user that the vehicle cannot reach the destination, or prompt the user to arrive immediately Charge the vehicle.
- the vehicle can obtain the target driving mileage and the cruising range under the remaining power and a certain speed limit value. If the cruising range is less than or equal to the first distance, the vehicle's speed limit value can be reduced. In this way, when the cruising range cannot support the vehicle to complete the driving task, the vehicle's cruising range can be improved by reducing the speed limit value, which helps to avoid risks to the user due to insufficient cruising range, thus helping to improve the user's driving experience. . At the same time, by dynamically adjusting the speed limit value, it helps to improve the intelligence of the vehicle.
- Figure 6 shows another set of GUIs provided by embodiments of the present application.
- the vehicle is in super power-saving mode. When it detects that the vehicle is on the highway and the road is clear, the vehicle can adjust the speed limit to 110km/h.
- the vehicle when it is detected that the vehicle is on a highway and the road is clear, the vehicle may adjust the speed limit of the vehicle according to the speed limit of the highway.
- the vehicle can adjust the speed limit from 90km/h to 110km/h.
- the vehicle can adjust the speed limit from 90km/h to 95km/h.
- the speed limit of the vehicle when it is detected that the vehicle is on a highway and the road is clear, the speed limit of the vehicle may also be adjusted according to the speed limit of the lane in which the vehicle is located.
- the speed limit of the two lanes on the left is 120km/h
- the speed limit of the two lanes on the right is 100km/h. Then, when the vehicle is in the leftmost lane, the speed limit value can be adjusted from 90km/h to 110km/h; when the vehicle is in the rightmost lane, the speed limit value can be adjusted from 90km/h to 95km/h.
- the speed limit value of the vehicle when the road is clear and the speed limit value of the road is higher than the current speed limit value of the vehicle, the speed limit value of the vehicle can be increased, thereby making the driving experience of the vehicle better when driving on the smooth road.
- the vehicle is in super power-saving mode.
- the vehicle can adjust the speed limit value to 70km/h.
- the speed limit of the vehicle can be lowered when the road is congested. This can avoid the waste of power consumption caused by the user's rapid acceleration or deceleration in the congestion situation, and help improve the vehicle's cruising range.
- FIG. 7 shows a schematic block diagram of the system architecture provided by the embodiment of the present application.
- the system architecture includes a control device 710 and an actuator 720.
- the control device 710 includes a driving habit learning module 711, a driving intention recognition module 712, a road condition information recognition module 713, an energy consumption information recording module 714, and a speed limit value adjustment module. 715.
- the above control device 710 can be a vehicle control unit (VCU), or it can be a system composed of a VCU and a cockpit domain controller (cockpit domain controller), or it can also be a VCU and a battery controller (for example, , a system composed of a battery management system (battery management system, BMS), or a system composed of a VCU, a CDC, and a battery controller.
- VCU vehicle control unit
- BMS battery management system
- the above control device can be located in the vehicle or in the server.
- the vehicle may send information about the opening degree of the accelerator pedal and/or the rate of change of the accelerator pedal opening to the server, and the server determines whether the information about the opening degree of the accelerator pedal and/or the rate of change of the accelerator pedal opening meets the preset requirements. condition. If the preset conditions are met, the server can send an instruction to the vehicle, and the instruction is used to instruct the vehicle's speed limit to be adjusted.
- the control device 710 can collect vehicle information. For example, information collection includes collecting user driving habits, vehicle control information, road condition information, energy consumption information, etc.
- the control device 710 can perform driving habit learning, driving intention learning, road condition information identification, energy consumption information recording, etc. based on the results of information collection, thereby executing the dynamic limitation algorithm.
- the actuator is controlled to dynamically limit the speed.
- the driving habit learning module 711 can combine road information to record the user's driving habits under different road conditions (urban, suburban, highway) and scenarios (smooth, congested).
- the driving intention identification module 712 can identify the user's driving intention based on vehicle control information and road condition information, such as emergency acceleration intention when stepping on the accelerator quickly.
- the traffic information identification module 713 can determine the current traffic condition of the user based on the currently collected traffic information (road speed limit, map information, navigation information, etc.).
- the energy consumption information recording module 714 can record the user's historical energy consumption information under different road conditions and different vehicle speeds, and update it in real time.
- the speed limit value adjustment module 715 can dynamically adjust the speed limit value of the vehicle based on one or more of driving habits, road condition information, driving intention, and energy consumption information and send instructions for adjusting the speed limit value to the actuator.
- the actuator 720 After receiving the instruction sent by the control device 710, the actuator 720 can execute the instruction to adjust the speed limit value.
- FIG 8 shows a schematic flow chart of a method 800 for adjusting a speed limit value provided by an embodiment of the present application. As shown in Figure 8, this method can be executed by the above-mentioned control device 710.
- the method 800 includes:
- S801 determine that the vehicle enters the first mode, and the speed limit value of the vehicle in the first mode is the speed limit value 1.
- the first mode may be an economic mode or a power saving mode.
- the first mode may be a sub-mode of the economic mode or the power saving mode.
- the first mode is sub-mode 1 in the power saving mode or the first mode is sub-mode 2 in the power saving mode.
- air conditioning or ambient lighting can be used in sub-mode 1; while in sub-mode 2, air conditioning or ambient lighting cannot be used in sub-mode 1.
- the first mode may also be a user-defined mode.
- the user can set that in the first mode, the air conditioner, ambient lights, and rear entertainment screen can be used; for example, the user can also set that in the second mode, the rear entertainment screen can be used but the air conditioner and ambient lights cannot be used.
- the first mode may also be a non-economic mode or a non-power saving mode.
- the first mode may be a sport mode or a comfort mode.
- control device 710 may obtain the accelerator pedal opening and/or the accelerator pedal opening change rate through information collected by the accelerator pedal opening sensor.
- the above opening rate of the accelerator pedal can range from 0 to 100%, 0 is the opening when the user is not detected to be stepping on the accelerator pedal, and 100% is the opening when it is detected that the user is depressing the accelerator pedal to the bottom.
- the above change rate of the accelerator pedal opening can be understood as the change rate of the accelerator pedal opening per unit time. For example, if the accelerator pedal opening increases from k 1 to k 2 within the time period ⁇ T, then the rate of change of the accelerator pedal opening can be determined by the following formula (1):
- Roc is the opening change rate of the accelerator pedal.
- S803 Determine whether the accelerator pedal opening is greater than or equal to threshold A.
- the threshold A may be 80%
- the driving intention recognition module 712 in the control device 710 can recognize that the user has the intention to accelerate urgently, so that the speed limit value of the vehicle can be adjusted from the speed limit value 1 to the speed limit value. Value 2.
- adjusting the speed limit value of the vehicle to the speed limit value 2 includes: when the opening degree of the accelerator pedal is greater than or equal to the threshold value A, adjusting the speed limit value of the vehicle in advance. It is assumed that the speed limit value of the vehicle is adjusted to the speed limit value 2 within the time period.
- the method further includes: when the opening of the accelerator pedal is less than the threshold A, adjusting the speed limit value of the vehicle to the speed limit value 1.
- S805 Determine whether the accelerator pedal opening change rate is greater than or equal to threshold B.
- S802 can be executed back to the beginning.
- S803-S804 and S805-S806 may be parallel.
- control device 710 may calculate the opening change rate of the accelerator pedal with a period of 1 second. In this way, when the opening change rate in a certain period is greater than or equal to threshold B, the speed limit value can be adjusted to speed limit value 3.
- speed limit value 2 and speed limit value 3 may be the same, or they may be different.
- the timer when the opening change rate of the accelerator pedal is greater than or equal to the threshold B, the timer can be started, wherein the speed limit value can be adjusted to the speed limit value 3 during the timer movement; when the timer times out , you can adjust the speed limit value to speed limit value 1.
- the speed limit value of the vehicle may be adjusted to the speed limit value 1.
- the speed limit value of the vehicle may be adjusted to the speed limit value 1.
- the speed of the vehicle can be adjusted from the current speed to the speed limit value 1 within a preset period of time.
- the control device 710 may calculate the opening change rate of the accelerator pedal with a period of 1 second. In this way, when the opening change rate in a certain period is greater than or equal to the threshold B, the timer can be started (for example, the timer length is 10 seconds). In this way, there is no need to judge the relationship between the accelerator pedal opening change rate and the threshold B in the next 10 seconds, and the speed limit value can be adjusted to the speed limit value 3 within these 10 seconds. After 10 seconds, the relationship between the accelerator pedal opening change rate and the threshold B can be continued to be judged. If the accelerator pedal opening change rate is less than threshold B, the speed limit value is adjusted to speed limit value 3; if the accelerator pedal opening change rate is greater than or equal to threshold B, the timer can continue to be started.
- the timer can be started (for example, the timer length is 10 seconds). In this way, there is no need to judge the relationship between the accelerator pedal opening change rate and the threshold B in the next 10 seconds, and the speed limit value can be adjusted to the speed limit value 3 within these
- the accelerator pedal opening change rate is less than the threshold B between 0 and 5 seconds, and it is detected at the 6th second.
- the timer length can be restarted from the 6th second. If the accelerator pedal opening change rate is less than threshold B during the timer running period, then the speed limit value can be adjusted to speed limit value 3 when the timer times out.
- the speed limit value 1 is 90km/h.
- the control device can adjust the vehicle's speed limit to 110km/h, so that the vehicle's speed can be increased from 80km/h to 105km/h. .
- the control device can reduce the vehicle's speed limit from 110km/h to 90km/h.
- the control device can reduce the vehicle's speed from 105km/h to 90km/h within a preset period of time.
- control device can control the vehicle's speed to decrease from 105 km/h to 90 km/h in 30 seconds or 1 minute.
- control device can reduce the vehicle speed from 105km/h to 90km/h through linear or curved changes.
- control device can obtain the time required to change from the current vehicle speed to the speed limit value 1 by looking up a table, thereby reducing the vehicle speed from the current vehicle speed to the speed limit value 1 within this time period.
- the speed limit value of the vehicle by adjusting the speed limit value of the vehicle from the current vehicle speed to the first speed limit value within a preset time period, the impact on the user due to sudden deceleration is avoided, which helps to improve the speed limit value adjustment process. User's driving comfort, thus helping to improve the user's driving experience.
- Figure 9 shows a schematic flow chart of a method 900 for adjusting a speed limit value provided by an embodiment of the present application. As shown in Figure 9, this method can be executed by the above-mentioned control device 710.
- the method 90 includes:
- S901 determine that the vehicle enters the first mode, and the speed limit value of the vehicle in the first mode is the speed limit value 1.
- determining the cruising range 1 based on the remaining power and the speed limit value 1 includes: determining the cruising range 1 based on the remaining power, the speed limit value 1 and historical energy consumption information.
- the control device 710 may predict the cruising range 1 under the remaining power and the speed limit value 1 based on an estimate of the vehicle's recent travel of 100 km.
- the 100km traveled recently through the speed limit value 1 can be divided into segments and calculated respectively [0, 10km), [10, 20km), [20, 30km), [30, 40km), [40, 50km), [50 , 60km), [60, 70km), [70, 80km), [80, 90km), [90, 100km], and the average energy consumption value is calculated based on these energy consumption values.
- the control device 710 may determine the cruising range 1 under the remaining power and the speed limit value 1 based on the average energy consumption value of the 100km the vehicle recently traveled through the speed limit value 1.
- control device 710 can also calculate the comprehensive energy consumption value of the 100km traveled recently through the speed limit value 1.
- the weight of each segment can be different. For example, the weight value of the energy consumption corresponding to each section in [0, 50km) can be higher than the weight value of the energy consumption corresponding to each section in [50, 100km].
- the control device 710 may determine the cruising range 1 under the remaining power and the speed limit value 1 based on the comprehensive energy consumption value of the 100km recently traveled through the speed limit value 1.
- control device 710 may determine the cruising range 1 under the remaining power and the speed limit value 1 based on historical energy consumption information when the vehicle previously traveled on the route.
- control device 710 can determine the cruising range 1 under the remaining power and the speed limit value 1 based on the average energy consumption value of the vehicle's previous five trips on the route.
- control device 710 may also predict the cruising range 1 based on the average energy consumption in mode 1.
- the average energy consumption in different modes can be calculated by adding the average driving energy consumption per unit mileage and accessory power in different modes.
- the average driving energy consumption per unit mileage can be read as a preset value based on the test calibration data of the vehicle controller in different modes and under different working conditions (or standard comprehensive working conditions).
- Accessory energy consumption can be calculated based on the total energy consumption of all working accessories (such as air conditioners, central control screens, audio, lights, seats and other accessory power) in different modes.
- the vehicle can receive navigation information or map information from the map server, it is determined that the navigation information or map information can be obtained; or, when it is detected that the user inputs destination information through the central control screen and the vehicle local
- the saved map information can obtain navigation information, it is determined that the navigation information or map information can be obtained.
- map information is saved locally in the vehicle or communication can be carried out between the vehicle and the map server, the vehicle does not detect that the user opens the navigation application after powering on, or does not detect that the user enters the destination after opening the navigation application. operation, it is determined that navigation information or map information has not been obtained.
- S904-907 When navigation information or map information is not obtained, S904-907 can be executed; when navigation information or map information is obtained, S908-S913 can be executed.
- S904 Determine whether the remaining power is less than or equal to the threshold C.
- the threshold C may be 10%.
- S903 can be returned to execution.
- the speed limit value 4 is 70km/h.
- the speed limit value of the vehicle in the absence of navigation information or map information, if it is detected that the remaining power of the vehicle is less than the threshold C, the speed limit value of the vehicle can be adjusted to the speed limit value 4. In this way, by reducing the vehicle's speed limit, the vehicle's cruising range can be increased, avoiding risks to users due to insufficient cruising range, thereby helping to improve the user's driving experience.
- the threshold D may be 40km.
- the vehicle's speed limit value when the cruising range is less than or equal to the threshold D, the vehicle's speed limit value can be adjusted to the speed limit value 5, which is smaller than the speed limit value 1.
- the speed limit value 5 is 70km/h.
- the vehicle's speed limit value in the absence of navigation information, if it is detected that the vehicle's cruising range is less than or equal to the threshold D, the vehicle's speed limit value can be adjusted to the speed limit value 5. In this way, by reducing the vehicle's speed limit, the vehicle's cruising range can be increased, avoiding risks to users due to insufficient cruising range, thereby helping to improve the user's driving experience.
- the navigation information may be navigation information obtained by the vehicle from a map server.
- the vehicle can send the destination information to the map server.
- the map server may plan one or more driving routes from the vehicle's current location to the destination based on the destination and the target driving mileage corresponding to each driving route.
- the map server can send information about the one or more driving routes and the target driving mileage corresponding to each driving route to the vehicle, so that the vehicle can display the one or more driving routes and the target corresponding to each driving route through the central control screen. driven distance.
- the target driving mileage 1 may be determined based on the driving route.
- the vehicle can also send the destination information and the vehicle's historical energy consumption information to the map server, so that the map server can determine a more accurate target mileage based on the destination and historical energy consumption information.
- the vehicle may also receive information about the destination, navigation route, and target mileage 1 sent by an electronic device (eg, a mobile phone).
- an electronic device eg, a mobile phone
- the vehicle after detecting that the user inputs destination information through the vehicle navigation application, the vehicle can plan one or more navigation routes for the user based on a map stored locally in the vehicle and determine the target mileage corresponding to each navigation route.
- the target driving mileage 1 may be determined based on the driving route.
- the above mileage 1 in Mode 1 can be understood as the furthest mileage that the vehicle can travel in Mode 1, and the target mileage can be understood as the vehicle's remaining mileage, or it can also be understood as the distance the vehicle needs to travel from its current location to its destination. Mileage required.
- the above determination of whether the cruising range 1 is greater than the first distance can also be understood as determining whether the vehicle can reach the destination.
- the first distance may be the target driving distance 1, or the first distance may be the sum of the target driving distance 1 and a preset distance value, or the first distance may also be the target driving distance.
- the speed limit value 6 may be 70km/h.
- the speed limit value 6 may be determined based on the difference between the first distance and the cruising range 1 .
- the speed limit value 6 may be 70 km/h.
- the speed limit value 6 may be 60 km/h.
- the speed limit value 6 may be 50 km/h.
- the vehicle's cruising range under the remaining power and the speed limit value 6 is greater than the first distance.
- the cruising range determined by the remaining power, the speed limit value 6 and the historical energy consumption information is greater than the first distance.
- the vehicle when detecting the user's operation of changing the destination, the vehicle may determine the target driving mileage 2 based on the changed destination.
- the vehicle when it is detected that the destination cannot be reached according to the speed limit value 6, the vehicle may obtain the target mileage 2.
- the vehicle can obtain the target mileage 2 in real time, and compare the target mileage 2 with the cruising range determined based on the remaining power and the speed limit value 6.
- the cruising range 2 can be determined based on the remaining power and the speed limit value 6 .
- the target driving mileage 2 can be determined based on the remaining power, the speed limit value 6 and historical energy consumption information.
- the determination process of the target driving mileage 2 may refer to the determination process of the target driving mileage 1 in the above embodiment, and will not be described again here.
- the vehicle determines that the cruising range 1 is 45 km under the condition of 10% remaining power and a speed limit of 90 km/h.
- the vehicle can adjust the speed limit to 70km/h, where, when the remaining power is 10 % and the cruising range under the speed limit value of 70km/h (for example, ) is greater than the first distance.
- the vehicle determines that the vehicle's cruising range 2 is 35km under the remaining power of 5% and the speed limit of 70km/h.
- the vehicle can adjust the speed limit value to 50km/h, where the remaining power is 5%.
- the cruising range for example, 45km under the speed limit of 50km/h is greater than the second distance.
- the above determination of whether the cruising range 2 is greater than the second distance can also be understood as determining whether the vehicle can reach the destination.
- the second distance can be the target driving distance 2, or the second distance can also be the sum of the target driving distance 2 and the preset distance value, or the second distance can also be the target driving distance.
- the minimum speed limit value may be 50km/h.
- the cruising range 2 is less than or equal to the second distance
- the vehicle can continue to adjust the speed limit value of the vehicle to the speed limit value 7, where the speed limit value 7 is less than or equal to the speed limit value 6.
- the cruising range at the speed limit value 7 is greater than the second distance.
- the vehicle's cruising range can be improved by further reducing the speed limit value, which helps to further reduce the risk caused by insufficient cruising range.
- the above determination of the target driving mileage can be determined in combination with navigation information or map information, and the embodiments of the present application are not limited thereto. In the absence of navigation information or map information, the target driving mileage can also be determined based on historical driving records.
- the current location of the vehicle can be obtained through the positioning system (for example, the vehicle is currently located in xx building).
- the vehicle can determine the target mileage that the vehicle may travel when setting off from the xx building based on the subtotal mileage information saved in the vehicle.
- the vehicle can predict that the destination of this trip may be home, so the vehicle can obtain the target mileage from xx building to home based on the map information saved by the vehicle or the information that the vehicle can subtotal the mileage (for example, the target mileage is 40km).
- the vehicle can save the number of times it has traveled from xx Building to each destination in the historical driving record, or the vehicle can also save the mileage traveled each time it departs from xx Building in the historical driving mileage. For example, within a month, the vehicle started from the starting location of xx building 20 times, and the driving mileage was 38km-40km 15 times, the driving mileage was 8km-10km 3 times, and the driving mileage was 60km- The number of times for 70km is 2 times. At this time, the vehicle can predict that the user's target driving mileage is 40km.
- the historical driving records may also store the driving records of the vehicle starting from a certain location within a preset time period.
- Table 1 shows the historical driving records of vehicles within a month.
- the vehicle can predict the target mileage to be 30km based on the historical driving records shown in Table 1 above, or, the target mileage It is the average of 20 driving distances between 5 p.m. and 7 p.m. (for example, the average is 29km).
- the historical driving records may also store the driving records of the vehicle starting from a certain location within a preset time period.
- Table 2 shows another historical driving record of the vehicle within one month.
- the vehicle can predict that the target mileage is 65km based on the historical driving records shown in Table 2 above, or, the target The driving mileage is the average of 4 driving distances between 5 p.m. and 7 p.m. (for example, the average is 63km).
- the historical driving record may also include the user's identity information.
- Table 3 shows another historical driving record of the vehicle within one month.
- the camera of the main driving area can be collected through the camera device in the cockpit (for example, the camera of the driver monitor system (DMS) or the camera of the cabin monitor system (CMS)).
- the image information is used to determine the user's identity information.
- the user in the main driving area is user B. If the current location of the vehicle is the xx community and the time when it is powered on is 8 a.m., then the vehicle can predict the target mileage to be 45km based on the historical driving records shown in Table 3 above, or the target mileage to be 7 a.m.
- the average of 10 driving distances between 9 a.m. and 9 a.m. (for example, the average is 43km).
- the first distance when the vehicle cannot obtain navigation information, the first distance can also be determined based on one or more mileage of the vehicle starting from the certain location within the preset time period. In this way, the vehicle can obtain more information. Accurate first distance information can help further reduce the risk caused by insufficient cruising range, thereby helping to improve the user's driving experience.
- Figure 10 shows a schematic flow chart of a method 1000 for adjusting a speed limit value provided by an embodiment of the present application. As shown in Figure 10, the method 1000 includes:
- S1002 Adjust the speed limit value of the vehicle to the speed limit value 8 according to the degree of congestion on the road and/or the speed limit value of the road.
- the vehicle can adjust the speed limit value to the speed limit value 8, where the speed limit value 8 is less than the speed limit of the road.
- the speed limit value of the vehicle is adjusted to the speed limit value 8 according to the degree of congestion on the road and/or the speed limit value of the road, including: when the road is clear and the speed limit value 1 is less than the speed limit value of the road. , the speed limit value of the vehicle can be adjusted to the speed limit value 8, where the speed limit value 8 is greater than the speed limit value 1.
- the speed limit value of the road may be 100km/h
- the speed limit value 8 may be 100km/h.
- the speed limit value of the road may be 120 km/h
- the speed limit value 8 may be 110 km/h.
- adjusting the speed limit value of the vehicle to the speed limit value 8 according to the degree of congestion of the road and/or the speed limit value of the road includes: when detecting that the vehicle is located on the first type of road, adjusting the speed limit value of the vehicle according to the road speed limit value. According to the degree of congestion and/or the speed limit value of the road, the speed limit value of the vehicle is adjusted to a speed limit value of 8; where the first type of road includes an expressway, an urban road, or a suburban road.
- the speed limit value of the vehicle can be adjusted to the speed limit value 8.
- the speed limit value of the vehicle can be kept at the speed limit value 1.
- the vehicle may determine the type of road the vehicle is on based on navigation information or map information.
- the vehicle may also determine the type of road the vehicle is on based on images collected by sensors (for example, a surround-view camera outside the vehicle).
- adjusting the speed limit value of the vehicle to the speed limit value 9 according to the degree of congestion on the road and/or the speed limit value of the road includes: when the road is congested, adjusting the speed limit value of the vehicle to Speed limit value 9, the speed limit value 9 is smaller than the speed limit value 1.
- the congestion level of the road may be determined based on navigation information and/or historical driving records.
- the vehicle's speed limit can be adjusted to the speed limit 9 1 kilometer away from the congested road section. In this way, the waste of power consumption caused by the vehicle decelerating suddenly very close to the congested road section can be avoided, which helps to improve the vehicle's cruising range.
- the vehicle can determine whether to adjust the speed limit value 1 to the speed limit value 9 based on the average vehicle speed information on the route saved in the historical driving records. For example, if the average speed of the vehicle when driving on this route for the past five times is 30km/h, it can be considered that congestion will occur when the vehicle is driving on this route, and the speed limit value can be adjusted to a speed limit value of 9.
- the speed limit value 9 can be determined based on the historical average vehicle speed.
- the speed limit value 9 can be 60km/h.
- the speed limit value 9 may be 70km/h.
- the speed limit value 9 may be determined according to the congestion level of the road.
- the speed limit value 9 can be 50km/h.
- the speed limit value 9 may be 70km/h.
- the speed limit value when it is determined that the road is congested, can be reduced to avoid the user's waste of energy consumption due to rapid acceleration or deceleration, which helps to increase the cruising range of the vehicle and avoid causing damage due to insufficient cruising range. Risk reduction will help improve the user’s driving experience.
- FIGS. 8 to 10 The various embodiments shown in FIGS. 8 to 10 above can be combined with each other.
- the speed limit value when it is detected that the cruising range 1 is less than or equal to the first distance, the speed limit value can be reduced from 90km/h to 70km/h. While driving only through the speed limit value of 70km/h, if it is detected that the opening of the accelerator pedal is greater than the threshold A, the speed limit value can be increased from 70km/h to 120km/h. When it is detected that the opening of the accelerator pedal is less than the threshold A, the speed limit value can be reduced from 120km/h to 70km/h. In this way, when the cruising range is insufficient and the user's intention to accelerate urgently is detected, the speed limit value can be increased through the safety priority principle to ensure the vehicle's speed-up space, which helps to improve the safety of the vehicle in emergency situations.
- the vehicle's speed limit can be adjusted from 90km/h to 70km/h 1 kilometer away from the congested road section. While driving only through the speed limit of 70km/h, if it is detected that the opening change rate of the accelerator pedal is greater than threshold B, the speed limit can be increased from 70km/h to 120km/h within 20 seconds. The speed limit can be reduced from 120km/h to 70km/h after 20 seconds. In this way, when the cruising range is insufficient and the user's intention to accelerate urgently is detected, the speed limit value can be increased through the safety priority principle to ensure the vehicle's speed-up space, which helps to improve the safety of the vehicle in emergency situations.
- Figure 11 shows a schematic flowchart of a method 1100 for adjusting a speed limit value provided by an embodiment of the present application. As shown in Figure 11, the method 1100 includes:
- the first speed limit value is 90km/h.
- the preset condition may include the corresponding relationship between the number of times the accelerator pedal opening is greater than P% within the preset time period and the number of triggers n.
- Table 4 shows the corresponding relationship between the number of times the accelerator pedal opening is greater than P% within the preset time period, the number of triggers n, and whether the speed limit value is adjusted.
- the speed limit value can be adjusted to the second speed limit value.
- the number of times the driver actually presses the accelerator pedal is greater than P% is greater than 2.5n.
- the speed limit value can be adjusted to the second speed limit value.
- the preset time period of T 3 if the number of times the driver actually steps on the accelerator pedal is greater than P% for more than 5n times, the speed limit value can be adjusted to the second speed limit value at this time.
- the adjusted speed limit value may also be determined based on the number of times the accelerator pedal opening is greater than P% within a preset period of time.
- Table 5 shows the corresponding relationship between the number of times the accelerator pedal opening is greater than 70% and the second speed limit value within 60 seconds.
- adjusting the speed limit value of the vehicle to the second speed limit value includes: when the accelerator pedal opening degree is detected. When the accelerator pedal opening is greater than or equal to the first threshold, the speed limit value of the vehicle is adjusted to the second speed limit value; and/or when it is detected that the change rate of the accelerator pedal opening is greater than or equal to the second threshold, Adjust the speed limit value of the vehicle to the second speed limit value.
- the above process of adjusting the speed limit value through the accelerator pedal opening and/or the accelerator pedal opening change rate may refer to the description in the above method 800 and will not be described again here.
- the method further includes: when adjusting the speed limit value of the vehicle to the second speed limit value, prompting the user that the speed limit value has been adjusted to the second speed limit value.
- adjusting the speed limit value of the vehicle to the second speed limit value includes: adjusting the speed limit value of the vehicle to the second speed limit value based on the difference between the accelerator pedal opening and the first threshold. value.
- the first threshold is 70%. If the opening of the accelerator pedal is 80%, the speed limit value can be adjusted to 110km/h.
- the first threshold is 70%. If the accelerator pedal opening is 90%, the speed limit value can be adjusted to 120km/h.
- adjusting the speed limit value of the vehicle to the second speed limit value includes: adjusting the speed limit value of the vehicle to the second speed limit value according to the accelerator pedal opening change rate.
- adjusting the speed limit value of the vehicle to the second speed limit value includes: when the change rate of the accelerator pedal opening is detected When the rate is greater than or equal to the second threshold, the speed limit value of the vehicle is adjusted to the second speed limit value within the first preset time period.
- the method further includes: when detecting that the accelerator pedal opening is less than or equal to the first threshold, adjusting the speed limit value of the vehicle to the first speed limit value; and/or, when detecting that the accelerator pedal opening is less than or equal to the first threshold value, When the accelerator pedal opening change rate is less than or equal to the second threshold for a duration greater than or equal to the second preset time, the speed limit value of the vehicle is adjusted to the first speed limit value.
- the method further includes: when adjusting the speed limit value of the vehicle to the first speed limit value, prompting the user that the speed limit value has been adjusted to the first speed limit value.
- adjusting the speed limit value of the vehicle to the first speed limit value includes: adjusting the speed of the vehicle from the current speed to the first speed limit value within a third preset time period.
- adjusting the vehicle speed from the current vehicle speed to the first speed limit value includes: adjusting the vehicle speed from the current vehicle speed to the first speed limit value by decelerating in a straight line or a curve.
- adjusting the vehicle speed from the current vehicle speed to the first speed limit value includes: adjusting the vehicle speed from the current vehicle speed to the first speed limit value by looking up a table.
- the method further includes: when it is detected that the remaining power of the vehicle is less than or equal to a third threshold, and/or the cruising range corresponding to the remaining power is less than or equal to a fourth threshold, changing the speed limit value of the vehicle Adjusted to a third speed limit value; wherein the first speed limit value is greater than the third speed limit value.
- the method further includes: when adjusting the speed limit value of the vehicle to the third speed limit value, prompting the user that the speed limit value has been adjusted to the third speed limit value.
- the above process of adjusting the speed limit value based on the remaining power and/or cruising range when there is no navigation information can refer to the description in the above method 900, and will not be described again here.
- the method further includes: obtaining the first target driving range of the vehicle; determining the first cruising range according to the first remaining power of the vehicle and the first speed limit value; when the first cruising range is less than or equal to When the first distance is reached, the speed limit value of the vehicle is adjusted to a third speed limit value; wherein the first distance is determined by the first target mileage, and the first speed limit value is greater than the third speed limit value.
- obtaining the first target driving mileage of the vehicle includes: obtaining the first target driving mileage according to navigation information; or receiving the first target driving mileage information sent by the map server; or receiving the electronic device ( For example, the first target mileage information sent by a mobile phone).
- the method further includes: obtaining the second target driving range of the vehicle; determining the second cruising range according to the second remaining power of the vehicle and the third speed limit value; when the second cruising range is less than or equal to When the second distance is reached, the speed limit value of the vehicle is adjusted to a fourth speed limit value; wherein the second distance is determined by the second target mileage, and the third speed limit value is greater than the fourth speed limit value.
- the user is prompted to charge the vehicle immediately.
- the method further includes: when detecting that the vehicle is on the first type of road, adjusting the speed limit value of the vehicle to the fifth limit based on the congestion level of the road and/or the speed limit value of the road. speed value; wherein, the first type of road includes an expressway, an urban road, or a suburban road.
- the method further includes: determining the degree of congestion on the road based on navigation information and/or historical driving records of the vehicle while driving on the road.
- the congestion level of the road may include three levels: the road is not congested (or the road is smooth), the road is generally congested, and the road is particularly congested.
- the degree of congestion on the road can be determined through navigation information.
- the congestion level of the road can be determined to be that the road is not congested; if the navigation information shows that the average speed of other vehicles passing the road is When the average vehicle speed is less than 90km/h and greater than 50km/h, the road congestion level can be determined to be general congestion; if the navigation information shows that the average vehicle speed of other vehicles passing the road is less than 50km/h, the road congestion level can be determined.
- the roads are particularly congested.
- the congestion level of the road can be determined to be that the road is not congested; if the navigation information shows that the average speed of other vehicles passing the road is not congested; When the average speed of vehicles is less than 70km/h and greater than 30km/h, it can be determined that the road is generally congested; if the navigation information shows that the average speed of other vehicles passing the road is less than 30km/h, the road can be determined to be congested.
- the roads are extremely congested.
- the road is an urban road. If the average speed of vehicles traveling on this road in the historical driving records is greater than 60km/h, the congestion level of the road can be determined to be that the road is not congested; If the average speed of vehicles traveling on the road is less than 60km/h and greater than 20km/h, the congestion level of the road can be determined to be general congestion; if the average speed of vehicles driving on the road in the historical driving records is less than 20km/h, the road can be determined to be congested The roads are extremely congested.
- the speed limit value of the vehicle is adjusted to the fifth speed limit value according to the congestion degree of the road and/or the speed limit value of the road, including: when the road is clear and the speed limit value of the road is greater than When the first speed limit value is reached, the speed limit value of the vehicle is adjusted to the fifth speed limit value, and the fifth speed limit value is greater than the first speed limit value.
- adjusting the speed limit value of the vehicle to the fifth speed limit value according to the congestion degree of the road and/or the speed limit value of the road includes: when the road is congested, adjusting the speed limit value of the vehicle to The value is adjusted to the fifth speed limit value, which is smaller than the first speed limit value.
- the above process of adjusting the speed limit value based on the congestion degree of the road and/or the speed limit value of the road may refer to the above method 1000 and will not be described again here.
- the first mode belongs to an economic mode or a power saving mode.
- Embodiments of the present application also provide a device for implementing any of the above methods.
- a device is provided that includes a unit (or means) for implementing each step performed by a control device, vehicle or server in any of the above methods. .
- Figure 12 shows a schematic block diagram of a device for adjusting a speed limit value provided by an embodiment of the present application.
- the device 1200 includes: an acquisition unit 1210, used to acquire the accelerator pedal opening and/or the accelerator pedal opening change rate of the vehicle running in the first mode.
- the limit of the vehicle is The speed value is the first speed limit value
- the adjustment unit 1220 is configured to adjust the speed limit value of the vehicle to the second speed limit when the accelerator pedal opening and/or the accelerator pedal opening change rate meet the preset conditions. value; wherein, the second speed limit value is greater than the first speed limit value.
- the adjustment unit 1220 is specifically configured to: when detecting that the accelerator pedal opening is greater than or equal to the first threshold, adjust the speed limit value of the vehicle to the second speed limit value; and/or, when detecting When the accelerator pedal opening change rate is greater than or equal to the second threshold, the speed limit value of the vehicle is adjusted to the second speed limit value.
- the adjustment unit 1220 is specifically configured to: when detecting that the accelerator pedal opening change rate is greater than or equal to the second threshold, adjust the speed limit of the vehicle to the second limit within the first preset time period. Speed value.
- the adjustment unit 1220 is also configured to adjust the speed limit value of the vehicle to the first speed limit value when the accelerator pedal opening is less than or equal to the first threshold; and/or, when the acceleration When the pedal opening change rate is less than or equal to the second threshold for a duration greater than or equal to the second preset time, the speed limit value of the vehicle is adjusted to the first speed limit value.
- the adjustment unit 1220 is specifically configured to adjust the speed limit value of the vehicle from the second speed limit value to the first speed limit value within a third preset time period.
- the adjustment unit 1220 is also configured to adjust the speed limit of the vehicle when the remaining power of the vehicle is less than or equal to the third threshold, and/or the cruising range corresponding to the remaining power is less than or equal to the fourth threshold.
- the value is adjusted to the third speed limit value; wherein the first speed limit value is greater than the third speed limit value.
- the device further includes a determining unit, wherein the obtaining unit 1210 is further configured to obtain the first target driving range of the vehicle; the determining unit is configured to obtain the first remaining power of the vehicle and the first The speed limit value determines the first cruising range; the adjustment unit 1220 is also used to adjust the speed limit value of the vehicle to the third speed limit value when the first cruising range is less than or equal to the first distance; wherein, the The first distance is determined by the first target driving mileage, and the first speed limit value is greater than the third speed limit value.
- the obtaining unit 1210 is also used to obtain the second target driving range of the vehicle; the determining unit is also used to determine the second driving range according to the second remaining power of the vehicle and the third speed limit value. ;
- the adjustment unit 1220 is also used to adjust the speed limit value of the vehicle to a fourth speed limit value when the second cruising range is less than or equal to the second distance; wherein the second distance is driven by the second target The mileage is determined and the third speed limit value is greater than the fourth speed limit value.
- the obtaining unit 1210 is specifically configured to: obtain the second target driving mileage when the user switches destinations; or obtain the second target driving mileage when the destination cannot be reached according to the third speed limit value. .
- the acquisition unit 1210 is specifically configured to: receive information about the first target driving mileage; or, when the user inputs a destination, obtain the first target driving mileage based on the destination; or, based on historical driving records, Get that first target mileage.
- the determining unit is specifically configured to determine the first cruising range based on the first remaining power of the vehicle, the first speed limit value, and historical energy consumption information of the vehicle.
- the adjustment unit 1220 is also configured to adjust the speed limit value of the vehicle to the fifth speed limit value according to the congestion degree of the road and/or the speed limit value of the road when the vehicle is located on the first type of road.
- Speed limit value is also configured to adjust the speed limit value of the vehicle to the fifth speed limit value according to the congestion degree of the road and/or the speed limit value of the road when the vehicle is located on the first type of road.
- the first type of road includes an expressway, an urban road or a suburban road.
- the adjustment unit 1220 is specifically configured to: when the road is clear and the speed limit value of the road is greater than the first speed limit value, adjust the speed limit value of the vehicle to the fifth speed limit value, and the third speed limit value is The fifth speed limit value is greater than the first speed limit value.
- the adjustment unit 1220 is specifically configured to adjust the speed limit value of the vehicle to the fifth speed limit value when the road is congested, and the fifth speed limit value is smaller than the first speed limit value.
- the first mode belongs to an economic mode or a power saving mode.
- each unit in the above device is only a division of logical functions. In actual implementation, it can be fully or partially integrated into a physical entity, or it can also be physically separated.
- the unit in the device can be implemented in the form of a processor calling software; for example, the device includes a processor, the processor is connected to a memory, instructions are stored in the memory, and the processor calls the instructions stored in the memory to implement any of the above methods.
- the processor is, for example, a general-purpose processor, such as a CPU or a microprocessor
- the memory is a memory within the device or a memory outside the device.
- the units in the device can be implemented in the form of hardware circuits, and some or all of the functions of the units can be implemented through the design of the hardware circuits, which can be understood as one or more processors; for example, in one implementation,
- the hardware circuit is an ASIC, which realizes the functions of some or all of the above units through the design of the logical relationship of the components in the circuit; for another example, in another implementation, the hardware circuit can be implemented through PLD, taking FPGA as an example. It can include a large number of logic gate circuits, and the connection relationships between the logic gate circuits can be configured through configuration files to realize the functions of some or all of the above units. All units of the above device may be fully realized by the processor calling software, or may be fully realized by hardware circuits, or part of the units may be realized by the processor calling software, and the remaining part may be realized by hardware circuits.
- the processor is a circuit with signal processing capabilities.
- the processor may be a circuit with instruction reading and execution capabilities, such as a CPU, a microprocessor, a GPU, or DSP, etc.; in another implementation, the processor can realize certain functions through the logical relationship of the hardware circuit. The logical relationship of the hardware circuit is fixed or can be reconstructed.
- the processor is a hardware circuit implemented by ASIC or PLD. For example, FPGA.
- the process of the processor loading the configuration file and realizing the hardware circuit configuration can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
- it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as NPU, TPU, DPU, etc.
- each unit in the above device may be one or more processors (or processing circuits) configured to implement the above method, such as: CPU, GPU, NPU, TPU, DPU, microprocessor, DSP, ASIC, FPGA , or a combination of at least two of these processor forms.
- processors or processing circuits
- each unit in the above device may be integrated together in whole or in part, or may be implemented independently. In one implementation, these units are integrated together and implemented as a SOC.
- the SOC may include at least one processor for implementing any of the above methods or implementing the functions of each unit of the device.
- the at least one processor may be of different types, such as a CPU and an FPGA, or a CPU and an artificial intelligence processor. CPU and GPU etc.
- Embodiments of the present application also provide a device, which includes a processing unit and a storage unit, where the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the device performs the method performed in the above embodiments or step.
- the above-mentioned processing unit may be the processor 151-15n shown in Figure 1.
- the embodiment of the present application also provides a vehicle, which may include the above-mentioned device 710 or device 1200.
- the vehicle may be a vehicle.
- This embodiment of the present application also provides a server, which may include the above-mentioned device 710 or device 1200.
- Embodiments of the present application also provide a computer program product.
- the computer program product includes: computer program code.
- the computer program code When the computer program code is run on a computer, it causes the computer to execute the above method.
- Embodiments of the present application also provide a computer-readable medium.
- the computer-readable medium stores program code.
- the computer program code When the computer program code is run on a computer, it causes the computer to perform the above method.
- each step of the above method can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
- the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor.
- the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory, or power-on erasable programmable memory, registers and other mature storage media in this field.
- the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
- the memory may include a read-only memory and a random access memory, and provide instructions and data to the processor.
- the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
- the execution order of each process should be determined by its functions and internal logic, and should not be implemented in this application.
- the implementation of the examples does not constitute any limitations.
- the disclosed systems, devices and methods can be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
- the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
- the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
- the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
- the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
Abstract
本申请实施例提供了一种调整限速值的方法、装置和车辆,该方法包括:获取运行在第一模式下的车辆的加速踏板开度和/或加速踏板开度变化率,在该第一模式下该车辆的限速值为第一限速值;在检测到该加速踏板开度和/或该加速踏板开度变化率满足预设条件时,将该车辆的限速值调整为第二限速值;其中,该第二限速值大于该第一限速值。本申请实施例可以应用智能汽车或者电动汽车,有助于提升车辆的安全性,也有助于提升用户的体验。
Description
本申请实施例涉及智能驾驶领域,并且更具体地,涉及一种调整限速值的方法、装置和车辆。
新能源汽车普遍存在续航焦虑问题,尤其是低电量或续航不足的场景下,因此提升续航里程非常关键。通过限制车速来节约能耗是非常有效的方式,原因是高车速时风阻大会导致车辆的能耗高,同时通过限制车速可以减少用户激烈驾驶的情况。当前车辆的限速值通常是固定不变的,这样会影响到车辆的安全性。
发明内容
本申请实施例提供一种调整限速值的方法、装置和车辆,有助于提升车辆的安全性,也有助于提升用户的体验。
本申请中的车辆(有时简称为车)为广义概念上的车辆,可以是交通工具(如汽车、卡车、摩托车、飞机、火车、轮船等),工业车辆(如:叉车、挂车、牵引车等),工程车辆(如挖掘机、推土车、吊车等),农用设备(如割草机、收割机等),游乐设备,玩具车辆等,本申请实施例对车辆的类型不作具体限定。
第一方面,提供了一种调整限速值的方法,该方法包括:获取运行在第一模式下的车辆的加速踏板开度和/或加速踏板开度变化率,在该第一模式下该车辆的限速值为第一限速值;在检测到该加速踏板开度和/或该加速踏板开度变化率满足预设条件时,将该车辆的限速值调整为第二限速值;其中,该第二限速值大于该第一限速值。
本申请实施例中,在加速踏板开度和/或加速踏板开度变化率满足预设条件时,车辆可以将限速值由第一限速值调高至第二限速值。这样,可以通过加速踏板开度和/或加速踏板开度变化率判断用户是否有紧急加速的意图。在识别到用户有紧急加速的意图时,通过提高限速值,有助于保证车辆在紧急情况(例如,需要进行超车时)下有提速的空间,有助于提升车辆的安全性,也有助于提升用户的驾乘体验。同时,通过动态调整限速值,可以满足车辆在不同场景下的需求,有助于提升车辆的智能化程度。
以上加速踏板还可以理解为油门。
在一些可能的实现方式中,该方法还包括:在获取加速踏板开度和/或加速踏板开度变化率之前,确定进入第一模式。
在一些可能的实现方式中,该第一模式属于经济模式或者省电模式。
在一些可能的实现方式中,在检测到用户从多个模式中选择第一模式的操作时,确定进入第一模式;或者,在检测到用户关闭多个附件(例如,空调、中控屏、音响、灯光、座椅等附件)中的部分或者全部时,确定进入第一模式。
在一些可能的实现方式中,该方法还包括:提示用户车辆的限速值由第一限速值调整至第二限速值。
结合第一方面,在第一方面的某些实现方式中,该在检测到该加速踏板开度和/或该加速踏板开度变化率满足预设条件时,将该车辆的限速值调整为第二限速值,包括:在检测到该加速踏板开度大于或者等于第一阈值时,将该车辆的限速值调整为该第二限速值;和/或,在检测到该加速踏板开度变化率大于或者等于第二阈值时,将该车辆的限速值调整为该第二限速值。
本申请实施例中,在检测到该加速踏板开度大于或者等于第一阈值和/或检测到该加速踏板开度变化率大于或者等于第二阈值时,车辆可以将限速值由第一限速值调高至第二限速值。这样,有助于保证车辆在紧急情况(例如,需要进行超车时)下有提速的空间,有助于提升车辆的安全性,也有助于提升用户的驾乘体验。同时,通过动态调整限速值,可以满足车辆在不同场景下的需求,有助于提升车辆的智能化程度。
在一些可能的实现方式中,将该车辆的限速值调整为该第二限速值,包括:根据该加速踏板开度与第一阈值的差值,将该车辆的限速值调整为该第二限速值。
在一些可能的实现方式中,将该车辆的限速值调整为该第二限速值,包括:根据该加速踏板开度变化率,将该车辆的限速值调整为该第二限速值。
结合第一方面,在第一方面的某些实现方式中,该在检测到该加速踏板开度变化率大于或者等于第二阈值时,将该车辆的限速值调整为该第二限速值,包括:在检测到该加速踏板开度变化率大于或者等于第二阈值时,在第一预设时长内将该车辆的限速值调整为该第二限速值。
本申请实施例中,在检测到加速踏板开度变化率大于或者等于第二阈值时,可以在第一预设时长内将车辆的限速值调整为第二限速值,这样保证车辆在第一预设时长内有提速的空间,有助于提升车辆的智能化程度和安全性,也有助于提升用户的驾乘体验。
在一些可能的实现方式中,在检测到该加速踏板开度大于或者等于第一阈值时,将该车辆的限速值调整为该第二限速值,包括:在检测到该加速踏板开度大于或者等于第一阈值时,在第四预设时长内将该车辆的限速值调整为该第二限速值。
结合第一方面,在第一方面的某些实现方式中,在检测到该加速踏板开度小于或者等于该第一阈值时,将该车辆的限速值调整为该第一限速值;和/或,在检测到该加速踏板开度变化率小于或者等于该第二阈值的持续时长大于或者等于第二预设时长时,将该车辆的限速值调整为该第一限速值。
本申请实施例中,在检测到加速踏板开度小于或者等于该第一阈值和/或检测到该加速踏板开度变化率小于或者等于该第二阈值的持续时长大于或者等于第二预设时长时,可以将车辆的限速值调整为该第一限速值。这样,在保证车辆当前处于非紧急情况时自动将限速值调低,有助于提升车辆的续航里程。同时,通过动态调整限速值,可以满足车辆在不同场景下的需求,有助于提升车辆的智能化程度。
在一些可能的实现方式中,该方法还包括:提示用户车辆的限速值由第二限速值调整至第一限速值。
结合第一方面,在第一方面的某些实现方式中,该将该车辆的限速值调整为该第一限速值,包括:在第三预设时长内,将该车辆的车速由当前车速调节为该第一限速值。
本申请实施例中,通过第三预设时长,可以将车辆的限速值由第二限速值调节为第一限速值,避免由于急减速给用户带来的影响,有助于提升限速值调节过程中用户的驾驶舒适性,从而有助于提升用户的驾乘体验。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:在检测到该车辆的剩余电量小于或者等于第三阈值,和/或,该剩余电量对应的续航里程小于或者等于第四阈值时,将该车辆的限速值调整为第三限速值;其中,该第一限速值大于该第三限速值。
本申请实施例中,无导航信息的情况下,若检测到车辆的剩余电量小于或者等于第三阈值和/或该剩余电量对应的续航里程小于或者等于第四阈值,那么可以将车辆的限速值调整为第三限速值。这样,通过降低车辆的限速值,可以提升车辆的续航里程,避免由于续航里程不足给用户带来的风险,从而有助于提升用户的驾乘体验。
在一些可能的实现方式中,该方法还包括:提示用户车辆的限速值由第一限速值调整至第三限速值。
在一些可能的实现方式中,检测到该车辆的剩余电量对应的续航里程小于或者等于第四阈值,包括:根据车辆的历史能耗信息和剩余电量确定该续航里程;确定该续航里程小于或者等于该第四阈值。
在一些可能的实现方式中,车辆当前通过第一路线行使,该车辆的历史能耗信息包括历史上车辆通过该第一路线行使时的能耗信息;或者,该历史能耗信息包括车辆最近行驶的预设距离(例如,100公里)的能耗信息。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:获取该车辆的第一目标行驶里程;根据该车辆的第一剩余电量以及该第一限速值,确定第一续航里程;在该第一续航里程小于或者等于第一距离时,将该车辆的限速值调整为第三限速值;其中,该第一距离由该第一目标行驶里程确定,该第一限速值大于该第三限速值。
本申请实施例中,车辆可以获取第一目标行驶里程以及在第一剩余电量和第一限速值下的第一续航里程,若第一续航里程小于或者等于第一距离,则可以将车辆的限速值调整为第三限速值。这样,在续航里程不能支持车辆完成行驶任务时,通过降低限速值可以提升车辆的续航里程,有助于避免由于续航里程不足给用户带来的风险,从而有助于提升用户的驾乘体验。同时,通过动态调整限速值,有助于提升车辆的智能化程度。
在一些可能的实现方式中,该方法还包括:提示用户通过第一限速值无法到达目的地且已经为用户切换至第三限速值。
在一些可能的实现方式中,在该第一剩余电量以及该第三限速值下,该车辆的续航里程大于该第一距离。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:获取该车辆的第二目标行驶里程;根据该车辆的第二剩余电量以及该第三限速值,确定第二续航里程;在该第二续航里程小于或者等于第二距离时,将该车辆的限速值调整为第四限速值;其中,该第二距离由该第二目标行驶里程确定,该第三限速值大于该第四限速值。
本申请实施例中,在车辆将限速值调整至第三限速值后,车辆还可以计算第二目标行驶里程以及在第二剩余电量和第三限速值下的第二续航里程,在该第二续航里程小于或者等于第二距离时,将该车辆的限速值调整为第四限速值。这样,在将限速值调整至第三限速值后,车辆按照该第三限速值行驶一段时间后确定续航里程还不能支持车辆完成行驶任 务时,可以进一步降低限速值,从而进一步提升车辆的续航里程,有助于避免由于续航里程不足给用户带来的风险,从而有助于提升用户的驾乘体验。
结合第一方面,在第一方面的某些实现方式中,该获取该车辆的第二目标行驶里程,包括:在检测到用户切换目的地的操作,获取该第二目标行驶里程;或者,在按照该第三限速值无法到达目的地时,获取该第二目标行驶里程。
本申请实施例中,车辆可以在检测到用户更换目的地的操作,或者,可以在按照第三限速值无法到达目的地时时,获取第二目标行驶里程。在第二续航里程小于或者等于由第二目标行驶里程确定的第二距离时,可以及时将车辆的限速值调低,有助于降低由于续航里程不足给用户带来的风险,从而有助于提升用户的驾乘体验。
在一些可能的实现方式中,在该第二剩余电量以及该第四限速值下,该车辆的续航里程大于该第二距离。
在一些可能的实现方式中,车辆在通过第四限速值行驶的过程中确定按照第四限速值无法到达目的地且已经无法再降低限速值,那么车辆可以提示用户对车辆充电,或者,提示用户切换目的地。此时,车辆可以维持在该最低限速值。
结合第一方面,在第一方面的某些实现方式中,该获取第一目标行驶里程,包括:接收该第一目标行驶里程的信息;在检测到用户输入目的地的操作时,获取该第一目标行驶里程;或者,根据历史行驶记录,获取该第一目标行驶里程。
本申请实施例中,车辆可以接收其他设备(例如,地图服务器)发送的第一目标行驶里程的信息,或者,在检测到用户输入目的地的操作时可以根据该目的地获取该第一目标行驶里程的信息,或者,根据车辆的历史行驶记录,可以获取该第一目标行驶里程的信息。这样,车辆可以通过在某个限速值下的续航里程与由第一目标行驶里程确定的第一距离进行对比,从而确定车辆是否可以行驶至目的地,有助于降低由于续航里程不足给用户带来的风险,从而有助于提升用户的驾乘体验。
在一些可能的实现方式中,该接收该第一目标行驶里程的信息,包括:向地图服务器发送车辆的能耗信息以及目的地的信息;接收该地图服务器根据车辆的能耗信息以及目的地确定的第一目标行驶里程。这样,通过将车辆的能耗信息发送给地图服务器,使得地图服务器确定的第一目标行驶里程更为精确,有助于进一步提升车辆判断续航里程是否支持车辆完成行驶任务时的准确度,有助于降低由于续航里程不足给用户带来的风险,从而有助于提升用户的驾乘体验。
结合第一方面,在第一方面的某些实现方式中,该根据该车辆的第一剩余电量以及该第一限速值,确定第一续航里程,包括:根据该车辆的第一剩余电量、该第一限速值以及该车辆的历史能耗信息,确定该第一续航里程。
本申请实施例中,在确定车辆的续航里程时还可以结合车辆的历史能耗信息,这样可以使得车辆计算的续航里程更为准确,有助于降低由于续航里程不足给用户带来的风险,从而有助于提升用户的驾乘体验。
在一些可能的实现方式中,车辆当前通过第一路线行使,该车辆的历史能耗信息包括历史上车辆通过该第一路线行使时的能耗信息;或者,该历史能耗信息包括车辆最近行驶的预设距离(例如,100公里)的能耗信息。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:在检测到该车辆位于 第一类型的道路时,根据该道路的拥堵程度和/或该道路的限速值,将该车辆的限速值调整为第五限速值;其中,该第一类型的道路包括高速公路、市区道路或者市郊道路。
本申请实施例中,车辆可以基于道路类型和道路的拥堵情况对限速值进行调节,使得限速值的调节过程更符合真实场景,有助于提升用户的驾乘体验。
结合第一方面,在第一方面的某些实现方式中,该根据该道路的拥堵程度和/或该道路的限速值,将该车辆的限速值调整为第五限速值,包括:在该道路通畅且该道路的限速值大于该第一限速值时,将该车辆的限速值调整为该第五限速值,该第五限速值大于该第一限速值。
本申请实施例中,在道路畅通且道路的限速值高于当前车辆的限速值时,可以将车辆的限速值调高,从而使得车辆在通畅的道路上行驶时驾驶体验更好。
结合第一方面,在第一方面的某些实现方式中,该根据该道路的拥堵程度和/或该道路的限速值,将该车辆的限速值调整为第五限速值,包括:在该道路拥堵时,将该车辆的限速值调整为该第五限速值,该第五限速值小于该第一限速值。
本申请实施例中,在道路拥堵时可以将车辆的限速值调低,这样可以避免在拥堵情况下用户急加速或者急减速而造成的功耗浪费,有助于提升车辆的续航里程。
在一些可能的实现方式中,该方法还包括:根据导航信息和/或历史行驶记录,确定该道路的拥堵程度。
在一些可能的实现方式中,该历史行驶记录包括车辆在该道路上行驶时的速度信息。
在一些可能的实现方式中,将该车辆的限速值调整为该第五限速值,包括:根据道路拥堵程度,将该车辆的限速值调整为该第五限速值。
本申请实施例中,车辆可以结合道路的拥堵程度动态调整限速值。例如,在道路特别拥堵时限速值低于道路一般拥堵时的限速值,这样,可以避免在拥堵情况下用户急加速或者急减速而造成的功耗浪费,有助于提升车辆的续航里程,也更符合实际的场景。
第二方面,提供了一种调整限速值的装置,该装置包括:获取单元,用于获取运行在第一模式下的车辆的加速踏板开度和/或加速踏板开度变化率,在该第一模式下车辆的限速值为第一限速值;调整单元,用于在该加速踏板开度和/或该加速踏板开度变化率满足预设条件时,将该车辆的限速值调整为第二限速值;其中,该第二限速值大于该第一限速值。
结合第二方面,在第二方面的某些实现方式中,该调整单元具体用于:在检测到该加速踏板开度大于或者等于第一阈值时,将该车辆的限速值调整为该第二限速值;和/或,在检测到该加速踏板开度变化率大于或者等于第二阈值时,将该车辆的限速值调整为该第二限速值。
结合第二方面,在第二方面的某些实现方式中,该调整单元具体用于:在检测到该加速踏板开度变化率大于或者等于第二阈值时,在第一预设时长内将该车辆的限速值调整为该第二限速值。
结合第二方面,在第二方面的某些实现方式中,该调整单元,还用于在该加速踏板开度小于或者等于该第一阈值时,将该车辆的限速值调整为该第一限速值;和/或,在该加速踏板开度变化率小于或者等于该第二阈值的持续时长大于或者等于第二预设时长时,将该车辆的限速值调整为该第一限速值。
结合第二方面,在第二方面的某些实现方式中,该调整单元具体用于:在第三预设时长内,将该车辆的车速由当前车速调节为该第一限速值。
结合第二方面,在第二方面的某些实现方式中,该调整单元,还用于在该车辆的剩余电量小于或者等于第三阈值,和/或,该剩余电量对应的续航里程小于或者等于第四阈值时,将该车辆的限速值调整为第三限速值;其中,该第一限速值大于该第三限速值。
结合第二方面,在第二方面的某些实现方式中,该装置还包括确定单元,其中,该获取单元,还用于获取该车辆的第一目标行驶里程;该确定单元,用于根据该车辆的第一剩余电量以及该第一限速值,确定第一续航里程;该调整单元,还用于在该第一续航里程小于或者等于第一距离时,将该车辆的限速值调整为第三限速值;其中,该第一距离由该第一目标行驶里程确定,该第一限速值大于该第三限速值。
结合第二方面,在第二方面的某些实现方式中,该获取单元,还用于获取该车辆的第二目标行驶里程;该确定单元,还用于根据该车辆的第二剩余电量以及该第三限速值,确定第二续航里程;该调整单元,还用于在该第二续航里程小于或者等于第二距离时,将该车辆的限速值调整为第四限速值;其中,该第二距离由该第二目标行驶里程确定,该第三限速值大于该第四限速值。
结合第二方面,在第二方面的某些实现方式中,该获取单元具体用于:在用户切换目的地时,获取该第二目标行驶里程;或者,在按照该第三限速值无法到达目的地时,获取该第二目标行驶里程。
结合第二方面,在第二方面的某些实现方式中,该获取单元具体用于:接收该第一目标行驶里程的信息;在用户输入目的地时,根据该目的地获取该第一目标行驶里程;或者,根据历史行驶记录,获取该第一目标行驶里程。
结合第二方面,在第二方面的某些实现方式中,该确定单元具体用于:根据该车辆的第一剩余电量、该第一限速值以及该车辆的历史能耗信息,确定该第一续航里程。
结合第二方面,在第二方面的某些实现方式中,该调整单元,还用于在该车辆位于第一类型的道路时,根据该道路的拥堵程度和/或该道路的限速值,将该车辆的限速值调整为第五限速值;其中,该第一类型的道路包括高速公路、市区道路或者市郊道路。
结合第二方面,在第二方面的某些实现方式中,该调整单元具体用于:在该道路通畅且该道路的限速值大于该第一限速值时,将该车辆的限速值调整为该第五限速值,该第五限速值大于该第一限速值。
结合第二方面,在第二方面的某些实现方式中,该调整单元具体用于:在该道路拥堵时,将该车辆的限速值调整为该第五限速值,该第五限速值小于该第一限速值。
结合第二方面,在第二方面的某些实现方式中,该第一模式属于经济模式或者省电模式。
第三方面,提供了一种装置,该装置包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使该装置执行第一方面中任一种可能的方法。
第四方面,提供了一种控制器,该整车控制器包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使该装置执行第一方面中任一种可能的方法。
结合第四方面,在第四方面的某些实现方式中,该控制器为整车控制器。
结合第四方面,在第四方面的某些实现方式中,该控制器包括整车控制器和座舱域控制器。
可选地,上述处理单元可以包括至少一个处理器,上述存储单元可以是存储器,其中存储器可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是交通工具内位于芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第五方面,提供了一种终端,该终端包括上述第二方面或者第三方面中任一方面所述的装置。
结合第五方面,在第五方面的某些实现方式中,该终端为车辆。其中,当该终端为车辆时,该车辆可以包括上述第二方面或者第三方面中任一方面所述的装置,或者,包括上述第四方面中所述的控制器。
第六方面,提供了一种服务器,该服务器包括上述第二方面或者第三方面中任一方面所述的装置。
在一些可能的实现方式中,该服务器可以为虚拟服务器,或者,该服务器可以为实体服务器。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中任一种可能的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第八方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中任一种可能的方法。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述第一方面任一种可能的方法。
结合第九方面,在一种可能的实现方式中,该处理器通过接口与存储器耦合。
结合第九方面,在一种可能的实现方式中,该芯片系统还包括存储器,该存储器中存储有计算机程序或计算机指令。
图1是申请实施例提供的车辆的一个功能框图示意。
图2是本申请实施例提供的一组图形用户界面GUI。
图3是本申请实施例提供的另一组GUI。
图4是本申请实施例提供的另一GUI。
图5是本申请实施例提供的另一组GUI。
图6是本申请实施例提供的另一组GUI。
图7是本申请实施例提供的系统架构的示意图。
图8是本申请实施例提供的调整限速值的方法的示意性流程图。
图9是本申请实施例提供的调整限速值的方法的另一示意性流程图。
图10是本申请实施例提供的调整限速值的方法的另一示意性流程图。
图11是本申请实施例提供的调整限速值的方法的另一示意性流程图。
图12是本申请实施例提供的调整限速值的装置的示意性框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例中采用诸如“第一”、“第二”的前缀词,仅仅为了区分不同的描述对象,对被描述对象的位置、顺序、优先级、数量或内容等没有限定作用。本申请实施例中对序数词等用于区分描述对象的前缀词的使用不对所描述对象构成限制,对所描述对象的陈述参见权利要求或实施例中上下文的描述,不应因为使用这种前缀词而构成多余的限制。此外,在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1是本申请实施例提供的车辆100的一个功能框图示意。车辆100可以包括感知系统120、显示装置130和计算平台150,其中,感知系统120可以包括感测关于车辆100周边的环境的信息的若干种传感器。例如,感知系统120可以包括定位系统,定位系统可以是全球定位系统(global positioning system,GPS),也可以是北斗系统或者其他定位系统、惯性测量单元(inertial measurement unit,IMU)、激光雷达、毫米波雷达、超声雷达以及摄像装置中的一种或者多种。
车辆100的部分或所有功能可以由计算平台150控制。计算平台150可包括处理器151至15n(n为正整数),处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如中央处理单元(central processing unit,CPU)、微处理器、图形处理器(graphics processing unit,GPU)(可以理解为一种微处理器)、或数字信号处理器(digital signal processor,DSP)等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为专用集成电路(application-specific integrated circuit,ASIC)或可编程逻辑器件(programmable logic device,PLD)实现的硬件电路,例如FPGA。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元(neural network processing unit,NPU)、张量处理单元(tensor processing unit,TPU)、深度学习处理单元(deep learning processing unit,DPU)等。此外,计算平台150还可以包括存储器,存储器用于存储指令,处理器151至15n中的部分或全部处理器可以调用存储器中的指令,执行指令,以实现相应的功能。
座舱内的显示装置130主要分为两类,第一类是车载显示屏;第二类是投影显示屏,例如抬头显示装置(head up display,HUD)。车载显示屏是一种物理显示屏,是车载信 息娱乐系统的重要组成部分,座舱内可以设置有多块显示屏,如数字仪表显示屏,中控屏,副驾驶位上的乘客(也称为前排乘客)面前的显示屏,左侧后排乘客面前的显示屏以及右侧后排乘客面前的显示屏,甚至是车窗也可以作为显示屏进行显示。抬头显示,也称平视显示系统。主要用于在驾驶员前方的显示设备(例如挡风玻璃)上显示例如时速、导航等驾驶信息。以降低驾驶员视线转移时间,避免因驾驶员视线转移而导致的瞳孔变化,提升行驶安全性和舒适性。HUD例如包括组合型抬头显示(combiner-HUD,C-HUD)系统、风挡型抬头显示(windshield-HUD,W-HUD)系统、增强现实型抬头显示系统(augmented reality HUD,AR-HUD)。
图2示出了本申请实施例提供的一组图形用户界面(graphical user interface,GUI)。
如图2中的(a)所示,车辆中控屏在显示壁纸、车辆上登录的用户账号的头像信息、蓝牙功能图标、Wi-Fi功能图标、蜂窝网络信号图标、切换至显示设置的卡片201、切换至显示车载音乐应用的卡片202、车辆剩余电量以及剩余行驶里程的显示卡片203、切换至显示导航应用的卡片204。在检测到用户将车辆的模式切换至超级省电模式的操作时,车辆可以通过中控屏显示提示框205,其中,提示框205中包括提示信息“车辆进入超级省电模式,超级省电模式下车辆的限速值为90km/h”。
以上提示框中显示的“超级省电模式下车辆的限速值为90km/h”可以理解为超级省电模式下默认的限速值为90km/h。
一个实施例中,在检测到加速踏板的开度大于或者等于第一阈值时,车辆可以将限速值提升。这样,通过检测到加速踏板的开度大于或者等于第一阈值,车辆可以识别到用户有紧急加速的意图,通过可以将限速值提升,从而实现车辆在紧急情况下的加速。
如图2中的(b)所示,在检测到加速踏板的开度大于或者等于第一阈值(例如,80%)时,车辆可以认为用户有加速超车的意图,从而可以通过中控屏显示提示框206,其中,提示框206中包括提示信息“检测您正在加速超车,已为您将限速值提升至120km/h”。通过将限速值从90km/h提升至120km/h,可以使得用户驾驶车辆完成超车。
一个实施例中,在检测到加速踏板的开度大于或者等于第一阈值时,车辆可以在第四预设时长(例如,30秒)内将限速值提升。
例如,在检测到加速踏板的开度大于或者等于第一阈值(例如,80%)时,车辆可以启动定时器,该定时器的时长可以为30秒。在定时器运行期间,车辆的限速值调整至120km/h。在定时器超时后,车辆的限速值调整至90km/h。
又例如,在定时器运行期间(例如,定时器运行至15秒)时,车辆再一次检测到加速踏板的开度大于或者等于第一阈值,那么车辆可以重新启动该定时器。
一个实施例中,在检测到加速踏板的开度大于或者等于第一阈值时,车辆可以认为用户有加速超车的意图包括:在检测到加速踏板的开度大于或者等于第一阈值且检测到用户打开左转向灯时,确定用户有加速超车的意图。
一个实施例中,在检测到加速踏板的开度大于或者等于第一阈值时,车辆可以认为用户有加速超车的意图包括:在检测到加速踏板的开度大于或者等于第一阈值、检测到用户打开左转向灯且检测到与车辆位于同一车道内的另一车辆位于车辆的前方时,确定用户有加速超车的意图。
一个实施例中,在检测到与车辆位于同一车道内的另一车辆位于车辆的前方且该另一 车辆也打开左转向灯时,车辆可以确定该另一车辆有向左变更车辆、左转弯或者掉头的意图,此时车辆可以保持在超级省电模式下默认的限速值。从而可以避免加速超车而带来的安全事故。
一个实施例中,在检测到加速踏板的开度变化率大于或者等于第二阈值时,车辆可以将限速值提升。这样,通过检测到加速踏板的开度变化率大于或者等于第二阈值,车辆可以识别到用户有紧急加速的意图,通过可以将限速值提升,从而实现车辆在紧急情况下的加速。
一个实施例中,在检测到加速踏板的开度变化率大于或者等于第二阈值时,车辆可以在第一预设时长(例如,30秒)内将限速值提升。
一个实施例中,车辆可以根据道路的限速情况,在检测到用户有紧急加速的意图时,将限速值提升。例如,在检测到道路的限速为100km/h且加速踏板的开度大于或者等于第一阈值时,车辆可以将限速值由90km/h提升至100km/h。
本申请实施例中,在加速踏板开度和/或加速踏板开度变化率满足预设条件时,车辆可以将限速值提升。这样,可以通过加速踏板开度和/或加速踏板开度变化率判断用户是否有紧急加速的意图。在识别到用户有紧急加速的意图时,通过提高限速值,有助于保证车辆在紧急情况(例如,需要进行超车时)下有提速的空间,有助于提升车辆的安全性,也有助于提升用户的驾乘体验。同时,通过动态调整限速值,可以满足车辆在不同场景下的需求,有助于提升车辆的智能化程度。
如图2中的(c)所示,在检测到加速踏板的开度小于第一阈值时,车辆可以识别到用户已经完成加速超车,从而可以通过中控屏显示提示框207,其中,提示框207中包括提示信息“检测您已完成超车,已为您将限速值降低至90km/h”。
一个实施例中,在检测到加速踏板的开度小于第一阈值时,车辆可以识别到用户已经完成加速超车,包括:在检测到加速踏板的开度小于第一阈值且检测到用户打开右转向灯并控制车辆回归原车道时,车辆可以识别到用户已经完成加速超车。
一个实施例中,在检测到加速踏板的开度变化率小于第二阈值时,车辆可以将限速值调回至超级省电模式下默认的限速值。这样,通过检测到加速踏板的开度变化率小于第二阈值,车辆可以识别到用户当前没有紧急加速的意图,通过可以将限速值调整至超级省电模式下默认的限速值,从而提升车辆的续航里程。同时,无需用户手动调节至默认的限速值,有助于提升车辆的智能化程度。
一个实施例中,在检测到加速踏板的开度变化率小于第二阈值时,车辆可以将限速值调整至超级省电模式下默认的限速值,包括:在检测到加速踏板的开度变化率小于第二阈值的持续时长大于或者等于第二预设时长时,车辆可以将限速值调整至超级省电模式下默认的限速值。
一个实施例中,车辆可以将限速值调整至超级省电模式下默认的限速值,包括,在第三预设时长内,将限速值调整至超级省电模式下默认的限速值。
图3示出了本申请实施例提供的另一组GUI。
如图3中的(a)所示,车辆处于超级省电模式下,车辆中控屏在显示壁纸、车辆上登录的用户账号的头像信息、蓝牙功能图标、Wi-Fi功能图标和蜂窝网络信号图标、以及卡片201-204。此时,车辆的限速值可以为上述超级省电下的默认限速值(例如,90km/h), 其中,车辆剩余电量以及剩余行驶里程的显示卡片203上显示车辆的剩余电量为10%且在剩余电量10%以及默认限速值下,车辆的续航里程为40km。
如图3中的(b)所示,在检测到剩余电量小于第三阈值(例如,10%)时,车辆可以通过中控屏显示提示框301,其中,提示框301中包括提示信息“检测到剩余电量低于10%,已为您将限速值降低至70km/h,请及时充电”。此时,车辆可以将限速值由90km/h调整至70km/h,其中,车辆剩余电量以及剩余行驶里程的显示卡片203上显示车辆的剩余电量为9%且在该剩余电量9%以及70km/h的限速值下,车辆的续航里程为60km。
本申请实施例中,在无导航信息的情况下,若检测到车辆的剩余电量小于或者等于第三阈值,那么可以将车辆的限速值降低。这样,通过降低车辆的限速值,可以提升车辆的续航里程,避免由于续航里程不足给用户带来的风险,从而有助于提升用户的驾乘体验。
图4示出了本申请实施例提供的另一组GUI。
如图4中的(a)所示,车辆处于超级省电模式下,车辆中控屏在显示壁纸、车辆上登录的用户账号的头像信息、蓝牙功能图标、Wi-Fi功能图标和蜂窝网络信号图标、以及卡片201-204。此时,车辆的限速值可以为上述超级省电下的默认限速值(例如,90km/h),其中,车辆剩余电量以及剩余行驶里程的显示卡片203上显示车辆的剩余电量为10%且在剩余电量10%以及默认限速值下,车辆的续航里程为41km。
如图3中的(b)所示,在检测到续航里程小于第四阈值(例如,40km)时,车辆可以通过中控屏显示提示框401,其中,提示框401中包括提示信息“检测到续航里程低于40km,已为您将限速值降低至70km/h,请及时充电”。此时,车辆可以将限速值由90km/h调整至70km/h,其中,车辆剩余电量以及剩余行驶里程的显示卡片203上显示车辆的剩余电量为10%且在该剩余电量10%以及70km/h的限速值下,车辆的续航里程为60km。
本申请实施例中,在无导航信息的情况下,若检测到车辆的续航里程小于或者等于第四阈值,那么可以将车辆的限速值降低。这样,通过降低车辆的限速值,可以提升车辆的续航里程,避免由于续航里程不足给用户带来的风险,从而有助于提升用户的驾乘体验。
图5示出了本申请实施例提供的另一组GUI。
如图5中的(a)所示,车辆处于超级省电模式下,车辆中控屏在显示从当前位置导航至公司的导航路线以及导航信息501。此时,车辆的限速值可以为上述超级省电下的默认限速值(例如,90km/h),其中,车辆剩余电量以及剩余行驶里程的显示卡片203上显示车辆的剩余电量为20%且在剩余电量20%以及默认限速值下,车辆的续航里程为80km。
如图5中的(b)所示,在车辆行驶途中,若续航里程(例如,剩余电量10%下的续航里程为36km)大于第一距离,那么车辆可以继续保持在超级省电模式的默认限速值下行驶。
一个实施例中,第一距离可以为导航信息502中指示的目标行驶里程(例如,31km),或者,也可以为目标行驶里程与固定值的和,或者,也可以为目标行驶里程和预设倍率(例如,1.1倍)的乘积。
如图5中的(c)所示,在检测到续航里程小于或者等于导航信息中指示的目标行驶里程时,车辆可以通过中控屏显示提示框503,其中,提示框503中包括提示信息“检测到续航里程可能无法保证车辆行驶至公司,已为您将限速值降低至70km/h”。此时,车辆剩余电量以及剩余行驶里程的显示卡片203上显示车辆的剩余电量为10%且在剩余电量10% 以及70km/h的限速值下,车辆的续航里程为60km。
一个实施例中,在检测到车辆通过70km/h的减速值还是无法到达公司时,车辆可以进一步降低限速值(例如,将限速值调整至60km/h)。
一个实施例中,若车辆最低的限速值为60km/h,在检测到车辆通过60km/h的限速值还是无法到达公司时,车辆可以提示用户车辆无法抵达目的地,或者,提示用户立即为车辆进行充电。
本申请实施例中,车辆可以获取目标行驶里程以及在剩余电量和某个限速值下的续航里程,若续航里程小于或者等于第一距离,则可以将车辆的限速值降低。这样,在续航里程不能支持车辆完成行驶任务时,通过降低限速值可以提升车辆的续航里程,有助于避免由于续航里程不足给用户带来的风险,从而有助于提升用户的驾乘体验。同时,通过动态调整限速值,有助于提升车辆的智能化程度。
图6示出了本申请实施例提供的另一组GUI。
如图6中的(a)所示,车辆处于超级省电模式下,在检测到车辆处于高速公路且道路通畅时,车辆可以将限速值调整至110km/h。
一个实施例中,在检测到车辆处于高速公路且道路通畅时,车辆可以根据高速公路的限速值调整车辆的限速值。
例如,若该高速公路的限速值为120km/h,那么车辆可以将限速值从90km/h调整至110km/h。
又例如,若该高速公路的限速值为100km/h,那么车辆可以将限速值从90km/h调整至95km/h。
一个实施例中,在检测到车辆处于高速公路且道路通畅时,还可以根据车辆所处的车道的限速值调整车辆的限速值。
例如,车辆行驶在单向4车道的高速公路上,其中,靠左侧的2个车道的限速值为120km/h,靠右侧的2个车道的限速值为100km/h。那么,在车辆处于最左侧车道时,可以将限速值从90km/h调整至110km/h;在车辆处于最右侧车道时,可以将限速值从90km/h调整至95km/h。
本申请实施例中,在道路畅通且道路的限速值高于当前车辆的限速值时,可以将车辆的限速值调高,从而使得车辆在通畅的道路上行驶时驾驶体验更好。
如图6中的(b)所示,车辆处于超级省电模式下,在检测到当前道路拥堵时,车辆可以将限速值调整至70km/h。
本申请实施例中,在道路拥堵时可以将车辆的限速值调低,这样可以避免在拥堵情况下用户急加速或者急减速而造成的功耗浪费,有助于提升车辆的续航里程。
以上介绍了本申请实施例提供的几组GUI,下面结合附图介绍本申请实施例提供的调整限速值的方法和装置。
图7示出了本申请实施例提供的系统架构的示意性框图。该系统架构中包括控制装置710和执行器720,其中,控制装置710中包括驾驶习惯学习模块711、驾驶意图识别模块712、路况信息识别模块713、能耗信息记录模块714以及限速值调整模块715。
以上控制装置710可以为整车控制器(vehicle control unit,VCU),或者,也可以是VCU和座舱域控制器(cockpit domain controller)组成的系统、或者,还可以是VCU和 电池控制器(例如,电池管理系统(battery management system,BMS))组成的系统,或者,还可以是VCU、CDC以及电池控制器组成的系统。
以上控制装置可以位于车辆中,还可以位于服务器中。例如,车辆可以将加速踏板的开度和/或加速踏板的开度变化率的信息发送给服务器,由服务器判断加速踏板的开度和/或加速踏板的开度变化率的信息是否满足预设条件。若满足预设条件,那么服务器可以向车辆发送指令,该指令用于指示调整车辆的限速值。
控制装置710可以进行车辆信息收集。例如,信息收集包括收集用户驾驶习惯、车辆控制信息、路况信息和能耗信息等。控制装置710可以根据信息收集的结果进行驾驶习惯学习、驾驶意图学习、路况信息识别和能耗信息记录等,从而执行动态限制算法。最后控制执行器进行动态限速。
驾驶习惯学习模块711可以结合道路信息,记录不同路况(市区、市郊、高速)和场景(通畅、拥堵)下用户的驾驶习惯。
驾驶意图识别模块712可以根据车辆控制信息,以及路况信息,识别用户驾驶意图,比如快踩油门时的紧急加速意图。
路况信息识别模块713可以根据当前采集的路况信息(道路限速、地图信息及导航信息等),确定当前用户所处的路况。
能耗信息记录模块714可以记录用户在不同路况下、不同车速下的历史能耗信息,并实时更新。
限速值调整模块715可以根据驾驶习惯、路况信息、驾驶意图、能耗信息中的一项或者多项,动态调整车辆的限速值并将调整限速值的指令发送给执行器。
执行器720在接收到控制装置710发送的指令后,可以执行调整限速值的指令。
图8示出了本申请实施例提供的调整限速值的方法800的示意性流程图。如图8所示,该方法可以由上述控制装置710执行,该方法800包括:
S801,确定车辆进入第一模式,在第一模式下车辆的限速值为限速值1。
一个实施例中,该第一模式可以为经济模式或者省电模式。
一个实施例中,该第一模式可以为经济模式或者省电模式下的一个子模式。
例如,第一模式为省电模式下的子模式1或者该第一模式为省电模式下的子模式2。如在子模式1下,空调或者氛围灯可以被允许使用;而在子模式2下,空调或者氛围灯不可以被使用。
一个实施例中,该第一模式还可以是用户自定义的模式。
例如,用户可以设置在第一模式下可以使用空调、氛围灯,后排娱乐屏;又例如,用户还可以设置在第二模式下可以使用后排娱乐屏而不可以使用空调和氛围灯。
一个实施例中,该第一模式还可以为非经济模式或者非省电模式。
例如,该第一模式可以为运动模式或者舒适模式。
S802,获取加速踏板开度和/或加速踏板开度变化率的信息。
示例性的,控制装置710可以通过加速踏板开度传感器采集的信息获取加速踏板开度和/或加速踏板开度变化率。
以上加速踏板的开率可以位于0~100%,0为未检测到用户踩踏加速踏板时的开度,100%为检测到用户将加速踏板踩到底时的开度。
以上加速踏板开度的变化率可以理解为单位时间内加速踏板开度的变化率。例如,在时长△T内加速踏板的开度由k
1增加至k
2,那么加速踏板开度的变化率可以由以下公式(1)确定:
其中,Roc为加速踏板的开度变化率。
S803,判断加速踏板的开度是否大于或者等于阈值A。
示例性的,该阈值A可以为80%
若加速踏板的开度小于阈值A,则可以返回执行S802。
S804,在加速踏板的开度是否大于或者等于阈值A时,将车辆的限速值调整为限速值2,其中,限速值2大于限速值1。
在加速踏板的开度是否大于或者等于阈值A,控制装置710中的驾驶意图识别模块712可以识别到用户有紧急加速的意图,从而可以将车辆的限速值从限速值1调整至限速值2。
一个实施例中,在加速踏板的开度是否大于或者等于阈值A时,将车辆的限速值调整为限速值2,包括:在加速踏板的开度是否大于或者等于阈值A时,在预设时长内将车辆的限速值调整为限速值2。
一个实施例中,该方法还包括:在加速踏板的开度小于该阈值A时,将车辆的限速值调整为限速值1。
S805,判断加速踏板的开度变化率是否大于或者等于阈值B。
若开度变化率小于阈值B,则可以返初执行S802。
S806,在加速踏板的开度变化率是否大于或者等于阈值B时,将车辆的限速值调整为限速值3,其中,限速值3大于限速值1。
应理解,S803-S804和S805-S806可以是并行的。
示例性的,控制装置710可以以1秒为周期计算加速踏板的开度变化率。这样,当某个周期内的开度变化率大于或者等于阈值B时,可以将限速值调整至限速值3。
一个实施例中,限速值2和限速值3可以相同,或者,也可以不同。
一个实施例中,在加速踏板的开度变化率是否大于或者等于阈值B时,可以启动定时器,其中,在定时器运动期间可以将限速值调整至限速值3;在定时器超时时,可以将限速值调整至限速值1。
一个实施例中,在加速踏板的开度变化率小于阈值B时,可以将车辆的限速值调整至限速值1。
一个实施例中,在加速踏板的开度变化率小于阈值B的持续时长大于或者等于预设时长时,可以将车辆的限速值调整至限速值1。
一个实施例中,可以在预设时长内将车辆的速度从当前速度调整至限速值1。
示例性的,控制装置710可以以1秒为周期计算加速踏板的开度变化率。这样,当某个周期内的开度变化率大于或者等于阈值B时,可以启动定时器(例如,定时器的时长为10秒)。这样在接下来的10秒内可以不用判断加速踏板的开度变化率与阈值B的关系,且在这10秒内可以将限速值调整至限速值3。在10秒过后,可以继续判断加速踏板的开度变化率与阈值B的关系。若加速踏板的开度变化率小于阈值B,则将限速值调整至限速 值3;若加速踏板的开度变化率大于或者等于阈值B,则可以继续启动该定时器。
或者,在启动定时器的过程中可以继续判断加速踏板的开度变化率与阈值B的关系,例如在0-5秒时加速踏板的开度变化率小于阈值B,而在第6秒时检测到加速踏板的开度变化率再一次大于或者等于阈值B,那么定时器的时长可以从第6秒重新启动定时器。若定时器运行期间内加速踏板的开度变化率均小于阈值B,那么在定时器超时时可以将限速值调整至限速值3。
示例性的,限速值1为90km/h。当车辆的速度为80km/h且加速踏板的开度大于或者等于80%时,控制装置可以将车辆的限速值调整为110km/h,从而车辆的速度可以由80km/h提升至105km/h。在检测到加速踏板的开度小于80%时,控制装置可以将车辆的限速值从110km/h降低至90km/h。同时,控制装置可以在预设时长内将车辆的速度从105km/h降低至90km/h。
例如,控制装置可以控制车辆的速度在30秒或者1分钟内从105km/h降低至90km/h。
又例如,控制装置可以通过直线或者曲线变化,将车速从105km/h降低至90km/h。
又例如,控制装置可以通过查表的方式获取从当前的车速变化至限速值1所需要的时长,从而在该时长内将车速从当前车速降低至限速值1。
本申请实施例中,通过在预设时长内将车辆的限速值由当前车速调节为第一限速值,避免由于急减速给用户带来的影响,有助于提升限速值调节过程中用户的驾驶舒适性,从而有助于提升用户的驾乘体验。
图9示出了本申请实施例提供的调整限速值的方法900的示意性流程图。如图9所示,该方法可以由上述控制装置710执行,该方法90包括:
S901,确定车辆进入第一模式,在第一模式下车辆的限速值为限速值1。
以上S901可以参考S801的描述,此处不再赘述。
S902,根据剩余电量以及限速值1确定续航里程1。
一个实施例中,根据剩余电量以及限速值1确定续航里程1,包括:根据剩余电量、限速值1以及历史能耗信息,确定续航里程1。
例如,控制装置710可以基于车辆最近行驶的100km的估计来预测在剩余电量以及限速值1下的续航里程1。如可以将最近通过限速值1行驶的100km进行分段,分别计算[0,10km)、[10,20km)、[20,30km)、[30,40km)、[40,50km)、[50,60km)、[60,70km)、[70,80km)、[80,90km)、[90,100km]时的能耗值,并基于这些能耗值计算平均能耗值。控制装置710可以基于车辆最近通过限速值1行驶的100km的平均能耗值确定在剩余电量以及限速值1下的续航里程1。
又例如,控制装置710还可以计算最近通过限速值1行驶的100km的综合能耗值。在计算综合能耗值时,每一段的权重可以是不一样的。例如[0,50km)中每一段对应的能耗的权重值可以高于[50,100km]中每一段对应的能耗的权重值。控制装置710可以基于最近通过限速值1行驶的100km的综合能耗值确定在剩余电量以及限速值1下的续航里程1。
一个实施例中,控制装置710可以基于车辆之前在该路线上行驶时的历史能耗信息确定在剩余电量以及限速值1下的续航里程1。
例如,控制装置710可以根据车辆之前5次在该路线上行驶时的平均能耗值确定在剩 余电量以及限速值1下的续航里程1。
一个实施例中,控制装置710也可以基于模式1下的平均能耗来预测续航里程1。不同模式下的平均能耗可以由不同模式下的单位里程平均驱动能耗和附件功率相加得出。单位里程平均驱动能耗可基于整车控制器在不同模式下,在不同工况(也可以是标准综合工况)下的试验标定数据作为预设值读取。附件能耗可基于不同模式下所有工作附件的能耗(如空调、中控屏、音响、灯光、座椅等附件功率)总和计算。
S903,判断是否可以获取导航信息或者地图信息。
示例性的,当车辆可以从地图服务器接收到导航信息或者地图信息时,则确定可以获取到导航信息或者地图信息;或者,在检测到用户通过中控屏输入了目的地的信息且通过车辆本地保存的地图信息可以获取到导航信息时,则确定可以获取到导航信息或者地图信息。
示例性的,车辆本地虽然保存了地图信息或者车辆与地图服务器之间可以进行通信,但是车辆在上电后未检测到用户打开导航应用或者用户在打开导航应用后未检测到用户输入目的地的操作,则确定未获得导航信息或者地图信息。
在未获得导航信息或者地图信息时,可以执行S904-907;在获得导航信息或者地图信息时,可以执行S908-S913。
S904,判断剩余电量是否小于或者等于阈值C。
示例性的,阈值C可以为10%。
在剩余电量大于阈值C时,可以返回执行S903。
S905,在剩余电量小于或者等于阈值C时,可以将车辆的限速值调整为限速值4,该限速值4小于限速值1。
示例性的,限速值4为70km/h。
本申请实施例中,无导航信息或者地图信息的情况下,若检测到车辆的剩余电量小于阈值C,那么可以将车辆的限速值调整为限速值4。这样,通过降低车辆的限速值,可以提升车辆的续航里程,避免由于续航里程不足给用户带来的风险,从而有助于提升用户的驾乘体验。
S906,判断续航里程是否小于或者等于阈值D。
示例性的,阈值D可以为40km。
在续航里程大于阈值D时,可以返回执行S903。
S907,在续航里程小于或者等于阈值D时,可以将车辆的限速值调整为限速值5,该限速值5小于限速值1。
示例性的,限速值5为70km/h。
以上S904-S905和S906-S907可以是并行的。
本申请实施例中,无导航信息的情况下,若检测到车辆的续航里程小于或者等于阈值D,那么可以将车辆的限速值调整为限速值5。这样,通过降低车辆的限速值,可以提升车辆的续航里程,避免由于续航里程不足给用户带来的风险,从而有助于提升用户的驾乘体验。
S908,在可以获得导航信息或者地图信息时,基于导航信息或者地图信息确定目标行驶里程1。
示例性的,该导航信息可以是车辆从地图服务器获取的导航信息。如车辆在检测到用户通过车载导航应用输入目的地的信息后,车辆可以将该目的地的信息发送给地图服务器。地图服务器可以基于该目的地规划从车辆当前位置至该目的地的一条或者多条行驶路线以及每条行驶路线对应的目标行驶里程。地图服务器可以将该一条或者多条行驶路线以及每条行驶路线对应的目标行驶里程的信息发送给车辆,从而车辆可以通过中控屏显示该一条或者多条行驶路线以及每条行驶路线对应的目标行驶里程。当检测到用户从该一条或者多条行驶路线中选择了某一条行驶路线时,可以根据该行驶路线确定目标行驶里程1。
一个实施例中,车辆还可以将目的地的信息以及车辆的历史能耗信息发送给地图服务器,从而使得地图服务器基于目的地以及历史能耗信息确定更为准确的目标行驶里程。
一个实施例中,车辆还可以接收电子设备(例如,手机)发送的目的地、导航路线以及目标行驶里程1的信息。
一个实施例中,车辆在检测到用户通过车载导航应用输入目的地的信息后,可以基于车辆本地保存的地图为用户规划一条或者多条导航路线以及确定每条导航路线对应的目标行驶里程。当检测到用户从该一条或者多条行驶路线中选择了某一条行驶路线时,可以根据该行驶路线确定目标行驶里程1。
以上模式1下的续航里程1可以理解为车辆在模式1下可行使的最远里程数,目标行驶里程可以理解为车辆的待行驶里程,或者,也可以理解为车辆从当前位置至目的地还需要行驶的里程。
S909,判断续航里程1是否大于第一距离。
以上判断续航里程1是否大于第一距离也可以理解为判断车辆是否可以到达目的地。
可选地,该第一距离可以为该目标行驶距离1,或者,该第一距离也可以为该目标行驶距离1和预设距离值之和,或者,该第一距离还可以为该目标行驶距离1和预设倍率的乘积。
在续航里程1大于该第一距离时,可以返回执行S908。
S910,在该续航里程1小于或者等于第一距离时,将车辆限速值调整为限速值6。
示例性的,该限速值6可以为70km/h。
一个实施例中,在该续航里程1小于或者等于第一距离时,可以根据该第一距离与该续航里程1之间的差值,确定该限速值6。
示例性的,若该第一距离与该续航里程1之间的差值大于20km,那么该限速值6可以为70km/h。
示例性的,若该第一距离与该续航里程1之间的差值大于10km且小于或者等于20km,那么该限速值6可以为60km/h。
示例性的,若该第一距离与该续航里程1之间的差值小于或者等于10km,那么该限速值6可以为50km/h。
一个实施例中,在该剩余电量以及限速值6下车辆的续航里程大于该第一距离。或者,有该剩余电量、限速值6以及历史能耗信息确定的续航里程大于该第一距离。
S911,在车辆通过限速值6行驶的过程中,可以获取目标行驶里程2。
一个实施例中,在检测到用户更换目的地的操作时,车辆可以根据更换后的目的地确定目标行驶里程2。
一个实施例中,在检测到按照限速值6无法到达目的地时,车辆可以获取该目标行驶里程2。
一个实施例中,在车辆的限速值调整为限速值6后,车辆可以实时获取目标行驶里程2,并将目标行驶里程2与根据剩余电量以及限速值6确定的续航里程进行对比。
一个实施例中,可以根据剩余电量、限速值6确定该续航里程2。
一个实施例中,可以根据剩余电量、限速值6以及历史能耗信息,确定该目标行驶里程2。
目标行驶里程2的确定过程可以参考上述实施例中目标行驶里程1的确定过程,此处不再赘述。
S912,判断续航里程2是否大于第二距离。
例如,在t
1时刻,车辆确定在剩余电量10%以及90km/h的限速值下的续航里程1为45km。在续航里程1小于或者等于第一距离45km(例如,第一距离可以目标行驶里程45公里以及固定值5km的和)时,车辆可以将限速值调整至70km/h,其中,在剩余电量10%以及70km/h的限速值下的续航里程(例如,)大于该第一距离。
在t
2时刻,车辆确定在剩余电量5%以及70km/h的限速值下的续航里程2为35km。在续航里程2小于或者等于第二距离35km(例如,第二距离可以目标行驶里程30km以及固定值5km的和)时,车辆可以将限速值调整至50km/h,其中,在剩余电量5%以及50km/h的限速值下的续航里程(例如,45km)大于第二距离。
以上判断续航里程2是否大于第二距离也可以理解为判断车辆是否可以到达目的地。
可选地,该第二距离可以为该目标行驶距离2,或者,该第二距离也可以为该目标行驶距离2和预设距离值之和,或者,该第二距离还可以为该目标行驶距离2和预设倍率的乘积。
在续航里程2大于该第二距离时,可以返回执行S911。
S913,若续航里程2小于或者等于该第二距离,则判断限速值是否已经调整至最低限速值。
示例性的,该最低限速值可以为50km/h。
一个实施例中,若续航里程2小于或者等于该第二距离,则在判断限速值是否已经调整至最低限速值的同时还可以判断在该最低限速值下的续航里程是否大于该第二距离。例如,若限速值已经调整至最低限速值且在该最低限速值下的续航里程小于或者等于该第二距离,那么可以提示用户续航里程不足以达到目的地,或者,提示用户寻找充电桩。
S914,若未调整至最低限速值,则车辆可以继续将车辆的限速值调整为限速值7,其中,限速值7小于或者等于限速值6。
一个实施例中,在限速值7下的续航里程大于该第二距离。
这样,在车辆还未调整至最低限速值时,可以通过进一步降低限速值提升车辆的续航里程,有助于进一步降低由于续航里程不足带来的风险。
S915,若限速值已经调整至最低限速值,则提示用户续航里程不足以达到目的地,或者,提示用户寻找充电桩。
以上在确定目标行驶里程时可以结合导航信息或者地图信息来确定,本申请实施例并不限于此。在没有导航信息或者地图信息的情况下,也可以根据历史行驶记录确定目标行 驶里程。
例如,当车辆上电后可以通过定位系统获取当前车辆所处的位置(例如,车辆当前位于xx大厦)。车辆可以根据车辆中保存的小计里程的信息确定车辆从xx大厦出发时可能要行驶的目标行驶里程。
又例如,在一个月内,车辆从起始位置为xx大厦出发了20次,其中,目的地为家的次数为13次,目的地为餐厅A的次数为5次,目的地为学校A的次数为2次。此时,车辆可以预测本次行驶的目的地可能为家,从而车辆可以根据车辆保存的地图信息或者车辆可以小计里程的信息获取从xx大厦至家的目标行驶里程(例如,目标行驶里程为40km)。
又例如,车辆可以在历史行驶记录中保存从xx大厦行驶至每个目的地的次数,或者,车辆也可以在历史行驶里程中保存每次从xx大厦出发时的行驶里程。例如,在一个月内,车辆从起始位置为xx大厦出发了20次,且行驶里程为38km-40km的次数为15次,行驶里程为8km-10km的次数为3次,行驶里程为60km-70km的次数为2次。此时,车辆可以预测用户的目标行驶里程为40km。
一个实施例中,该历史行驶记录中还可以保存有预设时间段内车辆从某个位置出发时的行驶记录。例如,表1示出了车辆在一个月内的历史行驶记录。
表1历史行驶记录
应理解,以上表1所记录的数据仅仅是示意性的,历史行驶记录中可以包括比上述表格中更多或者更少的数据,本申请实施例并不限于此。
例如,当车辆上电时的位置为xx大厦且上电时的时刻为下午6点,那么车辆可以根据上述表1所示的历史行驶记录预测该目标行驶里程为30km,或者,该目标行驶里程为下午5点下午7点期间20次行驶里程的平均值(例如,该平均值29km)。
一个实施例中,该历史行驶记录中还可以保存有预设时间段内车辆从某个位置出发时的行驶记录。表2示出了车辆在一个月内的另一历史行驶记录。
表2历史行驶记录
应理解,以上表2所记录的数据仅仅是示意性的,历史行驶记录中可以包括比上述表格中更多或者更少的数据,本申请实施例并不限于此。
例如,当车辆上电时的位置为xx大厦且上电时的时刻为周五下午6点,那么车辆可以根据上述表2所示的历史行驶记录预测该目标行驶里程为65km,或者,该目标行驶里程为下午5点下午7点期间4次行驶里程的平均值(例如,该平均值63km)。
一个实施例中,历史行驶记录中还可以包括用户的身份信息。
例如,表3示出了车辆在一个月内的另一历史行驶记录。
表3历史行驶记录
例如,当车辆上电时,可以通过座舱内的摄像装置(例如,驾驶员监测系统(driver monitor system,DMS)的摄像头或者座舱监测系统(cabin monitor system,CMS)的摄像头)采集主驾区域的图像信息并通过该图像信息确定用户的身份信息,例如,主驾区域的用户为用户B。若车辆当前的位置为xx小区且上电时的时刻为上午8点,那么车辆可以根据上述表3所示的历史行驶记录预测该目标行驶里程为45km,或者,该目标行驶里程为上午7点至上午9点期间10次行驶里程的平均值(例如,该平均值43km)。
本申请实施例中,当车辆无法获取导航信息时,还可以结合预设时间段内车辆从该某个位置出发时的一个或者多个行驶里程确定第一距离,这样,可以使得车辆得到更为准确的第一距离的信息,有助于进一步降低由于续航里程不足带来的风险,从而有助于提升用户的驾乘体验。
图10示出了本申请实施例提供的调整限速值的方法1000的示意性流程图。如图10所示,该方法1000包括:
S1001,确定车辆进入第一模式,在第一模式下车辆的限速值为限速值1。
以上S1001可以参考S801的描述,此处不再赘述。
S1002,根据道路的拥堵程度和/或道路的限速值,将车辆的限速值调整为限速值8。
一个实施例中,若车辆所在的道路的限速值为60km/h且该道路的限速值低于限速值1,那么车辆可以将限速值调整至限速值8,其中限速值8小于该道路的限速值。
一个实施例中,根据道路的拥堵程度和/或道路的限速值,将车辆的限速值调整为限速值8,包括:在道路通畅且限速值1小于该道路的限速值时,可以将车辆的限速值调整为限速值8,其中,限速值8大于限速值1。
示例性的,该道路的限速值可以为100km/h,限速值8可以为100km/h。
示例性的,该道路的限速值可以为120km/h,限速值8可以为110km/h。
一个实施例中,根据道路的拥堵程度和/或道路的限速值,将车辆的限速值调整为限速值8,包括:在检测到该车辆位于第一类型的道路时,根据该道路的拥堵程度和/或该道路的限速值,将该车辆的限速值调整为限速值8;其中,该第一类型的道路包括高速公路、市区道路或者市郊道路。
示例性的,当检测到车辆位于高速公路时,若道路通畅且限速值1小于该高速公路的限速值时,可以将车辆的限速值调整为限速值8。而在检测到车辆位于市郊道路时,若道路通畅且限速值1小于该市郊道路的限速值时,可以将车辆的限速值保持在限速值1。
一个实施例中,车辆可以根据导航信息或者地图信息确定车辆所处的道路的类型。
一个实施例中,车辆也可以根据传感器(例如,车外的环视摄像头)采集的图像确定车辆所处的道路的类型。
一个实施例中,根据道路的拥堵程度和/或道路的限速值,将车辆的限速值调整为限速值9,包括:在该道路拥堵时,将该车辆的限速值调整为该限速值9,该限速值9小于该限速值1。
一个实施例中,可以基于导航信息和/或历史行驶记录确定道路的拥堵程度。
例如,当导航信息显示车辆前方10公里拥堵时,可以在距离拥堵路段1公里的地方将车辆的限速值调整至限速值9。这样,可以避免车辆在距离拥堵路段很近的地方急减速所造成的功耗浪费,有助于提升车辆的续航里程。
又例如,当车辆行驶的路线位于市区时,车辆可以结合历史行驶记录中保存的在该路线上的平均车速信息,确定是否将限速值1调整至限速值9。例如,车辆之前5次在该路线上行驶时的平均车速为30km/h,则可以认为车辆在该路线上行驶时会发生拥堵,则可以将该限速值调整为限速值9。
一个实施例中,可以根据该历史平均车速,确定该限速值9。
例如,若车辆在历史平均车速为30km/h-50km/h的路线上行驶时,该限速值9可以为60km/h。
又例如,若车辆在历史平均车速为50km/h-60km/h的路线上行驶时,该限速值9可以为70km/h。
一个实施例中,可以根据该道路的拥堵程度,确定该限速值9。
例如,导航信息显示前方路段严重拥堵时,该限速值9可以为50km/h。
又例如,导航信息显示前方路段一般拥堵时,该限速值9可以为70km/h。
本申请实施例中,在判断出道路拥堵时,可以通过降低限速值,避免用户由于急加速或者急减速所带来的能耗浪费,有助提升车辆的续航里程,避免由于续航里程不足带来的风险,有助于提升用户的驾乘体验。
以上图8至图10所示的各个实施例之间是可以相互结合的。
例如,在检测到续航里程1小于或者等于第一距离时,可以将限速值由90km/h降低至70km/h。在仅通过70km/h的限速值行驶的过程中,如果检测到加速踏板的开度大于阈值A,那么可以将限速值由70km/h提升至120km/h。在检测到加速踏板的开度小于该阈值A时,可以将该限速值由120km/h降低至70km/h。这样,在续航里程不足且检测到用户有紧急加速的意图时,通过安全优先的原则,可以提升限速值,保证车辆的提速空间,有助于提升车辆在紧急情况下的安全性。
又例如,车辆在高速公路上行驶时若检测到前方10公里发生拥堵,那么可以在距离拥堵路段1公里的地方将车辆的限速值由90km/h调整至70km/h。在仅通过70km/h的限速值行驶的过程中,如果检测到加速踏板的开度变化率大于阈值B,那么可以在20秒内将限速值由70km/h提升至120km/h。20秒后可以将该限速值由120km/h降低至70km/h。这样,在续航里程不足且检测到用户有紧急加速的意图时,通过安全优先的原则,可以提升限速值,保证车辆的提速空间,有助于提升车辆在紧急情况下的安全性。
图11示出了本申请实施例提供的调整限速值的方法1100的示意性流程图。如图11所示,该方法1100包括:
S1101,获取运行在第一模式下的车辆的加速踏板开度和/或加速踏板开度变化率,在该第一模式下该车辆的限速值为第一限速值。
以上S1101可以参考上述图8中实施例的描述,此处不再赘述。
示例性的,第一限速值为90km/h。
S1102,在检测到该加速踏板开度和/或该加速踏板开度变化率满足预设条件时,将该车辆的限速值调整为第二限速值;其中,该第二限速值大于该第一限速值。
本申请实施例中,该预设条件可以包括预设时长内加速踏板的开度大于P%的次数与触发次数n的对应关系。例如,表4示出了预设时长内加速踏板的开度大于P%的次数、触发次数n、是否调整限速值的对应关系。
表4
如表4所示,在预设时长为T
1的时间段内,驾驶员实际踩加速踏板的开度大于P%的次数大于或者等于n,此时可以将限速值调整为第二限速值。预设时长为T
2的时间段内,驾驶员实际踩加速踏板的开度大于P%的次数大于2.5n,此时可以将限速值调整为第二限速值。预设时长为T
3的时间段内,驾驶员实际踩加速踏板的开度大于P%的次数大于5n,此时可以将限速值调整为第二限速值。
例如,还可以根据预设时长内加速踏板的开度大于P%的次数确定调整后的限速值。表5示出了60秒内加速踏板的开度大于70%的次数以及第二限速值的对应关系。
表5
以上表4和表5的数据仅仅是示意性的。
可选地,该在检测到该加速踏板开度和/或该加速踏板开度变化率满足预设条件时,将该车辆的限速值调整为第二限速值,包括:在检测到该加速踏板开度大于或者等于第一阈值时,将该车辆的限速值调整为该第二限速值;和/或,在检测到该加速踏板开度变化率大于或者等于第二阈值时,将该车辆的限速值调整为该第二限速值。
以上通过加速踏板开度和/或该加速踏板开度变化率调整限速值的过程可以参考上述方法800中的描述,此处不再赘述。
可选地,该方法还包括:在将该车辆的限速值调整为该第二限速值时,提示用户限速值已经调整为该第二限速值。
可选地,将该车辆的限速值调整为该第二限速值,包括:根据该加速踏板开度与第一阈值的差值,将该车辆的限速值调整为该第二限速值。
示例性的,该第一阈值为70%,若加速踏板的开度为80%,则可以将限速值调整为110km/h。
示例性的,该第一阈值为70%,若加速踏板的开度为90%,则可以将限速值调整为120km/h。
可选地,将该车辆的限速值调整为该第二限速值,包括:根据该加速踏板开度变化率,将该车辆的限速值调整为该第二限速值。
可选地,该在检测到该加速踏板开度变化率大于或者等于第二阈值时,将该车辆的限速值调整为该第二限速值,包括:在检测到该加速踏板开度变化率大于或者等于第二阈值时,在第一预设时长内将该车辆的限速值调整为该第二限速值。
可选地,该方法还包括:在检测到该加速踏板开度小于或者等于该第一阈值时,将该车辆的限速值调整为该第一限速值;和/或,在检测到该加速踏板开度变化率小于或者等于该第二阈值的持续时长大于或者等于第二预设时长时,将该车辆的限速值调整为该第一限速值。
可选地,该方法还包括:在将该车辆的限速值调整为该第一限速值时,提示用户限速值已经调整为该第一限速值。
可选地,该将该车辆的限速值调整为该第一限速值,包括:在第三预设时长内,将该车辆的车速由当前车速调节为该第一限速值。
示例性的,将该车辆的车速由当前车速调节为该第一限速值,包括:通过直线或者曲线降速的方式,将所述车辆的车速由当前车速调节为该第一限速值。
示例性的,将该车辆的车速由当前车速调节为该第一限速值,包括:通过查表的方式,将该车辆的车速由当前车速调节为该第一限速值。
可选地,该方法还包括:在检测到该车辆的剩余电量小于或者等于第三阈值,和/或,该剩余电量对应的续航里程小于或者等于第四阈值时,将该车辆的限速值调整为第三限速 值;其中,该第一限速值大于该第三限速值。
可选地,该方法还包括:在将该车辆的限速值调整为第三限速值时,提示用户限速值已经调整为该第三限速值。
以上在无导航信息时,通过剩余电量和/或续航里程调整限速值的过程可以参考上述方法900中的描述,此处不再赘述。
可选地,该方法还包括:获取该车辆的第一目标行驶里程;根据该车辆的第一剩余电量以及该第一限速值,确定第一续航里程;在该第一续航里程小于或者等于第一距离时,将该车辆的限速值调整为第三限速值;其中,该第一距离由该第一目标行驶里程确定,该第一限速值大于该第三限速值。
可选地,该获取该车辆的第一目标行驶里程,包括:根据导航信息获取该第一目标行驶里程;或者,接收地图服务器发送的该第一目标行驶里程的信息;或者,接收电子设备(例如,手机)发送的该第一目标行驶里程的信息。
可选地,该方法还包括:获取该车辆的第二目标行驶里程;根据该车辆的第二剩余电量以及该第三限速值,确定第二续航里程;在该第二续航里程小于或者等于第二距离时,将该车辆的限速值调整为第四限速值;其中,该第二距离由该第二目标行驶里程确定,该第三限速值大于该第四限速值。
可选地,在通过最低限速值也无法行驶至目的地或者无法完成行驶任务时,提示用户立即对车辆进行充电。
以上通在有导航信息时,根据续航里程以及目标行驶里程调整限速值的过程可以参考上述方法900中的描述,此处不再赘述。
可选地,该方法还包括:在检测到该车辆位于第一类型的道路时,根据该道路的拥堵程度和/或该道路的限速值,将该车辆的限速值调整为第五限速值;其中,该第一类型的道路包括高速公路、市区道路或者市郊道路。
可选地,该方法还包括:根据导航信息和/或车辆在道路上行驶时的历史行驶记录,确定该道路的拥堵程度。
示例性的,道路的拥堵程度可以包括道路不拥堵(或者,道路通畅)、道路一般拥堵以及道路特别拥堵三个等级。可以通过导航信息确定该道路拥堵程度。
例如,当该道路为高速公路时,若导航信息显示经过该道路的其他车辆的平均车速大于90km/h时,可以确定该道路拥堵程度为道路不拥堵;若导航信息显示经过该道路的其他车辆的平均车速小于90km/h且大于50km/h时,可以确定该道路拥堵程度为道路一般拥堵;若导航信息显示经过该道路的其他车辆的平均车速小于50km/h时,可以确定该道路拥堵程度为道路特别拥堵。
又例如,当该道路为市郊道路时,若导航信息显示经过该道路的其他车辆的平均车速大于70km/h时,可以确定该道路拥堵程度为道路不拥堵;若导航信息显示经过该道路的其他车辆的平均车速小于70km/h且大于30km/h时,可以确定该道路拥堵程度为道路一般拥堵;若导航信息显示经过该道路的其他车辆的平均车速小于30km/h时,可以确定该道路拥堵程度为道路特别拥堵。
又例如,该道路为市区道路,若历史行驶记录中车辆在该道路上行驶的平均车速大于60km/h,则可以确定该道路拥堵程度为道路不拥堵;若历史行驶记录中车辆在该道路上行 驶的平均车速小于60km/h且大于20km/h,可以确定该道路拥堵程度为道路一般拥堵;若历史行驶记录中车辆在该道路上行驶的平均车速小于20km/h,可以确定该道路拥堵程度为道路特别拥堵。
可选地,该根据该道路的拥堵程度和/或该道路的限速值,将该车辆的限速值调整为第五限速值,包括:在该道路通畅且该道路的限速值大于该第一限速值时,将该车辆的限速值调整为该第五限速值,该第五限速值大于该第一限速值。
可选地,该根据该道路的拥堵程度和/或该道路的限速值,将该车辆的限速值调整为第五限速值,包括:在该道路拥堵时,将该车辆的限速值调整为该第五限速值,该第五限速值小于该第一限速值。
以上通过道路的拥堵程度和/或道路的限速值调整限速值的过程可以参考上述方法1000,此处不再赘述。
可选地,该第一模式属于经济模式或者省电模式。
本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中控制装置、车辆或者服务器所执行的各步骤的单元(或手段)。
图12示出了本申请实施例提供的调整限速值的装置的示意性框图。如图12所示,该装置1200包括:获取单元1210,用于获取运行在第一模式下的车辆的加速踏板开度和/或加速踏板开度变化率,在该第一模式下车辆的限速值为第一限速值;调整单元1220,用于在该加速踏板开度和/或该加速踏板开度变化率满足预设条件时,将该车辆的限速值调整为第二限速值;其中,该第二限速值大于该第一限速值。
可选地,该调整单元1220具体用于:在检测到该加速踏板开度大于或者等于第一阈值时,将该车辆的限速值调整为该第二限速值;和/或,在检测到该加速踏板开度变化率大于或者等于第二阈值时,将该车辆的限速值调整为该第二限速值。
可选地,该调整单元1220具体用于:在检测到该加速踏板开度变化率大于或者等于第二阈值时,在第一预设时长内将该车辆的限速值调整为该第二限速值。
可选地,该调整单元1220,还用于在该加速踏板开度小于或者等于该第一阈值时,将该车辆的限速值调整为该第一限速值;和/或,在该加速踏板开度变化率小于或者等于该第二阈值的持续时长大于或者等于第二预设时长时,将该车辆的限速值调整为该第一限速值。
可选地,该调整单元1220具体用于:在第三预设时长内,将该车辆的限速值由该第二限速值调节为该第一限速值。
可选地,该调整单元1220,还用于在该车辆的剩余电量小于或者等于第三阈值,和/或,该剩余电量对应的续航里程小于或者等于第四阈值时,将该车辆的限速值调整为第三限速值;其中,该第一限速值大于该第三限速值。
可选地于,该装置还包括确定单元,其中,该获取单元1210,还用于获取该车辆的第一目标行驶里程;该确定单元,用于根据该车辆的第一剩余电量以及该第一限速值,确定第一续航里程;该调整单元1220,还用于在该第一续航里程小于或者等于第一距离时,将该车辆的限速值调整为第三限速值;其中,该第一距离由该第一目标行驶里程确定,该第一限速值大于该第三限速值。
可选地,该获取单元1210,还用于获取该车辆的第二目标行驶里程;该确定单元, 还用于根据该车辆的第二剩余电量以及该第三限速值,确定第二续航里程;该调整单元1220,还用于在该第二续航里程小于或者等于第二距离时,将该车辆的限速值调整为第四限速值;其中,该第二距离由该第二目标行驶里程确定,该第三限速值大于该第四限速值。
可选地,该获取单元1210具体用于:在用户切换目的地时,获取该第二目标行驶里程;或者,在按照该第三限速值无法到达目的地时,获取该第二目标行驶里程。
可选地,该获取单元1210具体用于:接收该第一目标行驶里程的信息;或者,在用户输入目的地时,根据该目的地获取该第一目标行驶里程;或者,根据历史行驶记录,获取该第一目标行驶里程。
可选地,该确定单元具体用于:根据该车辆的第一剩余电量、该第一限速值以及该车辆的历史能耗信息,确定该第一续航里程。
可选地,该调整单元1220,还用于在该车辆位于第一类型的道路时,根据该道路的拥堵程度和/或该道路的限速值,将该车辆的限速值调整为第五限速值;
其中,该第一类型的道路包括高速公路、市区道路或者市郊道路。
可选地,该调整单元1220具体用于:在该道路通畅且该道路的限速值大于该第一限速值时,将该车辆的限速值调整为该第五限速值,该第五限速值大于该第一限速值。
可选地,该调整单元1220具体用于:在该道路拥堵时,将该车辆的限速值调整为该第五限速值,该第五限速值小于该第一限速值。
可选地,该第一模式属于经济模式或者省电模式。
应理解以上装置中各单元的划分仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。此外,装置中的单元可以以处理器调用软件的形式实现;例如装置包括处理器,处理器与存储器连接,存储器中存储有指令,处理器调用存储器中存储的指令,以实现以上任一种方法或实现该装置各单元的功能,其中处理器例如为通用处理器,例如CPU或微处理器,存储器为装置内的存储器或装置外的存储器。或者,装置中的单元可以以硬件电路的形式实现,可以通过对硬件电路的设计实现部分或全部单元的功能,该硬件电路可以理解为一个或多个处理器;例如,在一种实现中,该硬件电路为ASIC,通过对电路内元件逻辑关系的设计,实现以上部分或全部单元的功能;再如,在另一种实现中,该硬件电路为可以通过PLD实现,以FPGA为例,其可以包括大量逻辑门电路,通过配置文件来配置逻辑门电路之间的连接关系,从而实现以上部分或全部单元的功能。以上装置的所有单元可以全部通过处理器调用软件的形式实现,或全部通过硬件电路的形式实现,或部分通过处理器调用软件的形式实现,剩余部分通过硬件电路的形式实现。
在本申请实施例中,处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如CPU、微处理器、GPU、或DSP等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为ASIC或PLD实现的硬件电路,例如FPGA。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如NPU、TPU、DPU等。
可见,以上装置中的各单元可以是被配置成实施以上方法的一个或多个处理器(或处 理电路),例如:CPU、GPU、NPU、TPU、DPU、微处理器、DSP、ASIC、FPGA,或这些处理器形式中至少两种的组合。
此外,以上装置中的各单元可以全部或部分可以集成在一起,或者可以独立实现。在一种实现中,这些单元集成在一起,以SOC的形式实现。该SOC中可以包括至少一个处理器,用于实现以上任一种方法或实现该装置各单元的功能,该至少一个处理器的种类可以不同,例如包括CPU和FPGA,CPU和人工智能处理器,CPU和GPU等。
本申请实施例还提供了一种装置,该装置包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使该装置执行上述实施例执行的方法或者步骤。
可选地,若该装置位于车辆中,上述处理单元可以是图1所示的处理器151-15n。
本申请实施例还提供了一种交通工具,该交通工具可以包括上述装置710或者装置1200。
可选地,该交通工具可以为车辆。
本申请实施例还提供了一种服务器,该服务器可以包括上述装置710或者装置1200。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述方法。
本申请实施例还提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述方法。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者上电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖。在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (34)
- 一种调整限速值的方法,其特征在于,包括:获取运行在第一模式下的车辆的加速踏板开度和/或加速踏板开度变化率,在所述第一模式下所述车辆的限速值为第一限速值;在检测到所述加速踏板开度和/或所述加速踏板开度变化率满足预设条件时,将所述车辆的限速值调整为第二限速值;其中,所述第二限速值大于所述第一限速值。
- 如权利要求1所述的方法,其特征在于,所述在检测到所述加速踏板开度和/或所述加速踏板开度变化率满足预设条件时,将所述车辆的限速值调整为第二限速值,包括:在检测到所述加速踏板开度大于或者等于第一阈值时,将所述车辆的限速值调整为所述第二限速值;和/或,在检测到所述加速踏板开度变化率大于或者等于第二阈值时,将所述车辆的限速值调整为所述第二限速值。
- 如权利要求2所述的方法,其特征在于,所述在检测到所述加速踏板开度变化率大于或者等于第二阈值时,将所述车辆的限速值调整为所述第二限速值,包括:在检测到所述加速踏板开度变化率大于或者等于第二阈值时,在第一预设时长内将所述车辆的限速值调整为所述第二限速值。
- 如权利要求2或3所述的方法,其特征在于,所述方法还包括:在检测到所述加速踏板开度小于或者等于所述第一阈值时,将所述车辆的限速值调整为所述第一限速值;和/或,在检测到所述加速踏板开度变化率小于或者等于所述第二阈值的持续时长大于或者等于第二预设时长时,将所述车辆的限速值调整为所述第一限速值。
- 如权利要求4所述的方法,其特征在于,所述将所述车辆的限速值调整为所述第一限速值,包括:在第三预设时长内,将所述车辆的车速由当前车速调节为所述第一限速值。
- 如权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:在检测到所述车辆的剩余电量小于或者等于第三阈值,和/或,所述剩余电量对应的续航里程小于或者等于第四阈值时,将所述车辆的限速值调整为第三限速值;其中,所述第一限速值大于所述第三限速值。
- 如权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:获取所述车辆的第一目标行驶里程;根据所述车辆的第一剩余电量以及所述第一限速值,确定第一续航里程;在所述第一续航里程小于或者等于第一距离时,将所述车辆的限速值调整为第三限速值;其中,所述第一距离由所述第一目标行驶里程确定,所述第一限速值大于所述第三限速值。
- 如权利要求7所述的方法,其特征在于,所述方法还包括:获取所述车辆的第二目标行驶里程;根据所述车辆的第二剩余电量以及所述第三限速值,确定第二续航里程;在所述第二续航里程小于或者等于第二距离时,将所述车辆的限速值调整为第四限速值;其中,所述第二距离由所述第二目标行驶里程确定,所述第三限速值大于所述第四限速值。
- 如权利要求8所述的方法,其特征在于,所述获取所述车辆的第二目标行驶里程,包括:在检测到用户切换目的地的操作,获取所述第二目标行驶里程;或者,在按照所述第三限速值无法到达目的地时,获取所述第二目标行驶里程。
- 如权利要求7至9中任一项所述的方法,其特征在于,所述获取第一目标行驶里程,包括:接收所述第一目标行驶里程的信息;在检测到用户输入目的地的操作时,获取所述第一目标行驶里程;或者,根据历史行驶记录,获取所述第一目标行驶里程。
- 如权利要求7至10中任一项所述的方法,其特征在于,所述根据所述车辆的第一剩余电量以及所述第一限速值,确定第一续航里程,包括:根据所述车辆的第一剩余电量、所述第一限速值以及所述车辆的历史能耗信息,确定所述第一续航里程。
- 如权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:在检测到所述车辆位于第一类型的道路时,根据所述道路的拥堵程度和/或所述道路的限速值,将所述车辆的限速值调整为第五限速值;其中,所述第一类型的道路包括高速公路、市区道路或者市郊道路。
- 如权利要求12所述的方法,其特征在于,所述根据所述道路的拥堵程度和/或所述道路的限速值,将所述车辆的限速值调整为第五限速值,包括:在所述道路通畅且所述道路的限速值大于所述第一限速值时,将所述车辆的限速值调整为所述第五限速值,所述第五限速值大于所述第一限速值。
- 如权利要求12所述的方法,其特征在于,所述根据所述道路的拥堵程度和/或所述道路的限速值,将所述车辆的限速值调整为第五限速值,包括:在所述道路拥堵时,将所述车辆的限速值调整为所述第五限速值,所述第五限速值小于所述第一限速值。
- 如权利要求1至14中任一项所述的方法,其特征在于,所述第一模式属于经济模式或者省电模式。
- 一种调整限速值的装置,其特征在于,包括:获取单元,用于获取运行在第一模式下的车辆的加速踏板开度和/或加速踏板开度变化率,在所述第一模式下车辆的限速值为第一限速值;调整单元,用于在所述加速踏板开度和/或所述加速踏板开度变化率满足预设条件时,将所述车辆的限速值调整为第二限速值;其中,所述第二限速值大于所述第一限速值。
- 如权利要求16所述的装置,其特征在于,所述调整单元具体用于:在检测到所述加速踏板开度大于或者等于第一阈值时,将所述车辆的限速值调整为所述第二限速值;和/或,在检测到所述加速踏板开度变化率大于或者等于第二阈值时,将所述车辆的限速值调整为所述第二限速值。
- 如权利要求17所述的装置,其特征在于,所述调整单元具体用于:在检测到所述加速踏板开度变化率大于或者等于第二阈值时,在第一预设时长内将所述车辆的限速值调整为所述第二限速值。
- 如权利要求17或18所述的装置,其特征在于,所述调整单元,还用于在所述加速踏板开度小于或者等于所述第一阈值时,将所述车辆的限速值调整为所述第一限速值;和/或,在所述加速踏板开度变化率小于或者等于所述第二阈值的持续时长大于或者等于第二预设时长时,将所述车辆的限速值调整为所述第一限速值。
- 如权利要求19所述的装置,其特征在于,所述调整单元具体用于:在第三预设时长内,将所述车辆的车速由当前车速调节为所述第一限速值。
- 如权利要求16至20中任一项所述的装置,其特征在于,所述调整单元,还用于在所述车辆的剩余电量小于或者等于第三阈值,和/或,所述剩余电量对应的续航里程小于或者等于第四阈值时,将所述车辆的限速值调整为第三限速值;其中,所述第一限速值大于所述第三限速值。
- 如权利要求16至20中任一项所述的装置,其特征在于,所述装置还包括确定单元,其中,所述获取单元,还用于获取所述车辆的第一目标行驶里程;所述确定单元,用于根据所述车辆的第一剩余电量以及所述第一限速值,确定第一续航里程;所述调整单元,还用于在所述第一续航里程小于或者等于第一距离时,将所述车辆的限速值调整为第三限速值;其中,所述第一距离由所述第一目标行驶里程确定,所述第一限速值大于所述第三限速值。
- 如权利要求22所述的装置,其特征在于,所述获取单元,还用于获取所述车辆的第二目标行驶里程;所述确定单元,还用于根据所述车辆的第二剩余电量以及所述第三限速值,确定第二续航里程;所述调整单元,还用于在所述第二续航里程小于或者等于第二距离时,将所述车辆的限速值调整为第四限速值;其中,所述第二距离由所述第二目标行驶里程确定,所述第三限速值大于所述第四限速值。
- 如权利要求23所述的装置,其特征在于,所述获取单元具体用于:在用户切换目的地时,获取所述第二目标行驶里程;或者,在按照所述第三限速值无法到达目的地时,获取所述第二目标行驶里程。
- 如权利要求22至24中任一项所述的装置,其特征在于,所述获取单元具体用于:接收所述第一目标行驶里程的信息;在用户输入目的地时,根据所述目的地获取所述第一目标行驶里程;或者,根据历史行驶记录,获取所述第一目标行驶里程。
- 如权利要求22至25中任一项所述的装置,其特征在于,所述确定单元具体用于:根据所述车辆的第一剩余电量、所述第一限速值以及所述车辆的历史能耗信息,确定所述第一续航里程。
- 如权利要求16至26中任一项所述的装置,其特征在于,所述调整单元,还用于在所述车辆位于第一类型的道路时,根据所述道路的拥堵程度和/或所述道路的限速值,将所述车辆的限速值调整为第五限速值;其中,所述第一类型的道路包括高速公路、市区道路或者市郊道路。
- 如权利要求27所述的装置,其特征在于,所述调整单元具体用于:在所述道路通畅且所述道路的限速值大于所述第一限速值时,将所述车辆的限速值调整为所述第五限速值,所述第五限速值大于所述第一限速值。
- 如权利要求27所述的装置,其特征在于,所述调整单元具体用于:在所述道路拥堵时,将所述车辆的限速值调整为所述第五限速值,所述第五限速值小于所述第一限速值。
- 如权利要求16至29中任一项所述的装置,其特征在于,所述第一模式属于经济模式或者省电模式。
- 一种装置,其特征在于,所述装置包括:存储器,用于存储计算机程序;处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至15中任一项所述的方法。
- 一种车辆,其特征在于,包括权利要求16至31中任一项所述的装置。
- 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时,以使得实现如权利要求1至15中任一项所述的方法。
- 一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,以执行如权利要求1至15中任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/102795 WO2024000394A1 (zh) | 2022-06-30 | 2022-06-30 | 一种调整限速值的方法、装置和车辆 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/102795 WO2024000394A1 (zh) | 2022-06-30 | 2022-06-30 | 一种调整限速值的方法、装置和车辆 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024000394A1 true WO2024000394A1 (zh) | 2024-01-04 |
Family
ID=89383534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/102795 WO2024000394A1 (zh) | 2022-06-30 | 2022-06-30 | 一种调整限速值的方法、装置和车辆 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024000394A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105711592A (zh) * | 2016-04-27 | 2016-06-29 | 蔚来汽车有限公司 | 用于电动汽车的自适应驾驶行为调节方法 |
CN108146437A (zh) * | 2016-12-05 | 2018-06-12 | 博世汽车部件(苏州)有限公司 | 电动车及其控制装置和控制方法 |
DE102018217885A1 (de) * | 2017-10-20 | 2019-04-25 | Denso Corporation | Fahrzeugsteuerungsgerät |
CN110667589A (zh) * | 2018-12-29 | 2020-01-10 | 长城汽车股份有限公司 | 驾驶模式跳转控制方法、系统及控制器 |
CN111186339A (zh) * | 2018-11-14 | 2020-05-22 | 北京宝沃汽车有限公司 | 车辆控制方法、系统及车辆 |
CN112092816A (zh) * | 2020-09-25 | 2020-12-18 | 重庆长安汽车股份有限公司 | 一种智能切换驾驶模式的控制系统及车辆 |
CN112776826A (zh) * | 2021-01-04 | 2021-05-11 | 东风柳州汽车有限公司 | 整车安全保护方法、系统、设备及存储介质 |
-
2022
- 2022-06-30 WO PCT/CN2022/102795 patent/WO2024000394A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105711592A (zh) * | 2016-04-27 | 2016-06-29 | 蔚来汽车有限公司 | 用于电动汽车的自适应驾驶行为调节方法 |
CN108146437A (zh) * | 2016-12-05 | 2018-06-12 | 博世汽车部件(苏州)有限公司 | 电动车及其控制装置和控制方法 |
DE102018217885A1 (de) * | 2017-10-20 | 2019-04-25 | Denso Corporation | Fahrzeugsteuerungsgerät |
CN111186339A (zh) * | 2018-11-14 | 2020-05-22 | 北京宝沃汽车有限公司 | 车辆控制方法、系统及车辆 |
CN110667589A (zh) * | 2018-12-29 | 2020-01-10 | 长城汽车股份有限公司 | 驾驶模式跳转控制方法、系统及控制器 |
CN112092816A (zh) * | 2020-09-25 | 2020-12-18 | 重庆长安汽车股份有限公司 | 一种智能切换驾驶模式的控制系统及车辆 |
CN112776826A (zh) * | 2021-01-04 | 2021-05-11 | 东风柳州汽车有限公司 | 整车安全保护方法、系统、设备及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112519575B (zh) | 调整油门踏板特性的方法和装置 | |
JP6703465B2 (ja) | 運転支援装置、センタ装置 | |
US20100250045A1 (en) | Vehicle operation diagnosis device, vehicle operation diagnosis method, and computer program | |
JP4893771B2 (ja) | 車両操作診断装置、車両操作診断方法及びコンピュータプログラム | |
CN111476079A (zh) | 将用于对象检测的地图特征与lidar合并的全面且有效的方法 | |
US20230286509A1 (en) | Hmi control apparatus and driving control apparatus | |
JP2018135068A (ja) | 情報処理システム、情報処理方法及びプログラム | |
US20230037467A1 (en) | Driving control device and hmi control device | |
US10583841B2 (en) | Driving support method, data processor using the same, and driving support system using the same | |
CN107784852B (zh) | 用于车辆的电子控制装置及方法 | |
JP7478570B2 (ja) | 車両制御装置 | |
CN114537141A (zh) | 用于控制车辆的方法、装置、设备及介质 | |
CN114194105B (zh) | 自动驾驶车用信息提示装置 | |
WO2022057745A1 (zh) | 一种辅助驾驶的控制方法及装置 | |
CN113511141A (zh) | 用于车辆中的增强现实的系统和方法 | |
JP2023165746A (ja) | 車両用表示装置、および車両用表示プログラム | |
CN115265537A (zh) | 具有交通状态检测机制的导航系统及其操作方法 | |
CN114537450A (zh) | 车辆控制方法、装置、介质、芯片、电子设备及车辆 | |
CN108622081A (zh) | 用于车辆的辅助驾驶设备和方法 | |
CN115179879A (zh) | 车辆自唤醒方法、装置、车辆及存储介质 | |
WO2024000391A1 (zh) | 一种控制方法、装置和车辆 | |
WO2024000394A1 (zh) | 一种调整限速值的方法、装置和车辆 | |
US20240042858A1 (en) | Vehicle display system, vehicle display method, and storage medium storing vehicle display program | |
US20240017736A1 (en) | Vehicle control device | |
CN114771539B (zh) | 车辆变道决策方法、装置、存储介质及车辆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22948502 Country of ref document: EP Kind code of ref document: A1 |