[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024096181A1 - 생분해성 수지 조성물, 생분해성 부직포 및 이의 제조 방법 - Google Patents

생분해성 수지 조성물, 생분해성 부직포 및 이의 제조 방법 Download PDF

Info

Publication number
WO2024096181A1
WO2024096181A1 PCT/KR2022/018487 KR2022018487W WO2024096181A1 WO 2024096181 A1 WO2024096181 A1 WO 2024096181A1 KR 2022018487 W KR2022018487 W KR 2022018487W WO 2024096181 A1 WO2024096181 A1 WO 2024096181A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable
resin composition
phr
pha
weight
Prior art date
Application number
PCT/KR2022/018487
Other languages
English (en)
French (fr)
Inventor
송보석
안지수
한태환
심은정
정민호
윤기철
Original Assignee
씨제이제일제당(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당(주) filed Critical 씨제이제일제당(주)
Publication of WO2024096181A1 publication Critical patent/WO2024096181A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/12Physical properties biodegradable

Definitions

  • the present invention relates to biodegradable resin compositions, biodegradable nonwoven fabrics, and methods for producing the same.
  • Polyhydroxyalkanoates are biodegradable polymers composed of several types of hydroxy carboxylic acids produced by numerous microorganisms and used as intracellular storage substances.
  • Polyhydroxyalkanoates are polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS), and polybutylene succinate derived from conventional petroleum. It has similar physical properties to synthetic polymers such as terephthalate (PBST) and polybutylene succinate adipate (PBSA), is completely biodegradable, and has excellent biocompatibility.
  • non-woven fabric is an industrial textile material used in various fields such as controlling suspended substances such as fine particles or gas in the air, or as a core material in filtration processes to control the purity of water used in industrial sites such as food processing. is being used in.
  • interest in the hazards to the human body caused by yellow dust, fine dust, and ultrafine dust has increased since the 2000s, and as interest in non-woven fabrics used as filtration materials has increased due to the new coronavirus in 2019, research on this has been actively conducted. It's going on.
  • petrochemical-based polymer materials were used as materials for nonwoven fabrics.
  • products using petrochemical-based polymer materials are difficult to collect or recycle after use, and have the problem of greatly polluting the environment when left in the soil or ocean.
  • biodegradable polymers that can improve biodegradability are being applied, the raw materials are expensive or there are limitations in improving the filtration, breathability, and flexibility required for nonwoven fabrics.
  • nonwoven fabrics are mainly manufactured by the meltblown process or spunbond process.
  • spunbond nonwoven fabrics have superior processability in that they can produce fibers and nonwovens with various physical properties.
  • short-fiber nonwoven fabrics can be manufactured by applying the meltblown process and/or spunbond process in one or two steps, so they can be used in various industrial fields because the desired physical properties can be more easily controlled. Therefore, it is possible to manufacture high-quality spunbond non-woven fabric or short-fiber non-woven fabric that is eco-friendly due to its excellent biodegradability and biocompatibility, and can easily control characteristics such as viscosity suitable for the process, making it a biodegradable resin with excellent productivity and processability. Research on the composition continues.
  • Patent Document 1 Korean Patent Publication No. 2012-0103158
  • the present invention is environmentally friendly due to its excellent biodegradability and biocompatibility, and has excellent processability and productivity, making it possible to manufacture high-quality spunbond nonwovens or short fiber nonwovens, and to easily control properties such as viscosity suitable for the process.
  • the object is to provide a biodegradable resin composition.
  • a biodegradable resin composition according to an embodiment of the present invention includes a polyhydroxyalkanoate (PHA) resin containing a 4-hydroxybutyrate (4-HB) repeating unit; and a fluidizing agent, and the melt flow index (MFI) measured at 190°C and 2.16 kg according to ASTM D1238 is 5 g/10min or more.
  • PHA polyhydroxyalkanoate
  • 4-HB 4-hydroxybutyrate
  • MFI melt flow index
  • the fluidizing agent may include one or more selected from the group consisting of polystyrene-based, polyacrylate-based and polystyrene-acrylate-based polymers.
  • the fluidizing agent may have a specific gravity of 0.7 to 1.8 and a weight average molecular weight of 1,500 g/mol to 8,000 g/mol.
  • the fluidizing agent may have a glass transition temperature (Tg) of 40°C or higher as measured by differential scanning calorimetry (DSC), and a melt flow index measured at 130°C and 12 kg according to ASTM D1238. may be more than 1,800 g/10min.
  • the biodegradable resin composition may include the fluidizing agent in an amount of 0.1 phr to 20 phr.
  • the PHA resin may include 0.1% by weight to 60% by weight of the 4-hydroxybutyrate (4-HB) repeating unit.
  • the PHA resin may include a first PHA resin.
  • the first PHA resin may include 15% to 60% by weight of 4-hydroxybutyrate (4-HB) repeating unit, and can be used at 165°C and 5 kg according to ASTM D1238.
  • the melt flow index (MFI) measured below may be 0.1 g/10min to 20 g/10min.
  • the PHA resin may include a second PHA resin.
  • the second PHA resin may include 0.1% by weight or more to 30% by weight of 4-hydroxybutyrate (4-HB) repeating unit, and can be used at 165°C and 5% according to ASTM D1238.
  • the melt flow index measured under kg may be 0.1 g/10min to 15 g/10min.
  • the biodegradable resin composition includes polybutylene adipate terephthalate (PBAT), polylactic acid (PLA), polybutylene succinate (PBS), polybutylene adipate (PBA), Polybutylene succinate-adipate (PBSA), polybutylene succinate-terephthalate (PBST), polyhydroxybutyrate-valerate (PHBV), polycaprolactone (PCL), polybutylene succinate adipate It may contain one or more biodegradable resins selected from the group consisting of terephthalate (PBSAT) and thermoplastic starch (TPS).
  • PBAT polybutylene adipate terephthalate
  • PLA polylactic acid
  • PBS polybutylene succinate
  • PBA polybutylene adipate
  • PBSA polybutylene succinate-adipate
  • PBST polybutylene succinate-terephthalate
  • PHBV polyhydroxybutyrate-valerate
  • PCL polycaprolactone
  • the weight ratio of the PHA resin and the biodegradable resin may be 1:99 to 99:1.
  • the weight ratio of the PHA resin and the polylactic acid (PLA) resin may be 20:80 to 70:30.
  • the biodegradable resin composition contains one or more additives selected from the group consisting of pigments, color absorbers, light absorbers, antioxidants, compatibilizers, weighting agents, nucleating agents, melt strength enhancers, and slip agents. Additional information may be included.
  • the PHA resin is 3-hydroxybutyrate (3-HB), 3-hydroxypropionate (3-HP), 3-hydroxyhexanoate (3-HH), Consisting of 3-hydroxyvalerate (3-HV), 4-hydroxyvalerate (4-HV), 5-hydroxyvalerate (5-HV) and 6-hydroxyhexanoate (6-HH) It may further include one or more repeating units selected from the group.
  • the biodegradable resin composition may have a glass transition temperature (Tg) of -35°C to 15°C, as measured by differential scanning calorimetry (DSC), and a melting temperature (Tm) of 105°C. It may be from 200°C, the crystallization temperature (Tc) may not be measured or may be from 50°C to 120°C, and the cold crystallization temperature (Tcc) may be from 30°C to 125°C.
  • Tg glass transition temperature
  • DSC differential scanning calorimetry
  • Tm melting temperature
  • the biodegradable nonwoven fabric according to another embodiment of the present invention includes biodegradable fibers, and the biodegradable fibers are polyhydroxyalkanoate (PHA) resins containing 4-hydroxybutyrate (4-HB) repeating units. ; and a fluidizing agent.
  • PHA polyhydroxyalkanoate
  • 4-HB 4-hydroxybutyrate
  • the average length of the biodegradable fibers may be 100 mm or less, and the average diameter may be 1 ⁇ m to 100 ⁇ m.
  • it may be manufactured by a spunbond process.
  • the present invention may be manufactured using a biodegradable resin composition, and the biodegradable resin composition has a melt flow index (MFI) measured at 190°C and 2.16 kg according to ASTM D1238. ) may be more than 5 g/10min.
  • MFI melt flow index
  • the biodegradable fiber may be a heterogeneous cross-section composite fiber or a bicomponent or more ternary composite fiber.
  • the biodegradable fiber has a sheath-core type, a side by side type, and a sea-islands type including a core portion and a sheath portion. type) or segmented-pie type.
  • a method for producing a biodegradable nonwoven fabric includes the step of melt spinning a biodegradable resin composition or a pellet produced by melt-extruding the biodegradable resin composition, wherein the biodegradable resin composition contains 4-hydroxybutyrate (4 -HB) A polyhydroxyalkanoate (PHA) resin containing a repeating unit, and a fluidizing agent, and the melt flow index (MFI) measured at 190°C and 2.16 kg according to ASTM D1238 is 5. It is more than g/10min.
  • the step of spinning the biodegradable resin composition may be performed using a sheath-core composite spinning device.
  • the sheath-core composite spinning device includes a core portion and a sheath portion, and the weight ratio of the raw materials input into the core portion and the sheath portion may be 5:95 to 95:5.
  • the biodegradable resin composition may be added to the core portion.
  • a biodegradable resin composition according to an embodiment of the present invention includes a polyhydroxyalkanoate (PHA) resin containing a 4-hydroxybutyrate (4-HB) repeating unit; and a fluidizing agent, and the melt flow index (MFI) measured at 190°C and 2.16 kg according to ASTM D1238 satisfies 5 g/10min or more, making it environmentally friendly and processable with excellent biodegradability and biocompatibility. And since productivity is excellent, high-quality spunbond nonwoven fabric or short fiber nonwoven fabric can be manufactured, and characteristics such as viscosity suitable for the process can be easily controlled, thereby improving productivity and processability.
  • PHA polyhydroxyalkanoate
  • 4-HB 4-hydroxybutyrate
  • the biodegradable resin composition when manufacturing a spunbond nonwoven fabric or short fiber nonwoven fabric using the biodegradable resin composition, the biodegradable resin composition has excellent viscosity characteristics, so the nonwoven fabric can be easily manufactured under lower pressure and temperature conditions than before. , productivity and processability are excellent, and the quality of nonwoven fabrics manufactured can be improved.
  • biodegradable nonwoven fabric be manufactured directly from the biodegradable resin composition, but also biodegradable nonwoven fabric can be manufactured using biodegradable pellets manufactured from the biodegradable resin composition, so the process can be selected as needed. Easy to apply.
  • biodegradable resin composition and the biodegradable nonwoven fabric manufactured therefrom are capable of biodegradation in both soil and the ocean and also have excellent thermal and mechanical properties, so they can be easily applied to a wider range of fields and exhibit excellent properties.
  • a biodegradable resin composition according to an embodiment of the present invention includes a polyhydroxyalkanoate (PHA) resin containing a 4-hydroxybutyrate (4-HB) repeating unit; and a fluidizing agent, and the melt flow index (MFI) measured at 190°C and 2.16 kg according to ASTM D1238 is 5 g/10min or more.
  • PHA polyhydroxyalkanoate
  • 4-HB 4-hydroxybutyrate
  • MFI melt flow index
  • Non-woven fabric is a fiber aggregate or film that is bonded to each other using physical or chemical means rather than spinning, weaving, or braiding. It is manufactured directly into a fabric-like form using the fusing power of the fiber itself or the entanglement of the fibers. It means that it has been done.
  • nonwoven fabrics were manufactured using petrochemical-based materials such as polypropylene (PP), but their biodegradability was low. Accordingly, a method of using polylactic acid (PLA) as a material for non-woven fabric was proposed, but the degree of improvement in biodegradability was not significant, and its low flexibility made it rough and stiff to the touch, resulting in poor feeling of use and wearing, making it difficult to apply to various fields.
  • PLA polylactic acid
  • a biodegradable resin composition according to an embodiment of the present invention includes a polyhydroxyalkanoate (PHA) resin containing a 4-hydroxybutyrate (4-HB) repeating unit; and a fluidizing agent, and the melt flow index (MFI) measured at 190°C and 2.16 kg according to ASTM D1238 is controlled to over 5 g/10min, making it environmentally friendly and processable with excellent biodegradability and biocompatibility. And since productivity is excellent, high-quality spunbond nonwoven fabric or short fiber nonwoven fabric can be manufactured, and characteristics such as viscosity suitable for the process can be easily controlled, thereby improving productivity and processability.
  • PHA polyhydroxyalkanoate
  • 4-HB 4-hydroxybutyrate
  • the biodegradable resin composition when manufacturing a non-woven fabric using the biodegradable resin composition, the biodegradable resin composition has excellent viscosity characteristics, so non-woven fabric can be easily manufactured under lower pressure and temperature conditions than before, so productivity and processability are excellent. , the quality of manufactured nonwoven fabrics can be improved.
  • the biodegradable resin composition may be a composition for biodegradable nonwoven fabrics.
  • the biodegradable resin composition according to an embodiment of the present invention includes a polyhydroxyalkanoate (PHA) resin containing a 4-hydroxybutyrate (4-HB) repeating unit.
  • PHA polyhydroxyalkanoate
  • 4-HB 4-hydroxybutyrate
  • the biodegradable resin composition according to an embodiment of the present invention is polyhydroxyalkanoate (PHA) resin, which is a copolymerized polyhydroxyalkanoate resin containing a 4-hydroxybutyrate (4-HB) repeating unit.
  • PHA polyhydroxyalkanoate
  • 4-HB 4-hydroxybutyrate
  • biodegradable resin composition and the biodegradable nonwoven fabric manufactured therefrom are capable of biodegradation in both soil and the ocean and also have excellent thermal and mechanical properties, so they can be easily applied to a wider range of fields and exhibit excellent properties.
  • the PHA is a thermoplastic natural polyester polymer that accumulates in microbial cells. Since it is a biodegradable material, PHA can be composted and can ultimately be decomposed into carbon dioxide, water, and organic waste without generating toxic waste. In particular, since PHA can be biodegraded in soil and the ocean, when the biodegradable resin composition and the biodegradable fiber or biodegradable nonwoven fabric using the same contain PHA resin, it can have environmentally friendly characteristics. Therefore, the biodegradable resin composition and the biodegradable nonwoven fabric using the same have a great advantage in that they can be used in various fields because they have excellent biodegradability and are environmentally friendly.
  • the PHA is a thermoplastic natural polyester polymer that accumulates within microbial cells. When certain bacteria are unbalanced with nutrients (nitrogen source, phosphorus, etc.), they accumulate PHA within the cells to store carbon sources and energy. It is formed by doing
  • the PHA is polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS), polybutylene succinate terephthalate (PBST), and polybutylene succinate adipate (PBAT) derived from existing petroleum. It has similar physical properties to synthetic polymers such as (PBSA), is completely biodegradable, and has excellent biocompatibility.
  • PBAT polybutylene adipate terephthalate
  • PBS polybutylene succinate
  • PBST polybutylene succinate terephthalate
  • PBAT polybutylene succinate adipate
  • PHA can be synthesized from more than 150 types of monomers, so hundreds of types of PHA can be manufactured depending on the type of monomer, and different types of PHA can be produced depending on the type of monomer. Hundreds of types of PHAs each have completely different structures and properties.
  • the PHA resin may be composed of a single monomer repeating unit within living cells, and may be formed by polymerizing one or more monomer repeating units.
  • the PHA resin may be a single polyhydroxyalkanoate resin (hereinafter referred to as HOMO PHA resin), and a copolymerized polyhydroxyalkanoate resin (hereinafter referred to as copolymer PHA resin), that is, a polymer. It may be a copolymer in which different repeating units are randomly distributed in the chain.
  • repeating units that may be included in the PHA resin include 2-hydroxybutyrate, lactic acid, glycolic acid, 3-hydroxybutyrate (hereinafter referred to as 3-HB), and 3-hydroxypropionate (hereinafter referred to as 3-HB).
  • 3-HP 3-hydroxyvalerate
  • 3-HV 3-hydroxyhexanoate
  • 3-HH 3-hydroxyheptanoate
  • 3-HHep 3-hydroxyoctanoate
  • 3-HO 3-hydroxynonanoate
  • 3-HD 3-hyde Roxydecanoate
  • 3-HDdodecanoate hereinafter referred to as 3-HDd
  • 4-hydroxybutyrate hereinafter referred to as 4-HB
  • 4-Hydroxyvalerate hereinafter referred to as 4-HV
  • 5-HV 5-hydroxyvalerate
  • the PHA resin is 3-HB, 4-HB, 3-HP, 3-HH. It may contain one or more repeating units selected from the group consisting of 3-HV, 4-HV, 5-HV and 6-HH.
  • the PHA resin may be a HOMO PHA resin composed only of 4-HB repeating units, or it may be a copolymer PHA resin containing 4-HB repeating units.
  • the PHA resin includes a 4-HB repeating unit and additionally includes one repeating unit different from the 4-HB, or 2, 3, 4, 5, 6 or more different repeating units. It may be a copolymer PHA resin that additionally contains a repeating unit.
  • the PHA resin may be poly 3-hydroxybutyrate-co-4-hydroxybutyrate (hereinafter referred to as 3HB-co-4HB).
  • the PHA resin may contain isomers.
  • the PHA resin may include structural isomers, enantiomers, or geometric isomers.
  • the PHA resin may include structural isomers.
  • the PHA resin may be a copolymer PHA resin with controlled crystallinity.
  • the PHA resin may include at least one 4-HB repeating unit, and the crystallinity of the PHA resin can be adjusted by controlling the content of the 4-HB repeating unit.
  • the PHA resin is 3-hydroxybutyrate (3-HB), 4-hydroxybutyrate (4-HB), 3-hydroxypropionate (3-HP), 3-hydroxyhexanoate (3-HH), 3-hydroxyvalerate (3-HV), 4-hydroxyvalerate (4-HV), 5-hydroxyvalerate (5-HV) and 6-hydroxyhexanoate ( It may be a copolymer PHA resin containing one or more repeating units selected from the group consisting of 6-HH).
  • the copolymer PHA resin includes a 4-HB repeating unit, a 3-HB repeating unit, a 3-HP repeating unit, a 3-HH repeating unit, a 3-HV repeating unit, a 4-HV repeating unit, and a 5-HV repeating unit. It may further include one or more types of repeating units selected from the group consisting of repeating units and 6-HH repeating units. More specifically, the copolymer PHA resin may include a 4-HB repeating unit and a 3-HB repeating unit.
  • the PHA resin may include the 4-HB repeating unit in an amount of 0.1% to 60% by weight.
  • the PHA resin is a copolymer PHA resin containing the 4-HB repeating unit and the 3-HB repeating unit, and may include the 4-HB repeating unit in an amount of 0.1% to 60% by weight.
  • the PHA resin contains the 4-HB repeating unit in an amount of 0.5% to 50% by weight, 1% to 48% by weight, 3% to 46% by weight, 5% to 45% by weight, and 8% to 40% by weight. , 10% to 38% by weight, 15% to 35% by weight, 20% to 30% by weight, 0.5% to 25% by weight, 1% to 20% by weight, 2% to 15% by weight, 3 It may be included in weight% to 10% by weight, 20% to 60% by weight, 25% to 55% by weight, or 35% to 50% by weight.
  • the PHA resin is a copolymer PHA resin containing a 4-HB repeating unit and a 3-HB repeating unit, and may contain 20% by weight or more of the 3-HB repeating unit.
  • the PHA resin may contain more than 35% by weight, more than 40% by weight, more than 50% by weight, more than 60% by weight, more than 70% by weight, or more than 75% by weight, 99% by weight or less, 98% by weight or less, 97% by weight or less, 96% by weight or less, 95% by weight or less, 93% by weight or less, 91% by weight or less, 90% by weight or less, 80% by weight or less, 70% by weight or less, It may contain less than 60% by weight or less than 55% by weight.
  • the PHA resin with controlled crystallinity may have its crystallinity and amorphousness adjusted by increasing the irregularity in the molecular structure. Specifically, it may be one by adjusting the type or ratio of monomers or the type or content of isomers.
  • the PHA resin may include two or more types of PHA resins with different crystallinity. Specifically, the PHA resin may be adjusted to have the content of the 4-HB repeating unit within the specific range by mixing two or more types of PHA resins with different crystallinities.
  • the PHA resin may include a first PHA resin that is an amorphous PHA resin with controlled crystallinity.
  • the first PHA resin is an amorphous PHA resin with controlled crystallinity (hereinafter referred to as aPHA resin), and contains 4-HB repeating units in an amount of 15% to 60% by weight, 15% to 55% by weight, and 20% by weight. to 55% by weight, 25% to 55% by weight, 30% to 55% by weight, 35% to 55% by weight, 20% to 50% by weight, 25% to 50% by weight, 30% to 50% by weight It may be included in weight%, 35% by weight to 50% by weight, or 20% by weight to 40% by weight.
  • aPHA resin amorphous PHA resin with controlled crystallinity
  • the glass transition temperature (Tg) of the first PHA resin may be -45°C to -10°C, -35°C to -15°C, -35°C to -20°C, or -30°C to -20°C. Additionally, the crystallization temperature (Tc) of the first PHA resin may not be measured, or may be 60°C to 120°C, 60°C to 110°C, 70°C to 120°C, or 75°C to 115°C.
  • the melting temperature (Tm) of the first PHA resin may not be measured, or may be 100°C to 170°C, 100°C to 160°C, 110°C to 160°C, or 120°C to 150°C.
  • the cold crystallization temperature (Tcc) of the first PHA resin may not be measured, or may be 30°C to 125°C, 30°C to 120°C, 40°C to 110°C, or 50°C to 100°C.
  • the glass transition temperature (Tg), crystallization temperature (Tc), melting temperature (Tm), and cold crystallization temperature (Tcc) may be measured using differential scanning calorimetry (DSC). Specifically, the glass transition temperature (Tg), crystallization temperature (Tc), melting temperature (Tm), and cold crystallization temperature (Tcc) are measured by 1 st scan or 2nd scan in differential scanning calorimetry (DSC) mode. It can be measured by (2 nd scan) and confirmed from the heat flow curve obtained by scanning.
  • DSC differential scanning calorimetry
  • the glass transition temperature (Tg) and crystallization temperature (Tc) are obtained from the heat flow curve obtained by increasing the temperature from 40°C to 180°C at a rate of 10°C/min and then cooling to -50°C at a rate of 10°C/min. , melting temperature (Tm) and cold crystallization temperature (Tcc) can be confirmed.
  • the first PHA resin may have a melt flow index (MFI) of 0.1 g/10min to 20 g/10min measured at 165°C and 5 kg according to ASTM D1238.
  • MFI melt flow index
  • the first PHA resin has a melt flow index of 0.1 g/10min to 15 g/10min, 0.1 g/10min to 12 g/10min, and 0.1 g/10min measured at 165°C and 5 kg according to ASTM D1238.
  • the weight average molecular weight of the first PHA resin is 10,000 g/mol to 1,200,000 g/mol, 10,000 g/mol to 1,000,000 g/mol, 50,000 g/mol to 1,000,000 g/mol, 200,000 g/mol to 1,200,000 g/mol, 250,000 g/mol to 1,000,000 g/mol, 100,000 g/mol to 900,000 g/mol, 500,000 g/mol to 900,000 g/mol, 200,000 g/mol to 800,000 g/mol, or 200,000 g/mol to 500,000 g/mol. You can.
  • the PHA resin may include a second PHA resin that is a semi-crystalline PHA resin.
  • the second PHA resin is a semi-crystalline PHA resin with controlled crystallinity (hereinafter referred to as scPHA resin), and may include 0.1% by weight to 30% by weight of a 4-HB repeating unit.
  • the second PHA resin contains 4-HB repeating units in an amount of 0.1% to 30% by weight, 0.5% to 30% by weight, 1% to 29% by weight, 3% to 29% by weight, 1% by weight. % to 28% by weight, 1.5% to 25% by weight, 2% to 20% by weight, 2.5% to 15% by weight, 3% to 25% by weight, 5% to 21% by weight, 6% to 6% by weight. It may be included at 18% by weight, 10% by weight to 30% by weight, 10% by weight to 20% by weight, 13% by weight to 23% by weight, or 15% by weight to 20% by weight.
  • the glass transition temperature (Tg) of the second PHA resin is -30°C to 80°C, -30°C to 10°C, -25°C to 5°C, -25°C to 0°C, -20°C to 0°C, or -15°C. It may be from °C to 0°C.
  • the crystallization temperature (Tc) of the second PHA resin may be 70°C to 120°C, 75°C to 120°C, or 75°C to 115°C, and the melting temperature (Tm) of the second PHA resin may be 105°C to 165°C. , 110°C to 160°C, 115°C to 155°C, or 120°C to 150°C.
  • the cold crystallization temperature (Tcc) of the second PHA resin may not be measured, or may be 35°C to 125°C, 35°C to 120°C, 45°C to 110°C, or 55°C to 100°C.
  • the second PHA resin may have a melt flow index of 0.1 g/10min to 15 g/10min measured at 165°C and 5 kg according to ASTM D1238.
  • the second PHA resin has a melt flow index of 0.1 g/10min to 10 g/10min, 0.2 g/10min to 7 g/10min, and 0.5 g/10min measured at 165°C and 5 kg according to ASTM D1238.
  • the weight average molecular weight of the second PHA resin is 10,000 g/mol to 1,200,000 g/mol, 50,000 g/mol to 1,100,000 g/mol, 50,000 g/mol to 350,000 g/mol, 100,000 g/mol to 1,000,000 g/mol, 100,000 g/mol to 900,000 g/mol, 200,000 g/mol to 800,000 g/mol, 200,000 g/mol to 600,000 g/mol, 200,000 g/mol to 500,000 g/mol, or 500,000 g/mol to 1,200,000 g/mol. You can.
  • the first PHA resin and the second PHA resin can be distinguished according to the content of the 4-HB repeating unit, and the glass transition temperature (Tg), crystallization temperature (Tc), melting temperature (Tm), and cold crystallization temperature ( It may have at least one characteristic selected from the group consisting of Tcc) and melt flow index.
  • the first PHA and the second PHA include the content of 4-HB repeating units, glass transition temperature (Tg), crystallization temperature (Tg), melting temperature (Tm), cold crystallization temperature (Tcc), and melt flow index. It can be distinguished according to etc.
  • the content of the 4-HB repeating unit of the first PHA resin and the content of the 4-HB repeating unit of the second PHA may be different from each other.
  • the PHA resin may include the first PHA resin or the second PHA resin, or may include both the first PHA resin and the second PHA resin.
  • the PHA resin may include a first PHA resin that is an amorphous PHA resin, or include both a first PHA resin that is an amorphous PHA resin and a second PHA resin that is a semi-crystalline PHA resin, and more specifically, the first PHA resin. And by adjusting the content of the second PHA resin, the desired physical properties can be more effectively controlled.
  • the PHA resin may include the first PHA resin or the second PHA resin.
  • the PHA resin may be composed only of the first PHA resin, or may be composed only of the second PHA resin.
  • the PHA resin may include the first PHA resin and the second PHA resin.
  • the weight ratio of the first PHA resin and the second PHA resin may be 1:0.5 to 5.
  • the weight ratio of the first PHA resin and the second PHA resin may be 1:0.5 to 4.5, 1:0.6 to 4.2, or 1:0.7 to 3.5.
  • the glass transition temperature (Tg) of the PHA resin is -45°C to 80°C, -35°C to 80°C, -30°C to 80°C, -25°C to 75°C, -20°C to 70°C, -35°C. °C to 5°C, -25°C to 5°C, -35°C to 0°C, -25°C to 0°C, -30°C to -10°C, -35°C to -15°C, -35°C to -20°C, It may be -20°C to 0°C, -15°C to 0°C, or -15°C to -5°C.
  • the crystallization temperature (Tc) of the PHA resin is not measured, or is 60°C to 120°C, 60°C to 110°C, 70°C to 120°C, 75°C to 120°C, 75°C to 115°C, 75°C to 110°C, or It may be 90°C to 110°C.
  • the melting temperature (Tm) of the PHA resin is not measured or is 100°C to 170°C, 105°C to 170°C, 105°C to 165°C, 110°C to 160°C, 115°C to 155°C, 110°C to 150°C. °C, 120°C to 150°C, or 120°C to 140°C.
  • the cold crystallization temperature (Tcc) of the PHA resin may not be measured, or may be 30°C to 125°C, 40°C to 115°C, or 50°C to 105°C.
  • the PHA resin may have a decomposition temperature (Td, weight loss of 5%) of 220°C to 280°C, 245°C to 275°C, 255°C to 270°C, or 260°C to 270°C, as measured by thermogravimetric analysis (TGA). .
  • Td decomposition temperature
  • the decomposition temperature (Td) can be measured using a thermogravimetric analyzer (TGA). Specifically, the decomposition temperature (Td) is obtained when the weight of the PHA resin decreases by 5% from the weight change curve obtained by increasing the temperature from room temperature to 600°C at a rate of 10°C/min using a thermogravimetric analyzer (TGA). The temperature can be checked as the decomposition temperature (Td).
  • TGA thermogravimetric analyzer
  • the weight average molecular weight of the PHA resin may be 10,000 g/mol to 1,200,000 g/mol.
  • the weight average molecular weight of the PHA is 50,000 g/mol to 1,200,000 g/mol, 100,000 g/mol to 1,000,000 g/mol, 200,000 g/mol to 1,200,000 g/mol, 250,000 g/mol to 1,150,000 g/mol.
  • the crystallinity of the PHA resin measured by differential scanning calorimeter (DSC) may be 90% or less.
  • the crystallinity of the PHA resin may be measured by differential scanning heat capacity analysis and may be 90% or less, 85% or less, 80% or less, 75% or less, or 70% or less.
  • the average particle size of the PHA resin may be 0.5 ⁇ m to 5 ⁇ m.
  • the average particle size of the PHA resin is 0.7 ⁇ m to 4.6 ⁇ m, 1.1 ⁇ m to 4.5 ⁇ m, 1.5 ⁇ m to 4.3 ⁇ m, 2.2 ⁇ m to 4.2 ⁇ m, 2.6 ⁇ m to 4.0 ⁇ m, 2.8 ⁇ m to 3.9 ⁇ m, or 3.1 ⁇ m It may be from 3.8 ⁇ m.
  • the average particle size of the PHA resin can be measured using a nano particle size analyzer (ex. Zetasizer Nano ZS). Specifically, for the PHA, the average particle size was measured using the principle of dynamic light scattering (DLS) at a temperature of 25°C and a measurement angle of 175° using Zetasizer Nano ZS (manufacturer: Marven). At this time, the peak value derived through the polydispersity index (PDI) at a confidence interval of 0.5 was measured as the particle size.
  • DLS dynamic light scattering
  • PDI polydispersity index
  • the polydispersity index (PDI) of the PHA resin may be less than 2.5.
  • the polydispersity index of the PHA resin may be 2.4 or less, 2.3 or less, 2.1 or less, or 2.0 or less.
  • the PHA resin may be obtained by cell disruption using a non-mechanical method or a chemical method.
  • the PHA resin is a thermoplastic natural polyester polymer that accumulates in microbial cells and has a relatively large average particle size, so a crushing process is performed to more effectively control the yield or physical properties of the desired material and improve process efficiency. It may have been obtained through
  • the biodegradable resin composition may include 15% by weight or more of the PHA resin based on the total weight of the biodegradable resin composition.
  • the content of the PHA resin is 20% by weight or more, 30% by weight or more, 35% by weight or more, 40% by weight or more, 50% by weight or more, 65% by weight or more, based on the total weight of the biodegradable resin composition. It may contain 70% by weight or more, 85% by weight or more, or 90% by weight or more.
  • the biodegradable resin composition according to an embodiment of the present invention includes a fluidizing agent.
  • the fluidizing agent may include one or more selected from the group consisting of polystyrene-based, polystyrene-based, polyacrylate-based and polystyrene-acrylate-based polymers.
  • the fluidizing agent contains polystyrene, it is desirable in that not only can the viscosity characteristics be controlled more efficiently, but also the torque of the extruder or the pressure can be reduced during processing, thereby improving productivity and processability.
  • the fluidizing agent may have a specific gravity of 0.7 to 1.8.
  • the specific gravity of the fluidizing agent may be 0.75 to 1.5, 0.8 to 1.35, or 0.95 to 1.2.
  • the fluidizing agent may have a weight average molecular weight of 1,500 g/mol to 8,000 g/mol.
  • the weight average molecular weight of the fluidizing agent is 1,600 g/mol to 7,000 g/mol, 1,700 g/mol to 5,000 g/mol, 1,900 g/mol to 3,500 g/mol, or 2,100 g/mol to 3,200 g/ It can be mol.
  • the fluidizing agent may have a glass transition temperature (Tg) of 40°C or higher as measured by differential scanning calorimetry (DSC).
  • Tg glass transition temperature measured by differential scanning calorimetry
  • DSC differential scanning calorimetry
  • the fluidizing agent may have a melt flow index of 1,800 g/10 min or more as measured at 130°C and 12 kg according to ASTM D1238.
  • the fluidizing agent has a melt flow index measured at 130°C and 12 kg according to ASTM D1238 of 2,100 g/10min or more, 2,400 g/10min or more, 2,600 g/10min or more, 2,800 g/10min or more, 3,000 g/ It may be more than 10 min, more than 3,500 g/10 min, or more than 4,500 g/10 min.
  • the biodegradable resin composition may include the fluidizing agent in an amount of 0.1 phr to 20 phr.
  • the content of the fluidizing agent is 0.2 phr to 15 phr, 0.3 phr to 10 phr, 0.5 phr to 8 phr, 0.8 phr to 6 phr, 0.9 phr to 4 phr, 0.95 phr to 3 phr, 0.1 phr to 10 phr. phr, 0.1 phr to 5 phr or 0.1 phr to 2.5 phr.
  • the fluidizing agent satisfies the above content range, it can be more advantageous to achieve the desired effect in the present invention.
  • the biodegradable resin composition includes polybutylene adipate terephthalate (PBAT), polylactic acid (PLA), polybutylene succinate (PBS), and polybutylene adipate.
  • PBA polybutylene succinate-adipate
  • PBST polybutylene succinate-terephthalate
  • PHBV polyhydroxybutyrate-valerate
  • PCL polycaprolactone
  • PBSAT succinate adipate terephthalate
  • TPS thermoplastic starch
  • the biodegradable resin composition can further improve dispersibility, processability, and productivity.
  • the biodegradable resin composition may contain less than 90% by weight of the biodegradable resin based on the total weight of the biodegradable resin composition.
  • the content of the biodegradable resin is 85% by weight or less, 80% by weight or less, 70% by weight or less, 60% by weight or less, 45% by weight or less, or 35% by weight or less based on the total weight of the biodegradable resin composition. It can be included as .
  • the content of the biodegradable resin may be 35% to 80% by weight, 45% to 75% by weight, or 50% to 70% by weight, but is not limited thereto.
  • the weight ratio of the PHA and the biodegradable resin may be 1:99 to 99:1.
  • the weight ratio of the PHA resin and the biodegradable resin is 5:95 to 99:5, 10:90 to 90:10, 15:90 to 60:40, 5:95 to 45:55, 10:90. It may be from 40:60, 15:85 to 35:65, or 20:80 to 30:70.
  • the biodegradable resin may be polylactic acid (PLA) resin.
  • PLA polylactic acid
  • the weight ratio of the PHA resin and the PLA resin may be 10:90 to 70:30.
  • the weight ratio of the PHA resin and the PLA resin may be 10:90 to 65:35, 15:85 to 55:45, 15:85 to 50:50, or 20:80 to 30:70.
  • the biodegradable resin composition is one selected from the group consisting of pigments, color absorbers, light absorbers, antioxidants, compatibilizers, weighting agents, nucleating agents, melt strength enhancers, and slip agents. It may additionally contain more than one type of additive.
  • the pigment may include one or more selected from the group consisting of inorganic particles, carbon black, and cobalt green.
  • the inorganic particles may be metals such as Cu, metal oxides, metalloid oxides, or combinations thereof, but are not limited thereto.
  • the content of the pigment is 0.01 phr to 20 phr, 0.01 phr to 15 phr, 0.01 phr to 12 phr, 0.01 phr to 10 phr, 0.01 phr to 8 phr, 0.01 phr to 5 phr, 0.2 phr to 4.5 phr, 0.2 phr to 0.2 phr. It may be 4 phr or 0.5 phr to 3 phr.
  • the antioxidant is an additive to prevent decomposition by ozone or oxygen, prevent oxidation during storage, and prevent deterioration of physical properties, and commonly used antioxidants can be used as long as they do not impair the effect of the present invention.
  • the antioxidant may include one or more selected from the group consisting of hindered phenol-based antioxidants and phosphite-based (phosphorus-based) antioxidants.
  • the hindered phenolic antioxidant is, for example, 4,4'-methylene-bis(2,6-di-t-butylphenol), octadecyl-3-(3,5-di-t-butyl-4) -Hydroxyphenyl)propionate, pentaerythritol tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate), 3,9-bis[2-[3- (3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane. It may include one or more types.
  • the phosphite-based (phosphorus-based) antioxidant is, for example, tris-(2,4-di-t-butylphenyl)phosphite, bis-(2,4-di-t-butylphenyl)pentaerythritol-dipho Spite, bis-(2,6-di-t-butyl-4-methylphenyl)pentaerythritol-diphosphite, distearyl-pentaerythritol-diphosphite, [bis(2,4-di-t-butyl- 5-methylphenoxy)phosphino]biphenyl, and N,N-bis[2-[[2,4,8,10-tetrakis(1,1-dimethylethyl)dibenzo[d,f][1 ,3,2]deoxyphosphepin-6-yl]oxy]-ethyl]ethanamine.
  • the content of the antioxidant is 0.01 phr to 20 phr, 0.01 phr to 15 phr, 0.01 phr to 12 phr, 0.01 phr to 10 phr, 0.01 phr to 8 phr, 0.01 phr to 5 phr, 0.2 phr to 4.5 phr, 0.2 phr. It may be from 4 phr to 4 phr or from 0.5 phr to 3 phr.
  • the compatibilizer is an additive to provide compatibility by removing the release property of the biodegradable resin and/or the PHA resin, and commonly used compatibilizers can be used as long as they do not impair the effect of the present invention. there is.
  • the compatibilizers are polyvinyl acetate (PVAc)-based, isocyanate-based, polypropylene carbonate-based, glycidyl methacrylate, ethylene vinyl alcohol, polyvinyl alcohol (PVA), ethylene vinyl acetate, maleic anhydride, and glycerin. It may include one or more types selected from the group consisting of stearates.
  • the content of the compatibilizer is 0.01 phr to 20 phr, 0.01 phr to 15 phr, 0.01 phr to 12 phr, 0.01 phr to 10 phr, 0.01 phr to 8 phr, 0.01 phr to 5 phr, 0.2 phr to 4.5 phr, 0.2 phr. It may be from 4 phr to 4 phr or from 0.5 phr to 3 phr.
  • the weighting agent is an inorganic material and is an additive added to increase moldability by speeding up the crystallization rate during the molding process and to reduce the problem of cost increase due to the use of resins with high biodegradability characteristics compared to synthetic resins. Commonly used minerals can be used as long as they do not impair the effect.
  • the weighting agent is selected from the group consisting of minerals such as zinc, calcium, stearic acid, light or heavy calcium carbonate, silica, talc, kaolin, barium sulfate, clay, calcium oxide, magnesium hydroxide, titanium oxide, carbon black, and glass fiber. It may include one or more types.
  • the average particle size of the weighting agent may be 0.5 ⁇ m to 5 ⁇ m.
  • the average particle size of the weighting agent may be 0.5 ⁇ m to 4.8 ⁇ m, 0.5 ⁇ m to 4.5 ⁇ m, or 0.7 ⁇ m to 4 ⁇ m. If the average particle size of the weighting agent is less than 0.5 ⁇ m, dispersion of the particles becomes difficult, and if it exceeds 5 ⁇ m, the particle size becomes too large, which may hinder the effect of the present invention.
  • the content of the weighting agent is 0.01 phr to 20 phr, 0.01 phr to 15 phr, 0.01 phr to 12 phr, 0.01 phr to 10 phr, 0.01 phr to 8 phr, 0.01 phr to 5 phr, 0.2 phr to 4.5 phr, 0.2 phr. It may be from 4 phr to 4 phr or from 0.5 phr to 3 phr.
  • the nucleating agent is an additive that assists or changes the crystallization form of the polymer and improves the crystallization (solidification) rate when the melt of the polymer is cooled.
  • the PHA resin used in the present invention has a low crystallization rate, the process may not be easy because sufficient crystallization does not occur during the process.
  • the crystallization rate can be improved to further improve processing, formability, and productivity, and the physical properties desired in the present invention can be efficiently achieved.
  • the nucleating agent may be a commonly used nucleating agent as long as it does not impede the effect of the present invention.
  • the nucleating agent is, for example, a metal compound containing a simple element (pure substance) or a complex oxide, a low molecular weight organic compound with a metal carboxylate group, a polymer organic compound with a metal carboxylate group, a polymer organic compound, phosphoric acid, or phosphorous acid. It may include or its metal salt, sorbitol derivative, thioglycolic anhydride, and p-toluenesulfonic acid or its metal salt.
  • the nucleating agents may be used alone or in combination with each other.
  • Metal compounds containing the single element substance (pure substance) or complex oxide include, for example, carbon black, calcium carbonate, synthetic silicic acid and its salts, silica, zinc white, clay, kaolin, basic magnesium carbonate, mica, Talc, quartz powder, diatomite, dolomite powder, titanium oxide, zinc oxide, antimony oxide, barium sulfate, calcium sulfate, alumina, calcium silicate, and metal salts of organic phosphorus and boron nitride. There may be more than one type.
  • the low molecular weight organic compounds having the metal carboxylate group include, for example, octylic acid, toluic acid, heptanoic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, and stearic acid. , behenic acid, cerotic acid, montanic acid, melissic acid, benzene acid, p-tert-butylbenzene acid, terephthalic acid, terephthalic acid monomethyl ester, isophthalic acid, and metal salts of isophthalic acid monomethyl ester.
  • the polymer organic compound having the metal carboxylate group is, for example, carboxyl group-containing polyethylene obtained by the oxidation reaction of polyethylene, carboxyl group-containing polypropylene obtained by the oxidation reaction of polypropylene, acrylic acid or methacrylic acid, and olefin.
  • carboxyl group-containing polyethylene obtained by the oxidation reaction of polyethylene
  • carboxyl group-containing polypropylene obtained by the oxidation reaction of polypropylene
  • acrylic acid or methacrylic acid and olefin.
  • olefin e.g., ethylene, propylene and butene-1
  • copolymers of acrylic acid or methacrylic acid and styrene copolymers of olefins and maleic anhydride
  • copolymers of styrene and maleic anhydride There may be one or more selected types.
  • the polymeric organic compound is, for example, an alpha-olefin (e.g., 3,3 dimethylbutene-1,3-methylbutene-1,3-methylpentene-) that is branched to the carbon atom in the third position and has 5 or more carbon atoms.
  • alpha-olefin e.g., 3,3 dimethylbutene-1,3-methylbutene-1,3-methylpentene-
  • 1,3-methylhexene-1 and 3,5,5-trimethylhexene-1 polymers of vinylcycloalkanes (e.g. vinylcyclopentane, vinylcyclohexane and vinylnorbonane), polyalkylene glycols (e.g. polyethylene) It may be one or more selected from the group consisting of glycol and polypropylene glycol), poly(glycolic acid), cellulose, cellulose ester, and cellulose ether.
  • the phosphoric acid or phosphorous acid and its metal salt include, for example, diphenyl phosphate, diphenyl phosphite, metal salt of bis(4-tert-butylphenyl)phosphate, and methylene bis-(2,4-tert-butyl). It may be one or more types selected from the group consisting of phenyl) phosphate.
  • the sorbitol derivative may be, for example, bis(p-methylbenzylidene) sorbitol and bis(p-ethylbenzylidene) sorbitol.
  • the content of the nucleating agent is 0.01 phr to 20 phr, 0.01 phr to 15 phr, 0.01 phr to 12 phr, 0.01 phr to 10 phr, 0.01 phr to 8 phr, 0.01 phr to 5 phr, 0.2 phr to 4.5 phr, 0.2 phr. It may be from 4 phr to 4 phr or from 0.5 phr to 3 phr.
  • the crystallization rate can be improved to improve formability, and in the manufacturing process, for example, during the cutting process for pellet production, the crystallization rate can be improved to further improve productivity and processability. You can.
  • the melt strength enhancer is an additive for improving reactive melt strength, and a commonly used melt strength enhancer can be used as long as it does not impair the effect of the present invention.
  • melt strength enhancer is polyester, styrene-based polymers (e.g., acrylonitrile butadiene styrene and polystyrene), polysiloxane, organic modified siloxane polymer, polyester, and maleic anhydride grafted ethylene propylene diene monomer (MAH- It may include one or more types selected from the group consisting of g-EPDM).
  • the content of the melt strength enhancer is 0.01 phr to 20 phr, 0.01 phr to 15 phr, 0.01 phr to 12 phr, 0.01 phr to 10 phr, 0.01 phr to 8 phr, 0.01 phr to 5 phr, 0.2 phr to 4.5 phr, 0.2 phr to 4.5 phr. It may be phr to 4 phr or 0.5 phr to 3 phr.
  • the slip agent is an additive that improves slipperiness during extrusion and prevents the fiber surfaces from sticking to each other.
  • the slip agent may be a commonly used slip agent as long as it does not impede the effect of the present invention.
  • the slip agent may be one or more selected from the group consisting of Erucamide, Oliamide, and Stearamide.
  • the content of the slip agent is 0.01 phr to 20 phr, 0.01 phr to 15 phr, 0.01 phr to 12 phr, 0.01 phr to 10 phr, 0.01 phr to 8 phr, 0.01 phr to 5 phr, 0.2 phr to 4.5 phr, 0.2 phr. It may be additionally included from 4 phr to 4 phr or from 0.5 phr to 3 phr.
  • the biodegradable resin composition may also include a crosslinking agent and/or stabilizer.
  • the cross-linking agent is an additive for modifying the properties of the PHA resin and increasing the molecular weight of the resin, and a commonly used cross-linking agent can be used as long as it does not impair the effect of the present invention.
  • the crosslinking agent may be fatty acid ester, natural oil containing an epoxy group (epoxidized), diallyl phthalate, pentaerythritol tetraacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythate.
  • At least one selected from the group consisting of litol pentaacrylate, diethylene glycol dimethacrylate, and bis(2-methacryloxyethyl)phosphate can be used.
  • the content of the cross-linking agent is 0.01 phr to 20 phr, 0.01 phr to 15 phr, 0.01 phr to 12 phr, 0.01 phr to 10 phr, 0.01 phr to 8 phr, 0.01 phr to 5 phr, 0.2 phr to 4.5 phr, 0.2 phr to 0.2 phr. It may be 4 phr or 0.5 phr to 3 phr.
  • the stabilizer may be one or more selected from the group consisting of trimethyl phosphate, triphenyl phosphate, trimethyl phosphine, phosphoric acid, and phosphorous acid.
  • the content of the stabilizer is 0.01 phr to 20 phr, 0.01 phr to 15 phr, 0.01 phr to 12 phr, 0.01 phr to 10 phr, 0.01 phr to 8 phr, 0.01 phr to 5 phr, 0.2 phr to 4.5 phr, 0.2 phr. It may be from 4 phr to 4 phr or from 0.5 phr to 3 phr.
  • the additives may be in the form of monomers, polymers, or copolymers, but are not limited thereto.
  • the biodegradable resin composition may further include biomass.
  • the biodegradable resin composition can not only improve biodegradability but also play a role in soil improvement.
  • the biomass has excellent biodegradability, is easy to crush when not decomposed, and has soil improvement effects such as improving fertilizer and increasing soil strength.
  • the biomass may be included in an amount of 5 to 50% by weight, based on the total weight of the biodegradable resin composition.
  • the content of the biomass is 10% to 48% by weight, 15% to 48% by weight, 20% to 45% by weight, and 20% to 43% by weight based on the total weight of the biodegradable resin composition. Or it may be 20% to 40% by weight.
  • the biodegradable resin composition may have a melt flow index of 5 g/10min or more measured at 190°C and 2.16 kg according to ASTM D1238.
  • the biodegradable resin composition has a melt flow index measured at 190°C and 2.16 kg according to ASTM D1238 of 5 g/10min or more, 6 g/10min or more, 7 g/10min or more, 7.5 g/10min or more, 8 g/10min or more or 9 g/10min or more, 5 g/10min to 30 g/10min, 6 g/10min to 20 g/10min, 7 g/10min to 15 g/10min, 7.5 g/10min to 10 g /10min or 7.5 g/10min to 9.5 g/10min.
  • the biodegradable resin composition may have a melt flow index of 30 g/10min or more measured at 210°C and 2.16 kg according to ASTM D1238.
  • the biodegradable resin composition has a melt flow index measured at 210°C and 2.16 kg according to ASTM D1238 of 45 g/10min or more, 50 g/10min or more, 53 g/10min or more, 55 g/10min or more, It may be more than 59 g/10min, more than 65 g/10min, more than 80 g/10min, more than 90 g/10min, or more than 100 g/10min.
  • the melt flow index measured according to ASTM D1238 for the biodegradable resin composition may be measured according to ASTM D1238 for pellets manufactured using the biodegradable resin composition.
  • the melt flow index may be measured according to ASTM D1238 for biodegradable pellets produced by putting the biodegradable resin composition into a twin screw extruder, mixing, and melt-extruding. More specifically, the biodegradable pellets were prepared by setting the screw rotation speed of the twin screw extruder to 200 rpm, mixing the biodegradable resin composition while raising the internal temperature from 50°C to 170°C, and then extruding at a pressure of 12 bar and 177°C. It may be melt-extruded at a temperature of °C and manufactured using an underwater cutter system.
  • the weight average molecular weight of the biodegradable resin composition may be 500,000 g/mol or less.
  • the weight average molecular weight of the biodegradable resin composition may be 450,000 g/mol or less, 400,000 g/mol or less, or 350,000 g/mol or less.
  • the biodegradable resin composition has a glass transition temperature (Tg) measured by differential scanning calorimetry (DSC) of -35°C to 15°C, -25°C to 5°C, -20°C to 1°C, or -18°C to -5°C.
  • Tg glass transition temperature measured by differential scanning calorimetry
  • DSC differential scanning calorimetry
  • Tm melting temperature
  • Tm crystallization temperature
  • Tc crystallization temperature
  • Tcc cold crystallization temperature
  • the biodegradable resin composition may have a decomposition temperature (Td, 5% weight loss) measured by thermogravimetric analysis (TGA) of 220°C or higher, 230°C or higher, 240°C or higher, 250°C or higher, or 260°C or higher. , 220°C to 275°C, 235°C to 273°C, 240°C to 300°C, 245°C to 285°C, 255°C to 280°C, 260°C to 275°C, or 263°C to 270°C.
  • Td decomposition temperature measured by thermogravimetric analysis
  • the biodegradable nonwoven fabric according to another embodiment of the present invention includes biodegradable fibers, and the biodegradable fibers are polyhydroxyalkanoate (PHA) resins containing 4-hydroxybutyrate (4-HB) repeating units. ; and a fluidizing agent.
  • PHA polyhydroxyalkanoate
  • 4-HB 4-hydroxybutyrate
  • the biodegradable nonwoven fabric may be an aggregate of biodegradable fibers, and the description of the PHA and the fluidizing agent is as described above.
  • the average length of the biodegradable fiber may be 100 mm or less.
  • the biodegradable fiber may be a single fiber, and the average length of the fiber may be 85 mm or less, 70 mm or less, 60 mm or less, 55 mm or less, 45 mm or less, 35 mm or less, or 20 mm or less.
  • the average diameter of the biodegradable fiber may be 1 ⁇ m to 100 ⁇ m.
  • the average diameter of the biodegradable fiber may be 5 ⁇ m to 95 ⁇ m, 10 ⁇ m to 80 ⁇ m, 15 ⁇ m to 65 ⁇ m, or 20 ⁇ m to 50 ⁇ m.
  • the fineness of the biodegradable fiber may be 100 denier or less.
  • the fineness of the biodegradable fiber 1 fila constituting the biodegradable nonwoven fabric is 0.1 denier to 100 denier, 0.5 denier to 100 denier, 1 to 100 denier, 5 denier to 95 denier, 10 to 90 denier, It may be 10 to 80 denier, 20 to 70 denier, or 30 to 60 denier.
  • the elongation of the biodegradable fiber is 10% or more, 12% or more, 15% or more, 20% or more, 25% or more, 32% or more, 35% or more, 40% or more, 45% or more, 50% or more, or 60% or more. It may be 1,000% or less, 850% or less, 650% or less, 500% or less, 350% or less, 200% or less, 130% or less, 90% or less, 80% or less, or 75% or less.
  • the weight average molecular weight of the biodegradable fiber may be 300,000 g/mol or more or 500,000 g/mol, 10,000 g/mol to 5,000,000 g/mol, 20,000 g/mol to 4,000,000 g/mol, or 50,000 g/mol to 3,000,000 g. It can be /mol.
  • the biodegradable nonwoven fabric may be manufactured by a spunbond process.
  • the biodegradable nonwoven fabric may be a biodegradable spunbond nonwoven fabric.
  • the biodegradable nonwoven fabric may be manufactured using a biodegradable resin composition, and the biodegradable resin composition has a melt flow index (MFI) measured at 190°C and 2.16 kg according to ASTM D1238. , Melt Flow Index) may be 5 g/10min or more.
  • MFI melt flow index
  • biodegradable resin composition is the same as described above.
  • the biodegradable nonwoven fabric may be a biodegradable single fiber nonwoven fabric manufactured using the biodegradable resin composition.
  • the biodegradable fiber may be a heterogeneous cross-section composite fiber or a bicomponent or more ternary composite fiber.
  • the cross-sectional shape of the irregular cross-section composite fiber may be circular, oval, or polygonal, but is not limited thereto.
  • the biodegradable fiber is a sheath-core type, side by side type, sea-islands type, or segmented type including a core portion and a sheath portion. It can be a pie type).
  • the sheath-core type may have cross-sections of the core portion and the sheath portion that are different from each other.
  • the core portion may have a circular cross section
  • the sheath portion may have a donut shape, but are not limited thereto.
  • the biodegradable fiber may be a two-component composite fiber in which the sheath portion and the core portion each contain a different single-component resin, and the sheath portion contains a single-component resin, and the core portion contains a two-component composite fiber. It may be a three-component or more composite fiber containing more than one component of resin, or a three-component or more composite fiber containing a single component resin in the core portion and a two-component resin in the sheath portion. Additionally, the biodegradable fiber may be a composite fiber containing two or more resins in the sheath portion and the core portion, respectively.
  • the core portion may include the PHA resin
  • the sheath portion may include a biodegradable resin
  • the biodegradable resin is polybutylene adipate terephthalate (PBAT), polylactic acid (PLA), polybutylene succinate (PBS), polybutylene adipate (PBA), polybutylene succinate- Adipate (PBSA), polybutylene succinate-terephthalate (PBST), polyhydroxybutylate-valerate (PHBV), polycaprolactone (PCL), polybutylene succinate adipate terephthalate (PBSAT), It may be one or more selected from the group consisting of polybutylene ethylene adipate succinate (PBEAS), polybutylene ethylene succinate (PBES), and thermoplastic starch (TPS).
  • PBEAS polybutylene ethylene adipate succinate
  • PBES polybutylene ethylene succinate
  • TPS thermoplastic starch
  • the weight ratio of the core portion and the sheath portion may be 5:95 to 95:5.
  • the weight ratio of the core portion and the sheath portion may be 5:95 to 85:15, 7:93 to 80:20, 10:90 to 75:25, or 10:90 to 70:30.
  • the biodegradable nonwoven fabric may be electrostatically treated.
  • Electrostatic treatment is a method of improving the collection ability by applying electrostatic charge to the nonwoven fabric.
  • the fibers that make up the nonwoven fabric are forced to have an electric charge inside and are made of fibers with a polarized charge accordingly.
  • Non-woven fabrics can easily collect charged fine particles.
  • the electrostatic treatment process may be performed using corona discharge, plasma charging, friction charging, or water charging using high-pressure water droplets, but is not limited thereto.
  • a charging agent may be further included, and the charging agent may be a hindered amine-based charging agent, but is not limited thereto.
  • a functional coating layer may be additionally included on at least one surface of the biodegradable nonwoven fabric.
  • the functional coating layer may be a hard coating layer or an antibacterial coating layer, and there may be an adhesive layer between the functional coating layer and the biodegradable nonwoven fabric.
  • the biodegradable nonwoven fabric may have at least one surface treated using ions or electricity.
  • the surface treatment may be performed by ion coating, ion collecting, electrical coating, or voltage coating, but is not limited thereto.
  • biodegradable nonwoven fabric may further include one or more additives selected from the group consisting of deodorants, antibacterial agents, inorganic fillers, and lubricants.
  • the deodorant is, for example, titanium dioxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), zirconium dioxide (ZrO), and strontium titanate (SrTiO 3 ). At least one metal oxide selected from the group consisting of It may be, but is not limited to this.
  • the deodorant may be included in an amount of 0.01% by weight to 20% by weight based on the total weight of the biodegradable nonwoven fabric.
  • the deodorant may be included in an amount of 0.01 wt% to 20 wt%, 0.05 wt% to 15 wt%, or 0.1 wt% to 10 wt% based on the total weight of the biodegradable nonwoven fabric.
  • the antibacterial agent may be one or more selected from the group consisting of nano-silver, nano-copper, nano-zinc, and zeolite-based antibacterial agents, but is not limited thereto.
  • the antibacterial agent may be included in an amount of 0.01% by weight to 20% by weight based on the total weight of the biodegradable nonwoven fabric.
  • the antibacterial agent may be included in an amount of 0.01% by weight to 20% by weight, 0.05% by weight to 15% by weight, or 0.1% by weight to 10% by weight based on the total weight of the biodegradable nonwoven fabric.
  • the inorganic filler may be one or more selected from the group consisting of talc, barium oxide, calcium carbonate, magnesium carbonate, zinc carbonate, zinc oxide, magnesium oxide, alumina, and silica, but is not limited thereto.
  • the average particle diameter of the inorganic filler may be 0.01 ⁇ m to 2.0 ⁇ m.
  • the average particle diameter of the inorganic filler may be 0.01 ⁇ m to 2.0 ⁇ m, 0.05 ⁇ m to 2.0 ⁇ m, or 0.05 ⁇ m to 1.5 ⁇ m.
  • the inorganic filler may be included in an amount of 0.01% by weight to 20% by weight based on the total weight of the biodegradable nonwoven fabric.
  • the inorganic filler may be included in an amount of 0.01% by weight to 20% by weight, 0.05% by weight to 15% by weight, or 0.1% by weight to 10% by weight based on the total weight of the biodegradable nonwoven fabric.
  • the lubricant may be a fatty acid ester, specifically glycerin fatty acid ester, sorbitan fatty acid ester, pyridoxine fatty acid ester, or a mixture of at least one or more selected from these, but is not limited thereto.
  • the lubricant may be included in an amount of 0.01% by weight to 20% by weight based on the total weight of the biodegradable nonwoven fabric.
  • the lubricant may be included in an amount of 0.01 wt% to 20 wt%, 0.05 wt% to 15 wt%, or 0.1 wt% to 10 wt% based on the total weight of the biodegradable nonwoven fabric.
  • a method for producing a biodegradable nonwoven fabric according to another embodiment of the present invention includes the step of melt spinning a biodegradable resin composition or a pellet produced by melt-extruding the same, wherein the biodegradable resin composition contains 4-hydroxybutyrate (4 -HB) A polyhydroxyalkanoate (PHA) resin containing a repeating unit, and a fluidizing agent, and the melt flow index (MFI) measured at 190°C and 2.16 kg according to ASTM D1238 is 5. It is more than g/10min.
  • biodegradable resin composition is the same as described above.
  • the method for producing a biodegradable nonwoven fabric according to another embodiment of the present invention involves melt spinning by directly adding the biodegradable resin composition into the machine, or injecting pellets produced by melt-extruding the biodegradable resin composition into the machine.
  • Biodegradable nonwoven fabric can be manufactured by melt spinning.
  • the biodegradable resin composition can be directly put into a machine for melt spinning, or the pellets can be extruded and melt spun through a nozzle, cooled, and then wound with a roller to produce a biodegradable nonwoven fabric.
  • the process may be performed using a spunbond melt spinning device using an ejector, or may be performed using a low-speed or high-speed single fiber spinning device, but is not limited thereto.
  • the melt spinning device may include a melting section, a nozzle section including a filter, a draft section between the nozzle hole and the winding roller, and a winding section.
  • biodegradable fibers with desired physical properties can be manufactured.
  • the biodegradable resin composition or pellets may be melt-spun at a temperature of 150°C to 230°C, 170°C to 210°C, or 190°C to 200°C.
  • the spinning speed may be 10 mpm to 5,000 mpm.
  • it can be performed at a spinning speed of 1,000 mpm to 5,000 mpm, 1,200 mpm to 4,500 mpm, or 1,500 mpm to 4,000 mpm for spunbond nonwovens, and 10 mpm to 200 mpm, or 15 mpm to 180 mpm for short fiber nonwovens.
  • the spinning step can be performed by adjusting the basis weight of the biodegradable nonwoven fabric to be manufactured from 10 gsm to 500 gsm.
  • the basis weight of the produced biodegradable nonwoven fabric is 12 gsm to 450 gsm, 15 gsm to 400 gsm, 20 gsm to 350 gsm, 20 gsm to 250 gsm, and 25 gsm to 200 gsm. , 25 gsm to 150 gsm, 25 gsm to 100 gsm, or 25 gsm to 50 gsm.
  • stretching may be additionally performed after the melt spinning.
  • the stretching may be additionally performed when manufacturing a short fiber nonwoven fabric, and may be performed by cold stretching or hot stretching at a stretching ratio of 1.1 times or more.
  • the stretching may be performed at a stretching ratio of 1.1 times or more, 2.5 times or more, 3.5 times or more, 5 times or more, 5.5 times or more, 6 times or more, 6.5 times or more, or 7 times or more.
  • the diameter or length of the fibers of the biodegradable short fiber nonwoven fabric can be more effectively controlled. Specifically, if the length or diameter of the biodegradable fiber is controlled only through the spinning or melt spinning step, productivity and processability may be reduced.
  • the step of producing pellets by melt-extruding the biodegradable resin composition at 150°C to 200°C may be further included.
  • the melt extrusion may be performed at a pressure of 6 bar to 30 bar and a temperature of 150°C to 200°C.
  • the melt extrusion may be performed at a pressure of 7 bar to 28 bar or 8 bar to 26 bar and at 155°C to 190°C or 165°C to 185°C using a single screw extruder or a twin screw extruder.
  • a step of mixing while raising the temperature to 50°C to 170°C using a single screw extruder or a twin screw extruder may be additionally performed.
  • the melt extrudate may be cooled to 15°C or lower, 10°C or lower or 6°C or lower, and then cut to produce biodegradable pellets, but is not limited thereto.
  • the step of drying the pellets at 40°C to 60°C for 10 hours or more may be further included.
  • a step of drying the pellets at 40°C to 58°C or 42°C to 60°C for 11 hours or more or 12 hours or more may be additionally performed.
  • the drying step is performed when the resin moisture content of the pellets is 2,000 ppm or less, 1,500 ppm or less, 1,100 ppm or less, 500 ppm or less, 300 ppm or less, 150 ppm or less, 100 ppm or less, 60 ppm or less, or 50 ppm or less. It can be performed by hot air drying or dehumidifying drying, but is not limited to this.
  • the step of spinning the biodegradable resin composition may be performed using a composite spinning device.
  • the composite spinning device may be a sheath-core composite spinning device.
  • biodegradable fibers can be manufactured by directly adding the biodegradable resin composition to the core portion or sheath portion of the sheath-core composite spinning device.
  • the biodegradable resin composition may be added to the core portion or sheath portion, and may include polybutylene adipate terephthalate (PBAT), polylactic acid (PLA), polybutylene succinate (PBS), and polybutylene adipate.
  • PBAT polybutylene adipate terephthalate
  • PLA polylactic acid
  • PBS polybutylene succinate
  • PBA polybutylene succinate-adipate
  • PBSA polybutylene succinate-terephthalate
  • PHBV polyhydroxybutyrate-valerate
  • PCL polycaprolactone
  • PBSAT lene succinate adipate terephthalate
  • PBEAS polybutylene ethylene adipate succinate
  • PBES polybutylene ethylene succinate
  • TPS thermoplastic starch
  • the biodegradable resin composition may be added to the core portion, and may include polybutylene adipate terephthalate (PBAT), polylactic acid (PLA), polybutylene succinate (PBS), and polybutylene adipate (PBA).
  • PBAT polybutylene adipate terephthalate
  • PLA polylactic acid
  • PBS polybutylene succinate
  • PBA polybutylene adipate
  • PBSA polybutylene succinate-adipate
  • PBST polybutylene succinate-terephthalate
  • PHBV polyhydroxybutyrate-valerate
  • PCL polycaprolactone
  • PBSAT polybutylene succinate
  • PBSAT polybutylene ethylene adipate succinate
  • PBEAS polybutylene ethylene adipate succinate
  • PBES polybutylene ethylene succinate
  • TPS thermoplastic starch
  • the weight ratio of the raw materials introduced into the core portion and the sheath portion is 5:95 to 95:5, 5:95 to 85:15, 7:93 to 80:20, 10:90 to 75:25 or 10: It may be 90 to 70:30.
  • A-1 aPHA Content of 4HB repeating unit 33% by weight, weight average molecular weight (Mw): 600,000 g/mol, melt flow index (MFI) at 165°C and 5 kg according to ASTM D1238: 5.5 g/10min A-2 scPHA Content of 4HB repeating unit: 6% by weight, weight average molecular weight (Mw): 410,000 g/mol, melt flow index (MFI) at 165°C and 5 kg according to ASTM D1238: 2.88 g/10min B-1 PLA Melt Flow Index (MFI) at 190°C and 2.16 kg according to ASTM D1238: 10 g/10min, Melt Flow Index (MFI) at 210°C and 5 kg according to ASTM D1238: 21 g/10min B-2 PBS Melt Flow Index (MFI) at 190°C and 2.16 kg according to ASTM D1238: 3 g/10min C Fluidizing agent Polystyrene-acrylate polymer (manufacturer
  • Example 1 30 - 70 - One One Example 2 30 - 70 - 2 One Example 3 30 - 70 - 3 One Example 4 40 - 60 - One One Example 5 40 - 60 - 2 One Example 6 40 - 60 - 3 One Example 7 50 - 50 - One One Example 8 50 - 50 - 2 One Example 9 50 - 50 - 3 One Comparative Example 1 30 - 70 - - One Comparative Example 2 40 - 60 - - One Comparative Example 3 50 - 50 - - One
  • melt flow index (MFI, g/10min) was measured at 190°C and 2.16 kg according to ASTM D1238.
  • the glass transition temperature (Tg) and melting temperature (Tm) were measured using differential scanning calorimetry (DSC).
  • the temperature was raised from 40°C to 180°C at a rate of 10°C/min using a differential scanning calorimeter, and then the temperature was increased at 10°C/min.
  • the glass transition temperature (Tg), melting temperature (Tm), crystallization temperature (Tc), and cold crystallization temperature (Tcc) were measured from the heat flow curve obtained while cooling to -50°C at a rate.
  • Example 1 45 50 8.3 -23 172 92 93 Example 2 43 45 8.9 -22 172 91 94 Example 3 40 45 9.0 -21 171 - 96 Example 4 45 52 8.1 -19 172 - 95 Example 5 43 55 8.2 -20 172 91 94 Example 6 41 50 8.6 -20 171 90 94 Example 7 46 51 7.6 -20 172 - 96 Example 8 42 48 7.8 -21 172 - 95 Example 9 42 47 8.1 -21 171 91 93 Comparative Example 1 50 40 7.5 -21 172 - 97 Comparative Example 2 47 50 7.5 -20 172 90 93 Comparative Example 3 47 53 7.5 -20 172 - 95
  • the biodegradable resin compositions of Examples 1 to 9 have excellent dispersibility, and melt flow index (MFI), glass transition temperature (Tg), melt temperature (Tm), crystallization temperature (Tc), and The cold crystallization temperature (Tcc) all satisfied the desirable range.
  • MFI melt flow index
  • Tg glass transition temperature
  • Tm melt temperature
  • Tc crystallization temperature
  • Tcc cold crystallization temperature
  • the torque and pressure for producing biodegradable fibers by melt extruding and spinning a biodegradable resin composition are lower than before, and the viscosity characteristics are excellent, so the process temperature can be more easily controlled, resulting in excellent processability and productivity.
  • biodegradable resin compositions of Examples 1 to 9 are easy to use to produce biodegradable nonwoven fabrics, especially biodegradable spunbond nonwoven fabrics or biodegradable short fiber nonwoven fabrics, and can further improve the quality of the produced biodegradable nonwoven fabrics. You can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

본 발명은 생분해성 수지 조성물, 생분해성 부직포 및 이의 제조 방법에 관한 것이다. 구체적으로, 본 발명의 일 실시예에 따르면, 상기 생분해성 수지 조성물은 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지; 및 유동화제를 포함하고, ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수(MFI, Melt Flow Index)가 5 g/10min 이상을 만족함으로써, 생분해성 및 생체 적합성이 우수하여 친환경적이면서 가공성 및 생산성이 우수하므로, 고품질의 스펀본드 부직포 또는 단섬유 부직포를 제조할 수 있고, 공정에 적합한 점도와 같은 특성을 용이하게 제어할 수 있어 생산성 및 가공성을 향상시킬 수 있다.

Description

생분해성 수지 조성물, 생분해성 부직포 및 이의 제조 방법
본 발명은 생분해성 수지 조성물, 생분해성 부직포 및 이의 제조 방법에 관한 것이다.
최근 환경 문제에 대한 우려가 증가함에 따라 다양한 생활 용품 폐기물의 처리 및 이의 재활용에 대한 연구가 활발히 진행되고 있다. 구체적으로, 저렴하면서 가공성 등의 특성이 우수한 고분자 재료가 종이, 필름, 섬유, 포장재, 병, 용기 등과 같은 다양한 제품들을 제조하는데 널리 이용되고 있으나, 이러한 제품의 수명이 다하였을 때 소각 처리시에는 유해한 물질이 배출될 수 있고, 자연적으로 완전히 분해되기 위해서는 종류에 따라 수백 년이 걸리는 단점을 가지고 있다.
이에, 빠른 시간 내에 분해됨으로써 친환경성을 향상시킬 수 있으면서, 유연성 및 강도와 같은 기계적 특성, 생산성, 가공성 등을 향상시켜 제품 자체의 수명을 증가시켜 폐기물의 양을 줄이거나 재활용성을 향상시킬 수 있는 생분해성 고분자에 대한 연구가 계속되고 있다.
폴리하이드록시알카노에이트(polyhydroxyalkanoates, PHA)는 수많은 미생물에 의해 생성되고, 세포내 저장 물질로 사용되는 여러 종류의 하이드록시 카르복실산으로 구성되는 생분해성 고분자이다. 폴리하이드록시알카노에이트는 기존의 석유로부터 유래된 폴리부틸렌 아디페이트 테레프탈레이트(polybutylene adipate terephthalate, PBAT), 폴리부틸렌 숙시네이트(polybutylene succinate, PBS), 폴리부틸렌 숙시네이트 테레프탈레이트(polybutylene succinate terephthalate, PBST), 폴리부틸렌 숙시네이트 아디페이트(polybutylene succinate adipate, PBSA) 등과 같은 합성 고분자와 유사한 물성을 가지면서, 완전한 생분해성을 보이며, 생체 적합성 또한 우수하다.
한편, 부직포는 산업용 섬유 소재로서 공기 중의 미세 입자나 가스 등과 같은 부유 물질 등을 제어하거나, 식품 가공 등과 같은 산업 현장에서 사용되는 용수의 순도를 제어하기 위한 여과 공정의 핵심 소재로 사용되는 등 다양한 분야에서 이용되고 있다. 특히, 2000년대 이후 황사, 미세먼지, 초미세먼지 등으로 인한 인체 유해성에 대한 관심이 높아졌으며, 2019년 신종 코로나 바이러스로 인해 여과 소재로써 사용되는 부직포에 대한 관심이 증가함에 따라 이에 대한 연구가 활발히 진행되고 있다.
종래에는 석유화학 기반의 고분자 재료가 부직포의 소재로 사용되었다. 그러나 석유화학 기반의 고분자 재료를 이용한 제품들은 사용이 완료된 후 수거나 재활용이 어렵고, 토양이나 해양 등에 방치되어 환경을 크게 오염시키는 문제가 있다. 이에, 생분해성을 향상시킬 수 있는 생분해성 고분자가 적용되고 있긴 하지만, 원료가 고가이거나 부직포에 필요한 여과성, 통기성, 유연성 등을 향상시키는데 한계가 있다.
또한, 부직포는 멜트블로운 공정 또는 스펀본드 공정에 의해 주로 제조되고 있는데, 스펀본드 부직포는 멜트블로운 공정에 비해서 다양한 물성을 가진 섬유 및 부직포를 제조할 수 있는 점에서 가공성이 우수하다. 또한, 단섬유 부직포의 경우 멜트블로운 공정 및/또는 스펀본드 공정을 1 단계 또는 2 단계로 적용하여 제조할 수 있으므로 원하는 물성을 더욱 용이하게 제어할 수 있는 점에서 다양한 산업 분야에서 사용될 수 있다. 따라서, 생분해성 및 생체 적합성이 우수하여 친환경적이면서, 고품질의 스펀본드 부직포 또는 단섬유 부직포를 제조할 수 있고, 공정에 적합한 점도와 같은 특성을 용이하게 제어할 수 있어 생산성 및 가공성 또한 우수한 생분해성 수지 조성물에 대한 연구가 계속되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 공개특허 제2012-0103158호
따라서, 본 발명은 생분해성 및 생체 적합성이 우수하여 친환경적이면서 가공성 및 생산성이 우수하여 고품질의 스펀본드 부직포 또는 단섬유 부직포를 제조할 수 있고, 공정에 적합한 점도와 같은 특성을 용이하게 제어할 수 있는 생분해성 수지 조성물을 제공하고자 한다.
본 발명의 일 실시예에 따른 생분해성 수지 조성물은 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지; 및 유동화제를 포함하고, ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수(MFI, Melt Flow Index)가 5 g/10min 이상이다.
본 발명의 일 실시예에 따르면, 상기 유동화제가 폴리스티렌계, 폴리아크릴레이트계 및 폴리스티렌-아크릴레이트계 중합체로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 유동화제는 비중이 0.7 내지 1.8일 수 있고, 중량평균분자량이 1,500 g/mol 내지 8,000 g/mol일 수 있다.
본 발명의 일 실시예에 따르면, 상기 유동화제는 시차주사열량계(DSC)로 측정된 유리 전이 온도(Tg)가 40℃ 이상일 수 있고, ASTM D1238에 따라 130℃ 및 12 kg 하에서 측정된 용융흐름지수가 1,800 g/10min 이상일 수 있다.
본 발명의 일 실시예에 따르면, 상기 생분해성 수지 조성물은 상기 유동화제를 0.1 phr 내지 20 phr로 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 PHA 수지가 상기 4-하이드록시부티레이트(4-HB) 반복단위를 0.1 중량% 내지 60 중량%로 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 PHA 수지가 제 1 PHA 수지를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제 1 PHA 수지가 4-하이드록시부티레이트(4-HB) 반복단위를 15 중량% 내지 60 중량%로 포함할 수 있고, ASTM D1238에 따라 165℃ 및 5 kg 하에서 측정한 용융흐름지수(MFI, Melt Flow Index)가 0.1 g/10min 내지 20 g/10min일 수 있다.
본 발명의 일 실시예에 따르면, 상기 PHA 수지가 제 2 PHA 수지를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제 2 PHA 수지가 4-하이드록시부티레이트(4-HB) 반복단위를 0.1 중량% 이상 내지 30 중량%로 포함할 수 있고, ASTM D1238에 따라 165℃ 및 5 kg 하에서 측정된 용융흐름지수가 0.1 g/10min 내지 15 g/10min일 수 있다.
본 발명의 일 실시예에 따르면, 상기 생분해성 수지 조성물이 폴리부틸렌아디페이트 테레프탈레이트(PBAT), 폴리락트산(PLA), 폴리부틸렌숙시네이트(PBS), 폴리부틸렌아디페이트(PBA), 폴리부틸렌숙시네이트-아디페이트(PBSA), 폴리부틸렌숙시네이트-테레프탈레이트(PBST), 폴리히드록시부틸레이트-발레레이트(PHBV), 폴리카프로락톤(PCL), 폴리부틸렌 숙시네이트 아디페이트 테레프탈레이트(PBSAT) 및 열가소성 전분(TPS)으로 이루어진 군으로부터 선택된 1종 이상의 생분해성 수지를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 PHA 수지 및 상기 생분해성 수지의 중량비가 1 : 99 내지 99 : 1일 수 있다.
본 발명의 일 실시예에 따르면, 상기 PHA 수지 및 상기 폴리락트산(PLA) 수지의 중량비가 20 : 80 내지 70 : 30일 수 있다.
본 발명의 일 실시예에 따르면, 상기 생분해성 수지 조성물이 안료, 색소흡수제, 광흡수제, 산화방지제, 상용화제, 중량제, 기핵제, 용융강도 증강제 및 슬립제로 구성된 군으로부터 선택된 1종 이상의 첨가제를 추가로 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 PHA 수지가 3-하이드록시부티레이트(3-HB), 3-하이드록시프로피오네이트(3-HP), 3-하이드록시헥사노에이트(3-HH), 3-하이드록시발레레이트(3-HV), 4-하이드록시발레레이트(4-HV), 5-하이드록시발레레이트(5-HV) 및 6-하이드록시헥사노에이트(6-HH)로 이루어진 군으로부터 선택된 1종 이상의 반복단위를 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 생분해성 수지 조성물은, 시차주사열량계(DSC)로 측정된 유리 전이 온도(Tg)가 -35℃ 내지 15℃일 수 있고, 용융 온도(Tm)가 105℃ 내지 200℃일 수 있으며, 결정화 온도(Tc)가 측정되지 않거나 50℃ 내지 120℃일 수 있고, 냉결정화 온도(Tcc)가 30℃ 내지 125℃일 수 있다.
본 발명의 또 다른 실시예에 따른 생분해성 부직포는 생분해성 섬유를 포함하고, 상기 생분해성 섬유가 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지; 및 유동화제를 포함한다.
본 발명의 또 다른 실시예에 따르면, 상기 생분해성 섬유의 평균 길이가 100 mm 이하일 수 있고, 평균 직경이 1 ㎛ 내지 100 ㎛일 수 있다.
본 발명의 또 다른 실시예에 따르면, 스펀본드 공정에 의해 제조된 것일 수 있다.
본 발명의 또 다른 실시예에 따르면, 생분해성 수지 조성물을 이용하여 제조된 것일 수 있고, 상기 생분해성 수지 조성물은 ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수(MFI, Melt Flow Index)가 5 g/10min 이상일 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 생분해성 섬유가 이형단면 복합섬유이거나 이성분계 이상 또는 삼성분계 이상의 복합섬유일 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 생분해성 섬유가 코어부 및 시스부를 포함하는 시스-코어형(sheath-core type), 사이드 바이 사이드형(side by side type), 해도형(sea-islands type) 또는 분할형(segmented-pie type)일 수 있다.
본 발명의 또 다른 실시예에 따른 생분해성 부직포의 제조 방법은 생분해성 수지 조성물 또는 이를 용융압출하여 제조된 펠렛을 용융방사하는 단계를 포함하고, 상기 생분해성 수지 조성물이 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지, 및 유동화제를 포함하고, ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수(MFI, Melt Flow Index)가 5 g/10min 이상이다.
본 발명의 또 다른 실시예에 따르면, 상기 생분해성 수지 조성물을 방사하는 단계가 시스-코어 복합 방사 장치를 이용하여 수행될 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 시스-코어 복합 방사 장치는 코어부 및 시스부를 포함하고, 상기 코어부 및 상기 시스부로 투입되는 원료의 중량비가 5 : 95 내지 95 : 5일 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 생분해성 수지 조성물이 코어부로 투입될 수 있다.
본 발명의 일 실시예에 따른 생분해성 수지 조성물은 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지; 및 유동화제를 포함하고, ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수(MFI, Melt Flow Index)가 5 g/10min 이상을 만족함으로써, 생분해성 및 생체 적합성이 우수하여 친환경적이면서 가공성 및 생산성이 우수하므로, 고품질의 스펀본드 부직포 또는 단섬유 부직포를 제조할 수 있고, 공정에 적합한 점도와 같은 특성을 용이하게 제어할 수 있어 생산성 및 가공성을 향상시킬 수 있다.
구체적으로, 상기 생분해성 수지 조성물을 이용하여 스펀본드 부직포 또는 단섬유 부직포를 제조하는 경우, 상기 생분해성 수지 조성물은 점도 특성이 우수하여 종래보다 낮은 압력 및 온도 조건에서 용이하게 부직포를 제조할 수 있으므로, 생산성 및 가공성이 우수하며, 제조되는 부직포의 품질을 향상시킬 수 있다.
나아가, 상기 생분해성 수지 조성물로부터 바로 생분해성 부직포를 제조할 수 있을 뿐만 아니라, 상기 생분해성 수지 조성물로부터 제조된 생분해성 펠렛을 이용하여 생분해성 부직포를 제조할 수도 있으므로, 필요에 따라 공정을 선택하여 적용하기 용이하다.
또한, 상기 생분해성 수지 조성물 및 이로부터 제조된 생분해성 부직포는 토양 및 해양 모두에서 생분해가 가능하면서 열적 특성 및 기계적 특성 또한 우수하므로, 보다 다양한 분야에 용이하게 적용되어 우수한 특성을 발휘할 수 있다
이하, 본 발명을 상세하게 설명한다. 본 발명은 이하에서 개시된 내용에 한정되는 것이 아니라 발명의 요지가 변경되지 않는 한, 다양한 형태로 변형될 수 있다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 기재된 구성성분의 양, 반응 조건 등을 나타내는 모든 숫자 및 표현은 특별한 기재가 없는 한 모든 경우에 "약"이라는 용어로써 수식되는 것으로 이해하여야 한다.
본 명세서에서 제 1, 제 2, 1차, 2차 등의 용어는 다양한 구성요소를 설명하기 위해 사용되는 것이고, 상기 구성요소들은 상기 용어에 의해 한정되지 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소와 구별하는 목적으로만 사용된다.
생분해성 수지 조성물
본 발명의 일 실시예에 따른 생분해성 수지 조성물은 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지; 및 유동화제를 포함하고, ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수(MFI, Melt Flow Index)가 5 g/10min 이상이다.
부직포는 방적, 제직, 편조에 의하지 않고 섬유 집합체 또는 필름을 물리적 또는 화학적 수단 등을 이용하여 섬유 상호 간을 결합시킨 것으로, 섬유 자체의 융착력이나 섬유들의 엉킴을 이용하여 직접 직물과 같은 형태로 제조된 것을 의미한다. 종래에는 폴리프로필렌(PP)과 같은 석유화학 기반 재료를 이용하여 부직포를 제조하였으나, 생분해성이 낮았다. 이에, 폴리락트산(PLA)을 부직포의 재료로 사용하는 방법이 제안되었으나, 생분해성의 향상 정도가 크지 않으며, 유연성이 낮아 촉감이 거칠고 뻑뻑하여 사용감이나 착용감이 좋지 않아 다양한 분야에 적용이 어려웠다.
본 발명의 일 실시예에 따른 생분해성 수지 조성물은 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지; 및 유동화제를 포함하고, ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수(MFI, Melt Flow Index)가 5 g/10min 이상으로 제어됨으로써, 생분해성 및 생체 적합성이 우수하여 친환경적이면서 가공성 및 생산성이 우수하므로, 고품질의 스펀본드 부직포 또는 단섬유 부직포를 제조할 수 있고, 공정에 적합한 점도와 같은 특성을 용이하게 제어할 수 있어 생산성 및 가공성을 향상시킬 수 있다.
특히, 상기 생분해성 수지 조성물을 이용하여 부직포를 제조하는 경우, 상기 생분해성 수지 조성물은 점도 특성이 우수하여 종래보다 낮은 압력 및 온도 조건에서 용이하게 부직포를 제조할 수 있으므로, 생산성 및 가공성이 우수하며, 제조되는 부직포의 품질을 향상시킬 수 있다.
구체적으로, 상기 생분해성 수지 조성물은 생분해성 부직포용 조성물일 수 있다.
본 발명의 일 실시예에 따른 생분해성 수지 조성물은 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지를 포함한다.
구체적으로, 본 발명의 일 실시예에 따른 생분해성 수지 조성물은 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 공중합 폴리하이드록시알카노에이트 수지인 폴리하이드록시알카노에이트(PHA) 수지, 더욱 구체적으로 4-HB 반복단위를 갖는 특정 제 1 PHA 수지 및/또는 제 2 PHA 수지를 포함함으로써, 생분해성 및 생체 적합성이 우수하여 친환경적이면서 이를 이용하여 우수한 특성을 갖는 생분해성 부직포를 용이하게 제조할 수 있다.
또한, 상기 생분해성 수지 조성물 및 이로부터 제조된 생분해성 부직포는 토양 및 해양 모두에서 생분해가 가능하면서 열적 특성 및 기계적 특성 또한 우수하므로, 보다 다양한 분야에 용이하게 적용되어 우수한 특성을 발휘할 수 있다.
상기 PHA는 미생물 세포 내에 축적되는 열가소성의 천연 폴리에스테르 고분자로서, 생분해성 소재이므로 퇴비화가 가능하고, 유독성 폐기물 발생도 없으면서 최종적으로 이산화탄소, 물 및 유기 폐기물로 분해될 수 있다. 특히, 상기 PHA는 토양 및 해양에서도 생분해될 수 있으므로, 상기 생분해성 수지 조성물 및 이를 이용한 생분해성 섬유 또는 생분해성 부직포가 PHA 수지를 포함하는 경우, 환경 친화적인 특성을 가질 수 있다. 따라서, 상기 생분해성 수지 조성물 및 이를 이용한 생분해성 부직포는 생분해성이 우수하고 친환경적이므로 다양한 분야에 활용될 수 있다는 것에 큰 이점이 있다.
구체적으로, 상기 PHA는 미생물 세포 내에 축적되는 열가소성의 천연 폴리에스테르 고분자로서, 특정 박테리아가 영양성분(질소원, 인 등)이 불균형적으로 공급될 때, 탄소원과 에너지를 저장하기 위해 세포 내 PHA를 축적함으로써 형성된다.
또한, 상기 PHA는 기존의 석유로부터 유래된 폴리부틸렌 아디페이트 테레프탈레이트(PBAT), 폴리부틸렌 숙시네이트(PBS), 폴리부틸렌 숙시네이트 테레프탈레이트(PBST), 폴리부틸렌 숙시네이트 아디페이트(PBSA)등과 같은 합성 고분자와 유사한 물성을 가지면서, 완전한 생분해성을 보이며, 생체 적합성 또한 우수하다.
특히, 상기 PHA는 다른 친환경 플라스틱 소재인 PBS, PLA, PTT등과 달리, 150 종류 이상의 단량체로 합성이 가능하기 때문에, 단량체의 종류에 따라 수백 종의 PHA가 제조될 수 있고, 단량체의 종류에 따라 상이한 수백 종의 PHA는 각각 그 구조와 물성이 전혀 상이하다.
상기 PHA 수지는 살아있는 세포 내에 있는 단일 단량체 반복단위로 이루어질 수 있고, 하나 이상의 단량체 반복단위를 중합함으로써 형성될 수 있다. 구체적으로, 상기 PHA 수지는 단일 폴리하이드록시알카노에이트 수지(이하, HOMO PHA 수지로 표기함)일 수 있고, 공중합 폴리하이드록시알카노에이트 수지(이하, 공중합 PHA 수지로 표기함), 즉 중합체 사슬에 상이한 반복단위들이 불규칙하게(randomly) 분포되어 있는 공중합체일 수 있다.
상기 PHA 수지에 포함될 수 있는 반복단위의 예로는, 2-하이드록시부티레이트, 젖산, 글리콜산, 3-하이드록시부티레이트(이하, 3-HB로 표기함), 3-하이드록시프로피오네이트(이하, 3-HP로 표기함), 3-하이드록시발레레이트(이하, 3-HV로 표기함), 3-하이드록시헥사노에이트(이하, 3-HH로 표기함), 3-하이드록시헵타노에이트(이하, 3-HHep로 표기함), 3-하이드록시옥타노에이트(이하, 3-HO로 표기함), 3-하이드록시노나노에이트(이하, 3-HN으로 표기함), 3-하이드록시데카노에이트(이하, 3-HD로 표기함), 3-하이드록시도데카노에이트(이하, 3-HDd로 표기함), 4-하이드록시부티레이트(이하, 4-HB로 표기함), 4-하이드록시발레레이트(이하, 4-HV로 표기함), 5-하이드록시발레레이트(이하, 5-HV로 표기함) 및 6-하이드록시헥사노에이트(이하, 6-HH로 표기함)가 있을 수 있으며, 상기 PHA 수지는 이들로부터 선택된 1종 이상의 반복단위를 함유할 수 있다.
구체적으로, 상기 PHA 수지는 3-HB, 4-HB, 3-HP, 3-HH. 3-HV, 4-HV, 5-HV 및 6-HH로 이루어진 군으로부터 선택된 1종 이상의 반복단위를 포함할 수 있다.
즉, 상기 PHA 수지는 4-HB 반복단위로만 구성된 HOMO PHA 수지일 수 있으며, 4-HB 반복단위를 포함하는 공중합 PHA 수지일 수 있다.
또한, 상기 PHA 수지는 4-HB 반복단위를 포함하면서, 상기 4-HB와 상이한 1개의 반복단위를 추가로 포함하거나, 서로 상이한 2개, 3개, 4개, 5개, 6개 또는 그 이상의 반복단위를 추가로 포함하는 공중합 PHA 수지일 수 있다. 예를 들어, 상기 PHA 수지는 폴리 3-하이드록시부티레이트-co-4-하이드록시부티레이트(이하, 3HB-co-4HB로 표기함)일 수 있다.
또한, 상기 PHA 수지는 이성질체를 포함할 수 있다. 예컨대, 상기 PHA 수지는 구조 이성질체, 거울상 이성질체 또는 기하 이성질체를 포함할 수 있다. 구체적으로, 상기 PHA 수지는 구조 이성질체를 포함할 수 있다.
또한, 상기 PHA 수지는 결정성이 조절된 공중합 PHA 수지일 수 있다. 예를 들어, 상기 PHA 수지는 상기 4-HB 반복단위를 적어도 하나 이상 포함할 수 있고, 상기 4-HB 반복단위의 함량을 제어함으로써 상기 PHA 수지의 결정성을 조절할 수 있다.
예를 들어, 상기 PHA 수지는 3-하이드록시부티레이트(3-HB), 4-하이드록시부티레이트(4-HB), 3-하이드록시프로피오네이트(3-HP), 3-하이드록시헥사노에이트(3-HH), 3-하이드록시발레레이트(3-HV), 4-하이드록시발레레이트(4-HV), 5-하이드록시발레레이트(5-HV) 및 6-하이드록시헥사노에이트(6-HH)로 이루어진 군으로부터 선택된 1종 이상의 반복단위를 포함하는 공중합 PHA 수지일 수 있다.
구체적으로, 상기 공중합 PHA 수지는 4-HB 반복단위를 포함하면서, 3-HB 반복단위, 3-HP 반복단위, 3-HH 반복단위, 3-HV 반복단위, 4-HV 반복단위, 5-HV 반복단위 및 6-HH 반복단위로 이루어진 군으로부터 선택된 1종 이상의 반복 단위를 추가로 포함할 수 있다. 더욱 구체적으로, 상기 공중합 PHA 수지는 4-HB 반복단위 및 3-HB 반복단위를 포함할 수 있다.
더욱 구체적으로, 상기 PHA 수지는 상기 4-HB 반복단위를 0.1 중량% 내지 60 중량%로 포함할 수 있다. 예를 들어, 상기 PHA 수지는 상기 4-HB 반복단위 및 3-HB 반복단위를 포함하는 공중합 PHA 수지이고, 상기 4-HB 반복단위를 0.1 중량% 내지 60 중량%로 포함할 수 있다.
상기 PHA 수지는 상기 4-HB 반복단위를 0.5 중량% 내지 50 중량%, 1 중량% 내지 48 중량%, 3 중량% 내지 46 중량%, 5 중량% 내지 45 중량%, 8 중량% 내지 40 중량%, 10 중량% 내지 38 중량%, 15 중량% 내지 35 중량%, 20 중량% 내지 30 중량%, 0.5 중량% 내지 25 중량%, 1 중량% 내지 20 중량%, 2 중량% 내지 15 중량%, 3 중량% 내지 10 중량%, 20 중량% 내지 60 중량%, 25 중량% 내지 55 중량% 또는 35 중량% 내지 50 중량%로 포함할 수 있다.
또한, 상기 PHA 수지는 4-HB 반복단위 및 3-HB 반복단위를 포함하는 공중합 PHA 수지로서, 상기 3-HB 반복단위를 20 중량% 이상으로 포함할 수 있다. 예를 들어, 상기 PHA 수지는 상기 3-HB 반복단위를 35 중량% 이상, 40 중량% 이상 또는 50 중량% 이상, 60 중량% 이상, 70 중량% 이상 또는 75 중량% 이상으로 포함할 수 있으며, 99 중량% 이하, 98 중량% 이하, 97 중량% 이하, 96 중량% 이하, 95 중량% 이하, 93 중량% 이하, 91 중량% 이하, 90 중량% 이하, 80 중량% 이하, 70 중량% 이하, 60 중량% 이하 또는 55 중량% 이하로 포함할 수 있다.
상기 결정성이 조절된 PHA 수지는 분자구조상 비규칙성을 증가시킴으로써 결정성과 비정질성이 조절된 것일 수 있으며, 구체적으로는 단량체의 종류 또는 비율이나 이성질체의 종류 또는 함량을 조절한 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 PHA 수지는 결정성이 서로 다른 2종 이상의 PHA 수지를 포함할 수 있다. 구체적으로, 상기 PHA 수지는 결정성이 서로 다른 2종 이상의 PHA 수지를 혼합하여 상기 특정 범위의 4-HB 반복단위의 함량을 갖도록 조절한 것일 수 있다.
구체적으로, 상기 PHA 수지는 결정성이 조절된 비정형 PHA 수지인 제 1 PHA 수지를 포함할 수 있다.
상기 제 1 PHA 수지는 결정성이 조절된 비정형 PHA 수지(이하, aPHA 수지로 표기함)로서, 4-HB 반복단위를 15 중량% 내지 60 중량%, 15 중량% 내지 55 중량%, 20 중량% 내지 55 중량%, 25 중량% 내지 55 중량%, 30 중량% 내지 55 중량%, 35 중량% 내지 55 중량%, 20 중량% 내지 50 중량%, 25 중량% 내지 50 중량%, 30 중량% 내지 50 중량%, 35 중량% 내지 50 중량% 또는 20 중량% 내지 40 중량%로 포함할 수 있다.
상기 제 1 PHA 수지의 유리 전이 온도(Tg)는 -45℃ 내지 -10℃, -35℃ 내지 -15℃, -35℃ 내지 -20℃ 또는 -30℃ 내지 -20℃일 수 있다. 또한, 상기 제 1 PHA 수지의 결정화 온도(Tc)는 측정되지 않거나, 60℃ 내지 120℃, 60℃ 내지 110℃, 70℃ 내지 120℃ 또는 75℃ 내지 115℃일 수 있다. 상기 제 1 PHA 수지의 용융 온도(Tm)는 측정되지 않거나, 100℃ 내지 170℃, 100℃ 내지 160℃, 110℃ 내지 160℃ 또는 120℃ 내지 150℃일 수 있다. 상기 제 1 PHA 수지의 냉결정화 온도(Tcc)는 측정되지 않거나, 30℃ 내지 125℃, 30℃ 내지 120℃, 40℃ 내지 110℃ 또는 50℃ 내지 100℃일 수 있다.
본 명세서에 있어서, 상기 유리 전이 온도(Tg), 결정화 온도(Tc), 용융 온도(Tm) 및 냉결정화 온도(Tcc)는 시차주사열량계(DSC)를 이용하여 측정될 수 있다. 구체적으로, 상기 유리 전이 온도(Tg), 결정화 온도(Tc), 용융 온도(Tm) 및 냉결정화 온도(Tcc)는 시차주사열량계(DSC) 모드로 1차 스캔(1st scan) 또는 2차 스캔(2nd scan)하여 측정될 수 있으며, 스캔하여 얻은 열류(heat flow) 곡선으로부터 확인할 수 있다. 더욱 구체적으로, 10℃/min의 속도로 40℃에서 180℃까지 승온한 후, 10℃/min의 속도로 -50℃까지 냉각시키면서 얻은 열류 곡선으로부터 유리 전이 온도(Tg), 결정화 온도(Tc), 용융 온도(Tm) 및 냉결정화 온도(Tcc)를 확인할 수 있다.
상기 제 1 PHA 수지는 ASTM D1238에 따라 165℃ 및 5 kg 하에서 측정한 용융흐름지수(MFI, Melt Flow Index)가 0.1 g/10min 내지 20 g/10min일 수 있다. 예를 들어, 상기 제 1 PHA 수지는 ASTM D1238에 따라 165℃ 및 5 kg 하에서 측정한 용융흐름지수가 0.1 g/10min 내지 15 g/10min, 0.1 g/10min 내지 12 g/10min, 0.1 g/10min 내지 10 g/10min, 0.1 g/10min 내지 8 g/10min, 0.1 g/10min 내지 6 g/10min, 0.1 g/10min 내지 5.5 g/10min, 0.5 g/10min 내지 10 g/10min, 1 g/10min 내지 10 g/10min, 2 g/10min 내지 8 g/10min, 3 g/10min 내지 6 g/10min 또는 3 g/10min 내지 5.5 g/10min일 수 있다.
상기 제 1 PHA 수지의 중량평균분자량은 10,000 g/mol 내지 1,200,000 g/mol, 10,000 g/mol 내지 1,000,000 g/mol, 50,000 g/mol 내지 1,000,000 g/mol, 200,000 g/mol 내지 1,200,000 g/mol, 250,000 g/mol 내지 1,000,000 g/mol, 100,000 g/mol 내지 900,000 g/mol, 500,000 g/mol 내지 900,000 g/mol, 200,000 g/mol 내지 800,000 g/mol 또는 200,000 g/mol 내지 500,000 g/mol일 수 있다.
또한, 상기 PHA 수지는 반결정형 PHA 수지인 제 2 PHA 수지를 포함할 수 있다.
상기 제 2 PHA 수지는 결정성이 조절된 반결정형 PHA 수지(이하, scPHA 수지로 표기함)로서, 4-HB 반복단위를 0.1 중량% 내지 30 중량%로 포함할 수 있다. 예를 들어, 상기 제 2 PHA 수지는 4-HB 반복단위를 0.1 중량% 내지 30 중량%, 0.5 중량% 내지 30 중량%, 1 중량% 내지 29 중량%, 3 중량% 내지 29 중량%, 1 중량% 내지 28 중량%, 1.5 중량% 내지 25 중량%, 2 중량% 내지 20 중량%, 2.5 중량% 내지 15 중량%, 3 중량% 내지 25 중량%, 5 중량% 내지 21 중량%, 6 중량% 내지 18 중량%, 10 중량% 내지 30 중량%, 10 중량% 내지 20 중량%, 13 중량% 내지 23 중량% 또는 15 중량% 내지 20 중량%로 포함할 수 있다.
상기 제 2 PHA 수지의 유리 전이 온도(Tg)는 -30℃ 내지 80℃, -30℃ 내지 10℃, -25℃ 내지 5℃, -25℃ 내지 0℃, -20℃ 내지 0℃ 또는 -15℃ 내지 0℃일 수 있다. 상기 제 2 PHA 수지의 결정화 온도(Tc)는 70℃ 내지 120℃, 75℃ 내지 120℃ 또는 75℃ 내지 115℃일 수 있으며, 상기 제 2 PHA 수지의 용융 온도(Tm)는 105℃ 내지 165℃, 110℃ 내지 160℃, 115℃ 내지 155℃ 또는 120℃ 내지 150℃일 수 있다. 상기 제 2 PHA 수지의 냉결정화 온도(Tcc)는 측정되지 않거나, 35℃ 내지 125℃, 35℃ 내지 120℃, 45℃ 내지 110℃ 또는 55℃ 내지 100℃일 수 있다.
또한, 상기 제 2 PHA 수지는 ASTM D1238에 따라 165℃ 및 5 kg 하에서 측정된 용융흐름지수가 0.1 g/10min 내지 15 g/10min일 수 있다. 예를 들어, 상기 제 2 PHA 수지는 ASTM D1238에 따라 165℃ 및 5 kg 하에서 측정된 용융흐름지수가 0.1 g/10min 내지 10 g/10min, 0.2 g/10min 내지 7 g/10min, 0.5 g/10min 내지 5.5 g/10min, 0.6 g/10min 내지 5 g/10min, 0.8 g/10min 내지 5 g/10min, 1 g/10min 내지 5 g/10min, 0.1 g/10min 내지 5 g/10min, 1 g/10min 내지 6.5 g/10min, 1.5 g/10min 내지 15 g/10min, 3 g/10min 내지 10 g/10min, 3.5 g/10min 내지 12 g/10min 또는 4.5 g/10min 내지 10 g/10min일 수 있다.
상기 제 2 PHA 수지의 중량평균분자량은 10,000 g/mol 내지 1,200,000 g/mol, 50,000 g/mol 내지 1,100,000 g/mol, 50,000 g/mol 내지 350,000 g/mol, 100,000 g/mol 내지 1,000,000 g/mol, 100,000 g/mol 내지 900,000 g/mol, 200,000 g/mol 내지 800,000 g/mol, 200,000 g/mol 내지 600,000 g/mol, 200,000 g/mol 내지 500,000 g/mol 또는 500,000 g/mol 내지 1,200,000 g/mol일 수 있다.
상기 제 1 PHA 수지 및 상기 제 2 PHA 수지는 4-HB 반복단위의 함량에 따라 구별될 수 있으며, 상기 유리 전이 온도(Tg), 결정화 온도(Tc), 용융 온도(Tm), 냉결정화 온도(Tcc) 및 용융흐름지수로 이루어진 군으로부터 선택된 적어도 하나의 특성을 가질 수 있다. 구체적으로, 상기 제 1 PHA 및 상기 제 2 PHA는 4-HB 반복단위의 함량, 유리 전이 온도(Tg), 결정화 온도(Tg), 용융 온도(Tm), 냉결정화 온도(Tcc), 용융흐름지수 등에 따라 구별될 수 있다. 예를 들어, 상기 제 1 PHA 수지의 4-HB 반복단위의 함량 및 상기 제 2 PHA의 4-HB 반복단위의 함량이 서로 상이할 수 있다.
본 발명의 일 실시예에 따르면, 상기 PHA 수지는 상기 제 1 PHA 수지 또는 제 2 PHA 수지를 포함하거나, 상기 제 1 PHA 수지 및 상기 제 2 PHA 수지를 모두 포함할 수 있다.
구체적으로, 상기 PHA 수지가 비정형 PHA 수지인 제 1 PHA 수지를 포함하거나, 비정형 PHA 수지인 제 1 PHA 수지 및 반결정형 PHA 수지인 제 2 PHA 수지를 모두 포함함으로써, 더욱 구체적으로 상기 제 1 PHA 수지 및 상기 제 2 PHA 수지의 함량을 조절함으로써, 목적하는 물성을 더욱 효과적으로 제어할 수 있다.
본 발명의 일 실시예에 따르면, 상기 PHA 수지는 상기 제 1 PHA 수지 또는 상기 제 2 PHA 수지를 포함할 수 있다. 구체적으로, 상기 PHA 수지는 상기 제 1 PHA 수지만으로 구성되거나, 상기 제 2 PHA 수지만으로 구성될 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 PHA 수지는 상기 제 1 PHA 수지 및 상기 제 2 PHA 수지를 포함할 수 있다. 이때, 상기 제 1 PHA 수지 및 상기 제 2 PHA 수지의 중량비는 1 : 0.5 내지 5일 수 있다. 예를 들어, 상기 제 1 PHA 수지 및 상기 제 2 PHA 수지의 중량비는 1 : 0.5 내지 4.5, 1 : 0.6 내지 4.2 또는 1 : 0.7 내지 3.5일 수 있다. 제 1 PHA 수지 및 제 2 PHA 수지의 중량비가 상기 범위를 만족함으로써, 목적하는 물성을 더욱 효과적으로 제어할 수 있다.
또한, 상기 PHA 수지의 유리 전이 온도(Tg)는 -45℃ 내지 80℃, -35℃ 내지 80℃, -30℃ 내지 80℃, -25℃ 내지 75℃, -20℃ 내지 70℃, -35℃ 내지 5℃, -25℃ 내지 5℃, -35℃ 내지 0℃, -25℃ 내지 0℃, -30℃ 내지 -10℃, -35℃ 내지 -15℃, -35℃ 내지 -20℃, -20℃ 내지 0℃, -15℃ 내지 0℃ 또는 -15℃ 내지 -5℃일 수 있다.
상기 PHA 수지의 결정화 온도(Tc)는 측정되지 않거나, 60℃ 내지 120℃, 60℃ 내지 110℃, 70℃ 내지 120℃, 75℃ 내지 120℃, 75℃ 내지 115℃, 75℃ 내지 110℃ 또는 90℃ 내지 110℃일 수 있다.
또한, 상기 PHA 수지의 용융 온도(Tm)는 측정되지 않거나, 100℃ 내지 170℃, 105℃ 내지 170℃, 105℃ 내지 165℃, 110℃ 내지 160℃, 115℃ 내지 155℃, 110℃ 내지 150℃, 120℃ 내지 150℃ 또는 120℃ 내지 140℃일 수 있다.
상기 PHA 수지의 냉결정화 온도(Tcc)는 측정되지 않거나, 30℃ 내지 125℃, 40℃ 내지 115℃ 또는 50℃ 내지 105℃일 수 있다.
상기 PHA 수지는 열중량분석기(TGA)로 측정된 분해 온도(Td, 5%의 중량 감소) 220℃ 내지 280℃, 245℃ 내지 275℃, 255℃ 내지 270℃ 또는 260℃ 내지 270℃일 수 있다.
본 명세서에 있어서, 상기 분해 온도(Td)는 열중량분석기(TGA)를 이용하여 측정될 수 있다. 구체적으로, 상기 분해 온도(Td)는 열중량분석기(TGA)를 이용하여 10℃/min의 속도로 상온에서 600℃까지 승온하면서 얻은 중량 변화 곡선으로부터 상기 PHA 수지의 5%의 중량이 감소했을 때의 온도를 분해 온도(Td)로 확인할 수 있다.
또한, 상기 PHA 수지의 중량평균분자량은 10,000 g/mol 내지 1,200,000 g/mol일 수 있다. 예를 들어, 상기 PHA의 중량평균분자량은 50,000 g/mol 내지 1,200,000 g/mol, 100,000 g/mol 내지 1,000,000 g/mol, 200,000 g/mol 내지 1,200,000 g/mol, 250,000 g/mol 내지 1,150,000 g/mol, 300,000 g/mol 내지 1,100,000 g/mol, 350,000 g/mol 내지 950,000 g/mol, 100,000 g/mol 내지 900,000 g/mol, 200,000 g/mol 내지 800,000 g/mol, 250,000 g/mol 내지 650,000 g/mol, 200,000 g/mol 내지 400,000 g/mol, 300,000 g/mol 내지 600,000 g/mol, 500,000 g/mol 내지 1,200,000 g/mol, 500,000 g/mol 내지 1,000,000 g/mol 550,000 g/mol 내지 1,050,000 g/mol, 550,000 g/mol 내지 900,000 g/mol, 600,000 g/mol 내지 900,000 g/mol 또는 500,000 g/mol 내지 900,000 g/mol일 수 있다.
시차 주사 열용량 분석법(DSC, Differential Scanning Calorimeter)에 의해 측정된 상기 PHA 수지의 결정화도는 90% 이하일 수 있다. 예를 들어, 상기 PHA 수지의 결정화도는 시차 주사 열용량 분석법에 의해 측정된 것일 수 있고, 90% 이하, 85% 이하, 80% 이하, 75% 이하 또는 70% 이하일 수 있다.
또한, 상기 PHA 수지의 평균 입자 크기는 0.5 ㎛ 내지 5 ㎛일 수 있다. 예를 들어, 상기 PHA 수지의 평균 입자 크기는 0.7 ㎛ 내지 4.6 ㎛, 1.1 ㎛ 내지 4.5 ㎛, 1.5 ㎛ 내지 4.3 ㎛, 2.2 ㎛ 내지 4.2 ㎛, 2.6 ㎛ 내지 4.0 ㎛, 2.8 ㎛ 내지 3.9 ㎛ 또는 3.1 ㎛ 내지 3.8 ㎛일 수 있다.
상기 PHA 수지의 평균 입자 크기는 나노입도분석기(ex. Zetasizer Nano ZS)로 측정될 수 있다. 구체적으로, 상기 PHA에 대하여, Zetasizer Nano ZS(제조사: Marven)를 이용하여 25℃의 온도 및 175°의 측정앵글각도에서 동적 광산란(DLS)의 원리를 통해 평균 입자 크기를 측정하였다. 이때, 0.5의 신뢰구간에서의 다분산지수(polydispersity index, PDI)를 통해 도출된 피크(peak)의 값을 입자 크기로 측정하였다.
상기 PHA 수지의 다분산지수(polydispersity index, PDI)가 2.5 미만일 수 있다. 예를 들어, 상기 PHA 수지의 다분산지수는 2.4 이하, 2.3 이하, 2.1 이하 또는 2.0 이하일 수 있다.
또한, 상기 PHA 수지는 비기계적인 방법 또는 화학적인 방법을 이용한 세포 파쇄(cell disruption)에 의해 수득된 것일 수 있다. 구체적으로, 상기 PHA 수지는 미생물 세포 내에 축적되는 열가소성의 천연 폴리에스터 고분자로서 평균 입자 크기가 비교적 큰 편이므로, 목적하는 물질의 수율이나 물성을 더욱 효과적으로 제어하고 공정 효율을 향상시키기 위해서 파쇄하는 공정을 통해 수득된 것일 수 있다.
상기 생분해성 수지 조성물은 상기 생분해성 수지 조성물 총 중량을 기준으로 상기 PHA 수지를 15 중량% 이상으로 포함할 수 있다. 예를 들어, 상기 PHA 수지의 함량은 상기 생분해성 수지 조성물 총 중량을 기준으로 20 중량% 이상, 30 중량% 이상, 35 중량% 이상, 40 중량% 이상, 50 중량% 이상, 65 중량% 이상, 70 중량% 이상, 85 중량% 이상 또는 90 중량% 이상으로 포함할 수 있다.
본 발명의 일 실시예에 따른 생분해성 수지 조성물은 유동화제를 포함한다.
구체적으로, 상기 유동화제가 폴리스티렌계, 폴리스티렌계, 폴리아크릴레이트계 및 폴리스티렌-아크릴레이트계 중합체로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 상기 유동화제가 폴리스티렌계를 포함하는 경우, 점도 특성을 더욱 효율적으로 제어할 수 있는 것은 물론, 가공시 압출기의 토크를 저하시키거나 압력을 저하시킬 수 있어 생산성 및 가공성을 향상시킬 수 있는 점에서 바람직할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 유동화제는 비중이 0.7 내지 1.8일 수 있다. 예를 들어, 상기 유동화제의 비중은 0.75 내지 1.5, 0.8 내지 1.35 또는 0.95 내지 1.2일 수 있다.
상기 유동화제는 중량평균분자량이 1,500 g/mol 내지 8,000 g/mol일 수 있다. 예를 들어, 상기 유동화제의 중량평균분자량은 1,600 g/mol 내지 7,000 g/mol, 1,700 g/mol 내지 5,000 g/mol, 1,900 g/mol 내지 3,500 g/mol 또는 2,100 g/mol 내지 3,200 g/mol 일 수 있다.
또한, 상기 유동화제는 시차주사열량계(DSC)로 측정된 유리 전이 온도(Tg)가 40℃ 이상일 수 있다. 예를 들어, 상기 유동화제는 시차주사열량계(DSC)로 측정된 유리 전이 온도(Tg)가 42℃ 이상, 45℃ 이상, 50℃ 이상, 53℃ 이상, 55℃ 이상 또는 58℃ 이상일 수 있다.
상기 유동화제는 ASTM D1238에 따라 130℃ 및 12 kg 하에서 측정된 용융흐름지수가 1,800 g/10min 이상일 수 있다. 예를 들어, 상기 유동화제는 ASTM D1238에 따라 130℃ 및 12 kg 하에서 측정된 용융흐름지수가 2,100 g/10min 이상, 2,400 g/10min 이상, 2,600 g/10min 이상 2,800 g/10min 이상, 3,000 g/10min 이상, 3,500 g/10min 이상 또는 4,500 g/10min 이상일 수 있다.
상기 생분해성 수지 조성물은 상기 유동화제를 0.1 phr 내지 20 phr로 포함할 수 있다. 예를 들어, 상기 유동화제의 함량은 0.2 phr 내지 15 phr, 0.3 phr 내지 10 phr, 0.5 phr 내지 8 phr, 0.8 phr 내지 6 phr, 0.9 phr 내지 4 phr, 0.95 phr 내지 3 phr, 0.1 phr 내지 10 phr, 0.1 phr 내지 5 phr 또는 0.1 phr 내지 2.5 phr일 수 있다. 상기 유동화제가 상기 함량 범위를 만족함으로써, 본 발명에서 목적하는 효과를 달성하는 데에 더욱 유리할 수 있다.
한편, 본 발명의 또 다른 일 실시예에 따르면, 상기 생분해성 수지 조성물이 폴리부틸렌아디페이트 테레프탈레이트(PBAT), 폴리락트산(PLA), 폴리부틸렌숙시네이트(PBS), 폴리부틸렌아디페이트(PBA), 폴리부틸렌숙시네이트-아디페이트(PBSA), 폴리부틸렌숙시네이트-테레프탈레이트(PBST), 폴리히드록시부틸레이트-발레레이트(PHBV), 폴리카프로락톤(PCL), 폴리부틸렌 숙시네이트 아디페이트 테레프탈레이트(PBSAT) 및 열가소성 전분(TPS)으로 이루어진 군으로부터 선택된 1종 이상의 생분해성 수지를 포함할 수 있다.
상기 PHA 수지와 함께 상기 생분해성 수지를 포함함으로써, 상기 생분해성 수지 조성물은 분산성, 가공성 및 생산성을 더욱 향상시킬 수 있다.
상기 생분해성 수지 조성물은 상기 생분해성 수지 조성물 총 중량을 기준으로 상기 생분해성 수지를 90 중량% 미만으로 포함할 수 있다. 예를 들어, 상기 생분해성 수지의 함량은 상기 생분해성 수지 조성물 총 중량을 기준으로 85 중량% 이하, 80 중량% 이하, 70 중량% 이하, 60 중량% 이하, 45 중량% 이하 또는 35 중량% 이하로 포함할 수 있다. 구체적으로, 상기 생분해성 수지의 함량은 35 중량% 내지 80 중량%, 45 중량% 내지 75 중량% 또는 50 중량% 내지 70 중량%일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 또 다른 일 실시예에 따르면, 상기 PHA 및 상기 생분해성 수지의 중량비는 1 : 99 내지 99 : 1일 수 있다. 예를 들어, 상기 PHA 수지 및 상기 생분해성 수지의 중량비는 5 : 95 내지 99 : 5, 10 : 90 내지 90 : 10, 15 : 90 내지 60 : 40, 5 : 95 내지 45 : 55, 10 : 90 내지 40 : 60, 15 : 85 내지 35 : 65 또는 20 : 80 내지 30 : 70일 수 있다. PHA 및 생분해성 수지의 중량비가 상기 범위를 만족함으로써, 생분해성이 저하되지 않으면서 생산성 및 가공성을 향상시킬 수 있다.
구체적으로, 상기 생분해성 수지는 폴리락트산(PLA) 수지일 수 있다.
더욱 구체적으로, 상기 PHA 수지 및 상기 PLA 수지의 중량비는 10 : 90 내지 70 : 30일 수 있다. 예를 들어, 상기 PHA 수지 및 상기 PLA 수지의 중량비는 10 : 90 내지 65 : 35, 15 : 85 내지 55 : 45, 15 : 85 내지 50 : 50 또는 20 : 80 내지 30 : 70일 수 있다. PHA 수지 및 PLA 수지의 중량비가 상기 범위를 만족함으로써, 생분해성이 저하되지 않으면서 생산성 및 가공성을 더욱 향상시킬 수 있다.
한편, 본 발명의 또 다른 일 실시예에 따르면, 상기 생분해성 수지 조성물은 안료, 색소흡수제, 광흡수제, 산화방지제, 상용화제, 중량제, 기핵제, 용융강도 증강제 및 슬립제로 구성된 군으로부터 선택된 1종 이상의 첨가제를 추가로 포함할 수 있다.
상기 안료는 무기 입자, 카본블랙, 및 코발트그린으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 상기 무기 입자는 Cu 등과 같은 금속, 금속 산화물, 준금속 산화물, 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 안료의 함량은 0.01 phr 내지 20 phr, 0.01 phr 내지 15 phr, 0.01 phr 내지 12 phr, 0.01 phr 내지 10 phr, 0.01 phr 내지 8 phr, 0.01 phr 내지 5 phr, 0.2 phr 내지 4.5 phr, 0.2 phr 내지 4 phr 또는 0.5 phr 내지 3 phr일 수 있다.
상기 산화방지제는 오존이나 산소에 분해되는 것을 방지하거나 보관 시 산화를 방지하고, 물성 저하를 방지하기 위한 첨가제로서, 본 발명의 효과를 저해하지 않는 한, 통상적으로 사용되는 산화방지제를 사용할 수 있다.
구체적으로, 상기 산화 방지제는 힌더드 페놀계 산화 방지제 및 포스파이트계(인계) 산화 방지제로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 힌더드 페놀계 산화 방지제는, 예를 들어 4,4'-메틸렌-비스(2,6-디-t-부틸페놀), 옥타데실-3-(3,5-디-t-부틸-4-히드록시페닐)프로피오네이트, 펜타에리트리톨 테트라키스[3-(3,5-디-t-부틸-4-히드록시페닐)프로피오네이트), 3,9-비스[2-[3-(3-tert-부틸-4-히드록시-5-메틸페닐)프로피오닐옥시]-1,1-디메틸에틸]-2,4,8,10-테트라옥사스피로[5.5]운데칸으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 포스파이트계(인계) 산화 방지제는, 예를 들어 트리스-(2,4-디-t-부틸페닐)포스파이트, 비스-(2,4-디-t-부틸페닐)펜타에리트리톨-디포스파이트, 비스-(2,6-디-t-부틸-4-메틸페닐)펜타에리트리톨-디포스파이트, 디스테아릴-펜타에리트리톨-디포스파이트, [비스(2,4-디-t-부틸-5-메틸페녹시)포스피노]비페닐, 및 N,N-비스[2-[[2,4,8,10-테트라키스(1,1-디메틸에틸)디벤조[d,f][1,3,2]디옥시포스페핀-6-일]옥시]-에틸]에탄아민으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 산화방지제의 함량은 0.01 phr 내지 20 phr, 0.01 phr 내지 15 phr, 0.01 phr 내지 12 phr, 0.01 phr 내지 10 phr, 0.01 phr 내지 8 phr, 0.01 phr 내지 5 phr, 0.2 phr 내지 4.5 phr, 0.2 phr 내지 4 phr 또는 0.5 phr 내지 3 phr일 수 있다. 상기 산화방지제가 상기 함량 범위를 만족함으로써, 물성을 향상시킬 수 있고, 본 발명에서 목적하는 효과를 달성하는 데에 더욱 유리할 수 있다.
상기 상용화제(compatibilizer)는 상기 생분해성 수지 및/또는 상기 PHA 수지의 이형성을 제거하여 상용성을 부여하기 위한 첨가제로서, 본 발명의 효과를 저해하지 않는 한, 통상적으로 사용되는 상용화제를 사용할 수 있다.
구체적으로, 상기 상용화제는 폴리비닐아세테이트(PVAc)계, 이소시아네이트계, 폴리프로필렌카보네이트계, 글리시딜메타크릴레이트, 에틸렌비닐알콜, 폴리비닐알코올(PVA), 에틸렌비닐아세테이트, 무수말레인산, 및 글리세린 스테아레이트로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 상용화제의 함량은 0.01 phr 내지 20 phr, 0.01 phr 내지 15 phr, 0.01 phr 내지 12 phr, 0.01 phr 내지 10 phr, 0.01 phr 내지 8 phr, 0.01 phr 내지 5 phr, 0.2 phr 내지 4.5 phr, 0.2 phr 내지 4 phr 또는 0.5 phr 내지 3 phr일 수 있다. 상기 상용화제가 상기 함량 범위를 만족함으로써, 사용되는 수지 간의 상용성을 증가시켜 물성을 향상시킬 수 있고, 본 발명에서 목적하는 효과를 달성하는 데에 더욱 유리할 수 있다.
상기 중량제는 무기물로서, 성형 과정에서 결정화 속도를 빠르게 하여 성형성을 증가시키고, 합성수지에 비해 높은 생분해성 특성을 갖는 수지들의 사용으로 인한 원가 상승의 문제를 줄이기 위해 첨가되는 첨가제로서, 본 발명의 효과를 저해하지 않는 한, 통상적으로 사용되는 무기물을 사용할 수 있다.
상기 중량제는 아연, 칼슘 등과 같은 무기물, 스테아르산, 경질 또는 중질 탄산칼슘, 실리카, 탈크, 카올린, 황산바륨, 클레이, 산화칼슘, 수산화마그네슘, 산화티탄, 카본블랙 및 유리섬유로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 중량제의 평균 입도는 0.5 ㎛ 내지 5 ㎛일 수 있다. 예를 들어, 상기 중량제의 평균 입도는 0.5 ㎛ 내지 4.8 ㎛, 0.5 ㎛ 내지 4.5 ㎛ 또는 0.7 ㎛ 내지 4 ㎛일 수 있다. 상기 중량제의 평균 입도가 0.5 ㎛ 미만이면 입자의 분산이 곤란해지며, 5 ㎛를 초과하면 입자의 크기가 지나치게 커져, 본 발명의 효과를 저해할 수 있다.
상기 중량제의 함량은 0.01 phr 내지 20 phr, 0.01 phr 내지 15 phr, 0.01 phr 내지 12 phr, 0.01 phr 내지 10 phr, 0.01 phr 내지 8 phr, 0.01 phr 내지 5 phr, 0.2 phr 내지 4.5 phr, 0.2 phr 내지 4 phr 또는 0.5 phr 내지 3 phr일 수 있다. 상기 중량제가 상기 함량 범위를 만족함으로써, 본 발명에서 목적하는 효과를 달성하는 데에 더욱 유리할 수 있다.
상기 기핵제는 중합체의 용융물이 냉각될 때 중합체의 결정화 형태를 보조하거나 변화시키고 결정화(고화) 속도를 향상시키기 위한 첨가제이다. 특히, 본 발명에서 사용되는 PHA 수지는 결정화 속도가 낮기 때문에, 공정 중에 충분한 결정화가 이루어지지 않아 공정이 용이하지 않을 수 있다. 이러한 문제를 해결하기 위해, 상기 기핵제를 사용하는 경우 결정화 속도를 향상시켜 가공, 성형성 및 생산성을 더욱 향상시킬 수 있고, 본 발명에서 목적하는 물성을 효율적으로 달성할 수 있다.
상기 기핵제는 본 발명의 효과를 저해하지 않는 한, 통상적으로 사용되는 기핵제를 사용할 수 있다. 구체적으로, 상기 기핵제는, 예를 들어 홑원소 물질(순물질)이나 복합 산화물을 포함하는 금속 화합물, 금속 카복실레이트기를 가진 저분자 유기 화합물, 금속 카복실레이트기를 가진 중합체 유기화합물, 중합체 유기화합물, 인산 또는 아인산이나 이의 금속염, 소르비톨 유도체, 무수 티오글리콜산, 및 p-톨루엔술폰산이나 이의 금속염 등을 포함할 수 있다. 상기 기핵제는 단독으로 또는 서로 조합되어 사용될 수 있다.
상기 홑원소 물질(순물질)이나 복합 산화물을 포함하는 금속 화합물은, 예를 들어 카본블랙, 탄산칼슘, 합성규산 및 이의 염, 실리카, 아연 화이트(zinc white), 점토, 고령토, 염기성 탄산마그네슘, 미카, 탈크, 석영분말, 규조암(diatomite), 백운석(dolomite) 분말, 산화티타늄, 산화아연, 산화안티몬, 황산바륨, 황산칼슘, 알루미나, 규산칼슘, 및 유기인의 금속염 및 질화붕소로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 금속 카복실레이트기를 가진 저분자 유기 화합물은, 예를 들어 옥틸산, 톨루엔산, 헵탄산, 펠라르곤산(pelargonic acid), 라우르산, 미리스트산(myristic acid), 팔미틴산(palmitic acid), 스테아린산, 베헨산(behenic acid), 세로트산(cerotic acid), 몬타닌산(montanic acid), 멜리스산(melissic acid), 벤젠산, p-tert-부틸벤젠산, 테레프탈산, 테레프탈산 모노메틸 에스테르, 이소프탈산, 및 이소프탈산 모노메틸 에스테르 각각의 금속염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 금속 카복실레이트기를 가진 중합체 유기화합물은, 예를 들어 폴리에틸렌의 산화반응에 의해 수득되는 카복실기-함유 폴리에틸렌, 폴리프로필렌의 산화반응에 의해 수득되는 카복실기-함유 폴리프로필렌, 아크릴산 또는 메타크릴산과 올레핀(예컨대, 에틸렌, 프로필렌 및 부텐-1)의 공중합체, 아크릴산 또는 메타크릴산과 스티렌의 공중합체, 올레핀과 말레산 무수물의 공중합체, 및 스티렌과 말레산 무수물의 공중합체 각각의 금속염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 중합체 유기화합물은, 예를 들어 제 3 위치 탄소원자에 분기결합되며 5개 이상의 탄소원자를 갖는 알파-올레핀(예컨대, 3,3 디메틸부텐-1,3-메틸부텐-1,3-메틸펜텐-1,3-메틸헥센-1 및 3,5,5-트리메틸헥센-1), 비닐사이클로알칸의 중합체(예컨대, 비닐사이클로펜탄, 비닐사이클로헥산 및 비닐노르보난), 폴리알킬렌 글리콜(예컨대, 폴리에틸렌 글리콜 및 폴리프로필렌 글리콜), 폴리(글리콜산), 셀룰로오스, 셀룰로오스에스테르, 및 셀룰로오스 에테르로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 인산 또는 아인산 및 그의 금속염은, 예를 들어 디페닐 포스페이트, 디페닐 포스파이트(diphenyl phosphite), 비스(4-tert-부틸페닐)포스페이트의 금속염, 및 메틸렌 비스-(2,4-tert-부틸페닐)포스페이트로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 상기 소르비톨 유도체는, 예를 들어 비스(p-메틸벤질리덴) 소르비톨 및 비스(p-에틸벤질리덴) 소르비톨일 수 있다.
상기 기핵제의 함량은 0.01 phr 내지 20 phr, 0.01 phr 내지 15 phr, 0.01 phr 내지 12 phr, 0.01 phr 내지 10 phr, 0.01 phr 내지 8 phr, 0.01 phr 내지 5 phr, 0.2 phr 내지 4.5 phr, 0.2 phr 내지 4 phr 또는 0.5 phr 내지 3 phr일 수 있다. 상기 기핵제가 상기 함량 범위를 만족함으로써, 결정화 속도를 향상시켜 성형성을 향상시킬 수 있으며, 제조 공정에 있어서, 예를 들어 펠렛 제조를 위한 커팅 공정시 결정화 속도를 향상시켜 생산성 및 가공성을 더욱 향상시킬 수 있다.
상기 용융강도 증강제는 반응성의 용융 강도를 향상시키기 위한 첨가제로서, 본 발명의 효과를 저해하지 않는 한, 통상적으로 사용되는 용융강도 증강제를 사용할 수 있다.
구체적으로, 상기 용융강도 증강제는 폴리에스테르, 스티렌계 폴리머 (예컨대, 아크릴로니트릴 부타디엔 스티렌 및 폴리스티렌), 폴리실록산, 유기변성 실록산 폴리머, 폴리에스테르, 및 말레산 무수물 그라프팅된 에틸렌 프로필렌 디엔 모노머 (MAH-g-EPDM)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 용융강도 증강제의 함량은 0.01 phr 내지 20 phr, 0.01 phr 내지 15 phr, 0.01 phr 내지 12 phr, 0.01 phr 내지 10 phr, 0.01 phr 내지 8 phr, 0.01 phr 내지 5 phr, 0.2 phr 내지 4.5 phr, 0.2 phr 내지 4 phr 또는 0.5 phr 내지 3 phr일 수 있다. 상기 용융강도 증강제가 상기 함량 범위를 만족함으로써, 본 발명에서 목적하는 효과를 달성하는 데에 더욱 유리할 수 있다.
상기 슬립제는 압출 시 슬립성(미끄러움성)을 향상시키고, 섬유 표면끼리 달라붙는 현상을 방지하기 위한 첨가제이다. 구체적으로, 상기 슬립제는 본 발명의 효과를 저해하지 않는 한, 통상적으로 사용되는 슬립제를 사용할 수 있다. 예를 들어, 상기 슬립제는 에루카미드(Erucamide), 올리아미드(Oliamide) 및 스테아라미드(Stearamide)으로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다.
상기 슬립제의 함량은 0.01 phr 내지 20 phr, 0.01 phr 내지 15 phr, 0.01 phr 내지 12 phr, 0.01 phr 내지 10 phr, 0.01 phr 내지 8 phr, 0.01 phr 내지 5 phr, 0.2 phr 내지 4.5 phr, 0.2 phr 내지 4 phr 또는 0.5 phr 내지 3 phr로 추가로 포함될 수 있다. 상기 슬립제가 상기 함량 범위를 만족함으로써, 가공성, 생산성 및 성형성을 더욱 향상시킬 수 있고, 본 발명에서 목적하는 효과를 달성하는 데에 더욱 유리할 수 있다.
그밖에 첨가제로서, 상기 생분해성 수지 조성물은 가교제 및/또는 안정화제도 포함할 수 있다.
상기 가교제는 PHA 수지의 특성을 개질하고, 수지의 분자량을 증가시키기 위한 첨가제로서, 본 발명의 효과를 저해하지 않는 한, 통상적으로 사용되는 가교제를 사용할 수 있다.
예를 들어, 상기 가교제는 지방산 에스테르, 에폭시기를 함유한(에폭시화) 천연유래 오일, 디알릴프탈레이트, 펜타에리트리톨 테트라아크릴레이트, 트리메틸올프로판 트리아크릴레이트, 펜타에리트리톨 트리아크릴레이트, 디펜타에리트리톨 펜타아크릴레이트, 디에틸렌 글리콜 디메타크릴레이트, 및 비스(2-메트아크릴옥시에틸)포스페이트로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다.
상기 가교제의 함량은 0.01 phr 내지 20 phr, 0.01 phr 내지 15 phr, 0.01 phr 내지 12 phr, 0.01 phr 내지 10 phr, 0.01 phr 내지 8 phr, 0.01 phr 내지 5 phr, 0.2 phr 내지 4.5 phr, 0.2 phr 내지 4 phr 또는 0.5 phr 내지 3 phr일 수 있다.
상기 안정화제는 트리메틸포스페이트, 트리페닐포스페이트, 트리메틸포스핀, 인산 및 아인산으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 안정화제의 함량은 0.01 phr 내지 20 phr, 0.01 phr 내지 15 phr, 0.01 phr 내지 12 phr, 0.01 phr 내지 10 phr, 0.01 phr 내지 8 phr, 0.01 phr 내지 5 phr, 0.2 phr 내지 4.5 phr, 0.2 phr 내지 4 phr 또는 0.5 phr 내지 3 phr일 수 있다.
본 명세서에 있어서, 상기 첨가제들은 단량체, 중합체 또는 공중합체의 형태일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 또 다른 실시예에 따르면, 상기 생분해성 수지 조성물은 바이오매스(biomass)를 더 포함할 수 있다.
상기 생분해성 수지 조성물은 바이오매스를 포함함으로써, 생분해성 향상은 물론, 토양 개량 역할도 가능하다. 즉, 상기 바이오매스는 생분해성이 우수하고, 미분해 시 파쇄가 용이하며, 비료를 개선하고, 토양의 지력을 높이는 등 토양 개량 효과가 있다.
상기 바이오매스는 상기 생분해성 수지 조성물 총 중량을 기준으로, 5 내지 50 중량%로 포함될 수 있다. 구체적으로, 상기 바이오매스의 함량은 상기 생분해성 수지 조성물 총 중량을 기준으로 10 중량% 내지 48 중량%, 15 중량% 내지 48 중량%, 20 중량% 내지 45 중량%, 20 중량% 내지 43 중량% 또는 20 중량% 내지 40 중량%일 수 있다. 상기 바이오매스의 함량이 상기 범위를 만족함으로써, 생분해성이 더욱 향상되고 토양 개량 효과가 있으며, 상기 PHA 수지와의 가교 결합력이 좋아져 본 발명에서 목적하는 효과를 효율적으로 달성할 수 있다.
상기 생분해성 수지 조성물은 ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수가 5 g/10min 이상일 수 있다. 예를 들어, 상기 생분해성 수지 조성물은 ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수가 5 g/10min 이상, 6 g/10min 이상, 7 g/10min 이상 7.5 g/10min 이상, 8 g/10min 이상 또는 9 g/10min 이상일 수 있고, 5 g/10min 내지 30 g/10min, 6 g/10min 내지 20 g/10min, 7 g/10min 내지 15 g/10min, 7.5 g/10min 내지 10 g/10min 또는 7.5 g/10min 내지 9.5 g/10min일 수 있다.
또한, 상기 생분해성 수지 조성물은 ASTM D1238에 따라 210℃ 및 2.16 kg 하에서 측정된 용융흐름지수가 30 g/10min 이상일 수 있다. 예를 들어, 상기 생분해성 수지 조성물은 ASTM D1238에 따라 210℃ 및 2.16 kg 하에서 측정된 용융흐름지수가 45 g/10min 이상, 50 g/10min 이상, 53 g/10min 이상, 55 g/10min 이상, 59 g/10min 이상, 65 g/10min 이상, 80 g/10min 이상, 90 g/10min 이상 또는 100 g/10min 이상일 수 있다.
상기 생분해성 수지 조성물에 대하여 ASTM D1238에 따라 측정된 용융흐름지수는 상기 생분해성 수지 조성물을 이용하여 제조된 펠렛에 대하여 ASTM D1238에 따라 측정한 것일 수 있다.
구체적으로, 상기 용융흐름지수는 상기 생분해성 수지 조성물을 이축 스크류 압출기에 투입하고 혼합 및 용융압출하여 제조된 생분해성 펠렛에 대하여 ASTM D1238에 따라 측정된 것일 수 있다. 더욱 구체적으로, 상기 생분해성 펠렛은 이축 스크류 압출기의 스크류 회전 속도를 200 rpm으로 설정하고, 내부 온도를 50℃에서 170℃까지 승온하면서 상기 생분해성 수지 조성물을 혼합한 후, 12 bar의 압력 및 177℃의 온도에서 용융압출하고, 수중 절단기 시스템(Under-water Cutter system)을 이용하여 제조된 것일 수 있다.
상기 생분해성 수지 조성물의 중량평균분자량은 500,000 g/mol 이하일 수 있다. 예를 들어, 상기 생분해성 수지 조성물의 중량평균분자량은 450,000 g/mol 이하, 400,000 g/mol 이하 또는 350,000 g/mol 이하일 수 있다.
상기 생분해성 수지 조성물은 시차주사열량계(DSC)로 측정된 유리 전이 온도(Tg)가 -35℃ 내지 15℃, -25℃ 내지 5℃, -20℃ 내지 1℃ 또는 -18℃ 내지 -5℃일 수 있고, 용융 온도(Tm)가 105℃ 내지 200℃, 106℃ 내지 195℃, 110℃ 내지 180℃ 또는 113℃ 내지 173℃일 수 있으며, 결정화 온도(Tc)가 측정되지 않거나, 50℃ 내지 120℃, 65℃ 내지 100℃ 또는 75℃ 내지 95℃일 수 있고, 냉결정화 온도(Tcc)는 측정되지 않거나, 30℃ 내지 120℃, 40℃ 내지 110℃ 또는 50℃ 내지 100℃일 수 있다.
또한, 상기 생분해성 수지 조성물은 열중량분석기(TGA)로 측정된 분해 온도(Td, 5%의 중량 감소)가 220℃ 이상, 230℃ 이상, 240℃이상, 250℃ 이상 또는 260℃이상일 수 있고, 220℃ 내지 275℃, 235℃ 내지 273℃, 240℃ 내지 300℃, 245℃ 내지 285℃, 255℃ 내지 280℃, 260℃ 내지 275℃ 또는 263℃ 내지 270℃일 수 있다.
생분해성 부직포
본 발명의 또 다른 실시예에 따른 생분해성 부직포는 생분해성 섬유를 포함하고, 상기 생분해성 섬유가 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지; 및 유동화제를 포함한다.
상기 생분해성 부직포는 생분해성 섬유의 집합체일 수 있으며, 상기 PHA 및 상기 유동화제에 대한 설명은 전술한 바와 같다.
구체적으로, 상기 생분해성 섬유의 평균 길이는 100 mm 이하일 수 있다. 예를 들어, 상기 생분해성 섬유는 단섬유일 수 있고, 섬유의 평균 길이가 85 mm 이하, 70 mm 이하, 60 mm 이하, 55 mm 이하, 45 mm 이하, 35 mm 이하 또는 20 mm 이하일 수 있다.
또한, 상기 생분해성 섬유의 평균 직경은 1 ㎛ 내지 100 ㎛일 수 있다. 예를 들어, 상기 생분해성 섬유의 평균 직경은 5 ㎛ 내지 95 ㎛, 10 ㎛ 내지 80 ㎛, 15 ㎛ 내지 65 ㎛ 또는 20 ㎛ 내지 50 ㎛일 수 있다.
상기 생분해성 섬유의 섬도는 100 denier 이하일 수 있다. 예를 들어, 상기 생분해성 부직포를 구성하는 생분해성 섬유 1 필라(fila)의 섬도는 0.1 denier 내지 100 denier, 0.5 denier 내지 100 denier, 1 내지 100 denier, 5 denier 내지 95 denier, 10 내지 90 denier, 10 내지 80 denier, 20 내지 70 denier 또는 30 내지 60 denier 일 수 있다.
상기 생분해성 섬유의 신도가 10% 이상, 12% 이상, 15% 이상, 20% 이상, 25% 이상, 32% 이상, 35% 이상, 40% 이상, 45% 이상, 50% 이상 또는 60% 이상일 수 있고, 1,000% 이하, 850% 이하, 650% 이하, 500% 이하, 350% 이하, 200% 이하, 130% 이하, 90% 이하, 80% 이하 또는 75% 이하일 수 있다.
상기 생분해성 섬유의 중량평균분자량은 300,000 g/mol 이상 또는 500,000 g/mol 이상일 수 있고, 10,000 g/mol 내지 5,000,000 g/mol, 20,000 g/mol 내지 4,000,000 g/mol 또는 50,000 g/mol 내지 3,000,000 g/mol일 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 생분해성 부직포는 스펀본드 공정에 의해 제조된 것일 수 있다. 구체적으로, 상기 생분해성 부직포는 생분해성 스펀본드 부직포일 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 생분해성 부직포는 생분해성 수지 조성물을 이용하여 제조될 수 있고, 상기 생분해성 수지 조성물은 ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수(MFI, Melt Flow Index)가 5 g/10min 이상일 수 있다.
상기 생분해성 수지 조성물에 대한 설명은 전술한 바와 같다.
본 발명의 다른 실시예에 따르면, 상기 생분해성 부직포는 상기 생분해성 수지 조성물을 이용하여 제조된 생분해성 단섬유 부직포일 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 생분해성 섬유는 이형단면 복합섬유 이거나 이성분계 이상 또는 삼성분계 이상의 복합섬유일 수 있다.
상기 이형단면 복합섬유는 단면의 형상이 원형, 타원형 또는 다각형일 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 생분해성 섬유는 코어부 및 시스부를 포함하는 시스-코어형(sheath-core type), 사이드 바이 사이드형(side by side type), 해도형(sea-islands type) 또는 분할형(segmented-pie type)일 수 있다.
상기 시스-코어형은 코어부와 시스부의 단면이 서로 상이한 형태일 수 있다. 예를 들어, 상기 코어부의 단면은 원형일 수 있고, 상기 시스부의 단면은 도넛 형태일 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 생분해성 섬유는 상기 시스부와 상기 코어부에 각각 서로 다른 단일 성분의 수지를 포함하는 이성분계 복합섬유일 수 있고, 상기 시스부에 단일 성분의 수지를 포함하고, 상기 코어부에 이성분 이상의 수지를 포함하는 삼성분계 이상의 복합섬유이거나 상기 코어부에 단일 성분의 수지를 포함하고, 상기 시스부에 이성분 이상의 수지를 포함하는 삼성분계 이상의 복합섬유일 수 있다. 또한, 상기 생분해성 섬유는 상기 시스부와 상기 코어부에 각각 이성분 이상의 수지를 포함하는 복함섬유일 수 있다.
예를 들어, 상기 코어부는 상기 PHA 수지를 포함할 수 있고, 상기 시스부는 생분해성 수지를 포함할 수 있다. 예를 들어, 상기 생분해성 수지는 폴리부틸렌아디페이트 테레프탈레이트(PBAT), 폴리락트산(PLA), 폴리부틸렌숙시네이트(PBS), 폴리부틸렌아디페이트(PBA), 폴리부틸렌숙시네이트-아디페이트(PBSA), 폴리부틸렌숙시네이트-테레프탈레이트(PBST), 폴리히드록시부틸레이트-발레레이트(PHBV), 폴리카프로락톤(PCL), 폴리부틸렌 숙시네이트 아디페이트 테레프탈레이트(PBSAT), 폴리부틸렌에틸렌 아디페이트 숙시네이트(PBEAS), 폴리부틸렌에틸렌 숙시네이트(PBES) 및 열가소성 전분(TPS)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 코어부 및 상기 시스부의 중량비는 5 : 95 내지 95 : 5일 수 있다. 예를 들어, 상기 코어부 및 상기 시스부의 중량비는 5 : 95 내지 85 : 15, 7 : 93 내지 80 : 20, 10 : 90 내지 75 : 25 또는 10 : 90 내지 70 : 30일 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 생분해성 부직포는 정전처리된 것일 수 있다.
정전처리는 부직포에 정전을 부여하여 포집 능력을 향상시킬 수 있는 방법으로서, 상기 부직포가 정전처리된 경우, 이를 구성하는 섬유는 내부에 강제적으로 전하를 가지게 되고 이에 따라 분극된 전하를 갖는 섬유로 이루어진 부직포는 전하를 띠는 미세 입자를 용이하게 포집할 수 있다.
상기 정전 처리 공정은 코로나 방전, 플라즈마 대전, 마찰 대전, 고압의 물방울을 통한 수 대전 방식을 이용하여 수행될 수 있으나, 이에 한정되는 것은 아니다.
또한, 정전 효과를 극대화시키기 위해서 대전제를 더 포함할 수 있으며, 상기 대전제는 힌더드 아민계 대전제일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 또 다른 일 실시예에 따르면, 상기 생분해성 부직포의 적어도 일면에 기능성 코팅층을 추가로 포함할 수 있다.
예를 들어, 상기 기능성 코팅층은 하드코팅층 또는 항균코팅층일 수 있고, 상기 기능성 코팅층과 상기 생분해성 부직포 사이에 접착층이 있을 수 있다.
또한, 상기 생분해성 부직포는 적어도 일면이 이온 또는 전기를 이용하여 표면 처리된 것일 수 있다. 예를 들어, 상기 표면 처리는 이온 코팅, 이온 콜렉팅, 전기 코팅 또는 전압 코팅으로 수행될 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 생분해성 부직포는 소취제, 항균제, 무기 필러 및 윤활제로 이루어진 군으로부터 선택된 1종 이상의 첨가제를 더 포함할 수 있다.
상기 소취제는, 예를 들어 이산화티타늄(TiO2), 산화아연(ZnO), 산화주석(SnO2), 지르코늄디옥사이드(ZrO) 및 스트론튬티탄산염(SrTiO3)으로 이루어진 군으로부터 선택된 1종 이상의 금속 산화물일 수 있으나, 이에 한정되는 것은 아니다.
상기 소취제는 상기 생분해성 부직포의 총 중량을 기준으로 0.01 중량% 내지 20 중량%로 포함될 수 있다. 예를 들어, 상기 소취제는 상기 생분해성 부직포의 총 중량을 기준으로 0.01 중량% 내지 20 중량%, 0.05 중량% 내지 15 중량% 또는 0.1 중량% 내지 10 중량%로 포함될 수 있다.
상기 항균제는 은나노, 나노구리, 나노아연 및 제올라이트계 항균제로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 항균제는 상기 생분해성 부직포의 총 중량을 기준으로 0.01 중량% 내지 20 중량%로 포함될 수 있다. 예를 들어, 상기 항균제는 상기 생분해성 부직포의 총 중량을 기준으로 0.01 중량% 내지 20 중량%, 0.05 중량% 내지 15 중량% 또는 0.1 중량% 내지 10 중량%로 포함될 수 있다.
상기 무기 필러는 탈크, 산화바륨, 탄산칼슘, 탄산마그네슘, 탄산아연, 산화아연, 산화마그네슘, 알루미나 및 실리카로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 무기 필러의 평균 입경은 0.01 ㎛ 내지 2.0 ㎛일 수 있다. 예를 들어, 상기 무기 필러의 평균 입경은 0.01 ㎛ 내지 2.0 ㎛, 0.05 ㎛ 내지 2.0 ㎛ 또는 0.05 ㎛ 내지 1.5 ㎛일 수 있다.
상기 무기 필러는 상기 생분해성 부직포의 총 중량을 기준으로 0.01 중량% 내지 20 중량%로 포함될 수 있다. 예를 들어, 상기 무기 필러는 상기 생분해성 부직포의 총 중량을 기준으로 0.01 중량% 내지 20 중량%, 0.05 중량% 내지 15 중량% 또는 0.1 중량% 내지 10 중량%로 포함될 수 있다.
상기 윤활제는 지방산 에스테르, 특정적으로 글리세린 지방산 에스테르, 솔비탄 지방산 에스테르, 피리독신 지방산 에스테르 또는 이들로부터 선택된 적어도 하나 이상의 혼합물일 수 있으나, 이에 한정되는 것은 아니다.
상기 윤활제는 상기 생분해성 부직포의 총 중량을 기준으로 0.01 중량% 내지 20 중량%로 포함될 수 있다. 예를 들어, 상기 윤활제는 상기 생분해성 부직포의 총 중량을 기준으로 0.01 중량% 내지 20 중량%, 0.05 중량% 내지 15 중량% 또는 0.1 중량% 내지 10 중량%로 포함될 수 있다.
생분해성 부직포의 제조 방법
본 발명의 또 다른 실시예에 따른 생분해성 부직포의 제조 방법은 생분해성 수지 조성물 또는 이를 용융압출하여 제조된 펠렛을 용융방사하는 단계를 포함하고, 상기 생분해성 수지 조성물이 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지, 및 유동화제를 포함하고, ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수(MFI, Melt Flow Index)가 5 g/10min 이상이다.
상기 생분해성 수지 조성물에 대한 설명은 전술한 바와 같다.
구체적으로, 본 발명의 또 다른 실시예에 따른 생분해성 부직포의 제조 방법은 상기 생분해성 수지 조성물을 직접 기기에 투입하여 용융방사하거나, 상기 생분해성 수지 조성물을 용융압출하여 제조된 펠렛을 기기에 투입하여 용융방사하여 생분해성 부직포를 제조할 수 있다.
더욱 구체적으로, 상기 생분해성 수지 조성물을 직접 기기에 투입하여 용융방사하거나, 상기 펠렛을 압출하여 노즐을 통해 용융방사하고, 이를 냉각시킨 후, 롤러로 권취하여 생분해성 부직포를 제조할 수 있다. 이때, 상기 공정은 이젝터를 활용하여 수행되는 스펀본드 용융방사 장치를 이용하여 수행되거나, 저속 또는 고속의 단섬유 방사기기를 이용하여 수행될 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 용융방사 장치는 용융 구간, 필터를 포함하고 있는 노즐 구간, 노즐 홀과 권취 롤러 사이의 드래프트 구간 및 권취 구간을 포함할 수 있다. 상기 용융방사 장치의 용융 온도, 노즐 홀의 직경, 노즐 홀의 길이, 노즐 홀의 길이와 직경의 비, 노즐의 내부 필터의 크기, 노즐을 통해 토출되는 토출량, 드래프트 구간의 길이, 방사 속도, 냉각 온도, 권취 속도 등을 조절함으로써 원하는 물성을 갖는 생분해성 섬유를 제조할 수 있다.
상기 생분해성 수지 조성물 또는 펠렛은 150℃ 내지 230℃, 170℃ 내지 210℃ 또는 190℃ 내지 200℃의 온도에서 용융방사될 수 있다.
또한, 상기 방사하는 속도는 10 mpm 내지 5,000 mpm일 수 있다. 예를 들어, 스펀본드 부직포의 경우 1,000 mpm 내지 5,000 mpm, 1,200 mpm 내지 4,500 mpm 또는 1,500 mpm 내지 4,000 mpm의 방사 속도로 수행될 수 있고, 단섬유 부직포의 경우 10 mpm 내지 200 mpm, 15 mpm 내지 180 mpm 또는 20 mpm 내지 160 mpm의 저속, 또는 500 mpm 내지 2,000 mpm, 600 mpm 내지 1,950 mpm 또는 650 mpm 내지 1,700 mpm의 고속에서 수행될 수 있다.
상기 방사하는 단계는 상기 제조되는 생분해성 부직포의 평량을 10 gsm 내지 500 gsm으로 조절하여 수행될 수 있다. 예를 들어, 상기 방사 또는 용융방사하는 단계는 상기 제조되는 생분해성 부직포의 평량을 12 gsm 내지 450 gsm, 15 gsm 내지 400 gsm, 20 gsm 내지 350 gsm, 20 gsm 내지 250 gsm, 25 gsm 내지 200 gsm, 25 gsm 내지 150 gsm, 25 gsm 내지 100 gsm 또는 25 gsm 내지 50 gsm으로 조절하여 수행될 수 있다.
또한, 상기 용융방사 이후에 연신을 추가로 수행할 수 있다. 구체적으로, 상기 연신은 단섬유 부직포를 제조하는 경우 추가로 수행될 수 있으며, 1.1배 이상의 연신비로 냉연신 또는 열연신으로 수행될 수 있다. 예를 들어, 상기 연신은 1.1배 이상, 2.5배 이상, 3.5배 이상, 5배 이상, 5.5배 이상, 6배 이상, 6.5배 이상 또는 7배 이상의 연신비로 수행될 수 있다.
상기 방사 단계 이후에 연신 공정을 추가로 수행함으로써, 생분해성 단섬유 부직포의 섬유의 직경이나 길이를 더욱 효과적으로 제어할 수 있다. 구체적으로 상기 방사 또는 용융방사 단계만으로 생분해성 섬유의 길이나 직경 등을 제어하는 경우, 생산성 및 가공성이 저하될 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 생분해성 수지 조성물을 150℃ 내지 200℃에서 용융압출하여 펠렛을 제조하는 단계를 추가로 포함할 수 있다.
구체적으로, 상기 용융 압출은 6 bar 내지 30 bar의 압력 및 150℃ 내지 200℃의 온도에서 수행될 수 있다. 예를 들어, 상기 용융 압출은 일축 스크류 압출기 또는 이축 스크류 압출기를 이용하여 7 bar 내지 28 bar 또는 8 bar 내지 26 bar의 압력 및 155℃ 내지 190℃ 또는 165℃ 내지 185℃에서 수행될 수 있다.
또한, 상기 용융 압출 단계 이전에 일축 스크류 압출기 또는 이축 스크류 압출기를 이용하여 50℃ 내지 170℃까지 승온하면서 혼합하는 단계가 추가로 수행될 수 있다.
또한, 상기 용융 압출하는 단계 이후에, 상기 용융 압출물을 15 ℃ 이하, 10℃ 이하 또는 6℃ 이하로 냉각시킨 후, 이를 커팅하여 생분해성 펠렛을 제조할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 또 다른 실시예에 따르면, 상기 용융방사하는 단계 이전에, 상기 펠렛을 40℃ 내지 60℃에서 10시간 이상 동안 건조하는 단계를 추가로 포함할 수 있다.
예를 들어, 상기 용융방사하는 단계 이전에, 상기 펠렛을 40℃ 내지 58℃ 또는 42℃ 내지 60℃에서 11시간 이상 또는 12시간 이상 동안 건조하는 단계를 추가로 수행할 수 있다.
또한, 상기 건조 단계는 상기 펠렛의 수지 함수율이 2,000 ppm 이하, 1,500 ppm 이하, 1,100 ppm 이하, 500 ppm 이하, 300 ppm 이하, 150 ppm 이하, 100 ppm 이하, 60 ppm 이하 또는 50 ppm 이하가 될 때까지 수행될 수 있으며, 열풍 건조 또는 제습 건조로 수행될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 또 다른 실시예에 따르면, 상기 생분해성 수지 조성물을 방사하는 단계가 복합 방사 장치를 이용하여 수행될 수 있다. 예를 들어, 상기 복합 방사 장치는 시스-코어 복합 방사 장치일 수 있다.
구체적으로, 상기 시스-코어 복합 방사 장치의 코어부 또는 시스부에 상기 생분해성 수지 조성물을 직접 투입하여 생분해성 섬유를 제조할 수 있다.
더욱 구체적으로, 상기 생분해성 수지 조성물은 코어부 또는 시스부로 투입될 수 있고, 폴리부틸렌아디페이트 테레프탈레이트(PBAT), 폴리락트산(PLA), 폴리부틸렌숙시네이트(PBS), 폴리부틸렌아디페이트(PBA), 폴리부틸렌숙시네이트-아디페이트(PBSA), 폴리부틸렌숙시네이트-테레프탈레이트(PBST), 폴리히드록시부틸레이트-발레레이트(PHBV), 폴리카프로락톤(PCL), 폴리부틸렌 숙시네이트 아디페이트 테레프탈레이트(PBSAT), 폴리부틸렌에틸렌 아디페이트 숙시네이트(PBEAS), 폴리부틸렌에틸렌 숙시네이트(PBES) 및 열가소성 전분(TPS)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 생분해성 수지가 코어부 또는 시스부로 투입될 수 있다.
예를 들어, 상기 생분해성 수지 조성물이 코어부로 투입될 수 있고, 폴리부틸렌아디페이트 테레프탈레이트(PBAT), 폴리락트산(PLA), 폴리부틸렌숙시네이트(PBS), 폴리부틸렌아디페이트(PBA), 폴리부틸렌숙시네이트-아디페이트(PBSA), 폴리부틸렌숙시네이트-테레프탈레이트(PBST), 폴리히드록시부틸레이트-발레레이트(PHBV), 폴리카프로락톤(PCL), 폴리부틸렌 숙시네이트 아디페이트 테레프탈레이트(PBSAT), 폴리부틸렌에틸렌 아디페이트 숙시네이트(PBEAS), 폴리부틸렌에틸렌 숙시네이트(PBES) 및 열가소성 전분(TPS)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 생분해성 수지가 시스부로 투입될 수 있다.
또한, 상기 코어부 및 상기 시스부에 투입되는 원료의 중량비는 5 : 95 내지 95 : 5, 5 : 95 내지 85 : 15, 7 : 93 내지 80 : 20, 10 : 90 내지 75 : 25 또는 10 : 90 내지 70 : 30일 수 있다.
상기 내용을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 실시예의 범위가 이들만으로 한정되는 것은 아니다.
[실시예]
생분해성 수지 조성물의 제조
실시예 1 내지 9
하기 표 1에 기재된 구성 성분들을 표 2에 기재된 바와 같이 혼합하고 컴파운딩(온도: 120℃ 내지 180℃, 스크류 속도: 140 rpm 내지 300 rpm)하여 생분해성 수지 조성물을 제조하였다.
A-1 aPHA 4HB 반복단위의 함량: 33 중량%, 중량평균분자량(Mw): 600,000 g/mol, ASTM D1238에 따른 165℃ 및 5 kg에서의 용융흐름지수(MFI): 5.5 g/10min
A-2 scPHA 4HB 반복단위의 함량: 6 중량%, 중량평균분자량(Mw): 410,000 g/mol, ASTM D1238에 따른 165℃ 및 5 kg에서의 용융흐름지수(MFI): 2.88 g/10min
B-1 PLA ASTM D1238에 따른 190℃ 및 2.16 kg에서의 용융흐름지수(MFI): 10 g/10min, ASTM D1238에 따른 210℃ 및 5 kg에서의 용융흐름지수(MFI): 21 g/10min
B-2 PBS ASTM D1238에 따른 190℃ 및 2.16 kg에서의 용융흐름지수(MFI): 3 g/10min
C 유동화제 폴리스티렌-아크릴레이트계 중합체(제조사: BASF)
D 상용화제 폴리비닐아세테이트(제조사: wacker)
구분 A-1
(중량%)
A-2
(중량%)
B-1
(중량%)
B-2
(중량%)
C
(phr)
D
(phr)
실시예 1 30 - 70 - 1 1
실시예 2 30 - 70 - 2 1
실시예 3 30 - 70 - 3 1
실시예 4 40 - 60 - 1 1
실시예 5 40 - 60 - 2 1
실시예 6 40 - 60 - 3 1
실시예 7 50 - 50 - 1 1
실시예 8 50 - 50 - 2 1
실시예 9 50 - 50 - 3 1
비교예 1 30 - 70 - - 1
비교예 2 40 - 60 - - 1
비교예 3 50 - 50 - - 1
* phr: per hundred resin, 고분자 100 중량부당 투입되는 물질의 투입량 단위(1 phr: 고분자가 100 g일 때 투입량 1 g)
[실험예]
실험예 1: 용융흐름지수
상기 실시예 1 내지 9 및 비교예 1 내지 3에서 제조된 생분해성 수지 조성물에 대하여, ASTM D1238에 따라 190℃ 및 2.16 kg 하에서의 용융흐름지수(MFI, g/10min)를 측정하였다.
실험예 2: Tg, Tm, Tc 및 Tcc
상기 실시예 1 내지 9 및 비교예 1 내지 3에서 제조된 생분해성 수지 조성물에 대하여, 시차주사열량계(DSC)를 이용하여 유리 전이 온도(Tg) 및 용융 온도(Tm)를 측정하였다.
구체적으로, 상기 생분해성 수지 조성물 5 mg 내지 20 mg을 알루미늄 팬(Pan)에 넣고, 시차주사열량계를 이용하여 10℃/min의 속도로 40℃에서 180℃까지 승온한 후, 10℃/min의 속도로 -50℃까지 냉각시키면서 얻은 열류(heat flow) 곡선으로부터 유리 전이 온도(Tg), 용융 온도(Tm), 결정화 온도(Tc) 및 냉결정화 온도(Tcc)를 측정하였다.
구분 토크
(Nm)
압력
(kgf/cm2)
MFI
(190℃, 2.16 kg)
Tg
(℃)
Tm
(℃)
Tc
(℃)
Tcc
(℃)
실시예 1 45 50 8.3 -23 172 92 93
실시예 2 43 45 8.9 -22 172 91 94
실시예 3 40 45 9.0 -21 171 - 96
실시예 4 45 52 8.1 -19 172 - 95
실시예 5 43 55 8.2 -20 172 91 94
실시예 6 41 50 8.6 -20 171 90 94
실시예 7 46 51 7.6 -20 172 - 96
실시예 8 42 48 7.8 -21 172 - 95
실시예 9 42 47 8.1 -21 171 91 93
비교예 1 50 40 7.5 -21 172 - 97
비교예 2 47 50 7.5 -20 172 90 93
비교예 3 47 53 7.5 -20 172 - 95
표 3에서 보는 바와 같이, 실시예 1 내지 9의 생분해성 수지 조성물은 분산성이 우수하며, 용융 흐름 지수(MFI), 유리 전이 온도(Tg), 용융 온도(Tm), 결정화 온도(Tc) 및 냉결정화 온도(Tcc)가 모두 바람직한 범위를 만족하였다. 특히, 생분해성 수지 조성물을 용융 압출 및 방사하여 생분해성 섬유를 제조하는 토크 및 압력이 종래보다 낮으면서, 점도 특성이 우수하므로, 공정 온도를 더욱 용이하게 제어할 수 있어 가공성 및 생산성이 우수하다. 따라서, 실시예 1 내지 9의 생분해성 수지 조성물은 이를 이용하여 생분해성 부직포, 특히 생분해성 스펀본드 부직포 또는 생분해성 단섬유 부직포를 제조하기에 용이하며, 제조되는 생분해성 부직포의 품질을 더욱 향상시킬 수 있다.

Claims (24)

  1. 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지; 및 유동화제를 포함하고,
    ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수(MFI, Melt Flow Index)가 5 g/10min 이상인, 생분해성 수지 조성물.
  2. 제 1 항에 있어서,
    상기 유동화제가 폴리스티렌계, 폴리아크릴레이트계 및 폴리스티렌-아크릴레이트계 중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 생분해성 수지 조성물.
  3. 제 1 항에 있어서,
    상기 유동화제는 비중이 0.7 내지 1.8이고, 중량평균분자량이 1,500 g/mol 내지 8,000 g/mol인, 생분해성 수지 조성물.
  4. 제 1 항에 있어서,
    상기 유동화제는,
    시차주사열량계(DSC)로 측정된 유리 전이 온도(Tg)가 40℃ 이상이고, ASTM D1238에 따라 130℃ 및 12 kg 하에서 측정된 용융흐름지수가 1,800 g/10min 이상인, 생분해성 수지 조성물.
  5. 제 1 항에 있어서,
    상기 생분해성 수지 조성물은 상기 유동화제를 0.1 phr 내지 20 phr로 포함하는, 생분해성 수지 조성물.
  6. 제 1 항에 있어서,
    상기 PHA 수지가 상기 4-하이드록시부티레이트(4-HB) 반복단위를 0.1 중량% 내지 60 중량%로 포함하는, 생분해성 수지 조성물.
  7. 제 1 항에 있어서,
    상기 PHA 수지가 제 1 PHA 수지를 포함하고,
    상기 제 1 PHA 수지가 4-하이드록시부티레이트(4-HB) 반복단위를 15 중량% 내지 60 중량%로 포함하고, ASTM D1238에 따라 165℃ 및 5 kg 하에서 측정한 용융흐름지수(MFI, Melt Flow Index)가 0.1 g/10min 내지 20 g/10min인, 생분해성 수지 조성물.
  8. 제 1 항에 있어서,
    상기 PHA 수지가 제 2 PHA 수지를 포함하고,
    상기 제 2 PHA 수지가 4-하이드록시부티레이트(4-HB) 반복단위를 0.1 중량% 이상 내지 30 중량%로 포함하고, ASTM D1238에 따라 165℃ 및 5 kg 하에서 측정된 용융흐름지수가 0.1 g/10min 내지 15 g/10min인, 생분해성 수지 조성물.
  9. 제 1 항에 있어서,
    상기 생분해성 수지 조성물이 폴리부틸렌아디페이트 테레프탈레이트(PBAT), 폴리락트산(PLA), 폴리부틸렌숙시네이트(PBS), 폴리부틸렌아디페이트(PBA), 폴리부틸렌숙시네이트-아디페이트(PBSA), 폴리부틸렌숙시네이트-테레프탈레이트(PBST), 폴리히드록시부틸레이트-발레레이트(PHBV), 폴리카프로락톤(PCL), 폴리부틸렌 숙시네이트 아디페이트 테레프탈레이트(PBSAT) 및 열가소성 전분(TPS)으로 이루어진 군으로부터 선택된 1종 이상의 생분해성 수지를 포함하는, 생분해성 수지 조성물.
  10. 제 9 항에 있어서,
    상기 PHA 수지 및 상기 생분해성 수지의 중량비가 1 : 99 내지 99 : 1인, 생분해성 수지 조성물.
  11. 제 10 항에 있어서,
    상기 PHA 수지 및 상기 폴리락트산(PLA) 수지의 중량비가 20 : 80 내지 70 : 30인, 생분해성 수지 조성물.
  12. 제 1 항에 있어서,
    상기 생분해성 수지 조성물이 안료, 색소흡수제, 광흡수제, 산화방지제, 상용화제, 중량제, 기핵제, 용융강도 증강제 및 슬립제로 구성된 군으로부터 선택된 1종 이상의 첨가제를 추가로 포함하는, 생분해성 수지 조성물.
  13. 제 1 항에 있어서,
    상기 PHA 수지가 3-하이드록시부티레이트(3-HB), 3-하이드록시프로피오네이트(3-HP), 3-하이드록시헥사노에이트(3-HH), 3-하이드록시발레레이트(3-HV), 4-하이드록시발레레이트(4-HV), 5-하이드록시발레레이트(5-HV) 및 6-하이드록시헥사노에이트(6-HH)로 이루어진 군으로부터 선택된 1종 이상의 반복단위를 더 포함하는, 생분해성 수지 조성물.
  14. 제 1 항에 있어서,
    상기 생분해성 수지 조성물은,
    시차주사열량계(DSC)로 측정된 유리 전이 온도(Tg)가 -35℃ 내지 15℃이고, 용융 온도(Tm)가 105℃ 내지 200℃이고, 결정화 온도(Tc)가 측정되지 않거나 50℃ 내지 120℃이고, 냉결정화 온도(Tcc)가 30℃ 내지 125℃인, 생분해성 수지 조성물.
  15. 생분해성 섬유를 포함하고,
    상기 생분해성 섬유가 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지; 및 유동화제를 포함하는, 생분해성 부직포.
  16. 제 15 항에 있어서,
    상기 생분해성 섬유의 평균 길이가 100 mm이하이고, 평균 직경이 1 ㎛ 내지 100 ㎛인, 생분해성 부직포.
  17. 제 15 항에 있어서,
    스펀본드 공정에 의해 제조된, 생분해성 부직포.
  18. 제 15 항에 있어서,
    생분해성 수지 조성물을 이용하여 제조되고,
    상기 생분해성 수지 조성물은 ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수(MFI, Melt Flow Index)가 5 g/10min 이상인, 생분해성 부직포.
  19. 제 15 항에 있어서,
    상기 생분해성 섬유가 이형단면 복합섬유이거나 이성분계 이상 또는 삼성분계 이상의 복합섬유인, 생분해성 부직포.
  20. 제 15 항에 있어서,
    상기 생분해성 섬유가 코어부 및 시스부를 포함하는 시스-코어형(sheath-core type), 사이드 바이 사이드형(side by side type), 해도형(sea-islands type) 또는 분할형(segmented-pie type)인, 생분해성 부직포.
  21. 생분해성 수지 조성물 또는 이를 용융압출하여 제조된 펠렛을 용융방사하는 단계를 포함하고,
    상기 생분해성 수지 조성물이 4-하이드록시부티레이트(4-HB) 반복단위를 포함하는 폴리하이드록시알카노에이트(PHA) 수지, 및 유동화제를 포함하고, ASTM D1238에 따라 190℃ 및 2.16 kg 하에서 측정된 용융흐름지수(MFI, Melt Flow Index)가 5 g/10min 이상인, 생분해성 부직포의 제조 방법.
  22. 제 21 항에 있어서,
    상기 생분해성 수지 조성물을 방사하는 단계가 시스-코어 복합 방사 장치를 이용하여 수행되는, 생분해성 부직포의 제조 방법.
  23. 제 22 항에 있어서,
    상기 시스-코어 복합 방사 장치가 코어부 및 시스부를 포함하고,
    상기 코어부 및 상기 시스부로 투입되는 원료의 중량비가 5 : 95 내지 95 : 5인, 생분해성 부직포의 제조 방법.
  24. 제 23 항에 있어서,
    상기 생분해성 수지 조성물이 코어부로 투입되는, 생분해성 부직포의 제조 방법.
PCT/KR2022/018487 2022-10-31 2022-11-22 생분해성 수지 조성물, 생분해성 부직포 및 이의 제조 방법 WO2024096181A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0143098 2022-10-31
KR1020220143098A KR20240061438A (ko) 2022-10-31 2022-10-31 생분해성 수지 조성물, 생분해성 부직포 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2024096181A1 true WO2024096181A1 (ko) 2024-05-10

Family

ID=90930837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018487 WO2024096181A1 (ko) 2022-10-31 2022-11-22 생분해성 수지 조성물, 생분해성 부직포 및 이의 제조 방법

Country Status (3)

Country Link
KR (1) KR20240061438A (ko)
TW (1) TWI839975B (ko)
WO (1) WO2024096181A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544852B1 (ko) * 2001-03-27 2006-01-24 더 프록터 앤드 갬블 캄파니 폴리히드록시알카노에이트 공중합체/폴리락트산 중합체 또는 공중합체 배합물을 포함하는 섬유
KR20110008312A (ko) * 2008-05-06 2011-01-26 메타볼릭스 인코포레이티드 생분합성 폴리에스테르 블렌드
KR20150120810A (ko) * 2014-04-18 2015-10-28 (주)엘지하우시스 폴리락타이드 수지 및 폴리하이드록시알카노에이트 수지를 포함한 수지 조성물과, 이를 이용하여 제조한 필름 및 바닥재
KR20210111188A (ko) * 2021-07-30 2021-09-10 씨제이제일제당 (주) 생분해성 물품의 제조 방법
JP2021535238A (ja) * 2018-08-13 2021-12-16 ダニマー・バイオプラスティックス・インコーポレーテッド 水性pha分散液に基づく生分解性コーティング

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2770885A1 (en) * 2009-08-27 2011-03-17 Metabolix, Inc. Toughened polyhydroxyalkanoate compositions
KR20120103158A (ko) 2011-03-10 2012-09-19 (주)한국벤처그린산업 생분해성 플라스틱 조성물 및 이 조성물로 제조된 생분해성 플라스틱 제품
US9353258B2 (en) * 2012-06-05 2016-05-31 Metabolix, Inc. Low glass transition polyhydroxyalkanoates for modification of biodegradable polymers
JP7003064B2 (ja) * 2016-05-31 2022-01-20 ビーエーエスエフ ソシエタス・ヨーロピア 複合繊維製の不織布

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544852B1 (ko) * 2001-03-27 2006-01-24 더 프록터 앤드 갬블 캄파니 폴리히드록시알카노에이트 공중합체/폴리락트산 중합체 또는 공중합체 배합물을 포함하는 섬유
KR20110008312A (ko) * 2008-05-06 2011-01-26 메타볼릭스 인코포레이티드 생분합성 폴리에스테르 블렌드
KR20150120810A (ko) * 2014-04-18 2015-10-28 (주)엘지하우시스 폴리락타이드 수지 및 폴리하이드록시알카노에이트 수지를 포함한 수지 조성물과, 이를 이용하여 제조한 필름 및 바닥재
JP2021535238A (ja) * 2018-08-13 2021-12-16 ダニマー・バイオプラスティックス・インコーポレーテッド 水性pha分散液に基づく生分解性コーティング
KR20210111188A (ko) * 2021-07-30 2021-09-10 씨제이제일제당 (주) 생분해성 물품의 제조 방법

Also Published As

Publication number Publication date
TW202419584A (zh) 2024-05-16
TWI839975B (zh) 2024-04-21
KR20240061438A (ko) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2023008902A1 (ko) 생분해성 수지 조성물, 및 이를 이용한 생분해성 필름 및 생분해성 제품
WO2023033548A1 (ko) 생분해성 수지 조성물, 생분해성 용기 및 이의 제조방법
WO2023008903A1 (ko) 생분해성 수지 조성물, 및 이를 이용한 생분해성 필름 및 생분해성 멀칭 필름
WO2023008960A1 (ko) 생분해성 코팅 조성물, 이의 제조 방법 및 이를 이용한 생분해성 물품
WO2022103116A1 (ko) 이차전지 폐분리막을 이용한 복합수지 조성물의 제조 방법
WO2013157738A1 (ko) 폴리알킬렌 카보네이트 및 폴리올레핀 기반의 혼합 조성물
WO2014017715A1 (ko) 자동차 내장재용 열가소성 수지 조성물 및 자동차 내장재 성형품
WO2023080496A1 (ko) 탄산칼슘을 고함량으로 포함하는 생분해성 수지 조성물
WO2023033547A1 (ko) 발포용 조성물, 생분해성 발포체 및 이의 제조방법
WO2024085302A1 (ko) 생분해성 멜트블로운 부직포용 조성물, 및 이를 이용하여 제조된 생분해성 멜트블로운 부직포
WO2024096181A1 (ko) 생분해성 수지 조성물, 생분해성 부직포 및 이의 제조 방법
WO2023033518A1 (ko) 생분해성 섬유용 조성물, 및 이를 이용하여 제조된 생분해성 섬유
WO2024096521A1 (ko) 생분해성 멀티필라멘트 섬유용 조성물, 생분해성 멀티 필라멘트 섬유 및 이의 제조 방법
WO2018008969A1 (ko) 출력 속도가 향상된 3차원 프린터 필라멘트용 폴리유산 조성물
WO2023033509A1 (ko) 펄프 및 생분해성 수지를 포함하는 성형품, 이의 제조방법 및 성형용 조성물
WO2024085658A1 (ko) 압출 코팅용 생분해성 수지 조성물
WO2024117865A1 (ko) 생분해성 필름용 조성물, 이를 포함하는 생분해성 필름 및 생분해성 필름의 제조방법
WO2023229132A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2023153735A1 (ko) 생분해성 고분자를 포함하는 복합 소재, 이의 제조 방법 및 상기 복합소재를 포함하는 멜트블로운 부직포
WO2024215087A1 (ko) 생분해성 수지 조성물, 이를 이용한 생분해성 필름 및 이의 제조 방법
CN118325309B (zh) Pet复合材料及其制备方法
CN1175267A (zh) 结晶聚烯烃树脂组合物及由该组合物制得的电绝缘元件
WO2024143692A1 (ko) 생분해성 폴리올레핀 섬유 및 이의 제조방법
WO2024128722A1 (ko) 생분해성 수지 조성물 및 이를 포함하는 생분해성 물품
WO2024122974A1 (en) Biodegradable resin composition, biodegradable film including the same, and biodegradable molded article including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964560

Country of ref document: EP

Kind code of ref document: A1