[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024096701A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2024096701A1
WO2024096701A1 PCT/KR2023/017580 KR2023017580W WO2024096701A1 WO 2024096701 A1 WO2024096701 A1 WO 2024096701A1 KR 2023017580 W KR2023017580 W KR 2023017580W WO 2024096701 A1 WO2024096701 A1 WO 2024096701A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
secondary battery
positive electrode
lithium
lithium secondary
Prior art date
Application number
PCT/KR2023/017580
Other languages
French (fr)
Korean (ko)
Inventor
한준혁
이철행
안경호
오영호
정유경
고윤석
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority claimed from KR1020230150884A external-priority patent/KR20240064569A/en
Publication of WO2024096701A1 publication Critical patent/WO2024096701A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals

Definitions

  • the present invention relates to lithium secondary batteries.
  • secondary batteries are the most suitable for various purposes.
  • interest is growing in lithium secondary batteries, which are not only capable of being miniaturized to the point where they can be applied to personal IT devices, but also have the highest energy density.
  • lithium secondary batteries are manufactured by injecting or impregnating a non-aqueous electrolyte into an electrode assembly consisting of a positive electrode, a negative electrode, and a porous separator.
  • Carbon-based active materials, silicon-based active materials, etc. are considered as negative electrode active materials for these lithium secondary batteries. Meanwhile, the use of lithium-containing cobalt oxide, layered crystal structure LiMnO 2 , spinel crystal structure LiMn 2 O 4 , and lithium-containing nickel oxide (LiNiO 2 ) is being considered as the positive electrode active material.
  • lithium iron phosphate for example, LiFePO 4
  • LiFePO 4 lithium iron phosphate
  • the lithium iron phosphate-based active material has a lower specific capacity compared to lithium cobalt oxide, lithium nickel oxide, etc., and therefore, in order to increase the energy density of the positive electrode and lithium secondary battery containing it, the lithium iron phosphate-based active material must be used at a high loading amount.
  • the high-loading lithium iron phosphate anode has problems in that it is difficult to fully impregnate the anode with the non-aqueous electrolyte, making capacity development difficult, resistance increasing, and lifespan being reduced.
  • One object of the present invention is to solve the above problems, in a lithium secondary battery including lithium iron phosphate particles as a positive electrode active material and a positive electrode with a specific loading amount or more, the impregnation of the positive electrode into the non-aqueous electrolyte
  • a lithium secondary battery having excellent capacity development effect, excellent life performance, and resistance reduction effect is provided.
  • the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the positive electrode includes a positive electrode active material, the positive electrode active material includes lithium iron phosphate particles, and the loading amount of the positive electrode is 450 mg/25 cm 2 to 740 mg/ 25 cm 2 , the non-aqueous electrolyte includes a lithium salt, an organic solvent and an additive, the organic solvent includes a cyclic carbonate-based solvent and a linear carbonate-based solvent, the cyclic carbonate-based solvent includes ethylene carbonate, and the linear The carbonate-based solvent includes dimethyl carbonate, and the dimethyl carbonate is included in the organic solvent in an amount of 5% to 75% by volume.
  • the additive includes vinylene carbonate, and the weight of the vinylene carbonate relative to the weight of the dimethyl carbonate is A lithium secondary battery having a weight ratio of more than 0 and less than or equal to 0.2 is provided.
  • the lithium secondary battery according to the present invention includes a positive electrode having a loading amount greater than a certain level and containing lithium iron phosphate particles as a positive electrode active material; and a non-aqueous electrolyte comprising ethylene carbonate and dimethyl carbonate as an organic solvent and vinylene carbonate as an additive, and in which the content and content ratio of dimethyl carbonate and vinylene carbonate are adjusted to a specific range.
  • excellent dimethyl carbonate is used as an organic solvent component to improve electrolyte impregnation of a positive electrode with a high loading amount, and a vinylene carbonate additive is added to have a specific content ratio in relation to dimethyl carbonate. Since the cathode reduction stability can be improved by using , the capacity of the lithium secondary battery can be developed at an excellent level, and the lifespan performance and resistance characteristics can be improved.
  • substitution means that at least one hydrogen bonded to carbon is replaced with an element other than hydrogen, for example, an alkyl group having 1 to 5 carbon atoms or a fluorine element. It means replaced with .
  • the average particle size (D 50 ) can be defined as the particle size corresponding to 50% of the volume accumulation in the particle size distribution curve.
  • the average particle diameter (D 50 ) can be measured using, for example, a laser diffraction method.
  • the laser diffraction method is generally capable of measuring particle diameters ranging from the submicron region to several millimeters, and can obtain results with high reproducibility and high resolution.
  • the present invention relates to lithium secondary batteries.
  • the lithium secondary battery according to the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte
  • the positive electrode includes a positive electrode active material
  • the positive electrode active material includes lithium iron phosphate particles
  • the loading amount of the positive electrode is 450 mg/25 cm 2 to 740 mg/25 cm 2
  • the non-aqueous electrolyte includes a lithium salt
  • an organic solvent and an additive the organic solvent includes a cyclic carbonate-based solvent and a linear carbonate-based solvent
  • the cyclic carbonate-based solvent is It includes ethylene carbonate
  • the linear carbonate-based solvent includes dimethyl carbonate
  • the dimethyl carbonate is included in the organic solvent in an amount of 5% to 75% by volume
  • the additive includes vinylene carbonate, and the dimethyl carbonate.
  • the weight ratio of the vinylene carbonate to the weight of is characterized in that it exceeds 0 and is 0.2 or less.
  • the lithium secondary battery according to the present invention includes a positive electrode having a loading amount greater than a certain level and containing lithium iron phosphate particles as a positive electrode active material; and a non-aqueous electrolyte comprising ethylene carbonate and dimethyl carbonate as an organic solvent and vinylene carbonate as an additive, and in which the content and content ratio of dimethyl carbonate and vinylene carbonate are adjusted to a specific range.
  • excellent dimethyl carbonate is used as an organic solvent component to improve electrolyte impregnation of a positive electrode with a high loading amount, and a vinylene carbonate additive is added to have a specific content ratio in relation to dimethyl carbonate. Since the cathode reduction stability can be improved by using , the capacity of the lithium secondary battery can be developed at an excellent level, and the lifespan performance and resistance characteristics can be improved.
  • the lithium secondary battery according to the present invention has a capacity retention rate of 90% or more, preferably 90% to 95%, when the design capacity of the cell (or lithium secondary battery) is at least 500 mAh and the initial discharge capacity is at least 500 mAh. %, and the resistance increase rate may be 20% or less, preferably 15% or less.
  • the positive electrode includes lithium iron phosphate-based particles as an active material
  • the loading amount is 450 mg/25 cm 2 to 740 mg/25 cm 2
  • the non-aqueous electrolyte includes lithium salt, an organic solvent, and an additive
  • the organic solvent is a cyclic carbonate-based solvent.
  • the additive includes vinylene carbonate, and the weight ratio of the vinylene carbonate to the weight of the dimethyl carbonate is greater than 0 and less than or equal to 0.2.
  • the lithium secondary battery includes a positive electrode; cathode; separation membrane; and non-aqueous electrolytes.
  • the lithium secondary battery includes a positive electrode; a cathode opposite the anode; a separator interposed between the anode and the cathode; and non-aqueous electrolytes.
  • the lithium secondary battery includes manufacturing an electrode assembly including a positive electrode, a negative electrode, and a separator; Storing the electrode assembly in a battery case; Preparing a non-aqueous electrolyte comprising a lithium salt, an organic solvent, and additives; and injecting or impregnating the non-aqueous electrolyte into the battery case.
  • the positive electrode includes a positive electrode active material.
  • the positive electrode active material includes lithium iron phosphate particles.
  • the lithium iron phosphate particles may include a compound represented by the following formula (A).
  • M is one or more elements selected from Co, Ni, Mn, Al, Mg, Ti and V
  • X is F, S, or N, 0 ⁇ s ⁇ 0.5; -0.5 ⁇ a ⁇ +0.5; 0 ⁇ b ⁇ 0.1.
  • the lithium iron phosphate particles may be in the form of primary particles or may be in the form of secondary particles in which two or more primary particles are aggregated. Specifically, the lithium iron phosphate particles may be in the form of primary particles.
  • the lithium iron phosphate particles may be made of primary particles, may be made of secondary particles in which two or more primary particles are aggregated, or may be a mixture of primary particles and secondary particles in which two or more primary particles are aggregated.
  • the average particle diameter (D 50 ) of the lithium iron phosphate particles may be 0.2 to 3.0 ⁇ m, specifically 0.2 to 2.0 ⁇ m, and more specifically, It may be 0.3 to 1.5 ⁇ m.
  • the primary particles may have an average particle diameter (D 50 ) of 0.2 to 3.0 ⁇ m, specifically 0.2 to 2.0 ⁇ m. and, more specifically, may be 0.3 to 1.5 ⁇ m, and the secondary particles may have an average particle diameter (D 50 ) of 7 to 25 ⁇ m, specifically 10 to 20 ⁇ m.
  • the positive electrode active material may further include a carbon coating layer located on the surface of the lithium iron phosphate particles.
  • the carbon coating layer may be introduced for the purpose of protecting lithium iron phosphate particles and improving electrical conductivity.
  • the positive electrode active material may not contain lithium nickel-based oxide, for example, lithium nickel-cobalt-manganese oxide or lithium nickel-cobalt-aluminum oxide.
  • lithium nickel-based oxide for example, lithium nickel-cobalt-manganese oxide or lithium nickel-cobalt-aluminum oxide.
  • the positive electrode containing the lithium nickel-based oxide it may be difficult to achieve the effect even if the loading amount (450 mg/25 cm 2 to 740 mg/25 cm 2 ) and the non-aqueous electrolyte described later are applied.
  • the loading amount of the anode is 450mg/25cm 2 to 740mg/25cm 2 .
  • the lithium iron phosphate particles have the advantage of excellent thermal stability and relatively low cost compared to other cathode active materials such as lithium cobalt oxide and lithium nickel-cobalt-manganese oxide, but due to their small specific capacity, the loading amount is required to realize high energy density. There is a problem that needs to be increased.
  • a high energy density battery e.g., a lithium battery with a design capacity of the cell of at least 500 mAh and an initial discharge capacity of at least 500 mAh
  • the non-aqueous electrolyte cannot be sufficiently impregnated into the positive electrode, making it difficult to develop the capacity of the lithium secondary battery, increasing resistance, and deteriorating lifespan performance.
  • the lithium secondary battery according to the present invention uses dimethyl carbonate as an organic solvent component, vinylene carbonate as an additive, and a non-aqueous electrolyte whose content and content ratio are adjusted to a specific range. It is characterized by Through these features, it is possible to improve the electrolyte impregnation of the positive electrode with a loading amount of 450mg/25cm2 to 740mg/25cm2 and at the same time improve the negative electrode reduction stability, so that the capacity of the lithium secondary battery is developed at an excellent level and the lifespan is improved. Performance and resistance characteristics can be improved.
  • the loading amount of the anode was 450mg/25cm 2 If it is less than that, the above-described problem of deterioration of electrolyte impregnability does not occur, so the effect of using the non-aqueous electrolyte according to the present invention is not expressed.
  • the loading amount of the positive electrode exceeds 740 mg/25 cm 2 , there is a possibility that electrolyte impregnation may not be sufficiently secured even if the non-aqueous electrolyte according to the present invention is applied to the positive electrode containing lithium iron phosphate particles.
  • the loading amount of the positive electrode exceeds 740 mg/25cm 2
  • lithium iron phosphate particles having a small average particle diameter (D 50 ) are applied to the positive electrode
  • the voids formed between the lithium iron phosphate particles The size is small, and in this case, cracking of the anode may occur as the slurry solvent evaporates in the voids formed between lithium iron phosphate particles during the drying process during anode production, which may make it difficult to manufacture or implement the anode.
  • the loading amount of the positive electrode is specifically 450mg/25cm 2 to 740mg/25cm 2 , 450mg/25cm 2 to 730mg/25cm 2 , 450mg/25cm 2 to 720mg/25cm 2 , 450mg/25cm 2 to 710mg/25cm 2 , or 450mg/25cm 2 to 700mg/25cm 2 , more specifically 500mg/25cm 2 to 680mg/25cm 2 , 500mg/25cm 2 to 650mg/25cm 2 , 500mg/25cm 2 to 625mg/25cm 2 , or 500mg/25cm 2 It may be from 600mg/25cm 2 .
  • the positive electrode includes a positive electrode current collector; and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode active material layer may include the above-described positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the positive electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. there is.
  • the thickness of the positive electrode current collector may typically range from 3 to 500 ⁇ m.
  • the positive electrode current collector may form fine irregularities on the surface to strengthen the bonding force of the positive electrode active material.
  • the positive electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
  • the positive electrode active material layer is disposed on at least one side of the positive electrode current collector. Specifically, the positive electrode active material layer may be disposed on one or both sides of the positive electrode current collector.
  • the positive electrode active material may be included in the positive electrode active material layer in an amount of 80% to 99% by weight in consideration of sufficient capacity of the positive active material.
  • the positive electrode active material layer may further include a binder and/or a conductive material along with the positive electrode active material described above.
  • the binder is a component that helps bind active materials and conductive materials and bind to the current collector, and is specifically made of polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, and hydroxypropyl cellulose. From the group consisting of wood, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber and fluoroelastomer. It may include at least one selected type, preferably polyvinylidene fluoride.
  • the binder may be included in the positive electrode active material layer in an amount of 1% to 20% by weight, preferably 1.2% to 10% by weight, in terms of ensuring sufficient binding force between components such as the positive electrode active material.
  • the conductive material can be used to assist and improve conductivity in secondary batteries, and is not particularly limited as long as it has conductivity without causing chemical changes.
  • the anode conductive material includes graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, KETJENBLACK®, channel black, panel black, lamp black, thermal black; Conductive fibers such as carbon fiber and metal fiber; Conductive tubes such as carbon nanotubes; fluorocarbon; Metal powders such as aluminum and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; and polyphenylene derivatives, and may preferably include carbon black in terms of improving conductivity.
  • the conductive material may be included in the positive electrode active material layer in an amount of 1% to 20% by weight, preferably 1.2% to 10% by weight.
  • the thickness of the positive electrode active material layer may be 100 ⁇ m to 300 ⁇ m, preferably 150 ⁇ m to 250 ⁇ m.
  • the positive electrode may be manufactured by coating a positive electrode slurry containing a positive electrode active material and optionally a binder, a conductive material, and a solvent for forming a positive electrode slurry on the positive electrode current collector, followed by drying and rolling.
  • the solvent for forming the positive electrode slurry may include an organic solvent such as NMP (N-methyl-2-pyrrolidone).
  • the solid content of the positive electrode slurry may be 40% by weight to 90% by weight, specifically 50% by weight to 80% by weight.
  • the cathode may face the anode.
  • the negative electrode includes a negative electrode active material.
  • the negative electrode includes a negative electrode current collector; and a negative electrode active material layer disposed on at least one side of the negative electrode current collector. At this time, the negative electrode active material may be included in the negative electrode active material layer.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. there is.
  • the negative electrode current collector may typically have a thickness of 3 to 500 ⁇ m.
  • the negative electrode current collector may form fine irregularities on the surface to strengthen the bonding force of the negative electrode active material.
  • the negative electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the negative electrode active material layer is disposed on at least one side of the negative electrode current collector. Specifically, the negative electrode active material layer may be disposed on one or both sides of the negative electrode current collector.
  • the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material is a material capable of reversibly inserting/extracting lithium ions, and may include at least one selected from the group consisting of carbon-based active materials, (semi-)metal-based active materials, and lithium metal, and specifically, carbon-based active materials. and (semi-)metal-based active materials.
  • the carbon-based active material may include at least one selected from the group consisting of graphite, hard carbon, soft carbon, carbon black, graphene, and fibrous carbon, and may preferably include graphite.
  • the graphite may include at least one selected from the group consisting of artificial graphite and natural graphite.
  • the average particle diameter (D 50 ) of the carbon-based active material may be 10 ⁇ m to 30 ⁇ m, preferably 15 ⁇ m to 25 ⁇ m, in terms of ensuring structural stability during charging and discharging and reducing side reactions with the electrolyte solution.
  • the (semi-)metal-based active materials include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, At least one (semi-)metal selected from the group consisting of V, Ti, and Sn; From the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn.
  • An alloy of lithium and at least one selected (semi-)metal From the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn.
  • An oxide of at least one selected (semi-)metal Lithium Titanium Oxide (LTO); lithium vanadium oxide; It may include etc.
  • the (semi-)metal-based active material may include a silicon-based active material.
  • the silicon-based active material may include a compound represented by SiO x (0 ⁇ x ⁇ 2).
  • SiO x is preferably within the above range, and more preferably, the silicon-based active material may be SiO.
  • the average particle diameter (D 50 ) of the silicon-based active material may be 1 ⁇ m to 30 ⁇ m, preferably 2 ⁇ m to 15 ⁇ m in terms of reducing side reactions with the electrolyte solution while ensuring structural stability during charging and discharging.
  • the negative electrode active material may be included in the negative electrode active material layer in an amount of 60% to 99% by weight, preferably 75% to 95% by weight.
  • the negative electrode active material layer may further include a binder and/or a conductive material along with the negative electrode active material.
  • the binder is used to improve battery performance by improving adhesion between the negative electrode active material layer and the negative electrode current collector, for example, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co- HFP), polyvinylidenefluoride (PVDF), polyacrylonitrile, polymethylmethacrylate, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, recycled Cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoroelastomer, and hydrogen thereof. It may include at least one selected from the group consisting of substances substituted with Li, Na, or Ca, and may also include various copolymers thereof.
  • PVDF-co- HFP polyvinylidene flu
  • the binder may be included in the negative electrode active material layer in an amount of 0.5% to 10% by weight, preferably 1% to 5% by weight.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • graphite such as natural graphite or artificial graphite
  • Carbon black such as carbon black, acetylene black, KETJENBLACK®, channel black, panel black, lamp black, thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Conductive tubes such as carbon nanotubes; fluorocarbon;
  • Metal powders such as aluminum and nickel powder;
  • Conductive whiskers such as zinc oxide and potassium titanate;
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material may be included in the negative electrode active material layer in an amount of 0.5% to 10% by weight, preferably 1% to 5% by weight.
  • the thickness of the negative electrode active material layer may be 50 ⁇ m to 300 ⁇ m, preferably 100 ⁇ m to 200 ⁇ m.
  • the loading amount of the negative electrode active material layer may be 200mg/25cm 2 to 500mg/25cm 2 , preferably 250mg/25cm 2 to 400mg/25cm 2 .
  • the negative electrode may be manufactured by coating at least one surface of a negative electrode current collector with a negative electrode slurry containing a negative electrode active material, a binder, a conductive material, and/or a solvent for forming a negative electrode slurry, followed by drying and rolling.
  • the solvent for forming the negative electrode slurry is, for example, distilled water, NMP (N-methyl-2-pyrrolidone), ethanol, methanol, and isopropyl alcohol in terms of facilitating dispersion of the negative electrode active material, binder, and/or conductive material. It may contain at least one selected from the group, preferably distilled water.
  • the solid content of the negative electrode slurry may be 30% by weight to 80% by weight, specifically 40% by weight to 70% by weight.
  • the separator may be interposed between the anode and the cathode.
  • the separator includes typical porous polymer films conventionally used as separators, such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer.
  • Porous polymer films made of polyolefin-based polymers can be used alone or by laminating them, or conventional porous non-woven fabrics, such as high-melting point glass fibers, polyethylene terephthalate fibers, etc., can be used, but are limited to these. It doesn't work.
  • a coated separator containing ceramic components or polymer materials may be used to ensure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
  • the lithium salt may be those commonly used in electrolytes for lithium secondary batteries without limitation, and for example, includes Li + as a cation and Li + as an anion.
  • the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiAlO 4 , LiAlCl 4 , LiPF 6 , LiSbF 6 , LiAsF 6 , LiB 10 Cl 10 , LiBOB (LiB(C 2 O 4 ) 2 ) , LiCF 3 SO 3 , LiTFSI (LiN(SO 2 CF 3 ) 2 ), LiFSI (LiN(SO 2 F) 2 ), LiCH 3 SO 3 , LiCF 3 CO 2 , LiCH 3 CO 2 and LiBETI (LiN(SO 2 At least one or more selected from the group consisting of CF 2 CF 3 ) 2 ) may be mentioned.
  • the lithium salt is specifically LiBF 4 , LiClO 4 , LiPF 6 , LiBOB (LiB(C 2 O 4 ) 2 ), LiCF 3 SO 3 , LiTFSI (LiN(SO 2 CF 3 ) 2 ), LiFSI (LiN(SO 2 ) F) 2 ) and LiBETI (LiN(SO 2 CF 2 CF 3 ) 2 ) may contain a single substance or a mixture of two or more types selected from the group consisting of LiPF 6 .
  • the lithium salt can be appropriately changed within the range commonly used, but in order to obtain the optimal effect of forming an anti-corrosion film on the electrode surface, it should be included in the electrolyte solution at a concentration of 0.8 M to 3.0 M, specifically at a concentration of 1.0 M to 3.0 M. You can. At this time, the unit “M” may mean molar concentration, specifically “mol/L”.
  • the viscosity of the non-aqueous electrolyte can be controlled to achieve optimal impregnation, and the mobility of lithium ions can be improved to improve the capacity characteristics and cycle characteristics of the lithium secondary battery.
  • the organic solvent may include a cyclic carbonate-based solvent and a linear carbonate-based solvent.
  • the organic solvent may be composed of a cyclic carbonate-based solvent and a linear carbonate-based solvent.
  • the volume ratio of the cyclic carbonate-based solvent and the linear carbonate-based solvent may be 10:90 to 50:50, specifically 15:85 to 50:50, more specifically 20:80 to 35:65, and may be within the above range. This is desirable in terms of achieving high ion transport properties and low viscosity of the electrolyte.
  • the cyclic carbonate-based solvent includes ethylene carbonate.
  • the ethylene carbonate is a high viscosity organic solvent and has a high dielectric constant, so it can easily dissociate the lithium salt in the electrolyte.
  • the cyclic carbonate-based solvent may not include a fluorinated cyclic carbonate, for example, fluoroethylene carbonate (FEC).
  • FEC fluoroethylene carbonate
  • the cyclic carbonate-based solvent may consist only of ethylene carbonate and may not include other cyclic carbonate-based solvents (eg, propylene carbonate).
  • the linear carbonate-based solvent includes dimethyl carbonate.
  • the dimethyl carbonate is an organic solvent with low viscosity and low dielectric constant, and is particularly excellent in electrolyte impregnation, so it can impregnate the positive electrode containing lithium iron phosphate particles at a high loading level according to the present invention to an excellent level.
  • dimethyl carbonate as an organic solvent has the problem of forming an unstable negative electrode film, which reduces the reduction stability of the negative electrode.
  • dimethyl carbonate and vinylene carbonate in a specific content ratio, the electrolyte impregnation property and the negative electrode are improved. The reduction stability of can be improved at the same time.
  • the non-aqueous electrolyte of the present invention can achieve the desired effect especially when the loading amount of the positive electrode containing lithium iron phosphate particles is 450mg/25cm2 to 740mg/25cm2, and if the loading amount of the positive electrode is less than 450mg/ 25cm2 or If it exceeds 740 mg/25cm 2 , the effect of improving electrolyte impregnation by using dimethyl carbonate cannot be obtained.
  • the dimethyl carbonate is included in the organic solvent in an amount of 5% to 75% by volume.
  • the dimethyl carbonate may be included in the organic solvent in an amount of 5% to 55% by volume, more specifically 7% to 45% by volume, and even more specifically 35% to 45% by volume. If dimethyl carbonate is included in the organic solvent in an amount of less than 5% by volume, the impregnability of the positive electrode into the electrolyte cannot be improved. If dimethyl carbonate is included in the organic solvent in an amount exceeding 75% by volume, an unstable SEI film is formed and cell performance is deteriorated, which is not desirable.
  • the linear carbonate-based solvent may further include ethylmethyl carbonate along with the dimethyl carbonate. It is preferable that the linear carbonate further includes ethylmethyl carbonate in that the stability of the SEI film can be further improved.
  • the organic solvent contains 10% to 50% by volume of the ethylene carbonate, 5% to 55% by volume of the dimethyl carbonate, and 20% to 70% by volume of the ethylmethyl carbonate. It may include % by volume, and more specifically, it may include 20% to 40% by volume of the ethylene carbonate, 7% to 45% by volume of the dimethyl carbonate, and 25% to 65% by volume of the ethylmethyl carbonate. , more specifically, it may include 25% to 35% by volume of the ethylene carbonate, 30% to 45% by volume of the dimethyl carbonate, and 25% to 50% by volume of the ethylmethyl carbonate, or 30% by volume of the ethylene carbonate.
  • the organic solvent can be used by adding organic solvents commonly used in non-aqueous electrolytes without limitation, if necessary.
  • it may further include at least one organic solvent selected from ester-based solvents, ether-based solvents, glyme-based solvents, and nitrile-based solvents.
  • the ester solvents include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate and butyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, It may include at least one member selected from the group consisting of ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone.
  • the ether-based solvents include dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether, ethyl propyl ether, 1,3-dioxolane (DOL), and 2,2-bis (trifluoromethyl )-1,3-dioxolane (TFDOL) or a mixture of two or more of these may be used, but are not limited thereto.
  • the glyme-based solvent has a high dielectric constant and low surface tension compared to the linear carbonate-based solvent, and is a solvent with low reactivity with metal, such as dimethoxyethane (glyme, DME), diethoxyethane, digylme, and trimethylamine.
  • -It may include at least one selected from the group consisting of triglyme and tetra-glyme (TEGDME), but is not limited thereto.
  • the nitrile-based solvents include acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile, and 4-fluorobenzonitrile. , difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile, but is not limited thereto.
  • non-aqueous electrolyte excluding lithium salts and additives, may be organic solvents unless otherwise specified.
  • the non-aqueous electrolyte of the present invention contains additives.
  • the additive includes vinylene carbonate.
  • the vinylene carbonate can be used as an additive in the non-aqueous electrolyte of the present invention to form a stable SEI film on the cathode.
  • dimethyl carbonate is used as an organic solvent, there is a problem that the stability of the anode SEI film is poor when exposed to high temperatures, but the cathode reduction stability can be improved by using vinylene carbonate as an additive.
  • the weight ratio of the vinylene carbonate to the weight of the dimethyl carbonate is greater than 0 and less than or equal to 0.2. If the weight ratio of the vinylene carbonate to the weight of the dimethyl carbonate exceeds 0.2, the negative SEI film may be excessively formed, which may cause problems such as increased resistance and decreased lifespan performance.
  • the weight ratio of the vinylene carbonate to the weight of the dimethyl carbonate may be 0.01 to 0.18, more specifically 0.016 to 0.130, and even more specifically 0.02 to 0.08, and when in the above range, the positive electrode
  • the effect of simultaneously improving electrolyte impregnation and reduction stability of the cathode can be preferably implemented.
  • the weight ratio of vinylene carbonate to the weight of dimethyl carbonate can be calculated through the weight or volume of the entire non-aqueous electrolyte, volume content of dimethyl carbonate, weight content, density information, etc.
  • the vinylene carbonate is added to the non-aqueous electrolyte in an amount of 0.01% to 7% by weight, specifically 0.3% to 6% by weight, more specifically 0.4% to 3% by weight, and even more specifically 0.6% to 2% by weight. It may be included in the above range, and is preferable because the negative SEI film is properly formed to prevent electrolyte side reactions and to prevent an increase in resistance due to excessive use of additives.
  • the additive is necessary to prevent the non-aqueous electrolyte from decomposing in a high-output environment and causing cathode collapse, or to further improve low-temperature high-rate discharge characteristics, high-temperature stability, overcharge prevention, and battery expansion suppression at high temperatures. Accordingly, other additional additives may be included in addition to vinylene carbonate.
  • additional additives include cyclic carbonate-based compounds, halogen-substituted carbonate-based compounds, sultone-based compounds, sulfonate-based compounds, sulfate-based compounds, phosphate-based or phosphite-based compounds, borate-based compounds, nitrile-based compounds, and benzene-based compounds. , amine-based compounds, silane-based compounds, and lithium salt-based compounds.
  • the cyclic carbonate-based compound may be, for example, vinylethylene carbonate.
  • the halogen-substituted carbonate-based compound may be, for example, fluoroethylene carbonate (FEC).
  • FEC fluoroethylene carbonate
  • the sultone-based compounds include, for example, 1,3-propane sultone (PS), 1,4-butane sultone, ethenesultone, 1,3-propene sultone (PRS), 1,4-butene sultone, and 1- It may be at least one compound selected from the group consisting of methyl-1,3-propene sultone.
  • the sulfonate-based compound may contain a saturated hydrocarbon group or an unsaturated hydrocarbon group, for example, an alkenyl group or an alkynyl group.
  • the sulfate-based compound may be, for example, ethylene sulfate (Esa), trimethylene sulfate (TMS), or methyl trimethylene sulfate (MTMS).
  • Esa ethylene sulfate
  • TMS trimethylene sulfate
  • MTMS methyl trimethylene sulfate
  • the phosphate-based or phosphite-based compounds include, for example, lithium difluoro(bisoxalato)phosphate, lithium difluorophosphate, tris(trimethylsilyl) phosphate, tris(trimethylsilyl) phosphite, and tris(2). , 2,2-trifluoroethyl) phosphate and tris (trifluoroethyl) phosphite.
  • the borate-based compound may include tetraphenylborate, lithium difluoro(oxalato)borate (LiODFB), or lithium bisoxalatoborate (LiB(C 2 O 4 ) 2 , LiBOB).
  • the nitrile-based compounds include, for example, succinonitrile, adiponitrile, acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, From the group consisting of 2-fluorobenzonitrile, 4-fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile. It may be at least one compound selected.
  • the benzene-based compound may be, for example, fluorobenzene
  • the amine-based compound may be triethanolamine or ethylenediamine
  • the silane-based compound may be tetravinylsilane.
  • the lithium salt-based compound is a compound different from the lithium salt contained in the non-aqueous electrolyte solution, and may include lithium difluorophosphate (LiPO 2 F 2 ) or LiBF 4 .
  • the additional additive may be used in combination of two or more types of compounds, and the total content of the vinylene carbonate and the additional additive may be 0.05 to 20% by weight, specifically 0.05 to 10% by weight, based on the total weight of the non-aqueous electrolyte. .
  • the total content of the additives satisfies the above range, high-temperature storage characteristics and high-temperature lifespan characteristics can be more effectively improved, and side reactions in the battery due to additives remaining after the reaction can be prevented.
  • the non-aqueous electrolyte can be prepared, for example, by the following method. First, ethylene carbonate (EC), dimethyl carbonate (EMC), and optionally ethylmethyl carbonate (EMC) are added in the above-described amounts, for example, dimethyl carbonate (DMC) in an organic solvent, specifically 5% to 75% by volume, or more. Specifically, the organic solvent is prepared by mixing to contain 5% to 55% by volume, 7% to 45% by volume, or 35% to 45% by volume. Next, the above-described lithium salt is dissolved in the organic solvent so that the concentration of the lithium salt is 0.8M to 3.0M, specifically 1.0M to 3.0M.
  • EC ethylene carbonate
  • EMC dimethyl carbonate
  • DMC dimethyl carbonate
  • the organic solvent is prepared by mixing to contain 5% to 55% by volume, 7% to 45% by volume, or 35% to 45% by volume.
  • the above-described lithium salt is dissolved in the organic solvent so that the concentration of the lithium
  • vinylene carbonate (VC) is added to the organic solvent in which the lithium salt is dissolved, and the content of vinylene carbonate is 0.01% to 7% by weight, specifically 0.3% by weight, based on the total weight of the non-aqueous electrolyte. to 6% by weight, more specifically 0.4% to 3% by weight, even more specifically 0.6% to 2% by weight, and the weight ratio of the vinylene carbonate to the dimethyl carbonate is greater than 0 and less than or equal to 0.2, specifically 0.01. to 0.18, more specifically 0.016 to 0.130, and even more specifically 0.02 to 0.08. Additional solvents and/or additives described above may be included in the non-aqueous electrolyte.
  • the lithium secondary battery according to the present invention as described above can be usefully used in portable devices such as mobile phones, laptop computers, and digital cameras, and in the field of electric vehicles such as hybrid electric vehicles (HEV).
  • portable devices such as mobile phones, laptop computers, and digital cameras
  • electric vehicles such as hybrid electric vehicles (HEV).
  • HEV hybrid electric vehicles
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool; Electric vehicles, including electric vehicles (EV), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEV); Alternatively, it can be used as a power source for any one or more mid- to large-sized devices among power storage systems.
  • Electric vehicles including electric vehicles (EV), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEV);
  • PHEV plug-in hybrid electric vehicles
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, prismatic, pouch-shaped, or coin-shaped using a can.
  • the lithium secondary battery according to the present invention can not only be used in battery cells used as a power source for small devices, but can also be preferably used as a unit cell in medium to large-sized battery modules containing a plurality of battery cells.
  • An organic solvent was prepared by mixing ethylene carbonate (EC), ethylmethyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 30:30:40.
  • LiPF 6 as a lithium salt was dissolved in the organic solvent to a molar concentration of 1.0M.
  • a non-aqueous electrolyte was prepared by adding vinylene carbonate (VC) to the organic solvent in which the lithium salt was dissolved.
  • VC vinylene carbonate
  • the vinylene carbonate was included in an amount of 1% by weight in the non-aqueous electrolyte.
  • a positive electrode slurry was prepared by adding pyrrolidone (NMP). The positive electrode slurry was applied and dried at a loading amount of 600 mg/25 cm 2 on a positive electrode current collector (Al thin film) with a thickness of 15 ⁇ m, and then roll pressed to prepare a positive electrode (thickness of positive electrode active material: 220 ⁇ m).
  • the average particle diameter (D 50 ) of the positive electrode active material was 1.1 ⁇ m, and the lithium iron phosphate (LiFePO 4 ) particles on which the carbon coating layer was formed were in the form of primary particles.
  • a cathode slurry was prepared by adding artificial graphite as a cathode active material, SBR-CMC as a binder, and carbon black as a conductive material to water as a solvent at a weight ratio of 97:2:1.
  • the negative electrode slurry was applied and dried at a loading amount of 300 mg/25 cm 2 to a 15 ⁇ m thick copper (Cu) thin film, which is a negative electrode current collector, and then roll pressed to prepare a negative electrode (thickness of the negative electrode active material: 170 ⁇ m).
  • An electrode assembly was manufactured by sequentially stacking the positive electrode, polyolefin-based porous separator, and negative electrode.
  • the assembled electrode assembly was stored in a battery case, and then the prepared non-aqueous electrolyte solution was injected to manufacture a lithium secondary battery.
  • Example 2 The same method as Example 1 except that a non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC), ethylmethyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 30:60:10 as an organic solvent.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • DMC dimethyl carbonate
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that a non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 30:70 as an organic solvent.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the non-aqueous electrolyte was prepared by adding vinylene carbonate as an additive to the non-aqueous electrolyte at 0.5 wt% instead of 1 wt%.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the non-aqueous electrolyte was prepared by adding vinylene carbonate as an additive to the non-aqueous electrolyte at 5 wt% instead of 1 wt%.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode was manufactured by changing the loading amount of the positive electrode slurry to 500 mg/25 cm 2 instead of 600 mg/25 cm 2 .
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode was manufactured by changing the loading amount of the positive electrode slurry to 700 mg/25 cm 2 instead of 600 mg/25 cm 2 .
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode was manufactured by changing the loading amount of the positive electrode slurry to 450 mg/25 cm 2 instead of 600 mg/25 cm 2 .
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that a non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) at a volume ratio of 30:70 as an organic solvent.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the non-aqueous electrolyte was prepared without adding vinylene carbonate as an additive.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the non-aqueous electrolyte was prepared by adding vinylene carbonate as an additive to the non-aqueous electrolyte at 8 wt% instead of 1 wt%.
  • a lithium secondary battery was manufactured in the same manner as in Example 6, except that a non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) at a volume ratio of 30:70 as an organic solvent.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • a non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC), ethylmethyl carbonate (EMC), and diethyl carbonate (DEC) in a volume ratio of 30:30:40 as an organic solvent, and the loading amount of the positive electrode slurry was 600 mg.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • DEC diethyl carbonate
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was manufactured at 500mg/25cm 2 instead of /25cm 2 .
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode was manufactured by changing the loading amount of the positive electrode slurry to 750 mg/25 cm 2 instead of 600 mg/25 cm 2 .
  • a non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) at a volume ratio of 30:70 as an organic solvent, and the loading amount of the positive electrode slurry was set to 400 mg/25 cm 2 instead of 600 mg/25 cm 2 .
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was manufactured.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode was manufactured by changing the loading amount of the positive electrode slurry to 400 mg/25 cm 2 instead of 600 mg/25 cm 2 .
  • a non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC), ethylmethyl carbonate (EMC), and diethyl carbonate (DEC) in a volume ratio of 30:30:40 as an organic solvent, and the loading amount of the positive electrode slurry was 600 mg.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • DEC diethyl carbonate
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was manufactured at 400mg/25cm 2 instead of /25cm 2 .
  • the lithium secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 9 prepared above were charged to 3.65 VC under CC/CV, 0.33 C conditions at 25°C and discharged to 2.5 V at 0.33 C to perform initial charge and discharge.
  • the initial discharge capacity (unit: mAh) was measured.
  • the initial discharge capacity was divided by the cell design capacity (based on 0.33C) and then multiplied by 100 to evaluate the capacity development rate (%). The results are shown in Table 2 below.
  • the lithium secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 9 prepared above were charged to 3.65 VC under CC/CV, 0.33 C conditions at 25°C and discharged to 2.5 V at 0.33 C as one cycle. The subsequent discharge capacity and resistance were measured. At this time, the resistance was measured using the voltage drop difference obtained by checking the capacity at room temperature, charging to SOC 50% based on the discharge capacity, and discharging for 10 seconds at 2.5C current.
  • Capacity retention rate (%) was calculated according to [Equation 1] below
  • resistance increase rate (%) was calculated according to [Equation 2] below. The measurement results are listed in Table 2 below.
  • Capacity maintenance rate (%) (discharge capacity after 200 cycles/discharge capacity after 1 cycle) ⁇ 100
  • Resistance increase rate (%) ⁇ (resistance after 200 cycles - resistance after 1 cycle)/resistance after 1 cycle ⁇ 100
  • the lithium secondary batteries of Examples 1 to 8 according to the present invention show superior capacity development effect, excellent life performance, and low resistance increase rate compared to Comparative Examples 1 to 6. You can check it.
  • Example 6 in which the anode loading amount was designed at 500mg/25cm 2 , it can be seen that the capacity development effect is superior to Comparative Example 4 in which dimethyl carbonate is not used, and it shows excellent lifespan performance and a low resistance increase rate. .
  • Comparative Examples 7 to 9 in which the anode loading amount was designed at 400 mg/25 cm 2 , it can be seen that the loading amount is adjusted low and the electrolyte impregnation is not a major problem, so it is not significantly affected by the components and content of the non-aqueous electrolyte. there is. Specifically, comparing Comparative Examples 7 and 8, it can be seen that even when dimethyl carbonate is used as an organic solvent component, the effect improvement in terms of capacity development, life performance, and resistance increase rate is minimal. In addition, Comparative Example 9, which used a linear carbonate other than dimethyl carbonate, showed the same or similar level of performance as Comparative Examples 7 and 8.
  • the non-aqueous electrolyte according to the present invention is used in a positive electrode containing lithium iron phosphate at a certain loading amount (for example, 400 mg/25 cm 2 or more and less than 750 mg/25 cm 2 , more specifically 450 mg/25 cm 2 to 740 mg/25 cm 2 ). It can be confirmed that it exhibits excellent effects.
  • a certain loading amount for example, 400 mg/25 cm 2 or more and less than 750 mg/25 cm 2 , more specifically 450 mg/25 cm 2 to 740 mg/25 cm 2 . It can be confirmed that it exhibits excellent effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides a lithium secondary battery comprising a cathode, an anode, a separator and a nonaqueous electrolyte, wherein the cathode comprises a cathode active material, the cathode active material comprises lithium iron phosphate particles, the loading amount of the cathode is 450 mg/25 cm2 to 740 mg/25 cm2, the nonaqueous electrolyte comprises a lithium salt, an organic solvent and an additive, the organic solvent comprises a cyclic carbonate-based solvent and a linear carbonate-based solvent, the cyclic carbonate-based solvent includes ethylene carbonate, the linear carbonate-based solvent includes dimethyl carbonate, the dimethyl carbonate is included in an amount of 5-75 vol% in the organic solvent, the additive includes vinylene carbonate, and the ratio of the weight of the vinylene carbonate to the weight of the dimethyl carbonate is greater than 0 and less than or equal to 0.2.

Description

리튬 이차전지Lithium secondary battery
관련출원과의 상호인용Cross-citation with related applications
본 출원은 2022년 11월 4일 자 한국 특허 출원 제10-2022-0146438호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2022-0146438, dated November 4, 2022, and all contents disclosed in the document of the Korean Patent Application are incorporated as part of this specification.
기술분야Technology field
본 발명은 리튬 이차전지에 관한 것이다.The present invention relates to lithium secondary batteries.
정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달되고 이에 수반하여 전반적인 사회의 전기 에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용하기 위한 기술 개발이 요구되고 있다.As personal IT devices and computer networks develop due to the development of the information society, and the overall society's dependence on electrical energy increases, there is a need to develop technologies to efficiently store and utilize electrical energy.
이차전지는 개발된 기술 중 여러 용도에 가장 적합한 기술로서, 이러한 이차전지 중에서도 개인 IT 디바이스 등에 적용될 수 있을 정도로 소형화가 가능할 뿐만 아니라, 에너지 밀도가 가장 높은 리튬 이차전지에 대한 관심이 대두되고 있다.Among the developed technologies, secondary batteries are the most suitable for various purposes. Among these secondary batteries, interest is growing in lithium secondary batteries, which are not only capable of being miniaturized to the point where they can be applied to personal IT devices, but also have the highest energy density.
일반적으로 리튬 이차전지는 양극, 음극 및 다공성 분리막으로 이루어진 전극 조립체에 비수 전해질이 주입 또는 함침되어 제조된다.Generally, lithium secondary batteries are manufactured by injecting or impregnating a non-aqueous electrolyte into an electrode assembly consisting of a positive electrode, a negative electrode, and a porous separator.
이러한 리튬 이차전지의 음극 활물질로는 탄소계 활물질, 실리콘계 활물질 등이 고려된다. 한편, 양극 활물질로는 리튬 함유 코발트 산화물, 층상 결정 구조의 LiMnO2, 스피넬 결정 구조의 LiMn2O4, 리튬 함유 니켈 산화물(LiNiO2) 등의 사용이 고려되고 있다.Carbon-based active materials, silicon-based active materials, etc. are considered as negative electrode active materials for these lithium secondary batteries. Meanwhile, the use of lithium-containing cobalt oxide, layered crystal structure LiMnO 2 , spinel crystal structure LiMn 2 O 4 , and lithium-containing nickel oxide (LiNiO 2 ) is being considered as the positive electrode active material.
최근에는 양극 활물질로서 열적 안정성이 우수하고, 상대적으로 저렴한 리튬 철 인산화물(예를 들면, LiFePO4)계 활물질의 사용이 고려되고 있다.Recently, the use of lithium iron phosphate (for example, LiFePO 4 )-based active material, which has excellent thermal stability and is relatively inexpensive, has been considered as a positive electrode active material.
그러나, 상기 리튬 철 인산화물계 활물질의 경우, 리튬 코발트 산화물, 리튬 니켈 산화물 등에 비해 낮은 비용량을 가지므로, 이를 포함하는 양극 및 리튬 이차전지의 에너지 밀도를 높이기 위해서는 높은 로딩량으로 리튬 철 인산화물계 활물질을 사용하여야 하는데, 고로딩 리튬 철 인산화물 양극은 비수 전해질이 양극 내 충분히 함침되기 어려워 용량 발현이 어렵고, 저항이 증가되며, 수명이 저하되는 문제가 있다.However, in the case of the lithium iron phosphate-based active material, it has a lower specific capacity compared to lithium cobalt oxide, lithium nickel oxide, etc., and therefore, in order to increase the energy density of the positive electrode and lithium secondary battery containing it, the lithium iron phosphate-based active material must be used at a high loading amount. However, the high-loading lithium iron phosphate anode has problems in that it is difficult to fully impregnate the anode with the non-aqueous electrolyte, making capacity development difficult, resistance increasing, and lifespan being reduced.
본 발명의 일 과제는 상기와 같은 문제점을 해결하기 위한 것으로, 양극 활물질로서 리튬 철 인산화물 입자를 포함하며, 특정 로딩량 이상인 양극을 포함하는 리튬 이차전지에 있어서, 양극의 비수 전해질에 대한 함침성을 향상시키면서 동시에 음극 환원 안정성을 향상시킴으로써, 우수한 용량 발현 효과, 우수한 수명 성능 및 저항 저감 효과를 갖는 리튬 이차전지를 제공하는 것이다.One object of the present invention is to solve the above problems, in a lithium secondary battery including lithium iron phosphate particles as a positive electrode active material and a positive electrode with a specific loading amount or more, the impregnation of the positive electrode into the non-aqueous electrolyte By improving the cathode reduction stability while improving the cathode reduction stability, a lithium secondary battery having excellent capacity development effect, excellent life performance, and resistance reduction effect is provided.
본 발명은 양극, 음극, 분리막 및 비수 전해질을 포함하고, 상기 양극은 양극 활물질을 포함하고, 상기 양극 활물질은 리튬 철 인산화물 입자를 포함하고, 상기 양극의 로딩량은 450mg/25cm2 내지 740mg/25cm2이고, 상기 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고, 상기 유기 용매는 환형 카보네이트계 용매 및 선형 카보네이트계 용매를 포함하고, 상기 환형 카보네이트계 용매는 에틸렌 카보네이트를 포함하고, 상기 선형 카보네이트계 용매는 디메틸 카보네이트를 포함하고, 상기 디메틸 카보네이트는 상기 유기 용매에 5부피% 내지 75부피%로 포함되며, 상기 첨가제는 비닐렌 카보네이트를 포함하고, 상기 디메틸 카보네이트의 중량 대비 상기 비닐렌 카보네이트의 중량 비율은 0 초과 0.2 이하인 리튬 이차전지를 제공한다.The present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the positive electrode includes a positive electrode active material, the positive electrode active material includes lithium iron phosphate particles, and the loading amount of the positive electrode is 450 mg/25 cm 2 to 740 mg/ 25 cm 2 , the non-aqueous electrolyte includes a lithium salt, an organic solvent and an additive, the organic solvent includes a cyclic carbonate-based solvent and a linear carbonate-based solvent, the cyclic carbonate-based solvent includes ethylene carbonate, and the linear The carbonate-based solvent includes dimethyl carbonate, and the dimethyl carbonate is included in the organic solvent in an amount of 5% to 75% by volume. The additive includes vinylene carbonate, and the weight of the vinylene carbonate relative to the weight of the dimethyl carbonate is A lithium secondary battery having a weight ratio of more than 0 and less than or equal to 0.2 is provided.
본 발명에 따른 리튬 이차전지는 특정 로딩량 이상이며 양극 활물질로서 리튬 철 인산화물 입자를 포함하는 양극; 및 유기 용매로서 에틸렌 카보네이트 및 디메틸 카보네이트를 포함하고, 첨가제로서 비닐렌 카보네이트를 포함하며, 디메틸 카보네이트 및 비닐렌 카보네이트의 함량과 함량 비율이 특정 범위로 조절된 비수 전해질;을 포함하는 것을 특징으로 한다. 본 발명의 리튬 이차전지에 따르면, 우수한 디메틸 카보네이트를 유기 용매 성분으로 사용하여 높은 로딩량을 갖는 양극의 전해질 함침성을 향상시킴과 동시에, 디메틸 카보네이트와의 관계에서 특정 함량 비율을 갖도록 비닐렌 카보네이트 첨가제를 사용하여 음극 환원 안정성을 향상시킬 수 있으므로, 리튬 이차전지의 용량이 우수한 수준으로 발현되고, 수명 성능 및 저항 특성을 향상시킬 수 있다.The lithium secondary battery according to the present invention includes a positive electrode having a loading amount greater than a certain level and containing lithium iron phosphate particles as a positive electrode active material; and a non-aqueous electrolyte comprising ethylene carbonate and dimethyl carbonate as an organic solvent and vinylene carbonate as an additive, and in which the content and content ratio of dimethyl carbonate and vinylene carbonate are adjusted to a specific range. According to the lithium secondary battery of the present invention, excellent dimethyl carbonate is used as an organic solvent component to improve electrolyte impregnation of a positive electrode with a high loading amount, and a vinylene carbonate additive is added to have a specific content ratio in relation to dimethyl carbonate. Since the cathode reduction stability can be improved by using , the capacity of the lithium secondary battery can be developed at an excellent level, and the lifespan performance and resistance characteristics can be improved.
먼저, 본 발명을 기술하기 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.First, before describing the present invention, the terms or words used in the specification and claims should not be construed as limited to their usual or dictionary meanings, and the inventor must explain his/her invention in the best way possible. Based on the principle that the concept of a term can be appropriately defined, it must be interpreted with a meaning and concept consistent with the technical idea of the present invention.
한편, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Meanwhile, the terms used in this specification are merely used to describe exemplary embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, terms such as “comprise,” “comprise,” or “have” are intended to designate the presence of implemented features, numbers, steps, components, or a combination thereof, and are intended to indicate the presence of one or more other features or It should be understood that this does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
본 명세서에서, "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.In this specification, “%” means weight percent unless explicitly stated otherwise.
본 발명을 설명하기에 앞서, 명세서 내에서 "탄소수 a 내지 b"의 기재에 있어서, "a" 및 "b"는 구체적인 작용기에 포함되는 탄소 원자의 개수를 의미한다. 즉, 상기 작용기는 "a" 내지 "b" 개의 탄소원자를 포함할 수 있다. Before explaining the present invention, in the description of “carbon numbers a to b” in the specification, “a” and “b” refer to the number of carbon atoms included in a specific functional group. That is, the functional group may include “a” to “b” carbon atoms.
또한, 본 명세서에서, "치환"이란 별도의 정의가 없는 한, 탄소에 결합된 적어도 하나 이상의 수소가 수소 이외의 원소로 치환된 것을 의미하며, 예를 들면, 탄소수 1 내지 5의 알킬기 또는 불소 원소로 치환된 것을 의미한다.In addition, in this specification, unless otherwise defined, “substitution” means that at least one hydrogen bonded to carbon is replaced with an element other than hydrogen, for example, an alkyl group having 1 to 5 carbon atoms or a fluorine element. It means replaced with .
본 명세서에서 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.In this specification, the average particle size (D 50 ) can be defined as the particle size corresponding to 50% of the volume accumulation in the particle size distribution curve. The average particle diameter (D 50 ) can be measured using, for example, a laser diffraction method. The laser diffraction method is generally capable of measuring particle diameters ranging from the submicron region to several millimeters, and can obtain results with high reproducibility and high resolution.
이하, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
리튬 이차전지Lithium secondary battery
본 발명은 리튬 이차전지에 관한 것이다.The present invention relates to lithium secondary batteries.
구체적으로, 본 발명에 따른 리튬 이차전지는 양극, 음극, 분리막 및 비수 전해질을 포함하고, 상기 양극은 양극 활물질을 포함하고, 상기 양극 활물질은 리튬 철 인산화물 입자를 포함하고, 상기 양극의 로딩량은 450mg/25cm2 내지 740mg/25cm2이고, 상기 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고, 상기 유기 용매는 환형 카보네이트계 용매 및 선형 카보네이트계 용매를 포함하고, 상기 환형 카보네이트계 용매는 에틸렌 카보네이트를 포함하고, 상기 선형 카보네이트계 용매는 디메틸 카보네이트를 포함하고, 상기 디메틸 카보네이트는 상기 유기 용매에 5부피% 내지 75부피%로 포함되며, 상기 첨가제는 비닐렌 카보네이트를 포함하고, 상기 디메틸 카보네이트의 중량 대비 상기 비닐렌 카보네이트의 중량 비율은 0 초과 0.2 이하인 것을 특징으로 한다.Specifically, the lithium secondary battery according to the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, the positive electrode includes a positive electrode active material, the positive electrode active material includes lithium iron phosphate particles, and the loading amount of the positive electrode is 450 mg/25 cm 2 to 740 mg/25 cm 2 , the non-aqueous electrolyte includes a lithium salt, an organic solvent and an additive, the organic solvent includes a cyclic carbonate-based solvent and a linear carbonate-based solvent, and the cyclic carbonate-based solvent is It includes ethylene carbonate, the linear carbonate-based solvent includes dimethyl carbonate, the dimethyl carbonate is included in the organic solvent in an amount of 5% to 75% by volume, and the additive includes vinylene carbonate, and the dimethyl carbonate. The weight ratio of the vinylene carbonate to the weight of is characterized in that it exceeds 0 and is 0.2 or less.
본 발명에 따른 리튬 이차전지는 특정 로딩량 이상이며 양극 활물질로서 리튬 철 인산화물 입자를 포함하는 양극; 및 유기 용매로서 에틸렌 카보네이트 및 디메틸 카보네이트를 포함하고, 첨가제로서 비닐렌 카보네이트를 포함하며, 디메틸 카보네이트 및 비닐렌 카보네이트의 함량과 함량 비율이 특정 범위로 조절된 비수 전해질;을 포함하는 것을 특징으로 한다. 본 발명의 리튬 이차전지에 따르면, 우수한 디메틸 카보네이트를 유기 용매 성분으로 사용하여 높은 로딩량을 갖는 양극의 전해질 함침성을 향상시킴과 동시에, 디메틸 카보네이트와의 관계에서 특정 함량 비율을 갖도록 비닐렌 카보네이트 첨가제를 사용하여 음극 환원 안정성을 향상시킬 수 있으므로, 리튬 이차전지의 용량이 우수한 수준으로 발현되고, 수명 성능 및 저항 특성을 향상시킬 수 있다. The lithium secondary battery according to the present invention includes a positive electrode having a loading amount greater than a certain level and containing lithium iron phosphate particles as a positive electrode active material; and a non-aqueous electrolyte comprising ethylene carbonate and dimethyl carbonate as an organic solvent and vinylene carbonate as an additive, and in which the content and content ratio of dimethyl carbonate and vinylene carbonate are adjusted to a specific range. According to the lithium secondary battery of the present invention, excellent dimethyl carbonate is used as an organic solvent component to improve electrolyte impregnation of a positive electrode with a high loading amount, and a vinylene carbonate additive is added to have a specific content ratio in relation to dimethyl carbonate. Since the cathode reduction stability can be improved by using , the capacity of the lithium secondary battery can be developed at an excellent level, and the lifespan performance and resistance characteristics can be improved.
본 발명에 따른 리튬 이차전지는 셀(또는 리튬 이차전지)의 설계 용량이 적어도 500mAh, 초기 방전 용량이 적어도 500mAh일 때, 200 사이클 충방전 시, 용량 유지율이 90% 이상, 바람직하게 90% 내지 95%일 수 있고, 저항 증가율이 20% 이하, 바람직하게 15% 이하일 수 있다. 이때, 양극이 활물질로서 리튬 철 인산화물계 입자를 포함하고, 로딩량이 450mg/25cm2 내지 740mg/25cm2이고, 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고, 상기 유기 용매는 환형 카보네이트계 용매 및 선형 카보네이트계 용매를 포함하고, 상기 환형 카보네이트계 용매는 에틸렌 카보네이트를 포함하고, 상기 선형 카보네이트계 용매는 디메틸 카보네이트를 포함하고, 상기 디메틸 카보네이트는 상기 유기 용매에 5부피% 내지 75부피%로 포함되며, 상기 첨가제는 비닐렌 카보네이트를 포함하고, 상기 디메틸 카보네이트의 중량 대비 상기 비닐렌 카보네이트의 중량 비율은 0 초과 0.2 이하이다. 상기 셀의 설계 용량, 초기 방전 용량, 용량 유지율 및 저항 증가율은 하기 실시예에 기재된 방법에 따라 측정된다.The lithium secondary battery according to the present invention has a capacity retention rate of 90% or more, preferably 90% to 95%, when the design capacity of the cell (or lithium secondary battery) is at least 500 mAh and the initial discharge capacity is at least 500 mAh. %, and the resistance increase rate may be 20% or less, preferably 15% or less. At this time, the positive electrode includes lithium iron phosphate-based particles as an active material, the loading amount is 450 mg/25 cm 2 to 740 mg/25 cm 2 , the non-aqueous electrolyte includes lithium salt, an organic solvent, and an additive, and the organic solvent is a cyclic carbonate-based solvent. and a linear carbonate-based solvent, wherein the cyclic carbonate-based solvent includes ethylene carbonate, the linear carbonate-based solvent includes dimethyl carbonate, and the dimethyl carbonate is included in the organic solvent in an amount of 5% to 75% by volume. The additive includes vinylene carbonate, and the weight ratio of the vinylene carbonate to the weight of the dimethyl carbonate is greater than 0 and less than or equal to 0.2. The design capacity, initial discharge capacity, capacity maintenance rate, and resistance increase rate of the cell were measured according to the methods described in the examples below.
상기 리튬 이차전지는 양극; 음극; 분리막; 및 비수 전해질;을 포함한다. 구체적으로, 상기 리튬 이차전지는 양극; 상기 양극에 대향하는 음극; 상기 양극 및 상기 음극 사이에 개재되는 분리막; 및 비수 전해질;을 포함한다. The lithium secondary battery includes a positive electrode; cathode; separation membrane; and non-aqueous electrolytes. Specifically, the lithium secondary battery includes a positive electrode; a cathode opposite the anode; a separator interposed between the anode and the cathode; and non-aqueous electrolytes.
상기 리튬 이차전지는 양극, 음극 및 분리막을 포함하는 전극 조립체를 제조하는 단계; 전지 케이스에 상기 전극 조립체를 수납하는 단계; 리튬 염, 유기 용매 및 첨가제를 포함하는 비수 전해질을 제조하는 단계; 및 상기 비수 전해질을 상기 전지 케이스에 주입 또는 함침시키는 단계;를 포함하는 방법으로 제조될 수 있다.The lithium secondary battery includes manufacturing an electrode assembly including a positive electrode, a negative electrode, and a separator; Storing the electrode assembly in a battery case; Preparing a non-aqueous electrolyte comprising a lithium salt, an organic solvent, and additives; and injecting or impregnating the non-aqueous electrolyte into the battery case.
(1) 양극(1) anode
상기 양극은 양극 활물질을 포함한다. 상기 양극 활물질은 리튬 철 인산화물 입자를 포함한다.The positive electrode includes a positive electrode active material. The positive electrode active material includes lithium iron phosphate particles.
상기 리튬 철 인산화물 입자는 하기 화학식 A로 표시되는 화합물을 포함할 수 있다.The lithium iron phosphate particles may include a compound represented by the following formula (A).
[화학식 A][Formula A]
Li1+aFe1-sMs(PO4-b)Xb Li 1+a Fe 1-s M s (PO 4-b )X b
상기 화학식 A에서, M는 Co, Ni, Mn, Al, Mg, Ti 및 V 중에서 선택되는 하나 이상의 원소이고, X는 F, S, 또는 N이며, 0≤s≤0.5; -0.5≤a≤+0.5; 0≤b≤0.1이다.In the formula A, M is one or more elements selected from Co, Ni, Mn, Al, Mg, Ti and V, X is F, S, or N, 0≤s≤0.5; -0.5≤a≤+0.5; 0≤b≤0.1.
상기 화학식 A는 구체적으로 LiFePO4로 표시될 수 있다(a=0, s=0, 및 b=0).The formula A may be specifically expressed as LiFePO 4 (a=0, s=0, and b=0).
상기 리튬 철 인산화물 입자는 1차 입자 형태이거나, 2 이상의 1차 입자가 응집된 2차 입자 형태일 수 있다. 구체적으로, 상기 리튬 철 인산화물 입자는 1차 입자 형태일 수 있다.The lithium iron phosphate particles may be in the form of primary particles or may be in the form of secondary particles in which two or more primary particles are aggregated. Specifically, the lithium iron phosphate particles may be in the form of primary particles.
상기 리튬 철 인산화물 입자는 1차 입자로 이루어지거나, 2 이상의 1차 입자가 응집된 2차 입자로 이루어지거나, 1차 입자와 1차 입자가 2 이상 응집된 2차 입자의 혼합물일 수 있다.The lithium iron phosphate particles may be made of primary particles, may be made of secondary particles in which two or more primary particles are aggregated, or may be a mixture of primary particles and secondary particles in which two or more primary particles are aggregated.
이때, 상기 리튬 철 인산화물 입자는 1차 입자 형태일 때, 상기 리튬 철 인산화물 입자의 평균 입경(D50)은 0.2 내지 3.0㎛, 상세하게는 0.2 내지 2.0㎛일 수 있고, 더욱 상세하게는 0.3 내지 1.5㎛일 수 있다. 또한, 상기 리튬 철 인산화물 입자가 2 이상의 1차 입자가 응집된 2차 입자 형태일 때, 상기 1차 입자는 평균 입경(D50)이 0.2 내지 3.0㎛, 상세하게는 0.2 내지 2.0㎛일 수 있고, 더욱 상세하게는 0.3 내지 1.5㎛일 수 있고, 상기 2차 입자는 평균 입경(D50)이 7 내지 25㎛, 상세하게는 10 내지 20㎛일 수 있다.At this time, when the lithium iron phosphate particles are in the form of primary particles, the average particle diameter (D 50 ) of the lithium iron phosphate particles may be 0.2 to 3.0 μm, specifically 0.2 to 2.0 μm, and more specifically, It may be 0.3 to 1.5㎛. In addition, when the lithium iron phosphate particles are in the form of secondary particles in which two or more primary particles are aggregated, the primary particles may have an average particle diameter (D 50 ) of 0.2 to 3.0 ㎛, specifically 0.2 to 2.0 ㎛. and, more specifically, may be 0.3 to 1.5 ㎛, and the secondary particles may have an average particle diameter (D 50 ) of 7 to 25 ㎛, specifically 10 to 20 ㎛.
상기 양극 활물질은 상기 리튬 철 인산화물 입자 표면에 위치하는 탄소 코팅층을 더 포함할 수 있다. 상기 탄소 코팅층은 리튬 철 인산화물 입자의 보호, 전기 전도도의 향상 등의 목적으로 도입될 수 있다.The positive electrode active material may further include a carbon coating layer located on the surface of the lithium iron phosphate particles. The carbon coating layer may be introduced for the purpose of protecting lithium iron phosphate particles and improving electrical conductivity.
상기 양극 활물질은 리튬 니켈계 산화물, 예를 들어 리튬 니켈-코발트-망간 산화물, 리튬 니켈-코발트-알루미늄 산화물을 포함하지 않을 수 있다. 상기 리튬 니켈계 산화물을 포함하는 양극의 경우, 후술하는 로딩량(450mg/25cm2 내지 740mg/25cm2) 및 비수 전해질이 적용되더라도, 효과 발휘가 어려울 수 있다. The positive electrode active material may not contain lithium nickel-based oxide, for example, lithium nickel-cobalt-manganese oxide or lithium nickel-cobalt-aluminum oxide. In the case of the positive electrode containing the lithium nickel-based oxide, it may be difficult to achieve the effect even if the loading amount (450 mg/25 cm 2 to 740 mg/25 cm 2 ) and the non-aqueous electrolyte described later are applied.
상기 양극의 로딩량은 450mg/25cm2 내지 740mg/25cm2이다.The loading amount of the anode is 450mg/25cm 2 to 740mg/25cm 2 .
상기 리튬 철 인산화물 입자는 리튬 코발트 산화물, 리튬 니켈-코발트-망간 산화물 등의 다른 양극 활물질에 비해, 열적 안정성이 우수하고 상대적으로 저렴하다는 장점이 있지만, 비용량이 작아 고에너지 밀도 구현을 위해서는 로딩량을 증가시켜야 하는 문제가 있다. 양극의 로딩량을 증가(예를 들면, 450mg/25cm2 내지 740mg/25cm2)시키는 경우, 고에너지 밀도 전지(예를 들면, 셀의 설계 용량이 적어도 500mAh이고, 초기 방전 용량이 적어도 500mAh인 리튬 이차전지)의 구현은 가능하나, 비수 전해질이 양극 내부까지 충분히 함침될 수 없게 되므로, 리튬 이차전지의 용량 발현이 어렵고, 저항이 증가되며, 수명 성능이 저하되는 문제가 있다.The lithium iron phosphate particles have the advantage of excellent thermal stability and relatively low cost compared to other cathode active materials such as lithium cobalt oxide and lithium nickel-cobalt-manganese oxide, but due to their small specific capacity, the loading amount is required to realize high energy density. There is a problem that needs to be increased. When increasing the loading amount of the positive electrode (e.g., 450 mg/25 cm 2 to 740 mg/25 cm 2 ), a high energy density battery (e.g., a lithium battery with a design capacity of the cell of at least 500 mAh and an initial discharge capacity of at least 500 mAh) Although it is possible to implement a secondary battery, the non-aqueous electrolyte cannot be sufficiently impregnated into the positive electrode, making it difficult to develop the capacity of the lithium secondary battery, increasing resistance, and deteriorating lifespan performance.
이러한 문제를 해결하기 위하여, 본 발명에 따른 리튬 이차전지는 유기 용매 성분으로서 디메틸 카보네이트를 사용하고, 첨가제로서 비닐렌 카보네이트를 사용하며, 이들의 함량 및 함량 비율을 특정 범위로 조절한 비수 전해질을 사용한 것을 특징으로 한다. 이러한 특징을 통해, 450mg/25cm2 내지 740mg/25cm2의 로딩량을 갖는 양극의 전해질 함침성을 향상시키면서, 동시에 음극 환원 안정성을 향상시킬 수 있는 바, 리튬 이차전지의 용량이 우수한 수준으로 발현되고, 수명 성능 및 저항 특성을 향상시킬 수 있다.In order to solve this problem, the lithium secondary battery according to the present invention uses dimethyl carbonate as an organic solvent component, vinylene carbonate as an additive, and a non-aqueous electrolyte whose content and content ratio are adjusted to a specific range. It is characterized by Through these features, it is possible to improve the electrolyte impregnation of the positive electrode with a loading amount of 450mg/25cm2 to 740mg/25cm2 and at the same time improve the negative electrode reduction stability, so that the capacity of the lithium secondary battery is developed at an excellent level and the lifespan is improved. Performance and resistance characteristics can be improved.
상기 양극의 로딩량이 450mg/25cm2 미만인 경우에는 상술한 전해질 함침성 저하 문제가 발생되지 않으므로, 본 발명에 따른 비수 전해질 사용에 대한 효과가 발현되지 않는다.The loading amount of the anode was 450mg/25cm 2 If it is less than that, the above-described problem of deterioration of electrolyte impregnability does not occur, so the effect of using the non-aqueous electrolyte according to the present invention is not expressed.
또한, 만일 상기 양극의 로딩량이 740mg/25cm2 초과일 경우, 리튬 철 인산화물 입자를 함유하는 양극에 본 발명에 따른 비수 전해질을 적용하더라도 전해질 함침성이 충분히 확보되지 않을 가능성이 있다. 또한, 상기 양극의 로딩량이 740mg/25cm2 초과일 경우, 예를 들어 작은 평균 입경(D50)을 갖는 리튬 철 인산화물 입자를 양극에 적용할 경우에는 리튬 철 인산화물 입자들 사이에 형성된 공극의 크기는 작으며, 이 경우 양극 제조 시의 건조 과정에서 리튬 철 인산화물 입자들 사이에 형성된 공극에서 슬러리 용매가 증발됨에 따라 양극의 깨짐 현상이 유발될 수 있으므로, 양극 제조 또는 구현 자체가 어려워질 우려가 있다.In addition, if the loading amount of the positive electrode exceeds 740 mg/25 cm 2 , there is a possibility that electrolyte impregnation may not be sufficiently secured even if the non-aqueous electrolyte according to the present invention is applied to the positive electrode containing lithium iron phosphate particles. In addition, when the loading amount of the positive electrode exceeds 740 mg/25cm 2 , for example, when lithium iron phosphate particles having a small average particle diameter (D 50 ) are applied to the positive electrode, the voids formed between the lithium iron phosphate particles The size is small, and in this case, cracking of the anode may occur as the slurry solvent evaporates in the voids formed between lithium iron phosphate particles during the drying process during anode production, which may make it difficult to manufacture or implement the anode. There is.
구체적으로, 상기 양극의 로딩량은 구체적으로 450mg/25cm2 내지 740mg/25cm2, 450mg/25cm2 내지 730mg/25cm2, 450mg/25cm2 내지 720mg/25cm2, 450mg/25cm2 내지 710mg/25cm2, 또는 450mg/25cm2 내지 700mg/25cm2, 보다 구체적으로 500mg/25cm2 내지 680mg/25cm2, 500mg/25cm2 내지 650mg/25cm2, 500mg/25cm2 내지 625mg/25cm2, 또는 500mg/25cm2 내지 600mg/25cm2일 수 있다.Specifically, the loading amount of the positive electrode is specifically 450mg/25cm 2 to 740mg/25cm 2 , 450mg/25cm 2 to 730mg/25cm 2 , 450mg/25cm 2 to 720mg/25cm 2 , 450mg/25cm 2 to 710mg/25cm 2 , or 450mg/25cm 2 to 700mg/25cm 2 , more specifically 500mg/25cm 2 to 680mg/25cm 2 , 500mg/25cm 2 to 650mg/25cm 2 , 500mg/25cm 2 to 625mg/25cm 2 , or 500mg/25cm 2 It may be from 600mg/25cm 2 .
상기 양극은 양극 집전체; 및 상기 양극 집전체의 적어도 일면에 배치된 양극 활물질층;을 포함할 수 있다. 이때, 상기 양극 활물질층은 전술한 양극 활물질을 포함할 수 있다.The positive electrode includes a positive electrode current collector; and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector. At this time, the positive electrode active material layer may include the above-described positive electrode active material.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 구체적으로 상기 양극 집전체는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.The positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Specifically, the positive electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. there is.
상기 양극 집전체의 두께는 통상적으로 3 내지 500㎛의 두께를 가질 수 있다.The thickness of the positive electrode current collector may typically range from 3 to 500 ㎛.
상기 양극 집전체는 표면에 미세한 요철을 형성하여 양극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 상기 양극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The positive electrode current collector may form fine irregularities on the surface to strengthen the bonding force of the positive electrode active material. For example, the positive electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
상기 양극 활물질층은 상기 양극 집전체의 적어도 일면에 배치된다. 구체적으로, 상기 양극 활물질층은 상기 양극 집전체의 일면 또는 양면에 배치될 수 있다.The positive electrode active material layer is disposed on at least one side of the positive electrode current collector. Specifically, the positive electrode active material layer may be disposed on one or both sides of the positive electrode current collector.
상기 양극 활물질은 양극 활물질의 충분한 용량 발휘 등을 고려하여 양극 활물질층에 80중량% 내지 99중량%로 포함될 수 있다.The positive electrode active material may be included in the positive electrode active material layer in an amount of 80% to 99% by weight in consideration of sufficient capacity of the positive active material.
상기 양극 활물질층은 전술한 양극 활물질과 함께 바인더 및/또는 도전재를 더 포함할 수 있다.The positive electrode active material layer may further include a binder and/or a conductive material along with the positive electrode active material described above.
상기 바인더는 활물질과 도전재 등의 결착과 집전체에 대한 결착에 조력하는 성분이며, 구체적으로 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무 및 불소 고무로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 폴리비닐리덴플루오라이드를 포함할 수 있다.The binder is a component that helps bind active materials and conductive materials and bind to the current collector, and is specifically made of polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, and hydroxypropyl cellulose. From the group consisting of wood, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber and fluoroelastomer. It may include at least one selected type, preferably polyvinylidene fluoride.
상기 바인더는 양극 활물질 등 성분 간 결착력을 충분히 확보하는 측면에서 상기 양극 활물질층에 1중량% 내지 20중량%, 바람직하게는 1.2중량% 내지 10중량%로 포함될 수 있다.The binder may be included in the positive electrode active material layer in an amount of 1% to 20% by weight, preferably 1.2% to 10% by weight, in terms of ensuring sufficient binding force between components such as the positive electrode active material.
상기 도전재는 이차전지에 도전성을 보조 및 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 구체적으로 상기 양극 도전재는 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙(KETJENBLACK®), 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있으며, 바람직하게는 도전성 향상 측면에서 카본 블랙을 포함할 수 있다.The conductive material can be used to assist and improve conductivity in secondary batteries, and is not particularly limited as long as it has conductivity without causing chemical changes. Specifically, the anode conductive material includes graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, KETJENBLACK®, channel black, panel black, lamp black, thermal black; Conductive fibers such as carbon fiber and metal fiber; Conductive tubes such as carbon nanotubes; fluorocarbon; Metal powders such as aluminum and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; and polyphenylene derivatives, and may preferably include carbon black in terms of improving conductivity.
상기 도전재는 전기 전도성을 충분히 확보하는 측면에서 상기 양극 활물질층 내에 1중량% 내지 20중량%, 바람직하게는 1.2중량% 내지 10중량%로 포함될 수 있다.In terms of ensuring sufficient electrical conductivity, the conductive material may be included in the positive electrode active material layer in an amount of 1% to 20% by weight, preferably 1.2% to 10% by weight.
상기 양극 활물질층의 두께는 100㎛ 내지 300㎛, 바람직하게는 150㎛ 내지 250㎛일 수 있다.The thickness of the positive electrode active material layer may be 100 ㎛ to 300 ㎛, preferably 150 ㎛ to 250 ㎛.
상기 양극은 상기 양극 집전체 상에 양극 활물질 및 선택적으로 바인더, 도전재 및 양극 슬러리 형성용 용매를 포함하는 양극 슬러리를 코팅한 다음, 건조 및 압연하여 제조될 수 있다.The positive electrode may be manufactured by coating a positive electrode slurry containing a positive electrode active material and optionally a binder, a conductive material, and a solvent for forming a positive electrode slurry on the positive electrode current collector, followed by drying and rolling.
상기 양극 슬러리 형성용 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기 용매를 포함할 수 있다. 상기 양극 슬러리의 고형분 함량은 40중량% 내지 90중량%, 구체적으로 50중량% 내지 80중량%일 수 있다.The solvent for forming the positive electrode slurry may include an organic solvent such as NMP (N-methyl-2-pyrrolidone). The solid content of the positive electrode slurry may be 40% by weight to 90% by weight, specifically 50% by weight to 80% by weight.
(2) 음극(2) cathode
상기 음극은 상기 양극에 대향할 수 있다.The cathode may face the anode.
상기 음극은 음극 활물질을 포함한다.The negative electrode includes a negative electrode active material.
상기 음극은 음극 집전체; 및 상기 음극 집전체의 적어도 일면에 배치된 음극 활물질층;을 포함할 수 있다. 이때, 상기 음극 활물질은 상기 음극 활물질층에 포함될 수 있다.The negative electrode includes a negative electrode current collector; and a negative electrode active material layer disposed on at least one side of the negative electrode current collector. At this time, the negative electrode active material may be included in the negative electrode active material layer.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 구체적으로 상기 음극 집전체는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Specifically, the negative electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. there is.
상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있다.The negative electrode current collector may typically have a thickness of 3 to 500 μm.
상기 음극 집전체는 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 상기 음극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector may form fine irregularities on the surface to strengthen the bonding force of the negative electrode active material. For example, the negative electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
상기 음극 활물질층은 상기 음극 집전체의 적어도 일면에 배치된다. 구체적으로, 상기 음극 활물질층은 상기 음극 집전체의 일면 또는 양면에 배치될 수 있다.The negative electrode active material layer is disposed on at least one side of the negative electrode current collector. Specifically, the negative electrode active material layer may be disposed on one or both sides of the negative electrode current collector.
상기 음극 활물질층은 음극 활물질을 포함할 수 있다.The negative electrode active material layer may include a negative electrode active material.
상기 음극 활물질은 리튬 이온을 가역적으로 삽입/탈리시킬 수 있는 물질로서, 탄소계 활물질, (준)금속계 활물질, 및 리튬 금속으로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있고, 구체적으로 탄소계 활물질 및 (준)금속계 활물질 중에서 선택된 적어도 1종을 포함할 수 있다.The negative electrode active material is a material capable of reversibly inserting/extracting lithium ions, and may include at least one selected from the group consisting of carbon-based active materials, (semi-)metal-based active materials, and lithium metal, and specifically, carbon-based active materials. and (semi-)metal-based active materials.
상기 탄소계 활물질은 흑연, 하드카본, 소프트카본, 카본 블랙, 그래핀 및 섬유상 탄소로 이루어진 군으로부터 선택되는 적어도 1종을 포함할 수 있으며, 바람직하게는 흑연을 포함할 수 있다. 상기 흑연은 인조흑연 및 천연흑연으로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.The carbon-based active material may include at least one selected from the group consisting of graphite, hard carbon, soft carbon, carbon black, graphene, and fibrous carbon, and may preferably include graphite. The graphite may include at least one selected from the group consisting of artificial graphite and natural graphite.
상기 탄소계 활물질의 평균 입경(D50)은 충방전 시에 구조적 안정성을 기하고 전해액과의 부반응을 줄이는 측면에서 10㎛ 내지 30㎛, 바람직하게는 15㎛ 내지 25㎛일 수 있다.The average particle diameter (D 50 ) of the carbon-based active material may be 10 ㎛ to 30 ㎛, preferably 15 ㎛ to 25 ㎛, in terms of ensuring structural stability during charging and discharging and reducing side reactions with the electrolyte solution.
구체적으로, 상기 (준)금속계 활물질은 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속; Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속과 리튬의 합금; Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속의 산화물; 리튬 티타늄 옥사이드(LTO); 리튬 바나듐 옥사이드; 등을 포함할 수 있다.Specifically, the (semi-)metal-based active materials include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, At least one (semi-)metal selected from the group consisting of V, Ti, and Sn; From the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn. An alloy of lithium and at least one selected (semi-)metal; From the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn. An oxide of at least one selected (semi-)metal; Lithium Titanium Oxide (LTO); lithium vanadium oxide; It may include etc.
보다 구체적으로, 상기 (준)금속계 활물질은 실리콘계 활물질을 포함할 수 있다.More specifically, the (semi-)metal-based active material may include a silicon-based active material.
상기 실리콘계 활물질은 SiOx(0≤x<2)로 표시되는 화합물을 포함할 수 있다. SiO2의 경우 리튬 이온과 반응하지 않아 리튬을 저장할 수 없으므로, x는 상기 범위 내인 것이 바람직하며, 보다 바람직하게는 실리콘계 활물질은 SiO일 수 있다.The silicon-based active material may include a compound represented by SiO x (0≤x<2). In the case of SiO 2 , since lithium cannot be stored because it does not react with lithium ions, x is preferably within the above range, and more preferably, the silicon-based active material may be SiO.
상기 실리콘계 활물질의 평균 입경(D50)은 충방전 시 구조적 안정성을 기하면서 전해액과의 부반응을 감소시키는 측면에서 1㎛ 내지 30㎛, 바람직하게는 2㎛ 내지 15㎛일 수 있다. The average particle diameter (D 50 ) of the silicon-based active material may be 1 ㎛ to 30 ㎛, preferably 2 ㎛ to 15 ㎛ in terms of reducing side reactions with the electrolyte solution while ensuring structural stability during charging and discharging.
상기 음극 활물질은 음극 활물질층에 60중량% 내지 99중량%, 바람직하게는 75중량% 내지 95중량%로 포함될 수 있다.The negative electrode active material may be included in the negative electrode active material layer in an amount of 60% to 99% by weight, preferably 75% to 95% by weight.
상기 음극 활물질층은 상기 음극 활물질과 함께 바인더 및/또는 도전재를 더 포함할 수 있다.The negative electrode active material layer may further include a binder and/or a conductive material along with the negative electrode active material.
상기 바인더는 상기 음극 활물질층 및 상기 음극 집전체와의 접착력을 향상시켜 전지의 성능을 향상시키기 위하여 사용되는 것으로서, 예를 들어, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.The binder is used to improve battery performance by improving adhesion between the negative electrode active material layer and the negative electrode current collector, for example, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co- HFP), polyvinylidenefluoride (PVDF), polyacrylonitrile, polymethylmethacrylate, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, recycled Cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoroelastomer, and hydrogen thereof. It may include at least one selected from the group consisting of substances substituted with Li, Na, or Ca, and may also include various copolymers thereof.
상기 바인더는 상기 음극 활물질층에 0.5중량% 내지 10중량%, 바람직하게는 1중량% 내지 5중량%로 포함될 수 있다.The binder may be included in the negative electrode active material layer in an amount of 0.5% to 10% by weight, preferably 1% to 5% by weight.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙(KETJENBLACK®), 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, KETJENBLACK®, channel black, panel black, lamp black, thermal black; Conductive fibers such as carbon fiber and metal fiber; Conductive tubes such as carbon nanotubes; fluorocarbon; Metal powders such as aluminum and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
상기 도전재는 상기 음극 활물질층에 0.5중량% 내지 10중량%, 바람직하게는 1중량% 내지 5중량%로 포함될 수 있다.The conductive material may be included in the negative electrode active material layer in an amount of 0.5% to 10% by weight, preferably 1% to 5% by weight.
상기 음극 활물질층의 두께는 50㎛ 내지 300㎛, 바람직하게는 100㎛ 내지 200㎛일 수 있다.The thickness of the negative electrode active material layer may be 50㎛ to 300㎛, preferably 100㎛ to 200㎛.
상기 음극 활물질층의 로딩량은 200mg/25cm2 내지 500mg/25cm2, 바람직하게는 250mg/25cm2 내지 400mg/25cm2일 수 있다.The loading amount of the negative electrode active material layer may be 200mg/25cm 2 to 500mg/25cm 2 , preferably 250mg/25cm 2 to 400mg/25cm 2 .
상기 음극은 음극 집전체의 적어도 일면에 음극 활물질, 바인더, 도전재 및/또는 음극 슬러리 형성용 용매를 포함하는 음극 슬러리를 코팅한 다음, 건조 및 압연하여 제조될 수 있다.The negative electrode may be manufactured by coating at least one surface of a negative electrode current collector with a negative electrode slurry containing a negative electrode active material, a binder, a conductive material, and/or a solvent for forming a negative electrode slurry, followed by drying and rolling.
상기 음극 슬러리 형성용 용매는 예를 들어 음극 활물질, 바인더 및/또는 도전재의 분산을 용이하게 하는 측면에서, 증류수, NMP(N-methyl-2-pyrrolidone), 에탄올, 메탄올, 및 이소프로필 알코올로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 증류수를 포함할 수 있다. 상기 음극 슬러리의 고형분 함량은 30중량% 내지 80중량%, 구체적으로 40중량% 내지 70중량%일 수 있다.The solvent for forming the negative electrode slurry is, for example, distilled water, NMP (N-methyl-2-pyrrolidone), ethanol, methanol, and isopropyl alcohol in terms of facilitating dispersion of the negative electrode active material, binder, and/or conductive material. It may contain at least one selected from the group, preferably distilled water. The solid content of the negative electrode slurry may be 30% by weight to 80% by weight, specifically 40% by weight to 70% by weight.
(3) 분리막(3) Separator
상기 분리막은 상기 양극 및 상기 음극 사이에 개재될 수 있다.The separator may be interposed between the anode and the cathode.
상기 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독공중합체, 프로필렌 단독공중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다. 또한, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.The separator includes typical porous polymer films conventionally used as separators, such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer. Porous polymer films made of polyolefin-based polymers can be used alone or by laminating them, or conventional porous non-woven fabrics, such as high-melting point glass fibers, polyethylene terephthalate fibers, etc., can be used, but are limited to these. It doesn't work. Additionally, a coated separator containing ceramic components or polymer materials may be used to ensure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
(4) 비수 전해질(4) Non-aqueous electrolyte
1) 리튬염1) Lithium salt
먼저, 리튬염에 대하여 설명하면 다음과 같다.First, the lithium salt is explained as follows.
본 발명의 일 실시예에 따른 리튬 이차전지용 비수 전해액에 있어서, 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, B10Cl10 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CH3SO3 -, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiAlO4, LiAlCl4, LiPF6, LiSbF6, LiAsF6, LiB10Cl10, LiBOB (LiB(C2O4)2), LiCF3SO3, LiTFSI (LiN(SO2CF3)2), LiFSI (LiN(SO2F)2), LiCH3SO3, LiCF3CO2, LiCH3CO2 및 LiBETI (LiN(SO2CF2CF3)2)로 이루어진 군으로부터 선택된 적어도 어느 하나 이상을 들 수 있다. 상기 리튬염은 구체적으로 LiBF4, LiClO4, LiPF6, LiBOB (LiB(C2O4)2), LiCF3SO3, LiTFSI (LiN(SO2CF3)2), LiFSI (LiN(SO2F)2) 및 LiBETI (LiN(SO2CF2CF3)2)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있고, 보다 구체적으로 LiPF6를 포함할 수 있다. In the non-aqueous electrolyte for lithium secondary batteries according to an embodiment of the present invention, the lithium salt may be those commonly used in electrolytes for lithium secondary batteries without limitation, and for example, includes Li + as a cation and Li + as an anion. F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , AlO 4 - , AlCl 4 - , PF 6 - , SbF 6 - , AsF 6 - , B 10 Cl 10 - , BF 2 C 2 O 4 - , BC 4 O 8 - , PF 4 C 2 O 4 - , PF 2 C 4 O 8 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , C 4 F 9 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , CH 3 SO 3 - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - at least one selected from the group consisting of. Specifically, the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiAlO 4 , LiAlCl 4 , LiPF 6 , LiSbF 6 , LiAsF 6 , LiB 10 Cl 10 , LiBOB (LiB(C 2 O 4 ) 2 ) , LiCF 3 SO 3 , LiTFSI (LiN(SO 2 CF 3 ) 2 ), LiFSI (LiN(SO 2 F) 2 ), LiCH 3 SO 3 , LiCF 3 CO 2 , LiCH 3 CO 2 and LiBETI (LiN(SO 2 At least one or more selected from the group consisting of CF 2 CF 3 ) 2 ) may be mentioned. The lithium salt is specifically LiBF 4 , LiClO 4 , LiPF 6 , LiBOB (LiB(C 2 O 4 ) 2 ), LiCF 3 SO 3 , LiTFSI (LiN(SO 2 CF 3 ) 2 ), LiFSI (LiN(SO 2 ) F) 2 ) and LiBETI (LiN(SO 2 CF 2 CF 3 ) 2 ) may contain a single substance or a mixture of two or more types selected from the group consisting of LiPF 6 .
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 전해액 내에 0.8 M 내지 3.0 M의 농도, 구체적으로 1.0M 내지 3.0M 농도로 포함될 수 있다. 이때, 단위 “M”은 몰 농도로서, 구체적으로 “mol/L”를 의미하는 것일 수 있다.The lithium salt can be appropriately changed within the range commonly used, but in order to obtain the optimal effect of forming an anti-corrosion film on the electrode surface, it should be included in the electrolyte solution at a concentration of 0.8 M to 3.0 M, specifically at a concentration of 1.0 M to 3.0 M. You can. At this time, the unit “M” may mean molar concentration, specifically “mol/L”.
상기 리튬염의 농도가 상기 범위를 만족할 경우, 최적의 함침성을 구현할 수 있도록 비수 전해액의 점도를 제어할 수 있고, 리튬 이온의 이동성을 향상시켜 리튬 이차전지의 용량 특성 및 사이클 특성 개선 효과를 얻을 수 있다.When the concentration of the lithium salt satisfies the above range, the viscosity of the non-aqueous electrolyte can be controlled to achieve optimal impregnation, and the mobility of lithium ions can be improved to improve the capacity characteristics and cycle characteristics of the lithium secondary battery. there is.
2) 유기 용매2) Organic solvent
상기 유기 용매는 환형 카보네이트계 용매 및 선형 카보네이트계 용매를 포함할 수 있다. 상기 유기 용매는 환형 카보네이트계 용매 및 선형 카보네이트계 용매로 이루어질 수 있다.The organic solvent may include a cyclic carbonate-based solvent and a linear carbonate-based solvent. The organic solvent may be composed of a cyclic carbonate-based solvent and a linear carbonate-based solvent.
상기 환형 카보네이트계 용매 및 상기 선형 카보네이트계 용매의 부피비는 10:90 내지 50:50, 구체적으로 15:85 내지 50:50, 보다 구체적으로 20:80 내지 35:65일 수 있으며, 상기 범위에 있을 때 높은 이온 전달 특성 및 전해질의 낮은 점도 달성 측면에서 바람직하다.The volume ratio of the cyclic carbonate-based solvent and the linear carbonate-based solvent may be 10:90 to 50:50, specifically 15:85 to 50:50, more specifically 20:80 to 35:65, and may be within the above range. This is desirable in terms of achieving high ion transport properties and low viscosity of the electrolyte.
상기 환형 카보네이트계 용매는 에틸렌 카보네이트를 포함한다. 상기 에틸렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 전해질 내의 리튬 염을 잘 해리시킬 수 있다.The cyclic carbonate-based solvent includes ethylene carbonate. The ethylene carbonate is a high viscosity organic solvent and has a high dielectric constant, so it can easily dissociate the lithium salt in the electrolyte.
상기 환형 카보네이트계 용매는 불소화 환형 카보네이트, 예를 들어 플루오로에틸렌 카보네이트(FEC)를 포함하지 않을 수 있다. 구체적으로, 상기 환형 카보네이트계 용매는 에틸렌 카보네이트만으로 이루어지고, 다른 환형 카보네이트계 용매(예를 들어, 프로필렌 카보네이트)는 포함하지 않을 수 있다.The cyclic carbonate-based solvent may not include a fluorinated cyclic carbonate, for example, fluoroethylene carbonate (FEC). Specifically, the cyclic carbonate-based solvent may consist only of ethylene carbonate and may not include other cyclic carbonate-based solvents (eg, propylene carbonate).
또한, 상기 선형 카보네이트계 용매는 디메틸 카보네이트를 포함한다. 상기 디메틸 카보네이트는 저점도 및 저유전율을 가지는 유기 용매로서, 특히 전해질 함침성이 매우 우수하므로, 본 발명에 따른 고로딩이며, 리튬 철 인산화물 입자를 포함하는 양극을 우수한 수준으로 함침시킬 수 있다. 한편, 유기 용매로서 디메틸 카보네이트는 불안정한 음극 피막을 형성하는 문제가 있어 음극의 환원 안정성이 저하되는 문제가 있으나, 후술하는 바와 같이 디메틸 카보네이트와 비닐렌 카보네이트를 특정 함량 비율로 사용함으로써 전해질 함침성 및 음극의 환원 안정성이 동시에 향상될 수 있다. 또한, 본 발명의 비수 전해질은 특히 리튬 철 인산화물 입자를 포함하는 양극의 로딩량이 450mg/25cm2 내지 740mg/25cm2인 경우에 목적하는 효과를 구현할 수 있으며, 만일 양극의 로딩량이 450mg/25cm2 미만 또는 740 mg/25cm2 초과인 경우, 디메틸 카보네이트의 사용에 의한 전해질 함침성 향상 효과를 얻을 수 없다.Additionally, the linear carbonate-based solvent includes dimethyl carbonate. The dimethyl carbonate is an organic solvent with low viscosity and low dielectric constant, and is particularly excellent in electrolyte impregnation, so it can impregnate the positive electrode containing lithium iron phosphate particles at a high loading level according to the present invention to an excellent level. On the other hand, dimethyl carbonate as an organic solvent has the problem of forming an unstable negative electrode film, which reduces the reduction stability of the negative electrode. However, as described later, by using dimethyl carbonate and vinylene carbonate in a specific content ratio, the electrolyte impregnation property and the negative electrode are improved. The reduction stability of can be improved at the same time. In addition, the non-aqueous electrolyte of the present invention can achieve the desired effect especially when the loading amount of the positive electrode containing lithium iron phosphate particles is 450mg/25cm2 to 740mg/25cm2, and if the loading amount of the positive electrode is less than 450mg/ 25cm2 or If it exceeds 740 mg/25cm 2 , the effect of improving electrolyte impregnation by using dimethyl carbonate cannot be obtained.
상기 디메틸 카보네이트는 상기 유기 용매에 5부피% 내지 75부피%로 포함된다. 일 실시예에서, 상기 디메틸 카보네이트는 유기 용매에 5부피% 내지 55부피%, 보다 구체적으로 7부피% 내지 45부피%, 보다 더 구체적으로 35부피% 내지 45부피%로 포함될 수 있다. 만일, 디메틸 카보네이트가 상기 유기 용매에 5부피% 미만으로 포함될 경우에는 양극의 전해질에 대한 함침성을 향상시킬 수 없다. 만일, 디메틸 카보네이트가 상기 유기 용매에 75부피% 초과로 포함될 경우, 불안정한 SEI 피막이 형성되며, 셀 성능이 저하되는 문제가 있어 바람직하지 않다.The dimethyl carbonate is included in the organic solvent in an amount of 5% to 75% by volume. In one embodiment, the dimethyl carbonate may be included in the organic solvent in an amount of 5% to 55% by volume, more specifically 7% to 45% by volume, and even more specifically 35% to 45% by volume. If dimethyl carbonate is included in the organic solvent in an amount of less than 5% by volume, the impregnability of the positive electrode into the electrolyte cannot be improved. If dimethyl carbonate is included in the organic solvent in an amount exceeding 75% by volume, an unstable SEI film is formed and cell performance is deteriorated, which is not desirable.
상기 선형 카보네이트계 용매는 상기 디메틸 카보네이트와 함께 에틸메틸 카보네이트를 더 포함할 수 있다. 상기 선형 카보네이트가 에틸메틸 카보네이트를 더 포함할 경우 SEI 피막의 안정성을 더욱 향상시킬 수 있다는 측면에서 바람직하다. The linear carbonate-based solvent may further include ethylmethyl carbonate along with the dimethyl carbonate. It is preferable that the linear carbonate further includes ethylmethyl carbonate in that the stability of the SEI film can be further improved.
상기 선형 카보네이트계 용매가 에틸메틸 카보네이트를 더 포함할 경우, 상기 유기 용매는 상기 에틸렌 카보네이트 10부피% 내지 50부피%, 상기 디메틸 카보네이트 5부피% 내지 55부피% 및 상기 에틸메틸 카보네이트 20부피% 내지 70부피%를 포함할 수 있고, 보다 구체적으로 상기 에틸렌 카보네이트 20부피% 내지 40부피%, 상기 디메틸 카보네이트 7부피% 내지 45부피%, 및 상기 에틸메틸 카보네이트 25부피% 내지 65부피%를 포함할 수 있고, 보다 더 구체적으로 상기 에틸렌 카보네이트 25부피% 내지 35부피%, 상기 디메틸 카보네이트 30부피% 내지 45부피% 및 상기 에틸메틸 카보네이트 25부피% 내지 50부피%를 포함할 수 있고, 또는 상기 에틸렌 카보네이트 30부피% 내지 35부피%, 상기 디메틸 카보네이트 35부피% 내지 45부피%, 및 상기 에틸메틸 카보네이트 25부피% 내지 50부피%를 포함할 수 있다. 상기 범위에 있을 때 전해질 함침성을 개선하면서 음극 SEI 피막의 안정성을 향상시키는 측면에서 바람직하다.When the linear carbonate-based solvent further includes ethylmethyl carbonate, the organic solvent contains 10% to 50% by volume of the ethylene carbonate, 5% to 55% by volume of the dimethyl carbonate, and 20% to 70% by volume of the ethylmethyl carbonate. It may include % by volume, and more specifically, it may include 20% to 40% by volume of the ethylene carbonate, 7% to 45% by volume of the dimethyl carbonate, and 25% to 65% by volume of the ethylmethyl carbonate. , more specifically, it may include 25% to 35% by volume of the ethylene carbonate, 30% to 45% by volume of the dimethyl carbonate, and 25% to 50% by volume of the ethylmethyl carbonate, or 30% by volume of the ethylene carbonate. % to 35% by volume, 35% to 45% by volume of dimethyl carbonate, and 25% to 50% by volume of ethylmethyl carbonate. When it is within the above range, it is desirable in terms of improving electrolyte impregnation and improving the stability of the negative SEI film.
한편, 상기 유기 용매는 필요에 따라 비수 전해질에 통상적으로 사용되는 유기 용매를 제한 없이 추가하여 사용할 수 있다. 예를 들면, 에스터계 용매, 에테르계 용매, 글라임계 용매 및 니트릴계 용매 중 적어도 하나 이상의 유기 용매를 추가로 포함할 수도 있다.Meanwhile, the organic solvent can be used by adding organic solvents commonly used in non-aqueous electrolytes without limitation, if necessary. For example, it may further include at least one organic solvent selected from ester-based solvents, ether-based solvents, glyme-based solvents, and nitrile-based solvents.
상기 에스터계 용매로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 부틸 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군으로부터 선택되는 적어도 1종을 포함할 수 있다.The ester solvents include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate and butyl propionate, γ-butyrolactone, γ-valerolactone, It may include at least one member selected from the group consisting of γ-caprolactone, σ-valerolactone, and ε-caprolactone.
상기 에테르계 용매로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르, 에틸프로필 에테르, 1,3-디옥소란(DOL) 및 2,2-비스(트리플루오로메틸)-1,3-디옥소란(TFDOL)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.The ether-based solvents include dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether, ethyl propyl ether, 1,3-dioxolane (DOL), and 2,2-bis (trifluoromethyl )-1,3-dioxolane (TFDOL) or a mixture of two or more of these may be used, but are not limited thereto.
상기 글라임계 용매는 선형 카보네이트계 용매에 비해 높은 유전율 및 낮은 표면 장력을 가지며, 메탈과의 반응성이 적은 용매로서, 디메톡시에탄 (글라임, DME), 디에톡시에탄, 디글라임 (digylme), 트리-글라임(Triglyme), 및 테트라-글라임 (TEGDME)으로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있으나 이에 한정되는 것은 아니다. The glyme-based solvent has a high dielectric constant and low surface tension compared to the linear carbonate-based solvent, and is a solvent with low reactivity with metal, such as dimethoxyethane (glyme, DME), diethoxyethane, digylme, and trimethylamine. -It may include at least one selected from the group consisting of triglyme and tetra-glyme (TEGDME), but is not limited thereto.
상기 니트릴계 용매는 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 1종 이상인 것일 수 있으나 이에 한정되는 것은 아니다.The nitrile-based solvents include acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile, and 4-fluorobenzonitrile. , difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile, but is not limited thereto.
한편, 상기 비수 전해질 중 리튬 염과 첨가제를 제외한 잔부는 별도의 언급이 없는 한 모두 유기 용매일 수 있다.Meanwhile, the remainder of the non-aqueous electrolyte, excluding lithium salts and additives, may be organic solvents unless otherwise specified.
(3) 첨가제(3) Additives
본 발명의 비수 전해질은 첨가제를 포함한다.The non-aqueous electrolyte of the present invention contains additives.
상기 첨가제는 비닐렌 카보네이트를 포함한다.The additive includes vinylene carbonate.
상기 비닐렌 카보네이트는 음극에 안정한 SEI 피막을 형성시키기 위한 측면에서 본 발명 비수 전해질의 첨가제로서 사용될 수 있다. 특히, 유기 용매로서 디메틸 카보네이트를 사용하는 경우 고온 노출 시 음극 SEI 피막의 안정성이 열위한 문제가 있으나, 비닐렌 카보네이트를 첨가제로 사용함으로써 음극 환원 안정성을 향상시킬 수 있다.The vinylene carbonate can be used as an additive in the non-aqueous electrolyte of the present invention to form a stable SEI film on the cathode. In particular, when dimethyl carbonate is used as an organic solvent, there is a problem that the stability of the anode SEI film is poor when exposed to high temperatures, but the cathode reduction stability can be improved by using vinylene carbonate as an additive.
본 발명에 있어서, 상기 디메틸 카보네이트의 중량 대비 상기 비닐렌 카보네이트의 중량 비율은 0 초과 0.2 이하이다. 만일 상기 디메틸 카보네이트의 중량 대비 상기 비닐렌 카보네이트의 중량 비율이 0.2를 초과하는 경우에는, 음극 SEI 피막이 과도하게 형성되어 오히려 저항이 증가하고 수명 성능이 저하되는 문제를 초래할 수 있다.In the present invention, the weight ratio of the vinylene carbonate to the weight of the dimethyl carbonate is greater than 0 and less than or equal to 0.2. If the weight ratio of the vinylene carbonate to the weight of the dimethyl carbonate exceeds 0.2, the negative SEI film may be excessively formed, which may cause problems such as increased resistance and decreased lifespan performance.
구체적으로, 상기 디메틸 카보네이트의 중량 대비 상기 비닐렌 카보네이트의 중량 비율은 0.01 내지 0.18, 보다 구체적으로 0.016 내지 0.130, 보다 더 구체적으로 보다 더 구체적으로 0.02 내지 0.08일 수 있으며, 상기 범위에 있을 때 양극의 전해질 함침성 및 음극의 환원 안정성의 동시 향상 효과가 바람직하게 구현될 수 있다.Specifically, the weight ratio of the vinylene carbonate to the weight of the dimethyl carbonate may be 0.01 to 0.18, more specifically 0.016 to 0.130, and even more specifically 0.02 to 0.08, and when in the above range, the positive electrode The effect of simultaneously improving electrolyte impregnation and reduction stability of the cathode can be preferably implemented.
상기 디메틸 카보네이트의 중량 대비 상기 비닐렌 카보네이트의 중량 비율의 경우, 비수 전해질 전체의 중량 또는 부피, 디메틸 카보네이트의 부피 함량, 중량 함량, 밀도 정보 등을 통해 계산될 수 있다.The weight ratio of vinylene carbonate to the weight of dimethyl carbonate can be calculated through the weight or volume of the entire non-aqueous electrolyte, volume content of dimethyl carbonate, weight content, density information, etc.
상기 비닐렌 카보네이트는 상기 비수 전해질에 0.01중량% 내지 7중량%, 구체적으로 0.3중량% 내지 6중량%, 보다 구체적으로, 0.4중량% 내지 3중량%, 보다 더 구체적으로 0.6중량% 내지 2중량%로 포함될 수 있으며, 상기 범위에 있을 때 음극 SEI 피막이 적절하게 형성되어 전해질 부반응이 방지될 뿐 아니라, 과도한 첨가제 사용으로 인한 저항 증가가 방지되어 바람직하다.The vinylene carbonate is added to the non-aqueous electrolyte in an amount of 0.01% to 7% by weight, specifically 0.3% to 6% by weight, more specifically 0.4% to 3% by weight, and even more specifically 0.6% to 2% by weight. It may be included in the above range, and is preferable because the negative SEI film is properly formed to prevent electrolyte side reactions and to prevent an increase in resistance due to excessive use of additives.
한편, 상기 첨가제는 고출력의 환경에서 비수 전해액이 분해되어 음극 붕괴가 유발되는 것을 방지하거나, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온에서의 전지 팽창 억제 효과 등을 더욱 향상시키기 위하여, 필요에 따라 비닐렌 카보네이트 이외에 다른 부가적인 추가 첨가제를 포함할 수 있다. On the other hand, the additive is necessary to prevent the non-aqueous electrolyte from decomposing in a high-output environment and causing cathode collapse, or to further improve low-temperature high-rate discharge characteristics, high-temperature stability, overcharge prevention, and battery expansion suppression at high temperatures. Accordingly, other additional additives may be included in addition to vinylene carbonate.
이러한 추가 첨가제의 예로는 환형 카보네이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 설톤계 화합물, 설포네이트계 화합물, 설페이트계 화합물, 포스페이트계 또는 포스파이트계 화합물, 보레이트계 화합물, 니트릴계 화합물, 벤젠계 화합물, 아민계 화합물, 실란계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다. Examples of such additional additives include cyclic carbonate-based compounds, halogen-substituted carbonate-based compounds, sultone-based compounds, sulfonate-based compounds, sulfate-based compounds, phosphate-based or phosphite-based compounds, borate-based compounds, nitrile-based compounds, and benzene-based compounds. , amine-based compounds, silane-based compounds, and lithium salt-based compounds.
상기 환형 카보네이트계 화합물은, 예를 들면, 비닐에틸렌 카보네이트 등일 수 있다. The cyclic carbonate-based compound may be, for example, vinylethylene carbonate.
상기 할로겐 치환된 카보네이트계 화합물은, 예를 들면, 플루오로에틸렌 카보네이트(FEC) 등일 수 있다. The halogen-substituted carbonate-based compound may be, for example, fluoroethylene carbonate (FEC).
상기 설톤계 화합물은, 예를 들면, 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물일 수 있다.The sultone-based compounds include, for example, 1,3-propane sultone (PS), 1,4-butane sultone, ethenesultone, 1,3-propene sultone (PRS), 1,4-butene sultone, and 1- It may be at least one compound selected from the group consisting of methyl-1,3-propene sultone.
상기 설포네이트계 화합물은 포화 탄화수소기 또는 불포화 탄화수소기, 예를 들어 알케닐기 또는 알키닐기를 함유할 수 있다.The sulfonate-based compound may contain a saturated hydrocarbon group or an unsaturated hydrocarbon group, for example, an alkenyl group or an alkynyl group.
상기 설페이트계 화합물은, 예를 들면, 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 또는 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS) 등일 수 있다. The sulfate-based compound may be, for example, ethylene sulfate (Esa), trimethylene sulfate (TMS), or methyl trimethylene sulfate (MTMS).
상기 포스페이트계 또는 포스파이트계 화합물은, 예를 들면, 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 트리스(트리메틸실릴) 포스페이트, 트리스(트리메틸실릴) 포스파이트, 트리스(2,2,2-트리플루오로에틸) 포스페이트 및 트리스(트리플루오로에틸) 포스파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물일 수 있다. The phosphate-based or phosphite-based compounds include, for example, lithium difluoro(bisoxalato)phosphate, lithium difluorophosphate, tris(trimethylsilyl) phosphate, tris(trimethylsilyl) phosphite, and tris(2). , 2,2-trifluoroethyl) phosphate and tris (trifluoroethyl) phosphite.
상기 보레이트계 화합물은 테트라페닐보레이트, 리튬 디플루오로(옥살라토)보레이트 (LiODFB) 또는 리튬 비스옥살레이토보레이트 (LiB(C2O4)2, LiBOB)등을 들 수 있다.The borate-based compound may include tetraphenylborate, lithium difluoro(oxalato)borate (LiODFB), or lithium bisoxalatoborate (LiB(C 2 O 4 ) 2 , LiBOB).
상기 니트릴계 화합물은, 예를 들면, 숙시노니트릴, 아디포니트릴, 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물일 수 있다. The nitrile-based compounds include, for example, succinonitrile, adiponitrile, acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, From the group consisting of 2-fluorobenzonitrile, 4-fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile. It may be at least one compound selected.
상기 벤젠계 화합물은, 예를 들면, 플루오로벤젠 등일 수 있고, 상기 아민계 화합물은 트리에탄올아민 또는 에틸렌디아민 등일 수 있으며, 상기 실란계 화합물은 테트라비닐실란 등일 수 있다. The benzene-based compound may be, for example, fluorobenzene, the amine-based compound may be triethanolamine or ethylenediamine, and the silane-based compound may be tetravinylsilane.
상기 리튬염계 화합물은 상기 비수 전해액에 포함되는 리튬 염과 상이한 화합물로서, 리튬 디플루오로포스페이트 (LiPO2F2) 또는 LiBF4 등을 들 수 있다.The lithium salt-based compound is a compound different from the lithium salt contained in the non-aqueous electrolyte solution, and may include lithium difluorophosphate (LiPO 2 F 2 ) or LiBF 4 .
상기 추가 첨가제는 2 종 이상의 화합물을 혼용하여 사용할 수 있으며, 상기 비닐렌 카보네이트와 추가 첨가제의 전체 함량은 비수 전해질 전체 중량을 기준으로 0.05 내지 20 중량%, 구체적으로 0.05 내지 10 중량%로 포함될 수 있다. 상기 첨가제들의 전체 함량이 상기 범위를 만족하는 경우, 고온 저장 특성 및 고온 수명 특성을 더욱 효과적으로 개선할 수 있으며, 반응 후 잔류하는 첨가제들에 의한 전지의 부반응 발생을 방지할 수 있다. The additional additive may be used in combination of two or more types of compounds, and the total content of the vinylene carbonate and the additional additive may be 0.05 to 20% by weight, specifically 0.05 to 10% by weight, based on the total weight of the non-aqueous electrolyte. . When the total content of the additives satisfies the above range, high-temperature storage characteristics and high-temperature lifespan characteristics can be more effectively improved, and side reactions in the battery due to additives remaining after the reaction can be prevented.
상기 비수 전해질은 예를 들어 다음 방법으로 제조될 수 있다. 먼저 에틸렌 카보네이트(EC), 디메틸 카보네이트(EMC) 및 선택적으로 에틸메틸 카보네이트(EMC)를 상술한 함량, 예를 들어 상기 디메틸 카보네이트(DMC)가 유기 용매에 구체적으로 5부피% 내지 75부피%, 보다 구체적으로 5부피% 내지 55부피%, 7부피% 내지 45부피% 또는 35부피% 내지 45부피%로 포함되도록 혼합하여 유기 용매를 제조한다. 다음으로, 상술한 리튬 염을 상기 유기 용매에 용해시켜, 리튬 염의 농도가 0.8M 내지 3.0M, 구체적으로 1.0M 내지 3.0M가 되도록 한다. 다음으로, 비닐렌 카보네이트(VC)가 상기 리튬 염이 용해된 유기 용매에 첨가되며, 이때 상기 비닐렌 카보네이트의 함량은 상기 비수 전해질 전체 중량에 대하여 0.01중량% 내지 7중량%, 구체적으로 0.3중량% 내지 6중량%, 보다 구체적으로 0.4중량% 내지 3중량%, 보다 더 구체적으로 0.6중량% 내지 2중량%이며, 상기 디메틸 카보네이트에 대한 상기 비닐렌 카보네이트의 중량 비율은 0 초과 0.2 이하, 구체적으로 0.01 내지 0.18, 보다 구체적으로 0.016 내지 0.130, 보다 더 구체적으로 0.02 내지 0.08이다. 상술한 추가적인 용매 및/또는 첨가제가 상기 비수 전해질에 포함될 수 있다.The non-aqueous electrolyte can be prepared, for example, by the following method. First, ethylene carbonate (EC), dimethyl carbonate (EMC), and optionally ethylmethyl carbonate (EMC) are added in the above-described amounts, for example, dimethyl carbonate (DMC) in an organic solvent, specifically 5% to 75% by volume, or more. Specifically, the organic solvent is prepared by mixing to contain 5% to 55% by volume, 7% to 45% by volume, or 35% to 45% by volume. Next, the above-described lithium salt is dissolved in the organic solvent so that the concentration of the lithium salt is 0.8M to 3.0M, specifically 1.0M to 3.0M. Next, vinylene carbonate (VC) is added to the organic solvent in which the lithium salt is dissolved, and the content of vinylene carbonate is 0.01% to 7% by weight, specifically 0.3% by weight, based on the total weight of the non-aqueous electrolyte. to 6% by weight, more specifically 0.4% to 3% by weight, even more specifically 0.6% to 2% by weight, and the weight ratio of the vinylene carbonate to the dimethyl carbonate is greater than 0 and less than or equal to 0.2, specifically 0.01. to 0.18, more specifically 0.016 to 0.130, and even more specifically 0.02 to 0.08. Additional solvents and/or additives described above may be included in the non-aqueous electrolyte.
상기와 같은 본 발명에 따른 리튬 이차전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 사용될 수 있다. The lithium secondary battery according to the present invention as described above can be usefully used in portable devices such as mobile phones, laptop computers, and digital cameras, and in the field of electric vehicles such as hybrid electric vehicles (HEV).
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다. Accordingly, according to another embodiment of the present invention, a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.The battery module or battery pack is a power tool; Electric vehicles, including electric vehicles (EV), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEV); Alternatively, it can be used as a power source for any one or more mid- to large-sized devices among power storage systems.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, prismatic, pouch-shaped, or coin-shaped using a can.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. The lithium secondary battery according to the present invention can not only be used in battery cells used as a power source for small devices, but can also be preferably used as a unit cell in medium to large-sized battery modules containing a plurality of battery cells.
이하, 실시예를 통해 본 발명을 구체적으로 설명한다. Hereinafter, the present invention will be described in detail through examples.
이때, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.At this time, the embodiments according to the present invention may be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described in detail below. Examples of the present invention are provided to more completely explain the present invention to those with average knowledge in the art.
이하, 구체적인 실시예를 통해 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through specific examples.
실시예Example
실시예 1Example 1
(비수 전해질 제조)(Non-aqueous electrolyte preparation)
에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC) 및 디메틸 카보네이트(DMC)를 30:30:40의 부피비로 혼합한 유기 용매를 준비하였다.An organic solvent was prepared by mixing ethylene carbonate (EC), ethylmethyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 30:30:40.
상기 유기 용매에 리튬 염으로서 LiPF6을 1.0M의 몰 농도가 되도록 용해하였다.LiPF 6 as a lithium salt was dissolved in the organic solvent to a molar concentration of 1.0M.
또한, 상기 리튬 염이 용해된 유기 용매에 비닐렌 카보네이트(VC)를 첨가하여 비수 전해질을 제조하였다. 상기 비닐렌 카보네이트는 상기 비수 전해질에 1중량%의 함량으로 포함되었다.Additionally, a non-aqueous electrolyte was prepared by adding vinylene carbonate (VC) to the organic solvent in which the lithium salt was dissolved. The vinylene carbonate was included in an amount of 1% by weight in the non-aqueous electrolyte.
(이차전지 제조)(Secondary battery manufacturing)
양극 활물질로서 탄소 코팅층이 형성된 리튬 철 인산화물(LiFePO4) 입자, 도전재로서 카본블랙 및 바인더로서 폴리비닐리덴플루오라이드(PVdF)를 94:3:3의 중량비로 용제인 N-메틸-2-피롤리돈 (NMP)에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께가 15㎛인 양극 집전체 (Al 박막)에 600mg/25cm2의 로딩량으로 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다(양극 활물질의 두께: 220㎛). 상기 양극 활물질의 평균 입경(D50)은 1.1㎛이었으며, 상기 탄소 코팅층이 형성된 리튬 철 인산화물(LiFePO4) 입자는 1차 입자 형태였다.Lithium iron phosphate (LiFePO 4 ) particles with a carbon coating layer formed as the positive electrode active material, carbon black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 94:3:3 and N-methyl-2- as a solvent. A positive electrode slurry was prepared by adding pyrrolidone (NMP). The positive electrode slurry was applied and dried at a loading amount of 600 mg/25 cm 2 on a positive electrode current collector (Al thin film) with a thickness of 15 μm, and then roll pressed to prepare a positive electrode (thickness of positive electrode active material: 220 ㎛). The average particle diameter (D 50 ) of the positive electrode active material was 1.1 ㎛, and the lithium iron phosphate (LiFePO 4 ) particles on which the carbon coating layer was formed were in the form of primary particles.
음극 활물질로서 인조흑연, 바인더로서 SBR-CMC 및 도전재로서 카본 블랙을 97:2:1의 중량비로 용매인 물에 첨가하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 15㎛ 두께의 음극 집전체인 구리(Cu) 박막에 300mg/25cm2의 로딩량으로 도포 및 건조한 후, 롤 프레스를 실시하여 음극을 제조하였다(음극 활물질의 두께: 170㎛).A cathode slurry was prepared by adding artificial graphite as a cathode active material, SBR-CMC as a binder, and carbon black as a conductive material to water as a solvent at a weight ratio of 97:2:1. The negative electrode slurry was applied and dried at a loading amount of 300 mg/25 cm 2 to a 15 ㎛ thick copper (Cu) thin film, which is a negative electrode current collector, and then roll pressed to prepare a negative electrode (thickness of the negative electrode active material: 170 ㎛).
상기 양극, 폴리올레핀계 다공성 세퍼레이터 및 음극을 순차적으로 적층하여 전극조립체를 제조하였다.An electrode assembly was manufactured by sequentially stacking the positive electrode, polyolefin-based porous separator, and negative electrode.
전지 케이스 내에 상기 조립된 전극조립체를 수납한 다음, 제조된 비수 전해액을 주액하여 리튬 이차전지를 제조하였다.The assembled electrode assembly was stored in a battery case, and then the prepared non-aqueous electrolyte solution was injected to manufacture a lithium secondary battery.
실시예 2Example 2
유기 용매로서 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC) 및 디메틸 카보네이트(DMC)를 30:60:10의 부피비로 혼합한 것을 사용하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.The same method as Example 1 except that a non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC), ethylmethyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 30:60:10 as an organic solvent. A lithium secondary battery was manufactured.
실시예 3Example 3
유기 용매로서 에틸렌 카보네이트(EC) 및 디메틸 카보네이트(DMC)를 30:70의 부피비로 혼합한 것을 사용하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that a non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 30:70 as an organic solvent.
실시예 4Example 4
첨가제로서 비닐렌 카보네이트를 비수 전해질에 1중량% 대신 0.5중량%로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the non-aqueous electrolyte was prepared by adding vinylene carbonate as an additive to the non-aqueous electrolyte at 0.5 wt% instead of 1 wt%.
실시예 5Example 5
첨가제로서 비닐렌 카보네이트를 비수 전해질에 1중량% 대신 5중량%로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the non-aqueous electrolyte was prepared by adding vinylene carbonate as an additive to the non-aqueous electrolyte at 5 wt% instead of 1 wt%.
실시예 6Example 6
양극 슬러리의 로딩량을 600mg/25cm2 대신 500mg/25cm2로 하여 양극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode was manufactured by changing the loading amount of the positive electrode slurry to 500 mg/25 cm 2 instead of 600 mg/25 cm 2 .
실시예 7Example 7
양극 슬러리의 로딩량을 600mg/25cm2 대신 700mg/25cm2로 하여 양극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode was manufactured by changing the loading amount of the positive electrode slurry to 700 mg/25 cm 2 instead of 600 mg/25 cm 2 .
실시예 8Example 8
양극 슬러리의 로딩량을 600mg/25cm2 대신 450mg/25cm2로 하여 양극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode was manufactured by changing the loading amount of the positive electrode slurry to 450 mg/25 cm 2 instead of 600 mg/25 cm 2 .
비교예 1Comparative Example 1
유기 용매로서 에틸렌 카보네이트(EC) 및 에틸메틸 카보네이트(EMC)를 30:70의 부피비로 혼합한 것을 사용하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that a non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) at a volume ratio of 30:70 as an organic solvent.
비교예 2Comparative Example 2
첨가제로서 비닐렌 카보네이트를 첨가하지 않고 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as Example 1, except that the non-aqueous electrolyte was prepared without adding vinylene carbonate as an additive.
비교예 3Comparative Example 3
첨가제로서 비닐렌 카보네이트를 비수 전해질에 1중량% 대신 8중량%로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the non-aqueous electrolyte was prepared by adding vinylene carbonate as an additive to the non-aqueous electrolyte at 8 wt% instead of 1 wt%.
비교예 4Comparative Example 4
유기 용매로서 에틸렌 카보네이트(EC) 및 에틸메틸 카보네이트(EMC)를 30:70의 부피비로 혼합한 것을 사용하여 비수 전해질을 제조한 것을 제외하고는 실시예 6과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 6, except that a non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) at a volume ratio of 30:70 as an organic solvent.
비교예 5Comparative Example 5
유기 용매로서 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC) 및 디에틸 카보네이트(DEC)를 30:30:40의 부피비로 혼합한 것을 사용하여 비수 전해질을 제조한 것, 양극 슬러리의 로딩량을 600mg/25cm2 대신 500mg/25cm2로 하여 양극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC), ethylmethyl carbonate (EMC), and diethyl carbonate (DEC) in a volume ratio of 30:30:40 as an organic solvent, and the loading amount of the positive electrode slurry was 600 mg. A lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was manufactured at 500mg/25cm 2 instead of /25cm 2 .
비교예 6Comparative Example 6
양극 슬러리의 로딩량을 600mg/25cm2 대신 750mg/25cm2로 하여 양극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode was manufactured by changing the loading amount of the positive electrode slurry to 750 mg/25 cm 2 instead of 600 mg/25 cm 2 .
비교예 7Comparative Example 7
유기 용매로서 에틸렌 카보네이트(EC) 및 에틸메틸 카보네이트(EMC)를 30:70의 부피비로 혼합한 것을 사용하여 비수 전해질을 제조한 것, 양극 슬러리의 로딩량을 600mg/25cm2 대신 400mg/25cm2로 하여 양극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) at a volume ratio of 30:70 as an organic solvent, and the loading amount of the positive electrode slurry was set to 400 mg/25 cm 2 instead of 600 mg/25 cm 2 . A lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was manufactured.
비교예 8Comparative Example 8
양극 슬러리의 로딩량을 600mg/25cm2 대신 400mg/25cm2로 하여 양극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the positive electrode was manufactured by changing the loading amount of the positive electrode slurry to 400 mg/25 cm 2 instead of 600 mg/25 cm 2 .
비교예 9Comparative Example 9
유기 용매로서 에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC) 및 디에틸 카보네이트(DEC)를 30:30:40의 부피비로 혼합한 것을 사용하여 비수 전해질을 제조한 것, 양극 슬러리의 로딩량을 600mg/25cm2 대신 400mg/25cm2로 하여 양극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.A non-aqueous electrolyte was prepared using a mixture of ethylene carbonate (EC), ethylmethyl carbonate (EMC), and diethyl carbonate (DEC) in a volume ratio of 30:30:40 as an organic solvent, and the loading amount of the positive electrode slurry was 600 mg. A lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was manufactured at 400mg/25cm 2 instead of /25cm 2 .
양극 로딩량
(mg/25cm2)
Anode loading amount
(mg/25cm 2 )
비수 전해질non-aqueous electrolyte
유기 용매organic solvent 리튬 염lithium salt 첨가제additive VC/DMC 중량 비율VC/DMC weight ratio
EC(부피%)EC (volume %) EMC(부피%)EMC (volume%) DMC(부피%)DMC (volume %) DEC(부피%)DEC (volume %) LiPF6(mol/L)LiPF 6 (mol/L) VC(중량%)VC (% by weight)
실시예 1Example 1 600600 3030 3030 4040 -- 1One 1One 0.0300.030
실시예 2Example 2 600600 3030 6060 1010 -- 1One 1One 0.1200.120
실시예 3Example 3 600600 3030 -- 7070 -- 1One 1One 0.0180.018
실시예 4Example 4 600600 3030 3030 4040 -- 1One 0.50.5 0.0150.015
실시예 5Example 5 600600 3030 3030 4040 -- 1One 55 0.1590.159
실시예 6Example 6 500500 3030 3030 4040 -- 1One 1One 0.0300.030
실시예 7Example 7 700700 3030 3030 4040 -- 1One 1One 0.0300.030
실시예 8Example 8 450450 3030 3030 4040 -- 1One 1One 0.0300.030
비교예 1Comparative Example 1 600600 3030 7070 -- -- 1One 1One --
비교예 2Comparative Example 2 600600 3030 3030 4040 -- 1One -- 00
비교예 3Comparative Example 3 600600 3030 3030 4040 -- 1One 88 0.2630.263
비교예 4Comparative Example 4 500500 3030 7070 -- -- 1One 1One --
비교예 5Comparative Example 5 500500 3030 3030 -- 4040 1One 1One 0.0300.030
비교예 6Comparative Example 6 750750 3030 3030 4040 -- 1One 1One 0.0300.030
비교예 7Comparative Example 7 400400 3030 7070 -- -- 1One 1One --
비교예 8Comparative Example 8 400400 3030 3030 4040 -- 1One 1One 0.0300.030
비교예 9Comparative Example 9 400400 3030 3030 -- 4040 1One 1One 0.0300.030
실험예Experiment example
실험예 1: 초기 용량 발현율 측정Experimental Example 1: Measurement of initial capacity development rate
상기에서 제조된 실시예 1~8, 비교예 1~9의 리튬 이차전지를 25℃에서 CC/CV, 0.33C 조건으로 3.65VC까지 충전하고 0.33C로 2.5V까지 방전하여 초기 충방전을 수행하여 초기 방전 용량(단위: mAh)를 측정하였다.The lithium secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 9 prepared above were charged to 3.65 VC under CC/CV, 0.33 C conditions at 25°C and discharged to 2.5 V at 0.33 C to perform initial charge and discharge. The initial discharge capacity (unit: mAh) was measured.
상기 초기 방전 용량을 셀 설계 용량(0.33C 기준)으로 나눈 후, 100을 곱하여 용량 발현율(%)을 평가했다. 그 결과를 하기 표 2에 나타내었다.The initial discharge capacity was divided by the cell design capacity (based on 0.33C) and then multiplied by 100 to evaluate the capacity development rate (%). The results are shown in Table 2 below.
실험예 2: 사이클 충방전 용량 유지율 평가Experimental Example 2: Cycle charge/discharge capacity maintenance rate evaluation
상기에서 제조된 실시예 1~8, 비교예 1~9의 리튬 이차전지를 25℃에서 CC/CV, 0.33C 조건으로 3.65VC까지 충전하고 0.33C로 2.5V까지 방전하는 것을 1 사이클로 하여 1사이클 후의 방전 용량 및 저항을 측정하였다. 이때, 저항은 상온에서 용량 확인 후 방전용량 기준으로 SOC 50%로 충전하고, 2.5C 전류로 10초간 방전하여 얻어진 전압강하 차이를 이용해 측정되었다.The lithium secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 9 prepared above were charged to 3.65 VC under CC/CV, 0.33 C conditions at 25°C and discharged to 2.5 V at 0.33 C as one cycle. The subsequent discharge capacity and resistance were measured. At this time, the resistance was measured using the voltage drop difference obtained by checking the capacity at room temperature, charging to SOC 50% based on the discharge capacity, and discharging for 10 seconds at 2.5C current.
그런 다음, 상기와 같은 충방전 조건으로 200 사이클 충방전을 실시한 후 용량 유지율(%) 및 저항 증가율(%)을 측정하였다. 용량 유지율(%)은 하기 [식 1]에 따라 계산하였으며, 저항 증가율(%)은 하기 [식 2]에 따라 계산하였다. 측정 결과는 하기 표 2에 기재하였다.Then, after 200 cycles of charging and discharging were performed under the above charging and discharging conditions, the capacity maintenance rate (%) and resistance increase rate (%) were measured. Capacity retention rate (%) was calculated according to [Equation 1] below, and resistance increase rate (%) was calculated according to [Equation 2] below. The measurement results are listed in Table 2 below.
[식 1][Equation 1]
용량 유지율(%) = (200 사이클 후 방전 용량/1 사이클 후 방전용량)×100Capacity maintenance rate (%) = (discharge capacity after 200 cycles/discharge capacity after 1 cycle) × 100
[식 2][Equation 2]
저항 증가율(%) = {(200 사이클 후 저항-1 사이클 후 저항)/1 사이클 후 저항}×100Resistance increase rate (%) = {(resistance after 200 cycles - resistance after 1 cycle)/resistance after 1 cycle}×100
실험예 1Experimental Example 1 실험예 2Experimental Example 2
셀 설계 용량(mAh)Cell design capacity (mAh) 초기 방전 용량(mAh)Initial discharge capacity (mAh) 용량 발현율(%)Capacity development rate (%) 용량 유지율
(%, 200th 사이클)
Capacity maintenance rate
(%, 200th cycle)
저항 증가율
(%, 200th 사이클)
resistance increase rate
(%, 200th cycle)
실시예 1Example 1 730730 724724 99.299.2 92.692.6 8.58.5
실시예 2Example 2 730730 719719 98.598.5 92.092.0 13.713.7
실시예 3Example 3 730730 726726 99.599.5 92.392.3 9.89.8
실시예 4Example 4 730730 722722 98.998.9 91.191.1 8.18.1
실시예 5Example 5 730730 718718 98.498.4 93.893.8 12.712.7
실시예 6Example 6 610610 608608 99.799.7 91.991.9 7.37.3
실시예 7Example 7 855855 850850 99.499.4 92.392.3 8.08.0
실시예 8Example 8 550550 546546 99.399.3 92.292.2 7.17.1
비교예 1Comparative Example 1 730730 973973 92.292.2 81.281.2 34.434.4
비교예 2Comparative Example 2 730730 724724 99.299.2 84.084.0 22.822.8
비교예 3Comparative Example 3 730730 701701 96.096.0 89.189.1 23.523.5
비교예 4Comparative Example 4 610610 588588 96.496.4 85.685.6 23.723.7
비교예 5Comparative Example 5 610610 558558 91.591.5 86.186.1 20.120.1
비교예 6Comparative Example 6 916916 831831 90.790.7 81.481.4 35.235.2
비교예 7Comparative Example 7 490490 486486 99.299.2 93.293.2 10.410.4
비교예 8Comparative Example 8 490490 487487 99.499.4 93.493.4 10.010.0
비교예 9Comparative Example 9 490490 486486 99.299.2 93.693.6 10.010.0
상기 표 2를 참조하면, 본 발명에 따른 실시예 1 내지 8의 리튬 이차전지의 경우, 비교예 1 내지 6의 경우에 비해, 용량 발현 효과가 우수하며, 우수한 수명 성능 및 낮은 저항 증가율을 보이는 것을 확인할 수 있다. Referring to Table 2, the lithium secondary batteries of Examples 1 to 8 according to the present invention show superior capacity development effect, excellent life performance, and low resistance increase rate compared to Comparative Examples 1 to 6. You can check it.
또한, 양극 로딩량을 500mg/25cm2로 설계한 실시예 6의 경우, 디메틸 카보네이트를 사용하지 않은 비교예 4에 비해 용량 발현 효과가 우수하며, 우수한 수명 성능 및 낮은 저항 증가율을 보이는 것을 확인할 수 있다.In addition, in the case of Example 6, in which the anode loading amount was designed at 500mg/25cm 2 , it can be seen that the capacity development effect is superior to Comparative Example 4 in which dimethyl carbonate is not used, and it shows excellent lifespan performance and a low resistance increase rate. .
한편, 양극 로딩량을 400mg/25cm2로 설계한 비교예 7~9를 참조하면, 로딩량이 낮게 조절되어 전해질 함침성이 크게 문제되지 않으므로, 비수 전해질의 성분, 함량에 크게 영향 받지 않음을 알 수 있다. 구체적으로, 비교예 7 및 8을 비교하면, 디메틸 카보네이트를 유기 용매 성분으로 사용하더라도 용량 발현, 수명 성능 및 저항 증가율 측면에서 효과 향상이 미미함을 확인할 수 있다. 또한, 디메틸 카보네이트가 아닌 다른 선형 카보네이트를 사용한 비교예 9는 비교예 7 및 8과 동일, 유사 수준의 성능을 보이고 있다. 이를 통해, 본 발명에 따른 비수 전해질은 특정 로딩량(예를 들어, 400mg/25cm2 이상 750mg/25cm2 미만, 보다 구체적으로 450mg/25cm2 내지 740mg/25cm2)의 리튬 철 인산화물 함유 양극에서 우수한 효과를 발현하는 것임을 확인할 수 있다.Meanwhile, referring to Comparative Examples 7 to 9 in which the anode loading amount was designed at 400 mg/25 cm 2 , it can be seen that the loading amount is adjusted low and the electrolyte impregnation is not a major problem, so it is not significantly affected by the components and content of the non-aqueous electrolyte. there is. Specifically, comparing Comparative Examples 7 and 8, it can be seen that even when dimethyl carbonate is used as an organic solvent component, the effect improvement in terms of capacity development, life performance, and resistance increase rate is minimal. In addition, Comparative Example 9, which used a linear carbonate other than dimethyl carbonate, showed the same or similar level of performance as Comparative Examples 7 and 8. Through this, the non-aqueous electrolyte according to the present invention is used in a positive electrode containing lithium iron phosphate at a certain loading amount (for example, 400 mg/25 cm 2 or more and less than 750 mg/25 cm 2 , more specifically 450 mg/25 cm 2 to 740 mg/25 cm 2 ). It can be confirmed that it exhibits excellent effects.

Claims (17)

  1. 양극, 음극, 분리막 및 비수 전해질을 포함하고,Contains an anode, a cathode, a separator and a non-aqueous electrolyte,
    상기 양극은 양극 활물질을 포함하고, The positive electrode includes a positive electrode active material,
    상기 양극 활물질은 리튬 철 인산화물 입자를 포함하고,The positive electrode active material includes lithium iron phosphate particles,
    상기 양극의 로딩량은 450mg/25cm2 내지 740mg/25cm2이고,The loading amount of the anode is 450mg/25cm 2 to 740mg/25cm 2 ,
    상기 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고,The non-aqueous electrolyte includes lithium salt, organic solvent and additives,
    상기 유기 용매는 환형 카보네이트계 용매 및 선형 카보네이트계 용매를 포함하고,The organic solvent includes a cyclic carbonate-based solvent and a linear carbonate-based solvent,
    상기 환형 카보네이트계 용매는 에틸렌 카보네이트를 포함하고,The cyclic carbonate-based solvent includes ethylene carbonate,
    상기 선형 카보네이트계 용매는 디메틸 카보네이트를 포함하고,The linear carbonate-based solvent includes dimethyl carbonate,
    상기 첨가제는 비닐렌 카보네이트를 포함하고,The additive includes vinylene carbonate,
    상기 디메틸 카보네이트는 상기 유기 용매에 5부피% 내지 75부피%로 포함되며,The dimethyl carbonate is contained in the organic solvent in an amount of 5% to 75% by volume,
    상기 디메틸 카보네이트의 중량 대비 상기 비닐렌 카보네이트의 중량 비율은 0 초과 0.2 이하인 리튬 이차전지.A lithium secondary battery wherein the weight ratio of the vinylene carbonate to the weight of the dimethyl carbonate is greater than 0 and less than or equal to 0.2.
  2. 청구항 1에 있어서,In claim 1,
    상기 양극의 로딩량은 450mg/25cm2 내지 700mg/25cm2인 리튬 이차전지.A lithium secondary battery in which the loading amount of the positive electrode is 450mg/25cm 2 to 700mg/25cm 2 .
  3. 청구항 1에 있어서,In claim 1,
    상기 양극의 로딩량은 500mg/25cm2 내지 600mg/25cm2인 리튬 이차전지.A lithium secondary battery in which the loading amount of the positive electrode is 500mg/25cm 2 to 600mg/25cm 2 .
  4. 청구항 1에 있어서,In claim 1,
    상기 비닐렌 카보네이트는 상기 비수 전해질에 0.01중량% 내지 7중량%로 포함되는 리튬 이차전지.A lithium secondary battery wherein the vinylene carbonate is included in the non-aqueous electrolyte in an amount of 0.01% to 7% by weight.
  5. 청구항 1에서,In claim 1,
    상기 환형 카보네이트계 용매 및 상기 선형 카보네이트계 용매의 부피비는 10:90 내지 50:50인 리튬 이차전지.A lithium secondary battery wherein the volume ratio of the cyclic carbonate-based solvent and the linear carbonate-based solvent is 10:90 to 50:50.
  6. 청구항 1에 있어서,In claim 1,
    상기 선형 카보네이트계 용매는 에틸메틸 카보네이트를 더 포함하는 리튬 이차전지.A lithium secondary battery wherein the linear carbonate-based solvent further includes ethylmethyl carbonate.
  7. 청구항 6에 있어서,In claim 6,
    상기 유기 용매는 상기 에틸렌 카보네이트 10부피% 내지 50부피%, 상기 디메틸 카보네이트 5부피% 내지 55부피% 및 상기 에틸메틸 카보네이트 20부피% 내지 70부피%를 포함하는 리튬 이차전지.The organic solvent is a lithium secondary battery comprising 10% to 50% by volume of the ethylene carbonate, 5% to 55% by volume of the dimethyl carbonate, and 20% to 70% by volume of the ethylmethyl carbonate.
  8. 청구항 1에 있어서,In claim 1,
    상기 리튬 염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiAlO4, LiAlCl4, LiPF6, LiSbF6, LiAsF6, LiB10Cl10, LiBOB (LiB(C2O4)2), LiCF3SO3, LiTFSI (LiN(SO2CF3)2), LiFSI (LiN(SO2F)2), LiCH3SO3, LiCF3CO2, LiCH3CO2 및 LiBETI (LiN(SO2CF2CF3)2)로 이루어진 군으로부터 선택된 적어도 1종을 포함하는 리튬 이차전지.The lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiAlO 4 , LiAlCl 4 , LiPF 6 , LiSbF 6 , LiAsF 6 , LiB 10 Cl 10 , LiBOB (LiB(C 2 O 4 ) 2 ), LiCF 3 SO 3 , LiTFSI (LiN(SO 2 CF 3 ) 2 ), LiFSI (LiN(SO 2 F) 2 ), LiCH 3 SO 3 , LiCF 3 CO 2 , LiCH 3 CO 2 and LiBETI (LiN(SO 2 CF 2 CF 3 ) A lithium secondary battery comprising at least one member selected from the group consisting of 2 ).
  9. 청구항 1에 있어서,In claim 1,
    상기 리튬 염은 상기 비수 전해질에 0.8 M 내지 3.0 M의 농도로 포함되는 리튬 이차전지.A lithium secondary battery wherein the lithium salt is contained in the non-aqueous electrolyte at a concentration of 0.8 M to 3.0 M.
  10. 청구항 1에 있어서,In claim 1,
    상기 리튬 철 인산화물 입자는 하기 화학식 A로 표시되는 화합물을 포함하는 리튬 이차전지:The lithium iron phosphate particles are a lithium secondary battery comprising a compound represented by the following formula (A):
    [화학식 A][Formula A]
    Li1+aFe1-sMs(PO4-b)Xb Li 1+a Fe 1-s M s (PO 4-b )X b
    상기 화학식 A에서, M는 Co, Ni, Mn, Al, Mg, Ti 및 V 중에서 선택되는 하나 이상의 원소이고, X는 F, S, 또는 N이며, 0≤s≤0.5; -0.5≤a≤+0.5; 0≤b≤0.1이다.In the formula A, M is one or more elements selected from Co, Ni, Mn, Al, Mg, Ti and V, X is F, S, or N, 0≤s≤0.5; -0.5≤a≤+0.5; 0≤b≤0.1.
  11. 청구항 1에 있어서,In claim 1,
    상기 리튬 철 인산화물 입자는 LiFePO4를 포함하는 리튬 이차전지The lithium iron phosphate particles are a lithium secondary battery containing LiFePO 4
  12. 청구항 1에 있어서,In claim 1,
    상기 리튬 철 인산화물 입자는 1차 입자 형태이고,The lithium iron phosphate particles are in the form of primary particles,
    상기 리튬 철 인산화물 입자의 평균 입경(D50)은 0.2 내지 3.0㎛인 리튬 이차전지.A lithium secondary battery wherein the average particle diameter (D 50 ) of the lithium iron phosphate particles is 0.2 to 3.0 ㎛.
  13. 청구항 1에 있어서,In claim 1,
    상기 리튬 철 인산화물 입자는 표면에 탄소 코팅층을 포함하는 리튬 이차전지.A lithium secondary battery wherein the lithium iron phosphate particles include a carbon coating layer on the surface.
  14. 청구항 1에 있어서,In claim 1,
    상기 양극 활물질은 리튬 니켈계 산화물을 포함하지 않는 리튬 이차전지.A lithium secondary battery in which the positive electrode active material does not contain lithium nickel-based oxide.
  15. 청구항 1에 있어서,In claim 1,
    상기 음극은 탄소계 활물질을 포함하는 리튬 이차전지.The negative electrode is a lithium secondary battery containing a carbon-based active material.
  16. 청구항 15에 있어서,In claim 15,
    상기 탄소계 활물질은 천연흑연 및 인조흑연으로 이루어진 군에서 선택된 적어도 1종을 포함하는 리튬 이차전지.A lithium secondary battery wherein the carbon-based active material includes at least one selected from the group consisting of natural graphite and artificial graphite.
  17. 양극, 음극 및 분리막을 포함하는 전극 조립체를 제조하는 단계;Manufacturing an electrode assembly including an anode, a cathode, and a separator;
    전지 케이스에 상기 전극 조립체를 수납하는 단계;Storing the electrode assembly in a battery case;
    리튬 염, 유기 용매 및 첨가제를 포함하는 비수 전해질을 제조하는 단계; 및Preparing a non-aqueous electrolyte comprising a lithium salt, an organic solvent, and additives; and
    상기 비수 전해질을 상기 전지 케이스에 주입 또는 함침시키는 단계;를 포함하고,Including the step of injecting or impregnating the non-aqueous electrolyte into the battery case,
    상기 양극은 양극 활물질을 포함하고, The positive electrode includes a positive electrode active material,
    상기 양극 활물질은 리튬 철 인산화물 입자를 포함하고,The positive electrode active material includes lithium iron phosphate particles,
    상기 양극의 로딩량은 450mg/25cm2 내지 740mg/25cm2이고,The loading amount of the anode is 450mg/25cm 2 to 740mg/25cm 2 ,
    상기 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고,The non-aqueous electrolyte includes lithium salt, organic solvent and additives,
    상기 유기 용매는 환형 카보네이트계 용매 및 선형 카보네이트계 용매를 포함하고,The organic solvent includes a cyclic carbonate-based solvent and a linear carbonate-based solvent,
    상기 환형 카보네이트계 용매는 에틸렌 카보네이트를 포함하고,The cyclic carbonate-based solvent includes ethylene carbonate,
    상기 선형 카보네이트계 용매는 디메틸 카보네이트를 포함하고,The linear carbonate-based solvent includes dimethyl carbonate,
    상기 첨가제는 비닐렌 카보네이트를 포함하고,The additive includes vinylene carbonate,
    상기 디메틸 카보네이트는 상기 유기 용매에 5부피% 내지 75부피%로 포함되며,The dimethyl carbonate is contained in the organic solvent in an amount of 5% to 75% by volume,
    상기 디메틸 카보네이트의 중량 대비 상기 비닐렌 카보네이트의 중량 비율은 0 초과 0.2 이하인 리튬 이차전지의 제조방법.A method of manufacturing a lithium secondary battery, wherein the weight ratio of the vinylene carbonate to the weight of the dimethyl carbonate is greater than 0 and less than or equal to 0.2.
PCT/KR2023/017580 2022-11-04 2023-11-03 Lithium secondary battery WO2024096701A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220146438 2022-11-04
KR10-2022-0146438 2022-11-04
KR10-2023-0150884 2023-11-03
KR1020230150884A KR20240064569A (en) 2022-11-04 2023-11-03 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2024096701A1 true WO2024096701A1 (en) 2024-05-10

Family

ID=90931065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/017580 WO2024096701A1 (en) 2022-11-04 2023-11-03 Lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2024096701A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110005809A (en) * 2008-04-25 2011-01-19 스미토모 오사카 세멘토 가부시키가이샤 Method for production of cathode active material for lithium ion battery, cathode active material for lithium ion battery produced by the method, electrode for lithium ion battery, and lithium ion battery
KR20120136312A (en) * 2011-06-08 2012-12-18 주식회사 엘지화학 Nonaqueous electrolyte and lithium secondary battery using the same
KR20130009706A (en) * 2011-07-14 2013-01-23 주식회사 엘지화학 Nonaqueous electrolyte and lithium secondary battery using the same
KR20160076192A (en) * 2014-12-22 2016-06-30 솔브레인 주식회사 Electrolyte and lithium secondary battery comprising the same
KR20190101518A (en) * 2018-02-22 2019-09-02 삼성전자주식회사 Cathode and lithium battery including cathode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110005809A (en) * 2008-04-25 2011-01-19 스미토모 오사카 세멘토 가부시키가이샤 Method for production of cathode active material for lithium ion battery, cathode active material for lithium ion battery produced by the method, electrode for lithium ion battery, and lithium ion battery
KR20120136312A (en) * 2011-06-08 2012-12-18 주식회사 엘지화학 Nonaqueous electrolyte and lithium secondary battery using the same
KR20130009706A (en) * 2011-07-14 2013-01-23 주식회사 엘지화학 Nonaqueous electrolyte and lithium secondary battery using the same
KR20160076192A (en) * 2014-12-22 2016-06-30 솔브레인 주식회사 Electrolyte and lithium secondary battery comprising the same
KR20190101518A (en) * 2018-02-22 2019-09-02 삼성전자주식회사 Cathode and lithium battery including cathode

Similar Documents

Publication Publication Date Title
WO2021167428A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2023027547A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2021040388A1 (en) Non-aqueous electrolytic solution, and lithium secondary battery comprising same
WO2023085843A1 (en) Non-aqueous electrolyte containing non-aqueous electrolyte additive, and lithium secondary battery including same
WO2023043190A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2022050712A1 (en) Lithium secondary battery
WO2023063648A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2023075362A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020222469A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2021241976A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery
WO2021194220A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery
WO2021091215A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2024096701A1 (en) Lithium secondary battery
WO2024136424A1 (en) Lithium secondary battery
WO2024096676A1 (en) Lithium secondary battery
WO2024117826A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2023191572A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2024136425A1 (en) Lithium secondary battery
WO2024136572A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2024096678A1 (en) Lithium secondary battery
WO2023043138A1 (en) Lithium secondary battery
WO2024019393A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2024096682A1 (en) Lithium secondary battery
WO2022103112A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2024049086A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23886395

Country of ref document: EP

Kind code of ref document: A1